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Abstract 

 Unmanned aerial vehicles (UAV) are individually versatile machines due to their 

small size, well-developed autopilots, on-board processing, and accurate navigation 

systems.  They can fulfill various military objectives without risking additional manpower 

including: real-time intelligence (ISR), battle damage assessment (BDA), force 

application, and force protection.   

 The purpose of this research was to develop a testable swarm architecture such that 

the swarm of UAVs collaborate as a team rather than acting as several independent 

vehicles.  Commercial-off-the-shelf (COTS) components were used as they were low-cost, 

readily available, and previously proven to work with at least two networked UAVs.   

 Initial testing was successfully performed via software-in-the-loop (SITL) 

demonstrating swarming of three simulated multirotor aircraft, then transitioned to real 

hardware.  The architecture was then tested in a nylon netting enclosure.  Command and 

control (C2) was provided by software implementing an enhanced version of Reynolds’ 

flocking rules via an onboard companion computer, and UDP multicast messages over a 

Wi-Fi mesh ad-hoc network.  Experimental results indicate a standard deviation between 

vehicles of 2 meters or less, at airspeeds up to 2 meters per second.  This aligns with 

navigation instrumentation error, permitting safe operation of multiple vehicles within 5 

meters of each other.  Qualitative observations indicate this architecture is robust enough 

to handle more aircraft, pass sensor data, and incorporate different swarming algorithms 

and missions. 
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DESIGN AND TEST OF A UAV SWARM ARCHITECTURE  

OVER A MESH AD-HOC NETWORK 

 
I.  Introduction 

General Issue 

The history of unmanned aerial vehicles (UAV) is older than manned aircraft; the 

first hot-air and lighter-than-air balloons were tested without human occupants in the 

1700’s (Crouch, 2009; PAF, n.d.).  The first recorded use of untethered UAVs in a military 

application is recorded in the March 1849 issue of Scientific American, when the Austrians 

used balloons to drop bombs on Venice, which had revolted and had no nearby terrain 

suitable for conventional bombardment (McDaid; Oliver; Strong; Israel, 2002).  

Interestingly this is also the first recorded instance of any aerial bombardment.  Other 

instances of unmanned aircraft occurred as technology progressed (Fahrney, 1980), but it 

wasn’t until the advent of the microprocessor that UAVs truly became capable of fulfilling 

missions traditionally performed by manned aircraft (Newcome, 2004).   

The modern individual UAV can perform several roles including real time 

surveillance, battle damage assessment (BDA), target lasing, accurate missile or rocket 

launch (USAF, 2015a, 2015b), and/or ferry supplies (Lockheed-Martin, 2017).  UAVs 

perform some tasks autonomously, and others as commanded by a man-in-the-loop 

(Howard, 2013).  Coordination with other aircraft, manned and unmanned, is still executed 

by humans (DOD, 2014).  Like humans, unmanned vehicles can synergistically increase 

mission performance when acting in teams rather than individuals or groups of individuals 

(Hambling, 2016).  Collaborative communication between UAVs is the next hurdle for 
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UAV technology to increase performance; however, due to ongoing development of 

swarming networks and how humans can interact with and control them, that hurdle has 

yet to be crossed (Cummings, Bruni, Mercier, & Mitchell, 2007).  

The principles of autonomy exist in a spectrum of flexibility in three categories: 

task, cognition, and peer/subordinate/supervisor (Rogers, 2011; Scharre, 2015).  The work 

encompassed by this thesis primarily falls under peer flexibility. Peer flexibility 

encompasses supervisor, subordinate, and peer relationships.  To clarify the definition of 

these roles: autonomous agents filling any of these roles share information with, and 

receive information from, other agents.  Subordinates receive direction or commands from 

other supervisors, supervisors send direction or commands to subordinates, and peers 

operate within the confines of their programming given the data shared by other agents.  

These clear delineations are a starting point but may be insufficient to fully describe swarm 

behavior as will be shown later. 

Problem Statement 

 There does not exist a flexible architecture to flight test UAV swarms that allows 

for supervisor/subordinate role reversals.  Almost all operational systems place the 

autonomous agent in the role of subordinate – it exists to execute human decisions.   

A notable exception is the UK-made Brimstone missile which can search for 

targets, select one, and attempt to destroy it with no human input once fired (Marsh, 

2014).  Lethal systems that can make decisions that end lives without a human operator in 

the loop are controversial on many levels (Marsh, 2014; Rogers, 2011), but there are 

more benign tasks like ISR (Saska et al., 2016), refueling (Burns, 2007), and tight 
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formation flying (Justh, EW; Krishnaprasad, 2002), that could be conducted by 

autonomous decision-making systems.   

Some role-reversing autonomous agents have gone operational but by and large 

they are still in development.  The most notable operational example is the F-16’s 

automatic ground collision avoidance system (GCAS).  When the flight computer 

determines the aircraft’s trajectory is going to end in a ground collision, at some threshold 

it takes control from the pilot and performs an emergency recovery maneuver to prevent 

collision (Norris, 2016).  The pilot temporarily becomes the subordinate and the flight 

computer the supervisor.  The F-16 is not normally flown as a UAV, but the 

supervisor/subordinate roles apply the same way.  Modern UAV autopilots fly waypoint 

or loiter routes as directed by humans in the loop.  Algorithms can be used to choose those 

waypoints and the on-board computer does most of the work of flying but the decision to 

execute is still the human’s: the human is always the supervisor and the UAV the 

subordinate.  One of the drivers for this thesis was to provide a flexible architecture with 

which to test unmanned systems that allow for similar role changes in a safe and controlled 

manner. 

Research Objectives 

The purpose of this research is the enabling of a swarm of three or more multirotor 

UAVs to act together using collaborative coordination amongst all UAVs in the swarm, 

without commands from a ground station, except for manual commands to a single “lead” 

vehicle.  A second objective was to investigate the vehicle spacing distribution to determine 

how closely UAVs can operate in proximity to other UAVs in the swarm while minimizing 
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the chance of colliding, given various flight patterns.  For safety purposes and due to 

institutional requirements, a ground control station (GCS) was used to monitor UAVs on a 

one-for-one basis, along with an observer and a safety pilot with the ability to immediately 

seize manual control for each vehicle.   

The data produced by this research, and future data acquired by more rigorous 

testing of the architecture should provide evidence that a three-to-one crew is not required 

for all UAV tests and operations if the vehicles meet some level of autonomous swarming 

capability.  Metrics that demonstrate safety of flight for a UAV swarm have not been 

identified at this point in time, and this research should provide some options or insights to 

develop those metrics. 

Investigative Questions 

This thesis research focuses on integrating COTS hardware and software prototypes 

into a collaborative multirotor UAV swarm.  The following questions are examined: 

• What is one architecture that supports collaborative communication 

between three or more multirotor air vehicles that can be scaled to include 

more? 

• What is the distribution of separation distances and error between vehicles 

implementing a version of Reynolds’ flocking rules and how does it change 

with different parameter settings and flight patterns? 

• What is the contribution of velocity commands by rule using a “prioritized 

velocity bucket” instead of a more traditional weighted-rule method? 
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Methodology 

Utilizing COTS equipment and Open Source Software (OSS), can a single operator 

safely and successfully provide command and control for a swarm consisting of three or 

more UAVs?  The UAVs must form an ad hoc network, where each aircraft is a node and 

can enter and leave the network freely.  Furthermore, the UAVs must act in concert, using 

onboard processors and telemetry broadcast by each aircraft over the network with no 

inputs from ground-based command and control (C2).  The specific task carried out by the 

swarm is not of interest in this research, but rather the underlying communication and 

navigation architecture that enables it. An algorithm mimicking a flock of birds (Reynolds, 

1987) will be utilized as a stand-in, applying three control rules to each swarm member 

plus a fourth rule establishing a desired (safe) minimum altitude.   

 

Figure 1. Reynolds Flocking Rules (Enrica, 2016) 
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Figure 2. Minimum Altitude Rule 

Reynolds’ rules by themselves are insufficient to demonstrate peer flexibility 

because by the previously-made role definitions, all the agents are peers and there are no 

supervisors or subordinates.  Therefore, any given agent must also be able to take on the 

role of a supervisor where it continues to send and receive information as part of the swarm 

but is under direct human control.  As a result, this places those agents not under human 

control in a subordinate role relative to the lead agent(s), while they maintain peer 

relationships amongst each other.  The supervisory agent becomes supervisor to the 

subordinate swarm members but is also subordinate to the human agent. The human 

supervisor can then leverage their supervisor role over one or more aircraft to indirectly 

control the rest of the swarm. 

For example, flying a lead agent directly away from its subordinate in a 2-vehicle 

swarm will lead to the subordinate “chasing” the leader by following the rules governing 

alignment and cohesion.  Flying the lead agent at a subordinate will result in the subordinate 

moving away from the lead vehicle due to the rules for alignment and separation.  Distance 

spacing between aircraft will be evaluated using this type of behavior for various flight 

patterns in a 2-vehicle swarm and in a 3-vehicle swarm.  The purpose for this is to ensure 

safety of flight by providing spacing guidelines to reduce the chance of midair collision. 
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This research is intended to be a starting point for future swarm algorithm testing 

by a single operator for three or more aircraft.  Reynolds’ rules are used as a convenient 

fill-in for behavior, because it’s likely the separation and minimum altitude rules will be 

maintained for any swarm for safety purposes.  The architecture behind this demonstration 

must be flexible enough that future iterations can replace the swarm rules with something 

entirely different from Reynolds’ flocking rules – including a more cognitively flexible 

controller than a scripted algorithm.   

Research was conducted in two phases: software-in-the-loop (SITL), followed by 

hardware-in-the-loop (HITL).  At the start of this thesis, the USAF airworthiness flight 

release for AFIT UAV operations required one GCS per UAV. To support a release 

permitting one GCS to control multiple UAVs or monitor a swarm of UAVs with the option 

to take control, SITL testing was used to prove safety of flight.  The SITL setup consisted 

of OSS running in multiple instances onboard a single computer; the software architecture 

for a single instance is shown below in Figure 3. 

A FlightGear server was used to view the simulated aircraft swarm, with individual 

aircraft observable in their own FlightGear flight simulation instances, but also showing 

the other aircraft through a multiplayer server.  The data was provided by JSBSim Flight 

Dynamics Model (FDM), receiving inputs from multiple emulated ArduPilot autopilot 

instances.  Each autopilot was controlled separately by instances of MAVProxy GCS, a 

minimalist GCS capable of interfacing with Python scripts through DroneKit.  A single 

Python script used telemetry outputs from each virtual autopilot and a swarming algorithm 

to provide C2 instructions.  These instructions were fed through DroneKit to the 

MAVProxy GCS and then to the autopilots.   
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Figure 3. SITL Architecture (ArduPilot, 2016) 

Once the swarming algorithm was shown to work in simulation, it was uploaded to 

actual aircraft for the second phase.  Three fixed-wing UAVs were networked together, 

with one characterized running the same algorithm from SITL testing.   

Assumptions/Limitations 

Aircraft availability limits the maximum size of the swarm to three aircraft, so the 

scalability of the swarm architecture cannot be empirically determined.  It’s not feasible to 

simulate the limitation since the governing scripts are run on small onboard companion 

computers, while the simulation was run on a higher-end laptop computer.  Furthermore, 

the type of aircraft available for flight test are limited to AFIT resources.  If this architecture 

is successful with three aircraft, future testing can evaluate bandwidth limitations when 

incorporating more aircraft into the architecture. 
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Open-source software (OSS) will be utilized throughout this research.  This 

provides maximum flexibility at the cost of potential security flaws (which are not 

addressed by this research) and reduced user-friendliness.  Many commercial off-the-shelf 

(COTS) products will be used in this research to keep costs down.  This also allows for 

component interchangeability for most components.  The critical exception is the Pixhawk 

autopilot due to its ability to accept local frame velocity commands.  Also, some 

specialized interface connections were manufactured in-house.   

Implications 

This research, if successful, will allow future researchers to start with a baseline of 

three multirotor air vehicles that exhibit a minimum level of swarming behavior in a safe 

and controllable manner.  From there, more advanced swarming capabilities can be tested 

including formation flying, the addition of sensor packages, and more advanced data 

sharing.  It will also provide early metrics for safety of flight for swarming air vehicles, 

and evidence in support of a reduced personnel requirement for swarms of air vehicles if 

those vehicles meet not-yet-established criteria for operation.   

Preview 

Chapter II reviews numerous publications supporting the purpose and technical 

background of this research.  Topics include military utility of swarming aircraft, 

algorithms that govern autonomous flocking behavior, command and control architectures 

supporting swarming aircraft, methods for controlling swarm members individually and 

for controlling the swarm as a whole.  The chapter concludes with the few documented 

instances where all of these components were put together and partially tested on real 
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aircraft.  Chapter III addresses the specific architecture developed by this research, the 

hardware and software used to test the architecture, control algorithm development for a 

UAV swarm, and the test and verification plan.  Chapter IV discusses the results and 

implications of the actual tests, and Chapter V provides conclusions and recommendations 

for future research. 
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II. Literature Review 

Chapter Overview 

Chapter II focuses on engineering articles exploring the technical aspects of UAV 

swarm communication and control.  Additionally, some articles delve into the military 

utility of UAV swarms.  These articles provide the technical foundation for this thesis and 

show the gap it is intended to address.   

Use of Low-Cost COTS Components in Multi-UAV Demonstrations 

Previous research has proven the efficacy of low-cost COTS components in 

providing inter-vehicle communication sufficient to navigate unmanned ground vehicles 

(UGV) in close formation (Gray, 2015; Hardy, 2015; Toscano, 2017). Additionally, the 

architecture used to control two UGVs in Toscano’s research, running at nearly 20Hz 

update rate, was assessed to be capable of including at least three more vehicles.   

Military Utility 

 In 2002, the then-US Joint Forces Command/J9 prioritized a list of mission sets for 

collaborative UAV systems (USJFCOM J9, 2002). This list of missions was evaluated for 

specific behavioral patterns, translating militarily useful tasks into lower-level actions 

(Feddema, John T; Robinett & Byrne, 2004).  In 2014, Kaiser adjusted the Feddema table 

to quantify which behaviors were common to which mission sets, shown in Table 1. 
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Table 1. Adjusted Feddema Behaviors (Kaiser, 2014) 
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Area ISR X X X X X X      
Point ISR X X  X X X  X    
Communication X X  X    X    
Navigation/Mapping X X X X  X      
Swarming Attacks X X  X X X X  X X X 
Defense/Protection X X  X  X X X X X X 
Delay/Fix/Block X X  X  X X X  X  
Deception Operations X X    X    X X 
(Combat) Search & Rescue X X  X X X     X 

 

 Since all the listed military missions utilize flocking and converging/diverging 

behaviors, it is reasonable to assume that every mission set is going to include these 

foundational behaviors.  This thesis then, will focus on implementing those two behaviors 

into a scalable swarm of three or more aircraft, with sufficient remaining processing power 

and memory to add additional behaviors in the future.  

 Before proceeding, it’s important to clarify the definitions of some of the terms 

used.  In common use, flocking, herding, and swarming are all synonymous for 

collaborative motion, the only difference being which type of animal the behavior is 

describing.   For the purposes of this research, flocking describes a natural-seeming 

aggregate behavior of individuals, which are not centrally controlled but act solely on their 

own perception of their environment (Reynolds, 1987).  The original three Reynolds rules 
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adequately simulate or produce flocking behavior, but lack purpose.  Modifying these rules 

can give the aggregate behavior a purpose.  Swarming for the purposes of this research is 

defined as a group of three or more agents acting in such a way that the behavior of each 

agent affects that of every other agent, and the group is collaborating to accomplish some 

goal which cannot be attained by an individual agent or would take an individual agent an 

inordinate amount of time to accomplish.  Swarming does not have to include flocking 

behavior per se: a group of UAVs performing a gridded sensor sweep would be said to 

exhibit swarming behavior, but it would not appear as natural animal behavior, and thus 

not be described as flocking.  In either case though, the positions and velocities of all other 

members of the swarm or flock must be available to each individual to obtain the desired 

effect. 

Individual members of flocks or swarms, as defined, must be able to exhibit 

converging or diverging behavior.  Converging is the ability to move towards a common 

point “known” by all swarm members.  Diverging is the ability to move away from a 

common point “known” by all swarm members.  

Given those definitions, the ability to flock or swarm requires two important pieces: 

a common coordinate frame amongst all flock members, and a way to determine each flock 

member’s position and velocity in that frame.  While it may be convenient to utilize a 

global frame due to common availability of satellite navigation signals, these signals can’t 

always be relied upon in a military environment.  Therefore, a local frame makes the most 

sense to use.  When satellite navigation signals are available, the global positions can be 

translated to the local frame, and when not, alternative methods can be used to determine 

the local frame (Scaramuzza et al., 2014).  Additionally, the global frame may be more 
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useful for military missions, but the local frame may be better for flocking and 

converging/diverging behaviors. 

The position and velocity information must be shared amongst all flock members 

and updated at a sufficient rate such that each member is able to respond to the movements 

of other members so as not to collide with them (baseline behavior) and accomplish the 

mission of the flock (advanced collective behavior). 

Cooperative Behavior and Algorithms 

 In 1986, Craig Reynolds suggested an algorithm designed to simulate flocking 

behavior, and the following year published a paper on his findings (Reynolds, 1987).  The 

three key rules Reynolds describes, in order of decreasing precedence, are: 

Separation: avoid collisions with nearby flock members 

Alignment: attempt to match velocity with nearby flock members 

Cohesion: attempt to stay near other flock members 

 

Figure 4. Original Reynolds Rules 
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Reynolds is careful to point out at the start of his paper that objectively measuring the 

success of a flocking algorithm is difficult, and notes that while some attempts to 

mathematically describe flocking behavior have been made, it may be more significant that 

many viewers are able to immediately recognize flocking behavior on sight (Reynolds, 

1987).   The focus of this thesis is twofold: demonstrate a functional architecture for swarm 

algorithm development and show safety of flight given an implementation of Reynolds’ 

flocking rules on multirotor UAVs.  Later, an objective measurement of flight safety will 

be attempted.   

 One analysis of Reynolds’ original rules determines the rules as originally 

described lead to fragmenting behavior rather than flocking behavior (Olfati-Saber, 2006).  

Given random starting positions, the flock members tend to aggregate in small groups 

without ever forming a single large swarm.  A solution is given in the form of a navigation 

correction: a point (which may or may not be mobile) towards which all flock members 

should attempt to move, whilst still obeying the original rules of separation, alignment, and 

cohesion.  This thesis implements a hybrid solution where flock members use the geometric 

center of all vehicles on the network to determine the cohesion point, rather than just the 

geometric center of vehicles within a set radius.  

 Reynolds’ rules have been tested in simulation for flock stability, and the specific 

equations governing separation, alignment, and cohesion are indeed capable of governing 

a stable flock.  A stable flock is defined as one where all members have a common heading, 

stay within some defined radius of the other members, and refrain from colliding with other 

flock members.  The potential fields governing Reynolds’ rules are successfully used in 

both static and dynamic environments.  The primary drawback to this paper is that it is 
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purely a simulation and operates under the assumption that each flock member has near-

perfect knowledge of all other flock members at all times (Tanner, Jadbabaie, & Pappas, 

2003, parts I and II). 

Command and Control (C2) Architectures 

 Based on the previous subsection, the theoretical rules governing basic swarm 

operation are sound and ready to be implemented in real vehicles.  The information that 

must be shared amongst all swarm members are the local position and velocity of each 

member, so the next issue is how to pass that information in a complete and timely manner.   

 There are two overarching methods of swarm control: centralized, and 

decentralized, pictured below in Figure 5.  Centralized control architectures rely upon 

ground infrastructure, limiting the capability of the swarm by tying it to a local area and 

increasing weight requirements (Bekmezci, Sahingoz, & Temel, 2013; Diamond,  

Rutherford, & Taylor, 2009).  Decentralized control permits the swarm to operate out of 

range of ground infrastructure, and to pass data to or from any swarm member with an 

external link to just one swarm member (Li et al., 2008).  There is a third path which 

combines these two methods, where one swarm member is designated the master which 

provides direction to the remainder.  An architecture like this has been tested with some 

success, but at its lowest level each slave swarm member still must be able to communicate 

position and velocity data with the master (Pilania, Mishra, Panda, & Mishra, 2009).  

Therefore, a key building block of an independent swarm is a decentralized ad-hoc 

network. 
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Figure 5. Centralized (a) vs Decentralized (b) Network 

  Having established the need for an ad-hoc network to allow swarm members to 

communicate amongst themselves, there are two types to choose from, displayed in Figure 

6.  The standard ad-hoc network assumes that each node is within communication range of 

every other node –  a single hop for every transmission.  This is not necessarily the case 

for a network of flying vehicles as they may be spaced over a broad area, have no hardline 

connecting them, and may encounter terrain obstructions.  Given these circumstances, a 

mesh ad-hoc network, where nodes can utilize multiple hops to pass their data to other 

nodes, is the preferred solution (Bekmezci et al., 2013; Karl, 2005; Kumar, 2002; Li, Ming; 

Harris, John; Chen, Min; Mao, Shiwen; Xiao, Yang; Read, Walter; Prabhakaran, 2015; Li 

et al., 2008).   

 The Linux-based microcomputers used in previous successful multi-autonomous 

vehicle applications (Toscano, 2017) do have basic ad-hoc capability when paired with a 

Wi-Fi adapter but do not have mesh capability.  Therefore, a layer-2 routing protocol is 

needed to fill this gap.  Two open-source protocols appear to meet this requirement: 
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open80211s and Better Approach To Mobile Ad-hoc Networking (BATMAN) Advanced 

(Pojda, Wolff, Sbeiti, & Wietfeld, 2011; Shibing & Jianmei, 2016; Zafar & Khan, 2017).  

Both have been successfully used in mobile mesh ad-hoc networks and are suitable for 

UAV swarming applications (Pojda et al., 2011), although there are concerns about 

BATMAN-Advanced scalability (Lüssing, 2013).  

 

Figure 6. Ad-Hoc Network vs Mesh Ad-Hoc Network 

 Routing provides a network connection between vehicles, but another layer is 

required to pass useful data.  The two common methods using Wi-Fi are TCP/IP or UDP 

multicast.  The first method, TCP, sends messages from one node to specified nodes on the 

network, generating one message per node.  Furthermore, it is a two-way link where receipt 

of the message is confirmed, and the message contents are verified.  The second method is 

more efficient for a mesh ad-hoc network because only one message is sent out and passed 

until all nodes have received it.  The drawback is receipt is not confirmed, and messages 
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are not always received in order.  Given that telemetry messages are only useful for a 

second or two at best (depending on relative location accuracy desired) and are repeated 

often, UDP multicast is the more efficient method to use and it also comes with unique 

security benefits that can be implemented (Philips, Adrian N.; Mullins, Barry E.; Raines, 

Richard A.; Baldwin, 2009).  While there are Python modules available to send and receive 

multicast messages, there is a packaged solution which is inherently more flexible.  The 

Lightweight Communications and Marshalling (LCM) library can pass different types of 

data structures via UDP multicast, in different programming languages, making it 

inherently more flexible.  It has been applied to unmanned vehicles on land, air, and sea 

(Huang, Olson, & Moore, 2010) and is packaged in a simple, easy-to-use format, making 

it ideal for swarming applications. 

Autonomous Control 

 Autonomous control of aerial swarm members is a broad topic; three facets of 

which will be addressed here.  First, data requirements will be discussed.  Then hardware 

and software specific to each swarm member will be considered, followed by control of 

the swarm as a single unit.   

The common element to every swarm member regardless of the swarm’s purpose 

is an information requirement for position and velocity of the other swarm members around 

it.  Methods to achieve this range from radio pulses with specialized receiver antennae 

(Justh, EW; Krishnaprasad, 2002), to dedicated sensors (Mcclanahan, 2017), to 

broadcasting telemetry (Gray, 2015; Toscano, 2017).  Each method has its benefits and 

drawbacks, but the critical difference which makes the last option most attractive to a 
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baseline architecture is that telemetry broadcast is independent of the data content and 

mode of transmission (radio or free space optical for instance).  Its modularity grants 

flexibility, allowing other elements of the architecture to change (particularly the physical 

configuration of the aircraft) without changing this one.  For example, local position data 

may be produced by vision-based sensors (Scaramuzza et al., 2014) or some other method 

than Global Positioning System/Inertial Navigation System (GPS/INS). 

 One of the drawbacks to telemetry-only swarm control is its dependency on each 

vehicle’s sensors (GPS, INS, barometer, accelerometers) which in the case of small 

multirotor vehicles with commercial-quality components amounts to ~2m error in the 

horizontal plane and a little more on the vertical axis (Gray, 2015; Mcclanahan, 2017).  

However, this can be rectified by using additional sensors for localized navigation (Wilson, 

Ali, & Sukkarieh, 2015), or real-time kinematic (RTK) differential GPS solutions 

(McCollum, 2017).  There is also some latency between the autopilot processing the data 

from its positional sensors and the receipt of that data by other swarm members.  Methods 

are available to reduce this issue (Woolley, Peterson, & Kresge, 2011) but are not 

investigated further. 

 At the hardware level, small UAVs require the use of an onboard autopilot to 

maintain flight stability.  Open-source autopilots, specifically the 3D Robotics Pixhawk, 

have been used successfully in two-vehicle teams in a leader-follower arrangement (Gray, 

2015; Toscano, 2017), with indications that it is suitable to provide control for three or 

more vehicles in a swarm.  These autopilots do not include the ability to execute specialized 

scripts or communicate remotely to other autopilots, however this is addressed by the use 

of a small companion computer – often a Raspberry Pi or Beaglebone Black (Toscano, 
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2017).  Ardu-based autopilots can interface on a software level with these companion 

computers through the open-source modules contained in DroneKit-Python, but physical 

connections can be tricky (Toscano, 2017). Companion computers can then use virtually 

any type of radio to transmit and receive data externally to the air vehicle.  The proprietary 

Wave Relay system has been shown to be effective (Gray, 2015; Toscano, 2017), but ad-

hoc Wi-Fi networks are also capable depending on the layer-2 protocol used (Bekmezci et 

al., 2013; Zafar & Khan, 2017). 

 Having addressed control issues for individual swarm members, it’s also important 

to consider control of the swarm as an entity of its own.  The small UAV flight release used 

by AFIT currently requires a crew of three people per aircraft – an operator, safety pilot, 

and observer.  One of the goals of this thesis is to provide evidence of swarm safety of 

flight in an effort reduce manpower required to operate a swarm of UAVs.  The US Federal 

Aviation Administration (FAA) notes no formal testing process has been developed for 

swarming technology by any nationally-recognized organizations (Federal Aviation 

Administration; Office of the Secretary of Transportation; Department of Transportation, 

2016).  The FAA is aware that swarming is a desirable technology for both civilian and 

military use however, and is working to create rules allowing one pilot to control multiple 

coordinated vehicles (Duncan, 2017).  Research building off Reynolds’ and Olfati-Saber 

suggests that simple manual swarm control can be achieved with just a single lead vehicle 

which broadcasts its position and velocity as if part of the swarm but whose movements 

are not restricted to Reynolds’ rules (Su, Wang, & Lin, 2007).  Existing research is 

theoretical; this thesis will demonstrate a functional swarm where one aircraft is controlled 
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manually as the leader, while the swarming follower vehicles attempt to match its velocity, 

subject to Reynolds’ rules. 

Combining Behavior Algorithms, C2 Architecture, and Autonomous Control 

 There are two excellent examples implementing Reynolds’ rules in an actual drone 

swarm that are available for study.  The first was documented in 2011 and involved ten 

fixed-wing aircraft (Hauert et al., 2011).  As this thesis uses multirotor vehicles, there are 

fewer constraints since the multirotor aircraft do not have to maintain forward velocity in 

the body frame to stay aloft.  The second example implemented Reynolds’ rules in 

multirotor aircraft, with the additional ability to replace a strict cohesion rule with a 

formation-cohesion rule (Vasarhelyi et al., 2014).  Formations included a ring, grid, or line 

as desired, and maneuvered the center of gravity of the swarm (and thus the swarm) while 

still maintaining formation.  In both examples, each swarm member was forced to maintain 

a specific altitude to avoid collision, and all maneuvering per Reynolds’ rules was 

conducted in the horizontal plane.  This thesis will demonstrate a swarm of three multirotor 

aircraft operating fully in three dimensions rather than just two. 

Conclusion 

 Based on available literature, elements of a UAV swarm architecture have been 

theorized, simulated, and tested.  In some cases, they have been assembled and tested as 

whole system with nominal two-dimensional limitations.  However, no comprehensive and 

tested architecture for a scalable swarm of three or more air vehicles has been publicly 

documented.  This thesis will start to fill that gap and is intended to be a starting point for 

real-world testing of mission-based swarming algorithms built on a common baseline. 
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is to describe a testable baseline architecture for a UAV 

swarm of three or more vehicles and the methods used to test that architecture.  First the 

architecture is described, followed by the hardware and software implementation.  Next, 

the control algorithm is discussed along with software test techniques, and the chapter 

concludes with the test and verification procedure for the UAV swarm.   

Architecture 

 This system architecture will be defined using views from the Department of 

Defense Architecture Framework (DODAF).  In keeping with best practices, the 

architectural views utilized will be those sufficient and appropriate to describe the system.   

 The following pair of operational concept graphics (OV-1) in Figures 7 and 8 depict 

first a typical scenario used to test the architecture in this research, and second a 

hypothetical scenario that this architecture would be able to achieve if the swarm had an 

autonomous objective – which is only tested to a small extent in this research. 
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Figure 7. OV-1, Tested Swarm Configuration 

 

Figure 8. OV-1, Notional Swarming Configuration 

 The following pair of abbreviated use cases apply to the OV-1 from Figure 7.  The 

full use cases and definitions are provided in Appendix A.  An activity diagram is also 

provided below each use case.  Note the behaviors associated with the activity diagrams 



25 

are assigned to generic vehicles; however, in the use cases they are specifically assigned to 

multirotor aircraft.   

 Use Case Example 1 

Pre-Conditions: The X-8 multirotors are airborne in altitude hold mode, spaced 
approximately 30-50 meters apart, at an altitude of 20-30 meters AGL. 
 
Main Flow: 

1. The non-lead safety pilots change the mode of their vehicles from altitude hold to 
guided. 

2. The non-lead X-8 multirotors fly autonomously towards the geometric center of the 
swarm. 

3. Once the X-8 multirotors are within 20 meters of each other, their motion changes as 
the alignment vectors cancel out. 

4. The vehicles slow as they approach the center and start to fly apart if they are too 
close to any other vehicles. 

5. This behavior is permitted to continue for a minute or two for sufficient data 
collection. 

Post-Conditions: The X-8 multirotor vehicles achieve a dynamic equilibrium near the 
lead vehicle, continuously attempting to move towards the geometric center of the swarm, 
then repelled by the proximity of other vehicles.  Data is collected for a minute or two to 
characterize the behavior. 
 

 
Figure 9. Activity Diagram, Use Case 1 

Use Case Example 2 

Pre-Conditions: The X-8 multirotor vehicles have achieved a dynamic equilibrium near 
the lead vehicle, continuously attempting to move towards the geometric center of the 
swarm, then repelled by the proximity of other vehicles, and data has been collected. 
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Main Flow 

1. The lead safety pilot maneuvers the lead X-8 multirotor away from the other aircraft. 
2. The non-lead X-8 multirotor vehicles autonomously maneuver to follow the lead 

vehicle. 
3. The lead safety pilot maneuvers the lead X-8 multirotor in benign patterns – straight 

lines or gentle arcs. 
4. The non-lead X-8 multirotor vehicles maneuver autonomously in response. 
5. This maneuvering is done for a minute or two for sufficient data collection. 

Post-Conditions: The non-lead X-8 multirotor vehicles maneuver in response to the 
manually-controlled lead vehicle, according to the Reynolds+ algorithm rules.  Data is 
collected for a minute or two to characterize the behavior. 
 

 
Figure 10. Activity Diagram, Use Case 2 

 Since the architectural vision and overview has been described, the architecture will 

now be shown in greater detail.  First, the OV-5b (Figure 11) maps operational activities 

to the system components responsible for activities and documents how those activities 

will flow during normal operations.  Note that while each aircraft is capable of manual or 

guided flight, tests during this research will always have at least one aircraft under manual 

control. 
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Figure 11. Activity Diagram with allocated swim lanes 

The next viewpoint (Table 2) is a fit-for-purpose view, useful in mapping the 

architecture’s physical layers, and translating the operational activities (OV-5b) to 

subsystem functions.  This is similar to a SV-5b but provides more details.  Function 

descriptions are provided in Appendix B.  Note a critical capability of the autopilot is it 

must be able to accept velocity commands in a local frame of reference. 

 

 

 

 

 

 

 



28 

Table 2. Layer-Component-Function Table 

Layer 1 Swarm System Components/Subsystems Objective 
 

  Air Vehicle Swarm Accomplish Generic Mission    
Fly                        

Navigate/Operate Safely 
Ground Control Station 
Global Positioning System 
Safety Pilots 

Layer 2 System Subsystem Functions 
AV Swarm Air Vehicle Fly                                            

Navigate Safely                 
Maneuver as a group 

Safety Pilot Human Mode changes                                
Fly vehicle manually         
Monitor AV behavior         

Manual recovery as needed 

Radio Control 

GPS Space Vehicles Provide nav Signals 
GCS Human Monitor autopilot telemetry 

Laptop/PC 
Radio Transceiver 

Layer 3 Air Vehicle Multirotor aircraft Comm w/GCS                      
Receive nav signals                  
Comm w/each other                  
Fly autonomously                        

Fly manually                        
Receive safety pilot cmds 

Strap-on guidance package 

Layer 4 Strap-on 
guidance 
package 

Companion Computer Comm w/other guidance packs 
Get telemetry from aircraft         

Send velocity cmds to aircraft 
WiFi Adapter 
Battery 

Multirotor 
aircraft 

Frame Fly manually                                  
Fly autonomously                

Comm w/safety pilot radio 
Comm w/GCS                            

Send telemetry to guidance pkg 
Rcv vel cmds from guidance 

pkg                                          
Rcv GPS signals                    

Determine position 

Motors 
Props 
Speed Controllers 
Battery 
Autopilot + GPS Receiver 
Remote Ctrl Radio 
GCS Radio 
GPS Antenna 

Layer 5 Autopilot +    
GPS Receiver 

  Rcv GPS signals               
Determine position                  

Send telemetry to guidance pkg 
Rcv vel cmds from guidance 

pkg Send PWM signals to 
motors Send/rcv signals - GCS 
radio Send/rcv signals - safety 

pilot 
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With the functions allocated to subsystems, the interfaces between those systems 

can now be described in a pair of system interface views (SV-1).  The first SV-1 (Figure 

12) shows the interfaces at layers two and three (as described in Table 3), between the 

UAV swarm itself and all external connections: the safety pilots, the ground control 

stations (GCS), the Global Positioning System (GPS), and between the air vehicles.  The 

second SV-1 (figure 13) shows the interfaces at layers three and four: between the guidance 

package and the air vehicle itself, and again between the air vehicles. 

 

Figure 12. System Interface Description (SV-1), Layers 2-3 
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Figure 13. System Interface Description (SV-1), Layers 3 and 4 

 The architecture has been sufficiently described through the above DODAF views 

to implement it in hardware and software.  Note that many of the views above contain 

specific radio frequencies; these are not necessarily dictated by the architecture but due to 

FCC restrictions they are bands open for the purposes assigned and are commonly used in 

small UAV applications. 

Hardware/Software Implementation 

 Before discussing the hardware and software choices at length, it’s important to 

discuss the values behind component selection for this research.  The architecture described 

previously allows for a great deal of flexibility in component selection.  The availability of 

institutional resources puts some limitations on components.  Where choices were open to 

virtually any available COTS or open source product, the specific components selected 

were chosen for functionality, ease of implementation, flexibility, and low cost.   
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 Three X-8 multirotor aircraft (figure 14) were provided for research and test.  Each 

X-8 has eight rotors arranged in an X-pattern with one blade on the top and one on the 

bottom at the end of each arm.  These aircraft have been used previously in single and 

multi-UAV tests and provide more than adequate performance up to 10 m/s horizontally 

and 5 m/s vertically in winds up to 20 kph.  The architecture and software used could just 

as easily be used with any multirotor airframe.  The only critical piece of hardware in this 

setup is the 3D Robotics Pixhawk autopilot, which is capable of receiving velocity 

commands in a North-East-Down (NED) frame.  Not every autopilot, open-source or 

otherwise, has this capability but it is required within the architecture.  The X-8s each 

include two radios: one 915 MHz radio for connecting to a GCS, and one 2.4 GHz radio 

for manual control by the safety pilot. 

 

Figure 14. X-8 Multirotor with Strap-on Guidance Package 
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Figure 15. Strap-on guidance package (battery location outlined) 

The strap-on guidance package (Figure 15) consists of a Beaglebone Black 

companion computer, an Alfa AWUS036NHA Wi-Fi adapter, a two-cell 2200 mAH 

Lithium-Polymer (LiPo) battery, and a voltage regulator.  An optional colored LED array 

was also purchased to aid ground personnel in distinguishing each platform.  This guidance 

package is attached via hook-and-loop to the multirotor, and interfaces directly with the 

Pixhawk autopilot through a custom serial cable.  The serial cable connects the UART1 

port on the Beaglebone Black to the Telem2 port on the Pixhawk.  The block diagram in 

Figure 16 shows the physical elements comprising the air vehicle, the various interfaces 

and data links, and the information that flows between components. 
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Figure 16. Block Diagram 

 Regarding the software, the Pixhawk autopilot is running APM: Copter version 

3.4.6.  The companion computer is running a Debian Operating System (OS) but any Linux 

distribution will suffice.  The connection to the Pixhawk from the companion computer is 

made through DroneKit-Python, so all autonomy scripting is also written in Python.  

BATMAN-Advanced is used to set up the mesh ad-hoc network using the Alfa Wi-Fi 

adapters, and a script was written to automatically connect to the network upon powering 

the companion computer.  The Lightweight Communications and Marshalling (LCM) 

library was chosen to facilitate UDP multicast over the network due to its flexible nature 

and also for data collection as it contains native data-logging capability (Huang et al., 

2010). 
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Algorithm Development and Verification 

 The autonomy algorithm and software verification method will be described next.  

Although the software test environment was completed before the control algorithm 

chronologically, the control algorithm will be described first and then the software test will 

be addressed. 

 Reynolds+ Rules 

 As mentioned, Reynolds’ rules of separation, alignment, and cohesion provide a 

foundation for swarming behavior.  In a computer simulation, the velocity calculated by 

the rules is simply added to the current position to provide the next position of the flock 

member.  On real aircraft, a desired velocity in the local NED frame is calculated during 

one loop of the control cycle, and then that velocity is sent as a command to the autopilot, 

which attempts to match it until another command is sent, or the first command expires.  

For the Pixhawk, velocity commands expire after a maximum of one second, so the control 

loop must be at a higher frequency.  Additional factors come into play when implementing 

these rules on small UAVs that aren’t present in simulation.  In addition to separation 

between vehicles, it is prudent to avoid ground collision as well, so a fourth rule was 

adopted to enforce a minimum altitude (flight deck) using a potential field like the 

separation rule.  A fifth rule requiring aircraft to remain within a specified radius of the 

GCS to retain ground control of the vehicle if necessary was considered but not 

implemented in this research.  The modified Reynolds rules are shown in Figure 17, 

alongside the original rules.  The combination of the original rules and the new ones are 

coined “Reynolds+.” 
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Figure 17. Reynolds+ Rules 

 The telemetry received from other aircraft is combined with the aircraft’s own data 

pulled from the autopilot by the companion computer.  As the aircraft’s own data is 

retrieved in global coordinates, it is then translated into a common local tangent plane 

(LTP) used by all aircraft in the swarm (see Figure 18 and Equations 1-3)(Drake, 2002).  

From there it is simultaneously used in the Reynolds+ calculation and sent out to other 

swarm members to use.  The resulting velocity after all rules are accounted for is then 

transmitted from the companion computer to the autopilot.   

 

 

 



36 

 𝑿𝑿 = (𝑵𝑵(𝝓𝝓) + 𝒉𝒉)𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

𝒀𝒀 = (𝑵𝑵(𝝓𝝓) + 𝒉𝒉)𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

𝑍𝑍 = (𝑁𝑁(𝜙𝜙)(1 − 𝑒𝑒2) + ℎ)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 

( 1 ) 

where:  

 X = axis from Earth’s center of mass to equator and prime meridian intersection 
 Y = 90° counterclockwise (from north) offset from X-axis along the equator 
 Z = axis from Earth’s center of mass to the north pole 
 N = see Eqn. 2 
 h = height above ellipsoid 
 ϕ = latitude (geodetic) 
 λ = longitude (geodetic) 
 

 𝑵𝑵(𝝓𝝓) =
𝒂𝒂

√(𝟏𝟏 − 𝒆𝒆𝟐𝟐 𝐬𝐬𝐬𝐬𝐬𝐬𝟐𝟐 𝝓𝝓)
 ( 2 ) 

where:  

 a = semi-major axis 
 e = ellipsoid first numerical eccentricity 
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( 3 ) 

where:  

 ϕref = reference point latitude (geodetic) 
 λref = reference point longitude (geodetic) 
 Xveh = vehicle X-coordinate (ECEF) 

Yveh = vehicle Y-coordinate (ECEF) 
Zveh = vehicle Z-coordinate (ECEF) 
Xref = reference point X-coordinate (ECEF) 
Yref = reference point Y-coordinate (ECEF) 
Zref = reference point Z-coordinate (ECEF) 
x = vehicle east-coordinate (LTP) 
y = vehicle north-coordinate (LTP) 
z = vehicle up-coordinate (LTP) 
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Figure 18. Global Frame to Local Tangent Plane Conversion 

 Bucket Method for Velocity Calculations 

All documented implementations of Reynolds’ rules use a weighted sum method to 

calculate the desired velocity of each swarm member.  That is, the target velocity for each 

rule is multiplied by some factor depending on the desired importance of that rule, and the 

resulting velocities are summed into the swarm member’s desired velocity for each control 

loop.  This has the potential to result in undesirable behavior because the velocity for a 

lower-priority rule might grow high enough to overcome its low multiplier and result in a 

collision.  Instead, the author prioritized the rules and set a velocity magnitude limit, or 

bucket.  Reynolds proposed a similar system in his original paper but focused on 

acceleration rather than a target velocity (Reynolds, 1987).  Each rule’s magnitude is added 

to the bucket in priority order, and once the bucket is “full,” the remaining rules are 

discarded along with excess magnitude from the rule that filled the bucket.  These two 
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methods are shown in Figure 19, and the bucket method is described in a graphic sequence.  

Another benefit of the bucket method is rules can be added and discarded with ease instead 

of having to recalculate a weighted system every time a change is made. 

 
𝒖𝒖��⃗ 𝒋𝒋 =  � 𝒘𝒘𝒓𝒓𝒖𝒖��⃗ 𝒓𝒓,𝒋𝒋

|𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓|

𝒓𝒓=𝟏𝟏

 
( 4 ) 

where:  

 ,r ju  = velocity commanded by rth rule to the jth vehicle 
 wr = weight applied to rth rule 
 

 

Figure 19. Weighted-Sum Velocity vs Velocity Magnitude Bucket 

 Rule Prioritization and Calculation 

 The governing rules depicted in Figure 19 were prioritized to value safety of flight 

over mission.  Separation, minimum altitude, and communications range are all safety-

related, while alignment, cohesion, and mission execution are task-related.  From there, the 
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rules were prioritized in order of most likely occurrence based on the test plan shown later 

in this chapter.  The air vehicles will all be operating within visual range of the safety pilots 

and ground control for this research, so communications radius was given the lowest 

priority and not actually implemented.  Nominal flight altitude for all tests was designated 

to be in the 20-30m range, so even if a swarm member were directly below a lead aircraft 

or the swarm center, it would still be operating at an altitude of 10-20m.  That allows time 

for the safety pilot to recover the vehicle safely if needed.  Therefore, inter-vehicle 

collisions are the most likely safety issue with this research, so vehicle separation was given 

the highest priority.   

 Note that the equations as presented show some specific numerical values.  These 

values were selected by SITL test trial-and-error.  A heuristic provided starting values: 

plots of behavioral responses were sketched, with cohesion and separation becoming equal 

at the desired separation radius, and a steeper slope for separation than cohesion.  For 

behaviors which only appear at a certain distance from something (another vehicle or the 

ground), the magnitudes were started near-zero, and exponentially increased to provide a 

smooth response.  Over the course of testing the equations were changed to provide smooth 

behavior as viewed in the SITL environment.  They are not “optimized” for any specific 

behavior patterns and can be adjusted to, for instance, provide swifter response to an 

encroaching vehicle within the separation radius. 

 
𝒖𝒖��⃗ 𝟏𝟏,𝒋𝒋 =  � 𝒗𝒗��⃗ 𝒓𝒓,𝒋𝒋(

𝟏𝟏𝟏𝟏𝟏𝟏
𝒅𝒅𝒓𝒓,𝒋𝒋 + 𝟕𝟕

− 𝟓𝟓.𝟕𝟕)
|𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊|

𝒓𝒓=𝟏𝟏

 
( 5 ) 
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where: 

 |intruders| = total number of vehicles within separation bubble radius 
 𝑣⃗𝑣𝑟𝑟,𝑗𝑗 = unit vector from rth encroaching vehicle to the jth vehicle (NED frame) 
 dr,j = distance (meters) from the rth encroaching vehicle to the jth vehicle 
 
 

 𝑢𝑢�⃗ 2,𝑗𝑗 =  𝑣⃗𝑣2(
1000

�ℎ𝑗𝑗 + 5�
2 − 5.7) ( 6 ) 

where: 

 𝑣⃗𝑣2 = [0    0    -1]  
 hj = height of jth vehicle above ground (meters) 
 
 

 𝑢𝑢�⃗ 4,𝑗𝑗 =
∑ 𝑣𝑣𝑟𝑟

|𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒ℎ|
𝑟𝑟=1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ

 ( 7 ) 

where:  

 numVeh = number of vehicles within the designated alignment radius 
 vr = velocity of rth vehicle within the alignment radius (m/s) 
 

 𝑢𝑢�⃗ 5,𝑗𝑗 = 𝑣⃗𝑣5,𝑗𝑗(
5𝑑𝑑5,𝑗𝑗
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−

20
21

) ( 8 ) 

where:  

 𝑣⃗𝑣5,𝑗𝑗 = unit vector from jth vehicle to the geometric center of all vehicles (NED) 
 d5,j = distance to the geometric center of all vehicles (meters) 
  

Each rule generates a target velocity (m/s) for the aircraft, which in every case but 

one is a function of distance from the air vehicle to a specific point.  The only exception 

is alignment, which is an averaged velocity of all nearby air vehicles.  These rules were 

implemented in up to three different ways: once for testing inside a caged environment, 

once for testing in an unenclosed space with wide spacing (for safety of flight), and last 

for testing unenclosed with narrow spacing (originally used for software testing).  Each 
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rule also has limitations on when it comes into effect.  Plots of rules 1, 2 and 4 as 

implemented are shown in figures 20 and 21, and equations 5-8 show the velocity 

calculations for rules 1, 2, 4, and 5 respectively; for more information see Appendix C.   

Telemetry Transmission and Logging 

 LCM is used to broadcast telemetry over the ad-hoc network, as well as the velocity 

commands sent to each autopilot.  Only the current position and velocity information is 

needed for swarming capability, but both are recorded to provide redundant data records 

of all maneuvers.  Each aircraft records all the outbound and inbound LCM messages 

automatically, so in theory each aircraft has a full record of the swarm’s movements.  

Telemetry is also recorded at a higher rate on-board the Pixhawk autopilots. 

Figure 20. Reynolds+ Rule Magnitude Plots, Wide Version 
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Figure 21. Reynolds+ Rule Magnitude Plots, Narrow Version 

Software in the Loop (SITL) Testing 

 SITL was used extensively to develop the Reynolds+ rules in a low-cost 

environment not subject to weather or other environmental and logistics constraints.  Since 

the focus of this research is on a testable architecture platform, SITL setup and discussion 

has been placed in Appendix D.   

Metrics 

 As mentioned in Chapter II, measuring the performance of a swarm of aircraft can 

be a very subjective task.  The primary method would be to evaluate the swarm’s 

performance of some task – surveillance coverage, automated refueling, or target 

engagement for instance.  Since the purpose of this research was to develop a testable 

architecture baseline, mission evaluation is not feasible.  Instead, a proxy measure is used 
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to evaluate safety of flight, and fluctuation of the bucket method implementing Reynolds’ 

rules is explored. 

 Given the primary risk during flight testing for this research is midair collision 

between aircraft, frequency plots of the distance between aircraft are generated.  The swarm 

is flown in various patterns first with wider spacing and again with narrow spacing (see 

Appendix C for governing equations).  Distance frequency should peak near the start of 

the separation radius, drop off sharply as spacing distance decreases, and decrease less 

sharply as distance increases.  This metric may be useful for describing safety of flight in 

future swarm development as it can shape safety pilot expectations as to how close is “too 

close,” when aircraft are operating in very close proximity. 

 Results for evaluating the bucket method are less objective, but it is important to 

see that all the rules are in fact being utilized appropriately, and that no rule is consuming 

the majority of maneuvering capability when it should not be.  Conversely, when a safety 

rule is under maximum effect, the other rules should be ignored.  For example, when 

aircraft are in close proximity, it should be clear that the separation rule overrides all others 

– but is quickly resolved so the aircraft can resume mission-related activity.   

Test and Verification Procedure 

Flight testing will take place at Wright-Patterson Air Force Base, Area B, near 

Dayton, Ohio.  An enclosed cage has been set up near AFIT for initial tests, to ensure the 

system has basic functionality before open-air tests.  The cage, seen in Figure 22, measures 

45’ x 65’ x 40’ (LxWxH), is composed of nylon netting with two access panels.  A segment 

of the decommissioned runway is available for open-air testing, pictured in Figure 23. 
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Figure 22. AFIT Small UAV Enclosure 

 

 

 

Figure 23. WPAFB Area B Small UAV Flight Operating Area 

 Although the swarm architecture developed in this thesis only strictly requires four 

personnel at most to fly three aircraft, eleven will be present to comply with the current 
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flight release during open-air tests.  Tests in the cage enclosure do not require the full crew.  

Four test scenarios have been devised to test the architecture, as well as familiarize ground 

personnel with swarm operations.  These scenarios will be flown first with only two aircraft 

running the wide spacing described earlier in this document.  Then the scenarios will be 

repeated with three aircraft, also with wide spacing.  If the safety pilots are comfortable 

with the wide spacing and determine it may be safe to proceed with closer spacing, the 

scenarios will be run twice more with the narrow spacing: once with two aircraft, and once 

with three.  If at any time ground personnel feel the aircraft are liable to collide, the aircraft 

will be manually recovered immediately, and the safety pilots will determine if the test 

should be attempted again or not. 

 Each aircraft will have three personnel responsible for it: a ground control station 

(GCS) monitoring telemetry from the autopilot, an observer, and a safety pilot.  The first 

two are extraneous for testing purposes but required for safety of flight.  The safety pilots 

play a more active role, described in the next paragraph.  In addition to the aircraft crew 

there is a primary and backup test director.  Each scenario will follow a similar script. 

The aircraft will be powered on, along with the strap-on guidance packages.  Once 

the guidance packages have connected to the network, the test director will start the 

Reynolds+ scripting which will enforce swarm behavior in Guided mode.  The aircraft will 

take off under manual control of the safety pilots in Stabilize mode.  They will be flown to 

approximately 20m altitude and spaced 20-30m apart horizontally, and then switched into 

Altitude Hold mode by the safety pilots.  In Altitude Hold, the guidance packages will 

begin exchanging telemetry with each other but will not be able to maneuver their aircraft.  

The lead aircraft will remain in Altitude Hold, and the remaining one or two aircraft will 
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be switched into Guided mode by the safety pilots.  Once in Guided mode, the follower 

aircraft will follow the Reynolds+ rules as directed by their on-board script.  If at any time 

one or more aircraft need to be recovered, the responsible safety pilot(s) will place their 

aircraft in Stabilize mode, which will immediately cut off the telemetry sharing with other 

aircraft and end any commands issued by the guidance package.  Mode behaviors are 

shown in Table 3.  Once each test scenario, or series of scenarios, is complete, the aircraft 

will be recovered manually. 

Table 3. Aircraft Mode Behavior Summary 

 

The “lead” aircraft will be designated ahead of time, but the aircraft will all be 

running the same script, so it does not strictly matter which particular vehicle it is.  The 

lead aircraft’s safety pilot will have a different configuration on their radio, however.  The 

manual mode switch has three positions.  All aircraft will have Stabilize and Altitude Hold 

modes available.  The follower pilots will have Guided on the third position, and the lead 

pilot will have Auto (waypoint-following). 
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Cage Testing 

 Flight tests within the cage enclosure only require a handful of personnel: one safety 

pilot per aircraft, plus one for ground support.  No formal tests were originally planned for 

this stage; it was intended for troubleshooting and system checkout before open-air tests.  

However, due to environmental constraints the only useful data was from the final checkout 

flight within the cage.  Enclosed flights involved a series of tests, starting with placing one 

swarm member on the ground, broadcasting with motors off, turning on an airborne swarm 

member outside nominal equilibrium distance from the grounded aircraft, and looking for 

appropriate behavior.  Note the aircraft do not have to be airborne to broadcast telemetry, 

they merely have to be turned on with a good GPS fix in Altitude Hold mode.  Another test 

included “dragging” or “pushing” a swarm member around the cage with a leader aircraft 

(two vehicles airborne).  The last flight included one swarm member on the ground, the 

lead vehicle manually flown in an upper corner of the cage, and a third aircraft set to guided 

mode on the opposite side of the enclosure.  This list isn’t exhaustive; the purpose of cage 

testing was to provide indications the Reynolds+ algorithm and the architecture as a whole 

is functioning well enough to execute open-air tests.   

Data collection was entirely on-board the aircraft through the Pixhawk telemetry 

log and LCM’s innate data logging.  The data had to be manually retrieved and decoded 

post-flight, although a stationary ad-hoc node on the ground could be used to collect LCM 

traffic.  The X-8 multirotor aircraft in the given configuration were expected to have 15-

20 minutes of flight time.   
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Summary 

Although open-air testing was planned, all data was collected in an enclosed 

environment.  One aircraft was designated the “leader” and the remaining two aircraft 

“followers.”  Data collection was conducted on-board: the Pixhawk autopilot stored 

telemetry data, and the Beaglebone Black companion computer stored all LCM traffic sent 

and received.  Each aircraft retained a record of all LCM traffic plus its own telemetry as 

recorded by the autopilot.  The data will be analyzed in Chapter IV, with particular attention 

to the separation distance as a frequency plot, and the distribution of each rule within the 

velocity commands sent to the autopilot from the companion computer on the airborne 

vehicle in guided mode. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter discusses the procedures and results of the testing methods described 

in Chapter III.  It evaluates the architecture performance in quantitative and qualitative 

terms, and provides answers to investigative questions from Chapter I.   

Test Scenario 

 After powering on the autopilots and guidance packages, autonomous scripts were 

started via a fourth node on the mesh ad-hoc network.  The fourth node was connected to 

each of the vehicles via secure shell (SSH) and was used to launch the autonomy software 

and data logging in each of the three vehicles.  This was done with a screen command to 

reduce bandwidth between the fourth node and the three vehicles.  With the autonomy 

software started, the SSH connections were closed and control of the vehicles was entirely 

in the hands of the safety pilots or the software when in guided mode. 

 One aircraft (Vehicle 3) was placed on the ground, roughly near the center of the 

enclosure, and set to altitude hold, allowing it to broadcast as a swarm member even though 

it would remain stationary.  The lead aircraft (Vehicle 1) was manually flown to the 

northeast corner of the enclosure, as close to the roof netting as was deemed reasonably 

safe given weather conditions and placed in altitude hold – also broadcasting as a swarm 

member though still under manual control.  The last aircraft (Vehicle 2) was manually 

flown to the southern side of the enclosure, approximately centered between the east and 

west sides, and halfway between the ground and roof.  There it was placed in altitude hold 

to begin processing data from the other two aircraft, then set to guided mode for 



50 

autonomous movement.  The position data of all vehicles for the flight duration, as 

recorded by the LCM log on-board Vehicle 2 is shown in Figure 24.  The units for Figure 

24 are in meters, measured from a predetermined reference point on the WPAFB Area B 

runway in a local East-North-Up (ENU) frame.   

 

Figure 24. Cage Flight Position Log 

Limitations 

 Vehicle 3 was stationary for the duration of the test, yet its LCM traffic (displayed 

in Figure 24) shows movement, indicating some GPS errors are present.  The cage 

enclosure is located on top of a hill and immediately adjacent to a building of similar height.  

Wind gusts are frequent, which produced barometric (and thus altitude) errors.  The 

building itself blocks some GPS signals, and creates multipath issues for others, so the 

position accuracy is not as good as an open-air test away from structures.   
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 Approximately ten seconds after Vehicle 2 was set to guided mode, a gust of wind 

caused Vehicle 1 to make an incorrect altitude adjustment and strike the roof of the 

enclosure.  Its erroneous position data was broadcast across the network, causing Vehicle 

2 to respond as required by the onboard software, although not in a manner necessarily 

desirable.  The safety pilots recovered both airborne vehicles after 18.84 seconds of guided 

behavior, and some attempts were made to continue testing but the environmental 

conditions were deemed unsafe for further flight.   

Based on the test performed, the expectation is Vehicle 2 will show it started further 

from both vehicles, and moved to close the gap, finding a dynamic equilibrium point on a 

line between both vehicles.  Because the lead aircraft is flying and not truly stationary, the 

distance between Vehicles 2 and 1 should exhibit higher variation than between Vehicles 

2 and 3.  The distance from Vehicle 2 to Vehicle 1 should also be smaller than the distance 

to Vehicle 3 because the second Reynolds+ rule introduced (flight deck) should prevent it 

from moving too close to the ground.  If cohesion towards the geometric center of the 

swarm would move Vehicle 2 too far below the flight deck, then the velocity commands 

should reflect rule 1 (if applicable) and rule 2 filling the velocity bucket and preventing the 

remaining rules from influencing the vehicle’s motion. 
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Quantitative Results 

The spacing for the duration of the flight from Vehicle 2 (flying autonomously) to 

the other two vehicles in the swarm is shown in Figure 25 and summarized in Table 4.  

Start time at 21.81 seconds indicates when Vehicle 2’s mode was changed to Altitude Hold; 

0.35 seconds later it was changed to Guided and began automated movement.  Summary 

computations only encompass the 39.91 seconds of flight during which Vehicle 2 was 

flying autonomously, although position data for all vehicles was collected for 58.03 

seconds, and the two non-autonomous vehicles for 79.84 seconds (inclusive).   

Table 4. Summary Statistics 

Vehicle 2 
to:  Distance (meters) 
  Status Mean StdDev Range 
Vehicle 1 Stationary/Flying 8.1199 2.0094 7.3089 
Vehicle 3 Stationary/Grounded 8.4525 1.4349 5.5579 

 

The summary statistics show what was expected: the mean distance from the 

autonomous vehicle to the lead vehicle was smaller than to the stationary vehicle, and the 

standard deviation higher due to the lead vehicle’s movement.  Also visible in Figure 25 

the two spacing measures begin diverged for the first ~20 seconds of autonomous flight 

and roughly converge in the last 20 seconds, demonstrating that a dynamic equilibrium has 

been achieved, as intended and as predicted by SITL testing.  It would not be appropriate 

to compare the spacing distance to the separation radius as originally desired, because the 

nominal equilibrium point falls outside that distance from either aircraft.  Figure 26 was 

expected to show a cluster of events near the equilibrium distances (9 to 11 meters) but due 

to the relatively short collection time this phenomenon is not readily observed.   
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Figure 25. Distance from Vehicle 2 (Guided) 

 

Figure 26. Distance Frequency Plot 
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The velocity command magnitudes sent to Vehicle 2, broken out by magnitude, are 

shown in Figure 27.  This plot shows the velocity commands are doing exactly what they 

are supposed to do.  The commands do not exceed 2 m/s (reduced from 5 m/s for safety 

purposes in an enclosed environment), although they can be lower.  Higher-priority rules 

can prevent lower-priority rules from contributing, as seen from ~23 seconds to ~31 

seconds where Vehicle 2 drifted below the 4m flight deck and was forced back above by 

Rule 2.  Near 20 seconds into the guided commands (~40 seconds after the first logged 

LCM message), Figure 25 shows Vehicle 2 moving within 5 meters of Vehicle 1 which 

should trigger the separation rule (this was also reduced from 10-meter spacing for 

enclosed flight), and input from Rule 1 is shown in Figure 27 at that time.   

 

Figure 27. Velocity Command Magnitudes by R+ Rule 
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 Also of note in Figure 27 is the sudden drop in Rule 3 (Alignment) contribution 

around 42 seconds into collection.  This likely indicates when wind gusting and/or GPS 

errors began to cause Vehicle 1 to broadcast position changes with no accompanying 

velocity information.  This sort of event was not replicated in SITL because the virtual 

sensors in the software environment are not subject to error – the velocity data would have 

been broadcast proportional to the change in position.  Ultimately, based on the data 

collected, the automated vehicle responded as intended and as expected. 

Qualitative Results 

 This section will evaluate the tested architecture’s performance from a qualitative 

standpoint.  Looking back at the supervisor-subordinate roles, the architecture was as 

flexible as intended.  The safety pilots, although ultimately able to seize control of any of 

the vehicles at any time, were able to change the roles of the individual aircraft from sub-

supervisor to subordinate with the “flick of a switch.”  The aircraft immediately assumed 

the assigned roles.  The aircraft were all in a subordinate role on takeoff, and both the lead 

and stationary aircraft served as supervisors to the autonomous aircraft.  Once the 

autonomous aircraft was changed to Guided mode, it became the subordinate of the other 

two aircraft and its movement subject to their broadcast position and velocity data.  The 

lead aircraft served as a sub-supervisor as it was still subordinate to safety pilot manual 

control, but otherwise supervised the movement of the autonomous aircraft.  The stationary 

aircraft also served as a sub-supervisor as its movement was restricted to a point on the 

ground, but in an unenclosed flight test would have served as a peer to the autonomous 
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aircraft since it too would have been flying autonomously.  The aircraft were all capable of 

role changes with a single switch, which was an intended result of this research.   

 Based on the test performed, the autonomous aircraft was expected to fly towards 

the geometric center of all three aircraft, which would have shifted proportional to the 

aircrafts’ movement.  The autonomous aircraft was expected to settle directly between the 

lead aircraft’s nominal position and the stationary aircraft, with some small oscillations due 

to broadcast position and sensor errors, and the slight movement of the lead aircraft.  The 

autonomous aircraft did exactly what was expected: it flew directly to a point 

approximately halfway between the other two aircraft, with some adjustment closer to the 

lead vehicle so as not to stay below the designated flight deck.   

 The guidance packages connected to the ad-hoc network seamlessly on startup, 

with an estimated 1-2-minute delay.  Earlier tests resulted in communications back-log and 

an unresponsive system, so the position/velocity broadcast rate and the velocity command 

generation rate were reduced from ~20 Hz to approximately 10 Hz.  This reduction, 

combined with starting the software in screens separate from the SSH terminals used to 

start the software, yielded a smooth system launch with no observed communication delays 

or dropouts due to flooded channels.  The safety pilots observed that the broadcast and 

command rate could probably be reduced to 1-2Hz with no change in performance, based 

on their own experience and reaction times.   Safety pilot observations of the autonomous 

behavior itself were that it moved at a rate consistent with their capability to recover from 

a mishap and did not appear to be in danger of allowing any collision.  Wind gusts and 

altitude errors were of higher concern.   
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Analysis Summary 

 Although only one aircraft was flown autonomously, and one aircraft was 

stationary on the ground rather than flying, all three aircraft simultaneously broadcasted 

and received their position and velocity data during flight test.  This was demonstrated at 

a transmission rate suitable for flying at velocities up to 2m/s and with a separation radius 

of 5 meters.  Safety pilot observations suggest the transmission rate of position/velocity 

information could be lowered by one order of magnitude, which would allow for more 

aircraft to transmit (compared to the original rate) and/or transmission of additional sensor 

data.  The Reynolds+ rules functioned properly, guiding the autonomous aircraft to a 

position of dynamic equilibrium.  The velocity bucket method of rule prioritization also 

functioned as intended. 

Chapter Summary 

In this chapter, procedures and results of the test plan described in Chapter II were 

explored.  Changes from the original design were discussed.  Chapter V will provide 

concluding remarks, answers to the investigative questions from Chapter I, and 

recommendations for future research. 
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter presents conclusions about the architecture design and the architecture 

as tested.  Investigative questions from Chapter I are answered, and the significance of this 

research along with recommendations for future work are described. 

Conclusions of Research 

The goal of this research was to create a testable architecture for a swarm of multi-

rotor aircraft to cooperatively navigate, with or without guidance from outside the swarm.  

The swarm should consist of at least three aircraft, be scalable to include more, and at a 

minimum share position and velocity data to enable close-proximity flight up to navigation 

instrumentation error without collision.  The communication segment of the architecture 

should also be able to accommodate sharing of sensor data in future iterations.  Although 

environmental conditions did not permit a full open-air flight test, such data as could be 

collected in an enclosed flight suggest this research was successful. 

Investigative Questions Answered 

 What is one architecture that supports collaborative communication between three 

or more multirotor air vehicles that can be scaled to include more? 

 The architecture developed by this research can execute autonomous missions 

through collaborative communication and can be scaled to include more aircraft and sensor 

payloads.  It was successfully tested at a command execution and data transmit/receive rate 

of 10Hz with three aircraft.  The primary components are any multirotor aircraft whose 

autopilot can receive velocity commands in a local NED (or ENU) frame, a companion 
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computer, and a Wi-Fi adapter set up to connect to a mesh ad-hoc network.  The specific 

missions are not prescribed; its very purpose is to be a baseline from which many kinds of 

missions can be tested by adding components and software to the architecture. 

 The architecture can best be described as a layered software pattern with four 

layers, shown in Figure X.  These are: the layer 1-2 networking (in this case the mesh ad-

hoc network), the messaging layer which shares telemetry and other data, the autonomy 

layer governing behavior and storing data, and the vehicle abstraction layer which controls 

the vehicle hardware.  This layered architecture provides flexibility in implementation: 

each layer is modular and not tied to any specific hardware or software item.  The layers 

work in conjunction to perceive the environment, determine a course of action, and execute 

the action. 

Figure 28. Swarm Architecture 
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 What is the distribution of separation distances between vehicles implementing a 

version of Reynolds’ flocking rules and how does it change with different parameter 

settings and flight patterns? 

 This question is partially answered from the cage test of the architecture.  The 

vehicles do establish a dynamic equilibrium when two of the vehicles are stationary or 

nearly-stationary, where the third vehicle is driven by the governing rules to a stable 

location between the other two and maintains its position to within the error bounds of its 

navigational sensors. 

 What is the contribution of velocity commands by rule using a prioritized velocity 

bucket instead of a more traditional weighted-rule method? 

 This architecture’s implementation and test of the velocity magnitude bucket 

frequently led to “overflow” of the bucket, where the desired magnitude was greater than 

the limit, so the rules were frequently saturated.  This is likely due to the low velocity limit 

of 2m/s enforced in the enclosed cage, and might be different in an open-air test with a 

higher limit of 5m/s.  The lower-priority rules governed aircraft behavior most of the time.  

The higher-priority rules were enforced when needed, with a swift enough response to 

permit the lower-priority rules to resume governing autonomous behavior when ground-

collision or vehicle-collision avoidance rules were no longer in activation radius. 

Significance of Research 

This is the first complete architectural description of a multi-rotor aircraft swarm 

that can be built with COTS components and OSS coding.  It’s been demonstrated to work 

by both simulation and real-world flight.  It also has room to expand to include more than 
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three aircraft in the swarm and can leverage LCM messaging flexibility to pass data from 

sensors added to one or more aircraft.  The behavior patterns of the aircraft can be modified 

with a few lines of code to incorporate formation flight, or flight patterns in reaction to 

sensor data.  This will provide time-saving value for future real-world tests of swarming 

algorithms and utilities. 

Recommendations for Action 

This architecture should be tested in various flight patterns including: leader-

following to ensure movement of the swarm as a single unit, leader-chasing to ensure 

collision-avoidance for safety-of-flight purposes, and leader-waypoint-following to 

demonstrate swarm independence of ground control.  The software should be improved by 

modularizing its components, especially the Reynolds+ rule computations, to enable 

addition of further rules, and/or removal of existing rules as needed. 

Recommendations for Future Research 

Future research should continue along several fronts.  First, the full capabilities of 

the architecture should be investigated to determine how many aircraft can be part of the 

swarm before communications become degraded.  If sensors are added and that data is 

shared, it will also consume bandwidth and reduce the maximum number of permissible 

vehicles.  The trade space between command execution rate, data transmission rate, and 

number of aircraft/sensors should be explored.  It may be possible to accomplish this 

research with partial hardware-in-the-loop (HITL) testing, where ten or twenty guidance 

packages are each connected to a simulated autopilot rather than real aircraft.  This would 

permit bench-test of the network and messaging limitations. 
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The specific equations governing the Reynolds+ rules should also be investigated 

further because they can probably be tuned to provide smoother control, faster 

convergence, and fewer oscillations.  This might also be feasible in SITL because wind 

gusting and GPS errors can be injected into the simulation, and then those results compared 

to real-world testing.  The relationship between the constants developed in this research for 

the Reynolds+ rules and settling time / overshoot of swarm equilibrium in various flight 

modes should be described.  Furthermore, an empirical comparison of the weighted-sum 

versus the velocity magnitude bucket methods should be performed on real hardware. 

This swarming architecture only applies to multirotor aircraft due to their ability to 

rapidly accelerate in any direction, momentum notwithstanding.  Some of this research 

should be applied to fixed-wing aircraft swarms.  The velocity magnitude bucket method 

proved effective and could be integrated into a fixed-wing swarm, where the velocity 

directions are limited to a cone in front of the aircraft’s body frame, and the size and shape 

of that cone depending on the aircraft’s maneuvering capabilities. 

Lastly, and perhaps most important, the architecture should be used to test 

swarming algorithms (such as ISR search patterns) that have heretofore only been tested in 

simulation or have been implemented with only one vehicle.  This architecture provides 

the baseline and can be easily modified for different rules governing autonomous swarming 

behavior.  The Reynolds+ rules provide a starting point for basic maneuvers and safety-of-

flight and should be built upon to provide real-world utility. 
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Appendix A – Use Cases 

Definitions 

Safety Pilot: There is one safety pilot responsible for each X-8 multirotor aircraft.  The 

safety pilots are there to ensure safe operation of the vehicles.  If necessary, the safety 

pilot will take manual control of the vehicle by placing it into altitude hold or stabilize, 

and then maneuver the vehicle to prevent collision or other undesirable behavior.  There 

are two types of safety pilot: the normal safety pilots act as described above.  The lead 

safety pilot has manual control of the lead X-8 multirotor for most test points and can use 

it to influence the position of the swarm.   

Observer: There is one observer responsible for each X-8 multirotor aircraft.  If an 

observer believes an unsafe or undesirable action is going to occur, it is their 

responsibility to notify the team swiftly and briefly. 

X-8 Multirotor: The X-8 multirotor aircraft compose the swarm vehicles for this thesis.  

There are two or three in the air depending on the test points being flown.  One of the 

vehicles is the nominal leader, broadcasting as part of the swarm but otherwise under 

manual control and does not behave autonomously.  The remaining one or two vehicles 

broadcast as swarm members and are controlled autonomously by the Reynolds+ 

algorithm rules when in guided mode. 

GPS: The primary navigation system for the X-8 multirotors, using GPS satellites to 

determine position and timing. 

GCS: There is one ground control station for each X-8 multirotor aircraft.  The ground 

control stations’ responsibility is to monitor the telemetry feed off the Pixhawk 



69 

autopilots.  The GCS only interacts with the lead aircraft during one test point where the 

lead vehicle flies a series of waypoints instead of being controlled manually. 

Use Case Example 1 

Primary Actors 

 Non-lead X-8 Multirotors, Non-lead Safety Pilots 

Secondary Actors 

 GPS, GCS, Observers, Lead Safety Pilot, Lead X-8 

Pre-Conditions 

 The X-8 multirotors are airborne in altitude hold mode, spaced approximately 30-

50 meters apart, at an altitude of 20-30 meters AGL. 

Main Flow 

6. The non-lead safety pilots change the mode of their vehicles from altitude hold to 
guided. 

7. The non-lead X-8 multirotors fly autonomously towards the geometric center of the 
swarm. 

8. Once the X-8 multirotors are within 20 meters of each other, their motion changes as 
the alignment vectors cancel out. 

9. The vehicles slow as they approach the center and start to fly apart if they are too 
close to any other vehicles. 

10. This behavior is permitted to continue for a minute or two for sufficient data 
collection. 

Alternative Flow 

 At any time: 

a. A safety pilot overrides automated control. 

At any time: 

a. A non-lead X-8 multirotor drops below 15m altitude. 
b. An additional Reynolds+ rule attempts to elevate the vehicle back above 15m 

AGL. 

At any time: 
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a. A non-lead X-8 multirotor drops below 5m altitude while in guided mode. 
b. The vehicle ceases autonomous behavior and acts as if in position hold mode. 

Post-Conditions 

 The X-8 multirotor vehicles achieve a dynamic equilibrium near the lead vehicle, 

continuously attempting to move towards the geometric center of the swarm, then 

repelled by the proximity of other vehicles.  Data is collected for a minute or two to 

characterize the behavior. 

Use Case Example 2 

Primary Actors 

 X-8 Multirotors, Lead Safety Pilot 

Secondary Actors 

 GPS, GCS, Observers, Normal Safety Pilots 

Pre-Conditions 

 The X-8 multirotor vehicles have achieved a dynamic equilibrium near the lead 

vehicle, continuously attempting to move towards the geometric center of the swarm, 

then repelled by the proximity of other vehicles, and data has been collected. 

Main Flow 

6. The lead safety pilot maneuvers the lead X-8 multirotor away from the other aircraft. 
7. The non-lead X-8 multirotor vehicles autonomously maneuver to follow the lead 

vehicle. 
8. The lead safety pilot maneuvers the lead X-8 multirotor in benign patterns – straight 

lines or gentle arcs. 
9. The non-lead X-8 multirotor vehicles maneuver autonomously in response. 
10. This maneuvering is done for a minute or two for sufficient data collection. 

Alternative Flow 

 At any time: 

b. A safety pilot overrides automated control. 
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At any time: 

a. A non-lead X-8 multirotor drops below 15m altitude. 
b. An additional Reynolds+ rule attempts to elevate the vehicle back above 15m 

AGL. 

At any time: 

a. A non-lead X-8 multirotor drops below 5m altitude while in guided mode. 
b. The vehicle ceases autonomous behavior and acts as if in position hold mode. 

Post-Conditions 

 The non-lead X-8 multirotor vehicles maneuver in response to the manually-

controlled lead vehicle, according to the Reynolds+ algorithm rules.  Data is collected for 

a minute or two to characterize the behavior. 
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Function Element Input(s) Output(s) 
Receive GPS signals Pixhawk + GPS Receiver L1/L2 PRN signals Pseudorange to SV 

Determine position Pixhawk + GPS Receiver Pseudorange to 4+ SV's 
Lat, Long, Altitude, 
Time 

Send telemetry to guidance pkg Pixhawk + GPS Receiver Position, velocity Position, velocity 
Rcv velocity cmds from guidance pkg Pixhawk + GPS Receiver NED velocity, duration Execute command 
Send PWM signals to motors Pixhawk + GPS Receiver Desired velocity PWM signal 
Send/rcv GCS radio signals Pixhawk + GPS Receiver - Telemetry 

Send/rcv safety pilot radio signals Pixhawk + GPS Receiver 
Manual commands, 
mode changes   

Fly manually X-8 Multirotor Manual commands Fly as commanded 
Fly autonomously X-8 Multirotor Waypoint list Fly waypoints 

Communicate w/safety pilot X-8 Multirotor 
Manual commands, 
mode change - 

Communicate w/GCS X-8 Multirotor Waypoint list Telemetry 

Communicate w/other guidance pkgs Strap-on guidance pkg 
LTP position, NED 
velocity 

LTP position, NED 
velocity 

Get telemetry from X-8 Strap-on guidance pkg 
Global position, NED 
velocity - 

Send velocity commands to X-8 Strap-on guidance pkg 
LTP positions, NED 
velocities NED velocity, duration 

Monitor autopilot telemetry GCS Telemetry - 
Provide navigation signals GPS - L1/L2 PRN signals 
Initiate mode change Safety Pilot - Mode change 
Fly vehicle manually Safety Pilot - Manual commands 
Monitor AV behavior Safety Pilot AV behavior - 
Manual recovery Safety Pilot - Manual commands 

GPS – Global Positioning System 
LTP – Local Tangent Plane 
NED – North, East, Down 
PRN – Pseudorange 
PWM – Pulse Width Modulation 
SV – Space Vehicle 
 

 

 

 

Appendix C – Reynolds+ Rules as Implemented 
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Velocity Bucket Limit 

   Cage   Wide   Narrow 

   2 m/s   5 m/s   5 m/s 

 Rule 1: Separation 

   Cage   Wide    Narrow 

Effect Begins (d) 5m   10m   5m 

Maximum Effect (d) 1.04m   2.35m   1.36m 

Mag. Equation 𝑚𝑚1 = 10
(𝑑𝑑+1)2 −  0.4 𝑚𝑚1 = 100

𝑑𝑑+7
− 5.7 𝑚𝑚1 = 100

(𝑑𝑑+2.5)2 − 1.7 

Variable   d = distance to the encroaching aircraft 

The unit vector points directly away from the encroaching aircraft.  If multiple aircraft 

are within the separation radius, the resulting velocities are summed. 

 Rule 2: Minimum Altitude 

   Cage   Wide/Narrow 

Effect Begins (d) 4m   15m 

Maximum Effect (d) 1.96m   6.79m 

Mag. Equation 𝑚𝑚2 = 10
𝑑𝑑2
− 0.6 𝑚𝑚2 = 1000

(𝑑𝑑+5)2 − 2.2 

Variable   d = altitude above ground level (m) 

The unit vector points directly away from the ground. 

 Rule 3: Communication Radius (Not Implemented) 

 

 Rule 4: Alignment (same for all variations) 

Inclusion Radius: 20m 
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Mag. Equation:  𝑣𝑣4 =
∑ 𝑣𝑣𝑘𝑘
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑘𝑘=1
𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

 

Variables  numAcft = quantity of aircraft within inclusion radius 

   k = generic identifier for each aircraft within inclusion radius 

   vk = velocity of kth aircraft within inclusion radius 

 Rule 5: Cohesion  

   Cage   Wide/Narrow 

Mag. Equation 𝑚𝑚5 = 2∗𝑑𝑑
2.75

− 0.909 𝑚𝑚5 = 5∗𝑑𝑑
42

− 20
21

 

Variable   d = distance to the geometric center of all aircraft in the swarm 

The unit vector points directly towards the geometric center of all aircraft in the swarm. 

 Rule 6: Mission (Not Implemented) 
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75 

Introduction 

 The purpose of this section is to discuss the setup of a software-in-the-loop 

(SITL) environment in which to develop and test swarming algorithms for the 

architecture.  SITL testing is valuable because it can be accomplished by a single person, 

whereas flight testing requires a crew of multiple people per aircraft.  Furthermore, it 

does not depend on weather, batteries never need be exchanged, and algorithm 

corrections can be made nearly on-the-fly.  There are some drawbacks however: SITL 

hardware is often more powerful (faster processor, more memory) than the hardware used 

in flight, making it difficult to ascertain how quickly information should be exchanged 

between vehicles.  Subtle hardware/software integration issues are hidden as well, for 

instance the original architecture utilized local coordinates as produced by the Pixhawk 

autopilot.  It turns out that local coordinate frame isn’t available until the aircraft is 

armed, and so global coordinates had to be used along with a short Python script to 

convert them into a local frame.  This was never an issue in SITL.  Still, the advantages 

outweigh the disadvantages when it comes to testing the viability of a given algorithm. 

Components 

 SITL components used in this research were entirely virtual except for the laptop 

they were running on.  Time constraints did not permit the addition of hardware 

components for a partial hardware-in-the-loop (HITL) test.  The components are shown 

as layered in the table below: 

Table 5. SITL Layers 

Layer Component Subcomponents 
Qty @ 
Layer 
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1 Asus G750JW Laptop (Layer 2) 1 
2 Oracle VirtualBox Ubuntu 16.04.3 3 

  
FlightGear 2017.1.3 
(Client) - 3 

  Cygwin fgms-0-x (FlightGear multiplayer server) 1 
3 Ubuntu 16.04.3 DroneKit-Python 1 

  fgms-0-x - 1 
4 DroneKit-Python sim_vehicle.py 1 

    new_algorithm.py 1 
 

 All SITL testing was performed with a single laptop running Windows 8.1.  

Within the Operating System (OS), three virtual OS’s were utilized.  Three VirtualBox 

clients running Ubuntu stood in for the air vehicles: these terminals contained the flight 

dynamics model (FDM), the virtual autopilot, and the algorithm controlling the virtual 

aircraft.  Each terminal was assigned a FlightGear client running on the host OS 

(Windows) to display aircraft activities in a virtual 3D environment.  A fourth terminal 

running Cygwin contained the FlightGear multiplayer server.  This server allowed the 

FlightGear clients to communicate with each other and display all three aircraft within 

each FlightGear client.  A video of this setup can be viewed at the link below, and a still 

image in Figure 24: 

https://www.youtube.com/watch?v=M8U0P3IY0nQ 

https://www.youtube.com/watch?v=M8U0P3IY0nQ
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Figure 29. SITL Setup 

Interfaces 

 The nominal SITL architecture as it was intended to be set up for one aircraft is 

shown in Chapter 1, Figure 3.  The modified architecture allowing for multiple simulated 

vehicles and multiple display clients connected through a multiplayer server is displayed 

below in Figure 25.  The various ports listed at each interface are a result of ArduCopter 

instantiations.  When sim_vehicle.py is started in the command line, a numerical 

argument representing the instance may be included, which then adds ten times the 

instance number to every port used by the instance.  Swarming simulation would not be 

possible on a single machine without this feature.   
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Figure 30. SITL Architecture 2.0 

  

 

 

 

 

 

 

 

 

 

 

Appendix E – Code 
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 This appendix includes all Python and Matlab code written or modified for this 

research.  The Reynolds+ algorithm is shown first, followed by supporting files.  Then 

the analysis tools are provided as well.  Note the Reynolds+ algorithm in particular is 

functional but not optimal – the rules could be modular, and many of the “pre-set” 

variables could be dynamically updated or input as arguments rather than hard-coded. 

Reynolds+ Algorithm (Vehicle 1, Wide Spacing) 

rpluswid1.py 

from dronekit import connect, VehicleMode, LocationGlobalRelative, LocationGlobal 
from dronekit import sys, Command 
import numpy as np 
import lcm 
import math 
import time 
import gpsutils 
from datetime import datetime 
from pymavlink import mavutil 
from exlcm import idposvel 
from exlcm import sendvel 
import threading 
import select 
import subprocess 
global otherPos 
global otherVel 
global myPos 
global myVel 
global homeLoc 
global end 
global counter 
global allPos 
global allVel 
 
lc2 = lcm.LCM() #lcm object to handle vehicle2 comms 
lc3 = lcm.LCM() #lcm object to handle vehicle3 comms 
lcvel = lcm.LCM() #lcm object to record all velocity commands (all vehicles) 
 
end = 0 
homeLoc = np.array([39.774185, -84.100031, 0])  # home location must be the same for 
all vehicles; this could be dynamic as long as update is time-synchronized 
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numAll = 3  # maximum number of vehicles in swarm; preset value 
allPos = np.zeros((numAll, 4)) #initialize array of all positions 
allVel = np.zeros((numAll, 4)) #initialize array of all velocities 
 
def my_handler(channel, data): #message handler 
    global allPos 
    global allVel 
    msg = idposvel.decode(data) #extract LCM message data 
    tempID = int(msg.id) #sender ID 
    tempPos = np.array(msg.position) #sender position 
    tempVel = np.array(msg.velocity) #sender velocity 
    allPos[tempID, [0, 1, 2]] = tempPos #update the all-positions array w/sender data 
    allVel[tempID, [0, 1, 2]] = tempVel #update the all-velocities array w/sender data 
    ts = time.time() #time of message receipt 
    allPos[tempID, 3] = ts #add timestamp to all-positions array 
    allVel[tempID, 3] = ts #add timestamp to all-velocities array 
    # print("Received message on channel \"%s\"" % channel) 
    # print("   id          = %s" % str(msg.id)) 
    # print("   position    = %s" % str(msg.position)) 
    # print("   velocity    = %s" % str(msg.velocity)) 
    # print("") 
 
'''VEHICLE 1 CONNECT INIT'''  # Connect to the vehicle; commented out for bench 
testing 
print 'Connecting Vehicle 1'  # TCP 232 T-24 IP 192.168.1.11 through 14550 
vehicle_connection_string = '/dev/ttyO1' #serial port connection string 
vehicle = connect(vehicle_connection_string, wait_ready=False,baud=57600) #connect 
print ' ' 
time.sleep(5) 
# Get some vehicle attributes (state) – helps verify connection while troubleshooting 
print "Get vehicle #1 attribute values:" 
print " GPS: %s" % vehicle.gps_0 
print " Battery: %s" % vehicle.battery 
print " Last Heartbeat: %s" % vehicle.last_heartbeat 
print " Is Armable?: %s" % vehicle.is_armable 
print " System status: %s" % vehicle.system_status.state 
print " Mode: %s" % vehicle.mode.name  # settable 
print " Global Location: %s" % vehicle.location.global_relative_frame 
 
myId = 1 #this changes depending on the vehicle number; should match the ad-hoc IP 
myGlobalPos = 
np.array([vehicle.location.global_frame.lat,vehicle.location.global_frame.lon,vehicle.loca
tion.global_frame.alt]) #get global location 
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myPos = 
gpsutils.GeodeticToEnu(myGlobalPos[0],myGlobalPos[1],myGlobalPos[2],homeLoc[0],
homeLoc[1],homeLoc[2]) #convert global location to local frame 
myPos = np.array([myPos[1],myPos[0],-1.0*myPos[2]]) #update this vehicle’s position 
myVel = np.array(vehicle.velocity) #update this vehicle’s velocity 
 
def send_ned_velocity(velocity_x, velocity_y, velocity_z, duration): #send mavlink 
message to the Pixhawk w/commanded velocity 
    """ 
    Move vehicle in direction based on specified velocity vectors. 
    """ 
    msg = vehicle.message_factory.set_position_target_local_ned_encode( 
        0,  # time_boot_ms (not used) 
        0, 0,  # target system, target component 
        mavutil.mavlink.MAV_FRAME_LOCAL_OFFSET_NED,  # frame 
        0b0000111111000111,  # type_mask (only speeds enabled) 
        0, 0, 0,  # x, y, z positions (not used) 
        velocity_x, velocity_y, velocity_z,  # x, y, z velocity in m/s 
        0, 0, 0,  # x, y, z acceleration (not supported yet, ignored in GCS_Mavlink) 
        0, 0)  # yaw, yaw_rate (not supported yet, ignored in GCS_Mavlink) 
 
    # send command to vehicle once 
    #for x in range(0, duration): 
    vehicle.send_mavlink(msg) #send the message (velocity command) 
    time.sleep(0.1) 
 
def background(): #background: send/receive LCM messages 
    global myPos 
    global myVel 
    global counter 
    while counter == 0: #wait until system time is updated 
        time.sleep(1) 
    timeout = 100  # amount of time to wait, in milliseconds 
    tsend = time.time() 
    print("tzero: %s" % str(tsend)) 
    while True: #runs until algorithm is stopped 
        vmode = vehicle.mode.name 
        print("vmode: %s" % str(vmode)) 
        if str(vmode) == "GUIDED" or str(vmode) == "ALT_HOLD" or str(vmode) == 
"AUTO": #only broadcast in guided, altitude hold, or auto 
            print " Background is updating, broadcasting, and receiving." 
            if (time.time() - tsend) > 0.10: #no more than 10hz publish rate 
                myGlobalPos = np.array( 
                [vehicle.location.global_frame.lat, vehicle.location.global_frame.lon, 
                 vehicle.location.global_frame.alt]) #get my global position 
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                myPos = gpsutils.GeodeticToEnu(myGlobalPos[0], myGlobalPos[1], 
myGlobalPos[2], homeLoc[0], homeLoc[1], 
                                           homeLoc[2]) #convert global to local position 
                myPos = np.array([myPos[1], myPos[0], -1.0*myPos[2]]) 
                myVel = np.array(vehicle.velocity) 
                msg = idposvel() 
                msg.id = myId 
                msg.position = myPos 
                msg.velocity = myVel 
                lc2.publish("vehicle1", msg.encode()) #send my ID, position, velocity to veh2 
                lc3.publish("vehicle1", msg.encode()) #send my ID, position, velocity to veh3 
                tsend = time.time() #bookmark send time 
            lc2check = lc2.handle_timeout(timeout) check for veh2 messages, handle if avail. 
            lc3check = lc3.handle_timeout(timeout) check for veh3 messages, handle if avail. 
        else: 
            time.sleep(1) #if not in Guided/Alt-Hold/Auto then wait 
           
def foreground(): #this is where the Reynolds+ rules are executed 
    global myPos 
    global myVel 
    global allPos 
    global allVel 
    global homeLoc 
    numAll = 3  # maximum number of vehicles in swarm 
 
    '''DATA FILE INIT''' 
    timestr = time.strftime("%m-%d-%Y_%H-%M-%S")  # date-time for file name 
    file_name = 'Vehicle_1_' + timestr  # file name appended with date time 
    data_file = open(file_name, 'a')  # create txt doc to append to 
    print 'Telemetry file open' 
    print'' 
 
    myGlobalPos = np.array( 
        [vehicle.location.global_frame.lat, vehicle.location.global_frame.lon, 
vehicle.location.global_frame.alt]) 
    myPos = gpsutils.GeodeticToEnu(myGlobalPos[0], myGlobalPos[1], myGlobalPos[2], 
homeLoc[0], homeLoc[1], homeLoc[2]) 
    myPos = np.array([myPos[1],myPos[0],-1.0*myPos[2]]) 
    myVel = np.array(vehicle.velocity) 
 
    allPos = np.zeros((numAll, 4)) #set up position array 
    allVel = np.zeros((numAll, 4)) #set up velocity array 
 
    subscription = lc3.subscribe("vehicle3", my_handler) # subscribe to veh3 channel 
    subscription2 = lc2.subscribe("vehicle2", my_handler) # subscribe to veh2 channel 
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    while True: # loop until script is shut off 
        print " Foreground is looping." 
        t = time.time() #bookmark time 
        otherPos = np.zeros(3)  # set up position array, excluding this vehicle 
        otherVel = np.zeros(3)  # set up velocity array, excluding this vehicle 
        myId = 1 
        myAlt = vehicle.location.global_relative_frame.alt # get height AGL 
        print(" myAlt: %s" % str(myAlt)) 
        allPos[myId, [0, 1, 2]] = myPos #add my most recent position to all-positions 
        allVel[myId, [0, 1, 2]] = myVel #add my most recent velocity to all-velocities 
        ts = time.time() 
        allPos[myId, 3] = ts #timestamp my position 
        allVel[myId, 3] = ts #timestamp my velocity 
 
        vel_bucket_max = 2.0 #limit maximum velocity command magnitude 
        vel_bucket = vel_bucket_max  # velocity bucket (m/s) reset to max 
        alt_limit = 15.0  # flight floor (m above local 0), soft limit 
        align_dist = 20.0  # alignment bubble (m) radius 
 
        for x in range(numAll):  # loop through each connection's index 
            if sum(allPos[x, [0, 1, 2]]) != 0 and sum( 
                    allVel[x, [0, 1, 2]]) != 0 and x != myId:  # check to ensure pos & vel data 
isn't empty 
                if np.count_nonzero(otherPos) == 0 and np.count_nonzero(otherVel) == 0: 
                    otherPos = allPos[x, [0, 1, 2]] 
                    otherVel = allVel[x, [0, 1, 2]] 
                else: 
                    otherPos = np.vstack([otherPos, allPos[ 
                        x, [0, 1, 2]]])  # append each other vehicle's position parameters to a 
central array 
                    otherVel = np.vstack([otherVel, allVel[ 
                        x, [0, 1, 2]]])  # append each other vehicle's velocity parameters to a 
central array 
        # print("   otherPos    = %s" % str(otherPos)) 
        # print("   otherVel    = %s" % str(otherVel)) 
        if np.size(otherPos) == 3: 
            numConnections = 1 
        else: 
            numConnections, num_Cols = otherPos.shape #count current swarm size 
        if np.sum(otherPos) != 0 or np.sum(otherVel) != 0:  # wait until at least one other 
vehicle's data is received 
            allActivePos = np.vstack([otherPos, myPos[0:3]])  # append this vehicle's position 
to central array 
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            allActiveVel = np.vstack([otherVel, myVel[0:3]])  # append this vehicle's velocity 
to central array 
            # print("   allActivePos    = %s" % str(allActivePos)) 
            # print("   allActiveVel    = %s" % str(allActiveVel)) 
            # implement distance-calculating function to find a 1-D array of distances from 
myPos to all other vehicles 
            # on the network 
            dist = np.array( 
                [0])  # initialize empty array - x by 1 array of distances from this vehicle to all 
other vehicles 
            indices = np.array([0]) 
            fullMyPos = np.full((numConnections, 3), myPos) # my position, repeated 
            dist = np.linalg.norm(fullMyPos - otherPos, axis=1) # distance to each other veh 
            #print("   dist    = %s" % str(dist)) 
            vec_away = (myPos - otherPos) / dist[:, 
                                            None]  # x by 3 array of unit vectors from each other vehicle 
to this one 
            #print("   vecaway    = %s" % str(vec_away)) 
            vmode = str(vehicle.mode.name) 
            if str(vmode) == "GUIDED" and myAlt > 3.0:  #only execute reynolds commands 
in GUIDED mode 
                                                               # and the copter is already in the air (> 3m alt) 
 
                # implement first Reynolds+ rule: separation 
                # initialize desired velocity components 
                push_dist = 10.0  # this variable can be tuned; it is this vehicle's separation 
bubble radius 
                if np.sum(otherPos) != 0: 
                    indices = np.where(dist <= push_dist)  # get indices of vehicles where dist 
<= push distance (10 meters) 
                    if np.size(indices) != 0: 
                        dist_sel = dist[indices]  # select only distance magnitudes from the 
indexed list 
                        prox_vel_dir = vec_away[indices, :][0]  # select unit vectors from the 
indexed list 
                    else: 
                        dist_sel = 100.0 
                        prox_vel_dir = np.array([0, 0, 0]) 
                else: 
                    dist_sel = 100.0 
                    prox_vel_dir = np.array([0, 0, 0]) 
                a = 100  # this variable can be tuned to change the response 
                #prox_vel_mag = float(a) / dist_sel ** 2  # magnitude of the response for 5m 
bubble 
                prox_vel_mag = float(a) / (dist_sel + 7.0) - 5.7 
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                #print("   proxvelmag    = %s" % str(prox_vel_mag)) 
                #print("   proxveldir    = %s" % str(prox_vel_dir)) 
                if np.size(prox_vel_dir) > 3: 
                    new_vel_A = prox_vel_dir * prox_vel_mag[:, np.newaxis] 
                else: 
                    new_vel_A = prox_vel_dir * prox_vel_mag 
                if np.size(new_vel_A) == 3: 
                    vel_A = new_vel_A 
                else: 
                    vel_A = np.array([sum(new_vel_A[:, 0]), sum(new_vel_A[:, 1]), 
sum(new_vel_A[:, 2])]) 
                mag_A = np.linalg.norm(vel_A) 
                if mag_A == 0: 
                    mag_A = 0.01 
                dir_A = vel_A / mag_A 
                dir_A = np.squeeze(np.asarray(dir_A)) 
                if mag_A > vel_bucket:  # limit magnitude of response to bucket size 
                    mag_A = vel_bucket_max 
                    vel_A = mag_A * dir_A 
                    if np.size(vel_A[0]) != 1: 
                        vel_A = vel_A[0] 
                    send_ned_velocity(vel_A[0], vel_A[1], -1 * vel_A[2], 1) 
                    msg2 = sendvel() 
                    msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2]) 
                    lcvel.publish("v1vel", msg2.encode()) # broadcast velocity cmd on LCM 
                    # print("   newVel_A    = %s" % str(vel_A)) 
                vel_A = mag_A * dir_A 
                if np.size(vel_A[0]) != 1: 
                    vel_A = vel_A[0] 
                # end rule 1... 
                # implement second Reynolds+ rule: flight floor 
                if mag_A < vel_bucket and myAlt < alt_limit:  
                    vel_bucket = vel_bucket - mag_A  # reduce velocity (magnitude) bucket 
                    floor_vel_dir = np.array([0, 0, 1])  # vertical unit vector 
                    #floor_vel_mag = 10 / ((myAlt - 1.4) ** 1.5)  # vertical response magnitude 
for 10m floor 
                    floor_vel_mag = (1000.0 / ((myAlt + 5.0) ** 2.0)) - 0.6 #vertical response 
magnitude for 15m floor 
                    # print("   my alt    = %s" % str(myAlt)) 
                    if floor_vel_mag > vel_bucket:  # limit magnitude of response to bucket size 
                        floor_vel_mag = vel_bucket 
                        new_vel_B = floor_vel_mag * floor_vel_dir 
                        vel_B = vel_A + new_vel_B 
                        send_ned_velocity(vel_B[0], vel_B[1], -1 * vel_B[2], 1) 
                        msg2 = sendvel() 
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                        msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2]) 
                        msg2.velB = (floor_vel_mag, floor_vel_dir[0], floor_vel_dir[1], 
floor_vel_dir[2]) 
                        lcvel.publish("v1vel", msg2.encode()) 
                        mag_B = vel_bucket_max 
                    # print("   newVel_B    = %s" % str(vel_B)) 
                    else: 
                        new_vel_B = floor_vel_mag * floor_vel_dir 
                        dir_B = floor_vel_dir 
                        dir_B = np.squeeze(np.asarray(dir_B)) 
                        vel_B = vel_A + new_vel_B 
                        mag_B = np.linalg.norm(vel_B) 
                        # end rule 2... 
                        # implement third Reynolds+ rule: comm radius 
                        # end rule 3... 
                        # implement fourth Reynolds+ rule: alignment 
                else: 
                    floor_vel_mag = 0 
                    floor_vel_dir = np.array([0, 0, 0]) 
                    mag_B = 0 
                    dir_B = np.array([0, 0, 0]) 
                    dir_B = np.squeeze(np.asarray(dir_B)) 
                    vel_B = vel_A 
                     
                mag_C = vel_bucket_max + 1.0 #if rule C runs, this will be replaced.  if not, 
rule D will never run 
                dir_C = np.array([0,0,0]) 
                vel_C = mag_C * dir_C 
                if mag_B < vel_bucket and floor_vel_mag < vel_bucket: 
                    vel_bucket = vel_bucket - floor_vel_mag 
                    align_indices = np.where(dist <= align_dist)[ 
                        0]  # get indices of vehicles where dist <= alignment bubble radius 
                    # print("   align indices    = %s" % str(align_indices)) 
                    if np.size(align_indices) == 0:  # if no vehicles within bubble 
                        new_vel_C = np.array([0, 0, 0]) 
                    if np.size(align_indices) == 1:  # if one index 
                        if np.size(otherVel) == 3:  # if only one other vehicle present 
                            new_vel_C = otherVel 
                        # print("   newVelC - one veh = %s" % str(new_vel_C)) 
                        else:  # multiple vehicles, one index within bubble 
                            new_vel_C = otherVel[align_indices, :][0] 
                            # print("   newVelC - 2+ veh = %s" % str(new_vel_C)) 
                    if np.size(align_indices) > 1:  # multiple vehicles, multiple indices 
                        #print("   otherVel    = %s" % str(otherVel)) 
                        #print("   alignindices    = %s" % str(align_indices)) 
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                        alignVel = otherVel[align_indices, :] 
                        new_vel_C = np.array([np.mean(alignVel[:, 0]), np.mean(alignVel[:, 1]), 
np.mean(alignVel[:, 2])]) 
                    mag_C = np.linalg.norm(new_vel_C) 
                    # print("   mag_C    = %s" % str(mag_C)) 
                    if mag_C == 0: 
                        dir_C = np.array([0, 0, 0]) 
                        dir_C = np.squeeze(np.asarray(dir_C)) 
                    else: 
                        dir_C = new_vel_C / mag_C 
                        dir_C = np.squeeze(np.asarray(dir_C)) 
                    # print("   dir_C    = %s" % str(dir_C)) 
                    if mag_C > vel_bucket: 
                        mag_C = vel_bucket 
                        vel_C = mag_C * dir_C + vel_B 
                        send_ned_velocity(vel_C[0], vel_C[1], -1 * vel_C[2], 1) 
                        msg2 = sendvel() 
                        msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2]) 
                        msg2.velB = (floor_vel_mag, floor_vel_dir[0], floor_vel_dir[1], 
floor_vel_dir[2]) 
                        msg2.velC = (mag_C, dir_C[0], dir_C[1], dir_C[2]) 
                        lcvel.publish("v1vel", msg2.encode()) 
                        print(" new_vel_C: %s" % str(vel_C)) 
                    else: 
                        vel_C = mag_C * dir_C + vel_B 
                        # end rule 4... 
                        # implement fifth Reynolds+ rule: flock centering (cohesion) 
                # print("   vel_C    = %s" % str(vel_C)) 
                # print("   mag_C    = %s" % str(mag_C)) 
                if mag_C < vel_bucket: 
                    vel_bucket = vel_bucket - mag_C 
                    if np.size(allActivePos) == 3: 
                        flock_center = myPos 
                    else: 
                        flock_center = np.array( 
                            [np.mean(allActivePos[:, 0]), np.mean(allActivePos[:, 1]), 
np.mean(allActivePos[:, 2])]) 
                    my_ctr_dist = np.linalg.norm(myPos - flock_center) 
                    #print("   ctr_dist    = %s" % str(my_ctr_dist)) 
                    mag_D = 5.0 * my_ctr_dist / 42.0 - 20.0/21.0 
                    if my_ctr_dist == 0: 
                        dir_D = np.array([0, 0, 0]) 
                        dir_D = np.squeeze(np.asarray(dir_D)) 
                    else: 
                        dir_D = (flock_center - myPos) / my_ctr_dist 
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                        dir_D = np.squeeze(np.asarray(dir_D)) 
                    if mag_D > vel_bucket: 
                        mag_D = vel_bucket 
                    dir_D[2] = -0.1 * dir_D[2] #dampen vertical cohesion, invert 
                    vel_D = mag_D * dir_D + vel_C 
                    #print("   dir_D    = %s" % str(vel_C)) 
                    #print("   vel_C    = %s" % str(vel_C)) 
                    # end rule 5... 
                    #print("   vel_D    = %s" % str(vel_D)) 
                    if np.size(vel_D[0]) != 1: 
                        vel_D = vel_D[0] 
                    send_ned_velocity(vel_D[0], vel_D[1], vel_D[2], 1) 
                    msg2 = sendvel() 
                    msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2]) 
                    msg2.velB = (floor_vel_mag, floor_vel_dir[0], floor_vel_dir[1], 
floor_vel_dir[2]) 
                    msg2.velC = (mag_C, dir_C[0], dir_C[1], dir_C[2]) 
                    msg2.velD = (mag_D, dir_D[0], dir_D[1], dir_D[2]) 
                    lcvel.publish("v1vel", msg2.encode()) 
                    print("   newVel_D    = %s" % str(vel_D)) 
                    # implement sixth Reynolds+ rule: swarm direction (move geometric center) 
                    # end rule 6... 
 
        # send_ned_velocity(velocity_x, velocity_y, velocity_z, duration) # X: North/South, 
Y: East/West, Z: Down/Up 
 
        vel_bucket = vel_bucket_max #reset variables for the next loop 
        mag_B = vel_bucket_max + 1.0 
        mag_C = vel_bucket_max + 1.0 
        t2 = time.time() 
        for x in range(numAll): 
            td = t2 - allPos[x, 3]  # difference between now and timestamp of every position 
data point 
            #print("   td    = %s" % str(td)) 
            if td > 2.0:  # if the time difference > 2 sec for a given row 
                allPos[x, [0, 1, 2]] = np.array([0, 0, 0])  # zero out the data 
                allVel[x, [0, 1, 2]] = np.array([0, 0, 0])  # zero out the data 
 
        time.sleep(0.10 - ((time.time() - t) % 0.10)) #repeat on 10hz interval 
        #***End of foreground*** 
 
counter = 0 
 
@vehicle.on_message('SYSTEM_TIME') #update the companion computer system time 
def listener(self, name, message): 
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    global counter 
    if counter == 0:  
        unix_time = (int)(message.time_unix_usec / 1000000) 
        dtime = datetime.fromtimestamp(unix_time) 
        subprocess.call(["date '%s'" % format(dtime.strftime('%m%d%H%Y.%S'))], 
shell=True) 
        counter = 1 #update only happens once (instead of ~4Hz) 
 
try: 
    b = threading.Thread(name='background', target=background) 
    f = threading.Thread(name='foreground', target=foreground) 
 
    b.daemon = True 
    f.daemon = True 
 
    b.start() #start background 
    time.sleep(3) 
    f.start() #start foreground 
    while True: time.sleep(100) #allows keyboard interrupt 
 
except (KeyboardInterrupt, SystemExit): 
  end = 1 
  print '\n! Received keyboard interrupt, quitting threads.\n' 
 
gpsutils.py – Global to Local Frame Coordinate Converter 

This code was converted from C to Python; original source: 

https://gist.github.com/LocalJoost/fdfe2966e5a380957d1c90c462fd1e5c 

File location on companion computer: usr/local/lib/python2.7/dist-packages 

Code:  

# Some helpers for converting GPS readings from the WGS84 geodetic system to a local 
North-East-Up cartesian axis. 
 
    # The implementation here is according to the paper: 
    # "Conversion of Geodetic coordinates to the Local Tangent Plane" Version 2.01. 
    # "The basic reference for this paper is J.Farrell & M.Barth 'The Global Positioning 
System & Inertial Navigation'" 
    # Also helpful is Wikipedia: http:#en.wikipedia.org/wiki/Geodetic_datum 
 
# WGS-84 geodetic constants 
import math 

https://gist.github.com/LocalJoost/fdfe2966e5a380957d1c90c462fd1e5c
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import numpy as np 
a = 6378137.0;           # WGS-84 Earth semimajor axis (m) 
b = 6356752.3142;      # WGS-84 Earth semiminor axis (m) 
f = (a - b) / a;           # Ellipsoid Flatness 
e_sq = f * (2 - f);    # Square of Eccentricity 
 
# Converts WGS-84 Geodetic point (lat, lon, h) to the 
# Earth-Centered Earth-Fixed (ECEF) coordinates (x, y, z). 
def GeodeticToEcef(lat, lon, h): 

# Convert to radians in notation consistent with the paper: 
lbda = np.deg2rad(lat) 
phi = np.deg2rad(lon) 
s = math.sin(lbda) 
N = a / ((1 - e_sq * s * s) ** 0.5) 
sin_lambda = math.sin(lbda) 
cos_lambda = math.cos(lbda) 
cos_phi = math.cos(phi) 
sin_phi = math.sin(phi) 
x = (h + N) * cos_lambda * cos_phi 
y = (h + N) * cos_lambda * sin_phi 
z = (h + (1 - e_sq) * N) * sin_lambda 
return np.array([x,y,z]) 

 
# Converts the Earth-Centered Earth-Fixed (ECEF) coordinates (x, y, z) to 
# East-North-Up coordinates in a Local Tangent Plane that is centered at the 
# (WGS-84) Geodetic point (lat0, lon0, h0). 
def EcefToEnu(x, y, z, lat0, lon0, h0): 
 # Convert to radians in notation consistent with the paper: 
 lbda = np.deg2rad(lat0) 
 phi = np.deg2rad(lon0) 
 s = math.sin(lbda) 
 N = a / ((1 - e_sq * s * s) ** 0.5) 
 
 sin_lambda = math.sin(lbda) 
 cos_lambda = math.cos(lbda) 
 cos_phi = math.cos(phi) 
 sin_phi = math.sin(phi) 
 
 x0 = (h0 + N) * cos_lambda * cos_phi 
 y0 = (h0 + N) * cos_lambda * sin_phi 
 z0 = (h0 + (1 - e_sq) * N) * sin_lambda 
 
 xd = x - x0 
 yd = y - y0 
 zd = z - z0 
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 # This is the matrix multiplication 
 xEast = -sin_phi * xd + cos_phi * yd 
 yNorth = -cos_phi * sin_lambda * xd - sin_lambda * sin_phi * yd + cos_lambda * 
zd 
 zUp = cos_lambda * cos_phi * xd + cos_lambda * sin_phi * yd + sin_lambda * 
zd 
 return np.array([xEast,yNorth,zUp]) 
 
 
# Converts the geodetic WGS-84 coordinated (lat, lon, h) to 
# East-North-Up coordinates in a Local Tangent Plane that is centered at the 
# (WGS-84) Geodetic point (lat0, lon0, h0). 
def GeodeticToEnu(lat, lon, h, lat0, lon0, h0): 
 ecef = GeodeticToEcef(lat, lon, h) 
 enu = EcefToEnu(ecef[0],ecef[1],ecef[2], lat0, lon0, h0) 
 return enu 
 
idposvel.py – LCM Type Specification for ID, Position, Velocity 
 
"""LCM type definitions 
This file automatically generated by lcm. 
DO NOT MODIFY BY HAND!!!! 
""" 
 
try: 
    import cStringIO.StringIO as BytesIO 
except ImportError: 
    from io import BytesIO 
import struct 
 
class idposvel(object): 
    __slots__ = ["id", "position", "velocity"] 
 
    def __init__(self): 
        self.id = 0 
        self.position = [ 0.0 for dim0 in range(3) ] 
        self.velocity = [ 0.0 for dim0 in range(3) ] 
 
    def encode(self): 
        buf = BytesIO() 
        buf.write(idposvel._get_packed_fingerprint()) 
        self._encode_one(buf) 
        return buf.getvalue() 
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    def _encode_one(self, buf): 
        buf.write(struct.pack(">q", self.id)) 
        buf.write(struct.pack('>3d', *self.position[:3])) 
        buf.write(struct.pack('>3d', *self.velocity[:3])) 
 
    def decode(data): 
        if hasattr(data, 'read'): 
            buf = data 
        else: 
            buf = BytesIO(data) 
        if buf.read(8) != idposvel._get_packed_fingerprint(): 
            raise ValueError("Decode error") 
        return idposvel._decode_one(buf) 
    decode = staticmethod(decode) 
 
    def _decode_one(buf): 
        self = idposvel() 
        self.id = struct.unpack(">q", buf.read(8))[0] 
        self.position = struct.unpack('>3d', buf.read(24)) 
        self.velocity = struct.unpack('>3d', buf.read(24)) 
        return self 
    _decode_one = staticmethod(_decode_one) 
 
    _hash = None 
    def _get_hash_recursive(parents): 
        if idposvel in parents: return 0 
        tmphash = (0x6127d88fd8b7efbf) & 0xffffffffffffffff 
        tmphash  = (((tmphash<<1)&0xffffffffffffffff)  + (tmphash>>63)) & 0xffffffffffffffff 
        return tmphash 
    _get_hash_recursive = staticmethod(_get_hash_recursive) 
    _packed_fingerprint = None 
 
    def _get_packed_fingerprint(): 
        if idposvel._packed_fingerprint is None: 
            idposvel._packed_fingerprint = struct.pack(">Q", 
idposvel._get_hash_recursive([])) 
        return idposvel._packed_fingerprint 
    _get_packed_fingerprint = staticmethod(_get_packed_fingerprint) 
 
screenLaunch1.sh – Starts Reynolds+ algorithm and LCM log in separate screens 
 
 This shell file should be launched on each vehicle via SSH.  Two screens are 
opened, one for the Reynolds+ script, and another for LCM logging.  Opening these in 
new screens prevents the Wi-Fi network from being flooded with unnecessary data, and 
permits the ground station to SSH into all three vehicles at once with little or no latency. 
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#!/bin/bash 
 
# The goal of this script is to startup each of the individual launch scripts in their own 
instance of "screen", detached, so that they will continue to run even after we lose contact 
with the plane.  
 
###################### Initial Commands 
# Command set 1 
# On startup, will need to enter the commands to start LCM: 
# sudo ifconfig lo multicast 
# sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev lo 
 
# Command set 2 
# Need to set the BAUD rate for the ensco radios:  
screen -dmS baud /dev/ttyACM1 115200 
sleep 5 
screen -X -S baud quit 
 
# Command set 3 
# Manual screen open and command connection with the Pixhawk (no-GPS), connection 
requires sudo for some reason.  
# sudo python drivers/px4/px4.py --connect /dev/ttyUSB0 --baud 921600 
 
###################### Open Screens with each script 
 
# May need to start this manually with sudo... 
# Python automation script launch file 
screen -dmS rplus sh -c "export 
LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=2; python rpluscage1.py" 
 
# LCM Logging launch file for the LCM logger function 
screen -dmS lcmlog sh -c "export 
LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=2; logLaunch.sh" 
 
adhoc_startup.sh – Connects to mesh ad-hoc network automatically 
 
 This script alone is insufficient to properly set up the ad-hoc network 
automatically but provides most of the required commands and runs them automatically 
on startup.  Some other files may need configuring depending on the companion 
computer used. 
 
#! /bin/sh 
### BEGIN INIT INFO 
# Provides:          adhocsetup 
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# Required-Start:    kmod 
# Required-Stop:     kmod 
# Default-Start:     2 3 4 5 
# Default-Stop:      0 1 6 
# Short-Description:  
# Description:  
### END INIT INFO 
# /etc/init.d/adhoc.sh 
# 
 
touch /var/lock/adhoc.sh 
 
case "$1" in 
  start) 
    batctl if add eth0 
    ifconfig wlan1 down 
    ifconfig wlan1 mtu 1532 
    ifconfig wlan1 mode ad-hoc essid reynoldsplus ap CA:FE:C0:DE:F0:0D channel 11 
    batctl if add wlan1 
    ifconfig wlan1 up 
    ifconfig bat0 up 
    ifconfig bat0 10.200.8.4 
    route add default gw 10.0.99.1 
    echo 1 > /proc/sys/net/ipv4/ip_forward 
    export LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=1 
    stty -F /dev/ttyO1 57600 
    ;; 
  stop) 
    ;; 
  *) 
    exit 1 
    ;; 
esac 
 
exit 0 
 
 
logtocsv.py – Converts LCM Log File to Comma Separated Value for Analysis 
 
 This code is particular to LCM channels as-named in this research (vehicle1, 
vehicle2, vehicle3, v1vel, v2vel, v3vel).  It requires a log file name as an argument, and 
outputs one CSV file depending on the input file: either ID/position/velocity data, or 
velocity command data. 
  
import sys 
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import lcm 
import csv 
from exlcm import idposvel 
from exlcm import sendvel 
 
if len(sys.argv) < 2: 
    sys.stderr.write("usage: logtomat <logfile>\n") 
    sys.exit(1) 
 
namestr = str(sys.argv[1])  # name of the log file used as argument 
file_name1 = 'idposvel_' + namestr + '.csv'  # idposvel csv file name 
file_name2 = 'velsend_' + namestr + '.csv'  # vel cmd csv file name 
 
print('starting csv generation') 
 
with open(file_name1, 'wb') as csvfile1:  # create csv 
 
    log = lcm.EventLog(sys.argv[1], "r") 
    writer = csv.writer(csvfile1, dialect='excel', delimiter=',') 
    writer.writerow(['channel', 'timestamp', 'id', 'position', 'velocity']) 
 
    log.seek(1) 
    event1 = log.read_next_event() 
    print(' first channel: %s' % str(event1.channel)) 
    while True: 
 try:         
  if event1.channel == "vehicle1" or event1.channel == "vehicle2" or 
event1.channel == "vehicle3": 
              msg = idposvel.decode(event1.data) 
          writer.writerow([str(event1.channel), str(event1.timestamp), 
str(msg.id), str(msg.position), str(msg.velocity)]) 
         event1 = log.__next__() 
 except StopIteration: 
  print(' reached end of log file') 
  break 
    log.close() 
 
print('idposvel csv file created') 
 
with open(file_name2, 'wb') as csvfile2:  # create csv 
 
    log = lcm.EventLog(sys.argv[1], "r") 
    writer = csv.writer(csvfile2, dialect='excel', delimiter=',') 
    writer.writerow(['channel', 'timestamp', 'velA', 'velB', 'velC', 'velD']) 
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    log.seek(1) 
    event2 = log.read_next_event() 
    while True: 
 try: 
         if str(event2.channel) == "v1vel" or str(event2.channel) == "v2vel" or 
str(event2.channel) == "v3vel": 
              msg = sendvel.decode(event2.data) 
              writer.writerow([str(event2.channel), str(event2.timestamp), 
str(msg.velA), str(msg.velB), str(msg.velC), str(msg.velD)]) 
         event2 = log.__next__() 
 except StopIteration: 
  print(' reached end of log file') 
  break 
 
    log.close() 
 
print('velocity command csv file created') 
print('job complete')r 
 
import_velsend.m – Imports velocity command CSV into Matlab 
 
 This script will import a CSV containing velocity command data (as output by 
logtocsv.py above) into Matlab.  A similar script for position/velocity data was not 
functional and that data must be imported manually. 
 
%% Import data from text file. 
% Script for importing data from the following text file: 
% 
%    F:\AFIT\Thesis\Code\Analysis\velsend_06-12-2017_16_29_12.00.csv 
% 
% To extend the code to different selected data or a different text file, 
% generate a function instead of a script. 
 
% Auto-generated by MATLAB on 2017/12/18 12:54:23 
 
%% Initialize variables. 
filename = 'F:\AFIT\Thesis\Code\Analysis\velsend_06-12-2017_16_29_12.00.csv'; 
delimiter = ','; 
startRow = 2; 
 
%% Read columns of data as strings: 
% For more information, see the TEXTSCAN documentation. 
formatSpec = '%q%q%q%q%q%q%[^\n\r]'; 
 
%% Open the text file. 
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fileID = fopen(filename,'r'); 
 
%% Read columns of data according to format string. 
% This call is based on the structure of the file used to generate this 
% code. If an error occurs for a different file, try regenerating the code 
% from the Import Tool. 
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'HeaderLines' ,startRow-
1, 'ReturnOnError', false); 
 
%% Close the text file. 
fclose(fileID); 
 
%% Convert the contents of columns containing numeric strings to numbers. 
% Replace non-numeric strings with NaN. 
raw = repmat({''},length(dataArray{1}),length(dataArray)-1); 
for col=1:length(dataArray)-1 
    raw(1:length(dataArray{col}),col) = dataArray{col}; 
end 
numericData = NaN(size(dataArray{1},1),size(dataArray,2)); 
 
for col=[1,2] 
    % Converts strings in the input cell array to numbers. Replaced non-numeric 
    % strings with NaN. 
    rawData = dataArray{col}; 
    for row=1:size(rawData, 1); 
        % Create a regular expression to detect and remove non-numeric prefixes and 
        % suffixes. 
        regexstr = '(?<prefix>.*?)(?<numbers>([-]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-
+]*\d*[i]{0,1})|([-]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)'; 
        try 
            result = regexp(rawData{row}, regexstr, 'names'); 
            numbers = result.numbers; 
             
            % Detected commas in non-thousand locations. 
            invalidThousandsSeparator = false; 
            if any(numbers==','); 
                thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$'; 
                if isempty(regexp(numbers, thousandsRegExp, 'once')); 
                    numbers = NaN; 
                    invalidThousandsSeparator = true; 
                end 
            end 
            % Convert numeric strings to numbers. 
            if ~invalidThousandsSeparator; 
                numbers = textscan(strrep(numbers, ',', ''), '%f'); 



98 

                numericData(row, col) = numbers{1}; 
                raw{row, col} = numbers{1}; 
            end 
        catch me 
        end 
    end 
end 
 
 
%% Split data into numeric and cell columns. 
rawNumericColumns = raw(:, [1,2]); 
rawCellColumns = raw(:, [3,4,5,6]); 
 
 
%% Create output variable 
velsend1 = raw; 
%% Clear temporary variables 
clearvars filename delimiter startRow formatSpec fileID dataArray ans raw col 
numericData rawData row regexstr result numbers invalidThousandsSeparator 
thousandsRegExp me rawNumericColumns rawCellColumns; 
 
%% Begin post-processing 
 
 
processposvel.m – Format ID/Position/Velocity into useful array 
 
l = length(idposvel1); %get number of rows 
idposvel = zeros(l,8); %create empty matrix 
for count = 1:l % one to lower case L 
   idposvel(count,1) = idposvel1{count,1}; 
   idposvel(count,2) = idposvel1{count,2}/1000000 - idposvel1{1,2}/1000000; %convert 
time to seconds, first entry is t = 0 seconds 
   idposvel(count,3:5) = posvel(idposvel1{count,3}); 
   idposvel(count,6:8) = posvel(idposvel1{count,4}); 
end 
 
posvel.m – Supporting script for processposvel.m 
 
function NED = posvel(str_in) 
%POSVEL Summary of this function goes here 
%   Detailed explanation goes here 
%m0 = strrep(str_in,'"',''); 
m1 = strrep(str_in,'(',''); 
m2 = strrep(m1,')',''); 
m3 = textscan(m2, '%f', 'delimiter',','); 
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m4 = m3{1}; 
NED = [m4(1),m4(2),m4(3)]; 
end 
 
processvelsend.m – Format velocity command into useful array 
 
l = length(velsend1); %get number of rows 
velsend = zeros(l,18); %create empty matrix 
for count = 1:l % one to lower case L 
   velsend(count,1) = velsend1{count,1}; 
   velsend(count,2) = velsend1{count,2}/1000000 - idposvel1{1,2}/1000000; %convert 
time to seconds, t = 0 for the position data (this data should start later) 
   velsend(count,3:6) = vels(velsend1{count,3}); 
   velsend(count,7:10) = vels(velsend1{count,4}); 
   velsend(count,11:14) = vels(velsend1{count,5}); 
   velsend(count,15:18) = vels(velsend1{count,6}); 
end 
 
vels.m – Supporting script for processvelsend.m 
 
function magNED = vels(str_in) 
%VELS Summary of this function goes here 
%   Detailed explanation goes here 
m1 = strrep(str_in,'(',''); 
m2 = strrep(m1,')',''); 
m3 = textscan(m2, '%f', 'delimiter',','); 
m4 = m3{1}; 
magNED = [m4(1),m4(2),m4(3),m4(4)]; 
 
end 
 
modtime.m – Converts LCM timestamp to UTC datetime group 
 
function newtime = modtime(t_in) % input time in microseconds since epoch, output 
date/time 
t = (t_in * 10^(-6))/(3600*24); % convert time since epoch to days 
t_ref = datenum('1970','yyyy'); % set epoch reference 
t_mat = t + t_ref; % add time of interest to epoch 
newtime = datestr(t_mat,'yyyymmdd HH:MM:SS.FFF'); % convert to date time 
end 
 
plotpos.m – Plots positions from the imported and processed CSV data 
 
l = length(idposvel); 
s1 = 0; 
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s2 = 0; 
s3 = 0; 
v1 = 0; 
v2 = 0; 
v3 = 0; 
for count = 1:l % one to lower case L 
    if idposvel(count,1) == 1 
        if s1 == 0 
           scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),40,'c','filled') 
           s1 = 1; 
           hold on 
        else 
            scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),20,'k','filled') 
        end 
        if v1 > 0 && v1 ~= count 
            plot3([idposvel(v1,3), idposvel(count,3)],[idposvel(v1,4),idposvel(count,4)],[-
1*idposvel(v1,5),-1*idposvel(count,5)],'k') 
        end 
        v1 = count; 
    end 
         
    if idposvel(count,1) == 2 
        if s2 == 0 
           scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),40,'c','filled') 
           s2 = 1; 
           hold on 
        else 
           scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),20,'g','filled') 
        end 
        if v2 > 0 && v2 ~= count 
            plot3([idposvel(v2,3), idposvel(count,3)],[idposvel(v2,4),idposvel(count,4)],[-
1*idposvel(v2,5),-1*idposvel(count,5)],'k') 
        end 
        v2 = count;     
    end 
             
    if idposvel(count,1) == 3 
        if s3 == 0 
           scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),40,'c','filled') 
           s3 = 1; 
           hold on 
        else 
           scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),10,'b','filled') 
        end 
        if v3 > 0 && v3 ~= count 



101 

            plot3([idposvel(v3,3), idposvel(count,3)],[idposvel(v3,4),idposvel(count,4)],[-
1*idposvel(v3,5),-1*idposvel(count,5)],'k') 
        end 
        v3 = count; 
    end    
end 
scatter3(idposvel(v1,3),idposvel(v1,4),-1*idposvel(v1,5),30,'r','filled') 
scatter3(idposvel(v2,3),idposvel(v2,4),-1*idposvel(v2,5),30,'r','filled') 
scatter3(idposvel(v3,3),idposvel(v3,4),-1*idposvel(v3,5),30,'r','filled') 
 
plotvel – Plots velocity arrows from the imported and processed CSV data 
 
l = length(idposvel); 
for count = 1:l % one to lower case L 
    if idposvel(count,1) == 1 
        quiver3(idposvel(count,3),idposvel(count,4),-
1*idposvel(count,5),idposvel(count,6),idposvel(count,7),idposvel(count,8),'k') 
        hold on 
    end 
         
    if idposvel(count,1) == 2 
        quiver3(idposvel(count,3),idposvel(count,4),-
1*idposvel(count,5),idposvel(count,6),idposvel(count,7),idposvel(count,8),'g') 
        hold on 
    end 
             
    if idposvel(count,1) == 3 
        quiver3(idposvel(count,3),idposvel(count,4),-
1*idposvel(count,5),idposvel(count,6),idposvel(count,7),idposvel(count,8),'b') 
        hold on 
    end 
end 
 
plotdist.m – Plots distances between each vehicle 
 
 The plot is a frequency chart, showing how many LCM messages were sent 
within each 0.5 meter increment from zero to 25 meters separation. 
 
l = length(idposvel); 
v1pos = [0, 0, 0, 0]; 
v2pos = [0, 0, 0, 0]; 
v3pos = [0, 0, 0, 0]; 
dist1 = [0 0]; 
dist3 = [0 0]; 
count2 = 1; 
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for count = 1:l % one to lower case L 
    if idposvel(count,1) == 1 
        v1pos = [idposvel(count,3),idposvel(count,4),idposvel(count,5),idposvel(count,2)]; 
    end 
    if idposvel(count,1) == 2 
        v2pos = [idposvel(count,3),idposvel(count,4),idposvel(count,5),idposvel(count,2)]; 
    end 
    if idposvel(count,1) == 3 
        v3pos = [idposvel(count,3),idposvel(count,4),idposvel(count,5),idposvel(count,2)]; 
    end 
    if sum(abs(v1pos(1:3))) > 0 && sum(abs(v2pos(1:3))) > 0 && sum(abs(v3pos(1:3))) > 
0 
       % distance of interest in this case is vehicle 2 to 1 and 3 respectively 
       dist1(count2,1) = idposvel(count,2); 
       dist3(count2,1) = idposvel(count,2); 
       dist1(count2,2) = sqrt((v2pos(1)-v1pos(1))^2 + (v2pos(2)-v1pos(2))^2 + (v2pos(3)-
v1pos(3))^2); 
       dist3(count2,2) = sqrt((v2pos(1)-v3pos(1))^2 + (v2pos(2)-v3pos(2))^2 + (v2pos(3)-
v3pos(3))^2); 
       count2 = count2+1; 
    end 
     
    dtv1 = idposvel(count,2) - v1pos(4); 
    dtv2 = idposvel(count,2) - v2pos(4); 
    dtv3 = idposvel(count,2) - v3pos(4); 
     
    if dtv1 > 1000000 
        v1pos(1:3) = [0 0 0]; 
    end 
     
    if dtv2 > 1000000 
        v2pos(1:3) = [0 0 0]; 
    end 
     
    if dtv3 > 1000000 
        v3pos(1:3) = [0 0 0]; 
    end 
     
end 
figure 
scatter(dist1(:,1),dist1(:,2),18,'g','filled') 
hold on 
scatter(dist3(:,1),dist3(:,2),18,'b','filled') 
edges = linspace(4,12,17); 
edges2 = edges(2:17); 
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N1 = histcounts(dist1(:,2),edges); 
N3 = histcounts(dist3(:,2),edges); 
figure 
subplot(2,1,1) 
bar(edges2,N1) 
subplot(2,1,2) 
bar(edges2,N3) 
 
histplot2.m – Repeats the histogram from plotdist 
 
 The dist1/dist2/dist3 variables should be copied and edited to reflect only the 
period while velocity commands are being sent.  I did this manually and named the 
respective variables dist1a and dist3a.  The specific boundaries should be edited to 
include the maximum and minimum spacing distances between vehicles. 
 
edges = linspace(4,12,17); 
edges2 = edges(2:17); 
N1 = histcounts(dist1a(:,2),edges); 
N3 = histcounts(dist3a(:,2),edges); 
figure 
subplot(2,1,1) 
bar(edges2,N1) 
subplot(2,1,2) 
bar(edges2,N3) 
 
plotbarvel.m – Plots velocity commands over time 
 
 The plot shows every velocity command sent, broken out by rule. 
 
l = length(velsend); 
v1vel = [0, 0, 0, 0, 0]; 
v2vel = [0, 0, 0, 0, 0]; 
v3vel = [0, 0, 0, 0, 0]; 
count1 = 1; 
count2 = 1; 
count3 = 1; 
figure 
for count = 1:l % one to lower case L 
     
    if velsend(count,1) == 1 
        v1vel(count1,1) = velsend(count,2); 
        v1vel(count1,2:5) = 
[abs(velsend(count,3)),abs(velsend(count,7)),abs(velsend(count,11)),abs(velsend(count,1
5))]; 
        if v1vel(count1,2) == 0.01 
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            v1vel(count1,2) = 0; 
        end 
        count1 = count1+1; 
    end 
     
    if velsend(count,1) == 2 
        v2vel(count2,1) = velsend(count,2); 
        v2vel(count2,2:5) = 
[abs(velsend(count,3)),abs(velsend(count,7)),abs(velsend(count,11)),abs(velsend(count,1
5))]; 
        if v2vel(count2,2) == 0.01 
            v2vel(count2,2) = 0; 
        end 
        count2 = count2+1; 
    end 
     
    if velsend(count,1) == 3 
        v3vel(count3,1) = velsend(count,2); 
        v3vel(count3,2:5) = 
[abs(velsend(count,3)),abs(velsend(count,7)),abs(velsend(count,11)),abs(velsend(count,1
5))]; 
        if v3vel(count3,2) == 0.01 
            v3vel(count3,2) = 0; 
        end 
        count3 = count3+1; 
    end 
end 
if sum(abs(v1vel)) > 0 
    subplot(3,1,1) 
    v1bar = bar(v1vel(:,1),v1vel(:,2:5),1,'stacked') 
    set(v1bar,{'FaceColor'},{'b';'m';'g';'r'}) 
    L1=legend(v1bar, {'Separation','Flight Deck','Alignment','Cohesion'}, 
'Location','Best','FontSize',8) 
end 
 
if sum(abs(v2vel)) > 0 
    subplot(3,1,2) 
    v2bar = bar(v2vel(:,1),v2vel(:,2:5),1,'stacked') 
    set(v2bar,{'FaceColor'},{'b';'m';'g';'r'}) 
    L2=legend(v2bar, {'Separation','Flight Deck','Alignment','Cohesion'}, 
'Location','Best','FontSize',8) 
end 
 
if sum(abs(v3vel)) > 0 
    subplot(3,1,3) 



105 

    v3bar(v3vel(:,1),v3vel(:,2:5),1,'stacked') 
    set(v3bar,{'FaceColor'},{'b';'m';'g';'r'}) 
    L3=legend(v3bar, {'Separation','Flight Deck','Alignment','Cohesion'}, 
'Location','Best','FontSize',8) 
end 
 
test.bat – Launches 3 FlightGear clients in Windows, connected to MP server 
 
set AUTOTESTDIR="C:\cygwin\home\username\ardupilot\Tools\autotest\aircraft" 
c: 
FOR /F "delims=" %%D in ('dir /b "\Program Files"\FlightGear*') DO set FGDIR=%%D 
echo "Using FlightGear %FGDIR%" 
cd "\Program Files\%FGDIR%\bin" 
 
start fgfs ^ 
    --native-fdm=socket,in,10,,5503,udp ^ 
    --fdm=external ^ 
    --aircraft=arducopter ^ 
    --fg-aircraft=%AUTOTESTDIR% ^ 
    --airport=KBOS ^ 
    --geometry=650x550 ^ 
    --bpp=32 ^ 
    --disable-anti-alias-hud ^ 
    --disable-hud-3d ^ 
    --disable-horizon-effect ^ 
    --timeofday=noon ^ 
    --disable-sound ^ 
    --disable-fullscreen ^ 
    --disable-random-objects ^ 
    --fog-disable ^ 
    --disable-specular-highlight ^ 
    --disable-anti-alias-hud ^ 
    --wind=0@0 ^ 
    --multiplay=in,10,127.0.0.1,5003^ 
    --multiplay=out,10,127.0.0.1,5000^ 
    --callsign=AFIT-03 
 
timeout /t 30 
 
start fgfs ^ 
    --native-fdm=socket,in,10,,5513,udp ^ 
    --fdm=null ^ 
    --aircraft=arducopter ^ 
    --fg-aircraft=%AUTOTESTDIR% ^ 
    --airport=KBOS ^ 
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    --geometry=650x550 ^ 
    --bpp=32 ^ 
    --disable-anti-alias-hud ^ 
    --disable-hud-3d ^ 
    --disable-horizon-effect ^ 
    --timeofday=noon ^ 
    --disable-sound ^ 
    --disable-fullscreen ^ 
    --disable-random-objects ^ 
    --fog-disable ^ 
    --disable-specular-highlight ^ 
    --disable-anti-alias-hud ^ 
    --wind=0@0 ^ 
    --multiplay=in,10,127.0.0.1,5004^ 
    --multiplay=out,10,127.0.0.1,5000^ 
    --callsign=AFIT-02 
 
timeout /t 25 
 
start fgfs ^ 
    --native-fdm=socket,in,10,,5523,udp ^ 
    --fdm=null ^ 
    --aircraft=arducopter ^ 
    --fg-aircraft=%AUTOTESTDIR% ^ 
    --airport=KBOS ^ 
    --geometry=650x550 ^ 
    --bpp=32 ^ 
    --disable-anti-alias-hud ^ 
    --disable-hud-3d ^ 
    --disable-horizon-effect ^ 
    --timeofday=noon ^ 
    --disable-sound ^ 
    --disable-fullscreen ^ 
    --disable-random-objects ^ 
    --fog-disable ^ 
    --disable-specular-highlight ^ 
    --disable-anti-alias-hud ^ 
    --wind=0@0 ^ 
    --multiplay=in,10,127.0.0.1,5001^ 
    --multiplay=out,10,127.0.0.1,5000^ 
    --callsign=AFIT-01 
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Appendix F – Miscellaneous 

 This appendix includes information critical to repeating this research but is too 

short and detailed for inclusion in the main body of research. 

Pixhawk-Beaglebone Serial Connection 

 The Telem2 port on the Pixhawk does not have the same input/output as the Telem1 

port by default.  To enable it as a telemetry port, add an empty file called “uartD.en” to the 

APM directory within the Pixhawk’s microSD memory card.  This is a poorly-documented 

procedure found in ArduPilot documentation.  On the Beaglebone Black, open the capemgr 

file (/etc/default/capemgr) and change the line “#CAPE” to “CAPE=BB-UART1,BB-

UART2” and reboot the Beaglebone.  This will enable the Beaglebone’s serial ports 

because they are not active by default.  These two fixes will allow the Beaglebone to 

receive telemetry off the Telem2 port, send velocity commands to the Pixhawk.  Ensure 

the SERIAL2_BAUD parameter on the aircraft is set to 57; other parameters starting with 

“SR2_” may need to be tweaked as well.   

These fixes also permit the companion computer to connect to the Pixhawk at the 

same time as a GCS using Mission Planner, which had not been resolved in previous 

research.  Note the python script running the Reynolds+ algorithm running on the 

companion computer continuously throws an error code ("Exception in message handler 

for HEARTBEAT; mode 0 not available on mavlink definition") while the GCS is 

connected at the same time, but both still provide required functionality. 

Companion Computer Modules 

The following modules need to be added or updated to the companion computer 

with apt-get or apt-get install: 
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update, git, libncurses5-ddev, libncursesw5-dev, gawk, subversion, libapache2-svn, 

openjdk-6-jdk, python-dev, unzip, python-setuptools, python-opencv, python-wxgtk2.8, 

python-pip, python-matplotlib, python-pygame, python-lxml, software-properties-

common, python-software-properties, libxml2-dev, libxslt-dev, firmware-atheros (this 

depends on what firmware your Wi-Fi adapter requires), batctl, bridge-utils 

 The following modules need to be added to Python on the companion computer 

(pip install): lxml, dronekit, numpy (ensure latest version), future, mavproxy, dronekit=sitl, 

droneapi, pymavlink (version 2.2.6 preferred – uninstall all copies of pymavlink then 

reinstall the specific version) 

 When installing lxml and pymavlink, the memory on the Beaglebone was 

insufficient so a swap file was created to permit installation: 

  dd if=/dev/zero of=/swapfile1 bs=1024 count=524288 
  mkswap /swapfile1 
  chown root:root /swapfile1 
  chmod 0600 /swapfile1 
  swapon /swapfile1 
 
It was removed after installation using: 
    swapoff -v /swapfile1 
    rm /swapfile1 
 
Installation of lxml can take a while on the Beaglebone (estimated at one hour). 

Timing 

 Timing is important to the Reynolds+ code because the data broadcast by other 

aircraft is stored with a timestamp.  If data from any aircraft is more than 2 seconds old, it 

is discarded and zeroed out, which the algorithm treats as a non-broadcasting aircraft. 

 The Beaglebone Black companion computers used in this research do not have a 

backup battery to maintain a clock, and thus always boot up at a hard-coded system time.  
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The Reynolds+ code includes a snippet that obtains GPS time from the Pixhawk and sets 

the companion computer’s system time to match it upon starting up the script.  Initial 

configurations updated the clock every time the Pixhawk updated its clock (~4 Hz), but 

this proved to cause problems with timestamps, so clock drift is assumed to be acceptable 

for the duration of flight (~20 minutes at most) and the update is only performed once.   

LCM 

 For LCM to work properly over the ad-hoc network, a specific common URL must 

be exported using the following command: “export 

LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=1”.  Initially this command had 

to be manually input every time a terminal was opened, but it was later automated with the 

ad-hoc network setup. 

 For LCM to work properly between VirtualBoxes, the export command is: “export 

LCM_DEFAULT_URL=udpm://224.3.29.71:5005?ttl=2”.  Additionally, the following 

command must be run on opening each terminal: “route add 224.3.29.71 dev enp0s8” 

(check ifconfig to see which interface is appropriate – it may be enp0s3 or similar). 

 Neither the software nor hardware setups would send and receive LCM messages 

on the same channel at the same time.  Therefore, each vehicle’s Reynolds+ algorithm 

creates a LCM object for each other vehicle in the swarm, with a channel dedicated to that 

vehicle.  Each vehicle listens on its own channel and broadcasts on all other channels.  To 

facilitate message handling simultaneously with the swarm algorithm, Python’s threading 

module was utilized to place message handling in the background and swarm execution in 

the foreground. 

FlightGear Multiplayer Server (FGMS) Setup 
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 This segment includes tips for setting up FGMS in Cygwin.  The following sites 

provide instructions for setting up a multiplayer server: 

http://wiki.flightgear.org/Howto:Set_up_a_multiplayer_server 

http://fgms.freeflightsim.org/README_cmake.html 

Pthreads (see setup instructions) were obtained from: 

ftp://sourceware.org/pub/pthreads-win32/ (pthreads-w32-2-9-1-release.zip used for this 

research) 

During installation of the server, open Xwin Server in Windows, and “export 

DISPLAY=:0.0” before running cmake-gui per setup instructions. 

Ensure thread_INC and thread_LIB point to the correct folders using the cmake-gui; most 

of the available options were left unchecked. 

Libcrypt-devel is a required package for Cygwin. 

The following lines must be included in fgms.conf: 

server.name = yourservername 
server.address = 127.0.0.1 
server.port = 5000 
server.telnet_port = 0 
server.playerexpires = 10 
server.logfile = fgms.log 
server.tracked = false 
server.daemon = false 
server.is_hub = true 
relay.port = 5001 
relay.port = 5004 
relay.port = 5003 
 
To run the FGMS server in Cygwin on opening a terminal: 

cd /cygdrive/c/cygwin/home/YourUserName/build-fgms 
 ./fgms -c ./test.conf       
 

http://wiki.flightgear.org/Howto:Set_up_a_multiplayer_server
http://fgms.freeflightsim.org/README_cmake.html
ftp://sourceware.org/pub/pthreads-win32/
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