
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Design and Test of a UAV Swarm Architecture over
a Mesh Ad-Hoc Network
Timothy J. Allen

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Navigation, Guidance, Control and Dynamics Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Allen, Timothy J., "Design and Test of a UAV Swarm Architecture over a Mesh Ad-Hoc Network" (2018). Theses and Dissertations.
1871.
https://scholar.afit.edu/etd/1871

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1871&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholar.afit.edu%2Fetd%2F1871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1871?utm_source=scholar.afit.edu%2Fetd%2F1871&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

DESIGN AND TEST OF A UAV SWARM ARCHITECTURE
OVER A MESH AD-HOC NETWORK

THESIS

Timothy J. Allen, Captain, USAF

AFIT-ENV-MS-18-M-172

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-18-M-172

DESIGN AND TEST OF A UAV SWARM ARCHITECTURE
OVER A MESH AD-HOC NETWORK

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Timothy J. Allen, BS

Captain, USAF

March 2015

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-18-M-172

DESIGN AND TEST OF A UAV SWARM ARCHITECTURE
OVER A MESH AD-HOC NETWORK

Timothy J. Allen, BS

Captain, USAF

Committee Membership:

Dr. John Colombi
Chair

Dr. David Jacques
Member

Lt Col Amy Cox, PhD
Member

iv

AFIT-ENV-MS-18-M-172

Abstract

 Unmanned aerial vehicles (UAV) are individually versatile machines due to their

small size, well-developed autopilots, on-board processing, and accurate navigation

systems. They can fulfill various military objectives without risking additional manpower

including: real-time intelligence (ISR), battle damage assessment (BDA), force

application, and force protection.

 The purpose of this research was to develop a testable swarm architecture such that

the swarm of UAVs collaborate as a team rather than acting as several independent

vehicles. Commercial-off-the-shelf (COTS) components were used as they were low-cost,

readily available, and previously proven to work with at least two networked UAVs.

 Initial testing was successfully performed via software-in-the-loop (SITL)

demonstrating swarming of three simulated multirotor aircraft, then transitioned to real

hardware. The architecture was then tested in a nylon netting enclosure. Command and

control (C2) was provided by software implementing an enhanced version of Reynolds’

flocking rules via an onboard companion computer, and UDP multicast messages over a

Wi-Fi mesh ad-hoc network. Experimental results indicate a standard deviation between

vehicles of 2 meters or less, at airspeeds up to 2 meters per second. This aligns with

navigation instrumentation error, permitting safe operation of multiple vehicles within 5

meters of each other. Qualitative observations indicate this architecture is robust enough

to handle more aircraft, pass sensor data, and incorporate different swarming algorithms

and missions.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. John Colombi,

for his guidance and support throughout the course of this thesis effort. His insight and

experience were invaluable. More thanks go to the ANT UAV Lab technicians who were

critical to supporting flying operations; I’d never have been able to complete real-world

testing without them. For keeping me focused during long coding sessions, I’d like to thank

the owner of the “Justicepianosongs” channel on YouTube. I would also like to thank my

wife and children for their support and encouragement.

 Timothy J. Allen

vi

Table of Contents

Page

Abstract .. iv

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xi

I. Introduction ...1

General Issue ..1

Problem Statement..2

Research Objectives ...3

Investigative Questions ..4

Methodology...5

Assumptions/Limitations ..8

Implications ..9

Preview ...9

II. Literature Review ..11

Chapter Overview ...11

Use of Low-Cost COTS Components in Multi-UAV Demonstrations11

Military Utility..11

Cooperative Behavior and Algorithms ...14

Command and Control (C2) Architectures...16

Autonomous Control ..19

Conclusion ..22

III. Methodology ...23

Chapter Overview ...23

vii

Architecture ..23

Hardware/Software Implementation ..30

Algorithm Development and Verification ..34

Telemetry Transmission and Logging Error! Bookmark not defined.

Software in the Loop (SITL) Testing ...42

Metrics ..42

Test and Verification Procedure ...43

Cage Testing ...47

IV. Analysis and Results ...49

Chapter Overview ...49

Test Scenario ..49

Limitations ..50

Quantitative Results..52

Qualitative Results..55

Analysis Summary..57

Chapter Summary ...57

V. Conclusions and Recommendations ..58

Chapter Overview ...58

Conclusions of Research ..58

Investigative Questions Answered ...58

Significance of Research ..60

Recommendations for Action ...61

Recommendations for Future Research..61

viii

Bibliography ..63

Appendix A – Use Cases ...68

Appendix B – Architectural Function Descriptions...71

Appendix C – Reynolds+ Rules as Implemented ..72

Appendix D – Software in the Loop Setup & Discussion ...74

Appendix E – Code ..78

Appendix F – Miscellaneous ...107

ix

List of Figures

Page

Figure 1. Reynolds Flocking Rules (Enrica, 2016)... 5

Figure 2. Minimum Altitude Rule .. 6

Figure 3. SITL Architecture (ArduPilot, 2016) .. 8

Figure 4. Original Reynolds Rules.. 14

Figure 5. Centralized (a) vs Decentralized (b) Network ... 17

Figure 6. Ad-Hoc Network vs Mesh Ad-Hoc Network .. 18

Figure 7. OV-1, Tested Swarm Configuration.. 24

Figure 8. OV-1, Notional Swarming Configuration ... 24

Figure 9. Activity Diagram, Use Case 1 ... 25

Figure 10. Activity Diagram, Use Case 2 ... 26

Figure 11. Activity Diagram with allocated swim lanes... 27

Figure 12. System Interface Description (SV-1), Layers 2-3 ... 29

Figure 13. System Interface Description (SV-1), Layers 3 and 4 30

Figure 14. X-8 Multirotor with Strap-on Guidance Package .. 31

Figure 15. Strap-on guidance package (battery location outlined) 32

Figure 16. Block Diagram... 33

Figure 17. Reynolds+ Rules .. 35

Figure 18. Global Frame to Local Tangent Plane Conversion ... 37

Figure 19. Weighted-Sum Velocity vs Velocity Magnitude Bucket 38

Figure 20. Reynolds+ Rule Magnitude Plots, Wide Version ... 41

Figure 21. Reynolds+ Rule Magnitude Plots, Narrow Version .. 42

x

Figure 22. AFIT Small UAV Enclosure ... 44

Figure 23. WPAFB Area B Small UAV Flight Operating Area....................................... 44

Figure 24. Cage Flight Position Log ... 50

Figure 25. Distance from Vehicle 2 (Guided) .. 53

Figure 26. Distance Frequency Plot .. 53

Figure 27. Velocity Command Magnitudes by R+ Rule .. 54

Figure 28. Swarm Architecture ... 59

Figure 29. SITL Setup... 77

Figure 30. SITL Architecture 2.0 .. 78

xi

List of Tables

Page

Table 1. Adjusted Feddema Behaviors (Kaiser, 2014) ... 12

Table 2. Layer-Component-Function Table ... 28

Table 3. Aircraft Mode Behavior Summary ... 46

Table 4. Summary Statistics ... 52

Table 5. SITL Layers .. 75

1

DESIGN AND TEST OF A UAV SWARM ARCHITECTURE

OVER A MESH AD-HOC NETWORK

I. Introduction

General Issue

The history of unmanned aerial vehicles (UAV) is older than manned aircraft; the

first hot-air and lighter-than-air balloons were tested without human occupants in the

1700’s (Crouch, 2009; PAF, n.d.). The first recorded use of untethered UAVs in a military

application is recorded in the March 1849 issue of Scientific American, when the Austrians

used balloons to drop bombs on Venice, which had revolted and had no nearby terrain

suitable for conventional bombardment (McDaid; Oliver; Strong; Israel, 2002).

Interestingly this is also the first recorded instance of any aerial bombardment. Other

instances of unmanned aircraft occurred as technology progressed (Fahrney, 1980), but it

wasn’t until the advent of the microprocessor that UAVs truly became capable of fulfilling

missions traditionally performed by manned aircraft (Newcome, 2004).

The modern individual UAV can perform several roles including real time

surveillance, battle damage assessment (BDA), target lasing, accurate missile or rocket

launch (USAF, 2015a, 2015b), and/or ferry supplies (Lockheed-Martin, 2017). UAVs

perform some tasks autonomously, and others as commanded by a man-in-the-loop

(Howard, 2013). Coordination with other aircraft, manned and unmanned, is still executed

by humans (DOD, 2014). Like humans, unmanned vehicles can synergistically increase

mission performance when acting in teams rather than individuals or groups of individuals

(Hambling, 2016). Collaborative communication between UAVs is the next hurdle for

2

UAV technology to increase performance; however, due to ongoing development of

swarming networks and how humans can interact with and control them, that hurdle has

yet to be crossed (Cummings, Bruni, Mercier, & Mitchell, 2007).

The principles of autonomy exist in a spectrum of flexibility in three categories:

task, cognition, and peer/subordinate/supervisor (Rogers, 2011; Scharre, 2015). The work

encompassed by this thesis primarily falls under peer flexibility. Peer flexibility

encompasses supervisor, subordinate, and peer relationships. To clarify the definition of

these roles: autonomous agents filling any of these roles share information with, and

receive information from, other agents. Subordinates receive direction or commands from

other supervisors, supervisors send direction or commands to subordinates, and peers

operate within the confines of their programming given the data shared by other agents.

These clear delineations are a starting point but may be insufficient to fully describe swarm

behavior as will be shown later.

Problem Statement

 There does not exist a flexible architecture to flight test UAV swarms that allows

for supervisor/subordinate role reversals. Almost all operational systems place the

autonomous agent in the role of subordinate – it exists to execute human decisions.

A notable exception is the UK-made Brimstone missile which can search for

targets, select one, and attempt to destroy it with no human input once fired (Marsh,

2014). Lethal systems that can make decisions that end lives without a human operator in

the loop are controversial on many levels (Marsh, 2014; Rogers, 2011), but there are

more benign tasks like ISR (Saska et al., 2016), refueling (Burns, 2007), and tight

3

formation flying (Justh, EW; Krishnaprasad, 2002), that could be conducted by

autonomous decision-making systems.

Some role-reversing autonomous agents have gone operational but by and large

they are still in development. The most notable operational example is the F-16’s

automatic ground collision avoidance system (GCAS). When the flight computer

determines the aircraft’s trajectory is going to end in a ground collision, at some threshold

it takes control from the pilot and performs an emergency recovery maneuver to prevent

collision (Norris, 2016). The pilot temporarily becomes the subordinate and the flight

computer the supervisor. The F-16 is not normally flown as a UAV, but the

supervisor/subordinate roles apply the same way. Modern UAV autopilots fly waypoint

or loiter routes as directed by humans in the loop. Algorithms can be used to choose those

waypoints and the on-board computer does most of the work of flying but the decision to

execute is still the human’s: the human is always the supervisor and the UAV the

subordinate. One of the drivers for this thesis was to provide a flexible architecture with

which to test unmanned systems that allow for similar role changes in a safe and controlled

manner.

Research Objectives

The purpose of this research is the enabling of a swarm of three or more multirotor

UAVs to act together using collaborative coordination amongst all UAVs in the swarm,

without commands from a ground station, except for manual commands to a single “lead”

vehicle. A second objective was to investigate the vehicle spacing distribution to determine

how closely UAVs can operate in proximity to other UAVs in the swarm while minimizing

4

the chance of colliding, given various flight patterns. For safety purposes and due to

institutional requirements, a ground control station (GCS) was used to monitor UAVs on a

one-for-one basis, along with an observer and a safety pilot with the ability to immediately

seize manual control for each vehicle.

The data produced by this research, and future data acquired by more rigorous

testing of the architecture should provide evidence that a three-to-one crew is not required

for all UAV tests and operations if the vehicles meet some level of autonomous swarming

capability. Metrics that demonstrate safety of flight for a UAV swarm have not been

identified at this point in time, and this research should provide some options or insights to

develop those metrics.

Investigative Questions

This thesis research focuses on integrating COTS hardware and software prototypes

into a collaborative multirotor UAV swarm. The following questions are examined:

• What is one architecture that supports collaborative communication

between three or more multirotor air vehicles that can be scaled to include

more?

• What is the distribution of separation distances and error between vehicles

implementing a version of Reynolds’ flocking rules and how does it change

with different parameter settings and flight patterns?

• What is the contribution of velocity commands by rule using a “prioritized

velocity bucket” instead of a more traditional weighted-rule method?

5

Methodology

Utilizing COTS equipment and Open Source Software (OSS), can a single operator

safely and successfully provide command and control for a swarm consisting of three or

more UAVs? The UAVs must form an ad hoc network, where each aircraft is a node and

can enter and leave the network freely. Furthermore, the UAVs must act in concert, using

onboard processors and telemetry broadcast by each aircraft over the network with no

inputs from ground-based command and control (C2). The specific task carried out by the

swarm is not of interest in this research, but rather the underlying communication and

navigation architecture that enables it. An algorithm mimicking a flock of birds (Reynolds,

1987) will be utilized as a stand-in, applying three control rules to each swarm member

plus a fourth rule establishing a desired (safe) minimum altitude.

Figure 1. Reynolds Flocking Rules (Enrica, 2016)

6

Figure 2. Minimum Altitude Rule

Reynolds’ rules by themselves are insufficient to demonstrate peer flexibility

because by the previously-made role definitions, all the agents are peers and there are no

supervisors or subordinates. Therefore, any given agent must also be able to take on the

role of a supervisor where it continues to send and receive information as part of the swarm

but is under direct human control. As a result, this places those agents not under human

control in a subordinate role relative to the lead agent(s), while they maintain peer

relationships amongst each other. The supervisory agent becomes supervisor to the

subordinate swarm members but is also subordinate to the human agent. The human

supervisor can then leverage their supervisor role over one or more aircraft to indirectly

control the rest of the swarm.

For example, flying a lead agent directly away from its subordinate in a 2-vehicle

swarm will lead to the subordinate “chasing” the leader by following the rules governing

alignment and cohesion. Flying the lead agent at a subordinate will result in the subordinate

moving away from the lead vehicle due to the rules for alignment and separation. Distance

spacing between aircraft will be evaluated using this type of behavior for various flight

patterns in a 2-vehicle swarm and in a 3-vehicle swarm. The purpose for this is to ensure

safety of flight by providing spacing guidelines to reduce the chance of midair collision.

7

This research is intended to be a starting point for future swarm algorithm testing

by a single operator for three or more aircraft. Reynolds’ rules are used as a convenient

fill-in for behavior, because it’s likely the separation and minimum altitude rules will be

maintained for any swarm for safety purposes. The architecture behind this demonstration

must be flexible enough that future iterations can replace the swarm rules with something

entirely different from Reynolds’ flocking rules – including a more cognitively flexible

controller than a scripted algorithm.

Research was conducted in two phases: software-in-the-loop (SITL), followed by

hardware-in-the-loop (HITL). At the start of this thesis, the USAF airworthiness flight

release for AFIT UAV operations required one GCS per UAV. To support a release

permitting one GCS to control multiple UAVs or monitor a swarm of UAVs with the option

to take control, SITL testing was used to prove safety of flight. The SITL setup consisted

of OSS running in multiple instances onboard a single computer; the software architecture

for a single instance is shown below in Figure 3.

A FlightGear server was used to view the simulated aircraft swarm, with individual

aircraft observable in their own FlightGear flight simulation instances, but also showing

the other aircraft through a multiplayer server. The data was provided by JSBSim Flight

Dynamics Model (FDM), receiving inputs from multiple emulated ArduPilot autopilot

instances. Each autopilot was controlled separately by instances of MAVProxy GCS, a

minimalist GCS capable of interfacing with Python scripts through DroneKit. A single

Python script used telemetry outputs from each virtual autopilot and a swarming algorithm

to provide C2 instructions. These instructions were fed through DroneKit to the

MAVProxy GCS and then to the autopilots.

8

Figure 3. SITL Architecture (ArduPilot, 2016)

Once the swarming algorithm was shown to work in simulation, it was uploaded to

actual aircraft for the second phase. Three fixed-wing UAVs were networked together,

with one characterized running the same algorithm from SITL testing.

Assumptions/Limitations

Aircraft availability limits the maximum size of the swarm to three aircraft, so the

scalability of the swarm architecture cannot be empirically determined. It’s not feasible to

simulate the limitation since the governing scripts are run on small onboard companion

computers, while the simulation was run on a higher-end laptop computer. Furthermore,

the type of aircraft available for flight test are limited to AFIT resources. If this architecture

is successful with three aircraft, future testing can evaluate bandwidth limitations when

incorporating more aircraft into the architecture.

9

Open-source software (OSS) will be utilized throughout this research. This

provides maximum flexibility at the cost of potential security flaws (which are not

addressed by this research) and reduced user-friendliness. Many commercial off-the-shelf

(COTS) products will be used in this research to keep costs down. This also allows for

component interchangeability for most components. The critical exception is the Pixhawk

autopilot due to its ability to accept local frame velocity commands. Also, some

specialized interface connections were manufactured in-house.

Implications

This research, if successful, will allow future researchers to start with a baseline of

three multirotor air vehicles that exhibit a minimum level of swarming behavior in a safe

and controllable manner. From there, more advanced swarming capabilities can be tested

including formation flying, the addition of sensor packages, and more advanced data

sharing. It will also provide early metrics for safety of flight for swarming air vehicles,

and evidence in support of a reduced personnel requirement for swarms of air vehicles if

those vehicles meet not-yet-established criteria for operation.

Preview

Chapter II reviews numerous publications supporting the purpose and technical

background of this research. Topics include military utility of swarming aircraft,

algorithms that govern autonomous flocking behavior, command and control architectures

supporting swarming aircraft, methods for controlling swarm members individually and

for controlling the swarm as a whole. The chapter concludes with the few documented

instances where all of these components were put together and partially tested on real

10

aircraft. Chapter III addresses the specific architecture developed by this research, the

hardware and software used to test the architecture, control algorithm development for a

UAV swarm, and the test and verification plan. Chapter IV discusses the results and

implications of the actual tests, and Chapter V provides conclusions and recommendations

for future research.

11

II. Literature Review

Chapter Overview

Chapter II focuses on engineering articles exploring the technical aspects of UAV

swarm communication and control. Additionally, some articles delve into the military

utility of UAV swarms. These articles provide the technical foundation for this thesis and

show the gap it is intended to address.

Use of Low-Cost COTS Components in Multi-UAV Demonstrations

Previous research has proven the efficacy of low-cost COTS components in

providing inter-vehicle communication sufficient to navigate unmanned ground vehicles

(UGV) in close formation (Gray, 2015; Hardy, 2015; Toscano, 2017). Additionally, the

architecture used to control two UGVs in Toscano’s research, running at nearly 20Hz

update rate, was assessed to be capable of including at least three more vehicles.

Military Utility

 In 2002, the then-US Joint Forces Command/J9 prioritized a list of mission sets for

collaborative UAV systems (USJFCOM J9, 2002). This list of missions was evaluated for

specific behavioral patterns, translating militarily useful tasks into lower-level actions

(Feddema, John T; Robinett & Byrne, 2004). In 2014, Kaiser adjusted the Feddema table

to quantify which behaviors were common to which mission sets, shown in Table 1.

12

Table 1. Adjusted Feddema Behaviors (Kaiser, 2014)

Missions & Behaviors

Fl
oc

ki
ng

C
on

ve
rg

in
g/

D
iv

er
gi

ng

M
ap

pi
ng

/S
ur

ve
y

C
ov

er
ag

e

Se
ar

ch

D
et

ec
t/T

ra
ck

C
on

ta
in

m
en

t

Lo
ite

r

Pu
rs

ui
t

A
tta

ck

Ev
as

io
n

Area ISR X X X X X X
Point ISR X X X X X X
Communication X X X X
Navigation/Mapping X X X X X
Swarming Attacks X X X X X X X X X
Defense/Protection X X X X X X X X X
Delay/Fix/Block X X X X X X X
Deception Operations X X X X X
(Combat) Search & Rescue X X X X X X

 Since all the listed military missions utilize flocking and converging/diverging

behaviors, it is reasonable to assume that every mission set is going to include these

foundational behaviors. This thesis then, will focus on implementing those two behaviors

into a scalable swarm of three or more aircraft, with sufficient remaining processing power

and memory to add additional behaviors in the future.

 Before proceeding, it’s important to clarify the definitions of some of the terms

used. In common use, flocking, herding, and swarming are all synonymous for

collaborative motion, the only difference being which type of animal the behavior is

describing. For the purposes of this research, flocking describes a natural-seeming

aggregate behavior of individuals, which are not centrally controlled but act solely on their

own perception of their environment (Reynolds, 1987). The original three Reynolds rules

13

adequately simulate or produce flocking behavior, but lack purpose. Modifying these rules

can give the aggregate behavior a purpose. Swarming for the purposes of this research is

defined as a group of three or more agents acting in such a way that the behavior of each

agent affects that of every other agent, and the group is collaborating to accomplish some

goal which cannot be attained by an individual agent or would take an individual agent an

inordinate amount of time to accomplish. Swarming does not have to include flocking

behavior per se: a group of UAVs performing a gridded sensor sweep would be said to

exhibit swarming behavior, but it would not appear as natural animal behavior, and thus

not be described as flocking. In either case though, the positions and velocities of all other

members of the swarm or flock must be available to each individual to obtain the desired

effect.

Individual members of flocks or swarms, as defined, must be able to exhibit

converging or diverging behavior. Converging is the ability to move towards a common

point “known” by all swarm members. Diverging is the ability to move away from a

common point “known” by all swarm members.

Given those definitions, the ability to flock or swarm requires two important pieces:

a common coordinate frame amongst all flock members, and a way to determine each flock

member’s position and velocity in that frame. While it may be convenient to utilize a

global frame due to common availability of satellite navigation signals, these signals can’t

always be relied upon in a military environment. Therefore, a local frame makes the most

sense to use. When satellite navigation signals are available, the global positions can be

translated to the local frame, and when not, alternative methods can be used to determine

the local frame (Scaramuzza et al., 2014). Additionally, the global frame may be more

14

useful for military missions, but the local frame may be better for flocking and

converging/diverging behaviors.

The position and velocity information must be shared amongst all flock members

and updated at a sufficient rate such that each member is able to respond to the movements

of other members so as not to collide with them (baseline behavior) and accomplish the

mission of the flock (advanced collective behavior).

Cooperative Behavior and Algorithms

 In 1986, Craig Reynolds suggested an algorithm designed to simulate flocking

behavior, and the following year published a paper on his findings (Reynolds, 1987). The

three key rules Reynolds describes, in order of decreasing precedence, are:

Separation: avoid collisions with nearby flock members

Alignment: attempt to match velocity with nearby flock members

Cohesion: attempt to stay near other flock members

Figure 4. Original Reynolds Rules

15

Reynolds is careful to point out at the start of his paper that objectively measuring the

success of a flocking algorithm is difficult, and notes that while some attempts to

mathematically describe flocking behavior have been made, it may be more significant that

many viewers are able to immediately recognize flocking behavior on sight (Reynolds,

1987). The focus of this thesis is twofold: demonstrate a functional architecture for swarm

algorithm development and show safety of flight given an implementation of Reynolds’

flocking rules on multirotor UAVs. Later, an objective measurement of flight safety will

be attempted.

 One analysis of Reynolds’ original rules determines the rules as originally

described lead to fragmenting behavior rather than flocking behavior (Olfati-Saber, 2006).

Given random starting positions, the flock members tend to aggregate in small groups

without ever forming a single large swarm. A solution is given in the form of a navigation

correction: a point (which may or may not be mobile) towards which all flock members

should attempt to move, whilst still obeying the original rules of separation, alignment, and

cohesion. This thesis implements a hybrid solution where flock members use the geometric

center of all vehicles on the network to determine the cohesion point, rather than just the

geometric center of vehicles within a set radius.

 Reynolds’ rules have been tested in simulation for flock stability, and the specific

equations governing separation, alignment, and cohesion are indeed capable of governing

a stable flock. A stable flock is defined as one where all members have a common heading,

stay within some defined radius of the other members, and refrain from colliding with other

flock members. The potential fields governing Reynolds’ rules are successfully used in

both static and dynamic environments. The primary drawback to this paper is that it is

16

purely a simulation and operates under the assumption that each flock member has near-

perfect knowledge of all other flock members at all times (Tanner, Jadbabaie, & Pappas,

2003, parts I and II).

Command and Control (C2) Architectures

 Based on the previous subsection, the theoretical rules governing basic swarm

operation are sound and ready to be implemented in real vehicles. The information that

must be shared amongst all swarm members are the local position and velocity of each

member, so the next issue is how to pass that information in a complete and timely manner.

 There are two overarching methods of swarm control: centralized, and

decentralized, pictured below in Figure 5. Centralized control architectures rely upon

ground infrastructure, limiting the capability of the swarm by tying it to a local area and

increasing weight requirements (Bekmezci, Sahingoz, & Temel, 2013; Diamond,

Rutherford, & Taylor, 2009). Decentralized control permits the swarm to operate out of

range of ground infrastructure, and to pass data to or from any swarm member with an

external link to just one swarm member (Li et al., 2008). There is a third path which

combines these two methods, where one swarm member is designated the master which

provides direction to the remainder. An architecture like this has been tested with some

success, but at its lowest level each slave swarm member still must be able to communicate

position and velocity data with the master (Pilania, Mishra, Panda, & Mishra, 2009).

Therefore, a key building block of an independent swarm is a decentralized ad-hoc

network.

17

Figure 5. Centralized (a) vs Decentralized (b) Network

 Having established the need for an ad-hoc network to allow swarm members to

communicate amongst themselves, there are two types to choose from, displayed in Figure

6. The standard ad-hoc network assumes that each node is within communication range of

every other node – a single hop for every transmission. This is not necessarily the case

for a network of flying vehicles as they may be spaced over a broad area, have no hardline

connecting them, and may encounter terrain obstructions. Given these circumstances, a

mesh ad-hoc network, where nodes can utilize multiple hops to pass their data to other

nodes, is the preferred solution (Bekmezci et al., 2013; Karl, 2005; Kumar, 2002; Li, Ming;

Harris, John; Chen, Min; Mao, Shiwen; Xiao, Yang; Read, Walter; Prabhakaran, 2015; Li

et al., 2008).

 The Linux-based microcomputers used in previous successful multi-autonomous

vehicle applications (Toscano, 2017) do have basic ad-hoc capability when paired with a

Wi-Fi adapter but do not have mesh capability. Therefore, a layer-2 routing protocol is

needed to fill this gap. Two open-source protocols appear to meet this requirement:

18

open80211s and Better Approach To Mobile Ad-hoc Networking (BATMAN) Advanced

(Pojda, Wolff, Sbeiti, & Wietfeld, 2011; Shibing & Jianmei, 2016; Zafar & Khan, 2017).

Both have been successfully used in mobile mesh ad-hoc networks and are suitable for

UAV swarming applications (Pojda et al., 2011), although there are concerns about

BATMAN-Advanced scalability (Lüssing, 2013).

Figure 6. Ad-Hoc Network vs Mesh Ad-Hoc Network

 Routing provides a network connection between vehicles, but another layer is

required to pass useful data. The two common methods using Wi-Fi are TCP/IP or UDP

multicast. The first method, TCP, sends messages from one node to specified nodes on the

network, generating one message per node. Furthermore, it is a two-way link where receipt

of the message is confirmed, and the message contents are verified. The second method is

more efficient for a mesh ad-hoc network because only one message is sent out and passed

until all nodes have received it. The drawback is receipt is not confirmed, and messages

19

are not always received in order. Given that telemetry messages are only useful for a

second or two at best (depending on relative location accuracy desired) and are repeated

often, UDP multicast is the more efficient method to use and it also comes with unique

security benefits that can be implemented (Philips, Adrian N.; Mullins, Barry E.; Raines,

Richard A.; Baldwin, 2009). While there are Python modules available to send and receive

multicast messages, there is a packaged solution which is inherently more flexible. The

Lightweight Communications and Marshalling (LCM) library can pass different types of

data structures via UDP multicast, in different programming languages, making it

inherently more flexible. It has been applied to unmanned vehicles on land, air, and sea

(Huang, Olson, & Moore, 2010) and is packaged in a simple, easy-to-use format, making

it ideal for swarming applications.

Autonomous Control

 Autonomous control of aerial swarm members is a broad topic; three facets of

which will be addressed here. First, data requirements will be discussed. Then hardware

and software specific to each swarm member will be considered, followed by control of

the swarm as a single unit.

The common element to every swarm member regardless of the swarm’s purpose

is an information requirement for position and velocity of the other swarm members around

it. Methods to achieve this range from radio pulses with specialized receiver antennae

(Justh, EW; Krishnaprasad, 2002), to dedicated sensors (Mcclanahan, 2017), to

broadcasting telemetry (Gray, 2015; Toscano, 2017). Each method has its benefits and

drawbacks, but the critical difference which makes the last option most attractive to a

20

baseline architecture is that telemetry broadcast is independent of the data content and

mode of transmission (radio or free space optical for instance). Its modularity grants

flexibility, allowing other elements of the architecture to change (particularly the physical

configuration of the aircraft) without changing this one. For example, local position data

may be produced by vision-based sensors (Scaramuzza et al., 2014) or some other method

than Global Positioning System/Inertial Navigation System (GPS/INS).

 One of the drawbacks to telemetry-only swarm control is its dependency on each

vehicle’s sensors (GPS, INS, barometer, accelerometers) which in the case of small

multirotor vehicles with commercial-quality components amounts to ~2m error in the

horizontal plane and a little more on the vertical axis (Gray, 2015; Mcclanahan, 2017).

However, this can be rectified by using additional sensors for localized navigation (Wilson,

Ali, & Sukkarieh, 2015), or real-time kinematic (RTK) differential GPS solutions

(McCollum, 2017). There is also some latency between the autopilot processing the data

from its positional sensors and the receipt of that data by other swarm members. Methods

are available to reduce this issue (Woolley, Peterson, & Kresge, 2011) but are not

investigated further.

 At the hardware level, small UAVs require the use of an onboard autopilot to

maintain flight stability. Open-source autopilots, specifically the 3D Robotics Pixhawk,

have been used successfully in two-vehicle teams in a leader-follower arrangement (Gray,

2015; Toscano, 2017), with indications that it is suitable to provide control for three or

more vehicles in a swarm. These autopilots do not include the ability to execute specialized

scripts or communicate remotely to other autopilots, however this is addressed by the use

of a small companion computer – often a Raspberry Pi or Beaglebone Black (Toscano,

21

2017). Ardu-based autopilots can interface on a software level with these companion

computers through the open-source modules contained in DroneKit-Python, but physical

connections can be tricky (Toscano, 2017). Companion computers can then use virtually

any type of radio to transmit and receive data externally to the air vehicle. The proprietary

Wave Relay system has been shown to be effective (Gray, 2015; Toscano, 2017), but ad-

hoc Wi-Fi networks are also capable depending on the layer-2 protocol used (Bekmezci et

al., 2013; Zafar & Khan, 2017).

 Having addressed control issues for individual swarm members, it’s also important

to consider control of the swarm as an entity of its own. The small UAV flight release used

by AFIT currently requires a crew of three people per aircraft – an operator, safety pilot,

and observer. One of the goals of this thesis is to provide evidence of swarm safety of

flight in an effort reduce manpower required to operate a swarm of UAVs. The US Federal

Aviation Administration (FAA) notes no formal testing process has been developed for

swarming technology by any nationally-recognized organizations (Federal Aviation

Administration; Office of the Secretary of Transportation; Department of Transportation,

2016). The FAA is aware that swarming is a desirable technology for both civilian and

military use however, and is working to create rules allowing one pilot to control multiple

coordinated vehicles (Duncan, 2017). Research building off Reynolds’ and Olfati-Saber

suggests that simple manual swarm control can be achieved with just a single lead vehicle

which broadcasts its position and velocity as if part of the swarm but whose movements

are not restricted to Reynolds’ rules (Su, Wang, & Lin, 2007). Existing research is

theoretical; this thesis will demonstrate a functional swarm where one aircraft is controlled

22

manually as the leader, while the swarming follower vehicles attempt to match its velocity,

subject to Reynolds’ rules.

Combining Behavior Algorithms, C2 Architecture, and Autonomous Control

 There are two excellent examples implementing Reynolds’ rules in an actual drone

swarm that are available for study. The first was documented in 2011 and involved ten

fixed-wing aircraft (Hauert et al., 2011). As this thesis uses multirotor vehicles, there are

fewer constraints since the multirotor aircraft do not have to maintain forward velocity in

the body frame to stay aloft. The second example implemented Reynolds’ rules in

multirotor aircraft, with the additional ability to replace a strict cohesion rule with a

formation-cohesion rule (Vasarhelyi et al., 2014). Formations included a ring, grid, or line

as desired, and maneuvered the center of gravity of the swarm (and thus the swarm) while

still maintaining formation. In both examples, each swarm member was forced to maintain

a specific altitude to avoid collision, and all maneuvering per Reynolds’ rules was

conducted in the horizontal plane. This thesis will demonstrate a swarm of three multirotor

aircraft operating fully in three dimensions rather than just two.

Conclusion

 Based on available literature, elements of a UAV swarm architecture have been

theorized, simulated, and tested. In some cases, they have been assembled and tested as

whole system with nominal two-dimensional limitations. However, no comprehensive and

tested architecture for a scalable swarm of three or more air vehicles has been publicly

documented. This thesis will start to fill that gap and is intended to be a starting point for

real-world testing of mission-based swarming algorithms built on a common baseline.

23

III. Methodology

Chapter Overview

The purpose of this chapter is to describe a testable baseline architecture for a UAV

swarm of three or more vehicles and the methods used to test that architecture. First the

architecture is described, followed by the hardware and software implementation. Next,

the control algorithm is discussed along with software test techniques, and the chapter

concludes with the test and verification procedure for the UAV swarm.

Architecture

 This system architecture will be defined using views from the Department of

Defense Architecture Framework (DODAF). In keeping with best practices, the

architectural views utilized will be those sufficient and appropriate to describe the system.

 The following pair of operational concept graphics (OV-1) in Figures 7 and 8 depict

first a typical scenario used to test the architecture in this research, and second a

hypothetical scenario that this architecture would be able to achieve if the swarm had an

autonomous objective – which is only tested to a small extent in this research.

24

Figure 7. OV-1, Tested Swarm Configuration

Figure 8. OV-1, Notional Swarming Configuration

 The following pair of abbreviated use cases apply to the OV-1 from Figure 7. The

full use cases and definitions are provided in Appendix A. An activity diagram is also

provided below each use case. Note the behaviors associated with the activity diagrams

25

are assigned to generic vehicles; however, in the use cases they are specifically assigned to

multirotor aircraft.

 Use Case Example 1

Pre-Conditions: The X-8 multirotors are airborne in altitude hold mode, spaced
approximately 30-50 meters apart, at an altitude of 20-30 meters AGL.

Main Flow:

1. The non-lead safety pilots change the mode of their vehicles from altitude hold to
guided.

2. The non-lead X-8 multirotors fly autonomously towards the geometric center of the
swarm.

3. Once the X-8 multirotors are within 20 meters of each other, their motion changes as
the alignment vectors cancel out.

4. The vehicles slow as they approach the center and start to fly apart if they are too
close to any other vehicles.

5. This behavior is permitted to continue for a minute or two for sufficient data
collection.

Post-Conditions: The X-8 multirotor vehicles achieve a dynamic equilibrium near the
lead vehicle, continuously attempting to move towards the geometric center of the swarm,
then repelled by the proximity of other vehicles. Data is collected for a minute or two to
characterize the behavior.

Figure 9. Activity Diagram, Use Case 1

Use Case Example 2

Pre-Conditions: The X-8 multirotor vehicles have achieved a dynamic equilibrium near
the lead vehicle, continuously attempting to move towards the geometric center of the
swarm, then repelled by the proximity of other vehicles, and data has been collected.

26

Main Flow

1. The lead safety pilot maneuvers the lead X-8 multirotor away from the other aircraft.
2. The non-lead X-8 multirotor vehicles autonomously maneuver to follow the lead

vehicle.
3. The lead safety pilot maneuvers the lead X-8 multirotor in benign patterns – straight

lines or gentle arcs.
4. The non-lead X-8 multirotor vehicles maneuver autonomously in response.
5. This maneuvering is done for a minute or two for sufficient data collection.

Post-Conditions: The non-lead X-8 multirotor vehicles maneuver in response to the
manually-controlled lead vehicle, according to the Reynolds+ algorithm rules. Data is
collected for a minute or two to characterize the behavior.

Figure 10. Activity Diagram, Use Case 2

 Since the architectural vision and overview has been described, the architecture will

now be shown in greater detail. First, the OV-5b (Figure 11) maps operational activities

to the system components responsible for activities and documents how those activities

will flow during normal operations. Note that while each aircraft is capable of manual or

guided flight, tests during this research will always have at least one aircraft under manual

control.

27

Figure 11. Activity Diagram with allocated swim lanes

The next viewpoint (Table 2) is a fit-for-purpose view, useful in mapping the

architecture’s physical layers, and translating the operational activities (OV-5b) to

subsystem functions. This is similar to a SV-5b but provides more details. Function

descriptions are provided in Appendix B. Note a critical capability of the autopilot is it

must be able to accept velocity commands in a local frame of reference.

28

Table 2. Layer-Component-Function Table

Layer 1 Swarm System Components/Subsystems Objective

 Air Vehicle Swarm Accomplish Generic Mission
Fly

Navigate/Operate Safely
Ground Control Station
Global Positioning System
Safety Pilots

Layer 2 System Subsystem Functions
AV Swarm Air Vehicle Fly

Navigate Safely
Maneuver as a group

Safety Pilot Human Mode changes
Fly vehicle manually
Monitor AV behavior

Manual recovery as needed

Radio Control

GPS Space Vehicles Provide nav Signals
GCS Human Monitor autopilot telemetry

Laptop/PC
Radio Transceiver

Layer 3 Air Vehicle Multirotor aircraft Comm w/GCS
Receive nav signals
Comm w/each other
Fly autonomously

Fly manually
Receive safety pilot cmds

Strap-on guidance package

Layer 4 Strap-on
guidance
package

Companion Computer Comm w/other guidance packs
Get telemetry from aircraft

Send velocity cmds to aircraft
WiFi Adapter
Battery

Multirotor
aircraft

Frame Fly manually
Fly autonomously

Comm w/safety pilot radio
Comm w/GCS

Send telemetry to guidance pkg
Rcv vel cmds from guidance

pkg
Rcv GPS signals

Determine position

Motors
Props
Speed Controllers
Battery
Autopilot + GPS Receiver
Remote Ctrl Radio
GCS Radio
GPS Antenna

Layer 5 Autopilot +
GPS Receiver

 Rcv GPS signals
Determine position

Send telemetry to guidance pkg
Rcv vel cmds from guidance

pkg Send PWM signals to
motors Send/rcv signals - GCS
radio Send/rcv signals - safety

pilot

29

With the functions allocated to subsystems, the interfaces between those systems

can now be described in a pair of system interface views (SV-1). The first SV-1 (Figure

12) shows the interfaces at layers two and three (as described in Table 3), between the

UAV swarm itself and all external connections: the safety pilots, the ground control

stations (GCS), the Global Positioning System (GPS), and between the air vehicles. The

second SV-1 (figure 13) shows the interfaces at layers three and four: between the guidance

package and the air vehicle itself, and again between the air vehicles.

Figure 12. System Interface Description (SV-1), Layers 2-3

30

Figure 13. System Interface Description (SV-1), Layers 3 and 4

 The architecture has been sufficiently described through the above DODAF views

to implement it in hardware and software. Note that many of the views above contain

specific radio frequencies; these are not necessarily dictated by the architecture but due to

FCC restrictions they are bands open for the purposes assigned and are commonly used in

small UAV applications.

Hardware/Software Implementation

 Before discussing the hardware and software choices at length, it’s important to

discuss the values behind component selection for this research. The architecture described

previously allows for a great deal of flexibility in component selection. The availability of

institutional resources puts some limitations on components. Where choices were open to

virtually any available COTS or open source product, the specific components selected

were chosen for functionality, ease of implementation, flexibility, and low cost.

31

 Three X-8 multirotor aircraft (figure 14) were provided for research and test. Each

X-8 has eight rotors arranged in an X-pattern with one blade on the top and one on the

bottom at the end of each arm. These aircraft have been used previously in single and

multi-UAV tests and provide more than adequate performance up to 10 m/s horizontally

and 5 m/s vertically in winds up to 20 kph. The architecture and software used could just

as easily be used with any multirotor airframe. The only critical piece of hardware in this

setup is the 3D Robotics Pixhawk autopilot, which is capable of receiving velocity

commands in a North-East-Down (NED) frame. Not every autopilot, open-source or

otherwise, has this capability but it is required within the architecture. The X-8s each

include two radios: one 915 MHz radio for connecting to a GCS, and one 2.4 GHz radio

for manual control by the safety pilot.

Figure 14. X-8 Multirotor with Strap-on Guidance Package

32

Figure 15. Strap-on guidance package (battery location outlined)

The strap-on guidance package (Figure 15) consists of a Beaglebone Black

companion computer, an Alfa AWUS036NHA Wi-Fi adapter, a two-cell 2200 mAH

Lithium-Polymer (LiPo) battery, and a voltage regulator. An optional colored LED array

was also purchased to aid ground personnel in distinguishing each platform. This guidance

package is attached via hook-and-loop to the multirotor, and interfaces directly with the

Pixhawk autopilot through a custom serial cable. The serial cable connects the UART1

port on the Beaglebone Black to the Telem2 port on the Pixhawk. The block diagram in

Figure 16 shows the physical elements comprising the air vehicle, the various interfaces

and data links, and the information that flows between components.

33

Figure 16. Block Diagram

 Regarding the software, the Pixhawk autopilot is running APM: Copter version

3.4.6. The companion computer is running a Debian Operating System (OS) but any Linux

distribution will suffice. The connection to the Pixhawk from the companion computer is

made through DroneKit-Python, so all autonomy scripting is also written in Python.

BATMAN-Advanced is used to set up the mesh ad-hoc network using the Alfa Wi-Fi

adapters, and a script was written to automatically connect to the network upon powering

the companion computer. The Lightweight Communications and Marshalling (LCM)

library was chosen to facilitate UDP multicast over the network due to its flexible nature

and also for data collection as it contains native data-logging capability (Huang et al.,

2010).

34

Algorithm Development and Verification

 The autonomy algorithm and software verification method will be described next.

Although the software test environment was completed before the control algorithm

chronologically, the control algorithm will be described first and then the software test will

be addressed.

 Reynolds+ Rules

 As mentioned, Reynolds’ rules of separation, alignment, and cohesion provide a

foundation for swarming behavior. In a computer simulation, the velocity calculated by

the rules is simply added to the current position to provide the next position of the flock

member. On real aircraft, a desired velocity in the local NED frame is calculated during

one loop of the control cycle, and then that velocity is sent as a command to the autopilot,

which attempts to match it until another command is sent, or the first command expires.

For the Pixhawk, velocity commands expire after a maximum of one second, so the control

loop must be at a higher frequency. Additional factors come into play when implementing

these rules on small UAVs that aren’t present in simulation. In addition to separation

between vehicles, it is prudent to avoid ground collision as well, so a fourth rule was

adopted to enforce a minimum altitude (flight deck) using a potential field like the

separation rule. A fifth rule requiring aircraft to remain within a specified radius of the

GCS to retain ground control of the vehicle if necessary was considered but not

implemented in this research. The modified Reynolds rules are shown in Figure 17,

alongside the original rules. The combination of the original rules and the new ones are

coined “Reynolds+.”

35

Figure 17. Reynolds+ Rules

 The telemetry received from other aircraft is combined with the aircraft’s own data

pulled from the autopilot by the companion computer. As the aircraft’s own data is

retrieved in global coordinates, it is then translated into a common local tangent plane

(LTP) used by all aircraft in the swarm (see Figure 18 and Equations 1-3)(Drake, 2002).

From there it is simultaneously used in the Reynolds+ calculation and sent out to other

swarm members to use. The resulting velocity after all rules are accounted for is then

transmitted from the companion computer to the autopilot.

36

 𝑿𝑿 = (𝑵𝑵(𝝓𝝓) + 𝒉𝒉)𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝒀𝒀 = (𝑵𝑵(𝝓𝝓) + 𝒉𝒉)𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝑍𝑍 = (𝑁𝑁(𝜙𝜙)(1 − 𝑒𝑒2) + ℎ)𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙

(1)

where:

 X = axis from Earth’s center of mass to equator and prime meridian intersection
 Y = 90° counterclockwise (from north) offset from X-axis along the equator
 Z = axis from Earth’s center of mass to the north pole
 N = see Eqn. 2
 h = height above ellipsoid
 ϕ = latitude (geodetic)
 λ = longitude (geodetic)

 𝑵𝑵(𝝓𝝓) =
𝒂𝒂

√(𝟏𝟏 − 𝒆𝒆𝟐𝟐 𝐬𝐬𝐬𝐬𝐬𝐬𝟐𝟐 𝝓𝝓)
 (2)

where:

 a = semi-major axis
 e = ellipsoid first numerical eccentricity

�
𝒙𝒙
𝒚𝒚
𝒛𝒛
� = �

−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒆𝒆𝒓𝒓 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒆𝒆𝒓𝒓 𝟎𝟎
−𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒓𝒓𝒆𝒆𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒆𝒆𝒓𝒓 − 𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒓𝒓𝒆𝒆𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒆𝒆𝒓𝒓 𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒓𝒓𝒆𝒆𝒓𝒓
𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒓𝒓𝒆𝒆𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒆𝒆𝒓𝒓 𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒓𝒓𝒆𝒆𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒓𝒓𝒆𝒆𝒓𝒓 𝒄𝒄𝒄𝒄𝒄𝒄𝝓𝝓𝒓𝒓𝒆𝒆𝒓𝒓

� �
𝑿𝑿𝒗𝒗𝒆𝒆𝒉𝒉 − 𝑿𝑿𝒓𝒓𝒆𝒆𝒓𝒓
𝒀𝒀𝒗𝒗𝒆𝒆𝒉𝒉 − 𝒀𝒀𝒓𝒓𝒆𝒆𝒓𝒓
𝒁𝒁𝒗𝒗𝒆𝒆𝒉𝒉 − 𝒁𝒁𝒓𝒓𝒆𝒆𝒓𝒓

�
(3)

where:

 ϕref = reference point latitude (geodetic)
 λref = reference point longitude (geodetic)
 Xveh = vehicle X-coordinate (ECEF)

Yveh = vehicle Y-coordinate (ECEF)
Zveh = vehicle Z-coordinate (ECEF)
Xref = reference point X-coordinate (ECEF)
Yref = reference point Y-coordinate (ECEF)
Zref = reference point Z-coordinate (ECEF)
x = vehicle east-coordinate (LTP)
y = vehicle north-coordinate (LTP)
z = vehicle up-coordinate (LTP)

37

Figure 18. Global Frame to Local Tangent Plane Conversion

 Bucket Method for Velocity Calculations

All documented implementations of Reynolds’ rules use a weighted sum method to

calculate the desired velocity of each swarm member. That is, the target velocity for each

rule is multiplied by some factor depending on the desired importance of that rule, and the

resulting velocities are summed into the swarm member’s desired velocity for each control

loop. This has the potential to result in undesirable behavior because the velocity for a

lower-priority rule might grow high enough to overcome its low multiplier and result in a

collision. Instead, the author prioritized the rules and set a velocity magnitude limit, or

bucket. Reynolds proposed a similar system in his original paper but focused on

acceleration rather than a target velocity (Reynolds, 1987). Each rule’s magnitude is added

to the bucket in priority order, and once the bucket is “full,” the remaining rules are

discarded along with excess magnitude from the rule that filled the bucket. These two

38

methods are shown in Figure 19, and the bucket method is described in a graphic sequence.

Another benefit of the bucket method is rules can be added and discarded with ease instead

of having to recalculate a weighted system every time a change is made.

𝒖𝒖��⃗ 𝒋𝒋 = � 𝒘𝒘𝒓𝒓𝒖𝒖��⃗ 𝒓𝒓,𝒋𝒋

|𝒓𝒓𝒖𝒖𝒓𝒓𝒆𝒆𝒄𝒄|

𝒓𝒓=𝟏𝟏

(4)

where:

 ,r ju = velocity commanded by rth rule to the jth vehicle
 wr = weight applied to rth rule

Figure 19. Weighted-Sum Velocity vs Velocity Magnitude Bucket

 Rule Prioritization and Calculation

 The governing rules depicted in Figure 19 were prioritized to value safety of flight

over mission. Separation, minimum altitude, and communications range are all safety-

related, while alignment, cohesion, and mission execution are task-related. From there, the

39

rules were prioritized in order of most likely occurrence based on the test plan shown later

in this chapter. The air vehicles will all be operating within visual range of the safety pilots

and ground control for this research, so communications radius was given the lowest

priority and not actually implemented. Nominal flight altitude for all tests was designated

to be in the 20-30m range, so even if a swarm member were directly below a lead aircraft

or the swarm center, it would still be operating at an altitude of 10-20m. That allows time

for the safety pilot to recover the vehicle safely if needed. Therefore, inter-vehicle

collisions are the most likely safety issue with this research, so vehicle separation was given

the highest priority.

 Note that the equations as presented show some specific numerical values. These

values were selected by SITL test trial-and-error. A heuristic provided starting values:

plots of behavioral responses were sketched, with cohesion and separation becoming equal

at the desired separation radius, and a steeper slope for separation than cohesion. For

behaviors which only appear at a certain distance from something (another vehicle or the

ground), the magnitudes were started near-zero, and exponentially increased to provide a

smooth response. Over the course of testing the equations were changed to provide smooth

behavior as viewed in the SITL environment. They are not “optimized” for any specific

behavior patterns and can be adjusted to, for instance, provide swifter response to an

encroaching vehicle within the separation radius.

𝒖𝒖��⃗ 𝟏𝟏,𝒋𝒋 = � 𝒗𝒗��⃗ 𝒓𝒓,𝒋𝒋(

𝟏𝟏𝟎𝟎𝟎𝟎
𝒅𝒅𝒓𝒓,𝒋𝒋 + 𝟕𝟕

− 𝟓𝟓.𝟕𝟕)
|𝒄𝒄𝒄𝒄𝒊𝒊𝒓𝒓𝒖𝒖𝒅𝒅𝒆𝒆𝒓𝒓𝒄𝒄|

𝒓𝒓=𝟏𝟏

(5)

40

where:

 |intruders| = total number of vehicles within separation bubble radius
 �⃗�𝑣𝑟𝑟,𝑗𝑗 = unit vector from rth encroaching vehicle to the jth vehicle (NED frame)
 dr,j = distance (meters) from the rth encroaching vehicle to the jth vehicle

 𝑢𝑢�⃗ 2,𝑗𝑗 = �⃗�𝑣2(
1000

�ℎ𝑗𝑗 + 5�
2 − 5.7) (6)

where:

 �⃗�𝑣2 = [0 0 -1]
 hj = height of jth vehicle above ground (meters)

 𝑢𝑢�⃗ 4,𝑗𝑗 =
∑ 𝑣𝑣𝑟𝑟

|𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒ℎ|
𝑟𝑟=1
𝑠𝑠𝑢𝑢𝑛𝑛𝑛𝑛𝑒𝑒ℎ

 (7)

where:

 numVeh = number of vehicles within the designated alignment radius
 vr = velocity of rth vehicle within the alignment radius (m/s)

 𝑢𝑢�⃗ 5,𝑗𝑗 = �⃗�𝑣5,𝑗𝑗(
5𝑑𝑑5,𝑗𝑗

42
−

20
21

) (8)

where:

 �⃗�𝑣5,𝑗𝑗 = unit vector from jth vehicle to the geometric center of all vehicles (NED)
 d5,j = distance to the geometric center of all vehicles (meters)

Each rule generates a target velocity (m/s) for the aircraft, which in every case but

one is a function of distance from the air vehicle to a specific point. The only exception

is alignment, which is an averaged velocity of all nearby air vehicles. These rules were

implemented in up to three different ways: once for testing inside a caged environment,

once for testing in an unenclosed space with wide spacing (for safety of flight), and last

for testing unenclosed with narrow spacing (originally used for software testing). Each

41

rule also has limitations on when it comes into effect. Plots of rules 1, 2 and 4 as

implemented are shown in figures 20 and 21, and equations 5-8 show the velocity

calculations for rules 1, 2, 4, and 5 respectively; for more information see Appendix C.

Telemetry Transmission and Logging

 LCM is used to broadcast telemetry over the ad-hoc network, as well as the velocity

commands sent to each autopilot. Only the current position and velocity information is

needed for swarming capability, but both are recorded to provide redundant data records

of all maneuvers. Each aircraft records all the outbound and inbound LCM messages

automatically, so in theory each aircraft has a full record of the swarm’s movements.

Telemetry is also recorded at a higher rate on-board the Pixhawk autopilots.

Figure 20. Reynolds+ Rule Magnitude Plots, Wide Version

42

Figure 21. Reynolds+ Rule Magnitude Plots, Narrow Version

Software in the Loop (SITL) Testing

 SITL was used extensively to develop the Reynolds+ rules in a low-cost

environment not subject to weather or other environmental and logistics constraints. Since

the focus of this research is on a testable architecture platform, SITL setup and discussion

has been placed in Appendix D.

Metrics

 As mentioned in Chapter II, measuring the performance of a swarm of aircraft can

be a very subjective task. The primary method would be to evaluate the swarm’s

performance of some task – surveillance coverage, automated refueling, or target

engagement for instance. Since the purpose of this research was to develop a testable

architecture baseline, mission evaluation is not feasible. Instead, a proxy measure is used

43

to evaluate safety of flight, and fluctuation of the bucket method implementing Reynolds’

rules is explored.

 Given the primary risk during flight testing for this research is midair collision

between aircraft, frequency plots of the distance between aircraft are generated. The swarm

is flown in various patterns first with wider spacing and again with narrow spacing (see

Appendix C for governing equations). Distance frequency should peak near the start of

the separation radius, drop off sharply as spacing distance decreases, and decrease less

sharply as distance increases. This metric may be useful for describing safety of flight in

future swarm development as it can shape safety pilot expectations as to how close is “too

close,” when aircraft are operating in very close proximity.

 Results for evaluating the bucket method are less objective, but it is important to

see that all the rules are in fact being utilized appropriately, and that no rule is consuming

the majority of maneuvering capability when it should not be. Conversely, when a safety

rule is under maximum effect, the other rules should be ignored. For example, when

aircraft are in close proximity, it should be clear that the separation rule overrides all others

– but is quickly resolved so the aircraft can resume mission-related activity.

Test and Verification Procedure

Flight testing will take place at Wright-Patterson Air Force Base, Area B, near

Dayton, Ohio. An enclosed cage has been set up near AFIT for initial tests, to ensure the

system has basic functionality before open-air tests. The cage, seen in Figure 22, measures

45’ x 65’ x 40’ (LxWxH), is composed of nylon netting with two access panels. A segment

of the decommissioned runway is available for open-air testing, pictured in Figure 23.

44

Figure 22. AFIT Small UAV Enclosure

Figure 23. WPAFB Area B Small UAV Flight Operating Area

 Although the swarm architecture developed in this thesis only strictly requires four

personnel at most to fly three aircraft, eleven will be present to comply with the current

45

flight release during open-air tests. Tests in the cage enclosure do not require the full crew.

Four test scenarios have been devised to test the architecture, as well as familiarize ground

personnel with swarm operations. These scenarios will be flown first with only two aircraft

running the wide spacing described earlier in this document. Then the scenarios will be

repeated with three aircraft, also with wide spacing. If the safety pilots are comfortable

with the wide spacing and determine it may be safe to proceed with closer spacing, the

scenarios will be run twice more with the narrow spacing: once with two aircraft, and once

with three. If at any time ground personnel feel the aircraft are liable to collide, the aircraft

will be manually recovered immediately, and the safety pilots will determine if the test

should be attempted again or not.

 Each aircraft will have three personnel responsible for it: a ground control station

(GCS) monitoring telemetry from the autopilot, an observer, and a safety pilot. The first

two are extraneous for testing purposes but required for safety of flight. The safety pilots

play a more active role, described in the next paragraph. In addition to the aircraft crew

there is a primary and backup test director. Each scenario will follow a similar script.

The aircraft will be powered on, along with the strap-on guidance packages. Once

the guidance packages have connected to the network, the test director will start the

Reynolds+ scripting which will enforce swarm behavior in Guided mode. The aircraft will

take off under manual control of the safety pilots in Stabilize mode. They will be flown to

approximately 20m altitude and spaced 20-30m apart horizontally, and then switched into

Altitude Hold mode by the safety pilots. In Altitude Hold, the guidance packages will

begin exchanging telemetry with each other but will not be able to maneuver their aircraft.

The lead aircraft will remain in Altitude Hold, and the remaining one or two aircraft will

46

be switched into Guided mode by the safety pilots. Once in Guided mode, the follower

aircraft will follow the Reynolds+ rules as directed by their on-board script. If at any time

one or more aircraft need to be recovered, the responsible safety pilot(s) will place their

aircraft in Stabilize mode, which will immediately cut off the telemetry sharing with other

aircraft and end any commands issued by the guidance package. Mode behaviors are

shown in Table 3. Once each test scenario, or series of scenarios, is complete, the aircraft

will be recovered manually.

Table 3. Aircraft Mode Behavior Summary

The “lead” aircraft will be designated ahead of time, but the aircraft will all be

running the same script, so it does not strictly matter which particular vehicle it is. The

lead aircraft’s safety pilot will have a different configuration on their radio, however. The

manual mode switch has three positions. All aircraft will have Stabilize and Altitude Hold

modes available. The follower pilots will have Guided on the third position, and the lead

pilot will have Auto (waypoint-following).

47

Cage Testing

 Flight tests within the cage enclosure only require a handful of personnel: one safety

pilot per aircraft, plus one for ground support. No formal tests were originally planned for

this stage; it was intended for troubleshooting and system checkout before open-air tests.

However, due to environmental constraints the only useful data was from the final checkout

flight within the cage. Enclosed flights involved a series of tests, starting with placing one

swarm member on the ground, broadcasting with motors off, turning on an airborne swarm

member outside nominal equilibrium distance from the grounded aircraft, and looking for

appropriate behavior. Note the aircraft do not have to be airborne to broadcast telemetry,

they merely have to be turned on with a good GPS fix in Altitude Hold mode. Another test

included “dragging” or “pushing” a swarm member around the cage with a leader aircraft

(two vehicles airborne). The last flight included one swarm member on the ground, the

lead vehicle manually flown in an upper corner of the cage, and a third aircraft set to guided

mode on the opposite side of the enclosure. This list isn’t exhaustive; the purpose of cage

testing was to provide indications the Reynolds+ algorithm and the architecture as a whole

is functioning well enough to execute open-air tests.

Data collection was entirely on-board the aircraft through the Pixhawk telemetry

log and LCM’s innate data logging. The data had to be manually retrieved and decoded

post-flight, although a stationary ad-hoc node on the ground could be used to collect LCM

traffic. The X-8 multirotor aircraft in the given configuration were expected to have 15-

20 minutes of flight time.

48

Summary

Although open-air testing was planned, all data was collected in an enclosed

environment. One aircraft was designated the “leader” and the remaining two aircraft

“followers.” Data collection was conducted on-board: the Pixhawk autopilot stored

telemetry data, and the Beaglebone Black companion computer stored all LCM traffic sent

and received. Each aircraft retained a record of all LCM traffic plus its own telemetry as

recorded by the autopilot. The data will be analyzed in Chapter IV, with particular attention

to the separation distance as a frequency plot, and the distribution of each rule within the

velocity commands sent to the autopilot from the companion computer on the airborne

vehicle in guided mode.

49

IV. Analysis and Results

Chapter Overview

This chapter discusses the procedures and results of the testing methods described

in Chapter III. It evaluates the architecture performance in quantitative and qualitative

terms, and provides answers to investigative questions from Chapter I.

Test Scenario

 After powering on the autopilots and guidance packages, autonomous scripts were

started via a fourth node on the mesh ad-hoc network. The fourth node was connected to

each of the vehicles via secure shell (SSH) and was used to launch the autonomy software

and data logging in each of the three vehicles. This was done with a screen command to

reduce bandwidth between the fourth node and the three vehicles. With the autonomy

software started, the SSH connections were closed and control of the vehicles was entirely

in the hands of the safety pilots or the software when in guided mode.

 One aircraft (Vehicle 3) was placed on the ground, roughly near the center of the

enclosure, and set to altitude hold, allowing it to broadcast as a swarm member even though

it would remain stationary. The lead aircraft (Vehicle 1) was manually flown to the

northeast corner of the enclosure, as close to the roof netting as was deemed reasonably

safe given weather conditions and placed in altitude hold – also broadcasting as a swarm

member though still under manual control. The last aircraft (Vehicle 2) was manually

flown to the southern side of the enclosure, approximately centered between the east and

west sides, and halfway between the ground and roof. There it was placed in altitude hold

to begin processing data from the other two aircraft, then set to guided mode for

50

autonomous movement. The position data of all vehicles for the flight duration, as

recorded by the LCM log on-board Vehicle 2 is shown in Figure 24. The units for Figure

24 are in meters, measured from a predetermined reference point on the WPAFB Area B

runway in a local East-North-Up (ENU) frame.

Figure 24. Cage Flight Position Log

Limitations

 Vehicle 3 was stationary for the duration of the test, yet its LCM traffic (displayed

in Figure 24) shows movement, indicating some GPS errors are present. The cage

enclosure is located on top of a hill and immediately adjacent to a building of similar height.

Wind gusts are frequent, which produced barometric (and thus altitude) errors. The

building itself blocks some GPS signals, and creates multipath issues for others, so the

position accuracy is not as good as an open-air test away from structures.

51

 Approximately ten seconds after Vehicle 2 was set to guided mode, a gust of wind

caused Vehicle 1 to make an incorrect altitude adjustment and strike the roof of the

enclosure. Its erroneous position data was broadcast across the network, causing Vehicle

2 to respond as required by the onboard software, although not in a manner necessarily

desirable. The safety pilots recovered both airborne vehicles after 18.84 seconds of guided

behavior, and some attempts were made to continue testing but the environmental

conditions were deemed unsafe for further flight.

Based on the test performed, the expectation is Vehicle 2 will show it started further

from both vehicles, and moved to close the gap, finding a dynamic equilibrium point on a

line between both vehicles. Because the lead aircraft is flying and not truly stationary, the

distance between Vehicles 2 and 1 should exhibit higher variation than between Vehicles

2 and 3. The distance from Vehicle 2 to Vehicle 1 should also be smaller than the distance

to Vehicle 3 because the second Reynolds+ rule introduced (flight deck) should prevent it

from moving too close to the ground. If cohesion towards the geometric center of the

swarm would move Vehicle 2 too far below the flight deck, then the velocity commands

should reflect rule 1 (if applicable) and rule 2 filling the velocity bucket and preventing the

remaining rules from influencing the vehicle’s motion.

52

Quantitative Results

The spacing for the duration of the flight from Vehicle 2 (flying autonomously) to

the other two vehicles in the swarm is shown in Figure 25 and summarized in Table 4.

Start time at 21.81 seconds indicates when Vehicle 2’s mode was changed to Altitude Hold;

0.35 seconds later it was changed to Guided and began automated movement. Summary

computations only encompass the 39.91 seconds of flight during which Vehicle 2 was

flying autonomously, although position data for all vehicles was collected for 58.03

seconds, and the two non-autonomous vehicles for 79.84 seconds (inclusive).

Table 4. Summary Statistics

Vehicle 2
to: Distance (meters)
 Status Mean StdDev Range
Vehicle 1 Stationary/Flying 8.1199 2.0094 7.3089
Vehicle 3 Stationary/Grounded 8.4525 1.4349 5.5579

The summary statistics show what was expected: the mean distance from the

autonomous vehicle to the lead vehicle was smaller than to the stationary vehicle, and the

standard deviation higher due to the lead vehicle’s movement. Also visible in Figure 25

the two spacing measures begin diverged for the first ~20 seconds of autonomous flight

and roughly converge in the last 20 seconds, demonstrating that a dynamic equilibrium has

been achieved, as intended and as predicted by SITL testing. It would not be appropriate

to compare the spacing distance to the separation radius as originally desired, because the

nominal equilibrium point falls outside that distance from either aircraft. Figure 26 was

expected to show a cluster of events near the equilibrium distances (9 to 11 meters) but due

to the relatively short collection time this phenomenon is not readily observed.

53

Figure 25. Distance from Vehicle 2 (Guided)

Figure 26. Distance Frequency Plot

54

The velocity command magnitudes sent to Vehicle 2, broken out by magnitude, are

shown in Figure 27. This plot shows the velocity commands are doing exactly what they

are supposed to do. The commands do not exceed 2 m/s (reduced from 5 m/s for safety

purposes in an enclosed environment), although they can be lower. Higher-priority rules

can prevent lower-priority rules from contributing, as seen from ~23 seconds to ~31

seconds where Vehicle 2 drifted below the 4m flight deck and was forced back above by

Rule 2. Near 20 seconds into the guided commands (~40 seconds after the first logged

LCM message), Figure 25 shows Vehicle 2 moving within 5 meters of Vehicle 1 which

should trigger the separation rule (this was also reduced from 10-meter spacing for

enclosed flight), and input from Rule 1 is shown in Figure 27 at that time.

Figure 27. Velocity Command Magnitudes by R+ Rule

55

 Also of note in Figure 27 is the sudden drop in Rule 3 (Alignment) contribution

around 42 seconds into collection. This likely indicates when wind gusting and/or GPS

errors began to cause Vehicle 1 to broadcast position changes with no accompanying

velocity information. This sort of event was not replicated in SITL because the virtual

sensors in the software environment are not subject to error – the velocity data would have

been broadcast proportional to the change in position. Ultimately, based on the data

collected, the automated vehicle responded as intended and as expected.

Qualitative Results

 This section will evaluate the tested architecture’s performance from a qualitative

standpoint. Looking back at the supervisor-subordinate roles, the architecture was as

flexible as intended. The safety pilots, although ultimately able to seize control of any of

the vehicles at any time, were able to change the roles of the individual aircraft from sub-

supervisor to subordinate with the “flick of a switch.” The aircraft immediately assumed

the assigned roles. The aircraft were all in a subordinate role on takeoff, and both the lead

and stationary aircraft served as supervisors to the autonomous aircraft. Once the

autonomous aircraft was changed to Guided mode, it became the subordinate of the other

two aircraft and its movement subject to their broadcast position and velocity data. The

lead aircraft served as a sub-supervisor as it was still subordinate to safety pilot manual

control, but otherwise supervised the movement of the autonomous aircraft. The stationary

aircraft also served as a sub-supervisor as its movement was restricted to a point on the

ground, but in an unenclosed flight test would have served as a peer to the autonomous

56

aircraft since it too would have been flying autonomously. The aircraft were all capable of

role changes with a single switch, which was an intended result of this research.

 Based on the test performed, the autonomous aircraft was expected to fly towards

the geometric center of all three aircraft, which would have shifted proportional to the

aircrafts’ movement. The autonomous aircraft was expected to settle directly between the

lead aircraft’s nominal position and the stationary aircraft, with some small oscillations due

to broadcast position and sensor errors, and the slight movement of the lead aircraft. The

autonomous aircraft did exactly what was expected: it flew directly to a point

approximately halfway between the other two aircraft, with some adjustment closer to the

lead vehicle so as not to stay below the designated flight deck.

 The guidance packages connected to the ad-hoc network seamlessly on startup,

with an estimated 1-2-minute delay. Earlier tests resulted in communications back-log and

an unresponsive system, so the position/velocity broadcast rate and the velocity command

generation rate were reduced from ~20 Hz to approximately 10 Hz. This reduction,

combined with starting the software in screens separate from the SSH terminals used to

start the software, yielded a smooth system launch with no observed communication delays

or dropouts due to flooded channels. The safety pilots observed that the broadcast and

command rate could probably be reduced to 1-2Hz with no change in performance, based

on their own experience and reaction times. Safety pilot observations of the autonomous

behavior itself were that it moved at a rate consistent with their capability to recover from

a mishap and did not appear to be in danger of allowing any collision. Wind gusts and

altitude errors were of higher concern.

57

Analysis Summary

 Although only one aircraft was flown autonomously, and one aircraft was

stationary on the ground rather than flying, all three aircraft simultaneously broadcasted

and received their position and velocity data during flight test. This was demonstrated at

a transmission rate suitable for flying at velocities up to 2m/s and with a separation radius

of 5 meters. Safety pilot observations suggest the transmission rate of position/velocity

information could be lowered by one order of magnitude, which would allow for more

aircraft to transmit (compared to the original rate) and/or transmission of additional sensor

data. The Reynolds+ rules functioned properly, guiding the autonomous aircraft to a

position of dynamic equilibrium. The velocity bucket method of rule prioritization also

functioned as intended.

Chapter Summary

In this chapter, procedures and results of the test plan described in Chapter II were

explored. Changes from the original design were discussed. Chapter V will provide

concluding remarks, answers to the investigative questions from Chapter I, and

recommendations for future research.

58

V. Conclusions and Recommendations

Chapter Overview

This chapter presents conclusions about the architecture design and the architecture

as tested. Investigative questions from Chapter I are answered, and the significance of this

research along with recommendations for future work are described.

Conclusions of Research

The goal of this research was to create a testable architecture for a swarm of multi-

rotor aircraft to cooperatively navigate, with or without guidance from outside the swarm.

The swarm should consist of at least three aircraft, be scalable to include more, and at a

minimum share position and velocity data to enable close-proximity flight up to navigation

instrumentation error without collision. The communication segment of the architecture

should also be able to accommodate sharing of sensor data in future iterations. Although

environmental conditions did not permit a full open-air flight test, such data as could be

collected in an enclosed flight suggest this research was successful.

Investigative Questions Answered

 What is one architecture that supports collaborative communication between three

or more multirotor air vehicles that can be scaled to include more?

 The architecture developed by this research can execute autonomous missions

through collaborative communication and can be scaled to include more aircraft and sensor

payloads. It was successfully tested at a command execution and data transmit/receive rate

of 10Hz with three aircraft. The primary components are any multirotor aircraft whose

autopilot can receive velocity commands in a local NED (or ENU) frame, a companion

59

computer, and a Wi-Fi adapter set up to connect to a mesh ad-hoc network. The specific

missions are not prescribed; its very purpose is to be a baseline from which many kinds of

missions can be tested by adding components and software to the architecture.

 The architecture can best be described as a layered software pattern with four

layers, shown in Figure X. These are: the layer 1-2 networking (in this case the mesh ad-

hoc network), the messaging layer which shares telemetry and other data, the autonomy

layer governing behavior and storing data, and the vehicle abstraction layer which controls

the vehicle hardware. This layered architecture provides flexibility in implementation:

each layer is modular and not tied to any specific hardware or software item. The layers

work in conjunction to perceive the environment, determine a course of action, and execute

the action.

Figure 28. Swarm Architecture

60

 What is the distribution of separation distances between vehicles implementing a

version of Reynolds’ flocking rules and how does it change with different parameter

settings and flight patterns?

 This question is partially answered from the cage test of the architecture. The

vehicles do establish a dynamic equilibrium when two of the vehicles are stationary or

nearly-stationary, where the third vehicle is driven by the governing rules to a stable

location between the other two and maintains its position to within the error bounds of its

navigational sensors.

 What is the contribution of velocity commands by rule using a prioritized velocity

bucket instead of a more traditional weighted-rule method?

 This architecture’s implementation and test of the velocity magnitude bucket

frequently led to “overflow” of the bucket, where the desired magnitude was greater than

the limit, so the rules were frequently saturated. This is likely due to the low velocity limit

of 2m/s enforced in the enclosed cage, and might be different in an open-air test with a

higher limit of 5m/s. The lower-priority rules governed aircraft behavior most of the time.

The higher-priority rules were enforced when needed, with a swift enough response to

permit the lower-priority rules to resume governing autonomous behavior when ground-

collision or vehicle-collision avoidance rules were no longer in activation radius.

Significance of Research

This is the first complete architectural description of a multi-rotor aircraft swarm

that can be built with COTS components and OSS coding. It’s been demonstrated to work

by both simulation and real-world flight. It also has room to expand to include more than

61

three aircraft in the swarm and can leverage LCM messaging flexibility to pass data from

sensors added to one or more aircraft. The behavior patterns of the aircraft can be modified

with a few lines of code to incorporate formation flight, or flight patterns in reaction to

sensor data. This will provide time-saving value for future real-world tests of swarming

algorithms and utilities.

Recommendations for Action

This architecture should be tested in various flight patterns including: leader-

following to ensure movement of the swarm as a single unit, leader-chasing to ensure

collision-avoidance for safety-of-flight purposes, and leader-waypoint-following to

demonstrate swarm independence of ground control. The software should be improved by

modularizing its components, especially the Reynolds+ rule computations, to enable

addition of further rules, and/or removal of existing rules as needed.

Recommendations for Future Research

Future research should continue along several fronts. First, the full capabilities of

the architecture should be investigated to determine how many aircraft can be part of the

swarm before communications become degraded. If sensors are added and that data is

shared, it will also consume bandwidth and reduce the maximum number of permissible

vehicles. The trade space between command execution rate, data transmission rate, and

number of aircraft/sensors should be explored. It may be possible to accomplish this

research with partial hardware-in-the-loop (HITL) testing, where ten or twenty guidance

packages are each connected to a simulated autopilot rather than real aircraft. This would

permit bench-test of the network and messaging limitations.

62

The specific equations governing the Reynolds+ rules should also be investigated

further because they can probably be tuned to provide smoother control, faster

convergence, and fewer oscillations. This might also be feasible in SITL because wind

gusting and GPS errors can be injected into the simulation, and then those results compared

to real-world testing. The relationship between the constants developed in this research for

the Reynolds+ rules and settling time / overshoot of swarm equilibrium in various flight

modes should be described. Furthermore, an empirical comparison of the weighted-sum

versus the velocity magnitude bucket methods should be performed on real hardware.

This swarming architecture only applies to multirotor aircraft due to their ability to

rapidly accelerate in any direction, momentum notwithstanding. Some of this research

should be applied to fixed-wing aircraft swarms. The velocity magnitude bucket method

proved effective and could be integrated into a fixed-wing swarm, where the velocity

directions are limited to a cone in front of the aircraft’s body frame, and the size and shape

of that cone depending on the aircraft’s maneuvering capabilities.

Lastly, and perhaps most important, the architecture should be used to test

swarming algorithms (such as ISR search patterns) that have heretofore only been tested in

simulation or have been implemented with only one vehicle. This architecture provides

the baseline and can be easily modified for different rules governing autonomous swarming

behavior. The Reynolds+ rules provide a starting point for basic maneuvers and safety-of-

flight and should be built upon to provide real-world utility.

63

Bibliography

ArduPilot. (2016). SITL Architecture. Retrieved from http://ardupilot.org/dev/docs/sitl-
simulator-software-in-the-loop.html

Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying Ad-Hoc Networks (FANETs):
A survey. Ad Hoc Networks, 11(3), 1254–1270.
https://doi.org/10.1016/j.adhoc.2012.12.004

Burns, B. S. (2007). Autonomous Unmanned Aerial Vehicle Rendezvous for Automated
Aerial Refueling, MS Thesis, Air Force Institute of Technology.

Crouch, T. (2009). Lighter than air : an illustrated history of balloons and airships.
Johns Hopkins University Press, Baltimore, MD.

Cummings, M., Bruni, S., Mercier, S., & Mitchell, P. (2007). Automation architecture for
single operator, multiple UAV command and control. The International C2 Journal,
1, 1–24. https://doi.org/10.1017/CBO9781107415324.004

Diamond, Theodore T., Rutherford, Adam L., Taylor, J. B. (2009). Cooperative
Unmanned Aerial Surveillance Control System Architecture, MS Thesis, Air Force
Institute of Technology.

DOD. (2014). Command and Control of Joint Air Operations. US Joint Publication 3-30.

Drake, S. P. (2002). Converting GPS Coordinates (φλh) to Navigation Coordinates
(ENU), Technical Report, DSTO-TN-0432, DSTO Electronics and Surveillance
Research Laboratory, Australia.

Duncan, J. (2017). Step by Step. FAA Safety Briefing, (June).

Enrica. (2016). Reynolds Flocking Rules. Retrieved from http://enrica.xyz/wp-
content/uploads/2016/03/Human-Particle-System-04.png

Fahrney, D. S. (1980, December). The Birth of Guided Missiles. US Naval Institute
Proceedings, vol. 106, no. 12, pp. 54-58.

Feddema, John T; Robinett, R. D., & Byrne, R. H. (2004). Military Airborne and
Maritime Application for Cooperative Behaviors, (September), 1–49.

Federal Aviation Administration; Office of the Secretary of Transportation; Department
of Transportation. (2016). Operation and Certification of Small Unmanned Aircraft

64

Systems. 14 CFR Parts 21, 43, 61, 91, 101, 107, 119, 133, and 183 [Docket No.:
FAA-2015-0150; Amdt. Nos. 21-99, 43-48, 61-137, 91-343, 101-9, 107-1, 119-18,
133-15, and 183-16], 1–624. Retrieved from
https://www.faa.gov/uas/media/RIN_2120-AJ60_Clean_Signed.pdf

Gray, J. (2015). Design and Implementation of a Unified Command and Control
Architecture for Multiple Cooperative Unmanned Vehicles Utilizing Commercial
Off The Shelf Components, MS Thesis, Air Force Institute of Technology.

Hambling, D. (2016). US Navy Plans to Fly First Drone Swarm This Summer.
DefenseTech, (January).

Hardy, S. L. (2015). Implementing Cooperative Behavior & Control Using Open Source
Technology Across Heterogeneous Vehicles, MS Thesis, Air Force Institute of
Technology.

Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J. C., & Floreano, D.
(2011). Reynolds flocking in reality with fixed-wing robots: Communication range
vs. maximum turning rate. IEEE International Conference on Intelligent Robots and
Systems, 5015–5020. https://doi.org/10.1109/IROS.2011.6048729

Howard, C. (2013). UAV command , control & communications. Military & Aerospace
Electronics, 24(7), 1–22. Retrieved from
http://www.militaryaerospace.com/articles/print/volume-24/issue-7/special-
report/uav-command-control-communications.html

Huang, A. S., Olson, E., & Moore, D. C. (2010). LCM: Lightweight Communications
and Marshalling. IEEE/RSJ 2010 International Conference on Intelligent Robots
and Systems, IROS 2010 - Conference Proceedings, (Lcm), 4057–4062.
https://doi.org/10.1109/IROS.2010.5649358

Justh, EW; Krishnaprasad, P. (2002). A Simple Control Law for UAV Formation Flying.
Engineering, Maryland Univ College Park Inst for Systems Research, pp. 4-8.

Kaiser, J. N. (2014). Effects of Dynamically Weighting Autonomous Rules in an
Unmanned Aircraft System (UAS) Flocking Model, MS Thesis, Air Force Institute
of Technology.

Karl, H. (2005). Ad hoc and Sensor Networks Chapter 3 : Network architecture,
Computer Networks Group, Universität Paderborn, Germany.

Kumar, P. R. (2002). Ad Hoc Wireless Networks : Analysis , Protocols , Architecture and

65

Towards Convergence, 1653, 217–244.

Li, Ming; Harris, John; Chen, Min; Mao, Shiwen; Xiao, Yang; Read, Walter;
Prabhakaran, B. (2015). Architecture and protocol design for a pervasive robot
swarm communication networks. Wireless Communications and Mobile Computing,
(February 2015), 421–430. https://doi.org/10.1002/wcm

Li, M., Chen, M., Lu, K., Mao, S., Zhu, H., & Prabhakaran, B. (2008). Robot swarm
communication networks: Architectures, protocols, and applications. 3rd
International Conference on Communications and Networking in China, ChinaCom
2008, 162–166. https://doi.org/10.1109/CHINACOM.2008.4684993

Lockheed-Martin. (2017). K-MAX. Retrieved from
https://lockheedmartin.com/us/products/kmax.html

Lüssing, L. (2013). batman-adv scalability Layer 2 Mesh Networks - Myths and Risks,
(September).

Marsh, N. (2014). Defining the Scope of Autonomy Issues for the Campaign to Stop
Killer Robots. PRIO Policy Brief, 4.

Mcclanahan, R. L. (2017). Improving Unmanned Aerial Vehicle Formation Flight And
Swarm Cohesion By Using Commercial Off The Shelf Sonar Sensors, MS Thesis,
Air Force Institute of Technology.

McCollum, B. T. (2017). Analyzing Gps Accuracy Through The Implementation Of
Low-Cost Cots Real-Time Kinematic Gps Receivers In Unmanned Aerial Systems,
MS Thesis, Air Force Institute of Technology.

McDaid; Oliver; Strong; Israel. (2002). Remote Piloted Aerial Vehicles: An Anthology.
Centre for Telecommunications and Information Engineering, Monash University.,
1–17. Retrieved from http://www.ctie.monash.edu.au/

Newcome, L. R. (2004). Unmanned Aviation: A Brief History of Unmanned Aerial
Vehicles. American Institute of Aeronautics and Astronautics, Inc., Reston, VA, p.
133 & 138

Norris, G. (2016). Auto-GCAS Saves Unconscious F-16 Pilot—Declassified USAF
Footage. Aviation Week, (September), 1–13.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamics systems: Algorithms and
theory. IEEE Trans. Autom. Control, 51(3), 401–420.

66

Portuguese Air Force, (n.d.). Bartolomeu Lourenco de Gusmao, 1–4. Retrieved from
http://earlyaviators.com/egusmao.htm

Philips, Adrian N.; Mullins, Barry E.; Raines, Richard A.; Baldwin, R. O. (2009). A
secure group communication architecture for autonomous unmanned aerial vehicles.
Security and Communication Networks, 2, 55–69.

Pilania, V. K., Mishra, S., Panda, S., & Mishra, A. (2009). A novel approach to swarm
bot architecture. Proceedings - 2009 International Asia Conference on Informatics
in Control, Automation, and Robotics, CAR 2009, 418–422.
https://doi.org/10.1109/CAR.2009.50

Pojda, J., Wolff, A., Sbeiti, M., & Wietfeld, C. (2011). Performance analysis of mesh
routing protocols for UAV swarming applications. Proceedings of the International
Symposium on Wireless Communication Systems, 317–321.
https://doi.org/10.1109/ISWCS.2011.6125375

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH Computer Graphics, 21(4), 25–34. https://doi.org/10.1145/37402.37406

Rogers, S. (AFRL/RY). (2011). Autonomy, Artificial Intelligence and Human Machine
Teaming – Frequently Asked Questions, (June), 3–5.

Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., & Kumar, V. (2016).
Swarm Distribution and Deployment for Cooperative Surveillance by Micro-Aerial
Vehicles. Journal of Intelligent and Robotic Systems: Theory and Applications,
84(1–4), 469–492. https://doi.org/10.1007/s10846-016-0338-z

Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E.,
Martinelli, A., … Weiss, S. (2014). Vision-Controlled Micro Flying Robots. IEEE
Robotics & Automation Magazine, (September), 26–40.
https://doi.org/10.1109/MRA.2014.2322295

Scharre, P. (2015). Between a Roomba and a Terminator: What is Autonomy? - War on
the Rocks. War on the Rocks. Retrieved from
https://warontherocks.com/2015/02/between-a-roomba-and-a-terminator-what-is-
autonomy/

Shibing, Z., & Jianmei, D. (2016). Survey of Media Access Control (MAC) and Routing
Technologies of WiFi-MESH wireless Network. International Conference on
Computer and Information Technology Application (ICCITA 2016), (Iccita), 74–79.

67

Su, H., Wang, X., & Lin, Z. (2007). Flocking of multi-agents with a virtual leader part II:
With a virtual leader of varying velocity. Proceedings of the IEEE Conference on
Decision and Control, 54(2), 1429–1434.
https://doi.org/10.1109/CDC.2007.4434067

Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents. I.
Fixed topology. 42nd IEEE International Conference on Decision and Control
(IEEE Cat. No.03CH37475), 2(December 2003), 2010–2015.
https://doi.org/10.1109/CDC.2003.1272910

Toscano, L. (2017). Effectiveness of Inter-Vehicle Communications and On-Board
Processing for Close Unmanned Autonomous Vehicle Flight Formations, MS
Thesis, Air Force Institute of Technology.

USAF, “Air Combat Command.” (2015a). MQ-1B Predator. Retrieved December 8,
2017, from http://www.af.mil/About-Us/Fact-Sheets/Display/Article/104469/mq-1b-
predator/

USAF, “Air Combat Command.” (2015b). MQ-9 Reaper. Retrieved December 8, 2017,
from http://www.af.mil/About-Us/Fact-Sheets/Display/Article/104470/mq-9-reaper/

USJFCOM J9, (2002). Swarming Entities Roadmap, resulting from U.S. Joint Forces
Command Joint Experimentation (J9) Swarming Conference, November 4-8, 2002.

Vasarhelyi, G., Viragh, C., Somorjai, G., Tarcai, N., Szorenyi, T., Nepusz, T., & Vicsek,
T. (2014). Outdoor flocking and formation flight with autonomous aerial robots BT -
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2014, September 14, 2014 - September 18, 2014. arXiv Preprint arXiv:1402.3588,
(Iros), 3866–3873. https://doi.org/10.1109/IROS.2014.6943105

Wilson, D. B., Ali, H. G., & Sukkarieh, S. (2015). Guidance and Navigation for UAV
Airborne Docking. Robotics: Science and Systems, 1–9.
https://doi.org/10.13140/RG.2.1.1496.8162

Woolley, B. G., Peterson, G. L., & Kresge, J. T. (2011). Real-time behavior-based robot
control. Autonomous Robots, 30(3), 233–242. https://doi.org/10.1007/s10514-010-
9215-y

Zafar, W., & Khan, B. M. (2017). A reliable, delay bounded and less complex
communication protocol for multicluster FANETs. Digital Communications and
Networks, 3(1), 30–38. https://doi.org/10.1016/j.dcan.2016.06.001

68

Appendix A – Use Cases

Definitions

Safety Pilot: There is one safety pilot responsible for each X-8 multirotor aircraft. The

safety pilots are there to ensure safe operation of the vehicles. If necessary, the safety

pilot will take manual control of the vehicle by placing it into altitude hold or stabilize,

and then maneuver the vehicle to prevent collision or other undesirable behavior. There

are two types of safety pilot: the normal safety pilots act as described above. The lead

safety pilot has manual control of the lead X-8 multirotor for most test points and can use

it to influence the position of the swarm.

Observer: There is one observer responsible for each X-8 multirotor aircraft. If an

observer believes an unsafe or undesirable action is going to occur, it is their

responsibility to notify the team swiftly and briefly.

X-8 Multirotor: The X-8 multirotor aircraft compose the swarm vehicles for this thesis.

There are two or three in the air depending on the test points being flown. One of the

vehicles is the nominal leader, broadcasting as part of the swarm but otherwise under

manual control and does not behave autonomously. The remaining one or two vehicles

broadcast as swarm members and are controlled autonomously by the Reynolds+

algorithm rules when in guided mode.

GPS: The primary navigation system for the X-8 multirotors, using GPS satellites to

determine position and timing.

GCS: There is one ground control station for each X-8 multirotor aircraft. The ground

control stations’ responsibility is to monitor the telemetry feed off the Pixhawk

69

autopilots. The GCS only interacts with the lead aircraft during one test point where the

lead vehicle flies a series of waypoints instead of being controlled manually.

Use Case Example 1

Primary Actors

 Non-lead X-8 Multirotors, Non-lead Safety Pilots

Secondary Actors

 GPS, GCS, Observers, Lead Safety Pilot, Lead X-8

Pre-Conditions

 The X-8 multirotors are airborne in altitude hold mode, spaced approximately 30-

50 meters apart, at an altitude of 20-30 meters AGL.

Main Flow

6. The non-lead safety pilots change the mode of their vehicles from altitude hold to
guided.

7. The non-lead X-8 multirotors fly autonomously towards the geometric center of the
swarm.

8. Once the X-8 multirotors are within 20 meters of each other, their motion changes as
the alignment vectors cancel out.

9. The vehicles slow as they approach the center and start to fly apart if they are too
close to any other vehicles.

10. This behavior is permitted to continue for a minute or two for sufficient data
collection.

Alternative Flow

 At any time:

a. A safety pilot overrides automated control.

At any time:

a. A non-lead X-8 multirotor drops below 15m altitude.
b. An additional Reynolds+ rule attempts to elevate the vehicle back above 15m

AGL.

At any time:

70

a. A non-lead X-8 multirotor drops below 5m altitude while in guided mode.
b. The vehicle ceases autonomous behavior and acts as if in position hold mode.

Post-Conditions

 The X-8 multirotor vehicles achieve a dynamic equilibrium near the lead vehicle,

continuously attempting to move towards the geometric center of the swarm, then

repelled by the proximity of other vehicles. Data is collected for a minute or two to

characterize the behavior.

Use Case Example 2

Primary Actors

 X-8 Multirotors, Lead Safety Pilot

Secondary Actors

 GPS, GCS, Observers, Normal Safety Pilots

Pre-Conditions

 The X-8 multirotor vehicles have achieved a dynamic equilibrium near the lead

vehicle, continuously attempting to move towards the geometric center of the swarm,

then repelled by the proximity of other vehicles, and data has been collected.

Main Flow

6. The lead safety pilot maneuvers the lead X-8 multirotor away from the other aircraft.
7. The non-lead X-8 multirotor vehicles autonomously maneuver to follow the lead

vehicle.
8. The lead safety pilot maneuvers the lead X-8 multirotor in benign patterns – straight

lines or gentle arcs.
9. The non-lead X-8 multirotor vehicles maneuver autonomously in response.
10. This maneuvering is done for a minute or two for sufficient data collection.

Alternative Flow

 At any time:

b. A safety pilot overrides automated control.

71

At any time:

a. A non-lead X-8 multirotor drops below 15m altitude.
b. An additional Reynolds+ rule attempts to elevate the vehicle back above 15m

AGL.

At any time:

a. A non-lead X-8 multirotor drops below 5m altitude while in guided mode.
b. The vehicle ceases autonomous behavior and acts as if in position hold mode.

Post-Conditions

 The non-lead X-8 multirotor vehicles maneuver in response to the manually-

controlled lead vehicle, according to the Reynolds+ algorithm rules. Data is collected for

a minute or two to characterize the behavior.

Appendix B – Architectural Function Descriptions

72

Function Element Input(s) Output(s)
Receive GPS signals Pixhawk + GPS Receiver L1/L2 PRN signals Pseudorange to SV

Determine position Pixhawk + GPS Receiver Pseudorange to 4+ SV's
Lat, Long, Altitude,
Time

Send telemetry to guidance pkg Pixhawk + GPS Receiver Position, velocity Position, velocity
Rcv velocity cmds from guidance pkg Pixhawk + GPS Receiver NED velocity, duration Execute command
Send PWM signals to motors Pixhawk + GPS Receiver Desired velocity PWM signal
Send/rcv GCS radio signals Pixhawk + GPS Receiver - Telemetry

Send/rcv safety pilot radio signals Pixhawk + GPS Receiver
Manual commands,
mode changes

Fly manually X-8 Multirotor Manual commands Fly as commanded
Fly autonomously X-8 Multirotor Waypoint list Fly waypoints

Communicate w/safety pilot X-8 Multirotor
Manual commands,
mode change -

Communicate w/GCS X-8 Multirotor Waypoint list Telemetry

Communicate w/other guidance pkgs Strap-on guidance pkg
LTP position, NED
velocity

LTP position, NED
velocity

Get telemetry from X-8 Strap-on guidance pkg
Global position, NED
velocity -

Send velocity commands to X-8 Strap-on guidance pkg
LTP positions, NED
velocities NED velocity, duration

Monitor autopilot telemetry GCS Telemetry -
Provide navigation signals GPS - L1/L2 PRN signals
Initiate mode change Safety Pilot - Mode change
Fly vehicle manually Safety Pilot - Manual commands
Monitor AV behavior Safety Pilot AV behavior -
Manual recovery Safety Pilot - Manual commands

GPS – Global Positioning System
LTP – Local Tangent Plane
NED – North, East, Down
PRN – Pseudorange
PWM – Pulse Width Modulation
SV – Space Vehicle

Appendix C – Reynolds+ Rules as Implemented

73

Velocity Bucket Limit

 Cage Wide Narrow

 2 m/s 5 m/s 5 m/s

 Rule 1: Separation

 Cage Wide Narrow

Effect Begins (d) 5m 10m 5m

Maximum Effect (d) 1.04m 2.35m 1.36m

Mag. Equation 𝑛𝑛1 = 10
(𝑑𝑑+1)2 − 0.4 𝑛𝑛1 = 100

𝑑𝑑+7
− 5.7 𝑛𝑛1 = 100

(𝑑𝑑+2.5)2 − 1.7

Variable d = distance to the encroaching aircraft

The unit vector points directly away from the encroaching aircraft. If multiple aircraft

are within the separation radius, the resulting velocities are summed.

 Rule 2: Minimum Altitude

 Cage Wide/Narrow

Effect Begins (d) 4m 15m

Maximum Effect (d) 1.96m 6.79m

Mag. Equation 𝑛𝑛2 = 10
𝑑𝑑2
− 0.6 𝑛𝑛2 = 1000

(𝑑𝑑+5)2 − 2.2

Variable d = altitude above ground level (m)

The unit vector points directly away from the ground.

 Rule 3: Communication Radius (Not Implemented)

 Rule 4: Alignment (same for all variations)

Inclusion Radius: 20m

74

Mag. Equation: 𝑣𝑣4 =
∑ 𝑣𝑣𝑘𝑘
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑘𝑘=1
𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

Variables numAcft = quantity of aircraft within inclusion radius

 k = generic identifier for each aircraft within inclusion radius

 vk = velocity of kth aircraft within inclusion radius

 Rule 5: Cohesion

 Cage Wide/Narrow

Mag. Equation 𝑛𝑛5 = 2∗𝑑𝑑
2.75

− 0.909 𝑛𝑛5 = 5∗𝑑𝑑
42

− 20
21

Variable d = distance to the geometric center of all aircraft in the swarm

The unit vector points directly towards the geometric center of all aircraft in the swarm.

 Rule 6: Mission (Not Implemented)

Appendix D – Software in the Loop Setup & Discussion

75

Introduction

 The purpose of this section is to discuss the setup of a software-in-the-loop

(SITL) environment in which to develop and test swarming algorithms for the

architecture. SITL testing is valuable because it can be accomplished by a single person,

whereas flight testing requires a crew of multiple people per aircraft. Furthermore, it

does not depend on weather, batteries never need be exchanged, and algorithm

corrections can be made nearly on-the-fly. There are some drawbacks however: SITL

hardware is often more powerful (faster processor, more memory) than the hardware used

in flight, making it difficult to ascertain how quickly information should be exchanged

between vehicles. Subtle hardware/software integration issues are hidden as well, for

instance the original architecture utilized local coordinates as produced by the Pixhawk

autopilot. It turns out that local coordinate frame isn’t available until the aircraft is

armed, and so global coordinates had to be used along with a short Python script to

convert them into a local frame. This was never an issue in SITL. Still, the advantages

outweigh the disadvantages when it comes to testing the viability of a given algorithm.

Components

 SITL components used in this research were entirely virtual except for the laptop

they were running on. Time constraints did not permit the addition of hardware

components for a partial hardware-in-the-loop (HITL) test. The components are shown

as layered in the table below:

Table 5. SITL Layers

Layer Component Subcomponents
Qty @
Layer

76

1 Asus G750JW Laptop (Layer 2) 1
2 Oracle VirtualBox Ubuntu 16.04.3 3

FlightGear 2017.1.3
(Client) - 3

 Cygwin fgms-0-x (FlightGear multiplayer server) 1
3 Ubuntu 16.04.3 DroneKit-Python 1

 fgms-0-x - 1
4 DroneKit-Python sim_vehicle.py 1

 new_algorithm.py 1

 All SITL testing was performed with a single laptop running Windows 8.1.

Within the Operating System (OS), three virtual OS’s were utilized. Three VirtualBox

clients running Ubuntu stood in for the air vehicles: these terminals contained the flight

dynamics model (FDM), the virtual autopilot, and the algorithm controlling the virtual

aircraft. Each terminal was assigned a FlightGear client running on the host OS

(Windows) to display aircraft activities in a virtual 3D environment. A fourth terminal

running Cygwin contained the FlightGear multiplayer server. This server allowed the

FlightGear clients to communicate with each other and display all three aircraft within

each FlightGear client. A video of this setup can be viewed at the link below, and a still

image in Figure 24:

https://www.youtube.com/watch?v=M8U0P3IY0nQ

https://www.youtube.com/watch?v=M8U0P3IY0nQ

77

Figure 29. SITL Setup

Interfaces

 The nominal SITL architecture as it was intended to be set up for one aircraft is

shown in Chapter 1, Figure 3. The modified architecture allowing for multiple simulated

vehicles and multiple display clients connected through a multiplayer server is displayed

below in Figure 25. The various ports listed at each interface are a result of ArduCopter

instantiations. When sim_vehicle.py is started in the command line, a numerical

argument representing the instance may be included, which then adds ten times the

instance number to every port used by the instance. Swarming simulation would not be

possible on a single machine without this feature.

78

Figure 30. SITL Architecture 2.0

Appendix E – Code

79

 This appendix includes all Python and Matlab code written or modified for this

research. The Reynolds+ algorithm is shown first, followed by supporting files. Then

the analysis tools are provided as well. Note the Reynolds+ algorithm in particular is

functional but not optimal – the rules could be modular, and many of the “pre-set”

variables could be dynamically updated or input as arguments rather than hard-coded.

Reynolds+ Algorithm (Vehicle 1, Wide Spacing)

rpluswid1.py

from dronekit import connect, VehicleMode, LocationGlobalRelative, LocationGlobal
from dronekit import sys, Command
import numpy as np
import lcm
import math
import time
import gpsutils
from datetime import datetime
from pymavlink import mavutil
from exlcm import idposvel
from exlcm import sendvel
import threading
import select
import subprocess
global otherPos
global otherVel
global myPos
global myVel
global homeLoc
global end
global counter
global allPos
global allVel

lc2 = lcm.LCM() #lcm object to handle vehicle2 comms
lc3 = lcm.LCM() #lcm object to handle vehicle3 comms
lcvel = lcm.LCM() #lcm object to record all velocity commands (all vehicles)

end = 0
homeLoc = np.array([39.774185, -84.100031, 0]) # home location must be the same for
all vehicles; this could be dynamic as long as update is time-synchronized

80

numAll = 3 # maximum number of vehicles in swarm; preset value
allPos = np.zeros((numAll, 4)) #initialize array of all positions
allVel = np.zeros((numAll, 4)) #initialize array of all velocities

def my_handler(channel, data): #message handler
 global allPos
 global allVel
 msg = idposvel.decode(data) #extract LCM message data
 tempID = int(msg.id) #sender ID
 tempPos = np.array(msg.position) #sender position
 tempVel = np.array(msg.velocity) #sender velocity
 allPos[tempID, [0, 1, 2]] = tempPos #update the all-positions array w/sender data
 allVel[tempID, [0, 1, 2]] = tempVel #update the all-velocities array w/sender data
 ts = time.time() #time of message receipt
 allPos[tempID, 3] = ts #add timestamp to all-positions array
 allVel[tempID, 3] = ts #add timestamp to all-velocities array
 # print("Received message on channel \"%s\"" % channel)
 # print(" id = %s" % str(msg.id))
 # print(" position = %s" % str(msg.position))
 # print(" velocity = %s" % str(msg.velocity))
 # print("")

'''VEHICLE 1 CONNECT INIT''' # Connect to the vehicle; commented out for bench
testing
print 'Connecting Vehicle 1' # TCP 232 T-24 IP 192.168.1.11 through 14550
vehicle_connection_string = '/dev/ttyO1' #serial port connection string
vehicle = connect(vehicle_connection_string, wait_ready=False,baud=57600) #connect
print ' '
time.sleep(5)
Get some vehicle attributes (state) – helps verify connection while troubleshooting
print "Get vehicle #1 attribute values:"
print " GPS: %s" % vehicle.gps_0
print " Battery: %s" % vehicle.battery
print " Last Heartbeat: %s" % vehicle.last_heartbeat
print " Is Armable?: %s" % vehicle.is_armable
print " System status: %s" % vehicle.system_status.state
print " Mode: %s" % vehicle.mode.name # settable
print " Global Location: %s" % vehicle.location.global_relative_frame

myId = 1 #this changes depending on the vehicle number; should match the ad-hoc IP
myGlobalPos =
np.array([vehicle.location.global_frame.lat,vehicle.location.global_frame.lon,vehicle.loca
tion.global_frame.alt]) #get global location

81

myPos =
gpsutils.GeodeticToEnu(myGlobalPos[0],myGlobalPos[1],myGlobalPos[2],homeLoc[0],
homeLoc[1],homeLoc[2]) #convert global location to local frame
myPos = np.array([myPos[1],myPos[0],-1.0*myPos[2]]) #update this vehicle’s position
myVel = np.array(vehicle.velocity) #update this vehicle’s velocity

def send_ned_velocity(velocity_x, velocity_y, velocity_z, duration): #send mavlink
message to the Pixhawk w/commanded velocity
 """
 Move vehicle in direction based on specified velocity vectors.
 """
 msg = vehicle.message_factory.set_position_target_local_ned_encode(
 0, # time_boot_ms (not used)
 0, 0, # target system, target component
 mavutil.mavlink.MAV_FRAME_LOCAL_OFFSET_NED, # frame
 0b0000111111000111, # type_mask (only speeds enabled)
 0, 0, 0, # x, y, z positions (not used)
 velocity_x, velocity_y, velocity_z, # x, y, z velocity in m/s
 0, 0, 0, # x, y, z acceleration (not supported yet, ignored in GCS_Mavlink)
 0, 0) # yaw, yaw_rate (not supported yet, ignored in GCS_Mavlink)

 # send command to vehicle once
 #for x in range(0, duration):
 vehicle.send_mavlink(msg) #send the message (velocity command)
 time.sleep(0.1)

def background(): #background: send/receive LCM messages
 global myPos
 global myVel
 global counter
 while counter == 0: #wait until system time is updated
 time.sleep(1)
 timeout = 100 # amount of time to wait, in milliseconds
 tsend = time.time()
 print("tzero: %s" % str(tsend))
 while True: #runs until algorithm is stopped
 vmode = vehicle.mode.name
 print("vmode: %s" % str(vmode))
 if str(vmode) == "GUIDED" or str(vmode) == "ALT_HOLD" or str(vmode) ==
"AUTO": #only broadcast in guided, altitude hold, or auto
 print " Background is updating, broadcasting, and receiving."
 if (time.time() - tsend) > 0.10: #no more than 10hz publish rate
 myGlobalPos = np.array(
 [vehicle.location.global_frame.lat, vehicle.location.global_frame.lon,
 vehicle.location.global_frame.alt]) #get my global position

82

 myPos = gpsutils.GeodeticToEnu(myGlobalPos[0], myGlobalPos[1],
myGlobalPos[2], homeLoc[0], homeLoc[1],
 homeLoc[2]) #convert global to local position
 myPos = np.array([myPos[1], myPos[0], -1.0*myPos[2]])
 myVel = np.array(vehicle.velocity)
 msg = idposvel()
 msg.id = myId
 msg.position = myPos
 msg.velocity = myVel
 lc2.publish("vehicle1", msg.encode()) #send my ID, position, velocity to veh2
 lc3.publish("vehicle1", msg.encode()) #send my ID, position, velocity to veh3
 tsend = time.time() #bookmark send time
 lc2check = lc2.handle_timeout(timeout) check for veh2 messages, handle if avail.
 lc3check = lc3.handle_timeout(timeout) check for veh3 messages, handle if avail.
 else:
 time.sleep(1) #if not in Guided/Alt-Hold/Auto then wait

def foreground(): #this is where the Reynolds+ rules are executed
 global myPos
 global myVel
 global allPos
 global allVel
 global homeLoc
 numAll = 3 # maximum number of vehicles in swarm

 '''DATA FILE INIT'''
 timestr = time.strftime("%m-%d-%Y_%H-%M-%S") # date-time for file name
 file_name = 'Vehicle_1_' + timestr # file name appended with date time
 data_file = open(file_name, 'a') # create txt doc to append to
 print 'Telemetry file open'
 print''

 myGlobalPos = np.array(
 [vehicle.location.global_frame.lat, vehicle.location.global_frame.lon,
vehicle.location.global_frame.alt])
 myPos = gpsutils.GeodeticToEnu(myGlobalPos[0], myGlobalPos[1], myGlobalPos[2],
homeLoc[0], homeLoc[1], homeLoc[2])
 myPos = np.array([myPos[1],myPos[0],-1.0*myPos[2]])
 myVel = np.array(vehicle.velocity)

 allPos = np.zeros((numAll, 4)) #set up position array
 allVel = np.zeros((numAll, 4)) #set up velocity array

 subscription = lc3.subscribe("vehicle3", my_handler) # subscribe to veh3 channel
 subscription2 = lc2.subscribe("vehicle2", my_handler) # subscribe to veh2 channel

83

 while True: # loop until script is shut off
 print " Foreground is looping."
 t = time.time() #bookmark time
 otherPos = np.zeros(3) # set up position array, excluding this vehicle
 otherVel = np.zeros(3) # set up velocity array, excluding this vehicle
 myId = 1
 myAlt = vehicle.location.global_relative_frame.alt # get height AGL
 print(" myAlt: %s" % str(myAlt))
 allPos[myId, [0, 1, 2]] = myPos #add my most recent position to all-positions
 allVel[myId, [0, 1, 2]] = myVel #add my most recent velocity to all-velocities
 ts = time.time()
 allPos[myId, 3] = ts #timestamp my position
 allVel[myId, 3] = ts #timestamp my velocity

 vel_bucket_max = 2.0 #limit maximum velocity command magnitude
 vel_bucket = vel_bucket_max # velocity bucket (m/s) reset to max
 alt_limit = 15.0 # flight floor (m above local 0), soft limit
 align_dist = 20.0 # alignment bubble (m) radius

 for x in range(numAll): # loop through each connection's index
 if sum(allPos[x, [0, 1, 2]]) != 0 and sum(
 allVel[x, [0, 1, 2]]) != 0 and x != myId: # check to ensure pos & vel data
isn't empty
 if np.count_nonzero(otherPos) == 0 and np.count_nonzero(otherVel) == 0:
 otherPos = allPos[x, [0, 1, 2]]
 otherVel = allVel[x, [0, 1, 2]]
 else:
 otherPos = np.vstack([otherPos, allPos[
 x, [0, 1, 2]]]) # append each other vehicle's position parameters to a
central array
 otherVel = np.vstack([otherVel, allVel[
 x, [0, 1, 2]]]) # append each other vehicle's velocity parameters to a
central array
 # print(" otherPos = %s" % str(otherPos))
 # print(" otherVel = %s" % str(otherVel))
 if np.size(otherPos) == 3:
 numConnections = 1
 else:
 numConnections, num_Cols = otherPos.shape #count current swarm size
 if np.sum(otherPos) != 0 or np.sum(otherVel) != 0: # wait until at least one other
vehicle's data is received
 allActivePos = np.vstack([otherPos, myPos[0:3]]) # append this vehicle's position
to central array

84

 allActiveVel = np.vstack([otherVel, myVel[0:3]]) # append this vehicle's velocity
to central array
 # print(" allActivePos = %s" % str(allActivePos))
 # print(" allActiveVel = %s" % str(allActiveVel))
 # implement distance-calculating function to find a 1-D array of distances from
myPos to all other vehicles
 # on the network
 dist = np.array(
 [0]) # initialize empty array - x by 1 array of distances from this vehicle to all
other vehicles
 indices = np.array([0])
 fullMyPos = np.full((numConnections, 3), myPos) # my position, repeated
 dist = np.linalg.norm(fullMyPos - otherPos, axis=1) # distance to each other veh
 #print(" dist = %s" % str(dist))
 vec_away = (myPos - otherPos) / dist[:,
 None] # x by 3 array of unit vectors from each other vehicle
to this one
 #print(" vecaway = %s" % str(vec_away))
 vmode = str(vehicle.mode.name)
 if str(vmode) == "GUIDED" and myAlt > 3.0: #only execute reynolds commands
in GUIDED mode
 # and the copter is already in the air (> 3m alt)

 # implement first Reynolds+ rule: separation
 # initialize desired velocity components
 push_dist = 10.0 # this variable can be tuned; it is this vehicle's separation
bubble radius
 if np.sum(otherPos) != 0:
 indices = np.where(dist <= push_dist) # get indices of vehicles where dist
<= push distance (10 meters)
 if np.size(indices) != 0:
 dist_sel = dist[indices] # select only distance magnitudes from the
indexed list
 prox_vel_dir = vec_away[indices, :][0] # select unit vectors from the
indexed list
 else:
 dist_sel = 100.0
 prox_vel_dir = np.array([0, 0, 0])
 else:
 dist_sel = 100.0
 prox_vel_dir = np.array([0, 0, 0])
 a = 100 # this variable can be tuned to change the response
 #prox_vel_mag = float(a) / dist_sel ** 2 # magnitude of the response for 5m
bubble
 prox_vel_mag = float(a) / (dist_sel + 7.0) - 5.7

85

 #print(" proxvelmag = %s" % str(prox_vel_mag))
 #print(" proxveldir = %s" % str(prox_vel_dir))
 if np.size(prox_vel_dir) > 3:
 new_vel_A = prox_vel_dir * prox_vel_mag[:, np.newaxis]
 else:
 new_vel_A = prox_vel_dir * prox_vel_mag
 if np.size(new_vel_A) == 3:
 vel_A = new_vel_A
 else:
 vel_A = np.array([sum(new_vel_A[:, 0]), sum(new_vel_A[:, 1]),
sum(new_vel_A[:, 2])])
 mag_A = np.linalg.norm(vel_A)
 if mag_A == 0:
 mag_A = 0.01
 dir_A = vel_A / mag_A
 dir_A = np.squeeze(np.asarray(dir_A))
 if mag_A > vel_bucket: # limit magnitude of response to bucket size
 mag_A = vel_bucket_max
 vel_A = mag_A * dir_A
 if np.size(vel_A[0]) != 1:
 vel_A = vel_A[0]
 send_ned_velocity(vel_A[0], vel_A[1], -1 * vel_A[2], 1)
 msg2 = sendvel()
 msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2])
 lcvel.publish("v1vel", msg2.encode()) # broadcast velocity cmd on LCM
 # print(" newVel_A = %s" % str(vel_A))
 vel_A = mag_A * dir_A
 if np.size(vel_A[0]) != 1:
 vel_A = vel_A[0]
 # end rule 1...
 # implement second Reynolds+ rule: flight floor
 if mag_A < vel_bucket and myAlt < alt_limit:
 vel_bucket = vel_bucket - mag_A # reduce velocity (magnitude) bucket
 floor_vel_dir = np.array([0, 0, 1]) # vertical unit vector
 #floor_vel_mag = 10 / ((myAlt - 1.4) ** 1.5) # vertical response magnitude
for 10m floor
 floor_vel_mag = (1000.0 / ((myAlt + 5.0) ** 2.0)) - 0.6 #vertical response
magnitude for 15m floor
 # print(" my alt = %s" % str(myAlt))
 if floor_vel_mag > vel_bucket: # limit magnitude of response to bucket size
 floor_vel_mag = vel_bucket
 new_vel_B = floor_vel_mag * floor_vel_dir
 vel_B = vel_A + new_vel_B
 send_ned_velocity(vel_B[0], vel_B[1], -1 * vel_B[2], 1)
 msg2 = sendvel()

86

 msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2])
 msg2.velB = (floor_vel_mag, floor_vel_dir[0], floor_vel_dir[1],
floor_vel_dir[2])
 lcvel.publish("v1vel", msg2.encode())
 mag_B = vel_bucket_max
 # print(" newVel_B = %s" % str(vel_B))
 else:
 new_vel_B = floor_vel_mag * floor_vel_dir
 dir_B = floor_vel_dir
 dir_B = np.squeeze(np.asarray(dir_B))
 vel_B = vel_A + new_vel_B
 mag_B = np.linalg.norm(vel_B)
 # end rule 2...
 # implement third Reynolds+ rule: comm radius
 # end rule 3...
 # implement fourth Reynolds+ rule: alignment
 else:
 floor_vel_mag = 0
 floor_vel_dir = np.array([0, 0, 0])
 mag_B = 0
 dir_B = np.array([0, 0, 0])
 dir_B = np.squeeze(np.asarray(dir_B))
 vel_B = vel_A

 mag_C = vel_bucket_max + 1.0 #if rule C runs, this will be replaced. if not,
rule D will never run
 dir_C = np.array([0,0,0])
 vel_C = mag_C * dir_C
 if mag_B < vel_bucket and floor_vel_mag < vel_bucket:
 vel_bucket = vel_bucket - floor_vel_mag
 align_indices = np.where(dist <= align_dist)[
 0] # get indices of vehicles where dist <= alignment bubble radius
 # print(" align indices = %s" % str(align_indices))
 if np.size(align_indices) == 0: # if no vehicles within bubble
 new_vel_C = np.array([0, 0, 0])
 if np.size(align_indices) == 1: # if one index
 if np.size(otherVel) == 3: # if only one other vehicle present
 new_vel_C = otherVel
 # print(" newVelC - one veh = %s" % str(new_vel_C))
 else: # multiple vehicles, one index within bubble
 new_vel_C = otherVel[align_indices, :][0]
 # print(" newVelC - 2+ veh = %s" % str(new_vel_C))
 if np.size(align_indices) > 1: # multiple vehicles, multiple indices
 #print(" otherVel = %s" % str(otherVel))
 #print(" alignindices = %s" % str(align_indices))

87

 alignVel = otherVel[align_indices, :]
 new_vel_C = np.array([np.mean(alignVel[:, 0]), np.mean(alignVel[:, 1]),
np.mean(alignVel[:, 2])])
 mag_C = np.linalg.norm(new_vel_C)
 # print(" mag_C = %s" % str(mag_C))
 if mag_C == 0:
 dir_C = np.array([0, 0, 0])
 dir_C = np.squeeze(np.asarray(dir_C))
 else:
 dir_C = new_vel_C / mag_C
 dir_C = np.squeeze(np.asarray(dir_C))
 # print(" dir_C = %s" % str(dir_C))
 if mag_C > vel_bucket:
 mag_C = vel_bucket
 vel_C = mag_C * dir_C + vel_B
 send_ned_velocity(vel_C[0], vel_C[1], -1 * vel_C[2], 1)
 msg2 = sendvel()
 msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2])
 msg2.velB = (floor_vel_mag, floor_vel_dir[0], floor_vel_dir[1],
floor_vel_dir[2])
 msg2.velC = (mag_C, dir_C[0], dir_C[1], dir_C[2])
 lcvel.publish("v1vel", msg2.encode())
 print(" new_vel_C: %s" % str(vel_C))
 else:
 vel_C = mag_C * dir_C + vel_B
 # end rule 4...
 # implement fifth Reynolds+ rule: flock centering (cohesion)
 # print(" vel_C = %s" % str(vel_C))
 # print(" mag_C = %s" % str(mag_C))
 if mag_C < vel_bucket:
 vel_bucket = vel_bucket - mag_C
 if np.size(allActivePos) == 3:
 flock_center = myPos
 else:
 flock_center = np.array(
 [np.mean(allActivePos[:, 0]), np.mean(allActivePos[:, 1]),
np.mean(allActivePos[:, 2])])
 my_ctr_dist = np.linalg.norm(myPos - flock_center)
 #print(" ctr_dist = %s" % str(my_ctr_dist))
 mag_D = 5.0 * my_ctr_dist / 42.0 - 20.0/21.0
 if my_ctr_dist == 0:
 dir_D = np.array([0, 0, 0])
 dir_D = np.squeeze(np.asarray(dir_D))
 else:
 dir_D = (flock_center - myPos) / my_ctr_dist

88

 dir_D = np.squeeze(np.asarray(dir_D))
 if mag_D > vel_bucket:
 mag_D = vel_bucket
 dir_D[2] = -0.1 * dir_D[2] #dampen vertical cohesion, invert
 vel_D = mag_D * dir_D + vel_C
 #print(" dir_D = %s" % str(vel_C))
 #print(" vel_C = %s" % str(vel_C))
 # end rule 5...
 #print(" vel_D = %s" % str(vel_D))
 if np.size(vel_D[0]) != 1:
 vel_D = vel_D[0]
 send_ned_velocity(vel_D[0], vel_D[1], vel_D[2], 1)
 msg2 = sendvel()
 msg2.velA = (mag_A, dir_A[0], dir_A[1], dir_A[2])
 msg2.velB = (floor_vel_mag, floor_vel_dir[0], floor_vel_dir[1],
floor_vel_dir[2])
 msg2.velC = (mag_C, dir_C[0], dir_C[1], dir_C[2])
 msg2.velD = (mag_D, dir_D[0], dir_D[1], dir_D[2])
 lcvel.publish("v1vel", msg2.encode())
 print(" newVel_D = %s" % str(vel_D))
 # implement sixth Reynolds+ rule: swarm direction (move geometric center)
 # end rule 6...

 # send_ned_velocity(velocity_x, velocity_y, velocity_z, duration) # X: North/South,
Y: East/West, Z: Down/Up

 vel_bucket = vel_bucket_max #reset variables for the next loop
 mag_B = vel_bucket_max + 1.0
 mag_C = vel_bucket_max + 1.0
 t2 = time.time()
 for x in range(numAll):
 td = t2 - allPos[x, 3] # difference between now and timestamp of every position
data point
 #print(" td = %s" % str(td))
 if td > 2.0: # if the time difference > 2 sec for a given row
 allPos[x, [0, 1, 2]] = np.array([0, 0, 0]) # zero out the data
 allVel[x, [0, 1, 2]] = np.array([0, 0, 0]) # zero out the data

 time.sleep(0.10 - ((time.time() - t) % 0.10)) #repeat on 10hz interval
 #***End of foreground***

counter = 0

@vehicle.on_message('SYSTEM_TIME') #update the companion computer system time
def listener(self, name, message):

89

 global counter
 if counter == 0:
 unix_time = (int)(message.time_unix_usec / 1000000)
 dtime = datetime.fromtimestamp(unix_time)
 subprocess.call(["date '%s'" % format(dtime.strftime('%m%d%H%Y.%S'))],
shell=True)
 counter = 1 #update only happens once (instead of ~4Hz)

try:
 b = threading.Thread(name='background', target=background)
 f = threading.Thread(name='foreground', target=foreground)

 b.daemon = True
 f.daemon = True

 b.start() #start background
 time.sleep(3)
 f.start() #start foreground
 while True: time.sleep(100) #allows keyboard interrupt

except (KeyboardInterrupt, SystemExit):
 end = 1
 print '\n! Received keyboard interrupt, quitting threads.\n'

gpsutils.py – Global to Local Frame Coordinate Converter

This code was converted from C to Python; original source:

https://gist.github.com/LocalJoost/fdfe2966e5a380957d1c90c462fd1e5c

File location on companion computer: usr/local/lib/python2.7/dist-packages

Code:

Some helpers for converting GPS readings from the WGS84 geodetic system to a local
North-East-Up cartesian axis.

 # The implementation here is according to the paper:
 # "Conversion of Geodetic coordinates to the Local Tangent Plane" Version 2.01.
 # "The basic reference for this paper is J.Farrell & M.Barth 'The Global Positioning
System & Inertial Navigation'"
 # Also helpful is Wikipedia: http:#en.wikipedia.org/wiki/Geodetic_datum

WGS-84 geodetic constants
import math

https://gist.github.com/LocalJoost/fdfe2966e5a380957d1c90c462fd1e5c

90

import numpy as np
a = 6378137.0; # WGS-84 Earth semimajor axis (m)
b = 6356752.3142; # WGS-84 Earth semiminor axis (m)
f = (a - b) / a; # Ellipsoid Flatness
e_sq = f * (2 - f); # Square of Eccentricity

Converts WGS-84 Geodetic point (lat, lon, h) to the
Earth-Centered Earth-Fixed (ECEF) coordinates (x, y, z).
def GeodeticToEcef(lat, lon, h):

Convert to radians in notation consistent with the paper:
lbda = np.deg2rad(lat)
phi = np.deg2rad(lon)
s = math.sin(lbda)
N = a / ((1 - e_sq * s * s) ** 0.5)
sin_lambda = math.sin(lbda)
cos_lambda = math.cos(lbda)
cos_phi = math.cos(phi)
sin_phi = math.sin(phi)
x = (h + N) * cos_lambda * cos_phi
y = (h + N) * cos_lambda * sin_phi
z = (h + (1 - e_sq) * N) * sin_lambda
return np.array([x,y,z])

Converts the Earth-Centered Earth-Fixed (ECEF) coordinates (x, y, z) to
East-North-Up coordinates in a Local Tangent Plane that is centered at the
(WGS-84) Geodetic point (lat0, lon0, h0).
def EcefToEnu(x, y, z, lat0, lon0, h0):
 # Convert to radians in notation consistent with the paper:
 lbda = np.deg2rad(lat0)
 phi = np.deg2rad(lon0)
 s = math.sin(lbda)
 N = a / ((1 - e_sq * s * s) ** 0.5)

 sin_lambda = math.sin(lbda)
 cos_lambda = math.cos(lbda)
 cos_phi = math.cos(phi)
 sin_phi = math.sin(phi)

 x0 = (h0 + N) * cos_lambda * cos_phi
 y0 = (h0 + N) * cos_lambda * sin_phi
 z0 = (h0 + (1 - e_sq) * N) * sin_lambda

 xd = x - x0
 yd = y - y0
 zd = z - z0

91

 # This is the matrix multiplication
 xEast = -sin_phi * xd + cos_phi * yd
 yNorth = -cos_phi * sin_lambda * xd - sin_lambda * sin_phi * yd + cos_lambda *
zd
 zUp = cos_lambda * cos_phi * xd + cos_lambda * sin_phi * yd + sin_lambda *
zd
 return np.array([xEast,yNorth,zUp])

Converts the geodetic WGS-84 coordinated (lat, lon, h) to
East-North-Up coordinates in a Local Tangent Plane that is centered at the
(WGS-84) Geodetic point (lat0, lon0, h0).
def GeodeticToEnu(lat, lon, h, lat0, lon0, h0):
 ecef = GeodeticToEcef(lat, lon, h)
 enu = EcefToEnu(ecef[0],ecef[1],ecef[2], lat0, lon0, h0)
 return enu

idposvel.py – LCM Type Specification for ID, Position, Velocity

"""LCM type definitions
This file automatically generated by lcm.
DO NOT MODIFY BY HAND!!!!
"""

try:
 import cStringIO.StringIO as BytesIO
except ImportError:
 from io import BytesIO
import struct

class idposvel(object):
 __slots__ = ["id", "position", "velocity"]

 def __init__(self):
 self.id = 0
 self.position = [0.0 for dim0 in range(3)]
 self.velocity = [0.0 for dim0 in range(3)]

 def encode(self):
 buf = BytesIO()
 buf.write(idposvel._get_packed_fingerprint())
 self._encode_one(buf)
 return buf.getvalue()

92

 def _encode_one(self, buf):
 buf.write(struct.pack(">q", self.id))
 buf.write(struct.pack('>3d', *self.position[:3]))
 buf.write(struct.pack('>3d', *self.velocity[:3]))

 def decode(data):
 if hasattr(data, 'read'):
 buf = data
 else:
 buf = BytesIO(data)
 if buf.read(8) != idposvel._get_packed_fingerprint():
 raise ValueError("Decode error")
 return idposvel._decode_one(buf)
 decode = staticmethod(decode)

 def _decode_one(buf):
 self = idposvel()
 self.id = struct.unpack(">q", buf.read(8))[0]
 self.position = struct.unpack('>3d', buf.read(24))
 self.velocity = struct.unpack('>3d', buf.read(24))
 return self
 _decode_one = staticmethod(_decode_one)

 _hash = None
 def _get_hash_recursive(parents):
 if idposvel in parents: return 0
 tmphash = (0x6127d88fd8b7efbf) & 0xffffffffffffffff
 tmphash = (((tmphash<<1)&0xffffffffffffffff) + (tmphash>>63)) & 0xffffffffffffffff
 return tmphash
 _get_hash_recursive = staticmethod(_get_hash_recursive)
 _packed_fingerprint = None

 def _get_packed_fingerprint():
 if idposvel._packed_fingerprint is None:
 idposvel._packed_fingerprint = struct.pack(">Q",
idposvel._get_hash_recursive([]))
 return idposvel._packed_fingerprint
 _get_packed_fingerprint = staticmethod(_get_packed_fingerprint)

screenLaunch1.sh – Starts Reynolds+ algorithm and LCM log in separate screens

 This shell file should be launched on each vehicle via SSH. Two screens are
opened, one for the Reynolds+ script, and another for LCM logging. Opening these in
new screens prevents the Wi-Fi network from being flooded with unnecessary data, and
permits the ground station to SSH into all three vehicles at once with little or no latency.

93

#!/bin/bash

The goal of this script is to startup each of the individual launch scripts in their own
instance of "screen", detached, so that they will continue to run even after we lose contact
with the plane.

###################### Initial Commands
Command set 1
On startup, will need to enter the commands to start LCM:
sudo ifconfig lo multicast
sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev lo

Command set 2
Need to set the BAUD rate for the ensco radios:
screen -dmS baud /dev/ttyACM1 115200
sleep 5
screen -X -S baud quit

Command set 3
Manual screen open and command connection with the Pixhawk (no-GPS), connection
requires sudo for some reason.
sudo python drivers/px4/px4.py --connect /dev/ttyUSB0 --baud 921600

###################### Open Screens with each script

May need to start this manually with sudo...
Python automation script launch file
screen -dmS rplus sh -c "export
LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=2; python rpluscage1.py"

LCM Logging launch file for the LCM logger function
screen -dmS lcmlog sh -c "export
LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=2; logLaunch.sh"

adhoc_startup.sh – Connects to mesh ad-hoc network automatically

 This script alone is insufficient to properly set up the ad-hoc network
automatically but provides most of the required commands and runs them automatically
on startup. Some other files may need configuring depending on the companion
computer used.

#! /bin/sh
BEGIN INIT INFO
Provides: adhocsetup

94

Required-Start: kmod
Required-Stop: kmod
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description:
Description:
END INIT INFO
/etc/init.d/adhoc.sh

touch /var/lock/adhoc.sh

case "$1" in
 start)
 batctl if add eth0
 ifconfig wlan1 down
 ifconfig wlan1 mtu 1532
 ifconfig wlan1 mode ad-hoc essid reynoldsplus ap CA:FE:C0:DE:F0:0D channel 11
 batctl if add wlan1
 ifconfig wlan1 up
 ifconfig bat0 up
 ifconfig bat0 10.200.8.4
 route add default gw 10.0.99.1
 echo 1 > /proc/sys/net/ipv4/ip_forward
 export LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=1
 stty -F /dev/ttyO1 57600
 ;;
 stop)
 ;;
 *)
 exit 1
 ;;
esac

exit 0

logtocsv.py – Converts LCM Log File to Comma Separated Value for Analysis

 This code is particular to LCM channels as-named in this research (vehicle1,
vehicle2, vehicle3, v1vel, v2vel, v3vel). It requires a log file name as an argument, and
outputs one CSV file depending on the input file: either ID/position/velocity data, or
velocity command data.

import sys

95

import lcm
import csv
from exlcm import idposvel
from exlcm import sendvel

if len(sys.argv) < 2:
 sys.stderr.write("usage: logtomat <logfile>\n")
 sys.exit(1)

namestr = str(sys.argv[1]) # name of the log file used as argument
file_name1 = 'idposvel_' + namestr + '.csv' # idposvel csv file name
file_name2 = 'velsend_' + namestr + '.csv' # vel cmd csv file name

print('starting csv generation')

with open(file_name1, 'wb') as csvfile1: # create csv

 log = lcm.EventLog(sys.argv[1], "r")
 writer = csv.writer(csvfile1, dialect='excel', delimiter=',')
 writer.writerow(['channel', 'timestamp', 'id', 'position', 'velocity'])

 log.seek(1)
 event1 = log.read_next_event()
 print(' first channel: %s' % str(event1.channel))
 while True:
 try:
 if event1.channel == "vehicle1" or event1.channel == "vehicle2" or
event1.channel == "vehicle3":
 msg = idposvel.decode(event1.data)
 writer.writerow([str(event1.channel), str(event1.timestamp),
str(msg.id), str(msg.position), str(msg.velocity)])
 event1 = log.__next__()
 except StopIteration:
 print(' reached end of log file')
 break
 log.close()

print('idposvel csv file created')

with open(file_name2, 'wb') as csvfile2: # create csv

 log = lcm.EventLog(sys.argv[1], "r")
 writer = csv.writer(csvfile2, dialect='excel', delimiter=',')
 writer.writerow(['channel', 'timestamp', 'velA', 'velB', 'velC', 'velD'])

96

 log.seek(1)
 event2 = log.read_next_event()
 while True:
 try:
 if str(event2.channel) == "v1vel" or str(event2.channel) == "v2vel" or
str(event2.channel) == "v3vel":
 msg = sendvel.decode(event2.data)
 writer.writerow([str(event2.channel), str(event2.timestamp),
str(msg.velA), str(msg.velB), str(msg.velC), str(msg.velD)])
 event2 = log.__next__()
 except StopIteration:
 print(' reached end of log file')
 break

 log.close()

print('velocity command csv file created')
print('job complete')r

import_velsend.m – Imports velocity command CSV into Matlab

 This script will import a CSV containing velocity command data (as output by
logtocsv.py above) into Matlab. A similar script for position/velocity data was not
functional and that data must be imported manually.

%% Import data from text file.
% Script for importing data from the following text file:
%
% F:\AFIT\Thesis\Code\Analysis\velsend_06-12-2017_16_29_12.00.csv
%
% To extend the code to different selected data or a different text file,
% generate a function instead of a script.

% Auto-generated by MATLAB on 2017/12/18 12:54:23

%% Initialize variables.
filename = 'F:\AFIT\Thesis\Code\Analysis\velsend_06-12-2017_16_29_12.00.csv';
delimiter = ',';
startRow = 2;

%% Read columns of data as strings:
% For more information, see the TEXTSCAN documentation.
formatSpec = '%q%q%q%q%q%q%[^\n\r]';

%% Open the text file.

97

fileID = fopen(filename,'r');

%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'HeaderLines' ,startRow-
1, 'ReturnOnError', false);

%% Close the text file.
fclose(fileID);

%% Convert the contents of columns containing numeric strings to numbers.
% Replace non-numeric strings with NaN.
raw = repmat({''},length(dataArray{1}),length(dataArray)-1);
for col=1:length(dataArray)-1
 raw(1:length(dataArray{col}),col) = dataArray{col};
end
numericData = NaN(size(dataArray{1},1),size(dataArray,2));

for col=[1,2]
 % Converts strings in the input cell array to numbers. Replaced non-numeric
 % strings with NaN.
 rawData = dataArray{col};
 for row=1:size(rawData, 1);
 % Create a regular expression to detect and remove non-numeric prefixes and
 % suffixes.
 regexstr = '(?<prefix>.*?)(?<numbers>([-]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-
+]*\d*[i]{0,1})|([-]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)';
 try
 result = regexp(rawData{row}, regexstr, 'names');
 numbers = result.numbers;

 % Detected commas in non-thousand locations.
 invalidThousandsSeparator = false;
 if any(numbers==',');
 thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$';
 if isempty(regexp(numbers, thousandsRegExp, 'once'));
 numbers = NaN;
 invalidThousandsSeparator = true;
 end
 end
 % Convert numeric strings to numbers.
 if ~invalidThousandsSeparator;
 numbers = textscan(strrep(numbers, ',', ''), '%f');

98

 numericData(row, col) = numbers{1};
 raw{row, col} = numbers{1};
 end
 catch me
 end
 end
end

%% Split data into numeric and cell columns.
rawNumericColumns = raw(:, [1,2]);
rawCellColumns = raw(:, [3,4,5,6]);

%% Create output variable
velsend1 = raw;
%% Clear temporary variables
clearvars filename delimiter startRow formatSpec fileID dataArray ans raw col
numericData rawData row regexstr result numbers invalidThousandsSeparator
thousandsRegExp me rawNumericColumns rawCellColumns;

%% Begin post-processing

processposvel.m – Format ID/Position/Velocity into useful array

l = length(idposvel1); %get number of rows
idposvel = zeros(l,8); %create empty matrix
for count = 1:l % one to lower case L
 idposvel(count,1) = idposvel1{count,1};
 idposvel(count,2) = idposvel1{count,2}/1000000 - idposvel1{1,2}/1000000; %convert
time to seconds, first entry is t = 0 seconds
 idposvel(count,3:5) = posvel(idposvel1{count,3});
 idposvel(count,6:8) = posvel(idposvel1{count,4});
end

posvel.m – Supporting script for processposvel.m

function NED = posvel(str_in)
%POSVEL Summary of this function goes here
% Detailed explanation goes here
%m0 = strrep(str_in,'"','');
m1 = strrep(str_in,'(','');
m2 = strrep(m1,')','');
m3 = textscan(m2, '%f', 'delimiter',',');

99

m4 = m3{1};
NED = [m4(1),m4(2),m4(3)];
end

processvelsend.m – Format velocity command into useful array

l = length(velsend1); %get number of rows
velsend = zeros(l,18); %create empty matrix
for count = 1:l % one to lower case L
 velsend(count,1) = velsend1{count,1};
 velsend(count,2) = velsend1{count,2}/1000000 - idposvel1{1,2}/1000000; %convert
time to seconds, t = 0 for the position data (this data should start later)
 velsend(count,3:6) = vels(velsend1{count,3});
 velsend(count,7:10) = vels(velsend1{count,4});
 velsend(count,11:14) = vels(velsend1{count,5});
 velsend(count,15:18) = vels(velsend1{count,6});
end

vels.m – Supporting script for processvelsend.m

function magNED = vels(str_in)
%VELS Summary of this function goes here
% Detailed explanation goes here
m1 = strrep(str_in,'(','');
m2 = strrep(m1,')','');
m3 = textscan(m2, '%f', 'delimiter',',');
m4 = m3{1};
magNED = [m4(1),m4(2),m4(3),m4(4)];

end

modtime.m – Converts LCM timestamp to UTC datetime group

function newtime = modtime(t_in) % input time in microseconds since epoch, output
date/time
t = (t_in * 10^(-6))/(3600*24); % convert time since epoch to days
t_ref = datenum('1970','yyyy'); % set epoch reference
t_mat = t + t_ref; % add time of interest to epoch
newtime = datestr(t_mat,'yyyymmdd HH:MM:SS.FFF'); % convert to date time
end

plotpos.m – Plots positions from the imported and processed CSV data

l = length(idposvel);
s1 = 0;

100

s2 = 0;
s3 = 0;
v1 = 0;
v2 = 0;
v3 = 0;
for count = 1:l % one to lower case L
 if idposvel(count,1) == 1
 if s1 == 0
 scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),40,'c','filled')
 s1 = 1;
 hold on
 else
 scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),20,'k','filled')
 end
 if v1 > 0 && v1 ~= count
 plot3([idposvel(v1,3), idposvel(count,3)],[idposvel(v1,4),idposvel(count,4)],[-
1*idposvel(v1,5),-1*idposvel(count,5)],'k')
 end
 v1 = count;
 end

 if idposvel(count,1) == 2
 if s2 == 0
 scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),40,'c','filled')
 s2 = 1;
 hold on
 else
 scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),20,'g','filled')
 end
 if v2 > 0 && v2 ~= count
 plot3([idposvel(v2,3), idposvel(count,3)],[idposvel(v2,4),idposvel(count,4)],[-
1*idposvel(v2,5),-1*idposvel(count,5)],'k')
 end
 v2 = count;
 end

 if idposvel(count,1) == 3
 if s3 == 0
 scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),40,'c','filled')
 s3 = 1;
 hold on
 else
 scatter3(idposvel(count,3),idposvel(count,4),-1*idposvel(count,5),10,'b','filled')
 end
 if v3 > 0 && v3 ~= count

101

 plot3([idposvel(v3,3), idposvel(count,3)],[idposvel(v3,4),idposvel(count,4)],[-
1*idposvel(v3,5),-1*idposvel(count,5)],'k')
 end
 v3 = count;
 end
end
scatter3(idposvel(v1,3),idposvel(v1,4),-1*idposvel(v1,5),30,'r','filled')
scatter3(idposvel(v2,3),idposvel(v2,4),-1*idposvel(v2,5),30,'r','filled')
scatter3(idposvel(v3,3),idposvel(v3,4),-1*idposvel(v3,5),30,'r','filled')

plotvel – Plots velocity arrows from the imported and processed CSV data

l = length(idposvel);
for count = 1:l % one to lower case L
 if idposvel(count,1) == 1
 quiver3(idposvel(count,3),idposvel(count,4),-
1*idposvel(count,5),idposvel(count,6),idposvel(count,7),idposvel(count,8),'k')
 hold on
 end

 if idposvel(count,1) == 2
 quiver3(idposvel(count,3),idposvel(count,4),-
1*idposvel(count,5),idposvel(count,6),idposvel(count,7),idposvel(count,8),'g')
 hold on
 end

 if idposvel(count,1) == 3
 quiver3(idposvel(count,3),idposvel(count,4),-
1*idposvel(count,5),idposvel(count,6),idposvel(count,7),idposvel(count,8),'b')
 hold on
 end
end

plotdist.m – Plots distances between each vehicle

 The plot is a frequency chart, showing how many LCM messages were sent
within each 0.5 meter increment from zero to 25 meters separation.

l = length(idposvel);
v1pos = [0, 0, 0, 0];
v2pos = [0, 0, 0, 0];
v3pos = [0, 0, 0, 0];
dist1 = [0 0];
dist3 = [0 0];
count2 = 1;

102

for count = 1:l % one to lower case L
 if idposvel(count,1) == 1
 v1pos = [idposvel(count,3),idposvel(count,4),idposvel(count,5),idposvel(count,2)];
 end
 if idposvel(count,1) == 2
 v2pos = [idposvel(count,3),idposvel(count,4),idposvel(count,5),idposvel(count,2)];
 end
 if idposvel(count,1) == 3
 v3pos = [idposvel(count,3),idposvel(count,4),idposvel(count,5),idposvel(count,2)];
 end
 if sum(abs(v1pos(1:3))) > 0 && sum(abs(v2pos(1:3))) > 0 && sum(abs(v3pos(1:3))) >
0
 % distance of interest in this case is vehicle 2 to 1 and 3 respectively
 dist1(count2,1) = idposvel(count,2);
 dist3(count2,1) = idposvel(count,2);
 dist1(count2,2) = sqrt((v2pos(1)-v1pos(1))^2 + (v2pos(2)-v1pos(2))^2 + (v2pos(3)-
v1pos(3))^2);
 dist3(count2,2) = sqrt((v2pos(1)-v3pos(1))^2 + (v2pos(2)-v3pos(2))^2 + (v2pos(3)-
v3pos(3))^2);
 count2 = count2+1;
 end

 dtv1 = idposvel(count,2) - v1pos(4);
 dtv2 = idposvel(count,2) - v2pos(4);
 dtv3 = idposvel(count,2) - v3pos(4);

 if dtv1 > 1000000
 v1pos(1:3) = [0 0 0];
 end

 if dtv2 > 1000000
 v2pos(1:3) = [0 0 0];
 end

 if dtv3 > 1000000
 v3pos(1:3) = [0 0 0];
 end

end
figure
scatter(dist1(:,1),dist1(:,2),18,'g','filled')
hold on
scatter(dist3(:,1),dist3(:,2),18,'b','filled')
edges = linspace(4,12,17);
edges2 = edges(2:17);

103

N1 = histcounts(dist1(:,2),edges);
N3 = histcounts(dist3(:,2),edges);
figure
subplot(2,1,1)
bar(edges2,N1)
subplot(2,1,2)
bar(edges2,N3)

histplot2.m – Repeats the histogram from plotdist

 The dist1/dist2/dist3 variables should be copied and edited to reflect only the
period while velocity commands are being sent. I did this manually and named the
respective variables dist1a and dist3a. The specific boundaries should be edited to
include the maximum and minimum spacing distances between vehicles.

edges = linspace(4,12,17);
edges2 = edges(2:17);
N1 = histcounts(dist1a(:,2),edges);
N3 = histcounts(dist3a(:,2),edges);
figure
subplot(2,1,1)
bar(edges2,N1)
subplot(2,1,2)
bar(edges2,N3)

plotbarvel.m – Plots velocity commands over time

 The plot shows every velocity command sent, broken out by rule.

l = length(velsend);
v1vel = [0, 0, 0, 0, 0];
v2vel = [0, 0, 0, 0, 0];
v3vel = [0, 0, 0, 0, 0];
count1 = 1;
count2 = 1;
count3 = 1;
figure
for count = 1:l % one to lower case L

 if velsend(count,1) == 1
 v1vel(count1,1) = velsend(count,2);
 v1vel(count1,2:5) =
[abs(velsend(count,3)),abs(velsend(count,7)),abs(velsend(count,11)),abs(velsend(count,1
5))];
 if v1vel(count1,2) == 0.01

104

 v1vel(count1,2) = 0;
 end
 count1 = count1+1;
 end

 if velsend(count,1) == 2
 v2vel(count2,1) = velsend(count,2);
 v2vel(count2,2:5) =
[abs(velsend(count,3)),abs(velsend(count,7)),abs(velsend(count,11)),abs(velsend(count,1
5))];
 if v2vel(count2,2) == 0.01
 v2vel(count2,2) = 0;
 end
 count2 = count2+1;
 end

 if velsend(count,1) == 3
 v3vel(count3,1) = velsend(count,2);
 v3vel(count3,2:5) =
[abs(velsend(count,3)),abs(velsend(count,7)),abs(velsend(count,11)),abs(velsend(count,1
5))];
 if v3vel(count3,2) == 0.01
 v3vel(count3,2) = 0;
 end
 count3 = count3+1;
 end
end
if sum(abs(v1vel)) > 0
 subplot(3,1,1)
 v1bar = bar(v1vel(:,1),v1vel(:,2:5),1,'stacked')
 set(v1bar,{'FaceColor'},{'b';'m';'g';'r'})
 L1=legend(v1bar, {'Separation','Flight Deck','Alignment','Cohesion'},
'Location','Best','FontSize',8)
end

if sum(abs(v2vel)) > 0
 subplot(3,1,2)
 v2bar = bar(v2vel(:,1),v2vel(:,2:5),1,'stacked')
 set(v2bar,{'FaceColor'},{'b';'m';'g';'r'})
 L2=legend(v2bar, {'Separation','Flight Deck','Alignment','Cohesion'},
'Location','Best','FontSize',8)
end

if sum(abs(v3vel)) > 0
 subplot(3,1,3)

105

 v3bar(v3vel(:,1),v3vel(:,2:5),1,'stacked')
 set(v3bar,{'FaceColor'},{'b';'m';'g';'r'})
 L3=legend(v3bar, {'Separation','Flight Deck','Alignment','Cohesion'},
'Location','Best','FontSize',8)
end

test.bat – Launches 3 FlightGear clients in Windows, connected to MP server

set AUTOTESTDIR="C:\cygwin\home\username\ardupilot\Tools\autotest\aircraft"
c:
FOR /F "delims=" %%D in ('dir /b "\Program Files"\FlightGear*') DO set FGDIR=%%D
echo "Using FlightGear %FGDIR%"
cd "\Program Files\%FGDIR%\bin"

start fgfs ^
 --native-fdm=socket,in,10,,5503,udp ^
 --fdm=external ^
 --aircraft=arducopter ^
 --fg-aircraft=%AUTOTESTDIR% ^
 --airport=KBOS ^
 --geometry=650x550 ^
 --bpp=32 ^
 --disable-anti-alias-hud ^
 --disable-hud-3d ^
 --disable-horizon-effect ^
 --timeofday=noon ^
 --disable-sound ^
 --disable-fullscreen ^
 --disable-random-objects ^
 --fog-disable ^
 --disable-specular-highlight ^
 --disable-anti-alias-hud ^
 --wind=0@0 ^
 --multiplay=in,10,127.0.0.1,5003^
 --multiplay=out,10,127.0.0.1,5000^
 --callsign=AFIT-03

timeout /t 30

start fgfs ^
 --native-fdm=socket,in,10,,5513,udp ^
 --fdm=null ^
 --aircraft=arducopter ^
 --fg-aircraft=%AUTOTESTDIR% ^
 --airport=KBOS ^

106

 --geometry=650x550 ^
 --bpp=32 ^
 --disable-anti-alias-hud ^
 --disable-hud-3d ^
 --disable-horizon-effect ^
 --timeofday=noon ^
 --disable-sound ^
 --disable-fullscreen ^
 --disable-random-objects ^
 --fog-disable ^
 --disable-specular-highlight ^
 --disable-anti-alias-hud ^
 --wind=0@0 ^
 --multiplay=in,10,127.0.0.1,5004^
 --multiplay=out,10,127.0.0.1,5000^
 --callsign=AFIT-02

timeout /t 25

start fgfs ^
 --native-fdm=socket,in,10,,5523,udp ^
 --fdm=null ^
 --aircraft=arducopter ^
 --fg-aircraft=%AUTOTESTDIR% ^
 --airport=KBOS ^
 --geometry=650x550 ^
 --bpp=32 ^
 --disable-anti-alias-hud ^
 --disable-hud-3d ^
 --disable-horizon-effect ^
 --timeofday=noon ^
 --disable-sound ^
 --disable-fullscreen ^
 --disable-random-objects ^
 --fog-disable ^
 --disable-specular-highlight ^
 --disable-anti-alias-hud ^
 --wind=0@0 ^
 --multiplay=in,10,127.0.0.1,5001^
 --multiplay=out,10,127.0.0.1,5000^
 --callsign=AFIT-01

107

Appendix F – Miscellaneous

 This appendix includes information critical to repeating this research but is too

short and detailed for inclusion in the main body of research.

Pixhawk-Beaglebone Serial Connection

 The Telem2 port on the Pixhawk does not have the same input/output as the Telem1

port by default. To enable it as a telemetry port, add an empty file called “uartD.en” to the

APM directory within the Pixhawk’s microSD memory card. This is a poorly-documented

procedure found in ArduPilot documentation. On the Beaglebone Black, open the capemgr

file (/etc/default/capemgr) and change the line “#CAPE” to “CAPE=BB-UART1,BB-

UART2” and reboot the Beaglebone. This will enable the Beaglebone’s serial ports

because they are not active by default. These two fixes will allow the Beaglebone to

receive telemetry off the Telem2 port, send velocity commands to the Pixhawk. Ensure

the SERIAL2_BAUD parameter on the aircraft is set to 57; other parameters starting with

“SR2_” may need to be tweaked as well.

These fixes also permit the companion computer to connect to the Pixhawk at the

same time as a GCS using Mission Planner, which had not been resolved in previous

research. Note the python script running the Reynolds+ algorithm running on the

companion computer continuously throws an error code ("Exception in message handler

for HEARTBEAT; mode 0 not available on mavlink definition") while the GCS is

connected at the same time, but both still provide required functionality.

Companion Computer Modules

The following modules need to be added or updated to the companion computer

with apt-get or apt-get install:

108

update, git, libncurses5-ddev, libncursesw5-dev, gawk, subversion, libapache2-svn,

openjdk-6-jdk, python-dev, unzip, python-setuptools, python-opencv, python-wxgtk2.8,

python-pip, python-matplotlib, python-pygame, python-lxml, software-properties-

common, python-software-properties, libxml2-dev, libxslt-dev, firmware-atheros (this

depends on what firmware your Wi-Fi adapter requires), batctl, bridge-utils

 The following modules need to be added to Python on the companion computer

(pip install): lxml, dronekit, numpy (ensure latest version), future, mavproxy, dronekit=sitl,

droneapi, pymavlink (version 2.2.6 preferred – uninstall all copies of pymavlink then

reinstall the specific version)

 When installing lxml and pymavlink, the memory on the Beaglebone was

insufficient so a swap file was created to permit installation:

 dd if=/dev/zero of=/swapfile1 bs=1024 count=524288
 mkswap /swapfile1
 chown root:root /swapfile1
 chmod 0600 /swapfile1
 swapon /swapfile1

It was removed after installation using:
 swapoff -v /swapfile1
 rm /swapfile1

Installation of lxml can take a while on the Beaglebone (estimated at one hour).

Timing

 Timing is important to the Reynolds+ code because the data broadcast by other

aircraft is stored with a timestamp. If data from any aircraft is more than 2 seconds old, it

is discarded and zeroed out, which the algorithm treats as a non-broadcasting aircraft.

 The Beaglebone Black companion computers used in this research do not have a

backup battery to maintain a clock, and thus always boot up at a hard-coded system time.

109

The Reynolds+ code includes a snippet that obtains GPS time from the Pixhawk and sets

the companion computer’s system time to match it upon starting up the script. Initial

configurations updated the clock every time the Pixhawk updated its clock (~4 Hz), but

this proved to cause problems with timestamps, so clock drift is assumed to be acceptable

for the duration of flight (~20 minutes at most) and the update is only performed once.

LCM

 For LCM to work properly over the ad-hoc network, a specific common URL must

be exported using the following command: “export

LCM_DEFAULT_URL=udpm://239.255.76.67:7667?ttl=1”. Initially this command had

to be manually input every time a terminal was opened, but it was later automated with the

ad-hoc network setup.

 For LCM to work properly between VirtualBoxes, the export command is: “export

LCM_DEFAULT_URL=udpm://224.3.29.71:5005?ttl=2”. Additionally, the following

command must be run on opening each terminal: “route add 224.3.29.71 dev enp0s8”

(check ifconfig to see which interface is appropriate – it may be enp0s3 or similar).

 Neither the software nor hardware setups would send and receive LCM messages

on the same channel at the same time. Therefore, each vehicle’s Reynolds+ algorithm

creates a LCM object for each other vehicle in the swarm, with a channel dedicated to that

vehicle. Each vehicle listens on its own channel and broadcasts on all other channels. To

facilitate message handling simultaneously with the swarm algorithm, Python’s threading

module was utilized to place message handling in the background and swarm execution in

the foreground.

FlightGear Multiplayer Server (FGMS) Setup

110

 This segment includes tips for setting up FGMS in Cygwin. The following sites

provide instructions for setting up a multiplayer server:

http://wiki.flightgear.org/Howto:Set_up_a_multiplayer_server

http://fgms.freeflightsim.org/README_cmake.html

Pthreads (see setup instructions) were obtained from:

ftp://sourceware.org/pub/pthreads-win32/ (pthreads-w32-2-9-1-release.zip used for this

research)

During installation of the server, open Xwin Server in Windows, and “export

DISPLAY=:0.0” before running cmake-gui per setup instructions.

Ensure thread_INC and thread_LIB point to the correct folders using the cmake-gui; most

of the available options were left unchecked.

Libcrypt-devel is a required package for Cygwin.

The following lines must be included in fgms.conf:

server.name = yourservername
server.address = 127.0.0.1
server.port = 5000
server.telnet_port = 0
server.playerexpires = 10
server.logfile = fgms.log
server.tracked = false
server.daemon = false
server.is_hub = true
relay.port = 5001
relay.port = 5004
relay.port = 5003

To run the FGMS server in Cygwin on opening a terminal:

cd /cygdrive/c/cygwin/home/YourUserName/build-fgms
 ./fgms -c ./test.conf

http://wiki.flightgear.org/Howto:Set_up_a_multiplayer_server
http://fgms.freeflightsim.org/README_cmake.html
ftp://sourceware.org/pub/pthreads-win32/

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

22-03-2018
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2017 – March 2018

TITLE AND SUBTITLE

Design and Test of a UAV Swarm Architecture over a Mesh Ad-hoc
Network

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Allen, Timothy J., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/ENV)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-18-M-172

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Intentionally Left Blank

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States.

14. ABSTRACT
 The purpose of this research was to develop a testable swarm architecture such that the swarm of UAVs collaborate as a team
rather than acting as several independent vehicles. Commercial-off-the-shelf (COTS) components were used as they were low-
cost, readily available, and previously proven to work with at least two networked UAVs.
 Initial testing was performed via software-in-the-loop (SITL) demonstrating swarming of three simulated multirotor aircraft,
then transitioned to real hardware. The architecture was then tested in an outdoor nylon netting enclosure. Command and control
(C2) was provided by software implementing an enhanced version of Reynolds’ flocking rules via an onboard companion
computer, and UDP multicast messages over a W-Fi mesh ad-hoc network. Experimental results indicate a standard deviation
between vehicles of two meters or less, at airspeeds up to two meters per second. This aligns with navigation instrumentation
error, permitting safe operation of multiple vehicles within five meters of each other. Qualitative observations indicate this
architecture is robust enough to handle more aircraft, pass additional sensor data, and incorporate different swarming algorithms
and missions.

15. SUBJECT TERMS
UAV UAS swarm architecture mesh ad-hoc network LCM UDP multicast SITL multirotor
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

 ABSTRACT

UU

18. NUMBER
OF PAGES

123

19a. NAME OF RESPONSIBLE PERSON
Dr. John M. Colombi, AFIT/ENV

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 3347
john.colombi@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2018

	Design and Test of a UAV Swarm Architecture over a Mesh Ad-Hoc Network
	Timothy J. Allen
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I. Introduction
	General Issue
	Problem Statement
	Research Objectives
	Investigative Questions
	Methodology
	Assumptions/Limitations
	Implications
	Preview

	II. Literature Review
	Chapter Overview
	Use of Low-Cost COTS Components in Multi-UAV Demonstrations
	Military Utility
	Cooperative Behavior and Algorithms
	Command and Control (C2) Architectures
	Autonomous Control
	Conclusion

	III. Methodology
	Chapter Overview
	Architecture
	Hardware/Software Implementation
	Algorithm Development and Verification
	Telemetry Transmission and Logging
	Software in the Loop (SITL) Testing
	Metrics
	Test and Verification Procedure
	Cage Testing
	Summary

	IV. Analysis and Results
	Chapter Overview
	Test Scenario
	Limitations
	Quantitative Results
	Qualitative Results
	Analysis Summary
	Chapter Summary

	V. Conclusions and Recommendations
	Chapter Overview
	Conclusions of Research
	Investigative Questions Answered
	Significance of Research
	Recommendations for Action
	Recommendations for Future Research

	Bibliography
	Appendix A – Use Cases
	Appendix B – Architectural Function Descriptions
	Appendix C – Reynolds+ Rules as Implemented
	Appendix D – Software in the Loop Setup & Discussion
	Appendix E – Code
	Appendix F – Miscellaneous

