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Abstract

Air Force Installation Contracting Agency manages nearly 18 percent of total Air

Force spend, equating to approximately 57 billion dollars. To improve strategic sourc-

ing, the organization is beginning to categorize installation-support spend and assign

accountable portfolio managers to respective spend categories. A critical task in this

new strategic environment includes the appropriate categorization of Air Force con-

tracts into newly created, manageable spend categories. It has been recognized that

current composite categories have the opportunity to be further distinguished into

sub-categories leveraging text analytics on the contract descriptions. Furthermore,

upon establishing newly constructed categories, future contracts must be classified

into these newly constructed categories in order to be strategically managed. This

research proposes a methodological framework for using Latent Dirichlet Allocation

to sculpt categories from the natural distribution of contract topics, and assesses the

appropriateness of supervised learning classification algorithms such as Support Vec-

tor Machines, Random Forests, and Weighted K-Nearest Neighbors models to classify

future unseen contracts. The results suggest a significant improvement in modeled

spend categories over the existing categories, facilitating more accurate classification

of unseen contracts into their respective sub-categories.
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TEXT CLASSIFICATION OF INSTALLATION SUPPORT

CONTRACT TOPIC MODELS FOR CATEGORY

MANAGEMENT

I. Introduction

Contracting practices in the Department of Defense (DoD) strive to appropriately allo-

cate management of contract categories. Currently, installation support contracts constitute

a significant portion of obligations, with broad categories comprised of varying goods or ser-

vices being managed by the same organizational entities. In 2014, a concept of operations

(CONOPS) proposed a category management and strategic sourcing approach to spend anal-

ysis and supply chain management 1. This delegation of responsibility over spend categories

that include a wide spectrum of different contract types is inhibiting efficient oversight at the

cost of increased DoD spending. Installation Support spend represents 17.82 percent of total

Air Force contract spend, summing to approximately 58 billion dollars over the last 5 years 2.

These general categories could be further distinguished into sub-categories using text analy-

sis techniques, and future contracts be classified to these categories through implementation

of machine learning techniques, providing improved efficiency in contract management and

could show potential savings due to active consumption shaping by portfolio managers.
1Muir, Keller, Knight. "Category Management: A Concept of Operations For Improving Costs At The

Air Force Installation". United States Air Force.2014
2http://www.afimsc.af.mil/Units/Air-Force-Installation-Contracting-Agency/
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1.1 Motivation

In 2014, the office of management and budget issued a memorandum outlining the im-

portance of category management, or the management of procurement over entire categories

of common spend rather than individual units, and the plans to roll out Category Manage-

ment and Strategic Sourcing best practices government-wide [32]. In this way, government

procurement practices would more closely resemble those of the private sector. Specifi-

cally, category management of Information Technology (IT) contracts were highlighted as

an area for which category management could prove beneficial in reducing costs and limit-

ing duplicate contracts. Further, one of the objectives of this implementation is to leverage

innovations in technology to facilitate the government’s, and by extension the Department

of DoD’s, adoption of the category management solution. This research aims to evaluate in

which ways technology may be leveraged, in the form of text analysis and machine learning,

to best aid analysts in the implementation of category management.

1.2 Research Objectives

For Category Management to be effective, there needs to be clear categories for which

to group common spend. Text analysis provides a tool for which to systematically compare

the relation of contracts by commonalities in their contract description. Similarities between

the frequency of words in a contract description should allow analysts to group contracts of

similar spend into a common category. To this end,it is proposed that through use of Latent

Dirichlet Allocation (LDA), topic models may be constructed for which to categorize IT

contracts. Using the probability of association of certain words with their respective topics,

contracts may be categorized by the words they contain, and the frequency in which they are

used. In this endeavor, the following are to be explored: how can supervised classification

techniques, specifically Support Vector Machines (SVM), Random Forests, and Weighted

2



K-Nearest Neighbors (K-NN) be used to classify future contract obligations into identified

contract categories? Concurrently, which method would be most accurate and practical?

Although this research proposes a methodology for text analysis and classification, this

research will be the foundation to develop an analysis tool in the form of a R-Package

for text data analysis and classification. This tool will accomplish pre-processing of the

text, convert to document term matrix, partition over train and test splits, fit to the data

an ensemble of classification models, validate with the test data, and return metrics and

graphics for model comparison and results. The process of this analytical tool will flow

naturally from topic modeling analysis on the same data set, providing target categories on

which the classification models may be trained. This will provide the analyst or user not only

with an insightful model representing the content of contract categories, but also a system

for building classification algorithms for future contract classification.

1.3 Assumptions and Limitations

The research is constrained by several limitations and bound to several assumptions.

First and foremost, there is available a limited number of contracts for use in this study, each

with brief text fields of varying length. Using the description of the contract, text analysis

will on short-text rather than the lengthy narratives for which these tools were intended.

As the intent of the research is to explore a feasible and reproducible methodology for

government analysts, only the most practical statistical learning algorithms were considered,

exempting more involved model-building, for example neural networks. The research is

bound by the assumption that the data provided is representative of the current state of

installation support contract processing, and also that the subset of the data used in this

research is parallels the format and structure of the omitted data. Most importantly, however,

it is assumed that the description provided for each contract accurately represents what the

contract requires, or relavant contract characteristics, rather than mirrors the category to

3



which it was submitted.

1.4 Thesis Outline

Chapter 2 serves as a literary review of published literature relevant to the research.

Topics reviewed will include current methods of categorizing contracts within the DoD and

solution approaches to the problem of categorizing and classifying new contracts into their

respective categories. Approaches to analyzing and categorizing contracts based on their

inputs can be distinguished in topics regarding wrangling text data, preprocessing of text

data for use in machine learning processes, and classification and clustering methods with

categorical and continuous features. Chapter 3 explains the data source used in this study

and the preparation that went into cleaning the data before the analysis could begin. Chapter

4 describes the analysis of the classification algorithms, topic modeling, and misclassification

exploration. Chapter 5 concludes the study and gives recommendations for future research.

4



II. Literature Review

2.1 Current Methods

Category Management is the strategic management of spend across an organization by

category [27]. These spend categories are comprised of contract obligations of similar type.

Management of many of these spend categories is delegated to various entities, and although

they are responsible for this spend, may not have the resources or experience to appropriately

manage such a diverse portfolio. This is the case with the majority of installation support

contracts, as they are comprised of a spectrum of goods and services. Air Force Installation

Contract Agency is responsible for the management and execution of installation support

contracts for the service. They outlined four primary actions in order better implement

category management in the Air Force:

First, the Air Force must adopt centristic strategic supply management practices

for installation support and assign portfolios of spend categories to champions.

Second, champions must be responsible and accountable for controlling and im-

proving category costs and consumption across the enterprise and must be em-

powered to shape consumption and drive purchasing behavior. Third, champions

must assign managers for categories who possess or can obtain expert domain

knowledge in their categories. Finally, the Air Force must improve its capabilities

for business intelligence to support managers, the definition and analysis of their

categories, and the long-term development of category improvement initiatives;

a centralized Business Intelligence Competency Center is recommended for this

purpose [27].

5



In order to achieve this goal, it is important to shift away from the current taxonomy

of contract management in Air Force installation support contracts to a system more con-

ducive to the strategic management of spend categories, thus reducing cost through active

consumption shaping. A proposal of an improved system is outlined below.

Figure 1. OSD Portfolio Group Taxonomy

This portfolio group taxonomy is currently implemented at the Office of the Secretary

of Defense (OSD), and provides each portfolio with the expertise needed to manage and

shape the spend category. Management is broken down into “Portfolio Managers” who

are responsible for an individual portfolio of which they are a subject matter expert, and

“Portfolio Group CEOs” who would manage a group of spend categories [27]. This system

is dependent on the accurate categorization of incoming installation support contracts, and

allowance of portfolio managers the flexibility to define their categories and to later refine

6



them, if needed [26]. However, the proposed CONOPS prescribes terms frequency as the

analytic approach for accurately categorizing spend categories. This would allow for analysts

to portray the spend categories in an insightful but relatively superficial way using the text

fields of the contracts. There exists a more extensive approach to shaping spend categories,

namely with inclusion of inverse document frequency (providing also the frequency in which

the term appears in each document) and topic modeling.

2.2 Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) is defined as “extracting extracting implicit

valid, new, and potentially useful information from data, which is non-trivial” [9, p. 82].

The tool for which to do this is referred to as data mining, in which algorithms are used to

extract patters from data. KDD is the overall process for information extraction, whereas

data mining is only one specific step in the KDD process. Although databases insinuate

structure to data, the KDD process can also be implemented on more unstructured data,

such as text.

2.3 Machine Learning

Machine learning is a branch of artificial intelligence and is commonly used for data

mining. It aims to leverage statistical methods and algorithms to learn patterns in the data

and use the learned patterns to provide predictions on attributes in unseen data. In this

way new data can utilize trained models in order to automatically extract information from

similar data for which certain attributes are not necessarily known [25]. Text classification

is a sub-domain of machine learning, used to classify unknown text documents on learned

features from training documents.

7



2.4 Text Mining

Text mining, initially dubbed knowledge discovery from text (KDT) [10] is a type of

knowledge discover process tailored for unstructured text data. This process uses algorithms

for analyzing large amount of text data, for which it is unfeasible to manually extract infor-

mation. The necessity for text mining came about as databases were no longer limited to

storing structure data, expanding to store text documents. The appropriate use of text-based

data, especially that of free-form data entry, remains a challenge to many researchers. The

lack of restriction on free-form allows for significant amounts of information to be drawn

from each entry. However, challenges remain in capitalizing on this potential, as unpre-

dictable text-based data is difficult to impose data analytics upon. Several methods exist

in order to better organize and analyze this data. Natural Language Processing provides

researchers tools for deriving statistics and quantifying characteristics of data comprised of

natural language terms [39]. Many Natural Language Processing techniques use some com-

mon elements. Term Frequency (tf ) is the process of counting the number of times a text

object (word, term, or n-gram) appears in a document (the individual text field of focus).

An n-gram is a collection of n number of letters from text data. These can take the form

of syllables or roots of a word, or merely pairs of letters. One approach to indexing the

corpus of a data set of text is through suffix arrays. A suffix array is “a data structure. . . for

on-line string searches” [23], and facilitates the querying of strings in a body of text with

computational efficiency. This structure can be used to calculate the term frequency and

document frequency (df ) (number of times term is used in each document).
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Figure 2. Suffix Array for Term Frequency [47]

Term frequency and document frequency allows for automatic text analysis on large text

data sets. Term Frequency-Inverse Document Frequency is a statistic used to quantify the

weighted value of each term in respect to its frequency within each document in the corpora.

This comes in the form of a matrix with columns containing tf-idf values for each document,

indexed by the respective term of that weighted frequency count [2]. Several weighting

schemes have been tested, finding that “text indexing systems based on the assignment

of appropriately weighted single terms produce retrieval results that are superior to those

obtainable with other more elaborate text representations” [34, p. 10]. In implementing the

tf-idf method, one can derive a summary of themes for each document, or for the set of

documents. In doing so, this method would be superior to the unweighted term frequency

approach to categorizing contracts initially proposed by AFICA.

2.5 Text Summarization

Text documents are generally comprised of one or more topics throughout, with many

documents potentially being of similar topics. The ability to summarize text documents

based on the words in their corpus is known as extractive summarization. In this way, the

words used in each document provides insight as to the topic of the document of the whole,

and may be used to provide a summary of what the document could be about. This study
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is fundamental for grouping documents together based on similarities in summary [30].

2.6 Unsupervised Learning Methods

Unsupervised learning is the process of extracting hidden structures in unlabeled data.

Unlabeled data are any data that do not have associated labels that associate the data to a

specific class, category, or target value of interest. They are unsupervised in the sense that

they do not require training, and assess statistical properties of the data using structures that

are inherent to the data. The most common unsupervised learning methods are clustering

and topic modeling.

2.6.1 Clustering Methods

Although Natural Language Processing is effective for extracting summary analysis and

tagging documents with topics, unsupervised learning clustering algorithms are able to clas-

sify documents based on their similarity to other documents. Clustering is “a very broad

set of techniques for finding subgroups, or clusters, in a data set” [18]. The most popular

methods of clustering for use in machine learning are K-means clustering and Hierarchical

Clustering. K-means clustering requires that the user define the number of clusters that the

algorithm should implement, while hierarchical uses distance between entries to determine

where cluster separations lie based on similarity. Document clustering using hierarchical

methods is regarded a better quality approach, however, its time complexity makes it less

practical for large data sets [41]. An alternative approach defined as soft clustering allows for

mixture models as described earlier by Latent Dirichlet Analysis and can better accommo-

date for outliers and prevent small subclusters from inaccurately being absorbed into larger

clusters nearby [14].

Several comparisons of clustering techniques are available, and specifically those involv-

ing clustering based on both categorical and continuous features. A study by Steinbach
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provided an alternative to these approaches in the form of a K-means clustering variant,

bisecting K-means. In this method, clusters are iteratively split based on similarity until the

number of clusters required is achieved. This differs from K-means, which initially begins

defining n clusters randomly until convergence. Bisecting K-means proved to be as good as

or better than both K-means and Hierarchical approaches and has the added appeal of com-

putational runtime on the order of n, rather than quadratic time complexity [41]. Two other

algorithms have been presented for use specifically with mixed data types. These algorithms

are K-prototypes, and fuzzy SV-k-modes. K-prototypes allows for the capturing of mixed

data characteristics through use of prototypes, which store information about distributional

characteristics rather than rely on the mean values of the clusters [15]. K-prototypes allow

for the use of non-numerical features while retaining the efficiency of the K-means algorithm

[19]. Further improving on the K-modes and K-prototypes algorithms proposed by Huang,

fuzzy SV-k-modes algorithms provides a more efficient approach at clustering with mixed

data and set-valued attributes. This specifically can be implemented to text queries that

have brief document corpora much like the contract inputs for Installation Support. SV-k-

modes allows again for the efficiency of k-means clustering without the data type restriction

[3].

2.6.2 Topic Modeling

Topic modeling is very similar to clustering. Documents can be assessed for similarities

based on the terms they contain. Similar documents can thus be grouped together based

on their containing vocabulary. As each topic is a probabilistic distribution over words, and

documents are a probabilistic distribution over topics, the topics of each of the clustered

documents can be modeled based on each terms probabilistic association with each of the

topics, providing context to the topics. In addition, documents can be evaluated based on

their probabilistic association with each of the topics [42].
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2.7 Supervised Learning Methods

Supervised Learning Methods differ from unsupervised learning in the sense that they

require labeled data. Labeled data are data that have an attributed target value to each

of the observations. Using features of the data, and the class labels, algorithms can create

a classification function or use an instance-based approach to create a decision boundary.

Text Classification is an example of supervised machine learning, as each document has a

corresponding class or topic, which can be used to train a classifier to then predict the class

or topic of unlabeled or unseen documents [25].

2.7.1 Text Classification

Text classification, automated using machine learning processes, has grown in popularity

as computational power has become faster and more accessible. The realized potential of

seamlessly indexing and sorting documents based on their predicted themes or topics has

made exploration into classification techniques extensive and ever-improving. The process

for preprocessing text data, training, and testing a model for text classification is as follows:

Figure 3. Text Classification Process [17]

Research published by Kahn [21] compares the numerous classification algorithms avail-

able for document representation and classification. This includes Support Vector Machines

(SVM), Naive Bayes (NB), and k-Nearest Neighbors (k-NN). SVM was recognizes as the
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leader in classification algorithms, in both computation time and accuracy. However, SVM

fails to scale up with larger data sets, K-Nearest Neighbors is able to scale well, but relies

heavily on training sets for classification accuracy. The variability of classification accuracy

based on training set selection remains a challenge in document classification, as corrobo-

rated by Sebastiani [37]. This makes it difficult to train a general model that would work

well with unseen data. Inference is achievable, but accurate prediction remains an obstacle.

Sebstiani also finds SVM classification for text data remains superior to both neural network

models and k-NN, and recommends boosted models and decision trees for further research.

Although decision trees can yield promising classification results and are more robust and less

prone to over-fitting, they are also computationally strenuous. The one common challenge

to the advances in automated text classification is the failure of models to classify when a

new corpus is introduced. There is inherent bias in document classification methods, as they

train to a specific corpus, and thus have trouble classifying new documents of a different cor-

pus. These three studies did not include cross-validation measures for model tuning in their

process. This would allow for the optimal model parameters for each classification method

to be tested in every case. However, exhaustive cross validation would also exacerbate the

computational complexity of the models, causing computational time to be an issue [17].

2.8 Probabilistic Methods

Probabilistic text mining allows researchers to find hidden groups in data by creating

probability distributions of similar statistical structures. Latent Dirichlet Allocation (LDA)

and topic modeling are both examples of probabilistic models. Latent Dirichlet Allocation

(LDA) provides the tools that are lacking in the classical scheme of tf-idf. LDA is “a genera-

tive probabilistic model for the collections of discrete data such as text corpora” [2, p. 993].

LDA uses a three-level hierarchical Bayesian mode, where each item is modeled as a mixture

of the underlying set of topic probabilities. This makes LDA useful for text classification,
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as each term can be predicted based on their relationship to a set of topics. The advantage

of LDA over other latent variable models, is that it is able to more accurately model for

inference on unseen documents.
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III. Methodology

3.1 Overview

This research explores a methodological approach to text analysis implemented upon Air

Force installation support contracts. This methodology is the foundation for an analysis

tool for text data that will accomplish pre-processing of the text, convert to document term

matrix, correct for class imbalances, partition over train and test splits, fit to the data

an ensemble of classification models, validate with the test data, and return metrics and

graphics for model comparison and results. The methodology of this tool will flow naturally

from topic modeling analysis on the same data set, providing target categories on which the

classification models may be trained.

Figure 4. Proposed Methodology Flow for Contract Document Classification

In this paper, the data is explored from a structural point of view, and then also from a

text analytic approach, investigating term frequencies and term distributions for each of the
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PSC Categories. Each step of the methodology will be accomplished within the scope of the

most data-abundant PSC Category (Category 70: ADP Equipment Support, and Software),

before being expanded to the entirety of the categories. The former will model subcategories

(level 2 categories) from PSC category 70 , while the latter will re-model all current PSC

categories, assessing classification potential for both. For comparison of legacy category

constructs to the proposed method, initial classification utilizes the legacy level 2 categories

for which to train classification models. Topic modeling allows for themes of categories to be

subsequently extracted. The extracted topics are then to be associated with their respective

contract documents based on likelihood of association between document description and

topic terms. The associated topics are then used as target values for classification training of

the newly constructed categories. A test partition of these documents are used for validation

of the model, or cross-validation techniques are implemented, and the models are compared

for accuracy and computation complexity and compared to the legacy category viability for

text classification. Further, Misclassifications can be examined to determine potential causes,

and best practices can be recommended. Implementing text classification will not only allow

for the construction of classification models for the categorization of future unseen contracts,

but also provide insights as to current potential misclassifications with shaped topics.

3.2 Statistical Tools

The raw data was imported into R: a statistical computing environment [29] using the

R-Studio IDE for ease of data management and visualization. Several statistical and data-

wrangling packages were used throughout the research:

• data.table importing and conversion to structured dataframe, as well as for data manip-

ulation [8]

• tidyverse data-wrangling, manipulation, and visualization [46]

16



• psych statiscal summaries in table form [31]

• tidytext topic modeling and text analysis and visualization [38]

• scales scaling data for visualization [45]

• class wrapper for classification evaluation in R [43]

• randomForest Random Forest cross validation, training, and analysis for R [22]

• e1071 Support Vector Machines cross validation, training, and analysis for R [24]

• kknn Weighted K Nearest Neighbors cross validation, training, and analysis for R [36]

3.3 Data Source

The source of the data used for this research are the installation contract obligations

for Information Technology (IT) spending. The contract data are pulled from the Federal

Procurement Data System - Next Generation (FPDS-NG). The provided sample of (IT)

contracts include description fields that contain manually-inputted short-text information

about the contracts, some of which are only vaguely descriptive and loosely related to the

categories under which they are managed. The data set is sourced from Air Force Installation

Contract Agency. The raw data is in comma-separated values table format. Included in the

contract information are many variables including cost, contract source information, and

specialty codes. However, only the contract descriptions will be isolated and used for text

classification, with the product service codes, product service code categories, and contract

IDs used to organize and distinguish contracts. Each contract description is intended to

describe for what purchase the contract serves. The product service codes and produce

service code categories are used by the DoD to define categories for which contracting agents

use to sort submitted contract transactions. The following tables summarize the number of

contracts for their respective product service codes.
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Figure 5. Distribution of Product Service Code Categories

These Product Service Codes (PSC) depicted in Figure 5 correspond to different cate-

gories of DoD spending. Each of these categories are in the realm of information technology,

but their individual categories differ greatly. The majority of the contracts represent Auto-

mated Data Processing (ADP) Software, Supplies and Equipment. More than half of the IT

contracts in the data come from this category, with over 90 percent of the total contracts

associated with categories 70, D, 58, and J.
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Table 1. PSC Category Description and Count

PSC Category PSC Description Number Contracts Percent

70 ADP EQPT/SOFTWARE/SUPPLIES AND EQPT 18622 0.5464362

D ADP AND TELECOMMUNICATIONS 5678 0.1666129

58 COMM/DETECT/COHERENT RADIATION 4598 0.1349218

J MAINT, REPAIR, REBUILD EQUIPMENT 3623 0.1063118

60 FIBER OPTIC 624 0.0183104

N INSTALLATION OF EQUIPMENT 274 0.0080401

74 OFFICE MACH/TEXT PROCESS/VISIB REC 234 0.0068664

S UTILITIES AND HOUSEKEEPING 131 0.0038440

L TECHNICAL REPRESENTATIVE SVCS. 104 0.0030517

R SUPPORT SVCS (PROF, ADMIN, MGMT) 101 0.0029637

W LEASE/RENT EQUIPMENT 59 0.0017313

H QUALITY CONTROL, TEST, INSPECTION 21 0.0006162

K MODIFICATION OF EQUIPMENT 10 0.0002934

In Table 1, the proportion of the PSC categories that make up the total data sample

is shown. In addition, the associated PSC description for the each of the PSC categories

refers to the title of each of the PSC categories, representing the expected contents of the

legacy category divisions. These descriptions indicate to which category the contracts should

submitted. As category 70 contracts provide the most observations with which to work, this

category will be used to demonstrate the approach of text classification on modeled topics

at the sub-category level.

3.4 Exploratory Analysis

Exploratory analysis establishes the characteristics and structure of the text data con-

sidered. This provides fundamental insight as to what the text data is comprised of, and the
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distributions in which these terms are found in each of the categories. This characteristic

is significant as statistical distinctions between contracts, and categories of contracts using

text analytics depend on a frequency of common used terms between similar contracts, and

unique terms used exclusively in contracts of similar content.
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Figure 6. Distribution of Number of Terms vs. Number of Unique Terms per PSC Category

The distributions of number of terms of each of the PSC categories were first determined.

Figure 6 indicates that all categories contain contracts with between 0 and 25 terms in each

description field, with category 70 presenting a mean of 10.0938175 total terms in it’s contract

descriptions. Text analysis depends on the differentiation of documents based on distinction

of terms and the frequency in which they are present in each descriptions. Therefore, as

some of the contracts contain the aggregated descriptions of multiple delivery orders or

transactions, it is necessary compare the number of distinct terms in the contracts of each

category. There are expectedly less unique terms on average, as all categories having a mean

of between 0 and 10 unique terms, and with category 70 having an average of 5.7857711
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unique terms.

Table 2. Top Term by PSC Category

psc_cat word n

R support 25038

J repair 17118

S services 9336

70 software 6489

D support 5972

W lease 2301

58 equipment 1856

N installation 916

L support 867

74 office 600

H inspection 515

60 fiber 405

K modification 276

Further summarization of the overall contents of the contracts associated with each PSC

Category is depicted, investigating the most frequent term for each category. In Table 2, it

can be determined that the following PSC categories may be explained in part by the their

most frequent terms. In addition, prevalence of overlapping frequent terms provide support

that these categories could be more effectively modeled, and that misclassifications could

arise due to frequent terms being grossly attributed to more than one class.
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Figure 7. Term Distribution per PSC Category

Investigating the top 5 most frequent words in Figure 7 throughout all IT contract de-

scription allows for the visualization of which terms are found most often in documents of

each of the categories, as well as the degree of which they are present by proportion. This

asserts that many of the most frequent terms represent the most common contract actions

found among all the PSC categories. However, due to the unbalanced distribution of number

of PSC category contracts, these terms most likely are those most frequently found in the

largest proportion of contracts, in this case those belonging to the ADP Software Supplies

and Equipment.

3.5 Data Preparation

Once imported, initial data cleaning is required for further analysis. This includes remov-

ing any characters that were not alphanumeric from the description field, as well as deletion

of automatically generated tags of “igf”(inherently governmental functions), “ct”" (critical
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functions), “ot”" (other functions), and “cl”(closely associated). These tags are present in

all contract descriptions as mandated by the FPDS-NG database, thus adding no value to

the text descriptions used for analysis1. Further cleaning involves removing contract data

where there exists no information submitted in the description field (description), PSC

category field (psc_cat), or PSC code field (psc). Finally, the contract ID was separated

into two separate columns, contract_id, and transaction_id. The contract ID is

a unique 13-character code assigned to a specific contract, whereas all characters after the

initial 13 identify which transaction is being referenced on the same contract. This ensured

that analysis is conducted specifically on individual contracts, and not duplicate submittals

of the same contracts. Further, the text field of these contracts were aggregated per-contract.

So that each contract’s description includes the text from all encompassing transactions of

the same type.

Table 3. Contract Data Considered for Text Analysis

document psc_cat psc Description

63634 FA810112M0005 S S209 PROVIDE TOWEL COVERALL CLEANIN

18726 FA873014F0030 70 7030 NETAPP CISCO EQUIPMENT

60204 FA930216ML029 R R799 IGF OT IGF INVENTORY ORGANIZ

44787 FA449715P0086 J J080 IGF OT IGF PREPARE AND PAINT

35094 FA850514C0002 J J017 IGF OT IGF REPAIR REFURBISH

19213 FA877015F0506 70 7030 ACAT VIRTUAL MACHINE PROCESS

2754 FA852316F0026 58 5826 MINIATURIZED AIRBORNE GPS RECE

44096 FA812514M0006 J J070 IGF OT IGF PREVENTIVE AND RE

67343 FA820112P0137 W W099 CROWD CONTROL EQUIPMENT RENTAL

9853 FA330015F0092 70 7022 OFFICE DESKTOPS QEB A SEE FU

After initial cleaning, there remained 67365 observations from a total of 729659 original
1"FPDS-NG Data Validation Document". IBM. 2017
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observations. Many of these contracts were duplicate contracts from several transactions.

These contracts’ descriptions were condensed and associated to one contract number. In

addition, some of the omissions were warranted based on missing information or blank input

fields. The structure of the data frame was compiled of the following variables: document,

psc_cat, psc, and description. The document variable served as a unique ID for the

contract via association with the contract number, the PSC Category variable represented

level 1 PSC designator, and PSC (entire code) represented the level 2 sub-category within

each respective PSC Category, shown in Table 3.

3.6 Pre-Processing

3.6.1 Tokenization

Tokenization refers to the initial preprocessing step of separating a character sequence

into its individual terms or tokens. In this process, numerics, symbols, and punctuation were

expunged from the character sequence [44]. This serves as the process for transforming a

collection of terms into variables associated with each contract, rather than regarding the

text as a whole.

3.6.2 Filtering

In the next step of preprocessing, filtering was accomplished. Filtering was conducted on

documents in order to remove specific words from the collection of document terms [40]. The

most popular method is the removal of stop words. Stop words are words that might appear

in colloquial for syntax, or provide some other purpose other than providing information or

context to the text corpus. For example, prepositions and conjunctions, words that appear

so frequently that they are no longer distinguishing factors between documents (eg. a, the,

etc.), and words that appear so rarely that they are unique to only one document would be
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removed [33].

3.6.3 Lemmatization and Stemming

Lemmatization and Stemming are two text preprocessing methods that involve manip-

ulating the remaining terms in order to extract only the valuable information from each.

Lemmatization is the grouping of the various inflected form of a word so that plurals and

other forms are grouped to their singular generic form. Stemming, on the other hand, obtains

only the stem or root of each derived word. In this way, all words are reduced to their root

form, so that verb and noun derivatives of each term are grouped (eg. concept, concepts,

conceptualize, conceptualized, conception reduce to concept) [16].

3.6.4 Vector Space Model

With the corpus trimmed to only informative words or roots, the documents must be

represented in numeric vector form. The converted form for numeric representation of words

and documents is the Vector Space Model (VSM). This allows for documents containing text

data to be analyzed efficiently, given large data collections [35, p. 613-620]. The concept

behind this structure is that each word in the vocabulary V = {w1, w2, .., wv} in document

D = {d1, d2, ..., dD} is represented by a numeric variable weighting the importance of the term

in the document. This weighting is generally accomplished through term frequency fd(w)

within each document, and the frequency of documents containing the word fD(w). There-

fore, the term vector for document d can be represented by ~td = (fd(w1), fd(w2), ..., fdwv)).

For any term wi ∈ dj for each document d, frequency weighting will be assigned ωij = 0

if the term does not appear in the document, and ωij > 0 corresponding to the number of

times it occurs in the document. Alternatively, Term Frequency-Inverse Document Frequency

(TF-IDF) may be used to normalize these frequencies respective to how many documents in
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which the term occurs. The weighting function then becomes:

q(w) = fd(w) ∗ log |D|
fD(w)

in which the individual term weight is the term frequency within the document multiplied

by the log ratio of the number of documents and the frequency in which the word appears in

the all documents. The resulting term vector of weights is ω(d) = (ω(d, w1), ω(d, w2), ..., ω(d, wv).

A set of vectors for each document creates a document-term matrix (DTM) [34, p. 513-523].

3.6.5 Target Values

Text analysis requires that the data first be organized according to a format by which

machine learning algorithms can associate feature values to specific classification or target

value. Target values provided algorithms with numerical class associations for which to train

the models. To this end, the level 2 PSC codes are enumerated within their respective PSC

categories. In this way, each of the PSC codes represent a single class that could be used for

classification training. The final preprocessed data frame includes the document name as an

unique ID, the PSC category and PSC level 2 code for the contract, the respective class or

target value, and finally the corpus, or text data, for the corresponding contract.
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Table 4. Sample of Assigned Target Values

document psc_cat psc class Description

FA703712P8555 70 7035 6 SEAL PRO D LAMINATOR

FA282312F3023 70 7035 6 MULTIPLE CISCO TECH REFRESH EQ

FA875112P0086 70 7010 1 DELL PRECISION T MT W

FA449715P0094 70 7050 8 GRAPHICS PRINTER CUTTER

FA440713FA068 70 7035 6 VMWARE VCENTER SERVER

FA670315FG001 70 7030 5 ADP SOFTWARE ADP SOFTWARE ADP

FA873014F0034 70 7030 5 CMMA SPT RENEWAL

FA282312C0074 70 7030 5 BASE LEVEL SOFTWARE SUPPORT BA

FA860116FG134 70 7030 5 ADP SOFTWARE

FA875116FG003 70 7025 4 ADP INPUT OUTPUT AND STORAGE D

The class variable represents the target values of each of the contract documents. These

target values correspond to each of the level 2 Product Service Codes. Level 2 codes are

user-determined categorization of the documents. As such, these classifications may be used

to train classification methods for future inputted documents, based on the contents of the

contract description, without the requirement for the user to determine if the category is

appropriate.
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Table 5. Number of Classes per PSC Category

PSC Category N_Classes

70 8

60 12

58 20

D 25

J 78

The number of differentiable classes in each of the PSC categories were determined.

Several categories appear to only consist of one level 2 PSC categorization. These categories

were not included in preliminary classification as the classification algorithms require more

than one target value in order to train to differentiable classes. Alternatively, some PSC

categories only contain a small sample of contracts. Categories W, H, and K, have a sample

size of less than 100. This could potentially prove problematic, as there may not be enough

text data to properly differentiate between the contracts. Classification on categories that

contain many classes relative to their number of observations would be futile, as there would

not be enough data representing each class in the training sample to properly train to that

class, and the minimal likelihood that the classes are all represented in an even samller test

sample would prove the model uninformative.

3.6.6 Document-Term Matrix

The machine learning algorithms constructed required that the frequency of the terms

in each of the contracts were in a format in which term frequencies represented variable

values for each unique term, and each of the contracts (documents) acted as respective

observations. For this the data frame was transformed into a document-term-matrix, a form

of vector space model. In this numerical matrix structure, the corpus was scraped for words
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that don’t represent any relevant meaning and are used frequently in everyday colloquial.

These stop words are words such as pronouns and words such as “the” and “as”. Each

variable in the matrix represents the frequency of the specific term.

Table 6. Document-Term Matrix Sample
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FA877110A0601 774 556 351 304 32 3 136 112 39 0 4 30 4 0 55 52 46 42 4 7

W91QUZ13A0002 0 0 0 18 2 159 43 52 6 0 0 0 0 59 5 9 5 7 0 5

FA873213D0012 3 1 0 3 165 25 61 30 37 13 16 61 5 7 16 15 19 8 3 24

FA877110A0604 2 171 68 49 28 2 39 96 24 1 16 0 2 0 8 11 21 19 16 2

FA873214D0004 15 3 1 5 151 143 66 30 102 86 46 39 42 43 37 14 17 17 3 37

FA877110A0603 0 148 48 23 22 0 43 77 22 4 13 19 5 0 12 8 10 14 13 0

W91QUZ09A0003 1 0 0 4 3 69 21 15 43 19 0 0 0 15 4 7 7 3 0 13

FA873213D0013 24 1 1 17 119 66 54 28 75 27 67 37 10 15 24 15 9 6 3 5

FA873213D0017 8 2 0 2 100 45 15 33 39 19 24 18 10 5 16 7 11 7 5 9

FA860114FG001 0 0 0 0 37 24 0 91 37 0 7 0 0 0 5 0 0 0 7 0

Sparsity represents the amount of the matrix that contains a term frequency of zero.

The sparsity of the document term matrix can be manipulated by removing terms that only

appear in an insignificant number of documents. These terms would likely be unique only to

the document in which they are present and would add little value to modeling a topic for

that class of document, or training a model to associate that term with a class. Therefore,

removing sparse terms provides a form of feature reduction. Feature reduction can alleviate

model bias and computational strain. The number of sparse terms chosen to remove from

the document-term matrix was based on a target sparsity that was to be achieved. For

this research, the document-term matrix was to be constructed with at most 95% sparsity.

This sparsity was reached by removing the sparse terms that only appear in less than 2%

of the documents, setting sparse parameter to 0.98. This allowed for the construction

of a document-term matrix that has 35 terms for which to train and classify the models;

a reduction of variables down from 850. Reducing the number of terms allows for a more

generalized model, with the added benefit of a more practical number of variables for quicker

model training.

29



Figure 8. Document-Term Matrix Sparsity as Feature Reduction

In Figure 8, the characteristics of the document term matrix before and after removal

of sparse terms is presented. It is possible to reduce the amount of features used futher,

doing so in turn decreases the amount of non-sparse entries (or informative terms) as a

consequence. However, removing sparse terms allows for a more efficient use of data, as the

sparse terms are unlikely to aid in classification of documents, and may only increase the

models’ bias and overfitting potential. Although the maximal term length also decreases by

two characters, this will not affect topic modeling or classification endeavors, as the use of

the words, their meaning, or their length are not being leveraged, only their presence in their

respective douments.

3.7 Classification

Classification as a machine learning practice has applications in many disciplines, only

relatively recently finding its way into the field of text mining. Text classification specifically

allows for the assignment of classes to text documents [25]. Conducted in this research was

hard classification, in which documents have explicit category assignments for which to train

model classifiers, rather than probabilistic values. Taking a subset of D = {d1, d2, ..., dn}

training documents, correspondingly labeled with L = {l1, l2, ..., ln} classes of the training

subset [1], models may be trained to these document-label associations so that:
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f : D → L f(d) = l

where the documents to build the classification model f , is built using these associations.

Documents unseen to the model (test set) d are then evaluated using the model, providing

class labels l to each document.

3.7.1 Sampling

A data split for training and test partition was determined. The training partition

was used to train each of the models, while the test partition was used to validate each

model. This was accomplished by randomly sorting the observations and storing row ids of

observations allocated to their respective partitions.

The training partition was used for cross-validation model tuning and subsequent training

of the best model, while the test partition was used for evaluating how well the model

performs with unseen data. The purpose of this technique is to limit the amount of bias in the

model, mitigate over-fitting effects, and evaluate the model on unseen data, so that the model

is not validated based on it’s ability to merely search learned associated for the appropriate

label. This allowed for built model that is generalized, and evaluated accurately according

to its real-world application. This comes with a cost of variance in model accuracy, as the

test partition may contain observations that are not represented accordingly in the training

data. To this end, a 70/10/20 train-test split was chosen, where 70% of the data was used

for training, 10% was used for cross-validation and 20% for model test runs. Investigating

the data for class imbalances, it could be determined whether further sampling techniques

are required.
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Table 7. Proportion of Document Classes, unbalanced

1 2 3 4 5 6 7 8

0.0949505 0.0173683 0.0492869 0.1073729 0.4518058 0.160743 0.0576835 0.060789

There appeared to be a gross imbalance in the classification categories within this PSC.

Class 2 represented only 0.0173683 of the classes, equating to 211 observations in the training

set, and 91 observations in the test set. Imbalances in class distribution result in potential

misrepresentation of model adequacy, as cross validation will determine that classifying the

majority classes best (or sometimes exclusively) will result in the highest accuracy, resulting

the minority or in this case “rare event” (less than 2%) classes likely going greatly misclas-

sified. To combat this phenomenon, several sampling techniques were implemented in order

to balance the classes. An oversampling method was applied to increase the minority class

representation in the data through replication of the minority class observations.

Table 8. Proportion of Document Classes, Oversampling-balanced

1 2 3 4 5 6 7 8

0.0870643 0.0989822 0.0451933 0.0984549 0.4142804 0.1473923 0.0528925 0.0557401

From oversampling the minority class, the class distribution appeared far more balanced,

with class 2 now representing 0.0989822 of the classes, equating to 1302 observations in the

training set, and 87 observations in the test set. However, this required increasing the total

number of observations, which increased computational time, and didn’t fix the imbalance be-

tween the other classes and the majority class. Synthetic Minority Over-sampling Technique

or SMOTE, was used to simultaneously oversample the minority class while undersampling

random majority class observations. This allows for greater representation of minority class,

while retaining the size of the imbalanced data, and some of the natural distribution of

classes between the non-minority classes. Using SMOTE, class 2 represented 0.1035197 of
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the classes, equating to 1266 observations in the training set, and 534 observations in the

test set.

Table 9. Proportion of Document Classes, SMOTE-balanced

1 2 3 4 5 6 7 8

0.0853462 0.1035197 0.047504 0.1007016 0.4095353 0.1465378 0.0520474 0.0548079

These sampling techniques do not come without a cost. As more samples of the mi-

nority class are synthetically reproduced for training, it allows for over-fitting of the model

[5]. Although model accuracy may increase of the minority class, it also produces a less

generalized model, as the minority class sample synthetic reproduction does not increased

the information gained by the model to the same extent as obtaining more data from the

underrepresented class. For the SMOTE approach, the same over-fitting with the minority

class was experienced, but also a loss of training data in the majority class. This may allow

for greater model flexibility and less bias in classifying the majority class, but results in the

loss of significant learning data which could prove detrimental to the model accuracy.

3.7.2 Weighted K Nearest Neighbors

K-nearest neighbor is a non-parametric form of classification, where an observation is

classified by the class of the majority of k nearest observations. The premise being that

documents belonging to the same class are more likely to be similar and therefore closer in

distance [13]. For each data point The algorithm selects a observation at random, and it’s

class is determined by target value classifications of the k nearest surrounding observations by

distance with ties broken at random. This is iteratively repeated until a decision boundary is

formed. This trained decision boundary is then used to classify unseen observations, with test

data falling on either side of the boundary being classified accordingly. The distance equation

for which to determine the nearest neighboring points is below, where q = 2 would represent

euclidean distance and q = 1 would calculate nearest neighbors by absolute distance.
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d(xi, xb) =
( p∑

s=1
|xis − xjs|q

)1/q

This distance calculation would not suffice for the research, as the discrete nature of term

frequency coupled with the number of features being considered allowed for an exorbitant

number of ties being broken at random, essentially breaking the algorithm. This phenomenon

disqualified the option of cross-validation and necessitated a more flexible similarity metric

for use with k-NN. Therefore a kernel-weighted similarity method was used in it’s place, in

which the votes of each neighboring observation holds weight depending on a transformation

of the normalized distance, with the transformation following several kernels: “rectangular”,

“triangular”, “epanechnikov”, “gaussian”, “rank”, and “optimal”.

D(x, xi) = d(x, x(i))
d(x, x(k+1))

The distance is then transformed into a weight using the respective kernel, and each

observation (x, y) is classsified by the point with the heighest weight (similarity) respective

to the following:

maxr

(
k∑

i=1
K(D(x, x(i)))I(y(i) = r)

)

This process is repeated itereatively until all points have been clasified and a classification

boundary is learned. The classification boundary learned through training is then used to

determine where the test set observations lie, and thus classifies new observations using

information accumulated through previously encountered observations.

K-Nearest-Neighbors uses lazy learning allowing for quick but potentially inefficient clas-

sification, with a heavy dependency on selecting an appropriate number k. Cross-validation

was completed to automatically select the optimal number k and kernel for each model.
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Figure 9. KNN Classifier Accuracy vs. K

Cross validation methods were used to tune the KNN model to an appropriate k value.

The metric calculated to validate each model is mean training accuracy. The method im-

plemented was 10-fold cross validation, in which the training data was partitioned into 10

equal subsets, trained on all but 1 of the partitions, and then evaluated on the partition left

out of training. This is done for all 10 partitions, and the validation accuracy is averaged

across all of the partitions. The k value with the highest accuracy was the selected model

for subsequent test validation. In this case that value is k= 9.

3.7.3 Random Forest Classifier

Random Forests uses bootstrap aggregating of decision trees to create low-bias model

from combination of de-correlated decision trees, thus mitigating the variance, in relatively

quick computation time. Each decision tree is a hierarchical tree of training instances, in

which the best performing features are used for that decision tree’s classification model [25].

35



In the bootstrap aggregating (bagging) approach to random forests, every feature is used to

fit a classification decision tree, using a random partition of the features (terms). As the

forest grows, it picks the best selection of features, and continues to split until all features

have been used in a subset tree, or a number of trees have been grown. The final random

forest model is then the aggregate of all those trees. Bootstrap refers to the method of taking

a random sample of the data with replacement. For this research, the number trees grown

was set to 500, and the error was evaluated as the number of trees increase [12].
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Figure 10. OOB Error by Number Trees

The Out Of Bag (OOB) error is the average classification error of those samples that were

iteratively left out of the bootstrap sample. As the number of trees increases, the OOB error

decreased, and it is show that the OOB error in this case converges at around 60 percent

at less than 100 trees. At larger data set sizes, more trees would most likely be necessary

to reach convergence of OOB error. The class-sepecific error was also examined, showing

one of the classes as having a lower average error than the other, identifying that it is less

36



prone to misclassification. This is an indication how the 8-class sample performed without

any cross-validation to determine parameter value before training the model. One class had

significantly lower OOB error, and therefore could be expected to be the least frequently

misclassified. This class happens to also hold the majority representation in the sample, and

therefore the most data for which to train (and test) the model.

Figure 11. Random Forest CV Tuning for Mtry

Cross validation was again accomplished by evaluating the out-of-bag error at several

values of mtry parameter. The mtry parameter represents the number of variables (DTM

terms) to be included when splitting each tree node. Starting at the square root of the total

number of variables, the number of variables included was increased or decreased by a step

factor of 5. The model was assessed again at the new value of mtry, and tuning ceased when

the next iteration was less than 0.1% improved over the previous iteration. In this case, the

number of terms included for validation that results in the most accurate model was 5.

Supporting the assessment of model accuracy, the importance each of the terms bring

to the model regarding their classification performance was analyzed. This feature was

extracted through calculating the mean decrease in Gini index. This value represents the loss

in classification performance if each of the respective terms were excluded from the model,

providing insight as to which terms should be considered when providing descriptions for

future contracts, as well as many terms that could be considered for trimming from the DTM

for future models, if computational time becomes a constraint that must be overcame.

37



dell
devices
storage

enterprise
components

server
office

licenses
equipment

hp
desktop

acat
support

maintenance
license

renewal
adp

software
afway

system

40 80 120

Average decrease in the Gini Index

Bagging

Gini Importance of Variable Terms

Figure 12. Feature Importance Plot

3.7.4 Support Vector Classifier

Support Vector Classifiers provide an extremely powerful, but computationally taxing

algorithm for text classification. It functions based on the assertion that, in the event

observations cannot be separated into classes in a 2-dimensional space, they may be projected

into higher dimensional space and separated with a hyperplane as opposed to a line. Support

Vector Classifiers are therefore linear classifiers, making classification decisions from a linear

combination of document features [1]. In this way, predictor output can be represented

by y = ~a · ~x + b as a separating hyperplane, where ~x is a vector of the term frequency or

normalized frequency metric, and ~a is the vector of coefficients and b is a scalar [6, p. 273-

297]. Support vectors are the closest observations to this separating hyperplane, that if

removed, would shift the decision boundary, and therefore support it. As an added feature,

if the data cannot be separated using a linear kernel or similarity function, in n-dimensions,
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perhaps it can be separated by three dimensions employing a radial (gaussian) kernel. This

choice of how the decision boundary is shaped adds increased flexibility to SVM models.

However, the original SVM algorithm was developed with a linear hyperplane, and it has

been found that text data, due to its sparse instances, is generally linearly separable [20].

Therefore, the radial kernel was not considered for this research. Support Vector Machines

serve as an appropriate tool for text classification as it holds several helpful properties. SVMs

use over-fitting protection, which does not depend on the feature space. This characteristic

is invaluable as text classification inherently involve the training of many features, one for

each term in the corpus.

To determine the most accurate model for implementation with the contract data, cross-

validation was conducted by iteratively testing the model with changing several hyperpa-

rameters. These parameters of SVM include cost and gamma. Cost is the incurred penalty

for allowing support vectors on the misclassified side of the decision boundary (for added

leniency to form the margin). This increases model flexibility by smoothing the decision

boundary. Gamma is a metric representing the the amount of influence support vectors

further away from the margin influence its position.
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Figure 13. SVM Cross-Validation Plot

It is evident that there exists an optimal cost that correlates to a minimum test error.

This best model was used for the model accuracy validation using the test partition of the

data. Through Leave-One-Out Cross Validation (LOOCV), where one observation is left out

of training, and iteratively validated until all observations have been tested, the performance

of the model was assessed based on error for different cost values. As cost increased, the

LOOCV error consequently decreased, until a certain value in which it increases again. This

is due to the bias-variance trade-off. As a tighter decision margin is created through increased

cost of incorrectly positioned support vectors, the bias of the model is also increased, it’s

performance on unseen data is potentially decreased, but allows it to perform well on the

partitioned training data used for cross validation. After a certain cost value, the model

is too flexible to even classify the test data but may perform better for a wider array of

unknown data that may or may not resemble the training data as closely.

40



3.8 Confusion Matrix
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Figure 14. Confusion Matrix for Level 2 Classification of Category 70

Confusion matrices provide insight as to which class is being misclassified, and into which

class they is being misclassified. This provides model performance information beyond only

the accuracy of the model, but also allows for attributing misclassifications to specific doc-

uments, and explore the cause of the misclassification. In regards to practical application

relevant to the data, misclassified documents can be assessed individually. These misclassi-

fication may not only be due to the error of the model, but perhaps also in the event that

words were included that are not appropriate for that specific category. Alternatively, mis-

classification analysis could highlight documents submitted in error to that category. Each

discovery would allow for provided feedback to the user as to how the contract category

management system can be improved. In essence, confusion matrices can prove invaluable

for investigating misclassifications in order to improve model building, but also best practices
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for document description construction.

Table 10. Confusion Table Metrics

Sensitivity Specificity Pos Pred Value Neg Pred Value Precision Recall F1 Prevalence Detection Rate Detection Prevalence Balanced Accuracy

Class: 1 0.9292929 0.9958124 0.9684211 0.9902832 0.9684211 0.9292929 0.9484536 0.1214128 0.1128281 0.1165072 0.9625527

Class: 2 0.9841270 0.9989367 0.9872611 0.9986713 0.9872611 0.9841270 0.9856916 0.0772627 0.0760363 0.0770174 0.9915319

Class: 3 0.9979381 0.9991648 0.9938398 0.9997214 0.9938398 0.9979381 0.9958848 0.1189600 0.1187147 0.1194506 0.9985515

Class: 4 0.9760589 0.9949066 0.9671533 0.9963162 0.9671533 0.9760589 0.9715857 0.1331862 0.1299975 0.1344126 0.9854828

Class: 5 0.9894260 0.9882870 0.9424460 0.9979302 0.9424460 0.9894260 0.9653648 0.1623743 0.1606573 0.1704685 0.9888565

Class: 6 0.9769648 0.9952081 0.9782904 0.9949102 0.9782904 0.9769648 0.9776271 0.1810155 0.1768457 0.1807702 0.9860865

Class: 7 0.9524752 0.9969205 0.9776423 0.9933054 0.9776423 0.9524752 0.9648947 0.1238656 0.1179789 0.1206770 0.9746979

Class: 8 0.9550898 0.9973283 0.9696049 0.9959979 0.9696049 0.9550898 0.9622926 0.0819230 0.0782438 0.0806966 0.9762091

Confusion matrices also provide the added benefit of determining several characteristics

of classification (and misclassifications) between the classes. These classification metrics are

Sensitivity, Specificity, Pos Pred Value, Neg Pred Value, Prevalence, Detection Rate, Detec-

tion Prevalence, and Balanced Accuracy. Sensitivity represents the fraction of classifications

that are true classifications, or the proportion of classifications that are correctly classified.

Specificity represents the portion of classifications that were correctly classified as not being

from a certain class. Most importantly, one metric is of interest, F1 or F-measure. F-measure

represents the harmonic mean of the precision and recall and is regarded the “ultimate mea-

sure of performance of the classifier”[11, p. 1294]. It takes into consideration not only recall,

the precentage of specific class that are classified as that class, but also precision or the

precentage of classes classified as a certain class that were actual from that class. Further,

the P-Value for the accuracy being greater than the NIR will be used to determine if the

accuracy score can be attributed to the model rather than the distribution of classes. A

P-Value less than 0.05 would support that the accuracy would signify a statistically signifi-

cant probability that the accuracy is attributed to the inherent information gained from the

distribution of the classes.

42



3.9 Latent Dirichlet Allocation

Latent Dirichlet Allocation(LDA) is a popular and effective generative topic model. In

this model, each document is a mixture or distribution over words, while a topic is a dis-

tribution over topics [2]. It assumes a sparse Dirichlet prior distribution over topics in a

document, using Gibb’s sampling to generatively assign topic probabilities to each terms,

and subsequently grouping documents into their respective topics.

Figure 15. Plate Notation of LDA

The process is best represented via plate notation where the boxes represent replica-

tions, with the innermost box representing the replicated assignment of topics and words

in a document, and the outermost box the documents assignment to a specific topic. wmn

are observable individual words, while θm (topic distribution for each document), ϕk (word

distribution for each topic), and zmn (assigned topic for each word in document) are unob-

served latent variables, with α and β as sparse parameters controlling the degree in which the

Dirichlet distribution is imposed on per-document topics and per-topic words respectively.

Given k topics, m documents, and n words per document, the algorithm chooses θi ∼

Dir(α) and ϕ ∼ Dir(β) for each document i ∈ 1, ...,M and each topic k ∈ 1, ..., K. For

each word wij in each document i ∈ 1, ...,M and each position j ∈ 1, ..., N choose a topic

zi,j ∼ Multinomial(θi) and word wi,j ∼ Multinomial(ϕzi,j
) according to their respective

distributions, providing a probability with which words are associated with topics.

As such, Latent Dirichlet Allocation was used to cluster the documents into topics based
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on the words in each contract description. These constructed topics represent the suggested

new Product Service Code sub-categories. In addition, the LDA model allows for extraction

of word-per-topic probabilities and document-per-topic probabilities, which provides insights

as to the composition of constructed categories. However, LDA relies on the user-defined

variable k to determine the number of topics to which the documents would be classified.

Therefore, further analysis was required for which to implement several proposed methods

to determine the optimal number of topics to use with LDA.

3.9.1 Optimal Topic Number

The optimal number of topics for each PSC category was evaluated with respect to four

metrics proposed in previous research. The metrics were used to tune the Latent Dirichlet

Allocation clustering from which the new topic models are derived. In essence, the clustering

quality is measured iteratively for each number of clusters from 2 to 30. From this it can

be determined how many clusters would provide the most representative number of topics

for which to use as a parameter for clustering using Latent Dirichlet Allocation, and thus

provide insight as to how to better shape PSC categories more effectively in regards to future

classification.

One method calls for the maximization of information divergence between pairs of topics.

Deaveaud ([7]) proposed that a simple heuristic can be used to estimate the number of latent

concepts in a set of documents by maximizing the information divergence D between all topic

pairs of LDA’s topics, estimating the number of topics with the following:

K̂ = argmax
K

1
K(K − 1)

∑
(k,k′)∈TK

D(k||k′)

where K is the number of topics provided as the topics parameter, TK is the set of topics

modeled, and D(k||k′) is the Jensen-Shannon divergence, measuring the divergence between

all pairs of topics by topic variation.
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Alternatively, Juan [4] suggests a minimization of distance of topic densities. The metric

used to evaluate the topic number is the pairwise cosine distance between the topics, first

finding the correlation between the topics.

corre(Ti, Tj) =
∑V

v=0 TivTjv√∑V
v=0(Tiv)2

√∑V
v=0(Tjv)2

where v is each word and T is each topic. A smaller correlation represents independence

between topics. The average distance between structures or clusters is determine with the

following:

distance(structure) =
∑K

i=0
∑K

j=i+1 corre(Ti, Tj)
K × (K − 1)/2

where the distance between structures represents the total stability of the topic number

K selected. A higher average distance is representative of higher stability and more optimal

number of topics for LDA. Murzintcev [28] provided an R-package allowing for the calculation

of these metrics simultaneously, where the metrics can be subsequently normalized and the

results presented in an easily-interpretable plot.
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Figure 16. Topic Number Analysis

As these metrics have opposing goals, two of which require maximization and two mini-

mization, a heuristic approach using subject matter expert knowledge would allow for deter-

mination of the optimal number of topics. However, assuming all four metrics are equally as

informative, a more deductive approach provided a method to rank order the suggested num-

ber of topics for each PSC category. Topic numbers were ranked by each metric, with ranks

summed across all four metrics, and sorted allowing for determination of the top number of

topics for each category.
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Table 11. Optimal Topics Analysis Results With Topic Ranking

topics Griffiths2004 CaoJuan2009 Arun2010 Deveaud2014 Rank

8 0.5597292 0.0000000 0.3160586 1.0000000 1

10 0.6803777 0.1585956 0.2302237 0.9052150 2

6 0.4524238 0.1546385 0.4573301 0.8281174 3

21 0.9058831 0.2149058 0.0546839 0.8315242 4

7 0.5599217 0.1624469 0.3940984 0.8212288 5

9 0.6468854 0.2048380 0.2813023 0.8273240 5

From this it can be decided that a topic number of k = 8 would provide an optimal

number of topics for use with LDA topic modeling. This supports that there are 8 underlying

structures in the text data that can be leveraged for for the topic models. This parameter

could be used in LDA to construct topic models for PSC Category 70. The new topics

represented the restructured sub-categories which can be compared to the legacy categories

regarding classification accuracy.
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IV. Analysis And Results

4.1 Chapter Overview

In this chapter an assessment of analysis and a summary of results is examined. The

baseline level classification accuracy is first discussed, constructing classification models for

classifying documents to their corresponding level 2 categories based on their legacy cat-

egory assignments as target values. Following this, topic modeling results are highlighted

for construction of new modeled topics using the determined optimal number of underlying

topics in the data. Using these new topics as optimal level 2 categories, the classification

models are reassessed for their ability to classify to the new categories. Classification ac-

curacy provided a metric for comparing model performance between the algorithms, while

computational time contrasts the models’ feasibility. Misclassifications are then assessed to

determine culprit terms in misclassification. The process is then replicated to also evaluate

a “re-modeling” of all of the level 1 IT categories.

4.2 Initial Accuracy Results

For the initial results,a subset of the IT data was used as a proof of concept of the

methodology. This PSC category was designated 70 representing ADP software, support,

and equipment. Test accuracy was used as the evaluation metric for each of the models,

and noted the cross validation metric optimized, the value of that optimized metric, and the

term frequency normalization of the document-term matrix, either term frequency (tf ) or

term frequency-inverse document frequency (tf-idf ). Transforming the term frequency to a

normalized tf-idf had little effect on the accuracy of the classification. Further, the Random
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Forest technique provided the highest test accuracy with an accuracy of 69.4%. This model

used term frequency as the observation value and necessitated 6 terms available to be split

at each tree node.

Table 12. Classification with Crossvalidation Models, tf and tf-idf

Accuracy Model Metric Value Normalization

0.6762325 SVM Cost 10 tf

0.6941378 RF mtry 6 tf

0.6772136 K-NN k 22 tf

0.3747854 SVM Cost 10 tf-idf

0.5634045 RF mtry 6 tf-idf

0.6811381 K-NN k 22 tf-idf

4.3 Oversampling and SMOTE

This PSC required treatment to combat an extreme imbalance in classes, with the mi-

nority class representing less than 1 percent of the documents in the data. The use of

oversampling and SMOTE were compared in regards to the test accuracy of each of the

classification algorithms. SMOTE far outperformed the oversampling technique, despite

having less total observation for training and testing. After balancing treatment, K-Nearest

Neighbors with k = 1 marginally outperformed both SVM and Random Forest algorithms.

49



Table 13. Classification with Crossvalidation Models, Oversampling and SMOTE

Accuracy Model Metric Value Sampling

0.4281768 SVM Cost 10 Oversampling

0.4603914 RF mtry 7 Oversampling

0.6031308 K-NN k 10 Oversampling

0.7255985 SVM Cost 10 SMOTE

0.7440147 RF mtry 14 SMOTE

0.7486188 K-NN k 1 SMOTE

Although classification using the sampling treatment performed better than the unbal-

anced native data, it is possible that the increase is due to over-fitting of the model. As

the number of replicated training data was increased for the minority class, the flexibility of

the model to unseen data was decreased. Decreasing the number of documents represented

from the largest class made classification of that class more generalized, but increased the

potential for test variance, which could have limited the test accuracy. However, the class-

sification accuracy was used as a baseline for which to compare the newly constructed topic

model classification accuracy. If the topic modeling approach did not significantly aid in the

classification feasibility, then the legacy categories would be more appropriate for the task.
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4.4 Optimal Topics Analysis for Subcategories of PSC Category
70
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Figure 17. Per-Topic Per-Word Probabilities

Using the optimal number of topics of k = 8, the new categories were constructed using

Latent Dirichlet Allocation. Extracting the per-topic per-word probabilities (β), the words

which best represent each of their respective topics could be determined. Although each

topic is a mixture of all of the words at varying probabilities, the most significantly associ-

ated words were used to best represent each of the topics. For example, topic 3 appeared

to represent server hardware and other network equipment, while topic 6 appeared to be

comprised of contracts pertaining exclusively to software and silencing. Many contracts rele-

vant to Information Technology may have many terms that are shared between very distinct

types of contracts. Consequently, some of the modeled topics appeared to have a shared

term that significantly defined its respective topic or category. The term adp appeared as
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a feature that is decidedly defining both topics 5 and 8. This may have affected the ability

to distinguish these categories in classification, and therefore further investigation into the

level of similarity between the topics was required in respect to the words that have a beta

greater than .001, thus significantly associated with the topic. Using the log2 scale, it could

be determined that the association of the term adp to topics 5 and 8 were similar in mag-

nitude in respect to their per-topic probability. The terms components and equipment

were also terms relatively common in both topics.
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Figure 18. Pairwise Log2 Ratio of Beta Comparison
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4.4.1 Accuracy of Contructed Category Classification

Table 14. Classification with Crossvalidation Models, tf and tf-idf, 8 Topics

Accuracy Model Metric Value Normalization

0.9744910 SVM Cost 10 tf

0.9286240 RF mtry 24 tf

0.9232279 K-NN k 5 tf

0.2764287 SVM Cost 10 tf-idf

0.9293598 RF mtry 12 tf-idf

0.9298504 K-NN k 8 tf-idf

Using the extracted topics from the LDA model with k = 8, it was found that allowing

LDA to form topics for classification significantly improved the ability to classify the newly

formed categories based on the the terms in their descriptions. The test accuracy increased

to 97.4% using the Support Vector Machine classifier with a cost of 10 and term frequency.

Table 15. Accuracy Statistics of Classification Models

Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull AccuracyPValue

RandomForest 0.9286240 0.9174944 0.9202872 0.9363400 0.1795438 0

SVM 0.9744910 0.9705202 0.9691754 0.9791109 0.1795438 0

KKNN 0.9232279 0.9113318 0.9146261 0.9312171 0.1795438 0

RandomForest.idf 0.9293598 0.9183805 0.9210602 0.9370375 0.1810155 0

SVM.idf 0.2764287 0.1235978 0.2627422 0.2904364 0.1810155 0

KKNN.idf 0.9298504 0.9189943 0.9215756 0.9375025 0.1810155 0

Exploring this measure of performance further, the difference in classification accuracy

metrics was compared between the methods. In this case, support vector machine clas-

sification provided the best test accuracy for classification of contracts based on contract
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description for the majority of the PSC categories. All classification techniques resulted in

an accuracy above 90% except for SVM using tf-idf normalization. All models also resulted

in statistically significant accuracy, with p-values less than 0.05. Therefore, there was enough

data to establish any further categories using topic modeling with some statistical signifi-

cance, which may not have been the case for PSC categories for which there was an unusable

amount of data provided. Cohen’s Kappa value compares the observed accuracy with that

of random chance classification (or the expected accuracy). A higher Kappa represents a

larger deviation of observed accuracy from expected accuracy, and thus could be used to

evaluate classification models, and compare between classifiers for a given PSC Category. It

was shown that SVM with tf-idf had a Kappa of 0.124, and therefore was almost indistin-

guishable from random classification. All other classification models resulted in classification

accuracy better than that of accuracy attributed to differing class distribution. Although a

Support Vector Machine model provided the most accurate model, the feasibility to imple-

ment this methodology to the end user was also considered. Investigating the time required

to complete cross-validation, training, and testing, it was shown that Support Vector Ma-

chines required significantly more time. Random Forest required less than a minute, whereas

Support Vector Machines took 6.22 minutes. The marginal performance increase in SVM

over Random Forest classification may not have been worth the time required to build the

higher performing models.

Table 16. Classification Computation Time

Time Units Model

6.223186 mins SVM

48.945230 secs RF

1.151569 mins KNN
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4.4.2 Evaluating Misclassification
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Figure 19. Confusion Matrix of PSC 70 Classifications with 8 Topics

Classification using SVM resulted in a clean confusion matrix diagonal, representing ac-

curate classification of predicted categories to their actual category assignments. Predicting

category 5, or the category consisting of contracts defined by the terms adp, storage,

and devices, had the most misclassifications, with category 5 predictions misclassifying to

category 7, which consisted of the terms system, dell, and modification, most fre-

quently. These misclassifications were more closely analyzed by filtering the contracts that

were misclassified, and evaluating the words that were most frequently used in misclassified

contracts.
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Table 17. Misclassified Contracts

document psc_cat psc class classification Description

10646_70 70 7030 7 6 NON ACAT AFLCMC PZIT TECPLOT

544_70 70 7010 2 6 IDS MAINTENANCE LAPTOP DELL

1265_70 70 7010 7 4 NON ACAT AFLCMC XP OZ AFWAY

13532_70 70 7035 5 2 PN P WINDOWS SERVER DATAC

8499_70 70 7030 6 5 MATLAB MAINTENANCE RENEWAL MAT

2868_70 70 7021 4 2 CPU SERVER WORKSTATION

9998_70 70 7030 1 7 NON ACAT HPW MICROSTATION

1191_70 70 7010 7 4 NON ACAT AFLCMC PK HP MOBILE

1219_70 70 7010 7 4 NON ACAT AFLCMC WWO HP OFFIC

11748_70 70 7030 1 6 ADMIN CHANGE FOR COMPLETE TO P

The most frequently used words in misclassified documents were license, software,

acat, ada, application, change, and pro. Frequently misclassified words could be

used to better understand where use of terms should be avoided, or where certain terms

could be encouraged to be used for contracts of specific categories. The term acat however,

refers less to the contract and more to how large the contract requirement is. ACAT, or

Acquisition Category represents the scope of the acquisition for which the contract was

created. Terms like this which may not have contributed to the distinction of one contract’s

category over another, could be an example of words that can be expunged from the data

for a cleaner representation of contract topics, or provide insight as to better description

practices upon submittal.
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Table 18. Most Frequently Misclassified Words

word n

acat 16

software 12

maintenance 10

aflcmc 9

support 8

change 7

pk 7

server 7

correct 6

modification 6

4.5 Optimal Topics Analysis for IT Categories

This process was extended to modeling the general IT contract categories. First, the

potential for an optimal number of underlying structures was evaluated. Implementing

the same method as for identifying subcategories, the potential underlying structures were

examined, again finding the points of maximum and minimum for the structure similarity

and distance metrics.
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Figure 20. Topics Optimality Analysis on PSC Categories

In Figure 20, it can be determined that there were three local minima and maxima,

presenting several options for evaluating topics for a certain number of K. These potential

points of optimality were at K value of 3, 6 and 10. Griffiths and Arun metrics proved

uninformative again in this case when investigating topics 2 to 30.

Table 19. Classification with Crossvalidation Models, tf, 10/6/3 Topics

Accuracy Model Metric Value Normalization Topics Time Units

0.7601597 RF mtry 16 tf 10 8.348244 mins

0.7441267 K-NN k 14 tf 10 7.254917 mins

0.9212587 RF mtry 16 tf 6 6.564267 mins

0.9126967 K-NN k 10 tf 6 5.672580 mins

0.9206733 RF mtry 16 tf 3 6.556303 mins

0.9027442 K-NN k 10 tf 3 5.608623 mins
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Determining classification accuracy of each candidate for topic number in Table 19, it

can be seen that classification accuracy increased significantly from 10 modeled topics to

6. Further, the 6-topic model provided improved classification accuracy over the simpler 3-

topic model, supporting that the 6-topic model would be best suited for the subsequent text

classification objective. Although intuitively topic models with fewer topics should have been

more accurately classified, it is likely that with so few topics for which to assign contracts,

similar contracts were forced into different topics, thus increasing the classification error.

Figure 21. 6-topic Model on PSC Categories

The most associated terms with each topic could be assessed in the 6-topic model, and

provide insight as to the composition of each of the newly formed categories. It can be

deduced that these topics differentiate by “funding, and repair”, “services and support”,

“maintenance”, “equipment and software”, “systems”, and “acat and engineering” contracts,

as evidenced in Figure 21. It is important to note, however, that the term acat was a

reduced designation for Acquisition Category (ACAT) level projects. These designations
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were ACAT I, II, and III, which during the pre-processing stage had been reduced to the

same term. Therefore, the prominence of this term in contract descriptions could have

affected the similarities between contracts that are otherwise dissimilar.
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V. Conclusion and Future Research

Text analysis is a growing field in data science. Data collected or archived by the DoD

provides a wealth of potential for analysis on text data, providing insights to decision makers

and analysts that would otherwise go undiscovered. Leveraging text analysis tools to extract

meaning and themes from text data can facilitate improved efficiency in data organization

and information retrieval. The Air Force Installation Contracting Agency accumulates text

data in the form of installation contract descriptions, but as this collection grows, unstruc-

tured data, specifically text fields, become increasingly unwieldy. Text analysis could create

a framework of structure and organization to otherwise unused data.

A methodology is proposed for implementing topic modeling methods to construct new

sub categories from the existing Product Service Code categories, providing organizational

insights for potential category managers to shape installation support spend. Using La-

tent Dirichlet Allocation, contracts are clustered into categories based on the similarities

of the terms included the description of the the contract requirement. Coupled with ma-

chine learning classification, with utilization of Support Vector Machines, Random Forests,

and Weighted K-Nearest Neighbors, this methodology provides a procedural flow for model

cross-validation, training, and validation. The research supports that topics can be more

efficiently modeled, in respect to document classification accuracy, by determining the opti-

mal number of topics for which to cluster the documents. As a result, more efficient contract

classification could allow for potential DoD savings by limiting the number of contracts that

are misclassified into a spend category unfit for their requirement.

This research did not come without limitations. Scarcity of data for many of PSC cate-

gories limited the analysis to the largest of the categories, PSC category 70. Regardless of

sample limitations, the methodology can only improve with an increased number of terms, in
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the form of more descriptive and lengthy descriptions, lacking in the data provided. As topic

modeling and text classification depend an accurate depiction of the data by way for the

corpus, including more terms to describe each of the contract could expand the potential for

improved text analysis. In addition, computational power and the necessity for a practical

approach to text analysis with interpretable results disqualified some more strenuous model

building techniques, such as neural nets.

Future research could see more advanced text classification techniques be implemented,

better accustomed to short text data. For example, use of recurrent neural networks,

character-level convolutional networks, or gradient boosting machines, could allow for higher

fidelity text classification solutions for Air Force contracts. Alternatively, research into the

parameter selection of test splits, document term matrix sparsity, and LDA hyperparameters

could tune and improve the suggested approach. Evaluation of the current level 1 categories

could allow for an improved shaping of higher-level spend categories, allowing analysts to

identify and correct level 1 misclassifications. More generally, a similar methodology could

be researched for all Air Force or DoD contracts, broadening the scope for spend category

shaping.
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VI. Appendix

6.1 Packages

#packages used

library(psych)

library(data.table)

library(knitr)

library(readr)

library(tidyverse)

library(tidytext)

library(topicmodels)

library(stringr)

library(ggplot2)

library(scales)

library(magrittr)

library(class)

library(tm)

library(randomForest)

library(MASS)

library(e1071)

library(forcats)

library(kableExtra)

library(ldatuning)

library(caret)

library(gridExtra)

library(htmlTable)

library(xtable)

library(ROSE)

library(nnet)

library(kknn)

6.2 Functions

# numbered psc as classes

class_seq <- function(data) {

data <- data %>%

group_by(psc_cat) %>%

mutate(class = as.numeric(factor(psc)))

data <- data %>%
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subset(!(psc_cat == "74"|psc_cat == "L"|psc_cat == "K"|psc_cat == "S"))

return(data)

}

#normalize optimal output

normalize_metrics <- function(values) {

# normalize to [0,1]

columns <- base::subset(values, select = 2:ncol(values))

values <- base::data.frame(

values["topics"],

base::apply(columns, 2, function(column) {

scales::rescale(column, to = c(0, 1), from = range(column))

})

)

return(values) }

#optimal topic number

optimal_topics <- function(dtm){

result <- FindTopicsNumber(

dtm,

topics = seq(from = 2, to = 30, by = 1),

metrics = c("Griffiths2004", "CaoJuan2009",

"Arun2010", "Deveaud2014"),

method = "Gibbs",

control = list(seed = 1234),

mc.cores = 4L,

#make sure this is appropriate number of cores you wish to use

verbose = TRUE

)

return(result)

}

#construct DTM

tidyDTM <- function(text.df, sparse){

sw <- add_row(stop_words,

word = c("igf","ot", "ct"),

lexicon = c("SMART", "SMART", "SMART"))

#word counts

word_counts <- text.df %>%

unnest_tokens(word, description) %>%

anti_join(sw) %>%

count(document, word, sort = TRUE) %>%

ungroup()

#cast dtm

dtm <- word_counts %>%

cast_dtm(document, word, n)

dtm$dimnames$Terms <- gsub("function",

"functio",

dtm$dimnames$Terms)
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dtmNoSparse <- removeSparseTerms(dtm, sparse)

return(dtmNoSparse)

}

explDTM <- function(text.df) {

sw <- add_row(stop_words,

word = c("igf","ot", "ct"),

lexicon = c("SMART", "SMART", "SMART"))

#word counts

word_counts <- text.df %>%

unite(document, psc, document) %>%

unnest_tokens(word, description) %>%

anti_join(sw) %>%

count(document, word, sort = TRUE) %>%

ungroup()

#cast dtm

dtm <- word_counts %>%

cast_dtm(document, word, n)

dtm$dimnames$Terms <- gsub("function",

"functio",

dtm$dimnames$Terms)

return(dtm)

}

tidyDTMidf <- function(text.df, sparse){

sw <- add_row(stop_words,

word = c("igf","ot", "ct"),

lexicon = c("SMART", "SMART", "SMART"))

#word counts

word_counts <- text.df %>%

unnest_tokens(word, description) %>%

anti_join(sw) %>%

count(document, word, sort = TRUE) %>%

ungroup()

word_counts <- word_counts %>%

bind_tf_idf(document, word, n)

#cast dtm

dtm <- word_counts %>%

cast_dtm(document, word, tf_idf)

dtm$dimnames$Terms <- gsub("function",

"functio",

dtm$dimnames$Terms)

dtmNoSparse <- removeSparseTerms(dtm, sparse)
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return(dtmNoSparse)

}

removeDuplicates <- function(dtm, data){

#remove rows not in dtm

duplicates <- data[duplicated(data$document),]

data <- data[!(duplicated(data$document)),]

data <- data[(data$document %in% dtm$dimnames$Docs),]

return(data)

}

dataMatrix <- function(dtm, data) {

dtm.mat <- as.data.frame(as.matrix(dtm))

dtm.mat$targetCat <- as.factor(data$class[match(rownames(dtm.mat),

data$document)])

#dtm.mat$targetCat <- as.factor(data$class)

return(dtm.mat)

}

trainSplit <- function(dtm.mat) {

p=0.7

#holdout

train.idx <- sample(nrow(dtm.mat),ceiling(nrow(dtm.mat) * p))

return(train.idx)}

testSplit <- function(dtm.mat, train.idx){

test.idx <- (1:nrow(dtm.mat))[-train.idx]

return(test.idx)

}

dtmCat <- function(dtm.mat){

#targets

dtm.cat <- dtm.mat[,"targetCat"]

return(dtm.cat)

}

dtmMatNl <- function(dtm.mat){

dtm.mat.nl <- dtm.mat[, !colnames(dtm.mat) %in% "targetCat"]

return(dtm.mat.nl)

}

doKNNCV <- function(dtm.mat.nl, dtm.cat, train.idx, test.idx){

t1 <- Sys.time()

knn.cross <- tune.knn(x = dtm.mat.nl,

y = dtm.cat,

k = 1:20,

l = 0,

tunecontrol=tune.control(sampling = "cross"),

cross=10)

k <- as.numeric(knn.cross$best.parameters[1,])

pred.model <- knn(dtm.mat.nl[train.idx,],

dtm.mat.nl[test.idx,],

dtm.cat[train.idx],

k = k,

use.all = TRUE)
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Test_Obs <- dtm.cat[test.idx]

Predicted <- pred.model

conf <- table(Predicted, Test_Obs)

f.conf <- confusionMatrix(conf)

#stats <- f.conf$overall

time <- Sys.time() - t1

stats <- list(f.conf$overall,

knn.cross,

f.conf,

pred.model,

time)

return(stats)

}

doKKNN <- function(dtm.mat,train.idx, test.idx){

t1 <- Sys.time()

train.kknn <- train.kknn(targetCat~.,

dtm.mat,

kmax = 25,

kernel = c("rectangular",

"triangular",

"epanechnikov",

"gaussian",

"rank",

"optimal"))

k <- as.numeric(train.kknn$best.parameters$k)

kernel <- train.kknn$best.parameters$kernel

pred.model <- kknn(targetCat~.,

dtm.mat[train.idx,],

dtm.mat[test.idx,],

k = k,

kernel = kernel)

Test_Obs <- dtm.mat$targetCat[test.idx]

Predicted <- pred.model$fitted.values

conf <- table(Predicted, Test_Obs)

f.conf <- confusionMatrix(conf)

#stats <- f.conf$overall

time <- Sys.time() - t1

stats <- list(f.conf$overall,

pred.model,

f.conf,

k,

kernel,

time)

return(stats)

}

doKKNNprev <- function(dtm.mat,dtm.cat, train.idx, test.idx, k){

knn.pred <- kknn(targetCat~.,
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dtm.mat[train.idx,],

dtm.mat[test.idx, ],

k = k)

conf.mat <- table("Predictions" = knn.pred$fitted.values,

Actual = dtm.cat[test.idx])

accuracy <- sum(diag(conf.mat)/length(test.idx) *100)

return(accuracy)

}

doRFtune <- function(dtm.mat.nl, dtm.cat) {

tune.rf <- tuneRF(dtm.mat.nl,

dtm.cat,

doBest = TRUE,

trace = FALSE,

plot = FALSE)

return(tune.rf$mtry)

}

doRF <- function (dtm.mat, train.idx, test.idx, n, m) {

t1 <- Sys.time()

model <- randomForest(targetCat~.,

data = dtm.mat,

subset = train.idx,

ntree = n,

mtry = m,

importance = TRUE)

pred.model <- predict(model, dtm.mat[test.idx,])

Test_Obs <- dtm.mat[test.idx,]$targetCat

Predicted <- pred.model

conf <- table(Predicted, Test_Obs)

f.conf <- confusionMatrix(conf)

#stats <- f.conf$overall

time <- Sys.time() - t1

stats <- list(f.conf$overall,

model,

f.conf,

pred.model,

time)

return(stats)

}

AccStats <- function(model, dtm.mat, test.idx){

pred.model <- predict(model, dtm.mat[test.idx,])

Test_Obs <- dtm.mat[test.idx,]$targetCat

Predicted <- pred.model

conf <- table(Predicted, Test_Obs)

f.conf <- confusionMatrix(conf)
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return(f.conf$overall)

}

doRFerr <- function (dtm, dtm.mat, train.idx, n) {

tree.fit <- randomForest(targetCat~.,

data = dtm.mat,

subset = train.idx,

ntree = n,

importance = TRUE)

error <- as.data.frame(tree.fit$err.rate)

return(mean(error))

}

doSVM <- function (dtm.mat, cost, gamma, kernel) {

svm.fit <- svm(targetCat~.,

dtm.mat,

kernel = kernel,

cost = 10,

gamma = 1)

return(svm.fit)

}

doSVMerr <- function(dtm.mat, test.idx){

t1 <- Sys.time()

tune.out <- tune(svm, targetCat~.,

data = dtm.mat,

kernel = "linear",

ranges = list(cost = c(0.0001, 0.001, 0.01, 0.1, 1, 10),

scale = FALSE))

model <- tune.out$best.model

#SVMerror <- tune.out$best.performance

#return(SVMerror)

pred.model <- predict(model, dtm.mat[test.idx,])

Test_Obs <- dtm.mat[test.idx,]$targetCat

Predicted <- pred.model

conf <- table(Predicted, Test_Obs)

f.conf <- confusionMatrix(conf)

time <- Sys.time() - t1

stats <- list(f.conf$overall,

model,

f.conf,

pred.model,

time)

return(stats)

}

rfplot.error <-function(randomForest.fit) {

# Get OOB data from plot and coerce to data.table

oobData <- as.data.table(randomForest.fit$err.rate)

# Define trees as 1:ntree
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oobData[, trees := .I]

# Cast to long format

oobData2 <- melt(oobData, id.vars = "trees")

setnames(oobData2, "value", "error")

# Plot using ggplot

plt <- ggplot(data = oobData2,

aes(x = trees,

y = error,

color = variable)) +

geom_line()

return(plt)

}

rfplot.importance <- function(randomForest.fit){

data_frame(var = rownames(importance(randomForest.fit)),

MeanDecreaseGini = importance(randomForest.fit)[,1]) %>%

top_n(20, MeanDecreaseGini) %>%

mutate(var = fct_reorder(var,MeanDecreaseGini, fun = median)) %>%

ggplot(aes(var, MeanDecreaseGini)) +

geom_point() +

coord_flip() +

labs(title = "Gini Importance of Variable Terms",

subtitle = "Bagging",

x= NULL,

y = "Average decrease in the Gini Index")

}

ldafun <- function(dtm, k) {

lda <- LDA(dtm, k, control = list(seed = 1234))

return(lda)

}

topic_terms <- function(topics.beta) {

top_terms <- topics.beta %>%

group_by(topic) %>%

top_n(10, beta) %>%

ungroup() %>%

arrange(topic, -beta)

plt <- top_terms %>%

mutate(term = reorder(term, beta)) %>%

ggplot(aes(term, beta, fill = factor(topic))) +

geom_col(show.legend = FALSE) +

facet_wrap(~ topic, scales = "free") +

coord_flip()

return(plt)

}

tidybeta <- function(lda){

#extract topic betas

topics <- tidy(lda, matrix = "beta")
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return(topics)

}

tidygamma <- function(lda){

#extract topic betas

topics <- tidy(lda, matrix = "gamma") %>%

separate(document,

c("psc_cat", "psc"),

sep = "_",

convert = TRUE)

return(topics)

}

gammaPlots <- function(gamma) {

plt <- gamma %>%

mutate(psc_cat = reorder(psc_cat, gamma * topic)) %>%

ggplot(aes(factor(topic), gamma)) +

geom_boxplot() +

facet_wrap(~ psc_cat)

return(plt)

}

LDAclassify <- function(gamma){

#classification

classifications <- gamma %>%

group_by(psc_cat, psc) %>%

top_n(1,gamma) %>%

ungroup()

return(classifications)

}

LDAtopics <- function(classifications) {

topics <- classifications %>%

count(psc_cat, topic) %>%

group_by(psc_cat) %>%

top_n(1,n) %>%

ungroup() %>%

transmute(consensus = psc_cat, topic)

return(topics)

}

misclass <- function(classifcations) {

class <- classifications %>%

inner_join(topic, by = "topic") %>%

filter(psc_cat != consensus)

return(class)

}
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LDAconfusion <- function(lda, dtm) {

#confusion matrix

assignments <- augment(lda, data = dtm)

assignments <- assignments %>%

separate(document, c("psc_cat", "psc"),

sep = "_", convert = TRUE) %>%

inner_join(topics, by = c(".topic" = "topic"))

plt <- assignments %>%

count(psc_cat, consensus, wt = count) %>%

group_by(psc_cat) %>%

mutate(percent = n / sum(n)) %>%

ggplot(aes(consensus, psc_cat, fill = percent)) +

geom_tile() +

scale_fill_gradient2(high = "red", label = percent_format()) +

theme_minimal() +

theme(axis.text.x = element_text(angle = 90, hjust = 1),

panel.grid = element_blank()) +

labs(x = "psc_cat words were assigned to",

y = "psc_cat words came from",

fill = "% of assignments")

return(plt)

}

6.3 Methodology Code

#import clean

#import data

ITdata <- fread("IT_FPDSNG.csv")

FullData <-fread("AF_FPDS.csv")

ITdata <- data_full

ITdata <- ITdata %>%

dplyr::select(unique_transaction_id,

psc_cat,

productorservicecode,

descriptionofcontractrequirement)

ITdata <- ITdata %>%

separate(productorservicecode,

into = c(’psc’, "psc_desc"), sep = 4)

#clean

ITdata$descriptionofcontractrequirement <- gsub(’[[:digit:]]+’, ’ ’, ITdata$descriptionofcontractrequirement)

ITdata$descriptionofcontractrequirement <- gsub(’[^[:alnum:]]’, ’ ’, ITdata$descriptionofcontractrequirement)

#ITdata$descriptionofcontractrequirement %<>%

# gsub(’[[:digit:]]+’, ’’,.) %>%
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#gsub("igf", "", ., ignore.case = TRUE) %>%

#gsub("ot", "", ., ignore.case = TRUE) %>%

#gsub("ct","", ., ignore.case = TRUE)

ITdata <- ITdata[!(is.na(ITdata$descriptionofcontractrequirement))]

#ITdata <- ITdata[!(is.na(ITdata$dollarsobligated))]

ITdata <- ITdata[!(is.na(ITdata$psc_cat))]

ITdata <- ITdata[!(is.na(ITdata$productorservicecode))]

ITdata <- ITdata[!(is.na(ITdata$psc))]

#id observations by contract ID and transaction ID

ITdata <- ITdata %>%

separate(unique_transaction_id,

into = c(’contract_id’, ’transaction_id’),

sep = 13)

#create tibble

textframe <- tibble( document = ITdata$contract_id,

psc_cat = ITdata$psc_cat,

psc = ITdata$psc,

description = as.character(ITdata$descriptionofcontractrequirement))

#collapse by contract

textframe <- aggregate(description ~ document + psc_cat + psc,

data = textframe, paste, collapse = " ")

#save data

saveRDS(textframe, file = "AF_FPDS_clean.RDS")

FPDS <- textframe

data_total <- rbind(textframe, data_raw)

data_total <- aggregate(description ~ document + psc_cat + psc,

data = textframe, paste, collapse = " ")

saveRDS(data_total, "data_total.RDS")

#investigate duplicates

duplicates <- data[duplicated(data$document),]

duplicates %>%

group_by(document) %>%

count()

duplicates %>%

subset(document == "FA252114FG001") %>%

View()

data <- data %>%

mutate(ID = as.factor(row_number())) %>%

dplyr::select(-document) %>%

rename("document" = ID)

data$document <- paste(data$document, "58", sep="_")
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# Sampling

dtm.mat.imb <- dtm.mat

dtm.mat.imb$SMOTECOL <- NA

dtm.mat.imb$SMOTECOL <- as.factor(ifelse(dtm.mat.imb$targetCat == 2, "1" , "0"))

dtm.mat.bal.both <- ovun.sample(SMOTECOL ~ ., dtm.mat.imb, method = "both")

dtm.mat.bal.over <- ovun.sample(SMOTECOL ~ ., dtm.mat.imb, method = "over")

dtm.mat.bal.OVER <- subset(dtm.mat.bal.over$data, select = -SMOTECOL)

dtm.mat.bal.SMOTE <- subset(dtm.mat.bal.both$data, select = -SMOTECOL)

train.idx.bal.OVER <- trainSplit(dtm.mat.bal.OVER)

test.idx.bal.OVER <- testSplit(dtm.mat, train.idx.bal.OVER)

dtm.cat.OVER <- dtmCat(dtm.mat.bal.OVER)

dtm.mat.nl.bal.OVER <- dtmMatNl(dtm.mat.bal.OVER)

train.idx.bal.SMOTE <- trainSplit(dtm.mat.bal.SMOTE)

test.idx.bal.SMOTE <- testSplit(dtm.mat, train.idx.bal.SMOTE)

dtm.cat.SMOTE <- dtmCat(dtm.mat.bal.SMOTE)

dtm.mat.nl.bal.SMOTE <- dtmMatNl(dtm.mat.bal.SMOTE)

# Optimal Topics

sparse <- 0.98

dtm <- tidyDTM(data, sparse)

rowTotals <- apply(dtm , 1, sum) #Find the sum of words in each Document

dtm <- dtm[rowTotals> 0, ] #remove all docs without words

lda.J <- ldafun(dtm, 3)

beta <- tidybeta(lda.J)

topics.terms <- topic_terms(beta)

gamma <- tidy(lda.J, matrix = "gamma")

classifications <- gamma %>%

group_by(document) %>%

top_n(1, gamma) %>%

ungroup() %>%

dplyr::select(-gamma) %>%

as.data.frame()

data.optimal <- merge(data, classifications, by = "document")

data.optimal <- data.optimal %>%

dplyr::select(-class) %>%

rename("class" = topic)

74



prop.table(table(data.optimal$class))

# Optimal Topics

sparse <- 0.983

dtm <- tidyDTM(data, sparse)

rowTotals <- apply(dtm , 1, sum) #Find the sum of words in each Document

dtm <- dtm[rowTotals> 0, ] #remove all docs without words

optimal_topics <- FindTopicsNumber(

dtm,

topics = seq(from = 2, to = 10, by = 1),

metrics = c("Griffiths2004", "CaoJuan2009","Arun2010", "Deveaud2014"),

method = "Gibbs",

control = list(seed = 1234),

mc.cores = 4L, #make sure this is appropriate number of cores you wish to use

verbose = TRUE

)

optimal_topics.idf <- optimal_topics(dtm.idf)

saveRDS(optimal_topics, "optimal_topics_J_10.RDS")

optimal_topics_norm <- normalize_metrics(optimal_topics)

topics_grid <- lapply(optimal_topics_norm, topics_grid)

topics_collapsed <- ldply(optimal_topics_norm, data.frame)

names(topics_collapsed)[names(topics_collapsed) == ’.id’] <- ’PSC_cat’

saveRDS(topics_collapsed, "topics_collapsed_70_30.RDS")

optimal_topics_70 <- ggplot(optimal_topics_norm, aes(x=topics)) +

labs(title="Optimal Topics", x="Number of Topics", y="Normalized Metric", colour = "Metric") +

geom_line(aes(y = Griffiths2004, color = "Griffiths2004")) +

geom_line(aes(y = CaoJuan2009, color = "CaoJuan2009")) +

geom_line(aes(y = Arun2010 , color = "Arun2010")) +

geom_line(aes(y = Deveaud2014, color = "Deveaud2014")) +

scale_x_continuous(

breaks = topics_collapsed$topics[seq(1, length(optimal_topics$topics),by = 1)])

optimal_topics_70

topics_collapsed_ranked <- topics_collapsed

topics_collapsed_ranked <- optimal_topics_norm %>%

mutate("Griffiths" = rank(-Griffiths2004),

"Cao" = rank(CaoJuan2009),

"Arun" = rank(Arun2010),

"Deveaud" = rank(-Deveaud2014)) %>%

mutate(Sum = rowSums(select_(.,"Griffiths", "Cao","Arun", "Deveaud"))) %>%
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mutate(Rank = as.integer(rank(Sum)))

optimal_topics_ranked <- topics_collapsed_ranked %>%

group_by(PSC_cat) %>%

top_n(3,-Rank) %>%

dplyr::select(PSC_cat, topics, Rank)

topics_ranked$Griffiths = unlist(with(topics_collapsed_ranked,

tapply(Griffiths2004,

PSC_cat,rank)))

topics_ranked$Cao = unlist(with(topics_collapsed_ranked,

tapply(-CaoJuan2009,

PSC_cat,rank)))

topics_ranked$Arun = unlist(with(topics_collapsed_ranked,

tapply(-Arun2010,

PSC_cat,rank)))

topics_ranked$Deveaud = unlist(with(topics_collapsed_ranked,

tapply(Deveaud2014,

PSC_cat,rank)))

topics_collapsed_ranked$Sum =

rowSums(topics_collapsed_ranked[,c("Griffiths", "Cao","Arun", "Deveaud")])

topics_collapsed_ranked$Rank = unlist(with(topics_collapsed_ranked,

tapply(-Sum,PSC_cat,rank)))

#classification optimal

data <- data.optimal

sparse <- 0.978

dtm <- tidyDTM(data, sparse)

dtm

#train test split

dtm.mat <- dataMatrix(dtm, data)

train.idx <- trainSplit(dtm.mat)

test.idx <- testSplit(dtm.mat, train.idx)

dtm.cat <- dtmCat(dtm.mat)

dtm.mat.nl <- dtmMatNl(dtm.mat)

AccStats.SVM <- doSVMerr(dtm.mat, test.idx)

AccStats.SVM.Accuracy <- t(data.frame(AccStats.SVM[1]))

AccStats.SVM.Accuracy <-

AccStats.SVM.Accuracy[,colnames(AccStats.SVM.Accuracy) != "McnemarPValue"]
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mtry.list <- doRFtune(dtm.mat.nl, dtm.cat)

AccStats.RF <- doRF(dtm.mat, train.idx, test.idx, n = 500, mtry.list)

AccStats.RF.Accuracy <- t(data.frame(AccStats.RF[1]))

AccStats.RF.Accuracy <-

AccStats.RF.Accuracy[, colnames(AccStats.RF.Accuracy) != "McnemarPValue"]

AccStats.KNN <- doKNNCV(dtm.mat.nl, dtm.cat, train.idx, test.idx)

AccStats.KNN.Accuracy <- t(data.frame(AccStats.KNN[1]))

AccStats.KNN.Accuracy <-

AccStats.KNN.Accuracy[, colnames(AccStats.KNN.Accuracy) != "McnemarPValue"]

saveRDS(AccStats.SVM, "AccStats_SVM_total_optimal.RDS")

saveRDS(AccStats.RF, "AccStats_RF_total_optimal.RDS")

saveRDS(AccStats.KNN, "AccStats_KNN_total_optimal.RDS")

#all IT data

data <- readRDS("IT_total.RDS")

sparse <- 0.99

dtm <- tidyDTM(data, sparse)

rowTotals <- apply(dtm , 1, sum)

dtm <- dtm[rowTotals> 0, ]

optimal_topics <- FindTopicsNumber(

dtm,

topics = seq(from = 2, to = 30, by = 1),

metrics = c("Griffiths2004", "CaoJuan2009","Arun2010", "Deveaud2014"),

method = "Gibbs",

control = list(seed = 1234),

mc.cores = 4L,

verbose = TRUE

)

saveRDS(optimal_topics, "total_optimal_30.RDS")

optimal_topics_norm <- normalize_metrics(optimal_topics)

topics_grid <- lapply(optimal_topics_norm, topics_grid)

topics_collapsed <- ldply(optimal_topics_norm, data.frame)

names(topics_collapsed)[names(topics_collapsed) == ’.id’] <- ’PSC_cat’

saveRDS(topics_collapsed, "topics_collapsed_30.RDS")

optimal_topics_total <- ggplot(optimal_topics_norm, aes(x=topics)) +

labs(title="Optimal Topics",

x="Number of Topics",

y="Normalized Metric",

colour = "Metric") +

geom_line(aes(y = Griffiths2004,

color = "Griffiths2004"),

size = 1) +

geom_line(aes(y = CaoJuan2009,
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color = "CaoJuan2009"),

size = 1) +

geom_line(aes(y = Arun2010 ,

color = "Arun2010"),

size = 1) +

geom_line(aes(y = Deveaud2014,

color = "Deveaud2014"),

size = 1) +

scale_x_continuous(

breaks = optimal_topics_norm$topics[seq(1,

length(optimal_topics_norm$topics),

by = 1)])

optimal_topics_total

topics_collapsed_ranked <- topics_collapsed

topics_collapsed_ranked <- optimal_topics_norm %>%

mutate("Griffiths" = rank(-Griffiths2004),

"Cao" = rank(CaoJuan2009),

"Arun" = rank(Arun2010),

"Deveaud" = rank(-Deveaud2014)) %>%

mutate(Sum = rowSums(select_(.,"Griffiths", "Cao","Arun", "Deveaud"))) %>%

mutate(Rank = as.integer(rank(Sum)))

optimal_topics_ranked <- topics_collapsed_ranked %>%

group_by(PSC_cat) %>%

top_n(3,-Rank) %>%

dplyr::select(PSC_cat, topics, Rank)

lda <- readRDS("lda_total_6.RDS")

beta <- tidybeta(lda)

topics.terms <- topic_terms(beta)

gamma <- tidy(lda, matrix = "gamma")

classifications <- gamma %>%

group_by(document) %>%

top_n(1, gamma) %>%

ungroup() %>%

dplyr::select(-gamma) %>%

as.data.frame()

data.optimal <- merge(data, classifications, by = "document")

data.optimal <- data.optimal %>%

#dplyr::select(-class) %>%

rename("class" = topic)

prop.table(table(data.optimal$class))

saveRDS(data.optimal, "data_optimal_total_10.RDS")
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lda <- readRDS("lda_total_6.RDS")

lda <- ldafun(dtm, 6)

topics <- tidy(lda, matrix = "beta")

top_terms <- topics %>%

group_by(topic) %>%

top_n(8, beta) %>%

ungroup()

top_terms <- top_terms %>%

ungroup() %>%

arrange(topic, beta) %>%

mutate(.r = row_number())

ggplot(top_terms,aes(.r, beta,

fill = factor(topic))) +

geom_col(show.legend = FALSE) +

facet_wrap(~ topic, scales = "free") +

scale_x_continuous(

breaks = top_terms$.r,

labels = top_terms$term)+

xlab("term")+

coord_flip()
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