
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1-2018

The Developmental Test Scheduling Problem
Joseph E. Schoenbeck

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Operational Research Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Schoenbeck, Joseph E., "The Developmental Test Scheduling Problem" (2018). Theses and Dissertations. 1860.
https://scholar.afit.edu/etd/1860

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1860?utm_source=scholar.afit.edu%2Fetd%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

THE DEVELOPMENTAL TEST
SCHEDULING PROBLEM

THESIS

Joseph E. Schoenbeck

AFIT-ENS-MS-18-M-160

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OFTECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-18-M-160

THE DEVELOPMENTAL TEST SCHEDULING PROBLEM

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Joseph E. Schoenbeck, MBA

March 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THE DEVELOPMENTAL TEST SCHEDULING PROBLEM

THESIS

Joseph E. Schoenbeck, MBA

Committee Membership:

Dr. Jeffery D. Weir
Chair

Lt. Col. Jeremy D. Jordan

PhD
Reader

Dr. Stephen P. Chambal
Member

AFIT-ENS-MS-18-M-160

AFIT-ENS-MS-18-M-160

Abstract

Developmental testing of aircraft systems in the United States Air Force requires a

complex set of resources for each test. The optimal scheduling of those resources

is the job of the 412th Test Wing at Edwards Air Force Base. With more than 20

different Combined Task Forces requesting resources for roughly 300 flying missions

each week, manual scheduling is a difficult task. The current process takes a team of

schedulers several days to get a workable result from which they can start tailoring the

final schedule. While concepts and techniques can be taken from industry schedul-

ing problems, the body of knowledge as it relates to developmental test scheduling

is sparse. The contribution of this paper is to initially document the Developmental

Test Scheduling Problem, define it in structured terms for which a solution methodol-

ogy can be designed, and present an Integer Programming based solution. The design

allows for a scheduler to tailor an initial answer to fit nuanced and timely objectives

and constraints. For this prototype effort the problem is scoped to the “Iron” Re-

sources while bearing in mind the extensibility of the approach to “Range” Resources.

This study and prototype will demonstrate results that will create an initial schedule

in several hours and serve as a good starting point for the final schedule.

iv

Acknowledgements

I am thankful to many whose patient mentoring and teaching were instru-mental

to this effort, and my development. Our project manager and developer make a great

team. My Research Advisor, Dr. Jeffery Weir supported me throughout the entire AFIT

experience, and specifi-cally in the crafting of this document. To my wife for her

unwavering support and love on this unconventional journey that continues in

partnership. This is dedicated to her.

Joseph E. Schoenbeck

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

I. Introduction and Background . 1

1.1 Edwards Air Force Base . 1
1.2 Motivation and Purpose . 2

1.2.1 Success Outcomes . 4
1.3 Background . 6

1.3.1 Functional Scheduling Departments . 7
1.4 Scope . 8
1.5 Conclusion to Chapter . 9

II. Problem Structure and Data Analysis . 10

2.1 Introduction . 10
2.2 Scheduling Constructs . 10
2.3 Classifying the Developmental Test Scheduling Problem 11

2.3.1 The Machine Environment . 12
2.3.2 The Processing Environment . 12
2.3.3 The Objective . 14

2.4 Scheduling Solutions . 15
2.4.1 Integer Programming as a Generic Construct 17

2.5 Current State Data Analysis . 17
2.5.1 F16 Profile Data . 18
2.5.2 Probability Distributions for Sorties and Hours 20
2.5.3 Efficiency Measures . 22

2.6 Specific Problem Parameters . 24
2.6.1 Time and Volume . 24
2.6.2 F16 Characteristics . 26
2.6.3 Configurations . 27
2.6.4 Refueling . 27
2.6.5 Planning Time . 28

2.7 Keeping Score . 28
2.8 Model Execution Considerations . 30

2.8.1 Robustness . 30
2.8.2 Tactical Execution Considerations . 31

vi

Page

2.9 Conclusion to Chapter . 31

III. Methodology . 33

3.1 Introduction . 33
3.2 An Integer Programming Approach . 34
3.3 Capturing Necessary Data Elements . 35

3.3.1 Time Windows . 36
3.3.2 F16 Characteristics . 36
3.3.3 Configurations . 37

3.4 Explicit Enumeration Methodology . 37
3.5 Solution Approaches . 40

3.5.1 Generating Time Windows . 40
3.5.2 Post Processing Approach . 42

3.6 Implementation Design . 43
3.6.1 Implementation of Another Planning Tool 45

3.7 Iron Model IP Formulation . 47
3.7.1 Core Model Formulation . 47
3.7.2 Refueling Extension Formulation . 55
3.7.3 Configuration Extension Formulation . 60

3.8 High Level Solution Steps . 63
3.9 Conclusion to Chapter . 64

IV. Results . 65

4.1 Introduction . 65
4.2 Golden Problem Profile . 65
4.3 Base Results . 66

4.3.1 Finding the right MIP Gap . 69
4.4 Variants on the Base Results . 70

4.4.1 Objective Function Variants . 70
4.4.2 Two Pass Approach. 70

4.5 Post Processing . 71
4.6 Conclusion to Chapter . 72

V. Conclusions and Future Research . 73

5.1 Introduction . 73
5.2 Range Resources . 74
5.3 Optimization of the Critical Model Inputs . 74
5.4 Strategic Decision Making . 74
5.5 A Tactical Implementation . 75
5.6 Developing other Solution Procedures . 75
5.7 Conclusions . 76

Bibliography . 77

vii

List of Figures

Figure Page

1. Mission Taxonomy . 7

2. Thesis Scope . 9

3. Annual F16 Usage since Late 2014 . 19

4. F16 Usage by Model for 78 weeks of 2016-17 . 20

5. Fitting Sortie Counts to a Poisson Distribution . 21

6. Flying Hours Histogram and Cumulative Distribution
Function . 23

7. Request vs Scheduled Time Periods (Two Weeks in
August 2017) . 25

8. F16 Characteristics by Tail . 26

9. Positions on an F16 Representing the Combinations of
Possible Configurations . 27

10. High Level Scheduling Process . 30

11. The Model Ecosystem . 33

12. Global Optimization of an Integer Program . 35

13. Explicit Enumeration Data . 38

14. Compressing The Problem Size (from JSON output file
in Pyomo) . 39

15. Example Day of F16 Missions Schedule . 42

16. User Main Menu Screen for Prototype . 45

17. Prototype Implementation Technology Stack . 45

18. Planning Tool Bolted on to CSE . 46

19. An External Planning Tool . 46

20. F16s/Refuels Scheduled varying Run Time and Variables 67

viii

Figure Page

21. 58 F16 Sortie Answer in Time Line Format . 69

22. Possible Sortie Report Generated from Post Processing
Heuristic . 71

23. Output of Run with Sortie that can move to another
Day (8867) . 72

24. Phase Flow Hypothetical Example . 75

ix

List of Tables

Table Page

1. Iron Model Core Basic Sets . 48

2. Iron Model Derived Tuple Sets . 50

3. Iron Model Core Parameters . 51

4. Iron Model Variables . 52

5. Tanker Sets . 56

6. Tanker Derived Tuple Sets . 57

7. Tanker Parameters . 58

8. Tanker Variables . 58

9. Configuration Sets . 61

10. Configuration Derived Tuple Sets . 62

11. Configuration Variables . 62

12. Golden Problem Mission Summary . 66

13. Golden Problem F16 Sortie Profile . 66

14. Golden Problem Refuel Mission Profile . 68

15. Golden Problem Special Mission Summary . 68

16. Starting Sortie Capacity for F16s . 68

17. Base Parameter Settings . 69

x

THE DEVELOPMENTAL TEST SCHEDULING PROBLEM

I. Introduction and Background

1.1 Edwards Air Force Base

In September 1933 the Muroc Bombing and Gunnery Range was established by

Colonel H.H. “Hap” Arnold who saw the area encompassing the Rogers Dry Lake Bed

as a natural aerodrome that could be acquired at virtually no cost to the taxpayer.

The 12x5 mile dry lake bed, made famous partly by the first landing of the Space

Shuttle Columbia in 1981, is the centerpiece of the Mojave Desert land occupied by

the base. The name was changed to Edwards Air Force Base in 1949 in honor of

Captain Glen Edwards who was killed in a crash flying the YB-49.

The 412th Test Wing, located at Edwards, performs developmental
testing of airframe, avionics, propulsion and electronic warfare systems
of manned and unmanned aircraft for the Air Force, other U.S. military
services and government agencies, and international partners. Current
and recent systems tested by the wing include the B-2, F-22A, F-35, Air-
borne Laser, and Global Hawk. The wing’s expertise in flying operations,
maintenance and engineering ensures the successful test and evaluation of
a fleet of more than 90 highly modified aircraft. Every single aircraft to
enter the Air Fore Inventory - and a great many that failed to do so - has
been put through its paces at Edwards.

– Air Force Materiel Command

The 412th Test Wing performs a unique mission in the U.S. Air Force. Developmental

Test can be differentiated from other Test and Evaluation Centers operated by the

96th Test Wing at Eglin and Holloman Air Force Bases, and from Operational Test

1

Centers around the country, by its diversity in aircraft, tests, and partners. Working

with such a diverse group of systems and agencies requires flexibility and an equally

diverse set of resources. Scheduling the Missions with those resources is the mission.

1.2 Motivation and Purpose

This paper defines the Developmental Test Scheduling Problem by focusing on

a scheduling modernization effort for the 412th Test Wing at Edwards Air Force

Base. Scheduling Test Sorties is a process that takes intricate coordination across

multiple squadrons and functional groups involving a myriad of players, hand-offs, and

checkpoints. The wing relies on a strong network of relationships and communication

channels to accomplish the overall mission of putting a test schedule together every

week. These relationships and intense processes compensate for the lack of planning

tools and structured data to put together the most effective schedule in the most

efficient manner. The objective of this project is to define the problem in such a

way that the solution can be designed and executed with Operations Research (OR)

techniques.

The environment can be defined as centralized scheduling where a Combined Task

Force (CTF) submits mission requests with one or more sorties requiring a myriad

of resources. The CTF is a combination of military, government, and contractor per-

sonnel responsible for the testing of a particular aircraft system. They are sometimes

encompassed by a squadron. The teams responsible for scheduling and conducting

the tests evaluate the requests through a series of deconfliction meetings and pro-

cesses to create a weekly schedule that runs through many iterations on its way to a

final schedule. The Wing Commander will sign the final schedule for execution. The

initial schedule can be unstable in this environment for several reasons:

• The inherent nature of developmental testing requires flexibility with priori-

2

ties and a fly-learn-fly methodology where the results of the current test can

determine the nature of the next test. That flexibility is paid for in terms of

scheduling instability, referred to as “thrash” or “churn.”

• The shared, often scarce and complex resource environment contributes to the

flexibility and fluidity of the schedule.

• There are a critical mass of resources not well established early enough in the

process, and late changes to those resources cause a ripple effect to other re-

sources, creating more thrash.

• The system designed to manage the process is an excellent scheduling execution

platform but lacks the data elements and logic to be a robust pre-planning tool.

This confluence of destabilizing factors perpetuates a universal distrust of the initial

schedule, thus daily activities are expected to finalize the executable schedule. The

incompleteness of the planning elements along with the general distrust of the original

plan can lead to scheduling behaviors which exacerbate the thrash.

The project charter as agreed to by the Air Force Institute of Technology (AFIT)

Center for Operational Analysis (COA) and the Project Sponsor reads:

For over 16 years, the Test Wing has relied on a highly labor-intensive
scheduling process that is increasingly cumbersome, does not adequately
account for the types of sorties being flown or significant constraint changes,
and fails to take advantage of modern, automated optimization tools and
methods to de-conflict the shared assets necessary for sortie execution.
The current process requires schedulers to work each sortie into prelimi-
nary schedules a minimum of three times in the two weeks leading up to
sortie execution. In practice, this number is even higher due to numer-
ous changes in the set of constraints affecting a mission and the many
downstream effects of any change. The process would benefit greatly by
capitalizing on readily available systems engineering concepts and proven
operations research practices in the scheduling and execution of its mis-
sions.

3

This statement was drafted by the Project Sponsor, Lt. Col Chris Keithley, who

has spent more than a decade at Edwards in various capacities. At the time of this

writing he is Commander, 416th Flight Test Squadron (FLTS) and Director, Global

Power Fighter CTF. He responsible for the F16 Fleet which both supports missions

and flies the lead on missions in support of Air Force testing priorities. Lt. Col

Keithley sees the need to analyze the process from an Operations Research mindset

to put in place the analytical rigor to enhance the process and the outcomes.

1.2.1 Success Outcomes.

The motivation to initiate this project is to improve scheduling efficiency and

transparency, while enhancing the effectiveness of the schedule produced.

1. Efficiency: Building a schedule quickly thus allowing time for schedulers at

all levels to enhance the process and system through creative solutions, build

relationships with the engineers and the broader test community, and work

towards more effective missions.

2. Effectiveness: Measuring the schedule by the quality of the throughput. A

quality mission is one that advances the objectives of the Program and Unit,

and does not merely fill flying hours. This ultimately leads to more test pro-

grams being executed in a timely manner, and the war-fighters being faster to

operational testing and capability.

3. Transparency: Beginning with an upfront plan that is understood and can be

evaluated in totality early in the process. This also means understanding the

results in the context of the priorities and established rules.

Efficiency can be roughly measured by the man-hours it takes to produce a sched-

ule and the number of changes that schedule endures on its path to execution. The

4

squadrons optimize their tests on a longer time horizon and then submit that week’s

portion of their plan to the central scheduling process. The planning week process

takes requests and turns them into a flying schedule. The inefficiency in the process

is seen in rescheduling missions multiple times before they fly, and also in a high

cancellation rate. Inefficiency can lead to sub-par effectiveness as time is dedicated to

simply getting missions on the schedule rather than value added activities ensuring

the success of those missions.

Effectiveness of the schedule can be nebulous to measure. “You know a good

schedule when you see one” is a phrase that schedulers in all industries understand,

and this environment is no exception. Those involved in the process generally believe

their planning efforts produce an effective schedule. Although, nearly all concede

they should get to that schedule with less rework. The simplest explanation of a

good schedule is one where the most important missions are scheduled with the right

resources in the time slots that give the highest probability for success. While pure

throughput is one measure of effectiveness, not all missions advance the overall pro-

gram at an equal rate. A good scoring mechanism is necessary to capture high quality

missions, a thoughtful rule set is required to dole out the resources consistently, and

a robust process is needed to ensure accurate and timely input and output. Every as-

pect of the problem from the data capture, to the mission requests, to the handling of

unscheduled missions contributes to the overall perceived effectiveness. A robust and

efficient process leads to fewer reschedules which leads to a more effective schedule in

the form of a lower cancellation rate and high quality tests minimizing retesting.

Transparency in this context means the process is perceived to be fair and con-

sistent. Some of the Air Force Program objectives contain classified and secret in-

formation which will remain opaque. There are political sensitivities in balancing

the internal and external (contractor and government agencies) programs compet-

5

ing for scarce resources. Therefore, the priorities as input to an optimization effort

need not be public or fully transparent in order for the scheduling process to be so.

Transparency contributes to efficiency and effectiveness in that it provides a founda-

tion for process trust amongst the participants, which leads to higher quality input

perpetuating higher quality output.

Creating efficiency, effectiveness, and transparency can be summarized as:

1. A Robust data input with processes and data structures capable of capturing

enough fidelity critical to an optimization program.

2. A trusted scoring system that allows for cognizant trade-offs in schedule building

and encourages good behavior amongst the squadrons.

3. An optimized plan before the schedule is released to the base.

4. An enhanced process which can effectively leverage the results of the optimiza-

tion.

The optimized plan is not effective without the other aspects of a solution, so a

successful project will build an optimization ecosystem, not just an optimization

model.

1.3 Background

In a developmental test environment, a “test” of a capability, system, configura-

tion, or procedure is referred to as a Mission as it has a specific purpose to meet the

objectives of the Program funded for research and development. Missions are made

up of one or more Sorties, or a single aircraft playing its part in the Mission. The

taxonomy of a Mission can be depicted as in Figure 1. The Programs are Air Force

funded entities which the Combined Task Force Squadrons are responsible for carry-

ing out, reporting on, and analyzing. These programs reflect the Air Force capability

6

Figure 1: Mission Taxonomy

priorities. The completion of a program has a range of outcomes depending on the

maturity of the system. Successful programs advance to an Operational Test Phase

while others are canceled or stalled. The more tests the Wing can carry out, the

sooner Programs can be completed, increasing the capability of the Air Force.

1.3.1 Functional Scheduling Departments.

The Long Range Scheduling Team is part of the Operations Groups and is tasked

with understanding where the programs intersect with high level capabilities. They

make recommendations that will avoid conflicts before they occur.

The Short Range Scheduling Team has the operational responsibility to systemi-

cally shepherd missions through the system, share timely information with the range

and maintenance teams, and coordinate with outside agencies like TACC (Tankers)

and other services for external range support or shared frequencies. The Long and

Short Range teams work together as Central Scheduling to turn program initiatives

7

and flying requests into a tangible flying schedule.

The Maintenance Team is responsible for scheduling the F16 fleet to missions.

They work closely with the Long Range and Short Range Teams to make the core of

the central scheduling function.

1.4 Scope

The scope of the initial work is to demonstrate the ability to efficiently opti-

mize a centralized schedule, based on criteria from the Testing Units and Operations

Group, on a significant subset of the resources. Other projects have tackled squadron

scheduling and while that context is important this project scope is to optimize central

scheduling.

The project is designed in phases with the overall goal of a comprehensive plan-

ning solution. The solution encompasses a scheduling ecosystem that includes data

input and management, a modeling engine, and process infrastructure. The central-

ized resources can be broken into roughly two groups; “Iron”” and “Range”. The

Iron refers to scheduling the support F16s, and their maintenance and configuration

requirements. This includes scheduling the Tankers to ensure Missions can refuel in

their flying windows. The Range encompasses the airspace to fly, the control room

to monitor, and the telemetry resources to capture test data (including the TM fre-

quencies). In short, the project is to build a comprehensive planning application

which produces a high quality schedule as input to the scheduling execution system

(CSE) and process. The full scope is large enough to encompass several phases of

work. Figure 2 roughly depicts the prototype scope and thesis focus relative to the

overall scheduling problem scope. There is still more modeling and analysis to be

completed before a product is delivered to the Test Wing. This thesis represents

a significant portion of the prototype and model design work towards the goal of a

8

finished product.

Figure 2: Thesis Scope

The prototype phase is designed to show all levels of the Test Wing that this

problem can be solved. Having the Iron scope to build confidence externally has

been critical to success. All development takes place with the understanding that the

Range will come into scope as soon as the Iron Model is verified and validated to

avoid short sighted or expedient decisions.

1.5 Conclusion to Chapter

The scope of this thesis is to analyze the problem data and structure, build and

solve an appropriate model for schedule optimization, analyze the results coherently,

and provide insights for successful completion of the overall project. The resource

breadth of the thesis will encompass the “Iron” to demonstrate the modeling solution.

The goal is to design an optimization ecosystem that is flexible enough to model the

complexity, and robust enough to be scalable to the entire breadth of resources.

9

II. Problem Structure and Data Analysis

2.1 Introduction

While others have tackled the topic of Test and Evaluation [11], the literature rel-

ative to Test Scheduling is sparse. Given the unique nature of Developmental Testing

it is difficult to find directly relevant material to research. Thus one contribution of

this work is to define and structure the problem so that research can be done in a

cohesive way for constant improvement. The search for relevant industry schedul-

ing parallels will be aided by describing the problem in the most fundamental terms

possible.

The inputs into the problem are mission requests. This batch of requests is akin

to a batch of service orders that are fulfilled, or not, with defined centralized re-

sources over a finite time horizon. The fulfillment of these requests in this problem

is scheduling the test at the appropriate time, with the appropriate resource mix, to

enable success. These orders, or complex tasks, compete for shared resources and

require exact scheduling so all the resource needs are coordinated. The material

resources are manned and prepped by the pilots, maintainers, and control room per-

sonnel. The schedule is defined in terms of time blocks in which the resources are

coordinated to fulfill the request. The schedule is executed to some degree of success,

with the results feeding back to the requesters as input to plan the next batch of

orders.

2.2 Scheduling Constructs

With these building blocks in mind, the following scheduling constructs were re-

searched to provide insight into the problem and creative ideas for the solution.

The resource constrained scheduling problem (RCSP) is scheduling a set of com-

10

plex tasks requiring resources. A good overview for comparison to other scheduling

algorithms and approaches is found in Lawler’s survey article [7]. The idea of a basic

Gantt chart time horizon is part of the solution output and the overall design is influ-

enced by critical path thinking. The phenomena in the Developmental Test Problem

is that often high priority Missions (e.g. F35 Integration Testing) are resource in-

tense and have the least amount of time flexibility. These “big rocks” can be thought

of as being on the critical path of resource consumption. Proficiency flights, with

more flexibility and limited resource consumption, can be used to fill the slack in the

schedule. Terms like “holes” are used to denote the notion of slack.

A parallel machine scheduling approach was adapted in the formulation of Crash

Test Optimization at Ford Motor Co, which shares many similarities to scheduling

missions. The Ford scheduling work drew some inspiration from a seminal article on

parallel machine scheduling and solution techniques [1]. The requests in the develop-

mental test scheduling problem could be viewed as jobs being worked on by parallel

non-uniform “machines” over a make-span. So the mission is effectively split between

resources all working on the task at the same time. There are a finite number of ma-

chines of each type to perform a certain function. If the aircraft and other resources

are viewed as machines, this has applicability. None of the constructs fit perfectly

and that is to be expected when defining a problem of this nature.

2.3 Classifying the Developmental Test Scheduling Problem

Taking the fundamental description above, it is important to classify the problem

in terms of classic scheduling language and notation. Most scheduling descriptions

use the α | β | γ scheme to classify the problems [7]. α represents the machine

environment, β captures the processing restrictions and constraints, and γ denotes the

objective of the scheduling problem. This classification is taken from the Scheduling

11

book by Pinedo [9]. This system allows for new classifications to be slight variants of

a more generalized classification that indicate appropriate solution algorithms.

2.3.1 The Machine Environment.

The machine environment for the Developmental Test Scheduling Problem is a

specialized Job Shop where parallel “machines” are in work centers, but not any

machine can work on any task. The best notation for this, in line with page 15 [9] is

Jc as a combination of Jm and FJc. Jobs are not routed in this case, but there are

offsets such that a work center can start ahead of another. A machine in each work

center will work on, or support, one job at a time, and each job will use a machine

in each work center at most one time.

The work centers in this case are the resource groups that include F16s, Tanker

Refueling Support, Control Rooms, Communication Equipment, and Airspace. The

individual machines are the Aircraft, available Tankers, specifically designed control

rooms, numbered antennas, frequency bands, and flying areas at altitudes.

A fundamental shift from a classic scheduling problem is that the jobs, or missions,

do not move between work centers. The work centers focus their effort on the mission

when it is scheduled. That shifts the focus from how to move the job through the

machines to how to coordinate the machines in a work center to work on the proper

jobs in unison.

2.3.2 The Processing Environment.

The processing environment contains multiple entries to describe the problem.

Here are the applicable entries in this case:

• rj ± σj: Each job has its own release date with some flexibility but is not

released at the beginning of the make-span. Job j may not be available to start

12

until rj ± σj. The due date is not applicable at the job level as the mission has

an inherent duration at which time all the machines it needs must be working.

All jobs are due at the end of the week.

• prec: While not like a Project Scheduling Problem where there is flow to the

completion of a single project, there are precedent relationships such that C1 <

C2. In this case the first job may be completed independent of the second job

being completed.

• sj1,j2: There are processing times (Turn Times) on the F16s and the control

rooms and equipment. These times are dependent on the previous job. For

example, a flying mission needs 3 hours of turn time on an F16, while a ground

mission does not require any turn time, with the restriction the next job must

also be grounded.

• fmls: The previous example is that of a family of jobs (Air vs Ground). There

are other examples such as F35Bs versus F35As requiring different types of

resources for refueling.

• brkdwn: There are machine breakdowns in this environment that the initial

formulation of the planning problem does not consider. Later implementations

should react to breakdowns, and even plan for them in a stochastic sense.

• Mj,c: This notation implies that not any machine can work on Job j, rather

only a subset are available. For example, a sortie needs a certain type of F16

in the fleet, and some missions require control rooms with more capability such

that not any will do. The c subscript implies the further classification of the

machines into the work centers.

13

2.3.3 The Objective.

The objective is to schedule as many weighted missions as possible. The make-

span is the flying horizon (5 day week for initial implementation) but not all times

are appropriate for all Missions. The objective
∑

j wj Cj is not applicable here as the

completion time compared to a due date is not relevant. The job is either completed

or not. A unit variable is used to describe a completed mission:

xj =

1 Cj > 0

0 otherwise

The objective can then be defined as:

Max
∑

j wj xj

S.T.

(rj − σj)xj ≤ Cj xj ≤ rj + σj

In this scenario, the job must be completed in a window of time or not at all. The

mission in this case is generally canceled and resubmitted for another week. This rep-

resents another fundamental shift from a classic scheduling problem that attempts to

minimize the make-span. The classic batch of orders are more central and the objec-

tive is to minimize the lateness or tardiness of that batch. The Developmental Test

Scheduling Problem operates on the rhythm of a flying week and all the infrastructure

for the broader mission supports that rhythm. The objective is to schedule as many

quality missions as possible in the flying week that becomes a finite make-span.

The compact notation for the Developmental Test Scheduling Problem is :

Jc | rj, prec, sj1,j2, fmls,Mj,c |Max
∑

j wj xj

14

Given the fundamental departures from classic scheduling in the α and γ pa-

rameters, and the quite complex β parameter of the Developmental Test Scheduling

Problem, it is difficult to find a directly applicable solution technique. In discussing

the job shop environment, Pinedo states that only the two machine case can be found

to solve reliably in polynomial time. Other special circumstances require all process-

ing times to be 0 or 1 (page 184)[9].

At this point of complexity, the solution techniques in the literature turn to math

programming formulations with branch and bound solutions, of which Integer Pro-

gramming formulations are a subset.

2.4 Scheduling Solutions

This section looks at projects that are of similar form or environment to develop-

mental test scheduling. The process of scheduling pilots to missions over a broader

time horizon has been studied in previous AFIT theses. This work looked at the pro-

cess of generating a sortie schedule to submit to central scheduling, thus the feeder

to the central scheduling problem. In 1991 Lisa Hassel formulated a 0-1 Integer Pro-

gram (IP) to solve the “TPS Scheduling Problem.” The Test Pilot School (TPS) is a

squadron making weekly requests to the Edwards central scheduling process in order

to fulfill curriculum requirements. The TPS Problem is essentially assigning students

and instructors to curriculum sorties requiring a specific type of aircraft over a time

horizon. For the same reason an assignment problem is generally difficult to solve as

an IP, the combinations in this problem became intractable as she modeled a problem

of reasonable time duration. There were simply too many combinations of time slots,

sorties, students, and instructors to solve. Hassel worked on a series of pre-processing

techniques, using acute knowledge of the inputs, to cut the problem down, but con-

cluded only subsets of the course could be modeled this way [5]. In 1992 Gary Foster

15

developed an iterative heuristic that was applied to a new landscape each week [3].

Twenty Five years later the “TPS Problem” is still solved with heuristic and rule

based methods with a constant monitoring as the situation changes each week.

Other well documented heuristic scheduling approaches come from the General

Employee Scheduling Problem. Several articles discuss applying Tabu Search to

scheduling problems that have a Mixed Integer Programming (MIP) formulation [4].

Heuristic techniques have been applied to well structured problems, and successful

implementations in projects are documented. Dowsland’s nurse rostering implemen-

tation is a good example of applying Tabu Search [2].

The Ford Motor Company is engaged in a multi-year project to enhance the

scheduling of crash tests. The Test Planning Scheduler Support System (TP3S)

demonstrates success at the end of a scheduling project implementation. Like schedul-

ing test missions, scheduling crash tests is costly and complicated with the results

having impactful consequences to the design of the aircraft or car. The University

of Michigan and the Ford team describe their core problem as a hybrid between bin-

packing and the parallel machine scheduling problem. The bin-packing aspect is that

each crash car aims to accommodate multiple tests with different criteria. If the

bin (prototype car) is configured optimally within the rules, it will accommodate the

most items (tests) in a single crash and the schedule will get more throughput. The

parallel machine scheduling aspect reflects time sensitive tasks with given processing

durations that need to be scheduled on a given set of machine resources to minimize

a time-related additive criterion, such as the make-span [10]. The team employed an

explicit enumeration methodology to defining sets for a Mixed Integer Program to

keep it manageable in size. They took the added step of solving the problem with a

column generation technique as some instances were still too large for the memory of

the solution platform.

16

From a planning application standpoint, TP3S interacts directly with the engi-

neers who dial in the tests they need, optimizing through “runs” the car configura-

tions and the times at which they should be tested. The Development Test Scheduling

Problem structure has a layer of separation between the engineers and the schedule

in the form of squadron schedulers. However, the concept of getting detailed test

requirements and configuration specifications through a robust user interface and

optimizing that input to form a comprehensible schedule is applicable [10].

2.4.1 Integer Programming as a Generic Construct.

The utility of an Integer Program (IP) approach is that it is flexible enough to

formulate in light of the constructs discussed without having to fit neatly into any

one structure. Integer Programming Formulations and Solutions abound. The Air

Force Research Laboratory and The Massachusetts Institute of Technology Center

for Transportation and Logistics have teamed up on several military and commercial

projects with IP Formulations. Reading about these is good validation for such an

approach, and interesting to see the creative solution techniques that can be applied

to these formulations [6]. Even a cursory literature review will reveal that real world

(MIPs) and IPs are notoriously combinatorially intense and thus too large for basic

techniques like Branch and Bound or Cutting Plane techniques. The work of Hassel

and [5] and Foster [3] demonstrates how quickly a problem can explode, particularly

if all the combinations of discrete time, missions, and resources are allowed to persist

unchecked.

2.5 Current State Data Analysis

To further explore the problem structure, data profiling is necessary. Three types

of data are helpful to this effort:

17

1. Operational Data to Produce a Schedule. This is sourcing, cleaning, and or-

ganizing the request and parameter data used to build a schedule, so that an

optimization model can be built. This includes looking forward and backward

at source data to support building and validating a schedule. The sources of the

data are the Central Scheduling Enterprise System (CSE) and a Maintenance

Data Warehouse maintained locally at Edwards Air Force Base. This is where a

majority of the data has been sourced in order to produce a working prototype.

Part of this work’s contribution is to define, in a specific way, the data that

must be gathered in order to make scheduling optimization possible.

2. Historical Profiles. This includes the number of sorties flown and the hours

flown, and other resource consumption metrics. Given the “Iron” scope for the

prototype the focus will be on the F16 data profiles.

3. Efficiency Measures. This involves crafting some high level metrics related to

the process of generating a schedule. This is helpful for comparison purposes

to determine the impact of an optimized schedule early in the process.

This paper is not a statistics focused effort, and thus this section seeks to gain an

understanding of the problem rather than test the suitability of a probability dis-

tribution to the data. The discussion around the nature of the data is valuable for

context when considering results, and will become important for follow on statistical

efforts that become the basis for optimization model parameters, or robust inputs to

the Integer Program.

2.5.1 F16 Profile Data.

Figure 3 is a contextual measurement of F16 flying hours. The nature of the tests

changes rapidly as programs finish and new ones get approved, and while the data is

not simply demand driven, there are some interesting observations:

18

Figure 3: Annual F16 Usage since Late 2014

• The wing utilizes between 16 and 17 jets each week, which represents roughly

65% of the fleet.

• The average number of sorties for an active jet is between 3.7 and 4.1.

• The average duration of a sortie is between 3.1 and 3.9 hours, so the missions

from 2014/2015 are approximately 48 minutes longer on average than those in

2017.

• The combination of fewer sorties per jet and shorter sorties has led to a roughly

30% decrease in total flying hours from 2015 to 2017. This is impactful as it

precipitates the need for less phase maintenance (every 300 or 400 hours per

jet) or general maintenance, and thus less maintenance staff.

• There are two main roles for an F16, Test or Support, meaning the jet is the

focal point of what is being tested (Test) or in support of such (Support). Once

a jet is in a particular role it can only fly sorties fitting that mission’s purpose.

The next interesting delineation is the flying by Aircraft Model (A,B,C,D). Given the

shift in 2016 to fewer flying hours, the latter two years are used to obtain a clean

19

profile of jet usage by model. The D models are two seat aircraft that can be used for

Figure 4: F16 Usage by Model for 78 weeks of 2016-17

training and chase missions. D models can be used sometimes when a C is called for,

but the single seat C model cannot substitute for a D. Models A and B are almost

exclusively used as Test aircraft, which fly less, and are often configured with special

software needed for specific tests. As of this writing, there are no B models in the

fleet. The percent of weeks flown is measured for the type of aircraft as a whole, so

while 65% of the available aircraft are in use in any week, the aircraft comprising this

data were not available in all weeks. Therefore, the overall model shows a much lower

utilization over the course of the 78 weeks.

The utility of an Integer Program is the ability to run “what-if” analysis in deter-

mining the effectiveness of a schedule that has a different fleet composition. Strate-

gically optimizing the characteristics of the fleet, which is very diverse, is a good

extension of this work.

2.5.2 Probability Distributions for Sorties and Hours.

Ideally, subsequent models will attempt to predict the flying hours of a jet to

inform the optimal hours to schedule. The secondary goal is to optimize the flow of jets

into phase maintenance. Phase maintenance refers to the prescribed checks performed

on a jet after so many hours of flying. This concept exists across all aircraft types and

uses. The goal of maintenance, given limited staffing and for maximum utilization, is

20

to have one aircraft in maintenance and one ready for extended maintenance at any

point in time. This means a crew is busy working at all times, but only one jet is

out of service. This is tedious to manage manually and well suited for a scheduling

model. The current process grants to maintenance the responsibility for defining

the minimum and maximum hours a jet can fly in a week. Armed with probability

distributions a model can be tuned to determine the same.

Maintenance and Operations influence a request to shape the demand towards

desired jets to meet their objectives, thus the demand data is not pure.

Intuition indicates that the sortie counts, being discrete and low, follow a Poisson

Distribution. Figure 5 is the result of checking that intuition using a λ that is equal to

x, as x is the maximum likelihood estimator of λ for the Poisson Distribution. There

Figure 5: Fitting Sortie Counts to a Poisson Distribution

is a natural discontinuity that takes place between zero and one for sorties and hours.

The difference between not flying and flying one hour is more significant than flying

one sortie versus two sorties, and definitely one hour versus two hours. Since 35% of

the available jets are not on the schedule any given week, zero is the highest frequency

of sorties and hours, and can obscure how the data fits a distribution. Perhaps a two

stage distribution could be explored that first has a binomial distribution capturing

21

the probability of being on the schedule, then a separate distribution that predicts

the sorties.

The flying hours are a continuous random variable, but the sample data suffers

from the same problem with zero hours dominating the frequency counts, thus making

it difficult to fit a distribution. This can be diluted to some extent by grouping the

data into buckets so that zero is grouped with one to four hours leaving buckets that

follow an exponential pattern with a parameter λ that will be off at first due to the

influence of zero, but then fit well. Figure 6 is the histogram of flying hours along

with the empirical CDF and a fitted Exponential Distribution with λ = .10; again

from 2016 to mid 2017. The aggregate distributions are helpful in understanding how

jets expend hours, but might not be as useful for predicting the future flying hours

of any particular jet. The diversity of the fleet would seem to indicate each jet needs

its own distribution parameters.

2.5.3 Efficiency Measures.

The instability of requests can be seen in the number of missions that are canceled

and added in a week. For the first 25 weeks in August, an analysis of the data shows

that 2,596 missions were canceled and 2,516 were added. A good portion of these are

the same physical test with a different identifier (OPS NUM). Roughly 100 missions

per week were impacted. Of the missions that persisted throughout the week, 2,045

changed their start time with 875 of those changing days.

Another measure of efficiency is the time taken to produce a schedule. The Main-

tenance Pro-Super spends 10-14 hours from Friday afternoon to Monday afternoon

scheduling F16s to Missions. That plan is modified in “Tanker Wars” and subsequent

compromises throughout the week. At Iron and Tanker Wars there are at least 30

people that spend at least two hours manipulating the F16 and Refuel portions of the

22

Figure 6: Flying Hours Histogram and Cumulative Distribution Function

Schedule. This is followed up by other meetings to further deconflict as the process

unfolds throughout the week. That means a minimum of 70 man-hours of time that

might be avoided by several hours from a small team and an optimization model.

A goal of this project is to create efficiency by getting robust input, and optimizing

it before releasing a published schedule to minimize the changes and create more

productive hours for the schedulers.

23

2.6 Specific Problem Parameters

The following attributes of the Developmental Test Scheduling Problem are per-

tinent to designing a workable solution.

2.6.1 Time and Volume.

Time Horizon.

The mission requests submitted represent a relatively short period of time. The

relevant window is at most two weeks and more realistically one week with perhaps

several missions that could be pulled forward from the succeeding week. This is in

contrast to the more linear scheduling problem faced by Foster and Hassel in their

effort to formulate an Integer Program to slot pilots and aircraft to a curriculum [3]

[5].

The requested time periods are limited. Although some types of requests such as

Proficiency Missions or Standby Missions can go anytime during the flying horizon,

most requests have relatively tight boundaries around the desired start time. This

has been a major area of collaboration with the teams to open up the time windows

to have more scheduling freedom. In the current scheme, the squadron requests

one point in time and the weekly process determines the range of possibilities to

ultimately schedule the mission. In this process the time windows will always be

limited. External factors like pilot availability, aircraft availability, engineering test

plan dependencies, and human factors make an unconstrained schedule untenable for

the requesters.

Time Input.

The squadrons currently provide only a desired start time to CSE which gets

adjusted multiple times on the path to a finished schedule. A quick analysis of CSE

24

data, as seen in Figure 7, demonstrates how the missions are getting spread from what

was requested. This elongation is not necessarily against the wishes of the squadron

Figure 7: Request vs Scheduled Time Periods (Two Weeks in August 2017)

as experience tells them this will happen.

Volume of Requests.

The number of requests each week ranges between 250 and 400. The impact on

variables these requests might generate depends on the interaction with the resources.

One third of the missions require F16 support, need refueling, or be involved in some

other relationship that requires special handling to determine the proper resource

alignment. For two-thirds of the missions, a model must only ensure that aircraft

assigned by the squadron are protected from flying two missions concurrently. There

is no conflict for centralized resources for these missions, limiting the associated vari-

ables. This will change with the addition of the Range Resources by adding to the

missions requiring special handling.

25

2.6.2 F16 Characteristics.

Scheduling the F16s to a mission is the most intense resource allocation task.

The data to optimize the schedule is lacking in direct input from the squadrons and

parameters from the Operations Group. Additional data elements must either be

collected directly from the schedulers or parameter driven rules will have to make

inferences. Figure 8 is a subset of the F16 attributes that a mission might specifically

require, be indifferent to, or not desire. To optimize the scheduling of the F16s,

Figure 8: F16 Characteristics by Tail

those that are suitable for any given mission must be identified and enumerated.

Understanding the range of possibilities will be important for an optimization model.

26

2.6.3 Configurations.

Beyond these semi-permanent characteristics of a tail, each F16 sortie flies in a

temporary configuration. The configuration desired must be discerned to some level

of fidelity high enough to be useful and low enough to be practical. The configurations

are changed on a regular basis, and while they cannot be changed intra-day, a subset

of combinations can be changed between days. The task is to honor these rules

while minimizing the changes in order to allow maintenance time for other important

activities. There are more than 10,000 possible configurations if considering every

specific combination on the various positions of an aircraft as shown in Figure 9.

Figure 9: Positions on an F16 Representing the Combinations of Possible Configura-
tions

2.6.4 Refueling.

Another significant Iron oriented resource attribute is refueling requests. This

can be a complex resource negotiation between the Tanker Airlift Command Center

(TACC) and the Test Wing. TACC wants to fly missions, but the 412th Mission

must fund the Tanker Mission. Only certain programs have the funds to request and

27

launch a Tanker. Once in the air, the Tanker is open to any mission for refueling

subject to available fuel and time.

These resource attributes all have unique constraints and parameters that must

be designed, and brought together in one solution approach.

2.6.5 Planning Time.

This is not a strategic planning problem where planners are comfortable running

models for days before analyzing the answer. This is also not a flight line operations

problem where the answer is needed in a matter of minutes or even seconds, requiring

a quick solution. There will be formal or informal meetings between operations and

maintenance to clarify priorities and “sign off” on the initial schedule. This is ahead of

releasing the schedule to the Test Wing at large so the scheduling process can begin

with more clarity and less churn than before. Having a model that takes several

hours to solve is too long for a one day planning process as this would mean a one

run approach, with not much time to change parameters and rerun if necessary.

2.7 Keeping Score

Defining an objective is a key element of optimizing any schedule. The scheduling

process has implicit objectives that must be made explicit to formulate an optimiza-

tion. The quality of a schedule can be a subjective measurement, but there are certain

objective attributes:

• High priority missions on the schedule over lower priority missions. There is

an unpublished, yet understood priority rank each week, at least as it concerns

the top 2 spots. This can be expressed at the unit level or at the program

level. Having an explicit scoring system that all understand is important to the

transparency and thus quality of the schedule.

28

• High capacity utilization with high quality missions. One bottleneck resource

tends to be the maintenance capacity for the F16s. They will have a capacity

for some number of sorties during the week given the pre-sortie and post-sortie

maintenance requirements. A schedule that utilizes that capacity with high

quality missions is considered good.

• A good schedule will find the balance between throughput and time preferences.

High priority missions generally get the first shot at preferred time windows. In

a deconfliction meeting, the chair will simply ask the high priority team their

latitude for change. The answers generally reflect a very sincere attempt to be a

team player, but often the dependencies for that unit dictate they cannot move

“left” or “right” very far to accommodate another mission. The explicit question

in a modeling environment is what is the quantifiable trade-off, in terms of time

slots, between moving a high priority mission to get a lower priority mission on

the schedule? This latitude should be understood in order to avoid the back

and forth that hurts the efficiency in the process.

• Making configuration or phase schedule changes costs time and money. This

can be very difficult to quantify and is the source of intense but cordial debate in

the Test Wing. Having a method to quantify the value of flying a mission that

disrupts a phase schedule or requires an extra configuration change is important

to weigh against the cost of making that change.

• A good schedule will acknowledge external commitments. If a mission schedules

an external range managed by the Navy (e.g. Sea Test Range) there is acknowl-

edgement of this fact. Likewise, if a Tanker has been called in and paid for, it

is best to utilize it fully. While it is clear this cost matters, these dollars are

hard to quantify and thus a monetary objective, or even portion of an objective

29

function is difficult.

2.8 Model Execution Considerations

Figure 10 is a high level view of the scheduling process.

Figure 10: High Level Scheduling Process

2.8.1 Robustness.

Some missions are planned to be canceled if the preceding mission meets its goals.

These are called “Backup” Missions. They do not have a designation in CSE, but are

generally known throughout the scheduling community. To combat these potential

cancellations and other high risk missions, the concept of a “standby” mission is used.

The standby is ready to step in and use the resources released by the canceled backup

mission. A scheduling approach should identify these backup missions and further

identify appropriate standby missions to have built in robustness against a disruption

caused by a canceled mission that can be predicted.

30

2.8.2 Tactical Execution Considerations.

There is considerable discussion about an execution mode model that would be

employed in the event of a flying week disruption. This might be a jet breakdown

precipitating a ripple effect of change to the schedule. Having the ability to solve for

only the affected missions with a rule set that minimizes the changes is a requirement

of the maintenance team. While this is a similar problem to creating an initial

schedule, the key differences must be captured and clarified for model design purposes.

The IP approach employed by the Koepke team is designed to aid planners in finding

a feasible schedule with inevitable schedule changes in the Air Force Channel Route

Network [6]. If a planning answer has been submitted, one challenge is to only update

the missions directly impacted by the disruption, and know which missions should

be “locked” down. Beyond using constraints to lock certain missions, the objective

function bias should be to impact as few missions as possible with the reshuffling that

will occur if a model is rerun. The second challenge is collecting the data from CSE,

the execution system, in order to discern the current state of the missions.

2.9 Conclusion to Chapter

The task is to blend the research on scheduling problems and typical solution

constructs with what is known about the Developmental Test Scheduling Problem

structure to design the best solution. The formulation of an Integer Program in

light of the specific problem parameters is a good fit. The IP is a platform to test

formulations for each aspect of the problem, and research solution techniques that

best fit the formulation. From the data analysis, the bounds for a good solution are

roughly established. A quantifiable and transparent scoring mechanism representing

an approach to navigate complex trade-offs is critical. The focus is on building a

planning model to get a good initial schedule while acknowledging the need to leverage

31

the solution approach for a more tactical environment as a future project. Modeling

the Developmental Test Scheduling Problem will be fraught with challenges and mis-

steps, but worth the effort. “In a system of this magnitude, intuition and experience

do not always yield the optimal use of resources” [8].

32

III. Methodology

3.1 Introduction

The methodology for the Developmental Test Scheduling Problem is to formu-

late an Integer Program Ecosystem. An ecosystem in the sense that significant pre-

processing and post-processing will ensure the Integer Program only works on relevant

decisions at the right level of fidelity. The solution is thus broken into three parts all

working together. Figure 11 is a high level depiction of the process. This chapter will

Figure 11: The Model Ecosystem

discuss the problem characteristics that make an Integer Program appropriate then

layout a high level design and formulation for a solution approach that leverages data

processing around the Integer Program.

33

3.2 An Integer Programming Approach

Chapter II laid the foundation for the applicability and challenges of an Integer

Programming approach to scheduling problems in general, and detailed specific char-

acteristics of the problem. An IP formulation is applicable here for several reasons:

• This is an operational planning model. This allows adequate time to solve if

the size of the problem is managed well.

• An IP Formulation is relevant to many solution procedures. If the ultimate

solution methodology is a dynamic program or heuristic solve, an IP formulation

is a good base [4].

• The length of the planning horizon and the number of missions to schedule

is manageable. With a one week horizon for detailed planning, and 300-400

missions in a batched environment, the problem suitable for an IP.

• The level of time fidelity combined with the time horizon makes for manageable

time slots. The section on time windows will discuss the level of abstraction

to the execution system in terms of time slots. The current design employs 30

minute time intervals across a 12 hour day representing 276 start periods across

a planning week.

• Feasible solutions can be difficult to find in a complex environment. Finding

a starting solution for a heuristic search procedure to start performing swaps

or otherwise search the solution space is not trivial. A sequential heuristic is

difficult to implement as it is hard to anchor on a feasible search space in which

to optimize. The global nature of the IP algorithm makes it suited for the task.

Figure 12 is a conceptual diagram of how a heuristic would start, which is also

the manual process, versus an Integer Programming approach.

34

Figure 12: Global Optimization of an Integer Program

An IP is a flexible construct where the data elements and constraints can be expressed

intuitively and then abstracted to balance fidelity with solution considerations. This

can then be solved with traditional IP methods or other creative approaches.

3.3 Capturing Necessary Data Elements

The prototype work will prove or disprove that the investment of time, cost and

effort required to properly capture this data will yield much greater returns of time,

transparency and optimized results when generating the schedule. A robust user

35

interface will be required to acquire the necessary data elements in the most intuitive

manner to the schedulers.

3.3.1 Time Windows.

Every time period adds multiple variables to the problem. Given the constraints

on the problem those added time periods for a Mission might not yield the potential

for a better answer. In some cases adding an extra time slot provides a key degree of

freedom that yields a better answer. Discerning the difference takes trial and error.

In the Edwards instance of CSE, there is one field representing the desired start

time of a mission. The date field is better represented by two fields for the day and

time. Period 1 is presently defined as 06:00 with period 24 starting at 17:30. Indexes

exist for periods outside the flying window to accommodate maintenance periods and

even out of window flying. For a standard mission, the data presented to the model

will not allow for a mission that starts before 06:00 or ends after 18:00. With this

flexibility the requests can be shaped to be in line with squadron needs. In the case of

TPS they are less concerned about the day they fly Training Missions, but cannot fly

past 13:00 to prepare for the academic day that starts at 14:00. The process creates

variables each day for morning periods that have the missions down by 13:00. In other

cases, the day is constrained and the time of day is flexible. If a mission is scheduled

which does not require any centralized resources, the pre-processing routines simply

pass the model the requested time period with no other options.

3.3.2 F16 Characteristics.

In the current process, the scheduler requests a specific (F16D-0370) or generic

(F16D-REQF) tail number. They use the remarks field to describe the aircraft char-

acteristics needed for the mission. This project designs an interface, starting with

36

Figure 8, which will allow users to select aircraft characteristics to determine the

specific tails that meet their requirements. This gives the model several possibilities

upon which to optimize.

3.3.3 Configurations.

The configuration scheme is similar to F16 characteristics in that roughly 10,000

configurations are synthesized to a series of codes. The codes represent a family

of configurations similar enough such that maintenance can easily switch between

them. The squadron scheduler maps the configuration they require from Figure 9

into one of the codes. In the prototype phase of this project, the rule is that one

configuration is requested per sortie. There is currently not a structured data field for

the configurations. An analysis of the Remarks column for each F16 sortie determines

the most likely configuration and codes it per the scheme developed. Part of the

verification and validation testing will be to change these configurations and determine

the impact on the answer.

3.4 Explicit Enumeration Methodology

Even with the advantageous problem characteristics for this operational problem,

it would be too large to solve with implicit set creation. If 300 Missions are multiplied

by 115 time periods and 29 unique tail numbers (not counting the non F16 tails) in-

discriminately, roughly 1 million combinations, or variables, are created. Commercial

and open source solver software accommodates explicit enumeration where the set

members are defined for each set combination such that not all combinations of the

primary sets are viable. This is critical in a discrete time period environment where

not all periods are possible for each mission. In order to leverage this capability, tight

control of the inputs is required. If the sets are represented by a series of matrices,

37

or a multi-dimensional cube, the vast majority of entries are zero and could never

be one based on the constraints of the problem. In explicit enumeration the input

is structured as a relational database where the problem is fed to the solver in rows,

and the indexes of each row represent the possible combinations. The set creation

becomes integral to the formulation. Figure 13 is an example of defining the possi-

bilities for for a specific mission: This Mission has 1 sortie, but 29 Tail possibilities

Figure 13: Explicit Enumeration Data

and 115 Time periods or 3,335 entries. In an explicit enumeration environment there

are 22 combinations representing only the possible tails and times as defined by the

38

request and predetermined parameters. This is less than 1% of the size an implicit

formulation would produce.

The software compresses the problem even further by only considering the nonzero

coefficients. When looking at the “A” matrix created of variables and constraints

the combinations of constraints and variables would have 11,421 x 21,707 entries to

consider or 248 MM possibilities. As it is, the problem is represented to the computer

as 60,929 entries or .025% of the potential problem size.

Figure 14: Compressing The Problem Size (from JSON output file in Pyomo)

Consider the following setting constraint:

∑
S

∑
T

xm,s,t,d,p ≤ xmdpm,d,p ∗ BigM ∀m, d, p

An equivalent representation is below with SCHED defined as the reduced Cartesian

combination of the Sets M,S,T,D,P:

∑
SCHED

xm0,s0,t0,d0,p0 ≤ xmdpm1,d1,p1 ∗ BigM ∀m1, d1, p1

wherem0 = m1, d0 = d1, p0 = p1

The implementation of this constraint in a modeling language follows the latter syn-

39

tax.

#Pyomo

def Link x xmiss (model ,m1, d1 , p1) :

return (model . xmiss [m1, d1 , p1] ∗ 100) −

sum(model . x [m, s , d , p , t] for

(m, s , d , p , t) i f

m==m1 and d==d1 and p==p1) <= 0

model . Set xmiss =

Constra int (model . Miss Day Per , r u l e = Link x xmiss)

! Lingo

@FOR(XMISS DAY PER(m1, d1 , p1) : [x xmiss]

@SUM(XSCHEDULE(m, s , t , d , p) |

m #eq# m1 #and# d #eq# d1 #and# p #eq# p1 :

x (m, s , t , d , p)) <=

xmiss (m1, d1 , p1) ∗ BigM) ;

3.5 Solution Approaches

3.5.1 Generating Time Windows.

The two considerations for creating time periods include when to create a time slot

and how many time slots to create. The time windows which ultimately get created

for a mission will be a combination of the desires of the CTF (as expressed through

a robust user interface) and the parameters defined by the Operations Group. This

requires “bang for the buck” tuning of the model. The “bang” being the objective

function value and throughput realized from more degrees of freedom, and the “buck”

40

being the solve time incurred by adding variables. The simple approach of putting a

buffer of time periods and days around the desired time did not work well. As Figure

7 indicates, the requests are bunched in the morning and thus adding a time buffer

around these missions did not alleviate the competition for resources in the morning

periods. Even if an F16 flies for one period (half an hour) it must be in maintenance

for 6 periods so moving another mission a couple periods to the right does not give

it access to a jet released from a short duration mission.

An alternative approach is to create an offset so that each mission has a morning

and afternoon possibility. This allows the model to put each mission into a wave

during the day where there is a better probability that resources will be free. As

discussed in the next chapter this yields better results, but still has shortfalls. There

were cases where moving the mission later one or two periods would have allowed

it to be scheduled, but just having the shift to the afternoon was inadequate. That

leads to a hybrid approach of putting a small buffer around a morning and afternoon

time period, which yields the best results, but adds more variables resulting in longer

run times.

Moving missions to an afternoon takeoff would require consent. This is a function

of the Long Range Planning Team. One possible approach is to capture at the

squadron level parameters that indicate the bounds the unit is willing to accept.

These would include times for early departure, late departure, and late landing. The

code to create the offsets can honor those times and make adjustments to find a proper

alternate time period. For example the afternoon time period would be LateLandu−

Durationm if the normal offset would throw the mission outside it’s late landing

time. The u in this case is unit level and the m mission level. The difference in Days

and Periods from the preferred time are created as parameters on the appropriate

composite sets which is detailed in Section 3.7.

41

3.5.2 Post Processing Approach.

The two basic outcomes from solving the Integer Program are that it solves to

optimality within a specified gap to the Linear Program bound, or that it stops with

the best answer at the time limit. In either case, there will be unscheduled missions

to post-process.

With the right visualization tool it is easy to discern where there is unused capacity

to potentially match with an unscheduled Mission. These are the time slots for a

given F16 on a particular day where a “Go” is feasible, but not employed. Figure

15 is output, exported to MS Excel, of the F16 Missions for Tuesday of the flying

week. The solid gray areas indicate the flying periods for a Mission using the Tail

Figure 15: Example Day of F16 Missions Schedule

specified. The hatched areas represent the 3 hours of maintenance required before

that jet can fly again on Tuesday. Tail F16D-0370 and others are not flying at all on

42

Tuesday. These times are not open however as the “Fronts” limit has been hit for

the day. Fronts is the term used to indicate the number of aircraft that Maintenance

will support for first flight, or “Go”, on any particular day. The current rules at

Edwards are such that it does not matter what time of day the F16 takes off. A

Front is defined by the first time it flies. This leaves four “Turns” and two “Trips” as

available capacity. A Trip (3rd Go) will not work for any of the jets unless Missions

are moved to the 06:00 or 06:30 time slots. This tends to be highly undesirable and

these time slots often go unused. Four Turns of unused capacity exist for appropriate

missions to spread amongst 6 aircraft (F16A-0584, F16C-0456, F16C-1560, F16D-

0047, F16D-0050, F16D-2169). This information allows the central scheduler to use

their knowledge of the flying units and the current operating conditions to determine

the next course of action. While building a schedule from scratch is difficult, for even

a feasible answer, refining a schedule that is over 85% built is a plausible exercise for

a scheduler and one they are very good at. Implementing very nuanced rules with

knowledge of the players involved and this week’s special circumstances is best left

to the experts.

The next step is to identify, in a report format, the missions that can use the

open jets. There will typically be zero to only a very few missions that will fit,

and the question is whether or not they can move their requested time window to

take advantage of this unused capacity. This post-processing exercise is an effective

alternative to presenting all the time windows to the model. The Results Chapter

will show an example of this post-processing approach.

3.6 Implementation Design

The implementation is an ecosystem of modules working together to be a func-

tional Scheduling Support System for the Test Wing. The pieces of the ecosystem

43

represented in Figure 10 are:

1. A Microsoft Access Database. This serves as the user interface to the prototype

model. The database and VBA code handle data storage, set creation, and

post-processing.

2. A Pyomo MIP compiler. Pyomo was developed by Sandia Labs as a bolt-

on to the popular open source programming platform Python. The closest

commercial counterpart is AMPL. A developmental version of the model was

written in Lingo. First using MS Excel for the toy problem, and then linking

to MS Access for larger instances with more fidelity. Pyomo was the choice for

implementation given its portability and open source architecture.

3. An IP Solver. The open source consortium COIN-OR is designing and coding

solvers. The MIP version is called CBC which employs a branch and cut al-

gorithm similar to commercial solvers such as CPLEX or Gurobi. Part of the

future research is to compare the performance of the CBC Solver with a trial

version of CPLEX.

4. A Windows Batch Script. In the Pyomo implementation reading the data from

a file is more efficient than having Pyomo establish a connection to the database.

The script is required to read the database and build a file with the appropriate

headers and subsequent data for both Sets and Parameters. This written to a

file that is subsequently read by the abstract Pyomo model looking for data.

5. A JavaScript Web Application for output. Viewing the schedule in a Gantt

Chart format is conducive to quickly understanding how well the week was

utilized and where the bottlenecks are. A rudimentary version of this function-

ality exists in Excel and provided a good tool for viewing answers while the web

application was being developed.

44

A high level illustration of the prototype technology stack is shown in Figure 17.

Figure 16: User Main Menu Screen for Prototype

Figure 17: Prototype Implementation Technology Stack

3.6.1 Implementation of Another Planning Tool.

Capturing and clarifying the alternatives is the first step in determining how to

implement a planning ecosystem. One approach is for CSE to remain the data capture

point with a bolt-on planning tool. The alternative is to create a planning tool that

captures the input from the squadron schedulers and submits the plan to CSE in the

45

form of requests. In the former approach, there will be either CSE modifications or

off-line processes which capture the structured data. Figures 18 and 19 are schematics

of the two approaches.

Figure 18: Planning Tool Bolted on to CSE

Figure 19: An External Planning Tool

In the end, a hybrid of these approaches may be implemented. With exposure

to this solution methodology by the Edwards and CSE teams, an implementation

strategy will emerge.

46

3.7 Iron Model IP Formulation

The IP Formulation, for clarity and development purposes, was broken into three

sections. The core is described immediately below, followed by extensions to the

model for Tanker refueling, and F16 Configurations that maintenance must imple-

ment.

3.7.1 Core Model Formulation.

The core formulation will set a base for the model, establishing the key indexes

and decision variables upon which all the functionality will be built. The core model

handles the physical mission and flying rules (e.g. A Mission can only go once, and a

Tail can only fly with one Sortie at a time), as well as the maintenance rules. It also

enforces prescribed precedence relationships, and any locking of Missions the user

indicates prior to running the model.

The primary decision variable is xm,s,t,d,p, upon which all other core variables will

be linked. The x variable represents the starting period of a Mission, Sortie, and Tail

combination with the index p. Flying, to include the take-off period is tracked with

vm,s,t,d,pv that syncs with xm,s,t,d,p. The periods tracked by v utilize the pv index to

indicate additional periods of activity. The indexes are equal at the Mission start.

While the Mission starts at p, the Sorties can start later as indicated by and offset

parameter.

Core Sets.

Basic Functions for Explicitly Enumerating Derived Sets.

SORT (m, s) =

1 If Sortie s is in Mission m

0 Otherwise

47

Table 1: Iron Model Core Basic Sets

Set and Index Description Example
M : m ∈M All Missions m in Planning Horizon Ops Number = 0325
S : s ∈ S All Sorties s in Mission m 0325-1 or just 1
T : t ∈ T All Tails t F35A-0350
D : d ∈ D All Planning Days d 1 through 5
P : p, pv ∈ P All Planning Periods p in Day d 1 through 23

F ⊆ T : f ∈ F F16 Tails f as Subset of Tails t F16D-0074
Q ⊆M : q ∈ Q Precedent Missions q as Subset of m 8642
L ⊆M : l ∈ L Locked Mission (Must Go) for Planning Horizon 0325

GO(m, d, p) =

1 If Mission m can start on Day d and Period p

0 Otherwise

GODAY (m, d) =

1 If Mission m can start on Day d

0 Otherwise

GOPER(m, d) =

1 If Mission m can start on Period P

0 Otherwise

AC(m, s, t) =

1 If Tail t is eligible to Fly with Sortie s on Mission m

0 Otherwise

48

UP (t, d) =

1 If Tail t can Go Day d

0 Otherwise

SFLY (m, s, d, pv) =

1 If Sortie m,s can fly on Day d and Period pv

0 Otherwise

TFLY (t, d, pv) =

1 If Tail t can Fly on Day d and Period pv

0 Otherwise

49

Derived Sets.

Table 2: Iron Model Derived Tuple Sets

Set Description Definition
SCHED Starting Schedule Set {(m, s, t, d, p)|SORT · AC ·GO · UP = 1}
VSCHED Flying Schedule Set {(m, s, t, d, pv)|SORT · AC · SFLY · TFLY = 1}
MSDP Mission Sortie Day Period {(m, s, d, p)|SORT ·GO = 1}
MSP Mission Sortie Period {(m, s, p)|SORT ·GOPER = 1}
MDP Mission Day Period {(m, d, p)|GO = 1}
MD Mission Day {(m, d)|GODAY = 1}
MSF F16 Mission Sortie {(m, s, f)|SORT · AC = 1}
MS Mission Sortie {(m, s)|SORT = 1}
TDP Tail Day Period for Flying {(t, d, pv)|TFLY = 1}
FDP F16 Tail Day Period for Flying {(f, d, pv)|TFLY = 1}
FD F16 Tail Up for the Day {(f, d)|UP = 1}

PREC Precedent Relationship at Day Level {(q1, q2) ⊆ Q×Q}

LSCHED Locked by User at SCHED level {(l, s, t, d, p) ⊆ SCHED}
LDP Locked Mission at Day/Period {(l, d, p) ⊆MDP}
LD Locked Mission on a Day {(l, d) ⊆MD}

τm Reduced Set of Times (d,p) For M {(d, p)|GO = 1}
Pm,d Red. Set Periods for M on D {(p)|GOPER = 1}
Tm,s,d,p Red. Set of Tails for m,s at d,p {(t)|SORT · AC ·GO = 1}
Fd Red. Set of F Flying on Day d {(f)|UP = 1}

50

Parameters and Constants.

Table 3: Iron Model Core Parameters

Parameter Description Type
Prioritym Mission Priority 1 -5 w/ 5 best for Max Obj Fcn INT
SortCountm Number of Sorties in Mission m INT
F16SortCountm Number of F16 Sorties in Mission m INT
PrefDaym Preferred Day for Mission m INT
PrefPdm Preferred Period for Mission m INT
FxSorts Pre-Calc Sortie Multiplier for Objective Function REAL
Durm,s Duration of Sortie Converted to Periods INT
Offsetm,s Offset from Mission Start of Sortie INT
TurnPersm,s Turn Periods Rqd. Stored at MDS level INT
TypeAcftm,s Type of Acft Requested STRING
DayDiffm,d Calc Difference Between PrefDay and SchedDay INT
PerDiffm,d,s Calc Difference Between PrefPd and SchedPd INT
MinPdsf Minimum Periods Jet Should Fly in a Week INT
MaxPdsf Maximum Periods Jet Should Fly in a Week INT
Frontsd Limit on First GO’s of any Day for F16s INT
Turnsd Limit on Second GO’s of any F16/Day for F16s INT
Tripsd Limit on Third GO’s of any F16/Day for F16s INT
DayNumd Integer for the Indexed Day d INT
PerNump Integer for Indexed Period INT
MxWkF16Avbl Global F16s Available to Schedule for Planning Horizon INT
WGHT PRI Constant for Weighting the Mission Priority in Obj Fcn REAL
WGHT DAY Constant for Weighting the days from preferred in Obj Fcn REAL
WGHT PER Constant for Weighting the periods from preferred in Obj Fcn REAL

51

Variable Declarations.

Table 4: Iron Model Variables

Variable Description
xm,s,t,d,p ∈ {0, 1} Primary Decision Variable. Msn/Sortie m,s with Tail t Starting at time d,p
vm,s,t,d,pv ∈ {0, 1} Msn/Sortie m,s with Tail t Flying at time d,pv
xmissm,d,p ∈ {0, 1} Mission Scheduled at time d,p
xsortm,s,d,p ∈ {0, 1} Sortie Scheduled
xmm ∈ {0, 1} Mission was Scheduled
xwtf ∈ {0, 1} F16 f was active during Week
xfdf,d ∈ {0, 1} F16 f starting on Day d
xfdpf,d,p ∈ {0, 1} F16 f Starting Day d Per p
xfd2f,d ∈ {0, 1} F16 f Starting twice on Day d
xfd3f,d ∈ {0, 1} F16 f Starting 3x on Day d

xdayq ∈ Z+ Captures the Go Day of Prec Mission q

xiff ∈ R+ Guard against impossible Min Hrs Param
ximl ∈ R+ Guard against improper locking

Core Model.

There are several variants of the Objective Function (Eq 1) that can be used

depending on the user’s preference. The Mission Level with preference given to a

prescribed start time is shown.

In the core formulation equations 2 - 5 link x to xsort, xmiss, & xm, and ensure

the Sorties are congruous to their Mission. Equations 6 and 7 require only one

Mission starting and flying at a time, and 10 - 19 represent the maintenance rules.

Equations 8 - 10 set the xfd variables needed in 11 - 13. Equation 14 sets xwt from

the global constraint 17. The rules are rounded out with equations 16 and 17 to

enforce the minimum and maximum hours (converted to periods in the model) the

maintenance team has indicated is appropriate to fly each aircraft. To ensure the

minimum hours does not cause an infeasibility if its taken out of service or does not

52

meet the requirements for any of the Sorties, xinfminhrs will catch the discrepancy.

The precedence rules are captured in equations 18 and 19 with 18 setting the integer

qdayq and 21 using the relationship between q′s. Finally, equations 20 - 23 represent

the user prescribed locking of Missions at various levels from Schedule to Mission.

MAX
∑

(m,d,p)∈MDP

xmissm,d,p × ((Prioritym ∗WGHT PRI)

− (DayDiffm,d ∗WGHT DAY)

− (PerDiffm,d,p ∗WGHT PER)) (1)

Where the Constants:

WGHT PRI >> WGHT DAY > WGHT PER

SUBJECT TO:

xm,s,t,d,p × (Durationm,s + TurnPersm,s)−∑
V SCHED

vm,s,t,d,pv = 0 ∀ (m, s, t, d, p) ∈ SCHED Where :

p+Offsetm,s ≤ pv ≤ (p+Offsetm,s +Durationm,s + TurnPersm,s − 1) (2)

∑
Tm,s,d,p

xm,s,t,d,p = xsortm,s,d,p ∀ (m, s, d, p) ∈MSDP (3)

xsortm,s,d,p = xmissm,d,p ∀(m, s, d, p) ∈MSDP (4)∑
τm

xmissm,d,p = xmm ∀m (5)

53

∑
τm

xmissm,d,p ≤ 1 ∀m (6)

∑
MS

vm,s,t,d,p ≤ 1 ∀ (t, d, p) ∈ TDP (7)

∑
MSP

xm,s,t,d,p ≤ 3 × xfdf,d ∀ (f, d) ∈ FD (8)

∑
MSP

xm,s,f,d,p ≤ 1 + xfd2f,d ∀ (f, d) ∈ FD (9)

∑
MSP

xm,s,f,d,p ≤ 2 + xfd3f,d ∀ (f, d) ∈ FD (10)

∑
Fd

xfdf,d ≤ Frontsd ∀ d (11)

∑
Fd

xfd2f,d ≤ Turnsd ∀ d (12)

∑
Fd

xfd3f,d ≤ Tripsd ∀ d (13)

xfdf,d ≤ xwtf ∀ (f, d) ∈ FD (14)∑
f

xwtf ≤ MxWkF16Avbl (15)

∑
MSDP

xm,s,f,d,p × Durm,s ≤ MaxPdsf ∀ f (16)

∑
MSDP

xm,s,f,d,p × Durm,s ≥ MinPdsf − xiff ∀ f (17)

∑
τq

xmissq,d,p × DayNumd = qdayq ∀ q (18)

qdayq1 ≤ qdayq2 − 1 + (2 ∗ (1− xmq2)) ∀ (q1, q2) ∈ PREC (19)

xl,s,t,d,p ≥ 1− ximl ∀ (l, s, t, d, p) ∈ LSCHED (20)

xmissl,d,p ≥ 1− ximl ∀ (l, d, p) ∈ LDP (21)∑
Pl,d

xmissl,d,p ≥ 1− ximl ∀ (l, d) ∈ LD (22)

xml ≥ 1− ximl ∀ l (23)

54

3.7.2 Refueling Extension Formulation.

As an extension to the Core Iron Model, Refuel Missions require refueling by

Tankers, which are considered an ”Iron” Resource. The schedulers define refueling

as a Mission attribute at the planning stage, leaving Sortie level detail to real time

execution. CSE captures refueling at the Sortie level. This formulation currently

reflects the Mission level philosophy, but might be adapted upon live testing. The

level of fidelity is for the Tanker and the Mission to ”Hookup” to dispense a prescribed

amount of fuel at a particular time. This time should be appropriate in its offset

from both the Mission and the Tanker starting. Meaning, a refuel should not be

scheduled shortly after a Mission takes off or simultaneous to the Tanker launching.

The location of the hookup will not be prescribed here but will be reserved for a later

implementation when airspace is included in the formulation.

Certain Missions which belong to Programs that are capable of funding a Tanker

launch, known as Business Effort (BE) Missions. The Missions that want to refuel, but

cannot afford a tanker launch are known as Tanker of Opportunity (ToO) Missions.

The model must consider the fuel level of the Tanker as it will be dispensing fuel to

Refuel Missions and consuming its own. The Tanker must land with a prescribed

amount of reserve fuel, which is taken out of the total fuel availability to establish a

base fuel level for each day.

Both the Tanker and the Refuel Mission must be flying for a hookup to occur. The

index p, as before, indicates the starting period for the Tanker or Mission. There is

not a pv index as the flying is handled implicitly by Offset and Duration Parameters

on the Tanker and Mission. The index ph is the potential period when the Tanker

and Refuel Mission can connect based on a bounded p.

55

Table 5: Tanker Sets

Set and Index Description Example
K : k ∈ K Tanker Inventory which become Tanker Missions KC10A-SB01

R ⊆M : r ∈ R Refueling Missions r as Subset of Missions m 0409

Sets and Indexes.

Refuel Functions for Explicitly Enumerating Derived Sets.

KGO(k, d, p) =

1 If Tanker k can start on Day d, Period p

0 Otherwise

KGODAY (k, d) =

1 If Tanker k can start on Day d

0 Otherwise

KGOPER(k, p) =

1 If Tanker k can start in Period p

0 Otherwise

RGO(r, d, p) =

1 If Refuel Mission r can start on Day d, Period p

0 Otherwise

56

RGODAY (r, d) =

1 If Refuel Mission r can start on Day d

0 Otherwise

RGOPER(k, p) =

1 If Refuel Mission r can start in Period p

0 Otherwise

Derived Sets.

Table 6: Tanker Derived Tuple Sets

Set Description Notation
KDP Tanker Launch {(k, d, p)|KGO = 1}
KD Tanker Launch {(k, d)|KGODAY = 1}
KH Tanker Hookup {(k, d, p)|KGO = 1}
Kr Tanker that can Refuel Mission r {(k)|KGO ·RGO = 1}
RDP Refuel Mission Go {(r, d, p)|RGO = 1}
RD Refuel Mission Go {(r, d)|RGODAY = 1}
RP Refuel Mission Starting {(r, p)|RGOPER = 1}
RH Refuel Hookup {(r, d, p)|RGO = 1}
Rk Refuel Mission r can hit Tanker k {(r)|RGO ·KGO = 1}
R2KDP Possible Hookup Times {(r, k, d, ph)|RGO ·KGO = 1}
Pk,d Reduced Set Periods for Tanker Msn k on Day d {(p)|KGOPER = 1}

Parameters.

RTypeMsnr =

1 If the Mission is a BE capable of financing Tanker launch

0 If Mission is designated ToO

57

Table 7: Tanker Parameters

Parameter Description Type
KOffsetk,d Period Offset for Tanker to Dispense Fuel from Takeoff INT
KDurk,d Preliminary Duration of Tanker that could be cut short by Fuel INT
KTypek,d Tanker Type for ensuring Proper Hookups STRING
KBurnRatek,d KGAL burned every Period by Tanker Flying INT
KBaseFuelk,d Calc KGAL available to include Reserves for Diversion INT
KMaxRefk,d Maximum Number of Refuels Per Period for the Tanker INT
KEarlyPerk,d Earliest Period from TACC Tanker is Available INT
KLatePerk,d Latest Period Tanker is Available INT
RFuelReqr Fuel Required for Mission r in KGAL INT
REarlyPerr Early Offset from Mission Go to Receive Fuel INT
RLatePerr Late Offset from Mission Go to Receive Fuel INT
RTypeMsnr Denotes ability of Mission to Pay for Tanker Launch BOOL

Table 8: Tanker Variables

Variable Description
kmissk,d,p ∈ {0, 1} Tanker Go Variable. rmiss handled by xmissr,d,p
kperk,d ∈ Z+ Period the Tanker Launches
xhookupr,k,d,ph ∈ {0, 1} Hookup between Mission r and Tanker k
xhookBEk,d ∈ {0, 1} Set for Business Effort Missions that Finance Tankers
xhookToOk,d ∈ {0, 1} Set for Tanker of Opportunity Missions
xhookperk,d ∈ Z+ Period for Hookup
bigkk,d ∈ R Used to relieve Check Fuel Constraint if no Tanker Launches
kinftankk ∈ Z+ Guard against empty Tanker constraints

Variables.

Tanker Constraints.

Equations 24 and 25 set the integer variables kperk,d and xhookperk,d that will

be used in equation 36 to control the Tanker fuel level. Equations 26 and 27 are the

physical constraints on daily Tanker activity and the Mission Hookups. Equations 28

and 29 link the Hookup to the Tanker and Refuel Mission, and 30 - 32 manage the

relationship between paying and opportunistic Missions. Equations 33 and 34 control

the Tanker’s fuel level as it both dispenses and burns fuel. The variable bigkk,d is set

if a Tanker does not take off on any given day so that the Fuel Constraint (34) is

58

enforced only for an active Tanker.

∑
Pk,d

kmissk,d,p × p = kperk,d ∀ (k, d) ∈ KD (24)

xhookupr,k,d,ph × ph ≤ xhookperk,d ∀ (r, k, d, ph) ∈ R2KDP (25)∑
Pk,d

kmissk,d,p + kinftankk ≤ 1 ∀ (k, d) ∈ KD (26)

∑
KH

xhookupr,k,d,ph ≤ 1 ∀ r (27)

∑
Kr

xhookupr,k,d,ph ≥ xmissr,d,p ∀ (r, d, p) ∈ RDP Where :

(p+REarlyPerr) ≤ ph ≤ (p+RLatePerr (28)

∑
Rk

xhookupr,k,d,ph ≥ kmissk,d,p ∀ (k, d, p) ∈ KDP Where :

(p+KOffsetk,d − 1) ≤ ph ≤ (p+KDurk,d − 1) And

KEarlyPerk,d ≤ ph ≤ KLatePerk,d (29)

∑
RH

xhookupr,k,d,ph × RTypeMsnr ≤ BigM × xhookBEk,d ∀ (k, d) ∈ KD (30)

∑
RH

xhookupr,k,d,ph × (1−RTypeMsnr) ≤ BigM × xhookToOk,d

∀ (k, d) ∈ KD (31)

59

xhookBEk,d ≥ xhookToOk,d ∀ (k, d) ∈ KD (32)

BigM ×

1−
∑
Pk,d

kmissk,d,p

 = bigkk,d ∀ (k, d) ∈ KD (33)

KBaseFuelk,d −[
(
∑
RH

xhookupr,k,d,ph × RFuelReqr) + ((xhookperk,d − kperk,d) × KBurnRatek,d)

]

+ bigkk,d ≥ 0 ∀ (k, d) ∈ KD (34)

3.7.3 Configuration Extension Formulation.

Configurations represent the removable “accessories” on the aircraft to include

external fuel tanks, functional PODS for communication or signature changes, and

munitions. The modeling team in conjunction with maintenance represented every

combination across the nine positions on the aircraft as 104 codes. The team then

identified configurations that can change between flights and days.

The key is the pre-processing the sets to work with the constraints to express

only the appropriate possibilities. The sets look at the demand for Configurations

by the Sorties, and the F16s that are possible for those Sorties. The WKCFGLIM

set is structured to force the variables to pick the most appropriate configuration to

start the week. The DAYCFGLIM set expresses infeasible configuration combinations

between days. In the present rules, there are no changes allowed between flights, or

intra-day.

60

Table 9: Configuration Sets

Set and Index Description Example
C : c ∈ C Configuration Codes for F16 F101 B0

Configuration Sets.

Configuration Functions.

CSORT (m, s, c) =

1 If Sortie s requests Configuration c

0 Otherwise

CGO(f, c) =

1 If F16 f can be, and could be, in Configuration C

0 Otherwise

CWK(c1, c2) =

1 If c1 cannot coexist with c2 on a weekly basis

0 Otherwise

CDAY (c1, c2) =

1 If c1 cannot coexist with c2 between days

0 Otherwise

Derived Sets.

Operating behind the scenes is the derived set C × C. This is where the

rules for configuration changes are held and these parameters are used to create

the WKCFGLIM and DAYCFGLIM sets which are resident in the model.

61

Table 10: Configuration Derived Tuple Sets

Set Description Notation
F16SCHEDCFG Append CONFIG to SCHED {(m, s, t, d, p, c)|SCHED · CSORT = 1}
F16CFG An F16 in a Starting Configuration {(f, c)|CGO = 1}
F16CFGDAY An F16 in a Configuration on a Day {(f, d, c)|F16CFG · D = 1}
WKCFGLIM F16 must be in c1 or c2 {(f, c1, c2)|CGO · CWK = 1}
DAYCFGLIM F16 must be in c1 or c2 daily {(f, d, c1, c2)|CGO · CDAY = 1}

Configuration Variables.

Table 11: Configuration Variables

Variable Description
xwkcfgf,c ∈ {0, 1} Controls the Configuration Changes in a Week
xdaycfgf,d,c ∈ {0, 1} Controls the Configuration Changes Intra-Day

Configuration Constraints.

Equations 35 and 36 work across the F16SCHEDCFG set to link x to a configura-

tion. These force the cfg variables to be set, and equations 37 and 38 limit how they

can be set. The constants 15 and 3 are the smaller versions of BigM representing

the maximum number of times an F16 could fly in a week and day respectively.

∑
MSDP

xm,s,f,d,p ≤ 15 × xwkcfgf,c ∀ (f, c) ∈ F16CFG (35)

∑
MSP

xm,s,f,d,p ≤ 3 × xdaycfgf,d,c ∀ (f, d, c) ∈ F16CFGDAY (36)

xwkcfgf,c1 + xwkcfgf,c2 ≤ 1 ∀ (f, c1, c2) ∈ WKCFGLIM (37)

xdaycfgf,d,c1 + xdaycfgf,d,c2 ≤ 1 ∀ (f, d, c1, c2) ∈ DAY CFGLIM (38)

62

3.8 High Level Solution Steps

This section outlines the high level steps users of this solution will execute to create

a schedule. The initial steps currently require some intervention by data experts. As

the project progresses these steps will be automated and a scheduling tool will start

to take shape.

1. Gather Input Data

i) CSE Data Pull

ii) User Input for Key Mission Attributes

2. Set Key Parameters

i) Operations Group

a) Validate Program Rankings are sound

b) Time Window Rules by Ranking

c) General Hours of Operation

d) Tanker Availability

e) Lock Missions as appropriate

ii) Maintenance

a) Turn Capacity

b) Jet Availability by Day or Week

c) Min and Max Hours Bounds on F16s

iii) Run Parameters

a) MIP Gap

b) Run Time

63

3. Run Model

i) Go get Coffee and Breakfast

ii) Read Email

4. Post Processing

i) Incorporate Results into Database

ii) Find Open Capacity and Match Potential Missions/Sorties

iii) Report on Possible Standby and “Flex” Missions

5. User Reviews Results through Reporting Features

i) Return to Step 2 and Run Again as Necessary

6. User “Executes” Results

i) Update CSE (manually at first)

ii) Disseminate Schedule with Mix of CSE and Tool Reporting

3.9 Conclusion to Chapter

An Integer Programming Solution was implemented for The Developmental Test

Scheduling Problem. The operational nature of the input and solve time horizons, as

well as difficulty in finding a feasible solution across the competing resource groups,

makes the IP approach well suited to the problem. As the resource scope expands,

the variables and constraints will increase, impacting the complexity and potentially

the run time. The realities of Test Scheduling, and the schedulers assessment, will be

the ultimate arbiter of whether or not this approach works.

64

IV. Results

4.1 Introduction

The results have been verified and the validation phase has commenced with the

Test Wing. A specific set of data, called the “Golden Problem,” or more accurately

the “Golden Instance” of the problem, was used for model development and testing.

The Golden Problem results across sub-instances of parameter inputs are discussed

for the purpose of showing how the solution works. Four additional weeks of data

have also been processed validating the approach.

The Data Capture Section in Chapter III discusses gaps in the data for optimiza-

tion and the schemes employed to overcome those gaps. Specific parameter input

from the base schedulers is needed to codify the results.

4.2 Golden Problem Profile

The Golden Problem encompasses the flying week of 21 - 25 August 2017 with the

inputs coming from the CSE data pull on the morning of 11 August. This ensured

all the requests were submitted, but no scheduling activity had started. Data was

subsequently pulled to show what was actually scheduled. There are 259 Mission

requests totaling 361 Sorties, including 73 F16 Sorties and 21 Refuel Missions. The

only consideration for Missions/Sorties that do not have a centrally scheduled F16 or

do not need a refuel is that any given aircraft cannot fly concurrently and must have

the prescribed downtime between flights. The squadrons will manage flying hours,

phase maintenance, and configurations required for those decentralized aircraft.

The following tables highlight the significant elements of the Golden Problem.

Other parameters, which are not inherent to the data capture, are more dynamic

in the Golden Problem and have to be specified for each sub-instance, or run, during

65

Table 12: Golden Problem Mission Summary

F16
Mission

Refuel
Mission

Mission
Count

Sortie
Count

No No 191 244
Yes Yes 11 25
Yes No 47 76
No Yes 10 16

TOTAL 259 361

Table 13: Golden Problem F16 Sortie Profile

Sorties Per
Mission

F16
Sorties

Missions
Other AC

Sorties
1 37 37 0
2 16 11 6
3 12 8 12
7 4 1 3
11 4 1 7

TOTAL 73 58 28

testing. For example, the initial Turn Pattern is shown in Table 16. This can be

updated to show the impact of maintenance capacity on the answer.

4.3 Base Results

The base results will be considered runs where only the run time, gap, and vari-

ables generated are altered. Depending on the combination of run time allowed, the

IP Optimality Gap, and the variables generated, the IP will consistently achieve be-

tween 54 and 58 F16 Sorties scheduled, and between 18 and 19 refuel Missions. This

is with an effective maintenance capacity of 64 (not counting Trip Turns). This com-

pares with the 56 sorties that were actually scheduled during the Golden Problem

week. To set up the base results, Table 17 shows the pertinent instance parameters.

Figure 20 depicts the range of best answers obtained by balancing the variables

generated and the run times, with a MIP Gap of less than 1%. This reflects a desire

to run for a limited length of time to get the best answer possible. A good trade-

66

Figure 20: F16s/Refuels Scheduled varying Run Time and Variables

67

Table 14: Golden Problem Refuel Mission Profile

Lead
Ship MDS

Mission
Count

Sortie
Count

F16C 1 2
F16D 1 1
F35A 8 20
F35B 3 4
F35C 2 2
KC30 6 6

TOTAL 21 41

Table 15: Golden Problem Special Mission Summary

Mission
Type

Missions
Total

Sorties
F16

Sorties
F16 58 101 73

Refuel 21 41 9
Precedent 3 3 3

off for this instance of the problem is to generate roughly 22,000 variables. This

equates to one day available for higher priority missions and three days available for

lower priority missions with two time periods available each day, 12 periods apart.

Generating more time windows does not necessarily improve the answer with a fixed

run time.

Figure 21 is a snippet of an answer in a Gantt Chart Format. The numbers in

the cells are the durations in hours that each Sortie will fly.

Table 16: Starting Sortie Capacity for F16s

Day Fronts Turns Trips Capacity
Mon 6 4 0 10
Tue 8 6 2 16
Wed 8 6 0 14
Thu 8 6 2 16
Fri 8 4 0 12

Total 38 26 4 68

68

Figure 21: 58 F16 Sortie Answer in Time Line Format

4.3.1 Finding the right MIP Gap.

The quality of the answers are a function of the MIP gap and the run time allowed.

A high MIP gap might leave sorties unscheduled unnecessarily when a longer time was

acceptable. A MIP Gap of 3%, with 22,000 variables and 50 minutes of allotted run

time is a good mix for this instance of the problem where the IP runs to conclusion in

about 45 minutes. The answer will generate 56 F16 Sorties and 17 Refuel Missions.

Depending on how the model fits into the scheduling rhythm, this might be a good

balance of the IP run parameters.

Table 17: Base Parameter Settings

Parameter Setting
Period Offset Each Day: 12 Periods from Preferred Period

Mx Weekly Capacity: 68 Sorties per Pattern in Table 16
Fuel Requested: 5K lbs for each of 21 Refuel Missions
Configurations: Defined at Sortie Level

F16 Configurations: No Starting Configuration (Open)
F16s Available for Sortie Simple Groups by F16 characteristics

69

4.4 Variants on the Base Results

4.4.1 Objective Function Variants.

This current objective function scores at the mission level, effectively penalizing

multiple sortie count missions that are inherently more difficult to schedule. Planners

might want to give some benefit to multiple sortie missions. There were two missions

in the Golden Week that had seven and eleven sorties respectively that were described

as “Show of Force Missions.” A linear benefit in sorties is considered unfair as these

missions consume more resources. A decreasing function like the square root of the

sorties or the natural log of the sortie count is a good compromise. With the square

root function a two F16 Sortie Mission would be worth 1.41 times the one Sortie

Mission and four sorties is worth double. Implementing sortie level scoring is shown

in equation 39:

Max : (
∑

{m,d,p,s}

(xmissm,d,p ∗ Prim ∗ FxSorties ∗ WGHT PRI))

− (DaysDiffm ∗WGHT DAY)

− (PerDiffm ∗WGHT PER)) (39)

The results for this variant behave as expected with multiple Sortie Missions getting

on the Schedule at the expense of the number of overall missions scheduled. This will

be validated with the schedulers to determine what makes the most sense to them.

4.4.2 Two Pass Approach.

In this variant, the first pass is a tight window run for a short period of time similar

to the 39/15 result from Figure 20. The second run opens the time windows and runs

again for a short time with the scheduled Missions from the first pass locked down.

70

The results are mixed with the answers being no better than a one pass approach

and often worse. The combined time is faster on average than the one pass approach

which is a benefit to further explore. There is complexity in setting up two runs that

might not be the worth the benefit in run time. The detailed results are not published

as more instances of the problem need to be investigated to determine if this is a valid

approach.

4.5 Post Processing

The post processing heuristic approach discussed in Chapter III is used in two

instances. First where the MIP gap is high enough or run time short enough to miss

sorties that could have been scheduled. The second is when the time periods for a

mission do not line up with the available time periods, but the flying unit would agree

to go outside their requested time windows.

Figures 21 and 22, translated into MS Excel for readability, show the latter situa-

tion and the results of the post processing approach. Figure 21 is the Possible Sortie

Report with comments by the research team. Figure 22 is the answer that preceded

the report.

Figure 22: Possible Sortie Report Generated from Post Processing Heuristic

Mission 8867 had one swing day from Wednesday to Thursday and Tuesday, but

was not given the opportunity to be scheduled on Monday or Friday, where it would

have been able to fly.

71

Figure 23: Output of Run with Sortie that can move to another Day (8867)

4.6 Conclusion to Chapter

The results from running an Integer Programming based ecosystem are promising.

The right mix of run time, variables generated, and optimality gap will continue to

be explored to find the balance of inputs yielding good answers in an acceptable time

frame for this environment.

72

V. Conclusions and Future Research

5.1 Introduction

The research into the Developmental Test Scheduling Problem can expand in all

directions.

• The research should immediately extend into scheduling the Range Resources.

The team has had success scheduling the Mission Control Rooms with a limited

rule set.

• The research can explore the critical inputs. For example, the model can take

responsibility for setting the minimum and maximum hours for each aircraft

rather than accepting them as an input from Maintenance.

• The model could be used to aid the strategic decision makers in what-if analysis

of having alternate or additional resources at their disposal to understand the

cost/benefit trade-offs.

• There is work to determine the key areas of similarity and differentiation be-

tween a planning tool and an execution tool that captures the current state of

a flying week and can make quick recommendations when a disturbance to the

schedule is experienced.

• Varying solution procedures such as heuristics should be examined for speed and

quality. Given the subjective nature of the input, optimality is to be balanced

with speed-to-answer and the ability to implement the answer.

• To realize a successful implementation of this tool, process and organizational

design work will be required.

73

5.2 Range Resources

The Range is the blanket term used to describe a set of resources that includes

control rooms, telemetry frequencies and equipment, and airspace. While each re-

source has nuances and challenges, the Airspace will be the most challenging resource

to deconflict at Edwards given the required inputs and current processes.

5.3 Optimization of the Critical Model Inputs

The minimum and maximum hours a jet can fly in a week is left to the mainte-

nance team in the current implementation. Diving deeper into the statistical analysis

presented in Chapter III, future research would develop a probability distribution for

demanded flying hours on each individual jet. A function must be developed to solve

for the appropriate range of flying hours in order to maintain an acceptable phase flow

across the fleet. This includes some jets flying proportionally more hours, dictated by

the demand, such that they may be in phase twice as often as other jets. Maintenance

will be biased toward keeping the hours to phase within a tolerance from the line to

ensure they do not have too many jets hitting phase, nor have zero jets for the crew

to work on.

5.4 Strategic Decision Making

While the solution approach discussed focuses on an optimal resource allocation in

an operational sense, strategically using the model to aid in optimizing local resource

availability should be explored. “What-If” analysis looking back at flying weeks where

a different mix of resources were made available could be valuable in justifying higher

level resource allocation decisions for Air Force Materiel Command.

74

Figure 24: Phase Flow Hypothetical Example

5.5 A Tactical Implementation

The Koepke team shows that a more tactical model can be developed with Integer

Programming in their Channel Route Mission Implementation where the expectations

for solve times are relatively quick [6]. The Maintenance Team at Edwards has repeat-

edly asked for a Tactical level implementation of the tool with the ability reschedule

after an in-week perturbation to the schedule like unscheduled maintenance. This is

an excellent area for future research as the problem parameters and characteristics

are inherently different than an operational level scheduling problem.

5.6 Developing other Solution Procedures

The IP formulation for the Developmental Test Scheduling Problem is a sound

initial approach regardless of the solution procedure. The parallel development of

75

heuristic approaches with other IP algorithms will be prudent, and each approach

lends insight to the other. The work on a heuristic solution led to the development

of some of the processing techniques before and after the IP solve. The addition of

Range Resources, particularly the Airspace, could be the impetus for trying different

solution techniques.

There are not millions of variables in the Developmental Test Problem, but the

Range considerations could add a significant number of variables. Given the run times

already being experienced for runs with wider time possibilities, different formulation

and solution approaches have to be explored. Dr. Jeffery Weir successfully used

column generation on a large scale Mixed Integer Program used to aid airlines in

pilot scheduling [12].

5.7 Conclusions

The characteristics of the Developmental Test Scheduling Problem involve a com-

plex interaction between the resources, making the problem well suited for an Inte-

ger Programming Approach. The solution is a modeling ecosystem leveraging pre-

processing and post-processing with an open source solver running a conventional

branch and cut algorithm. This approach solves within acceptable tolerances and

time limits. As the problem develops, there will be the need for even more creative

solution procedures across the ecosystem. To that end the problem should develop

given the strategic and vital role Developmental Test plays in the U.S. Air Force.

This R&D function is a core competency that deserves the best tools possible.

The design and development of new and refined data inputs is a valuable contri-

bution of this project to the central scheduling function of the Test Wing.

This initial work represents some thought leadership and structure to build upon

for The Developmental Test Scheduling Problem.

76

Bibliography

1. Zhi-Long Chen and Warren B. Powell. Solving parallel machine scheduling prob-

lems by column generation. Informs Journal on Computing, 11(1):78–94, 1999.

2. Kathryn A. Dowsland. Nurse scheduling with tabu search and strategic oscilla-

tion. European Journal of Operational Research, 106(23):393–407, 1998.

3. Gary G. Foster. Automating the weekly flight scheduling process at the USAF

Test Pilot School. Technical report, AFIT, 1992.

4. Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,

Norwell, MA.

5. Lisa Hassel. Investigation of a zero-one integer programming approach to au-

tomating the scheduling process at the USAF Test Pilot School. Technical report,

AFIT, 1992.

6. Corbin G. Koepke, Andrew P. Armacost, Cynthia Barnhart, and Stephan E.

Kolitz. An integer programming approach to support the US Air Force’s Air

Mobility Network. Computers & Operations Research, 35(6):1771–1788, 2008.

7. Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and David B.

Shmoys. Chapter 9 sequencing and scheduling: Algorithms and complexity. In

Logistics of Production and Inventory, volume 4 of Handbooks in Operations Re-

search and Management Science, pages 445 – 522. Elsevier, 1993.

8. Christopher A. Nielsen, Andrew P. Armacost, Cynthia Barnhart, and Stephan E.

Kolitz. Network design formulations for scheduling US Air Force Channel Route

Missions. Mathematical and Computer Modeling, 39(6-8):925–943, 2004.

77

9. Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer In-

ternational Publishing, AG Switzerland.

10. Daniel Reich, Yuhui Shi, Marina Epelman, Amy Cohn, Ellen Barnes, Kirk

Arthurs, and Erica Klampfl. Scheduling crash tests at Ford Motor Company.

Interfaces, 46(5):409–423, 2016.

11. Michael O. Said. Theory and practice of integrated test for Navy Programs.

Technical report, Assistant Secretary of the Navy (Research, Development and

Acquisition) Wash DC, 2009.

12. Jeffery D. Weir. A three phase approach to solving the bidline problem with an

emphasis on mitigating pilot fatigue through circadian rhythm rule enforcement.

Technical report, Georgia Institute of Technology, 2002.

78

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD–MM–YYYY)

22-03-2018 Master’s Thesis Sept 2016 — Mar 2018

THE DEVELOPMENTAL TEST SCHEDULING PROBLEM

Joseph E. Schoenbeck, Joseph E., Civilian

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-18-M-160

Department of Operational Sciences
2950 Hobson Way
WPAFB OH 45433-7765
DSN 271-0690, COMM 937-255-3636
Email: Joseph.Schoenbeck@afit.edu

AFIT COA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Developmental testing of aircraft systems in the United States Air Force requires a complex set of resources for each test.

The optimal scheduling of those resources is the job of the 412th Test Wing at Edwards Air Force Base. With more than
20 different Combined Task Forces requesting resources for roughly 300 flying missions each week, manual scheduling is a
difficult task. The current process takes a team of schedulers several days to get a workable result from which they can
start tailoring the final schedule. While concepts and techniques can be taken from industry scheduling problems, the
body of knowledge as it relates to developmental test scheduling is sparse. The contribution of this paper is to initially
document the Developmental Test Scheduling Problem, define it in structured terms for which a solution methodology
can be designed, and then present an Integer Programming based solution. The design allows for a scheduler to tailor an
initial answer to fit nuanced and timely objectives and constraints. We will demonstrate results that create an initial
schedule in several hours and serve as a good starting point for the final schedule.

Integer Programming, Scheduling

U U U U 90
Dr. Jeffery D. Weir, AFIT/ENS

(937)255-3636 x4523; Jeffery.Weir@afit.edu

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

	Air Force Institute of Technology
	AFIT Scholar
	3-1-2018

	The Developmental Test Scheduling Problem
	Joseph E. Schoenbeck
	Recommended Citation

	tmp.1542112818.pdf.o79wl

