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Abstract

An Air Force sponsor is interested in improving an acoustic detection model by pro-

viding better estimates on how to characterize the background noise of various envi-

ronments. This would inform decision makers on the probability of acoustic detection

of different systems of interest given different levels of noise. Data mining and statisti-

cal learning techniques are applied to a National Park Service acoustic summary data

set to find overall trends over varying environments. Linear regression, conditional

inference trees, and random forest techniques are discussed. Findings indicate only

sixteen geospatial variables at different resolutions are necessary to characterize the

first ten 1
3

octave band frequencies of the L90 band using just the linear regression.

The accuracy of the regression model is within 2 to 6 decibels and depends on the

frequency of interest. This research is the first of its kind to apply multiple linear re-

gression and a conditional inference tree to the national park service acoustic dataset

for insights on predicting noise levels with dramatically less variables than needed in

random forest algorithms. Recommended next steps are to supplement the national

park service dataset with more geographic information system variables in common

global databases, not unique to the United States.
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CHARACTERIZATION OF AMBIENT NOISE

I. Introduction

Problem Statement

An Air Force sponsor is interested in further developing an operational model to

more accurately predict the values of ambient background noise in varying outdoor

environments. The value of an improved background noise prediction model is to allow

better estimates of signal-to-noise levels in environments where noise recordings are

unavailable. An ideal model would allow scientists to perform needed signal-to-noise

calculations in any terrain by only needing to collect data on a dozen or so geospatial

variables that can be found, perhaps through open source databases from ArcGIS,

and be able to accurately predict the ambient background noise across all frequencies.

The objective of this study is to investigate whether data mining an existing acoustic

dataset of National Parks can help identify a best subset of geospatial variables to

predict ambient background sounds at L90–the decibel which 90% of recordings are

equal to or louder– across the first 10 one-third octave band frequencies–16, 20, 25,

31.5, 40, 50, 63, 80, 100 and 125 Hertz (Hz).
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Research Goals

• Data-mine available National Park Service (NPS) acoustic dataset to visual-

ize data and make inferences on the dataset, to include possible distributions,

outliers, and explanatory values. (Chapter 4 - Exploratory Analysis).

• Build predictive models using different statistical techniques and compare re-

sults (Chapter 5 - Model Building & Evaluation ).

• Review if/how the models compare to previous NPS analyses [1, 2, 3, 4] and

Benson [5] (Chapter 6 - Discussion).

• Characterize how well each model derived from the NPS, predicted eight hold

out points from the sponsor (in the Philippines). (Chapter 6 - Discussion)

• Discuss general results of how well models performed, cautions on applying the

models, and further research. (Chapter 7 - Conclusion)

Research Focus

This project provides a comprehensive exploratory analysis of hundreds of different

geographical features aligned with hundreds of recorded noise levels to examine if

there is a certain grouping of variables that are more aligned with certain noise

levels. Multiple models are built and tested to predict ambient noise levels. One

of the sponsor’s potential challenges is knowing what features to ask an ArcGIS or

geographical information systems specialist given interest in predicting an ambient

noise level at that location. Reviewing Benson’s [5] database will help narrow down

the numerous variables to a select number of useful variables, also known as feature
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selection.

Approach

Linear Regression is a well known and widely used procedure for analyzing relation-

ships between variables of interest to a set of related predictor variables. Linear

regression is straightforward when there are not as many predictor variables, say

p = 2. The number of possible main effects models one can build that include or do

not include the predictor variables p is 2p. For example, in a simple project with two

variables of temperature and time there are 22, or four, possible linear models that

can be built and tested, five when adding an interaction term (temperature× time),

and up to seven when including quadratic polynomials temperature2 and time2. One

can see how increasing p would increase the complexity of 1) collecting the required

data, and 2) evaluating all possible models. Following that logic, modeling 20 vari-

ables would require 220 or 1, 048, 576 linear models to assess just main effects. If each

model took one second to assess, it would take 12.13 days to evaluate all permuta-

tions. However this dataset has beyond 20 variables, it has 148 predictor variables.

It also has more than one dependent variable, it has thirty three. It becomes com-

putationally infeasible to evaluate each of the 2148 models for 33 frequencies. This

is where approaches like step-wise regression can help determine the number of suffi-

cient variables to be used per frequency in a more computational feasible time-frame.

Forward and backward step-wise regression work through various levels of possible

variable combinations at a computationally feasible rate. An R package called ‘leaps’

allows step-wise regression methods like forward selection and backward elimination

[6]. Step-wise linear regression explores linear regression by adding variables sequen-

tially based on the greatest effect on reducing the mean squared error (forward) or
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taking out the variables with the least reduction on mean squared error with all

the variables already forced in the model (backward) [7]. The disadvantage to the

step-wise approach is you can obtain nested results, since “once a regressor has been

added, it cannot be removed at a later step” [7] which will most likely lead to a less

explanatory model than exhaustive search. Another criticism of stepwise procedures

is “... inexperienced analysts may conclude that they have found a model that is in

some sense optimal. Part of the problem is that it is likely, not there is one best subset

model, but that there are several equally good ones” [7]. This means future team-

work with an acoustic modeling subject matter expert, and geospatial analyst whom

knows which geospatial variables are easier to collect for the operational environment

of interest, may lend itself to a better model choice for the sponsors’ objective.

Subset Regression Research Questions

Using forward, backward, and exhaustive (with a maximum number of variables at-

tempted) regression, this research aims to find the best subset regression model to

help answer the following questions:

• Are any of the geospatial features useful in predicting the ambient noise spectral

data?

• How well can the model predict data?

• How well does the model extrapolate to locations outside of US data?
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Methodology

This study considered the following statistical techniques:

• Correlation and Feature Selection, to reduce the number of variables.

• Multiple Linear Regression using Ordinary Least Squares: stepwise regression

to select a subset regression model.

• Single Decision Tree using Conditional Inference Trees.

• Random Forests.

Assumption/Limitations

The primary limitation of the study was the provided data were from the National

Park Service. Thus a predictive model will be limited to use for sites that are found in

the National Parks – assumed to be quiet and remote – not, for example, city data with

heavy traffic. The data were also restricted to the contiguous United States. More

NPS data were found from Alaska and Hawaii but did not data per frequency, and thus

wasn’t applicable. This dataset was further limited by not having access to question

the original source for the dataset. When necessary, best reasonable approximations

of missing or erroneous data were made and explained. For example, multiple distance

values were negative, which seemingly can not be possible. Omitting all observations

would have reduced the number of observations considerably. Therefore, in the data-

exploration stage of this research, each variable that was observed to have some

disparity was noted and an explanation on how it was corrected is given.
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Preview

Ambient noise is an important but normally not known a priori measure for predicting

the detectability of acoustic signatures of military vehicles in different environments.

In the absence of measurements, scientists seem to use their best guess based on

knowledge of rural, suburban, or urban environments [8]. The effect of not knowing

this factor is currently unknown. The acoustic background noise may be insignificant

to other variables of interest like the visibility or the radar-signature of an object of

interest. However, the potential benefits of a generalizable model would be useful for

acoustic detection models. Chapter II presents a review of the applicable literature

that focuses on previous ambient noise research.
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II. Literature Review

Overview

Literature was reviewed to explore the extent of work already done to characterize

a relationship between the sound levels and geographic variables of an environment.

A goal of the literature search is to learn and apply the best practices and key-

terms of the applicable fields and frame results appropriately. Much research was

available to leverage on characterizing the noise and/or sound of an area to its physical

characteristics using multiple statistical techniques.

Scope

Publications describing the background noise of an area’s environment–ambient noise–

seemed to begin in the 1960s, and has become increasingly common. This review

found measurement and characterization of ambient noise most prevalent in U.S. Navy

research and ocean engineering studies, urban traffic-noise studies, and a new niche

in wildlife studies called soundscape ecology [9]. The U.S. Army and U.S. Navy seem

to use ambient noise metrics most often for understanding battle-space situational

awareness [10, 11, 12]. The majority of Air Force literature studied ambient noise in

context of protecting hearing of personnel working around jets [13]. The Air Force

Institute of Technology (AFIT) had three theses that characterized aspects of ambient

noise based on wind [9], landscape and geospatial variables [8, 5]. Recent studies

in traffic-noise models [14, 15, 16, 17, 18] and land-based wildlife acoustic models

[19, 4, 20, 21, 1, 22] were also a good foundation of relevant ambient noise literature for

review. Together these sources formed insights for possible methodologies, described
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in the next chapter.

Ambient Noise

In this study, ambient noise, is defined as the decibel of noise that was just exceeded at

least 90% of the time or higher, written as L90. Most research on ambient noise fell into

one of two categories: (1) signal-to-noise studies, which detect signals in the presence

of noise, and/or decrease unwanted noise; and (2) as an acoustic metric to measure

the effect of different noises on organisms–especially humans, but also birds, fish, and

mammals. The first category is similar to noise being something that is obstructing

or masking a more important signal. The second category is similar to noise being

the metric of interest, like an effect. The first category, signal-to-noise ratio studies,

characterize a system or component’s signal against a background noise–such as the

speech intelligibility in a loud environment of a cockpit [13], or the detectability of

aircraft in differing environments [23, 8, 24, 13]. Research in this category is interested

in critical ratios for recognition and interpretation, and audio masking. Examples

include studying whether the signal of a bird can be communicated to it’s intended

target with varying types of anthropogenic sources of noise masking the signal [21, 22].

Other examples include hearing-aid research and speech interpretation in the presence

of differing types of background noise [13, 25]. Hearing aid research is interested in

the ability to detect speech, music, noise, and speech-in-noise; recent techniques use

machine learning to identify the typical patterns of noise versus the other two signals

[26]. Another use of background noise is the use of differing materials and designs

to absorb noise, such as using green barriers and facade designs in cities to reduce

the sound of traffic [27]. The second category was studying the physical effects of

noise on the health of a system of interest–such as the short- and long-term effects of
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loud noise in a neo-natal intensive care unit on growing premature babies [28], or the

effect of noisy environments on overall number of official noise complaints written to

authorities [29, 13, 12].

Review Method

Most relevant leveraged sources were found in previous AFIT master’s thesis stu-

dents, and their literature reviews. Then, peer-reviewed publications since 2015 were

reviewed. Keywords for the research included but were not limited to ‘ambient noise’,

‘sound pressure level’, ‘white noise’, ‘acoustic modeling’, ‘noise mapping’, ‘acoustic

habitat’, ‘acoustic signature’, ‘geospatial’, ‘sound classification’, ‘feature selection’,

‘environmental noise’, ‘spatial’, ‘temporal’, ’spectrum’, ’frequency’, ‘military’, and

‘defense.’ The most comprehensive and relevant studies were from National Park

Service’s Natural Sounds and Night Skies division [4, 3, 2, 1] and their partnerships

[30, 31, 32, 22]. The majority of results returned, but not as relevant to this study,

were Navy underwater ambient noise studies. Other common search results, that

were outside the scope of this research, were extensive results on machine learning

algorithm effectiveness on classifying environmental sounds–like the sounds of kids

playing in a park, a coffee pot dripping, lawn-mowers–shorter-durations of sound

found in a person’s environment.

The remainder of this chapter reviews the previous AFIT students’ theses results,

the areas of foundational research, the latest relevant peer-reviewed articles, and

applications and trends in other disciplines.
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Previous Thesis Work

This work builds on the work of three previous AFIT theses: Benson [5], Gaski [8],

Popovich [33]. The database of study is from Benson, who paired 513 National Park

Service audio data measurements with approximately 150 geographical information

systems variables (GIS) data. Gaski [8] characterized nine different ambient profiles

of human-performance hearing data and the effect of ambient noise on audibility

of aircraft. Popovich [33] looked at characterizing ambient noise due to head-angle

orientation to wind and found a best-fit polynomial linear regression.

Predicting Audibility with Logistic Regression Models

Gaski’s [8] work largely focused on two things: 1) examining nominal logistic modeling

of human performance data and audibility of aircraft, and 2) developing a best-

match algorithm to help compare a sample of ambient noise against one of nine other

recorded ambient noise profiles from rural, suburban and urban areas [8].

This work expands on the nine standard ambient noise profiles by understanding

what factors seem to be most correlated with different frequencies and ambient noise

levels. It will also research the feasibility of matching a future point to the database

Benson [5] developed, with the potential to represent roughly 500 more ambient noise

profiles.
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The Effect of Wind and Head Angle with Polynomial Linear Regression

Models

Popovich [33] examined human-performance data of the effect of wind direction and

head-angle on an observers ambient noise environment. Sound level measurements

were obtained from extensive wind tunnel tests simulating what a human would expe-

rience of different wind speeds and different directions. He produced a polynomial-fit

model for predicting wind noise levels at different frequencies using wind speed and

head-angle [33]. Furthermore, he used directional and omni-directional graphics to

visualize the results of prediction versus performance. Popovich stated the military

application of wind models:

“With an increasing amount of surveillance provided by remotely piloted
aircrafts and other technologies, there is hope that the United States mil-
itary will eventually integrate the visual feeds produced by this data with
other forms of data. For instance, wind speed and direction, coupled with
aircraft sound profiles in the operational environment could be used to
adapt vehicle flight paths to decrease audible detection” [33].

Popovich developed 31 frequency-based models, and a combination of forward step

and backward stepwise regression, using up to the fourth-order polynomial terms.

Developing frequency-based models is also an important step for model-building in

this research.

Database and Initial Random Forests

Benson [5] added a variable called Land Cover Land Use (LCLU), to a National Park

Service (NPS) dataset of 513 audio observations to see if a machine learning technique
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called Random Forest could predict the acoustic metrics given certain landscape data

not necessarily in the database. He also created a matching schema in R– an open-

access statistical programming language–to find the five ‘best matching’ observations

to five of the 513 semi-randomly selected observations. The random observations

were semi-random because he ensured he sampled five different landscape types. The

results showed fair results for four of the five landscape types but poor results to the

‘Shrubland’ landscape [5].

The poor predictive performance of Benson’s model for the Shrubland landscape

may be because 38%–a majority of the 513 observations–were identified as ‘Shrub-

land’. The other 62% of observations were categorized as 12 different landscape types,

thus several landscapes had 5% or less representation of the total observations from

which the model was created. Therefore, it is possible the abundance of data on the

Shrubland landscape led to a more varied dataset for shrubland. In other words,

the Shrubland’s poor performance in Benson’s model was probably a more realistic

measure for real-world random observations outside of the existing dataset, not a sign

that the Shrubland prediction method was not accurate enough.

A proposed follow-on to Benson’s work is to recreate the analysis done by NPS’s

Natural Sounds and Night Skies (NSNS) division using Random Forests–and see

whether classical statistical learning methods like linear regression can make better

predictive models for observations not existing in the NPS dataset. This is further

explained in chapter III, Methodology.
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Disciplines that use Ambient Noise

Disciplines that traditionally study the effects and characteristics of ambient noise

include, but are not limited to the following: human-health studies, naval/marine/un-

derwater studies, seismic monitoring of earthquakes, volcanoes and nuclear test com-

pliance, aeroacoustic studies interested in absorptive properties to reduce engine noise

inside the aircraft and outside the aircraft, urban planning and mitigation of loud

noise in residential zones.

Human Health studies

In human-health studies, researchers are interested in how noise can be interpreted

as annoyance [34] or pain, or how noise can physically damage one’s hearing, as

well as the holistic life-time effects on behavior. Extensive health studies have led to

conclusions that long-term exposure to unwanted noise abundant in city environments

is correlated with increased risk in heart-problems, tinnitus, hypertension, decreased

hearing, sleep problems and cognitive impairments of children [35, 36, 37, 38, 39, 17,

15].

Traffic-Noise studies

Traffic-noise prediction studies focus on using existing land-use regression (LUR)

methods for air-based pollution models for noise prediction [38, 15, 40, 35], and cre-

ate traffic-noise predictions. Most of the LUR publications stated favorable results,

for example, Torija et al. [39] reported a nonlinear model for LAeq with an R2 = 0.94

and MAPE=1.15 dB using feature-selection technique wrapper for feature-subset se-
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lection (WFS) and a machine-learning regression method called sequential minimal

optimization (SMO). However, one study reported low-accuracy findings for acoustic

measure LDEN–an A-weighted day-evening-night equivalent sound level– from geo-

graphic information system (GIS) variables, with an R2 = 0.130 [38].

There an increasing trend to improve models using machine-learning algorithms like

Artificial Neural Nets (ANN) [18, 39] to get more precise noise level predictions.

There is also an increasing trend to incorporate frequencies into traffic-noise models,

instead of just overall noise levels. Some studies found using 1
3

octave band frequen-

cies as dependent variables in their models caused other independent variables, like

vegetation that previously were not important to the overall loudness of the area, to

become important to select frequencies [17]. Adding frequencies to the model can

help for understanding audibility over large areas [3]. They can also help influence

policies to help monitor and mitigate the effects of harmful levels of noise.

Navy Research

Ambient noise research in a completely different medium–water–is well-established

and published metric since at least the 1950s. Navy military research and marine

mammal research studies almost always characterize the underwater ambient noise

as a recognized ‘acoustic signature’ to characterize the water environment. A study

of battlespace awareness from 2004 describes the importances of Navy acoustics:

“Acoustic sensing technologies are used to detect, identify, and locate sound wave

and seismic activity to characterize underground or underwater activities and facil-

ities. These measurements allow characterizations for targeting and battle damage

assessment” [11].

14



The importance of the U.S. Navy studying the ocean’s ambient sound is to increase

their understanding on detecting foreign submarines and mine signatures, while keep-

ing their own U.S. assets’ location undetected [41]. Prior to 1970s, it was relatively

easy to detect a submarine due to how loud they were, but since then, submarines

have better technology to be essentially silent objects traveling in the ocean. The abil-

ity for a submarine to travel close to our country’s border, undetected, and deliver a

missile in a short time span is a possible driver for the extensive research available

from the Navy on this metric. Most of the tactics developed to help understand these

behaviors, like SONAR, were from studying how animals communicate underwater

[41].

Marine Animal studies

Fish and marine animals have evolved over millions of years and have refined senses

to help navigate, communicate, and sense threats in an underwater vision-limited

environment [42]. Whales, for example, communicate in a frequency range that allows

them to communicate up to 100 kilometers away underwater [43]. Some fish rely

on their sense of hearing to find historical breeding grounds, or evade the sounds of

predators like snapping/clicking shrimp [19]. Similar to fish and marine animals, naval

ships and submarines rely on technological sensing devices cued in to ocean ambient

noise to better inform underwater battle-space situational awareness, to navigate,

communicate and sense threats as well.

Ambient noise in water helps identify changes in anthropogenic noise and under-

stand the impact on animals. Navy researchers, energy/oil companies, fishing indus-

tries, recreational boaters, and marine biologists are concerned about how increasing

human-caused noise activities can mask signals that are important to fish and mam-
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mals’ ability to adapt and survive in their changing environment. Ambient noise

is not only used to characterize their ‘normal’ environment, it is also used to track,

measure speeds [44], and even visualize objects in water—see ‘Acoustic Daylight’ [45].

A review of the marine biology studies is not covered here, but a thorough literature

review from over 100 marine noise studies is found in Erbe et al.[46].

In general, the climate variables, topography variables and compactness of terrain

seems relatively well understood in ocean science to shaping ambient noise. Unfortu-

nately the extensive research on underwater models does not easily help inform Air

Force models–one key difference is sound travels faster underwater, because liquid is

a denser material than gas. However, much like the Navy can learn from marine-life

acoustic studies, there is potential to learn from land-based acoustic studies. An in-

creasing number of land-based animal studies are attempting to characterize ambient

noise as a product of climate, topography and/or terrain.

Increasing Literature Trends in Ambient Noise: Acoustic Habitats and

Strategic Noise Mapping

Ambient noise is an increasingly important metric in acoustic habitat studies like

landscape ecology, and strategic noise studies. Landscape ecology studies focus on

the natural background noise of an environment, which traditionally is defined as

the background noise without human-sources of noise, although some choose to keep

human-sources of noise. These studies refer to natural background noise as the ‘am-

bient sound environment’ [47], ‘acoustic habitat’ [19], ‘acoustic environment’ [30] and

‘soundscape ecology’ [9]. In these studies ambient noise is used as one of several mea-

sure to help characterize the health and diversity of the natural environment, and to

help identify changes over long-term studies, usually caused by anthropogenic sources
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of noise.

Another source for increasing number of publications with interest in measuring am-

bient background noise is policy-based. In 2002, the European Union (EU) mandated

all member countries implement strategic noise maps–prediction models of the sound

propagation in an area–to monitor noise levels of their countries and help inform poli-

cies to mitigate rising noise levels due to their known effect on human health [14, 35].

Of further importance was the connection that the well-known environmental land-

use regression–which is just multiple linear regression using geospatial variables–is a

helpful technique not only for modelling traffic air pollutants, but also noise. Strate-

gic noise maps could also help protect existing quiet areas [14]. These strategic noise

mapping studies center in Europe [14]. Within the last two years many other coun-

tries have directed studies based on their own interest to study noise: Canada [40],

India [48], South Korea [49].

Most published land-use-regression (LUR) studies seem to report an R2 value of at

least 0.5 when reporting model accuracy of the location studied, and using expertly-

advised geospatial features, but one study stood out as a potential warning of the

misapplication of using tailored models to a location that was not in the study. In

a LUR study of South Africa, the authors reported an R2 value of 0.1 despite using

many of the features identified as important from previous traffic-noise studies [38].

The authors speculate that because the location was in a developing country the GIS

data may not have been accurate, and other variables were probably more important

that were not easily derived from GIS, such as neighborhood noise. “Beside traffic,

the household density was also a significant noise predictor variable. This result

was expected because these areas are crowded, and thus the noise coming from the

neighborhood is expected to be substantial. However, derivation of GIS predictors
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as a surrogate for neighborhood noise is tricky, and thus another reason for the low

noise variability explained by the LUR model may be the underestimation of the

neighborhood noise by the GIS variables available.” [38] This is further motivation to

help understand that data mining the National Park Service dataset will most likely

carry the same limitations as those seen when applying the insights gained from

European and American traffic-noise studies to locations that are vastly different

than those sampled.

In addition to traffic-noise studies, there is an increasing trend of literature on the

effects of anthropogenic noise on non-humans. For an extensive literature review

which consolidates 242 peer-reviewed articles on the effects of anthropogenic noise on

wildlife and gives recommendations for future acoustic measurements of importance,

see the Shannon et al. [22] article. In November 2016, an extensive literature review

was published on the research from 1990 to 2013 on the effect of noise on wildlife [22].

The greatest insights offered by both the acoustic habitat and strategic noise mapping

studies is the methodologies they used to pick geospatial variables of importance

and their findings with what natural and anthropogenic noises were associated with

what frequencies and the methodologies they use to predict or model ambient noise.

Some of the methodologies used employ decision-tree random forests (RF), and self-

organizing maps (SOM) [1, 2, 3, 4, 30, 5, 50].

Methodologies of Interest

The methodologies of interest for this research are linear regression method used in

the traffic studies, the decision-tree random forests (RF) used in mostly the National

Park Service studies, [1, 2, 3, 4, 30], and the elastic-net penalized linear regression

model used in the Boston-traffic noise study [16] which are explained below.
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Methodology 1: Random Forests

The US NPS NSNSD is one of the more prolific sources of research on the influence

of geography and environmental factors on ambient noise. The NPS NSNSD has

extensive research on modeling the influence of geospatial, temporal, and terrain

features on noise. Across 10 years of acoustic monitoring over 1 million hours of audio

from over 400 unique locations in the contiguous United States, Hawaii, and Alaska

has been recorded. A US Public Law [51] requires the NPS to monitor the noise of

its natural parks and report each year on aircraft noise and whether it is negatively

impacting the natural quiet enjoyed by visitors. The reports are also supposed to

better inform aircraft on the elevations to fly to lessen noise impact in the parks.

The 10 years of acoustic metric summaries from NPS NSNSD were evaluated using

random forests.

The key research from NPS that serve as the background information for most of

this thesis project are the following: a geospatial sound model to map sound pressure

levels on a continental scale [1], the influencing factors and spatiotemporal patterns

of environmental sound levels [3], the explanatory variables generation for geospatial

sound modeling standard operating procedure [30], how to measure acoustic habitats

[19], and GIS Metrics for Soundscape Modeling standard operating procedure [31].

The article about influencing factors [3] is most relevant since its employs the use of

random forests for describing the relation of ambient noise to landscape values. It

is also our speculation that in the future the NPS, together with its partnerships,

may offer an approximation of ambient noise in the absence of real-data as part

of another open-source software called Sound Mapping Tools (SMT) [52], since it

mentions ambient sound as an optional input into its model, and references Mennitt

2014 et al [2] as an example of a data source for ambient noise although not used.
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Methodology 2: Elastic Nets Regression

Harvard Researchers looked at 400 sites in Boston, Massachusetts, from February

2015 to February 2016, to develop a model for predicting A-weighted sound pressure

levels of low, medium and high frequency sounds. The authors used an elastic net

variable selection technique and the final model explained approximately 60% of the

variability in each measure.

An elastic net variable selection technique is a linear regression technique that is

mathematically between a lasso regression technique and ridge regression technique

[16]. It is a technique more known in genome research than noise studies [16]. The

authors state the results were similar to other A-weighted models of urban envi-

ronments, because they included “transportation related variables such as length of

roads and bus lines in the surrounding area; distance to road and rail lines; traffic vol-

ume, vehicle mix, residential and commercial land use.” However, making frequency

specific models allowed other variables to appear, such as “temperature, vegetation,

impervious surfaces, vehicle mix, and density of entertainment establishments and

restaurants.” As a result of using the elastic net technique 239 potential predictors

were considered, and a total of 58 were included in at least one of the final prediction

models. The use of elastic net supposedly allows ‘better grouping of variables with

correlations’ and was attempted on the NPS NSNS data but analyzed results were

not available in time to be in this report.

General Military Applications of Acoustics

Sound is most useful in the military for beyond line of sight measurements. Beyond

line of sight is where one cannot see an approaching vehicle but sensors be able to
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hear/feel and locate its approach, according to Becker [53]. For applications where

vision will not suffice, better hearing can help get the tactical edge [53]. Becker

predicted rising importance of acoustics in the following military applications due

to its relatively low cost: low-power wakeup, networked unattended ground sensors,

stand alone services to help detect gun locations, sniper locations, or ‘wide area mine

fuzing, ’ non-lethal weapons, IR and acoustics combined solutions for vehicle based

helicopter detection systems, and vehicle based self protection systems [53]. Similarly

to detecting ground movement of Army or other aircraft, seismic and acoustic mine

devices can be easily camouflaged and networked to allow better battlefield awareness

and sensing [53]. Becker [53] says vehicle interiors are hard for soldiers to understand

what is going on outside, so they could be equipped with microphones to allow a

vehicle to know what sounds are occurring outside of the vehicle. For example if they

can hear a sniper shooting or a missile is inbound, they can react faster. Similarly a

network of acoustic sensors may be able to help pinpoint acoustic events like a sniper

shot. Becker says most artillery situations comprise of at least three intense acoustic

events, which can make tracking complex. In general, surveys of publicly available

Army budgets show continuing interest in military applications of acoustics.

Air Force

In the Air Force, traditional noise studies seem to center on noise-abatement and

noise-annoyance studies for hearing safety of jet engine maintainers and sleep-

interruption of the general public surrounding military bases with active runways.

Noise studies are important for determining the type of zoning around military

bases. Most Air Force projects also have an environmental impact statement and

safety procedures in place to prove that no wildlife or people will be harmed with
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the impact of their testing or construction. This includes monitoring the effect of

sound on wildlife, especially endangered wildlife. However no public records were

found that included the ambient level sounds.

Noise studies are also as an emerging field of interest to UAV survivability [24]. Un-

manned aircraft were designed without survivability as a critical system characteristic

“due to their lower cost and the obvious reason that a human was not on board” [24].

Therefore since survivability was not designed-in from the beginning, McDaniel ar-

gues “situational awareness and route planning provides the best means of aircraft

survivability.” McDaniel states the acoustic profile may be the most important part of

a vehicle’s signature, with which the “proper knowledge of the UAS’s acoustic profile,

mission planning can be used to increase aircraft survivability and enhance mission

effectiveness” [24]. Finally, McDaniel states one of the more useful techniques for

UAS survivability is route planning: “Using knowledge of the vehicle’s acoustic pro-

file, the terrain, and the atmospheric conditions, a specific mission can be tailored to

avoid or minimize audible detection by a listener on the ground.” McDaniel explains

how mission planning can be conducted in real time as “updated threat information

becomes available” or as a pre-planning exercise. McDaniel also states the biggest

drawback to real-time mission-planning is the computational requirements for ground

control station computers [24].

Army

One Army experiment studied the acoustic detection of different acoustic signals in

the presence of ambient noise. In addition to being an interesting and valuable study,

it articulated the importance of understanding noise accurately in combat:

22



“Accurate sound perception is directly related to both Soldier mission and
safety (Katzell et al. 1952; Abouchacra et al. 2007). Infantry Soldiers
generally agree that in limited-visibility environments, the sense of hearing
is their main survival resource. In combat, detected sounds alert the
Soldier that something is there, and early recognition of the sound source
allows the Soldier to take swift action (Price and Hodge 1976a, 1976b).
The farther away the sound source is detected and recognized, the longer
time the Soldier has to respond to the threat (Abouchacra et al. 2007).
Therefore, early detection, localization, and recognition of surrounding
sound sources are critical in any military operation,” [10].

Studying sound to help assess the location of a enemy weapon firing as indicated

earlier general military applications [53] is important and just one facet of the use of

studying sound in the Army. A recent U.S. Army news article states the U.S. Army

Corps of Engineers’ Engineer Research and Development Center (ERDC) developed

the ability to pair acoustic sensors with light detection and ranging (LIDAR) to help

soldiers and marines anticipate enemy positions and plan terrain movement while

moving from ship to seashore in possible Anti-Access Area-Denial environments. By

deploying acoustic sensors into the field with reconnaissance aircraft or UAV, a 3-D

map can be created with all the sensors’ data. The article stated one could “track

the movement of Soldiers, who unknowingly set off the acoustic and seismic sensors

on the desert floor,” [54].

The Army Test and Evaluation Command (ATEC) has an Acoustic Research Complex

(ARC) which measures the acoustic signature of aerial targets. ARC is described as

following:

“The ARC facility is the first of its kind within DoD and the research
community as a whole. It is used to help with the design, modification,
and increasing combat survivability of current and future aircraft. The
ARC provides collection capabilities of three-dimensional (3D) acoustic
data from operating aircraft that are not available anywhere else within
DoD or in the private sector. This capability responds to a critical need
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for validation of existing predictive acoustic models. Such models are used
for aircraft design, survivability, non-linear acoustic propagation research
and assessing noise exposure to residents living adjacent to airfields. A
large area microphone array, with sensors along the flight path as well as
in the vertical, enable 3-D capture of the radiated acoustics for any air
vehicle. The ARC measures the noise radiated in all three dimensions
simultaneously under various operational dynamic flight conditions. The
measurement station consists of microphone locations near the ground
and acoustically instrumented tall towers for rotary wing, UAV, fixed
wing heavy, and high performance aircraft.” [55]

Current Machine Learning Uses in Acoustics

There is increasing research available on classifying acoustic data with machine learn-

ing methods. The acoustic data is usually for characterizing natural speech to text

and natural language context, as well as automatic recognition of music songs, like

those algorithms available in popular mobile-phone applications such as ‘Shazam’ or

‘’SoundHound’. There are also increasing trends to look at non-speech acoustic data,

sometimes called ‘acoustic events’.

In robotics, automatic speech detection and recognition are important and there is

growing interest in audio scene analysis. Many articles propose better algorithms or

methods to detect sound events, [56]. One of the reasons it will be important is for

automated vehicles to detect when they are moving between indoors to outdoors. It

is also important in forensics to be able to detect the authenticity of a received video,

and identifying inserted splices of forged video by their audio and image characteristics

[57].

A growing number of online data-science communities, like Kaggle.com, reward peo-

ple for best classification algorithms on datasets, to include a growing number of

audio datasets. This has led to a drastic increase in publishing and sharing acous-
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tic machine-learning driven scholarly articles. Machine Learning and databases are

largely growing to support the research demands for better acoustic detection [58].

Methods employed already include: unsupervised machine learning, [59], semi-

supervised machine learning [60], deep neural nets [61], feature extraction [62].

Other research proposes classification benchmarks for robots, [63], measures and

methods for passive audio surveillance [64], vehicle detection using neural nets [65].

A thorough survey of the machine learning techniques employed can be found in [66]

and [67].

The most recent studies pertaining to audio events and audio scene recognition use

other machine learning techniques beyond the scope of this research but may be

pertinent to future studies. Those include: “document-event co-occurence matrix

for topic analysis,” [34], deep neural nets, [68], gabor-matching pursuit [69], and

information bottleneck principle [70].

Machine-learning classification of audio events is outside of the scope of this thesis

since the audio data available is mostly numeric and not categorical. With the original

raw audio files (millions of hours of recordings) some of these machine learning tech-

niques could apply for more limited purposes, such as identifying aircraft flying in the

audio recordings to be deleted, or measuring the health of an eco-habitat by counting

the number of indigenous bird-calls. Extending the applications of machine-learning

classification algorithms outside of the NPS dataset are also beyond the scope of this

thesis.
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Summary

The literature reviewed provided background on three focus areas: studies that lever-

aged a large dataset of acoustics and different GIS-paired geospatial variables, sta-

tistical techniques to gain insights on which geospatial variables were influential, and

potential military applications of ambient noise. It also showcased some current uses

of machine learning in classifying different sounds. Many traffic noise studies use a

technique called ‘land use regression’ (LUR)—which is really just multiple linear re-

gression using geospatial variables. One study highlighted the weaknesses of applying

insights made from a LUR noise model on a location that wasn’t used to develop the

model [38].

Multiple linear regression models will be employed on the NPS dataset modified by

Benson [5], and time durations to develop and test models will be compared to other

methods.
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III. Methodology

Research Purpose

There are no known methods to predict ambient sound pressure levels in non-US

geographical environments based on geospatial variables (such as population density,

distance to roads, or amount of trees in the area). The intent of this research is to

improve potential operational signal-to-noise acoustic prediction models using terrain-

type descriptors as the predictor variables. There are many studies done in various

different geographical areas–India [48], Europe , South Africa, Middle East, United

States–but most focused on busy-urban traffic noise levels, and a subset of those

report the sound based on frequency. There are a growing number of environmental

studies, that focus on studying the acoustic habitat of quiet and remote places and

used frequency [4, 3, 2, 1]. The purpose of this current study is to explore the

utility of various statistical techniques on existing National Park Service acoustic

data from contiguous United States locations, and see if that model can predict

points outside the modeled set. The techniques investigated are linear regression,

penalized regression, and random forests.

Step 1: Data Prep and Exploratory Analysis [Chapter 3]

The first step was to explore the dataset. Understanding data helps inform appropri-

ate statistical techniques. Outliers with leverage were identified and further analyzed,

transformations on non-linear variables were tested. Exploratory data analysis led to

creative ways to visualize the data. The data were highly-dimensional, so scatter-plots

were useful but limited to examining two variables at a time. Since examining
(
200
2

)
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pairings was not possible, automated techniques were used to help identify outliers

and correlations between the main effects. Examining interactions and polynomial

effects occurred after reducing the main x-variables to the smallest subset possible.

Correlation-based feature extraction and elimination of variables with near-zero vari-

ance resulted in a dataset with a smaller subset of columns/variables which would

help expedite model-building and evaluation. Chapter three details these efforts.

Step 2: Model Building [Chapter 4]

The second step uses the reduced data set to perform model-building and model-

evaluation. Modeling techniques include:

• Multiple Linear Regression using forward, backwards, and exhaustive

search.

• Penalized regression using lasso, ridge regression, and elastic net methods.

• Random Forests using different number of trees, nodes, and splitting tech-

niques.

Chapter four details these efforts.

Step 3: Model Evaluation and Prediction [Chapter 5]

Common model evaluation measures for prediction and estimation models are as

follows :

• R2 is the proportion of variability in the response due to model fit, in general,

28



the models with greater values fit the model better.

• Adjusted R2
Adj, is like R2 but with a penalty on the number of variables to

help more simple models score higher over overly complex models–the closer to

1 the better.

• Mean Square Error (MSE) is the square-distance of residuals divided by

n − p − 1 where n is total observations used, and p is variables in model–the

smaller the better. MSE = 1
n

∑n
i=1(Yi − Ŷi)

2.

• Variance Inflation Factor (VIF) is to detect multicollinearity; if this is high,

the model is not easily interpretable, as some of the variables are correlated

with each other; meaning the model suffers from multi-collinearity. Generally

VIF values under 10 are fine. VIFi = 1
1−R2

i

• Mean Absolute Error is similar to MSE but uses the absolute difference

versus squared difference to help minimize effects of outliers– the smaller the

better.

• PRESS predicted residual error sum of squares statistic is a form of cross-

validation where each point is left out of the model, the model is fit, the point

is estimated, and the holdout residual is calculated. The smaller the better the

model is at predicting.

• Mallows Cp, when a model fits well, the expected Mallows Cp is equal to p+1.

A plot of Mallows Cp against the number of predictors can help pick the best

model size. In general the smaller the better.

• Bayesian Information Criterion a way of penalizing complex mod-

els. The BIC helps generalize when the model is becoming over fit.
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BIC = n · ln(RSS/n) + k · ln(n) where n is the number of observations in the

model, RSS is the Residual Sum of Squares, and k is the number of parameters

in the model plus two.

• AIC the Akaike Information Criterion is used to rank the quality of the models

relative to each other–the smaller the value the better.

Chapter five details these efforts.

Multiple Linear Regression Model Building

The data was further reduced in this stage to eliminate approximately thirty nearly-

zero variance columns, and also split the data into training and testing/validation

sets. Backwards and forwards regression were employed. Backwards and forwards

regression helped estimate the number of parameters that were needed in the training

set before over-fitting the model. It looked like no more than 10 variables were needed

before the Adjusted R2 value plateaued. Having an idea of the number of variables in

the model, and taking out near-zero variance columns, and the columns with the least

amount of unique variables, helped scope down efforts for exhaustive linear regression.

The results of the linear regression appear unique, as no known publicized efforts

exist examining linear regression on the NPS data.

Penalized Linear Regression Model Building

Penalized regression was also attempted, motivated by the Boston traffic-study on

Elastic Net feature selection [69]. Lasso, Ridge and Elastic Nets are similar to lin-

ear regression but with added penalties on the number of variables and the size of
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coefficients. The results of the elastic net procedure were not available in time for

this report, but are implemented in the deliverable R-Markdown report for future

researchers or sponsor if time and interest allow.

Random Forests Model Building

Random Forests is a classification method that improves on decision trees. Decision

trees are characteristically simple models, but to get great accuracy usually requires

over-fitting the model. Ho [71] increased the predictive accuracy of generalized de-

cision trees by using thousands of decision trees generated with a subset of random

variables at each node, and using the average predicted value given across some num-

ber of decision trees (hundreds or thousands) in regression. Multiple decision trees

using random variables are called “Random Forests.” On the NPS dataset, one de-

cision tree may start with one node that defines the distance to nearest airport as

above or below 5000 feet, and then those data points that are between zero and 5000

feet go on to be split to amount of water in a 5km radius, and then are split by more

nodes like the above process. Continuing this example, another decision tree might

use the same data but start with the historical wind levels in the area, and then split

the data among the amount of shrubland in a 5km area. The same data would go

through both of these trees—and thousands of other decision trees which were ran-

domly selecting variables for each node to minimize some object function—and the

result of the predicted dependent variable would be the average value over all of the

decision trees. Another motivation for using random forests was to compare results

from this study to those already published by the National Park Service.
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Step 4: Comparative Model Analysis and Hold-Out Data Testing

The final step was a requested proof-of-concept on the model from an out-of-data

set point where sound information was gathered by the sponsor. Originally it was

assumed if the sponsor was interested in using the National Park Service dataset

for inferences on how to quantify and predict sound in remote quiet places, it was

hypothesized the purposes would be used to predict the sound of areas like the moun-

tains of Afghanistan or a cold desolate hazardous place like Chernobyl. However it

turned out the proof-of-concept data was from a heavily populated metropolis in the

Philippines, Cebu City, and no geospatial variables were provided. Those that were

collected would most likely be far outside of the parameters used in the NPS model.

The resulting regression models were applied to the Philippines dataset to complete

the task, and serve as a warning to why one should not extrapolate a model outside

of the parameters it was built from.

The out-of-data set had known acoustic metrics given by frequency and latitude/lon-

gitude but no further information was provided. Since no geospatials were provided

some information was obtained from ArcGIS. The Philippine locations were not iden-

tical to any of the thirteen LCLUI types from the National Park Service–it was

a land-use of cropland/coconut-plantation mix. Cropland was an underrepresented

land-use type in the NPS data. Coconut-plantation was also not in the NPS data.

The Data

National Park’s Natural Sounds and Night Skies Division (NPS NSNSD) merged

historical audio recordings in multiple national park sites with ArcGIS data to provide
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hundreds of different measures of the land around the given latitude and longitude of

each audio recordings precise GPS location. The data source received for this research

was an excel file from Benson [5]. The primary objective for NPS NSNSD research

was to understand what features were responsible for rising noise levels heard in all

of the parks, and they determined it was anthropogenic. Benson added a variable

called Land Cover Land Use Color Index to investigate whether certain land-types

could be used to predict and characterize ambient noise.

Code

All code to do the methods described in this chapter, are written in R [72], and

delivered to sponsor. All others may need to request. Packages used in R are noted

under ‘libraries’ and include but are not limited to ‘stargazer’, ‘MASS’, ‘leaps’, ‘caret’,

‘ranger’, ‘moments’, ‘MPV’, for analysis, and ‘ggplot2’, ‘HMisc’, ‘corrplot’ for data

visualization [73, 6, 74, 75, 76, 77, 78, 79]. The files included are listed below. Before

running these reports in R one must ensure the active working directory is set to be

in the folder where these files are located.

• dataSource r2.xlsx This is the original file created and delivered by Benson.

• Start.R The start.R file will load the source data as-is and performs a number of

steps to ‘clean’ the data—like imputing values for zero-wind values, zero-sound

values in the first and second octave frequency, correcting negative distances,

and correcting proportion values that are less than zero or exceed one. Future

researchers should review this thoroughly documented Rfile for all assumptions

and corrections. They can try changing the assumptions and corrections here

too. A little bit of tinkering with the ‘read excel’ function at the beginning of
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the Start.R file will be necessary when the source of the data changes. When

all lines of this file are run, the result is an R-object saved to the users working-

directory called, ‘cleandata’. The ‘cleandata’ object is used by the next two

files. In addition to this file, it also creates files that list the variables that

were eliminated due to near-zero variance, values that were over 100% or neg-

ative (when they shouldn’t be negative), and values that were removed that

had 75% or greater correlation. This value can also be changed, to 90% for ex-

ample, to keep more variables in the running for model-building. However the

greater number of variables, the slower exhaustive regression and random-forest

methods will take.

• train.R the Train.R code file contains information on how the test and training

sets were initially split to create an initial forward, backward, and exhaustive

regression model. The data was initially split 50% training and 50% testing. It

reads in the ‘cleandata’ created from the ‘Start.R’ file. This file is not really

necessary but is included for reference. The R package ‘caret’ was used to create

10 semi-random folds for 10-fold cross-validation so the split data is no longer

necessary.

• Analysis firstpart.rmd is a reproducible RMarkdown report that does the

forward, backward, and exhaustive regression. It can compute a lot of infor-

mation for each model. Change run = FALSE to run = TRUE before each

section to run the model. When set back to FALSE it will import the models

instead of creating them. This code creates the multiple linear regression models

for forward, backward, and exhaustive regression and saves them as R-objects in

the specified working directory. Upon knitting it will produce a PDF/HTML/

or Word report as desired. If you change the ‘runfast’ to ‘FALSE’ it will print
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out outliers, residuals, and suggested polynomials for each model, but the re-

port will easily be over 200 pages long so care is advised. When printed the

code is approximately 40 pages long so it is not included so it is not included

in the appendix.

• Analysis secondpart.Rmd is a reproducible RMarkdown report that im-

ports the forward, backward, and exhaustive regression models created in the

first part, and creates models using conditional inference trees, and random

forests, and stores these objects in the active working directory for easy ref-

erence later (without rerunning analysis). It would be straightforward to add

another methodology from caret into this report, like ‘elasticnet’ which was orig-

inally planned but analysis were not completed in time for this report. Upon

knitting this document in R-Studio, the results of all the models are compared

and printed as a PDF/HTML/ or Word report as desired. When printed the

code is approximately 20 pages long so it is not included in the appendix.

• parallel coordinates.Rmd is a small amount of code modified from the github

account ‘timelyportfolio’ to enable a visualization of the data as an interactive

parallel coordinates plot. One can change the axes to represent different factors

of interest. Our code defaults to the factors important to determining L90f1

and the factors found for the philippines. This code is small enough that it is

included in the appendix.

• philippines.xlsx a small excel file that contains the geospatial data collected

for the eight philippine locations. The data was not collected in accordance

with previous NPS procedures and is not validated.
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IV. Data Exploration

Data Preparation

The initial data set had 513 rows and 248 variables. Appendix A describes the ex-

ploratory variables in the NPS data set as described in Benson’s appendix [5]. Vari-

ables were classified as location-variables, land cover variables, land use variables,

and other environmental factors. The location variables were generally site specific

details like the lat/long, year or years recordings were taken, season, elevation, slope,

etc. Land cover variables were generally what physical type of environment is in the

200 meter or 5 kilometer area: forest, barren, shrubland, wetlands, water, etc. Land

use variables were specific to how the land is used: conserved park lands, timber

harvesting, livestock grazing, cropland, residential suburban or urban, industrial, etc.

The environmental factors category was a collection of many different metrics. Six-

teen metrics were distances to the nearest facilities of different types–airports, roads,

railroads, streams, coast, etc. Two metrics were aircraft specific to the sum of weekly

flight observations within 25 miles, and the sum of military flight paths. Six met-

rics were descriptive of the amount of roads in an area. An additional six metrics

were precipitation and temperature specific. Two measures provided a raw and or-

dinal value for the topographic positions which described the six different landscape

the acoustic recorder was on–ridge, slope, flat, etc. One measure called Wilderness

was the sum of designated wilderness in meters squared. Finally, the last measure

Wind CRU was the historical value of wind in that area. Benson’s appendix states

it is “Wind power class potential density (50m AOA)” [5], and Nelson source states

“Wind speed annual mean (1960-1990) in meters/second, 10 meters above ground”

[30]. So from these two descriptions we assume that “Wind CRU” is both a 30-year
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mean of wind 10 meters above the ground and within 50 meters of the siteID.

Table 1 shows a partial illustration of the dataset. Only 9 of the 216 variables are

shown: siteID, Season, park, Latitude, Latitude, Longitude, Elevation, Slope, Bar-

ren200m, and Developed200m. The first three variables are categorical information

as they contain text, whereas the next six variables are numeric continuous values.

Only five of the 216 variables were text: siteID, season, park, LCLUCI, and TPI.

Table 1. Partial Illustration of Source Data: 5 Rows and 9 Variables

siteID Season park Latitude Longitude Elevation Slope Barren200m

1 ACAD001 Summer ACAD 44.419 -68.320 4 0.700 0
2 ACAD002 Summer ACAD 44.300 -68.366 89 10.953 0
3 ACAD004 Summer ACAD 44.362 -68.276 82 2.669 0
4 AGFO001 Summer AGFO 42.424 -103.732 1, 339 1.017 0
5 ARCH001 Summer ARCH 38.682 -109.543 1, 550 5.781 0.167

Issues found in Exploratory Analysis

Shrubland or Evergreen Forest Data

Several issues became evident in the exploratory analysis phase. First, most of the

data (65%) was from just two types of landscape, as shown in table 2.

LCLUCI 52 is Shrub/Scrub; “less than 5 meters tall with shrub canopy typically

greater than 20% of total vegetation. This class includes true shrubs, young trees in

an early succession stage or trees stunted from environmental conditions.” [80]

LCLUCI 42 is Evergreen Forest: “areas dominated by trees generally greater than 5

meters tall, and greater than 20% of total vegetation cover. More than 75% of the

tree species maintain their leaves all year. Canopy is never without green foliage.”
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[80]

The rest of the LCLUCIs are 5% or lower representation. Table 2 gives the number

of observations by LCLUCI. Figure 1 shows a visual of the information in Table 2.

Table 2. Top Recorded LCLUCIs (Descending)

LCLUCI LCLUCI Labels Count Percent

52 Shrub/Scrub 180 38.7
42 Evergreen Forest 137 29.5
41 Deciduous Forest 30 6.5
31 Barren Land (Rock/Sand/Clay) 29 6.2
21 Developed (Low Intensity) 27 5.8
71 Grassland/Herbaceous 24 5.2
95 Emergent Herbaceous Wetland 10 2.2
90 Woody Wetlands 9 1.9
11 Open Water 6 1.3
23 Developed (High Intensity) 4 0.9
81 Pasture/Hay 4 0.9
12 Perennial Ice/Snow 2 0.4
22 Developed (Medium Intensity) 2 0.4
82 Cultivated Crops 1 0.2

Large variations in scale between variables

A second issue is variation in scale. About 65 variables describe a percentage of an

area, and are between 0 and 1. The “Distance to ...” measures are several orders

of magnitude larger. The ‘Wilderness’ variable is on average 1,943,512 meters2, but

varies from 0.0 to a maximum of 9,031,550 meters2. Wide variations in the scale of

independent variables can affect model estimates. Data transformation such as re-

scaling or normalization are used to accommodate data issues due to scaling. Table

3 shows the contrast between some of the large and small variables discussed. To

amend the large difference in scale that could hinder understanding the coefficients

in regression, most values that were measures of distance in meters were converted

38



Figure 1. The National Park Service acoustic data mostly contained “Shrub” and
“Evergreen” land-cover, and so the resulting model was predicted to be more reliable
predicting those LCLUCIs

to kilometers. The Flight-Frequency-variable was also divided by 1000. However the

MilitarySum 25Miles variable was not changed, because its values were smaller than

expected from the description given–the values only ranged from 0 to 0.5.

Table 3. Partial Illustration of Differences in Scale between Variables

Statistic Mean St. Dev. Min Max

Wilderness 1,943,512.000 2,774,080.000 0 9,031,550
DistAirportsAllMotorized 18,575.000 12,778.000 201.000 67,810.000
DistWaterbody 2,312.000 2,863.000 0.218 19,061.000
Barren200m 0.059 0.139 0.000 0.833
TPIRaw 0.613 20.000 −107 136

Skewness, Kurtosis, Normality

Most of the geospatial variables have values between 0 and 1 to indicate percentage

some type of land-cover in a given area. Therefore if Shrubland200m = 0.5 then the

amount of shrubs in the area was 50%. However most of the geospatial percentage
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variables had observations closer to zero, and less frequently the data observations

fell closer to one, resulting in right-skew. The variable ‘RecCon200m’ was the one

exception, as the majority of observations had a value of Recreational or Conserved

lands around 1, which made it left-skewed. Transformations were reviewed but ul-

timately deemed unnecessary since the residuals of most of the linear regression fits

resulted in data that was approximately normally distributed.

Impossible Values: negative distances, values greater than 100%

Many observations for variables that were supposed to be between zero and one were

negative or greater than 1, indicating a value of a resource greater than 100% or

less than 0% which was physically not possible. For example, the observation of the

proportion of natural water in a 200m radius–‘WaterNat200m’–was often recorded

as less than zero, and no documentation in the NPS Standard Operating Manual on

Exploratory Values described any of these observations. The majority of values that

had these seeming errors were for the human-use land type characteristics. Since the

errors were systemically found for human-use land characteristics it was speculated

that some transformation from one measurement to another measurement in ArcGIS

on the original data source may have caused this unwanted error. To correct the

error, values less than zero were coded as zeros, and the values greater than one were

coded as one. This is an assumption that would need to be clarified with the original

source of the data, otherwise the variables that make up these observations may need

to be omitted. The modified human-use variables were kept, but may be systemically

incorrect.
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Figure 2. This figure shows the distribution of all variables in the dataset with no
transformation. Most are largely right-skewed with the exception of RecCon5km and
RecCon200m

Sparsity and Near Zero Variance

Many of the variables in the dataset had very few unique values relative to the number

of samples. One of the methodologies to resolve this issue is called near-zero-variance

function using an R package called ‘caret’ that examines the variables that have “few

unique values relative to the number of samples and the ratio of the frequency of

the most common value to the frequency of the second most common value was very

large.” Most of the 200 meter land-cover variables were too sparse to remain in the

dataset without causing issues in cross-validation so nineteen of the 200-meter resolu-

tion variables were eliminated. Table 4 breaks down the variables by column name in

the dataset, the ‘Frequency ratio’ and the ‘Percent Unique’. The first variable, listed

in table 4, ‘Snow200m’, had 502 observations recorded as 0.0 and two observations

of 0.5, one observation of 0.167 and one observation of 0.34. This resulted in a fre-
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quency ratio between the most common and second most common values of 502 to 2,

which reduces to 251 to 1, Therefore the Snow200m variable’s frequency ratio is 251.

The ‘Percent Unique’ value is the number of unique number levels divided by total

observations multiplied by 100. ‘Snow200m’ had a total of 4 possible unique values,

0.0, 0.16667, 0.3333, and 0.5, so there are 4
506
∗ 100 = 0.791% unique values.

Multi-collinearity

The final issue is a majority of variables show multi-collinearity. For example, vari-

ables that measure the amount of Deciduous, Evergreen, Forest, and Mixed Forest at

200m are very similar, highly collinear, and if put in a regression model one would

likely mask the importance of any another.

To correct this issue, geospatial variables that were highly correlated with each other

were removed. A cutoff value of 0.75 and 0.50 were explored. When using 75% as the

cutoff, 26 variables were removed. When using 50% as the cutoff, 32 variables were

removed.

Furthermore, it should be noted, that the greatest single geospatial variable correla-

tion with any of the L90 1
3
-octave frequency bands is with the 16th 1

3
octave band,

correlated with a negative correlation with Shrubland5km of −0.56 and a positive

correlation of 0.47 with ‘PPTNorms’ which was the average yearly precipitation. Al-

though correlation does not mean causality, it suggests the data collected had larger

L90f1 values associated with higher average precipitation values, and conversely lower

L90f1 values were associated with higher amounts of Shrubland5km. These correla-

tions were calculated on the entire data set as a general correlation-based feature

approach to reduce the amount of variables in the data.
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Table 4. Variables with few unique values and ratios of most common value to second
most common value were very large (i.e near-zero-variance variables)

Variables Frequency Ratio Percent Unique Zero Variance Near Zero Variance

1 Snow200m 251 0.791 FALSE TRUE
2 Cropland200m 250 0.988 FALSE TRUE
3 Park200m 250.000 1.190 FALSE TRUE
4 UrbanLow200m 250.000 0.988 FALSE TRUE
5 Commercial200m 249 1.190 FALSE TRUE
6 ExurbanHigh200m 248.000 1.780 FALSE TRUE
7 Suburban200m 246.000 1.780 FALSE TRUE
8 Timber200m 246.000 2.570 FALSE TRUE
9 ExurbanLow200m 244.000 2.370 FALSE TRUE
10 Cropland5km 239 4.150 FALSE TRUE
11 Wet200m 163 2.370 FALSE TRUE
12 Pasture5km 124.000 1.780 FALSE TRUE
13 Institutional200m 123.000 1.580 FALSE TRUE
14 Snow5km 118.000 4.940 FALSE TRUE
15 Mixed200m 117.000 3.560 FALSE TRUE
16 Transportation200m 112.000 6.520 FALSE TRUE
17 WaterHum200m 93 4.940 FALSE TRUE
18 PopDensity 87.400 7.120 FALSE TRUE
19 PopTotal 87.400 7.120 FALSE TRUE
20 Cultivated200m 81.500 0.791 FALSE TRUE
21 Park5km 66.600 3.950 FALSE TRUE
22 Industrial5km 59 1.980 FALSE TRUE
23 UrbanHigh5km 58.600 2.960 FALSE TRUE
24 Institutional5km 57.400 8.890 FALSE TRUE
25 WaterHum5km 50.100 9.880 FALSE TRUE
26 Built200m 47.800 8.100 FALSE TRUE
27 Extractive200m 35.400 9.490 FALSE TRUE
28 MixedForest200m 32.500 0.791 FALSE TRUE
29 ExurbanHigh5km 31.200 8.500 FALSE TRUE
30 ExurbanHigh5km 1 31.200 8.500 FALSE TRUE
31 Wet5km 27.900 7.310 FALSE TRUE
32 Commercial5km 27.800 4.940 FALSE TRUE
33 Timber5km 21.400 9.880 FALSE TRUE
34 Deciduous200m 20.700 1.190 FALSE TRUE
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Zero values

While plotting the values of sound across frequencies it became apparent there were

a few sites with a value of 0.0 for the two first 1
3

octave frequencies. These values

are most likely missing data rather than an actual level of 0.0 because the sound

levels for the same site’s third-1
3
-octave band frequencies are much higher than 0.

The sites that had zero values for these frequencies are noted in Table 5. Table 5

shows the sites with zero values for L90f1 and L90f2 are BADL, CANY, LAME,

MORU, and MUWO. Although park abbreviations were not provided in the given

dataset, most abbreviations were found on a website for the National Park Service.

If a result came up for that abbreviation it was assumed to be the right acronym.

Some of the abbreviations were not found so they were kept as acronyms and a best

guess is supplied (for example BLMNV was not found, but it may be Bureau of Land

Management, Nevada). The sites in Table 5 are most likely a lack of information than

an actual value. Instead of throwing these 18 observations away, data was imputed:

the missing values of L90f1 became L90f3 +2 decibels, and L90f2 became L90f3 +1

decibels. This was based on the general relationships in all the data showing these

values were generally greater than the subsequent frequencies.

It was not until the model building process with forward stepwise regression, that

other incorrect zero-values were found. The following sites had zero values for histori-

cal wind values: CAHA002, CALO001, EVER001, EVER006, GOGA001, GOGA003,

GOGA004, GOGA005, GUIS001, GUIS002, GUIS003, WRBR001, WRBR002. The

sites identified as WRBR were the Wright Brothers Memorial in Kitty Hawk North

Carolina where Orville and Wilbur Wright began flight testing their prototype air-

craft, and it is public knowledge that the winds are always blowing in this environ-

ment. A low wind value, let alone a zero value, was concerning. Further investigation
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Figure 3. The site WRBR001 and WRBR002 (WRight BRothers Memorial, Kitty
Hawk North Carolina) were two of thirteen sites with zero-values for ‘Wind CRU’ that
were imputed with near match values. Other sites were CAHA, Cape Hatteras National
Seashore, CALO, Cape Lookout National Seashore, EVER, Everglades National Park,
GOGA, Golden Gate National Recreation Area, and GUIS, Gulf Islands Seashore.

revealed all the sites missing wind values were National Seashore sites. See figure 3

for a birds-eye view of the siteIDs for Wright Brothers Memorial. The coast is just

visible in the graphic, as it is just under 500 meters away from site ‘WRBR001’. The

sites with missing wind values were imputed with a value of 4.7 based on other sites

that had similar Distance to Coast values and Elevations. As these were not based on

real historical data, future researchers should use a generalizable geospatial database

to ensure the data is available for sites outside the United States.

Sites with multiple significantly different observations (MUWO0001)

While exploring sites that had recorded observations of 0.0 for the first octave-band

L90f1, it became apparent some sites had multiple observations in the dataset with

very different values. Muir Woods (MUWO) National Monument and Canyonlands

(CANY) National Park were two sites with multiple observations with great differ-

ences in value. The problem this presents is the reality of the limitations of the
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Table 5. Sites with zero-values for first and second 1
3 -octave band frequencies before

imputation. BADL is Badlands National Park, South Dakota. CANY is Canyonlands
National Park, Utah. LAME is Lake Mead, National Recreation Center, NV. MORU is
Mount Rushmore National Memorial, South Dakota. MUWO is Muir Woods National
Monument, California.

# siteID L90f1 L90f2 L90f3 L90f4 L90f5

1 BADL001 0 0 31 29.9 28
2 CANY001 0 0 24 23 21.2
3 CANY004 0 0 20.1 19 17.2
4 CANY004 0 0 23.2 21.9 19.8
5 CANY005 0 0 16.2 15.6 13.9
6 CANY006 0 0 19.6 18.2 17
7 CANY007 0 0 27.2 24.6 21.6
8 CANY007 0 0 19.8 18.8 18
9 CANY009 0 0 31.3 29.2 27
10 LAME001 0 0 44.6 43.8 42.2
11 LAME014 0 0 48.1 47.3 46.2
12 MORU001 0 0 38.9 40.1 40.9
13 MUWO001 0 0 30.2 30.8 32.1
14 MUWO001 0 0 26.6 26.9 27
15 MUWO002 0 0 37.4 40.5 41.3
16 MUWO004 0 0 24.9 25.7 26.2
17 MUWO004 0 0 26.4 27 27.6
18 MUWO005 0 0 26.5 27.2 27.9
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Figure 4. Muir Woods Site-1 (MUWO001) vastly different acoustics between Spring
2005 (hours = 315) and Summer 2006 (hours = 822). The top of the line represents
L10, the point which 10% of the observations were louder, and the bottom represents
the L90, level at which 90% of the observations were louder.
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dataset. Despite having the exact same values across all the geospatial variables, the

only thing that changed was ‘year’ and ‘season’, and the results were drastically dif-

ferent. For example, Muir Woods siteID 1, MUWO001, results show sound exceeded

10 decibels 90% of the time for the 22nd-1
3

octave band in summer 2005, yet exceeded

35 decibels 90% of the time in the same frequency in spring 2006. This is a difference

of 25 decibels for the exact same location. So no matter how precise the model can

predict using the given data, each location is prone to differences in time. Reference

Figure 4 for visual of Muir Woods sound-frequency data.

Summary

Data exploration revealed a possible reason why the nearest matching algorithm [5]

performed poorly for the ‘shrubland’ category due to that category being more sam-

pled and thus having more variety. It revealed that the national parks are primarily

of two different Land Category Land Use types (52 - Shrub and 42 - Evergreen Forest)

so that when extrapolating the resulting models to areas of different Land Categories

the results will most likely not be relevant (would not be advisable to a Snowy Tun-

dra, or Barren Dessert). It revealed systematic errors like negative distances, and

values greater than 1.0 and less than 0.0 for proportions, and recommended future

corrections from the original data source (National Park Service) and in the ab-

sence of information made and annotated assumptions. Through exploration of the

sparse variables, near-zero variance variables, and highly multi-collinear variables, the

original number of geospatial variables was decreased from approximately 100 to 60

variables. It is also noted that sites did not vary much from Season to Season, except

for the sites Muir Woods, CA and Canyonlands, Utah. Imputations for zero-values

like the wind CRU and first and second one-third octave band were discussed.
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V. Analysis

Introduction

The analysis chapter will discuss how the models with each method were built, with

detailed explanation on forward stepwise regression, backward stepwise regression,

and exhaustive (maximum of eight variables) stepwise regression. It also includes con-

ditional inference trees (a single decision tree model), and random forests methodolo-

gies to 1) see if able to replicate previous NPS findings using random forests [4, 3, 2, 1],

2) provide a reference for how well linear regression performs in comparison, 3) give

sponsors a computational estimation on how random-forests performs, and 4) provide

future researchers a baseline on the minimum performance level needed to improve

based on random forests.

The overall training model results are presented as standard regression tables. For-

ward stepwise Regression is Table 6 for the first five one-third octave frequencies

and Table 7 for the sixth through 10th one-third frequencies. Backward stepwise

regression training model metrics are in Table 8 for the first five one-third octave

frequencies, and Table 9 for sixth through 10th one-third octave frequencies. Ex-

haustive regression trainig model results are in Table 13 for the first five one-third

octave frequencies, and Table 14 for frequencies 6-10.

These frequency-specific training-data derived models were then applied to the hold

out test data, and then again to all the data (training and test). The results of

applying the training-data derived Backwards Stepwise Regression model to the test

data and all data are in Table 11 for the first five frequencies and Table 12 for the

second five frequencies.
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The results of applying the training-data derived Exhaustive Regression model to the

test data and all data are in Table 16 for the first five one-third octave frequencies

and Table 17 for the second five one-third octave frequencies.

Model Building

The data were initially split using 50% training, and 50% for testing the resulting

training model in just linear regression. After developing and saving the initial linear

models from the 50/50 split, the data were split 75% training and 25% testing for

better comparison using all models: linear regression, conditional inference trees,

and random forests. The initial models formed from the 50/50 split informed on

what variables to keep. The 75% and 25% split and subsequent training tailored the

coefficient values of these variables. 10-fold cross validation techniques were performed

using the R package ‘caret’ to predict how well the models would then perform on

test data. The seed-values to create the random repeat cross-validation were set to

a constant to help compare different models. The results of each linear regression

model is presented in several standard regression tables. To ease interpretation of

the models, each of the frequency-specific models to include standard deviations for

confidence intervals on the coefficients are formulated for L90f1 through L90f10 in

equations (1) through (10) using the results of backwards stepwise regression and

exhaustive regression. The results of backwards stepwise regression were very similar

to exhaustive regression, especially on the frequencies where eight variables or fewer

were needed. At about the fifth 1
3

octave band frequency, the results of backwards

stepwise regression achieved better model results to exhaustive regression because

exhaustive regression was capped at eight variables and backwards regression was

allowed to search best combinations up to and including fifteen variables. Allowing
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exhaustive regression to compute up to fifteen variables would have taken multiple

years using the given resources. Future research on speeding up exhaustive regression

processes would be very beneficial in combined with more generic databases and up-

to-date validated comprehensive datasets.

Method for Selecting the number of Forward and Backward Stepwise Re-

gression Variables

Table 6 and table 7 shows the variables in a regression model for the first ten L90 band

1
3

octave band frequencies using forward-stepwise regression with a maximum of 15

variables. Then, a multiple regression model was fit to each frequency independently,

so a total of 150 models were assessed for forward stepwise regression. All of this took

a standard laptop computer a couple seconds to calculate. The number of predictors

chosen for each regression problem was decided by taking the minimum number of

variables to do either of the three tasks: maximize the AdjR2, minimize the Bayesian

Information Criterion BIC, or minimize the Mallows Cp. It turns out the number of

variables to minimize the Bayesian Information Criterion always was the determining

factor. From these statistics, the minimum number of variables for BIC was taken

as the best approximation for a good model without becoming over-fit and non-

generalizable for predicting. The number of geospatial variables chosen also varied

for each frequency-specific model. For example, the comparison of the three model

metrics for selecting the number of variables to model L90f1 can be seen in figure 5

as eight variables. In table 6, there are eight coefficients listed under the dependent

variables L90f1 (not including intercept). In contrast, L90f3 was best approximated

at 11 variables. Table 6 shows the coefficient values for each of the first five 1
3

octave

band frequencies and standard errors.
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Figure 5. Method for choosing the number of variables in forward and backward step-
wise regression–picking the number of variables needed to minimize the BIC statistic.
This particular example is forward stepwise regression for L90f1, but the graphs are
similar enough for backwards regression and all ten octave frequencies that all twenty
graphs do not need to be displayed
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Forward Stepwise Regression Variables

In Table 6, one can see that forward stepwise regression added some variables

that were insignificant while forward stepping sequentially through the variables,

for example, ‘DistStrahlerCalgt3’. Forward Stepwise regression indicates the

following variables were important first through tenth one-third octave band

frequencies: Forest200m, Developed200m, HIHerbaceous200m, WaterNat200m,

WaterOnly200m, RecCon5km, WaterOnly5km, DistStrahlerCalgt3, DistCoast,

DistHeliports, FlightFreq25Mile, PopDensity 2010 50km, Elevation, SeasonSpring,

Barren200m, DistAirportsSeaplane, DistRoadsMajor, RddMajor5km. Variables

unique to first through fifth octave band frequencies (not in 6th through 10th):

Forest200m, DistStrahlerCalgt3. Variables unique to sixth through tenth octave band

frequencies (not in 1st through 5th): Elevation, SeasonSpring, Barren200m, DistAir-

portsSeaplane, DistRoadsMajor, RddMajor5km. Variables in both: Developed200m,

HIHerbaceous200m, WaterNat200m, WaterOnly200m, RecCon5km, WaterOnly5km,

DistCoast, DistHeliports, FlightFreq25Mile and PopDensity 2010 50km. Of impor-

tance to note, table 6 reveals the variables DistCoast, and PopDensity 2010 50km

are not significant in some of the frequencies. DistStrahlerCalgt3 is not significant

for one frequency. So to correct this issue one must ‘step-back’ or use a combination

of forward and backward stepwise regression to get rid of the no longer significant

variables. This was not done because this is only forward stepwise regression, and

the exhaustive regression was used later. Furthermore, because backward stepwise

regression performed better, the rest of chapter flow after table 7, focuses on just

backward stepwise regression.
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Table 6. Forward Stepwise Regression on the 1st through 5th 1/3 octave frequencies

L90f1 L90f2 L90f3 L90f4 L90f5

Forest200m −3.2∗∗∗ −2.9∗∗∗

(1.2) (1.1)
Developed200m 11.6∗∗∗ 12.8∗∗∗

(3.6) (3.7)
HIHerbaceous200m 6.9∗∗ 8.3∗∗∗ 11.2∗∗∗ 13.6∗∗∗ 15.2∗∗∗

(2.7) (2.6) (2.7) (2.8) (2.9)
WaterNat200m 8.6∗∗∗ 9.6∗∗∗ 10.0∗∗∗

(3.1) (3.2) (3.4)
WaterOnly200m −13.2∗∗∗ −15.1∗∗∗ −17.6∗∗∗ −15.7∗∗∗ −16.5∗∗∗

(4.7) (4.2) (4.4) (4.7) (4.9)
RecCon5km −3.6∗∗∗ −3.7∗∗∗ −3.5∗∗∗ −4.0∗∗∗ −4.4∗∗∗

(1.3) (1.2) (1.3) (1.3) (1.4)
WaterOnly5km 12.2∗∗∗ 15.3∗∗∗ 15.5∗∗∗ 13.6∗∗∗ 14.1∗∗∗

(3.4) (2.6) (2.7) (3.1) (3.2)
DistStrahlerCalgt3 0.1

(0.1)
DistCoast −0.001 −0.001

(0.001) (0.001)
DistHeliports −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗ −0.03∗∗

(0.01) (0.01) (0.01) (0.01)
FlightFreq25Mile 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗

(0.02) (0.02) (0.03)
PopDensity 2010 50km 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗ 0.003 0.01

(0.003) (0.003) (0.004) (0.005) (0.005)
Constant 34.7∗∗∗ 35.3∗∗∗ 31.9∗∗∗ 31.1∗∗∗ 30.2∗∗∗

(1.1) (1.0) (1.3) (1.5) (1.6)

Press 8525 7821 7753 8267 9116
MAE 4.32 4.1 3.97 4.1 4.37
MdAE 3.73 3.33 2.92 2.99 3.31
Adjusted R2 0.3 0.4 0.4 0.5 0.5
Residual Std. Error 5.7 5.4 5.4 5.6 5.8
F Statistic 18.3∗∗∗ 23.4∗∗∗ 23.0∗∗∗ 23.0∗∗∗ 24.7∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7. Forward Stepwise Regression on the 6th through 10th 1/3 octave frequencies

L90f6 L90f7 L90f8 L90f9 L90f10

Elevation −0.001 −0.001∗

(0.001) (0.001)
SeasonSpring −2.7∗∗ −2.8∗∗ −2.9∗∗

(1.4) (1.4) (1.4)
Barren200m 3.5

(3.2)
Developed200m 15.2∗∗∗ 17.2∗∗∗ 14.2∗∗∗ 13.1∗∗ 14.0∗∗∗

(3.9) (4.1) (5.1) (5.1) (5.0)
HIHerbaceous200m 15.6∗∗∗ 15.5∗∗∗ 14.2∗∗∗ 12.8∗∗∗ 11.9∗∗∗

(3.1) (3.2) (3.4) (3.5) (3.4)
WaterNat200m 11.0∗∗∗ 12.4∗∗∗ 11.8∗∗∗ 11.4∗∗∗ 11.7∗∗∗

(3.6) (3.8) (4.0) (4.1) (4.0)
WaterOnly200m −19.0∗∗∗ −22.1∗∗∗ −19.2∗∗∗ −18.4∗∗∗ −17.4∗∗∗

(5.2) (5.3) (5.6) (5.8) (5.6)
RecCon5km −4.2∗∗∗ −4.7∗∗∗ −4.7∗∗∗ −4.2∗∗ −4.7∗∗∗

(1.5) (1.5) (1.7) (1.7) (1.7)
WaterOnly5km 15.0∗∗∗ 16.3∗∗∗ 14.7∗∗∗ 13.3∗∗∗ 14.3∗∗∗

(3.4) (3.3) (3.8) (4.0) (3.7)
DistAirportsSeaplane −0.1∗∗∗

(0.04)
DistCoast −0.001 −0.002∗∗

(0.001) (0.001)
DistHeliports −0.03∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗

(0.01) (0.01) (0.01) (0.01)
DistRoadsMajor −0.1∗∗

(0.1)
FlightFreq25Mile 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗

(0.03) (0.03) (0.02) (0.02) (0.02)
PopDensity 2010 50km 0.01 0.01

(0.01) (0.01)
RddMajor5km 0.02∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.01) (0.01)
Constant 28.3∗∗∗ 26.4∗∗∗ 26.6∗∗∗ 26.0∗∗∗ 24.3∗∗∗

(1.7) (1.6) (1.9) (1.9) (1.9)

Press 10098 11189 12375 12744 12168
MAE 4.6 4.9 5.1 5.2 5.2
MdAE 3.6 3.8 4.3 4.1 4.3
Adjusted R2 0.5 0.5 0.5 0.5 0.5
Residual Std. Error 6.1 6.5 6.8 6.9 6.8
F Statistic 25.5∗∗∗ 30.1∗∗∗ 25.8∗∗∗ 22.0∗∗∗ 25.6∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0155



Backward Stepwise Regression Variables

In tables 8 and 9, one can see that backward stepwise regression did not add any

insignificant variables, unlike the forward method. The final results are also very

similar to the variables chosen by exhaustive regression, displayed later in this chapter.

The results of Backward Stepwise Regression used the following 19 variables (Season-

Summer and SeasonFall counted as one variable), in their fit equations for the ten one-

third octave band frequencies: Slope, Barren200m, Forest200m, Shrubland200m, Wa-

terNat200m, WaterOnly200m, Wetlands200m, Barren5km, Transportation5km, Rec-

Con5km, WaterOnly5km, DistCoast, DistHeliports, FlightFreq25Mile, Wind CRU,

TPI, SeasonSummer, SeasonFall, DistRailroads, RddMajorPt. Variables unique to

first through fifth octave band frequencies (not in 6th through 10th): Slope, Bar-

ren5km, DistCoast, Wind CRU, TPI. Variables unique to sixth through tenth octave

band frequencies (not in 1st through 5th): SeasonSummer, SeasonFall, DistRail-

roads, RddMajorPt. Variables in both : Barren200m, Forest200m, Shrubland200m,

WaterNat200m, WaterOnly200m, Wetlands200m, RecCon5km, Transportation5km,

WaterOnly5km, DistHeliports, and FlightFreq25Mile.
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Table 8. Backward Stepwise Regression on the 1st through 5th 1/3 octave frequencies

L90f1 L90f2 L90f3 L90f4 L90f5

Slope −0.1∗∗ −0.1∗∗

(0.04) (0.05)
Barren200m −12.4∗∗∗ −16.6∗∗∗

(3.4) (3.4)
Forest200m −10.7∗∗∗ −9.8∗∗∗ −9.8∗∗∗ −12.9∗∗∗ −16.4∗∗∗

(1.8) (1.7) (1.8) (2.2) (2.2)
Shrubland200m −8.1∗∗∗ −7.8∗∗∗ −8.6∗∗∗ −13.3∗∗∗ −17.7∗∗∗

(1.8) (1.8) (1.8) (2.2) (2.2)
WaterNat200m 8.2∗∗∗ 9.1∗∗∗ 10.1∗∗∗ 13.3∗∗∗

(3.0) (3.1) (3.2) (3.3)
WaterOnly200m −17.1∗∗∗ −23.1∗∗∗ −23.7∗∗∗ −30.7∗∗∗ −36.4∗∗∗

(4.3) (4.3) (4.4) (5.0) (5.2)
Wetlands200m −11.8∗∗∗ −9.8∗∗∗ −10.2∗∗∗ −14.6∗∗∗ −16.7∗∗∗

(2.8) (2.6) (2.7) (3.0) (3.2)
Barren5km −17.2∗∗∗ −15.8∗∗∗ −15.1∗∗∗

(3.6) (3.5) (3.6)
Transportation5km 97.8∗∗∗ 103.9∗∗∗

(35.4) (36.2)
RecCon5km −3.3∗∗

(1.3)
WaterOnly5km 12.3∗∗∗ 15.5∗∗∗ 14.6∗∗∗ 15.1∗∗∗ 18.0∗∗∗

(2.8) (2.5) (2.6) (2.8) (2.8)
DistCoast −0.004∗∗∗

(0.001)
DistHeliports −0.03∗∗∗ −0.03∗∗∗

(0.01) (0.01)
FlightFreq25Mile 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
Wind CRU 2.5∗∗∗

(0.8)
TPI −0.8∗∗∗ −0.9∗∗∗

(0.3) (0.3)
Constant 30.2∗∗∗ 36.1∗∗∗ 35.3∗∗∗ 44.1∗∗∗ 43.7∗∗∗

(3.6) (1.3) (1.4) (2.0) (2.1)

Press 7893 7362 7673 8024 9139
MAE 4.14 4.01 4.09 3.97 4.36
MdAE 3.39 2.92 3.24 2.98 3.34
Adjusted R2 0.4 0.4 0.4 0.5 0.5
Residual Std. Error 5.4 5.2 5.4 5.5 5.8
F Statistic 18.0∗∗∗ 21.4∗∗∗ 21.3∗∗∗ 20.9∗∗∗ 22.9∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0157



Table 9. Backward Stepwise Regression on the 6th through 10th 1/3 octave frequencies

L90f6 L90f7 L90f8 L90f9 L90f10

SeasonSummer 3.0∗∗∗ 2.9∗∗∗ 3.0∗∗∗

(0.9) (1.0) (0.9)
SeasonFall 4.1∗∗∗ 3.9∗∗∗ 3.9∗∗∗

(1.4) (1.4) (1.4)
Barren200m −15.9∗∗∗ −17.0∗∗∗ −12.8∗∗∗ −13.0∗∗∗

(3.6) (3.8) (4.1) (4.1)
Forest200m −15.5∗∗∗ −16.6∗∗∗ −13.5∗∗∗ −14.2∗∗∗ −7.0∗∗∗

(2.4) (2.6) (2.9) (2.9) (2.2)
Shrubland200m −17.0∗∗∗ −18.5∗∗∗ −15.0∗∗∗ −15.8∗∗∗ −9.7∗∗∗

(2.4) (2.5) (2.9) (2.9) (2.3)
WaterNat200m 11.9∗∗∗ 13.3∗∗∗ 13.3∗∗∗ 13.7∗∗∗ 10.7∗∗∗

(3.6) (3.8) (4.0) (4.0) (3.9)
WaterOnly200m −35.1∗∗∗ −38.2∗∗∗ −31.9∗∗∗ −33.2∗∗∗ −22.9∗∗∗

(5.6) (5.9) (6.3) (6.3) (5.6)
Wetlands200m −17.1∗∗∗ −18.4∗∗∗ −14.9∗∗∗ −15.1∗∗∗ −9.1∗∗∗

(3.3) (3.5) (3.8) (3.9) (3.3)
RecCon5km −4.3∗∗∗ −4.9∗∗∗ −5.4∗∗∗ −4.7∗∗∗ −5.3∗∗∗

(1.5) (1.6) (1.7) (1.7) (1.6)
Transportation5km 122.8∗∗ 119.5∗∗ 150.7∗∗∗

(47.7) (48.4) (47.0)
WaterOnly5km 16.2∗∗∗ 16.6∗∗∗ 16.0∗∗∗ 16.1∗∗∗ 16.3∗∗∗

(3.1) (3.3) (3.4) (3.4) (3.4)
DistHeliports −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗

(0.01) (0.01) (0.01)
DistRailroads −0.04∗∗

(0.02)
FlightFreq25Mile 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
RddMajorPt 0.6∗∗ 0.7∗∗ 0.9∗∗∗

(0.3) (0.3) (0.2)
Constant 40.6∗∗∗ 40.4∗∗∗ 32.3∗∗∗ 32.8∗∗∗ 26.4∗∗∗

(1.9) (2.0) (2.3) (2.5) (2.1)

Press 10047 11119 12346 12514 12126
MAE 4.6 4.8 5.1 5.2 5.1
MdAE 3.6 3.6 4.4 4.7 4.3
Adjusted R2 0.5 0.5 0.5 0.5 0.5
Residual Std. Error 6.1 6.4 6.7 6.8 6.7
F Statistic 25.9∗∗∗ 27.7∗∗∗ 23.0∗∗∗ 22.1∗∗∗ 23.3∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Backwards Linear Regression Variables, Order of Importance

According to backward stepwise regression, the most important variables (by t-values)

in the regression are listed top to bottom in order of best to worst in table 10. Read-

ing the chart top to bottom, the most important variable for L90f1 is Barren5km,

followed by Forest200m, WaterOnly5km, FlightFreq25Mile, WaterOnly200m, Wet-

lands200m, Shrubland200m, DistCoast, and Wind CRU. The most important vari-

able for L90f2 is WaterOnly5km, followed by FlightFreq25Mile, Barren5km, For-

est200m, WaterOnly200m, Shrubland200m, Transportation5km, Wetlands200m, Wa-

terNat200m. The importance of WaterOnly at 200m and 5km persists for all ten one-

third octave frequencies. The most important variables per frequency are mostly in

agreement with exhaustive regression: Barren5km, WaterOnly5km, FlightFreq25Mile

are some of the most important variables in Backward Stepwise Regression and Ex-

haustive Regression for the first ten octave frequencies.
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Backwards Linear Regression, Accuracy Per Frequency

The accuracy of the backward stepwise regression model per frequency is indicated in

Tables 11 and 12. In general the training set will always perform better than the test

set. Reading the table from left to right is the Root Mean Squared Error (RMSE),

R-squared, and Mean Absolute Error computed for the Training, Test, and All the

data respectively, per frequency. In general the lower frequencies did not vary as

much as the greater valued frequencies, for example, the RMSE for L90f1 is 5.196,

versus RMSE of 6.325 for L90f10. This was true for the test-data results as well, for

example the RMSE for L90f1 test data is 5.724, versus the RMSE of 7.022 for L90f6.
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Table 11. Training, Test, and Entire Dataset using Backwards Stepwise Regression on
first five one-third frequencies (L90f1-L90f5)

Metrics Training Test All

L90f1

RMSE 5.196 5.724 5.331
Rsquared 0.419 0.229 0.372

MAE 4.000 4.642 4.158

L90f2

RMSE 5.015 5.616 5.170
Rsquared 0.464 0.288 0.420

MAE 3.861 4.507 4.020

L90f3

RMSE 5.043 5.865 5.257
Rsquared 0.471 0.290 0.424

MAE 3.932 4.727 4.127

L90f4

RMSE 5.231 6.021 5.436
Rsquared 0.504 0.352 0.464

MAE 3.917 4.781 4.129

L90f5

RMSE 5.615 6.438 5.828
Rsquared 0.497 0.374 0.463

MAE 4.356 5.179 4.558
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Table 12. Training, Test, and Entire Dataset using Backwards Stepwise Regression,
continued for 6th-10th one-third octave frequencies (L90f6-L90f10)

Metrics Training Test All

L90f6

RMSE 5.820 7.022 6.137
Rsquared 0.518 0.347 0.472

MAE 4.431 5.438 4.679

L90f7

RMSE 6.094 7.432 6.449
Rsquared 0.534 0.361 0.487

MAE 4.631 5.806 4.921

L90f8

RMSE 6.223 7.664 6.607
Rsquared 0.567 0.373 0.517

MAE 4.962 6.014 5.221

L90f9

RMSE 6.276 7.613 6.630
Rsquared 0.579 0.386 0.530

MAE 4.993 6.015 5.245

L90f10

RMSE 6.325 7.398 6.605
Rsquared 0.563 0.370 0.516

MAE 5.124 5.759 5.280
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Backwards Linear Regression, 10-fold Cross Validation Results

The results of using 10-fold cross-validation to provide inferences on how well the

frequency-specific backward regression models performs on resampled data, and is

displayed in the boxplots of figure 6. One can see how the MAE and RMSE are

similar to what tables 11 and 12 specified in one training sample, but these figures

provide better visuals of the confidence interval on those results. For example, L90f10

was as poor as RMSE of 8 for one of the 10-fold resamples. It was also as good as

achieving a mean absolute error of 3 decibels off for L90f2 for another 10-fold resample.

The black dot specifies the mean. Gray dots are outliers. The least precise frequency

to predict according to mean absolute error is at the top, L90f10, and the most precise

is at the bottom, L90f3.

Backwards Linear Regression, Visualizing 16 Random Samples

In addition to the training model metrics provided so far by the backward regression

models, it was desired to visualize individual sites predictions versus actuals using the

backward and exhaustive regression, and later conditional inference tree and random

forests. A function was created to randomly pull sixteen sites from the test data, and

model the predictions using a specified method. The differences in values are explicit

from the different symbols used in the plot. In addition, the highest difference per site

is identified in red with a text label indicating the absolute difference. If the predicted

value is greater than the observed value, the blue triangle (predictions) will be louder

than the black circle (observations). Figure 6 shows the results of applying the best

backwards regression frequency-specific models to sixteen random observations.
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Figure 6. Resample Results for Backwards Regression Fit across all Frequencies. The
least accurate frequency to predict according to mean absolute error (MAE) is at the
top, L90f10, and the most accurate is at the bottom, L90f3
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In Figures 7 and 10 sixteen random NPS observations are predicted using the back-

wards and exhaustive regression fit. The maximum difference over all frequencies is

reported for each observation. One can see both models seem to capture the unique

shape of each of the parks sound by frequency. Also important to note, is even though

the models predict a mean absolute error of around 5 decibels, a majority of the ran-

dom sites have at least one frequency that was missed by more than 5 decibels. In the

graphic, predictions are blue circles, and the actual acoustic measurement are black

triangles. A red annotation appears at the largest difference in predictions and actual

values, and a text label with the difference in decibels appears over the red circle. So

for example, reading the first top left figure in figure 7 is ‘GLCA012’ which is site 12

Glen Canyon National Park Service. This particular park was well estimated as the

points are very close together, but the worst prediction was 4.7 decibels above the

actual value for the first 1
3

octave frequency. We therefore surmise that this park was

well approximated. Another site in figure 7, YELL019, Yellowstone National Park

site 19, was under-predicted by 17.4 decibels on the 7th 1
3

octave frequency. This site

was louder than expected given its geospatial variables. BRCA0001, site 1 of Bryce

Canyon was over-predicted by 18.1 decibels on the first 1
3

octave frequency. BRCA

was quieter than predicted. Of particular note, BRCA was very quiet overall, as one

can see the actuals were all less than 15 decibels, the lowest in the overall figure 7.

This is something previous NPS studies had noted with all regression techniques. The

quietest places will be overestimated, and the loudest places will be underestimated,

in the “regression towards the mean” in their models using random forests as well

[2, 1].
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Figure 7. Random Site Predictions using Backwards Regression Fits. Predictions
are blue circles, actuals are black triangles. A red annotation appears at the largest
difference in predictions and actual values, and a text label with the difference in
decibels appears over the red circle.

67



Exhaustive Linear Regression

Unlike stepwise regression, exhaustive regression is slow. Figure 8 shows how the

time to compute models appears to be exponentially increasing with each additional

variable. Although not recorded in the graph, over nine variables were taking hours

to compute without completion.
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Figure 8. Exhaustive Regression Timeline. More than 9 variables took hours without
completion.

Exhaustive Regression Variables

Only 14 variables were needed to model a linear regression on the first ten 1
3

oc-

tave band frequencies. The results of Exhaustive Regression used the following vari-

ables in their fit equations for first through tenth one-third octave band frequencies:
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Barren200m, Developed200m, HIHerbaceous200m, Barren5km, Transportation5km,

WaterNat200m, WaterOnly200m, RecCon5km, WaterOnly5km, DistCoast, DistHeli-

ports, FlightFreq25Mile, Wind CRU, RddMajorPt. Variables unique to first through

fifth octave band frequencies (not in 6th through 10th): Barren200m, Barren5km,

DistCoast, Wind CRU. Variables unique to sixth through tenth octave band frequen-

cies (not in 1st through 5th): none. Variables in both: Developed200m, HIHerba-

ceous200m, WaterNat200m, WaterOnly200m, RecCon5km, Transportation5km, Wa-

terOnly5km, DistHeliports, FlightFreq25Mile and RddMajorPt. The coefficients of

each variable are located in tables 13 for first five frequencies, and 14 for the five

frequencies.

In tables 13 and 14, one can see all variables chosen to be in the exhaustive regression

model are significant, as one would expect. Comparing exhaustive regression model

metrics in table 14 to backward stepwise model metrics in table 9 reveals backward

stepwise regression outperforms exhaustive regression in the later frequencies. This

may because exhaustive regression was capped at a maximum of eight variables. Ex-

haustive regression over eight variables should be use when computationally feasible

for future research, but backwards regression appears to be a near substitute for the

first five 1
3

octave bands. Forward stepwise appears adds more insignificant variables

in its search, and the model metrics do not appear as good as backwards regression.

Exhaustive Linear Regression Variables, Order of Importance

The most important variables in the exhaustive linear regression model are in table

15. These variables help inform a interactive data analytic application for the sponsor

using a parallel coordinate visual to help select a range of values to find a best match-

ing site, as described later in this chapter. The most imporant variables across all
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Table 13. Exhaustive Regression on the 1st through 5th 1/3 octave frequencies

L90f1 L90f2 L90f3 L90f4 L90f5

Barren200m 10.6∗∗∗ 9.2∗∗∗

(3.0) (2.9)
Developed200m 12.3∗∗∗ 14.4∗∗∗

(3.3) (3.5)
HIHerbaceous200m 12.2∗∗∗ 11.7∗∗∗ 12.2∗∗∗ 13.2∗∗∗ 15.1∗∗∗

(2.6) (2.6) (2.6) (2.7) (2.9)
Barren5km −16.9∗∗∗ −14.9∗∗∗

(4.3) (4.1)
Transportation5km 102.6∗∗∗

(34.9)
WaterNat200m 9.1∗∗∗ 9.8∗∗∗ 10.4∗∗∗

(3.1) (3.2) (3.4)
WaterOnly200m −15.7∗∗∗ −16.4∗∗∗ −16.4∗∗∗

(4.3) (4.5) (4.7)
RecCon5km −3.0∗∗ −3.7∗∗∗ −4.2∗∗∗

(1.3) (1.3) (1.4)
WaterOnly5km 10.3∗∗∗ 11.0∗∗∗ 16.1∗∗∗ 15.2∗∗∗ 15.7∗∗∗

(2.2) (2.1) (2.7) (2.9) (3.0)
DistCoast −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001)
DistHeliports −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗

(0.01) (0.01) (0.01)
FlightFreq25Mile 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
Wind CRU 3.0∗∗∗ 2.5∗∗∗

(0.8) (0.8)
RddMajorPt 0.5∗∗∗

(0.2)
Constant 20.8∗∗∗ 21.3∗∗∗ 30.8∗∗∗ 29.9∗∗∗ 28.8∗∗∗

(3.1) (3.0) (1.3) (1.3) (1.4)

Press 7982 7455 7682 8242 9137
MAE 4.23 4.1 3.95 4.09 4.35
MdAE 3.38 3.34 2.91 2.91 3.05
Adjusted R2 0.4 0.4 0.4 0.5 0.5
Residual Std. Error 5.5 5.3 5.4 5.6 5.9
F Statistic 21.4∗∗∗ 22.7∗∗∗ 23.7∗∗∗ 28.3∗∗∗ 30.2∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14. Exhaustive Regression on the 6th through 10th 1/3 octave frequencies

L90f6 L90f7 L90f8 L90f9 L90f10

Developed200m 16.9∗∗∗ 19.3∗∗∗ 21.8∗∗∗

(3.7) (3.9) (4.1)
HIHerbaceous200m 15.6∗∗∗ 16.1∗∗∗ 16.3∗∗∗ 17.5∗∗∗ 16.2∗∗∗

(3.0) (3.2) (3.4) (3.4) (3.3)
WaterNat200m 11.4∗∗∗ 12.7∗∗∗ 12.2∗∗∗ 13.4∗∗∗ 13.1∗∗∗

(3.6) (3.8) (4.0) (4.0) (3.9)
WaterOnly200m −18.7∗∗∗ −20.5∗∗∗ −20.1∗∗∗ −22.9∗∗∗ −21.7∗∗∗

(5.0) (5.2) (5.6) (5.6) (5.5)
RecCon5km −4.0∗∗∗ −4.7∗∗∗ −5.3∗∗∗

(1.5) (1.5) (1.6)
Transportation5km 156.1∗∗∗ 163.8∗∗∗

(48.6) (47.3)
WaterOnly5km 16.4∗∗∗ 16.5∗∗∗ 16.7∗∗∗ 24.0∗∗∗ 24.2∗∗∗

(3.2) (3.3) (3.6) (3.3) (3.2)
DistHeliports −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.05∗∗∗ −0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
FlightFreq25Mile 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.1∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
RddMajorPt 1.3∗∗∗ 1.3∗∗∗

(0.3) (0.2)
Constant 27.1∗∗∗ 25.9∗∗∗ 25.0∗∗∗ 19.2∗∗∗ 17.4∗∗∗

(1.5) (1.5) (1.6) (1.0) (1.0)

Press 10113 11212 12740 13488 12816
MAE 4.6 4.9 5.2 5.5 5.3
MdAE 3.6 3.8 4.2 4.8 4.8
Adjusted R2 0.5 0.5 0.5 0.5 0.5
Residual Std. Error 6.2 6.5 6.9 7.1 6.9
F Statistic 31.3∗∗∗ 33.4∗∗∗ 32.9∗∗∗ 31.7∗∗∗ 32.5∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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ten frequencies of study appear to be FlightFreq25Mile, WaterOnly5km, Barren5km,

Developed200m, and RddMajorPt. This is a mix of the aircraft flights taking place,

the water and barren amount of space in 5 kilometers, the developed land within

200 meters, and the major road density within a certain area. These variables were

consistently in the first three variables of importance across all ten frequencies. Its

possible a 3, 4, or 5-variable model with just these variables could be formed at the

cost of less accuracy on the training model, but perhaps more accuracy on global

points.

Exhaustive Linear Regression, Accuracy per Frequency

The accuracy of the exhaustive linear regression model per frequency is indicated in

Tables 16 and 17. This description is similar to that already described in ‘Backwards

Linear Regression, Accuracy per Frequency’, with the exception that exhaustive per-

formed a little bit better than backwards regression for some of the frequencies and a

little worse than backwards regression for the frequencies where backwards had more

variables in its model—namely the later frequencies. But it did not perform signif-

icantly better or worse. The models explain about 50% of the variance when built

with the training data, and about 20-30% when applied to the test data.
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Table 16. Exhaustive Regression (Maximum of 8-variables) applied to the Training,
Test, and Entire Dataset using for the first five L90 1

3 octave frequencies— all measure-
ments in decibels

Metrics Training Test All

L90f1

RMSE 5.349 5.889 5.487
Rsquared 0.385 0.195 0.335

MAE 4.142 4.631 4.262

L90f2

RMSE 5.139 5.745 5.295
Rsquared 0.438 0.264 0.392

MAE 3.992 4.530 4.125

L90f3

RMSE 5.071 5.953 5.301
Rsquared 0.465 0.269 0.414

MAE 3.821 4.652 4.026

L90f4

RMSE 5.252 6.190 5.497
Rsquared 0.500 0.320 0.452

MAE 3.918 4.832 4.143

L90f5

RMSE 5.509 6.591 5.794
Rsquared 0.516 0.349 0.470

MAE 4.159 5.134 4.399
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Table 17. Exhaustive Regression Maximum of 8-variables applied to Training, Test,
and Entire Dataset continued for the second five L90 1

3 octave frequencies (6th through
10th)— all measurements in decibels

Metrics Training Test All

L90f6

RMSE 5.756 6.985 6.082
Rsquared 0.529 0.354 0.481

MAE 4.401 5.363 4.637

L90f7

RMSE 6.015 7.383 6.379
Rsquared 0.546 0.368 0.498

MAE 4.586 5.686 4.857

L90f8

RMSE 6.342 7.720 6.707
Rsquared 0.550 0.369 0.502

MAE 4.904 5.932 5.157

L90f9

Metrics Training Test All

RMSE 6.474 8.002 6.881
Rsquared 0.552 0.324 0.494

MAE 5.222 6.303 5.488

L90f10

RMSE 6.409 7.616 6.726
Rsquared 0.552 0.337 0.499

MAE 5.179 5.965 5.373
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Exhaustive Linear Regression, 10-fold Cross Validation

The results of using 10-fold cross validation to provide inferences on how well the

frequency-specific exhaustive regression performs on the resampled data, is displayed

in the boxplots of figure 9. The MAE and RMSE found per frequency are similar to

the tables 16 and 17 explained previously. Similar to backwards regression, the least

accurate estimates according to mean absolute error are at the top, L90f10, and the

most accurate estimates are located at the bottom, L90f3.

Figure 9. Resample results from Exhaustive Regression across all frequencies. Similar
to backwards regression, the least accurate estimates according to mean absolute error
are at the top, L90f10, and the most accurate estimates are located at the bottom,
L90f3—all measurements are in decibels
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Exhaustive Linear Regression, Visualizing 16 Random Samples

Similar to the explanation given for visualizing 16 random samples in the backward

regression model, figure 10 shows the maximum difference over all frequencies is

reported for each observation. Once again, even though the MAE is about 5 per

frequency for exhaustive regression, a majority of the random sites–11 out of 16—-

have at least one frequency that was missed by more than 5 decibels. In the graphic,

predictions are blue circles, and the actual acoustic measurement are black triangles.

A red annotation appears at the largest difference in predictions and actual values, and

a text label with the difference in decibels appears over the red circle. The first top left

figure in figure 10 is ‘GLCA012’ which is site 12 of Glen Canyon National Park Service.

This park was also well estimated as it was in backwards regression, but exhaustive

regression gives the worst prediction 6 decibels above the actual value for the first

1
3

octave frequency. We therefore surmise that this park was well approximated.

Another site in figure 10, YELL019, Yellowstone National Park site 19, was under-

predicted by 19.2 decibels on the 8th 1
3

octave frequency. This site was louder than

expected given its geospatial variables. BRCA0001, site 1 of Bryce Canyon was over-

predicted by 18.9 decibels on the first 1
3

octave frequency.
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Figure 10. Random Site Predictions using Exhaustive Regression Fits. Predictions
are blue circles, actuals are black triangles. A red annotation appears at the largest
difference in predictions and actual values, and a text label with the difference in
decibels appears over the red circle.
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Discussion of Forward, Backward and Exhaustive Regression Results

For the first five one-third octave frequencies, both forward and backward stepwise re-

gression indicated the following variables as important: Forest200m, WaterNat200m,

WaterOnly200m, RecCon5km, WaterOnly5km, DistCoast, DistHeliports, and Flight-

Freq25Mile. Exhaustive regression also shared the following seven variables of im-

portance with forward and backward regression: WaterNat200m, WaterOnly200m,

RecCon5km, WaterOnly5km, DistCoast, DistHeliports, and FlightFreq25Mile. Most

of these variables seem to be measures of water in an area, which is in agreement with

other National Park Studies [3] which concluded water was an important variable:

“This stems from the presence of many acoustic sources with low frequency content

(e.g., wind, water, and transportation noise) and that the low frequency energy of

any source propagates farther than high frequencies due to air absorption, diffraction,

ground effects, etc.” [2].

Variables Not Included in Either Regression Model

Two metrics in the literature review that stood out as not being included were distance

to streams and population metrics. No regression models found ‘DistStrahlerCalgt3’–

the distance to streams with order three as significant. Other studies have shown that

L90 or ambient background noise is influenced by the presence of rivers, waterfalls,

water in general etc. One possible speculation which would need more time and

research, is the Strahler Order isn’t as important as the power and/or slope of the

streams, which were in previous datasets [31] but not in the one studied. At least

upon initial inspection, the observations that were most under-predicted seem to

be related to parks that were likely close to a waterfall–such as NOCA, and PIRO.

79



In the case of site NOCA008–North Cascades National Park, Washington—a web

search of the latitude/longitude revealed the site is called Ladder Creek Falls, which

when explored using the Washington State Trails Association says this: “The falls

and surrounding gardens quickly became a tourist attraction, illuminated at night

with colored lights and livened up by music that was piped in on Friday evenings

for visitors who came from Seattle for a night out,” [81]. Therefore, the NOCA008

location was louder most likely because its main intent was to attract and entertain

people with lights and music from dawn to dusk. The site is also directly behind an

electric hydro-powered dam and on a pathway to a waterfall. These may contribute to

the persistent overall louder background noise than other sites located in very similar

conditions.

The absence of population density or any population metrics in any of the regression

models also seemed odd, since other land-use regression studies have stated population

density or population total are important measures [49]. However, the population

density of most national parks is most likely going to be low any way and may be why

this measure was not important to this study but may be still important for future

modeling. In addition, the National Parks are excluded from census calculations,

as stated “Protected areas (national parks, wilderness, and GAP status areas) are

excluded from population calculations [...]” [30].

Cautions on Heliport Variable

Distance to heliports, or ‘DistHeliports’ was important to all three regression methods,

however, it is suspected that the distance to heliports may be something explicitly tied

to national parks. Since many National Parks offer beautiful views, like that of the

Grand Canyon and Mount Rushmore, some heliports may exist specifically to enable
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tourists air tours of the sites. Further vetting of the model, more random observations

outside of the national parks, and more generic geospatial data would be needed before

concluding that distance to heliports is truly the best measure to use. This advice

generally applies to all variables in all models, but distance to heliports stood out as a

metric that may be correlated with national parks. An important note here to future

researchers, Sherrill [31] and Benson [5] use Distance to Heliports Only—not airports

with heliports—whereas in Nelson 2015 [30], it appears Heliports are potentially at all

airports in Hawaii or only heliport locations were available in Hawaii. “Airport point

locations were extracted from the National Transportation Atlas Database (2012) for

each modeled area. Public use and military airport locations were available for all

modeled areas while heliport locations were available only for Hawaii.”[30] Further

research could help find some finer precision for these geospatial variables, for out

whether distance to nearest airports with heliports would be a sufficient metric instead

of heliports-only, since the source of the noise would presumably be similar.

Conditional Inference Trees

A conditional inference tree is a single decision tree that splits the data in various

ways to build a predictive model. Using R package ‘caret’ and the ‘ctree’ model, a

predictive model was found to be similar to backwards linear regression predictive

performance results for mean absolute error and root mean square error.

Figure 11 shows the hyper-parameters necessary to build this particular Conditional

Inference Tree for the NPS sites. It shows the root-mean-square-error is minimized

to a value of approximately 5.50 when the p-value threshold is approximately 0.45.
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However, at any value between zero and one the root mean square error only varies

from 5.6 to 5.8 so optimization doesn’t seem to make that big of a difference. The

takeaway from the conditional inference model is with one decision tree, one can get

a root mean square error of approximately 5.5. This helps put the random forest

results in perspective, just as a null model helps put the multiple linear regression

performance results in perspective. If one can get a RMSE value of 5.5 with just one

tree, is it ‘worth’ the complexity of one-thousand, or five-hundred, or even ten trees

to model each dependent value one wants to predict? This is a question the sponsor

or decision maker would need to consider.

Figure 12 shows a visual representation of the decision tree. The variables used are

nodes and depicted as ovals, and the data is further split into left and right nodes

according to the less-than/greater-than specifications given on each arrow. The box

plots at the bottom of the tree represent the range of decibel values, in case of figure 12

this is just for L90f1. Another nine conditional inference trees were created but are not

shown. The first oval in this decision tree is ‘RecCon5km’ so the amount of reserved

or conserved land in the five kilometer radius is the first discriminating variable, and

thus the most important variable, for classifying the variance in the model. This

seems to coincide with the latest NPS research which found the first split, and thus

the most important variable, was the one that split the data into ‘urban’ and more

‘rural’ data [4]—in that study, the variable that did that best was the Visible Infrared

data (VIIRS), but that variable was not in the dataset of study. The RecCon5km

variable requires all observations with less than 0.32 proportion–or 32% percent of the

five kilometers of land–go to the left of the decision tree, and the ones with more than

0.322 go to the right. The second oval in figure 12, labeled with a boxed 2, encountered

by all observations with less than 0.322 of ‘RecCon5km’, is ‘DistStrahlerCalgt3’, the

distance to the nearest stream of Strahler order 3. It’s interesting to note that none of
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the Distance to Strahler Category Stream variables were in any of the multiple linear

stepwise regression models but are important in this method. The conditional tree

shows that all observations greater than 26 (kilometers) away from a Strahler Calgt

3 stream go on to a Wetlands5km variable splitting criteria, and then finally one can

see the box-plot at the bottom of the Wetlands5km splitting criteria, decibels range

from 40-50 on the right and 45-55 on the left. Unlike what NPS researchers had

predicted [31], however, it appears from reviewing the boxplots in this conditional

inference tree, that the sites located 26 kilometers or closer to an order 3 stream were

more quiet on average than sites farther than 26 kilometers away from an order 3

stream—at least for this specific frequency.

Table 18 shows the results of applying the conditional inference tree model for L90f1

to the training data, the test data, and all of the data. Results across all the resampled

training folds are in figure 14
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mean square error varies between 5.5 and 5.8 over ten resampled trials. The optimized
value is 5.5 when the p-value is set to approximately 0.45.
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Table 18. Applying Model to Training, Test, and Entire Dataset for L90f1 using Con-
ditional Inference Tree

Metrics Training Test All

RMSE 4.649 5.696 4.927
Rsquared 0.535 0.266 0.465

MAE 3.450 4.232 3.643

The figure 13 shows the results of predictive conditional inference tree for each of the

sixteen sites randomly chosen. It shows the worst results for MIMA002 (under pre-

dicting by 15 decibels), GLAC007 (under predicting by 10 decibels), GRCA018 (over

predicting by 14.6 decibels), MORA001 (over predicting by 11.3 decibels), PIRO002

(under predicting by 18 decibels). MIMA is the Minute Man National Historical Park

in Massachusetts, which as the website describes, “At Minute Man National Histor-

ical Park the opening battle of the Revolution is brought to life as visitors explore

the battlefields and structures associated with April 19, 1775, and witness the Amer-

ican revolutionary spirit through the writings of the Concord authors,” [82] so it is

assumed to not necessarily enforce ‘natural quiet’ as much as the other sites since it

is known for using loud cannons in its battle re-enactments.

Random Forests

The results of random forest were significantly better than the linear regression mod-

els. Table 19 shows the results of applying the best random forest model to the

training, test, and entire dataset resulted in an R-Squared of 0.924, a RMSE of 2.17,

and a MAE of 1.538.
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Figure 13. Results for Conditional Inference Tree on Random Sites
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Figure 14. Resample Results for Conditional Inference Tree across all ten frequencies.
MAE is Mean Absolute Error. RMSE is Root Mean Squared Error (RMSE is more
influenced by outliers than MAE). The x-axis is in decibels. The x-axis is displayed
under the MAE and above the RMSE to indicate different axis-scales in these side-by-
side plots. Similar to linear regression, predictions are not as accurate for the greater
numbered frequencies (eighth, ninth, tenth one-third octave frequency) and are more
accurate for the lesser numbered frequencies (second, third, first frequency). The
variance increases with the larger frequencies.

Table 19. Applying Model to Training, Test, and Entire Dataset for L90f1 using Ran-
dom Forests (ranger)

Metrics Training Test All

RMSE 2.176 4.566 2.949
Rsquared 0.924 0.510 0.831

MAE 1.538 3.555 2.034
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Future predictions using best models

The predictions using linear regression, a single decision tree, and multiple decision

trees in random forest, are as expected in order of better estimates. However the

better the model is at predicting the national parks acoustics across frequencies is

not necessarily the performance on sites outside the United States, or even sites in

the United States that are not national parks. The results are only interpretable for

the national parks and not readily interpretable for outside points. It is predicted

that the better the model is at predicting the noise level of the national parks, the

worse it will be at predicting other sites outside of the model because of overfitting.

There may be a balance between using a model somewhere between the null model

(means only), and the more precise random forests, but this research is not able

to initially determine where. Using the data in the Philippines would help at least

provide an initial estimate on how good or bad the model can be when applied outsite

the national park service.
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Figure 15. Random Site Predictions using Random Forests. Predictions are blue
circles, actuals are black triangles. A red annotation appears at the largest difference
in predictions and actual values, and a text label with the difference in decibels appears
over the red circle.
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Figure 16. Resample results from Random Forest across the first ten frequencies. Sim-
ilar to other methods, the least precise estimates are L90f9, the more precise estimates
are L90f2
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Figure 17. Resample results across the first ten frequencies using the null model, just
the mean of the frequency. Similar to other results the best estimates appear to be
L90f1, and the worst are L90f10
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Figure 18. Comparison of the four best models using four statistical techniques for
predicting the L90f1 value– the null model is for comparison
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Figure 19. Comparison of the four best models across the first 1/3 octave frequency.
The null model will never have an R-squared value by mathematical definition
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Sponsor’s Hold-Out Points

Unfortunately the hold-out points received in the Philippines did not contain any

geospatial data. Attempts were made to work with ArcGIS experts available starting

in October 2017, but not enough data was collected in a standardized manner to be

of use in any of the developed mathematical models. In January 2018, data collection

efforts were refueled with the findings that only eight variables were necessary to pre-

dict most of the frequecies. However even specifying this limited number of variables,

not enough data was available through open-sources. The data sets and standardized

automated processes used by the National Park Service and their collaborators to

collect geospatial data were national databases unique only to the United States, not

readily available for other countries like the Philippines.

Simply zooming in on the Philippine locations in Google maps allowed qualitative

observations which revealed some areas resembled heavily congested traffic locations,

four sites were clustered together on a peninsula near a resort with one of those

four in the water approximately a hundred meters from shore, one site was further

in from the coastline, and one in open water seemingly unconnected to any land

sources. These qualitative observations were matched with ArcGIS collected data

to help test an interactive parallel coordinates analytic to help inform the sponsor

on a best matching record from the National Park Service using ranges of available

information since enough point data was not available to compute with model. The

parallel coordinate analytic is simple code used from existing sources, about 20 lines

of code max. The code is shared in the appendix. It is also partially viewable in

figures 20, and 21.

Of note, looking at the Philippines acoustic data also revealed what is most likely a
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data-entry error: the L10 values were lower number values than the L90 values so

these numbers were most likely switched. To predict the L90 values, we assumed the

actual values to compare to were the L10 values.

Data Collection for Philippines

Two people with experience using ArcGIS tools were used to collect the data. They

collected approximately 4 out of the 8 needed variables to predict L90f1 over ap-

proximately 3 hours each from what they could find in open geospatial databases

available and using many assumptions. Person A collected information on type of

land category and distances to national roads, distances to airports, and because of a

communication error, distance to seaports when distance to airports with seaplanes

was actually needed. Person B collected road density, distance to national roads,

amount of herbaceous in 200meters, amount of recreational/conserved land in the

area, and distance to heliports. Person B was unable to find a geospatial database for

the Philippines that contained heliports, so they collected distance to airports. This

resulted in two of the same measures which was not intended, yet provided useful

information on how far off computations could be.

When Person A and Person B’s results for the distance to airports were compared

some of them were approximately 1000 meters off. It may be to differing skills/-

experiences of ArcGIS analysts, non-standardized open-source geospatial databases

available, and the need to improvise when certain databases are not available, or

other reasons for the data ranging between different data collectors. Another reason

for differences in values would be time. If the measurements were performed from a

database updated in 2018, yet the acoustic observations from the Philippines were

collected in 2010, any number of natural events could have occurred and changed the
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data—for example, a tsunami could have changed the coastline, a sand-bar may be

present where the site now appears to be open ocean, or a water body may have dried

up and is no longer the closest stream to a location.

In addition, the acoustic data for the Philippines locations did not include any metrics

on how many hours were recorded. Based on the literature available, most studies

recommend between 10 to 25 days to get a prediction on the ambient background noise

of an environment. The provided acoustic summary data may not have spanned this

minimum amount of time, and thus may be louder or more quiet than it really would

have been had a longer sample been used. This would lead to a similar phenomenon as

speculated with the MUWO001 acoustic summary data that varied greatly between

300 hours and 800 hours of data collection in different years and different seasons.

Best Match

Since the geospatial information needed for each of the Philippines locations was

imprecise or did not exist, rather than a precise point as was once assumed, a range

of possible values for the variables that were found informed a ‘best-match’ to the

observations in the original NPS dataset. The variables from an exhaustive linear

regression to predict L90f1 were used in a Parallel Coordinate plot, which is a great

visualization to interactively explore highly dimensional data. We found for the one

point that appeared to be in an open ocean, using a limited range on WaterOnly200m,

and distances to major roads, and small road density, resulted in a best match with

GOGA which is the Golden Gate Bridge in San Francisco, CA, as shown in figure

21. Other points that would match the data in the Philippines are in figure 20

with limited ranges on RecCon5km, DistCoast, DistHeliports, DistRoadsMajor, and

RddMajorPt. One can see in 20, there are a wide number of possible park matches.
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Table 22. Qualitative Data observed on Philippines

SiteID Latitude Longitude LCLU Observations

1 10.330 124.039 cultivated area mixed with brushland/grassland Beach Resort
2 10.332 124.039 ocean near Beach Resort
3 10.329 124.039 cultivated area mixed with brushland/grassland Beach Resort
4 10.330 124.039 cultivated area mixed with brushland/grassland Beach Resort
5 10.237 123.994 ocean middle of Channel
6 10.297 123.904 built up area street corner
7 10.339 123.908 crop land mixed with coconut plantation busy street corner
8 10.338 123.911 crop land mixed with coconut plantation courtyard of nice hotel

Another axis, “L90f1”, shows the possible values of L90f1 given all the parameters.

One can also visually differentiate the types of landscapes because they are colored

by LCLU and the first axis in the parallel coordinate plot. As more data is added

into the database, like from Alaska and Hawaii, the analytic may become more useful.

It is our hypothesis for future work that the Philippines would probably best match

locations available from the National Park Service for Hawaii since they are closer in

terms of Longitude and Latitude and share many similar geographical features.

Furthermore, the best way to visualize a parallel coordinate plot is interactively, one

is encouraged to use the code provided in appendix c to interact with the data.
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VI. Conclusion

Summary

This research identified the best subsets of geospatial variables needed for creating

predictive models for the first ten of the thirty-three one-third octave frequencies of

the National Park acoustic summary data. The analysis used and compared linear

regression, conditional inference trees and random forests in 10 fold cross-validation

test sets and reported the MAE, MdAE, RMSE, AdjR2, and PRESS when possi-

ble. With backwards-stepwise linear regression a predictive model can be generated

within seconds for all the frequencies and through the visual examination of random

observation predictions, the model had the unexpected result of capturing the unique

acoustic shape of each site using just 15 variables per frequency-model. Data explo-

ration highlighted several limitations with the data source and provided a method

for dealing with them. Several assumptions would need to be investigated with the

original source of the data–National Park Service Night Skies and Natural Sounds

division–before deploying the model for use. For example, how to appropriately fix

the negative distances and negative areas in several human-use category geospatial

variables. Using backwards and exhaustive regression identified a handful of impor-

tant variables that potentially can model the first ten one-third octave frequencies.

This would be a 90% reduction on the number of variables required from random

forests. However random forests is significantly more accurate so should be used

when data collection is not an issue.

Future research on speeding up exhaustive regression processes would be very bene-

ficial in combined with more globally recognized geospatial databases and up-to-date

validated comprehensive datasets.
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Deliverables

This research is also offered to the sponsor in a shortened R Markdown document

that can be recompiled to create PDF, HTML or Word Document for easy ”what-if”

analysis; for example excluding the site ID NOCA008 or MUWO001 and forming a

new predictive model. Some variations to the R code or amended code would allow

the sponsor to review the other 23 frequencies if they remained of interest, or the

L10 and L50 bands. The report used the R package ’caret’ to pre-process, train,

and validate model performance, and allows a repeatable methodology to continue

to add to the analysis if other methods are of interest. The research also created the

framework for and examples of a ’best matching’ scheme to allow the sponsor to pick

one of five hundred different National Park Service sites for its use. The files for this

were previously mentioned in the Methodology Chapter. The code is not listed for

these files because it is over 40 pages long, but can be requested.

There is also a web-graphical user interface application built using ‘Shiny’, that will

allow the sponsor to explore the original dataset and validate the report findings–

for example the wind values of zero. At this moment in time, another tab is being

built into the Shiny application to improve upon the best matching algorithm, to

use a select number of ‘best’ predictive variables to intuitively visualize the range

of acoustic data possible given a range of geospatial data. This is expected to help

alleviate the need for obtaining all the necessary and exact geospatial data for a site

of interest when in reality a general range is good enough to narrow down the best

matching observation. This will also help future researchers or the sponsor provide a

best-match range for the Philippines data using approximations and best guesses on

the range of values possible. The code for a parallel coordinate plot that can easily

be implemented is included in the appendix.
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Future Research/Work

A couple recommendations are offered as suggested future work and also future skill-

s/training needed:

Enlist ArcGIS expertise

At least 40 hours of tailored training on ArcGIS software tools is expected to en-

able a future researcher the ability to extract multiple databases of information for

multiple sites of interest. This is needed to gather data from each variable indicated

in at least one of the three models (linear regression, conditional inference tree, or

random forests) on the sponsor’s hold-out point of interest from the Philippines. This

is needed in conjunction with an understanding of what databases to use as a best

substitute. Extensive documentation on how the geospatial data were obtained is

available from [31] and [30] but most databases used are national databases not read-

ily available for the Philippines. The methodology of importing the data would need

to replicate the NPS methodology to ensure the same scale and same time frame.

There were variables of great importance according to previous NPS published work

like the Visible Infrared Imaging Radiometer Suite (VIIRS) data [3] , specifically,

the nighttime lights information, that was not in this research’s data set. An orig-

inal datasource was found that had 996 observations that also included hundreds

of airport acoustic summaries. However that data did not have frequency specific

data so it was not usable within the scope of this research. A lot of the original

information appears to be available on the open government data website repository,

www.data.gov, but the datasets available for each site are very large (the represent

hundreds of hours of audio recordings per site) and require at least a basic knowledge
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of python programming once received to extract and summarize.

Narrow down locations of interest

A better understanding of the operational locations of interest for using a predictive

acoustic model are desirable to ensure enough relevant data points are in the model.

The data did not contain many urban sites with large L90 values so it is anticipated

to under estimate loud urban sites. A meta-analysis of traffic-noise studies would

be advisable to gain insights on what variables are important for city environments–

for example distance to nearest bus stop is not an available geospatial variable in

this research database, but would be applicable to improving the predictions in this

research and city-studies [2], [16].

Future methodologies

Future methodologies that may be of interest are using each frequency model as a

predictive model for other frequencies, or using the probability density function of each

frequency as a independent variables or “dependent functions”. One methodology

that seemed relevant but beyond the scope of this research was canonical correlation

analysis [83], which would find an overall model that could account for a majority of

the variance in all ten frequencies, and then a frequency specific model to specify the

influence of variables on each frequency.

Principal component regression may also provide insights on whether a small number

of individual components can provide enough information on the variance to be pre-

ferred over any of the three methods studied here, but preliminary experimentation

revealed only two components would explain about 25% of the variance, and still use
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up to eighty components for creating a model. Since a component contains all the

variables in the dataset, this would result in a very large model per frequency and

did not seem as beneficial to use as the other methods presented in this research.

Another methodology of potential benefit is using the exhaustive linear results to feed

into a random forest and vice versa to reduce the number of variables in the model.

If linear regression identified ten variables, what would the random forest look like if

built on just those variables? This would allow interactions to be evaluated.
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Appendix A. Original Variables

Table 23. National Park Service Night Skies Natural Sounds Division Variables

Variable Description Unit

siteID Unique Identifier ABC####

Season Fall, Spring, Winter, or Summer

region All data was CONUS CONUS

park Location of site

type Park or City

firstYear Year recording began YYYY

nYears Years spanning recording Integer

nHours Recorded hours Integer

Latitude Degrees

Longitude Degrees

Elevation Distance above sea level Feet

Slope Rate of change of elevation Degrees

Land Cover Variables Proportion of Area of Analysis (AOA) Resolution

Barren 200m barren land 0.2 km AOA

Cultivated 200m cultivated 0.2 km AOA

Developed 200m developed land 0.2 km AOA

Forest 200m forest land cover 0.2 km AOA

Deciduous 200m deciduous forest land cover 0.2 km AOA

Evergreen 200m evergreen forest land cover 0.2 km AOA

Mixed 200m mixed forest land cover 0.2 km AOA

Herbaceous 200m herbaceous land cover 0.2 km AOA

Shrubland 200m shrubland land cover 0.2 km AOA

Snow 200m snow land cover 0.2 km AOA

Wetlands 200m wetlands land 0.2 km AOA

WaterOnly 200m water land cover 0.2 km AOA

Land Use Variables Proportion of Area of Analysis (AOA) Resolution

WaterNat 200m landuse natural water 0.2 km AOA

WaterHum 200m landuse human modified water 0.2 km AOA

Wet 200m landuse wetlands 0.2 km AOA.

RecCon 200m landuse recreation and conservation 0.2 km AOA

Timber 200m extractive land use timber harvesting 0.2 km AOA

Grazing 200m extractive land use livestock grazing 0.2 km AOA

Cropland 200m extractive land use cropland 0.2 km AOA

Suburban 200m built land use residential suburban 0.2 km AOA

Commercial 200m built land commercial 0.2 km AOA

Industrial 200m built land use industrial 0.2 km AOA

Institutional 200m land use institutional 0.2 km AOA

Transportation 200m land transportation 0.2 km AOA

Extractive 200m extractive land use class 0.2 km AOA

Built 200m built land use class 0.2 km AOA

Other Environmental Factors

DistAirportsAllMotorized Distance to motorized airports Meters

DistAirportsSeaplane Distance to all airports and seaplane bases only Meters

DistCoast Distance to National Hydrology Dataset (10 mile AOA) Meters

DistHeliports Distance to heliports only Meters

DistHighAirports Distance to airport with over 1M enplanements Meters

DistLowAirports Distance to airports with greater than 5K enplanements Meters

DistMilitary Distance to nearest military flight path (25 mile AOA) Meters

Continued on next page
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DistModerateAirports Distance to all airports with greater than 250K enplanements Meters

DistRailroads Euclidean distance to National Atlas 2012 GIS data Meters

DistRoadsAll Distance to nearest road (all roads) m Meters

DistRoadsMajor Point Distance to nearest road (major roads) Meters

DistStrahlerCalgt1 Distance to NHD Plus flowline with a SC stream order greater than 1 . Meters

DistStrahlerCalgt3 Distance to NHD Plus flowline with a SC stream order greater than 3. Meters

DistStrahlerCalgt4 Distance to NHD Plus flowline with a SC stream order greater than 4. Meters

DistStreamsAny Distance to closest stream Meters

DistWaterbody Distance to waterbody (10 mile AOA) Meters

FlightFreq25Mile Sum of weekly flight observations (25 mile AOA) Meters

MilitarySum 25miles Sum of designated military flight paths (25 mile AOA) Meters

RddAll5km* Sum of road density all roads (5 mile AOA) Meters

RddAllPt Sum of road density all roads (5 km AOA) Meters

RddMajor5km Sum of road density all roads(5 km AOA) Meters

RddMajorPt Sum of road density major roads (5 km AOA) Meters

RddWeighted5km Sum of road density weighted roads (5 km AOA) Meters

RddWeightedPt Sum of road density weighted roads (5 km AOA) Meters

PPTNorms Average yearly precipitation Millimeters * 100

PPTSummer Average summer precipitation (Point - millimeters times 100)

TAVGNorms* Average yearly temperature C

TAVGSummer Average summer yearly temperature C

TDEWAvgSummer* Average summer dew point temperature C

TDEWNorms* Average yearly dew point temperature C

TPI Ordinal bin of TPIRaw 1-6

TPIRaw Topographic Position raw value. Continuous

Wilderness Sum of designated wilderness Meters2

Wind CRU Wind power class potential density (50m AOA) W
Meters2
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Appendix B. Equations

Equations for Backward-Stepwise Regression:

L90f1 = (30.188± 3.565)× (Intercept)+

(−10.66± 1.829)× Forest200m+

(−8.063± 1.783)× Shrubland200m+

(−17.094± 4.325)×WaterOnly200m+

(−11.783± 2.793)×Wetlands200m+

(−17.182± 3.622)× Barren5km+

(12.301± 2.819)×WaterOnly5km+

(−0.004± 0.001)×DistCoast+

(0.062± 0.018)× FlightFreq25Mile+

(2.549± 0.831)×Wind CRU

(1)

L90f2 = (36.065± 1.35)× (Intercept)+

(−9.75± 1.748)× Forest200m+

(−7.838± 1.777)× Shrubland200m+

(8.247± 3.001)×WaterNat200m+

(−23.149± 4.342)×WaterOnly200m+

(−9.751± 2.648)×Wetlands200m+

(−15.844± 3.542)× Barren5km+

(97.761± 35.428)× Transportation5km+

(15.547± 2.503)×WaterOnly5km+

(0.091± 0.017)× FlightFreq25Mile

(2)
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L90f3 = (35.348± 1.379)× (Intercept)+

(−9.795± 1.787)× Forest200m+

(−8.633± 1.816)× Shrubland200m+

(9.13± 3.068)×WaterNat200m+

(−23.658± 4.438)×WaterOnly200m+

(−10.152± 2.706)×Wetlands200m+

(−15.115± 3.621)× Barren5km+

(103.938± 36.213)× Transportation5km+

(14.648± 2.558)×WaterOnly5km+

(0.101± 0.017)× FlightFreq25Mile

(3)

L90f4 = (44.106± 2.019)× (Intercept)+

(−0.109± 0.043)× Slope+

(−12.428± 3.36)× Barren200m+

(−12.868± 2.221)× Forest200m+

(−13.271± 2.156)× Shrubland200m+

(10.094± 3.233)×WaterNat200m+

(−30.749± 5.044)×WaterOnly200m+

(−14.595± 2.958)×Wetlands200m+

(−3.309± 1.341)× RecCon5km+

(15.114± 2.813)×WaterOnly5km+

(−0.03± 0.01)×DistHeliports+

(0.111± 0.018)× FlightFreq25Mile+

(−0.789± 0.287)× TPI

(4)
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L90f5 = (43.659± 2.132)× (Intercept)+

(−0.115± 0.046)× Slope+

(−16.603± 3.436)× Barren200m+

(−16.434± 2.231)× Forest200m+

(−17.727± 2.156)× Shrubland200m+

(13.263± 3.335)×WaterNat200m+

(−36.378± 5.175)×WaterOnly200m+

(−16.662± 3.151)×Wetlands200m+

(17.981± 2.819)×WaterOnly5km+

(−0.035± 0.01)×DistHeliports+

(0.131± 0.019)× FlightFreq25Mile+

(−0.895± 0.301)× TPI

(5)

L90f6 = (40.635± 1.911)× (Intercept)+

(−15.886± 3.57)× Barren200m+

(−15.461± 2.442)× Forest200m+

(−16.978± 2.408)× Shrubland200m+

(11.925± 3.62)×WaterNat200m+

(−35.141± 5.58)×WaterOnly200m+

(−17.132± 3.317)×Wetlands200m+

(−4.29± 1.485)× RecCon5km+

(16.227± 3.107)×WaterOnly5km+

(−0.035± 0.011)×DistHeliports+

(0.128± 0.02)× FlightFreq25Mile

(6)
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L90f7 = (40.443± 2.01)× (Intercept)+

(−17.041± 3.755)× Barren200m+

(−16.632± 2.569)× Forest200m+

(−18.474± 2.533)× Shrubland200m+

(13.252± 3.807)×WaterNat200m+

(−38.237± 5.87)×WaterOnly200m+

(−18.433± 3.489)×Wetlands200m+

(−4.911± 1.562)× RecCon5km+

(16.635± 3.268)×WaterOnly5km+

(−0.038± 0.012)×DistHeliports+

(0.142± 0.021)× FlightFreq25Mile

(7)
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L90f8 = (32.325± 2.333)× (Intercept)+

(3.033± 0.948)× SeasonSummer+

(4.097± 1.388)× SeasonFall+

(−12.76± 4.052)× Barren200m+

(−13.543± 2.852)× Forest200m+

(−15.046± 2.882)× Shrubland200m+

(13.283± 3.983)×WaterNat200m+

(−31.909± 6.253)×WaterOnly200m+

(−14.917± 3.841)×Wetlands200m+

(−5.427± 1.653)× RecCon5km+

(122.775± 47.714)× Transportation5km+

(15.983± 3.423)×WaterOnly5km+

(0.145± 0.022)× FlightFreq25Mile+

(0.637± 0.254)× RddMajorPt

(8)
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L90f9 = (32.816± 2.524)× (Intercept)+

(2.869± 0.961)× SeasonSummer+

(3.901± 1.397)× SeasonFall+

(−13.029± 4.133)× Barren200m+

(−14.198± 2.905)× Forest200m+

(−15.849± 2.929)× Shrubland200m+

(13.732± 4.013)×WaterNat200m+

(−33.191± 6.322)×WaterOnly200m+

(−15.094± 3.88)×Wetlands200m+

(−4.71± 1.674)× RecCon5km+

(119.484± 48.434)× Transportation5km+

(16.063± 3.447)×WaterOnly5km+

(−0.037± 0.013)×DistHeliports+

(0.123± 0.023)× FlightFreq25Mile+

(0.65± 0.258)× RddMajorPt

(9)
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L90f10 = (26.41± 2.134)× (Intercept)+

(2.966± 0.939)× SeasonSummer+

(3.903± 1.377)× SeasonFall+

(−6.963± 2.19)× Forest200m+

(−9.678± 2.279)× Shrubland200m+

(10.678± 3.93)×WaterNat200m+

(−22.903± 5.616)×WaterOnly200m+

(−9.085± 3.34)×Wetlands200m+

(−5.263± 1.621)× RecCon5km+

(150.724± 46.993)× Transportation5km+

(16.323± 3.386)×WaterOnly5km+

(−0.04± 0.016)×DistRailroads+

(0.099± 0.023)× FlightFreq25Mile+

(0.95± 0.246)× RddMajorPt

(10)
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Equations for Exhaustive Regression:

L90f1 = (20.843± 3.088)× (Intercept)+

(10.572± 3.024)× Barren200m+

(12.151± 2.605)×HIHerbaceous200m+

(−16.862± 4.278)× Barren5km+

(10.287± 2.191)×WaterOnly5km+

(−0.004± 0.001)×DistCoast+

(0.07± 0.018)× FlightFreq25Mile+

(2.952± 0.812)×Wind CRU

(11)

L90f2 = (21.307± 2.987)× (Intercept)+

(9.185± 2.92)× Barren200m+

(11.687± 2.55)×HIHerbaceous200m+

(−14.94± 4.137)× Barren5km+

(102.609± 34.943)× Transportation5km+

(11.02± 2.123)×WaterOnly5km+

(−0.004± 0.001)×DistCoast+

(0.069± 0.018)× FlightFreq25Mile+

(2.495± 0.786)×Wind CRU

(12)
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L90f3 = (30.794± 1.274)× (Intercept)+

(12.205± 2.641)×HIHerbaceous200m+

(9.1± 3.099)×WaterNat200m+

(−15.713± 4.318)×WaterOnly200m+

(−3.01± 1.267)× RecCon5km+

(16.061± 2.703)×WaterOnly5km+

(−0.027± 0.01)×DistHeliports+

(0.094± 0.017)× FlightFreq25Mile+

(0.5± 0.187)× RddMajorPt

(13)

L90f4 = (29.851± 1.323)× (Intercept)+

(12.347± 3.338)×Developed200m+

(13.225± 2.741)×HIHerbaceous200m+

(9.829± 3.246)×WaterNat200m+

(−16.439± 4.486)×WaterOnly200m+

(−3.733± 1.315)× RecCon5km+

(15.18± 2.875)×WaterOnly5km+

(−0.031± 0.01)×DistHeliports+

(0.106± 0.018)× FlightFreq25Mile

(14)
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L90f5 = (28.826± 1.39)× (Intercept)+

(14.354± 3.507)×Developed200m+

(15.126± 2.88)×HIHerbaceous200m+

(10.377± 3.411)×WaterNat200m+

(−16.45± 4.714)×WaterOnly200m+

(−4.21± 1.382)× RecCon5km+

(15.652± 3.022)×WaterOnly5km+

(−0.032± 0.011)×DistHeliports+

(0.111± 0.019)× FlightFreq25Mile

(15)

L90f6 = (27.099± 1.462)× (Intercept)+

(16.897± 3.69)×Developed200m+

(15.648± 3.03)×HIHerbaceous200m+

(11.435± 3.588)×WaterNat200m+

(−18.727± 4.959)×WaterOnly200m+

(−4.028± 1.454)× RecCon5km+

(16.381± 3.179)×WaterOnly5km+

(−0.036± 0.011)×DistHeliports+

(0.124± 0.02)× FlightFreq25Mile

(16)
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L90f7 = (25.872± 1.54)× (Intercept)+

(19.345± 3.886)×Developed200m+

(16.109± 3.191)×HIHerbaceous200m+

(12.743± 3.779)×WaterNat200m+

(−20.474± 5.222)×WaterOnly200m+

(−4.693± 1.531)× RecCon5km+

(16.495± 3.348)×WaterOnly5km+

(−0.038± 0.012)×DistHeliports+

(0.136± 0.021)× FlightFreq25Mile

(17)

L90f8 = (24.986± 1.643)× (Intercept)+

(21.824± 4.146)×Developed200m+

(16.34± 3.405)×HIHerbaceous200m+

(12.24± 4.032)×WaterNat200m+

(−20.074± 5.572)×WaterOnly200m+

(−5.269± 1.633)× RecCon5km+

(16.67± 3.572)×WaterOnly5km+

(−0.043± 0.013)×DistHeliports+

(0.136± 0.022)× FlightFreq25Mile

(18)
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L90f9 = (19.243± 1.016)× (Intercept)+

(17.514± 3.368)×HIHerbaceous200m+

(13.433± 3.984)×WaterNat200m+

(−22.902± 5.641)×WaterOnly200m+

(156.139± 48.601)× Transportation5km+

(23.986± 3.257)×WaterOnly5km+

(−0.047± 0.013)×DistHeliports+

(0.125± 0.023)× FlightFreq25Mile+

(1.273± 0.25)× RddMajorPt

(19)

L90f10 = (17.375± 0.99)× (Intercept)+

(16.162± 3.28)×HIHerbaceous200m+

(13.104± 3.88)×WaterNat200m+

(−21.727± 5.494)×WaterOnly200m+

(163.822± 47.333)× Transportation5km+

(24.217± 3.172)×WaterOnly5km+

(−0.045± 0.013)×DistHeliports+

(0.11± 0.023)× FlightFreq25Mile+

(1.3± 0.244)× RddMajorPt

(20)
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Appendix C. Code

1 #Import Data

2 c l eandata <− readRDS( ’ c l eandata ’ )

3

4 #I n s t a l l R−Packages

5 l i b r a r y ( t i d y v e r s e )

6 l i b r a r y ( s t a r g a z e r )

7 devtoo l s : : i n s t a l l g ithub ( ” t i m e l y p o r t f o l i o / parcoords ” )

8

9 ## P a r a l l e l c oo rd ina t e s

10 # This func t i on was adopted from ’ t i m e l y p o r t f o l i o ’ on github .

11

12 myparacoords <− f unc t i on ( dataSource , colorBy = ”LCLUCI . l a b e l s ” , width =

1200 , he ight = 600) {

13 parcoords : : parcoords (

14 dataSource

15 , r e o r d e r a b l e = T

16 , rownames = FALSE

17 , a lpha =0.5

18 , ax i sDots = 0

19 ,mode = ”queue”

20 , r a t e = 1

21 # , a u t o r e s i z e = TRUE

22 , width = width

23 , he ight = he ight

24 , brushMode = ”1d−axes ”

25 , c o l o r = l i s t ( c o l o r S c a l e = htmlwidgets : : JS ( ’ d3 . s c a l e . category10 ( ) ’ ) ,

26 colorBy = colorBy )

27

28 )

29 }

30
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31 ## Example o f Future Use :

32 #These are the v a r i a b l e s that seem important from exhaust ive l i n e a r

r e g r e s s i o n f o r one s p e c i f i c f requency : ”HIHerbaceous200m” ”

RecCon5km” ” D i s t H e l i p o r t s ” ”DistRoadsMajor” ” Fl ightFreq25Mi le ”

”RddMajorPt ” . However the se are the po in t s we have data for , and

they are o f p o t e n t i a l l y poor q u a l i t y ; Var i ab l e s with in fo rmat ion :

Herbaceous200m RecCon5km Dis tA i rpo r t s DistRoadsMajor

RddMajorPt

33

34 myparacoords ( c l eandata [ , c ( ”LCLUCI . l a b e l s ” , ”HIHerbaceous200m” , ”

DistModerateAirports ” , ” Dis tHighAirports ” , ”RecCon5km” , ”

D i s t H e l i p o r t s ” , ”DistRoadsMajor” , ” Fl ightFreq25Mi le ” , ”RddMajorPt

” , ”PopDensity 2010 50km” , ”park” , ” L90f1 ” ) ] )

Listing C.1. Parallel Coordinates Plot
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