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Abstract 

Many Air Force studies require a design and analysis process that can accommodate 

for the computational challenges associated with complex systems, simulations, and real-

world decisions. For systems with large decision spaces and a mixture of continuous, 

discrete, and categorical factors, nearly orthogonal-and-balanced (NOAB) designs can be 

used as efficient, representative subsets of all possible design points for system evaluation, 

where meta-models are then fitted to act as surrogates to system outputs. The mixed-integer 

linear programming (MILP) formulations used to construct first-order NOAB designs are 

extended to solve for low correlation between second-order model terms (i.e., two-way 

interactions and quadratics). The resulting second-order approaches are shown to improve 

design performance measures for second-order model parameter estimation and prediction 

variance as well as for protection from bias due to model misspecification with respect to 

second-order terms. Further extensions are developed to construct batch sequential NOAB 

designs, giving experimenters more flexibility by creating multiple stages of design points 

using different NOAB approaches, where simultaneous construction of stages is shown to 

outperform design augmentation overall. To reduce cost and add analytical rigor, meta-

learning frameworks are developed for accurate and efficient selection of first-order NOAB 

designs as well as of meta-models that approximate mixed-factor systems.  
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EXPERIMENTAL DESIGNS, META-MODELING, AND META-LEARNING FOR 

MIXED-FACTOR SYSTEMS WITH LARGE DECISION SPACES 

 
I.  Introduction 

The complexities of real-world choices available to today’s decision makers, as 

well as of simulations that aim to represent environments of ever-increasing fidelity and 

scope, make it necessary for simulators and analysts to have an experimental design and 

analysis process that accommodates the associated computational challenges. Simulations 

and systems with complex behavior often require more computation time and can have 

large design/decision spaces, making the exhaustive evaluation of all possible options 

infeasible. Individual decisions are not always quantitative and do not always have the 

same number of choices, so the ability to provide experimental designs that account for 

mixed factors (i.e., quantitative and qualitative factors with different numbers of levels for 

each) is needed. 

Often times in studies of simulations having complex behavior, decision makers 

are interested in which assets to invest in as well as how to employ existing and future 

assets given expected budget constraints. These potential purchases, upgrades, and 

utilization decisions comprise portfolio selections in large decision spaces, requiring the 

use of efficient experimental designs of sufficient quality. The nearly orthogonal-and-

balanced (NOAB) mixed design presented in [1] is an appropriate space-filling design for 

such simulation and decision support efforts due to the robustness of the design method 

with respect to different factor types. In the literature review, the balance feasibility test 

and construction method from [1] for NOAB designs with quantitative (discrete and 
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continuous) and qualitative (categorical) factors are implemented, which are then used to 

create designs for notional Intelligence, Surveillance, and Reconnaissance (ISR) [2], [3] 

asset decisions of interest. Input requirements and suggested design sizes (i.e., number of 

design points) for NOAB design construction are discussed, with examples of portfolio 

representation and associated NOAB designs presented. An exhaustive search process over 

balance-feasible design sizes is implemented, allowing for an examination of trade-offs 

between design size and quality. Techniques for evaluation and comparison of designs are 

outlined and design performance measures are presented, to include those for prediction 

accuracy, model coefficient estimation, and model misspecification.  

Meta-models can act as surrogates to the actual simulation output in order to 

facilitate robust decision support processes. If the associated experimental design is 

constructed with forethought, meta-models can prevent the need for future costly 

simulation runs when new questions are posed by decision makers as well as prevent 

unnecessary costs in modeling and analysis. Different from simulation optimization, the 

interest is not to optimize a single simulation response, but to examine trade-offs between 

multiple responses for the various decisions of interest. While examining asset choices is 

a motivation of this work, note that there may be many other factors represented that are 

controllable within a simulation and uncontrollable in a real-world environment. Such 

factors can provide greater context when examining trade-offs.   

Meta-learning, and the framework of the algorithm selection problem, will be used 

to efficiently determine which designs and meta-models are most appropriate based on 

design space and simulation output features, respectively. In order for the individual meta-
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learning approaches to be conducted, two training sets are required: one for design spaces 

for which NOAB designs are to be constructed, and one for complex system responses to 

be meta-modeled. The review of literature concerning experimental designs, meta-models, 

and meta-learning approaches is provided in Chapter II. 

Four main research questions will be addressed in four papers (Chapters III-VI): 

1. What benefits can second-order extensions to the mixed-integer linear 
programming (MILP) constructions of first-order NOAB designs provide with 
respect to design performance measures? (Chapter III) 
 

Measures of design performance are detailed in Chapter II. A subset of these 

measures are used for design evaluation and comparison, focusing on design size, 

prediction accuracy, model coefficient estimation, and protection from model 

misspecification for various implementations of the developed second-order MILP 

extensions (i.e., concerning two-way interactions and quadratic model terms). Two main 

design approaches for mixed-factor problems are developed in the form of NOAB 

Resolution IV designs for screening that protects from bias of second-order model terms 

and NOAB Resolution V designs that can provide better coefficient estimates for full 

second-order models. 

2. Can construction methods be developed for batch sequential NOAB designs? 
(Chapter IV) 

 
Sequential designs and their importance to simulation studies are discussed in 

Chapter IV. Different from single stage, or one-shot, experimental designs, batch 

sequential designs have multiple stages that allow for intermediate analysis as well as more 

flexibility in the choice of overall design size and of how later design points are selected. 
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Two techniques for construction of batch sequential NOAB designs are examined: 

simultaneous construction of stages and design augmentation. These batch sequential 

designs can use the different NOAB approaches from Chapter III at different stages to 

achieve certain design properties. 

3. How can meta-learning be implemented to develop a recommendation system 
for first-order NOAB design construction that also allows for design evaluation 
and comparison? (Chapter V) 
 

Meta-learning approaches from various fields of study are reviewed in Chapter II, 

which are presented in the context of the algorithm selection problem framework. The aim 

is to develop such a framework to provide insights regarding initial best practices for first-

order NOAB design construction. In [1], NOAB designs are shown to be superior or as 

good as many other space-filling designs for continuous and discrete factors, and a basic 

guideline for lower and upper bounds on design size is given. Using an algorithm selection 

problem framework, a greater understanding of the resulting design performance measures 

for various design sizes and balance settings allows for the development of a 

recommendation system that efficiently selects designs to construct, with the potential for 

a meta-learning process that updates the recommendation system as new design spaces are 

examined. 

4. How do the newly developed mixed-factor designs compare with respect to 
resulting meta-model performance, and after a design is selected, how well do 
meta-model recommendation systems perform with respect to recommendation 
and ranking? (Chapter VI) 
 

Several candidate meta-models are reviewed from the literature in Chapter II. A 

simulation case study demonstrates the overall meta-modeling methodology as well as 

allows for comparison of the different NOAB design approaches developed in Chapter III. 
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Using an algorithm selection problem framework informed by [4], [5], a training set of 

complex system responses is examined for meta-learning for a mixed-factor design space.  
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II. Literature Review 

2.1 Overview of Literature  

In order to address the questions of interest, a review of literature is required 

covering a variety of research areas. The representation of large decision spaces and 

associated combinatorial challenges are discussed in the context of ISR portfolio selection 

problems. An overview of experimental designs, desired design properties, and associated 

measures of performance are presented, with emphasis on the nearly orthogonal-and-

balanced (NOAB) mixed-factor designs and construction method. Additionally, techniques 

for design comparison and evaluation are considered. The potential for right-censored 

responses is detailed for the ISR portfolio example, with discussion of design and meta-

model considerations for censored and survival data. 

Candidate meta-modeling techniques are outlined, where an aim in this research is 

to sufficiently describe entire response surfaces from various systems or simulations with 

mixed factors. The algorithm selection problem and concept of meta-learning are 

presented, with a summary and update of the survey paper [6] that generalizes meta-

learning approaches from various fields of study. Table 1 presents literature sources with 

the associated topics of interest. 
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Goos and Jones 2011                 ●       
Guo and Mettas 2010         ●         ● ●   

H. Fang et al. 2005     ●               ●   
Hardy 1971                     ●   
Hebb 1949                     ●   

Hedayat et al. 2012         ● ●             
Hernandez et al. 2012             ●           

Hickernell 1998                 ●       
Hill and Lewicki 2006                 ●       

Hoke 1974         ●               
Hutter et al. 2014                   ● ●   

IBM Corporation 2014   ●                     
Iman and Conover 1982             ●           

Jacoby and Harrison 1962     ● ● ●               
Jin et al. 2002         ● ●     ●       

Johnson et al. 1990         ●               
Johnson et al. 2011         ●       ●       

K.T. Fang 1980         ●               
K.T. Fang et al. 2000         ●               

Keeney 1996 ●                       
Kennedy 2013         ● ● ●           

Kiefer and Wolfowitz 1959           ●             
Kleijnen 2007     ●   ● ●         ●   
Kleijnen 2009                     ●   

Kleijnen et al. 2003     ●   ●   ●   ●       
Kleijnen et al. 2005     ● ● ●   ●   ●   ●   

Konstantinou et al. 2014           ●       ●     
Köpf et al. 2000                     ● ● 

Kotthoff 2014                       ● 
Koul et al. 1981                   ● ●   
Kück et al. 2016                       ● 

Kutner et al. 2004                     ●   
Law 2015     ●   ●           ●   

Lawless 2011                   ●     
Lemke et al. 2015                       ● 

Leyton-Brown et al. 2002                       ● 
Liang et al. 2013     ●                   

Loeppky et al. 2010         ●               
Loterman and Mues 2012                     ● ● 

Lu et al. 2011           ●     ●       
Lu et al. 2012           ●     ●       

MacCalman 2013     ● ●     ● ● ●   ●   
MacCalman et al. 2017             ●           
Marler and Arora 2004 ●                       

Marlow et al. 2015     ● ●       ●         
Mason 2012   ●                     

Matheron 1963                     ●   
Matijaš et al. 2013                       ● 
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McCulloch and Pitts 1943                     ●   
McKay et al. 1979             ●           

Mitchell 1974           ●             
Montgomery 2013         ●               

Morrice 1995         ●               
Muñoz and Smith-Miles 2016     ●                 ● 

Muñoz et al. 2015     ●               ● ● 
Myers et al. 2009     ●   ● ● ●       ●   
Myers et al. 2016 ●   ●   ● ● ●   ●   ●   
OpenSolver 2017   ●                     

Owen 1994             ●           
Parker 2009                 ●       

Patel 1962         ●               
Piepel 2009                 ●       

Poursoltan and Neumann 2016                       ● 
Pronzato and Müller 2012         ●               

Rao 1946         ●               
Rao 1947         ●               

Rennen 2010             ●           
Rice 1976                       ● 

Ripley and Ripley 2001                   ● ●   
Romero et al. 2013                       ● 

Roquemore 1976         ●               
Rosenblatt 1958                     ●   
Rossi et al. 2014                     ● ● 
S. E. Burke 2016           ●             
Sacks et al. 1989         ● ●         ●   
Saleh et al. 2016     ●     ●             

Sanchez and Sanchez 2005         ●               
Sanchez et al. 2014     ●       ● ●     ●   
Santner et al. 2003                     ●   
Satterthwaite 1959         ●               

Schmee and Hahn 1979                   ● ●   
Schruben 1986         ●               

SEED Center for Data Farming 2016   ●   ● ●   ● ●         
Shamsuzzaman et al. 2015             ●           

Shewry and Wynn 1987         ●               
Smith-Miles 2008                     ● ● 

Smith-Miles and Lopes 2012                     ● ● 
Sobol' 1967         ●               

Srivastava 1975         ●               
Staum 2009                     ●   

Steinberg and Lin 2006             ●           
Taguchi 1988         ●               

Tang 1994             ●           
Tsai and Hsu 2013                       ● 

U.S. Air Force 2013       ●                 
Verdinelli and Chaloner 1995         ●               
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Viana 2013             ●           
Vieira Jr. et al. 2013     ● ● ● ●   ●         

Wakeman 2012     ● ●       ●         
Wang et al. 2009                       ● 

Wolpert and Macready 1997                     ● ● 
Xiong et al. 2009             ●           

Ye 1998             ●           
Total 9 4 21 12 45 18 27 6 18 10 45 28 

 

2.2 Decision Space Representations and Combinatorial Challenges 

Even with a limited number of asset types to select from in a portfolio tradespace, 

the decision space can grow quickly. A relatively small portfolio space is provided in Table 

2, similar to the representation in [7]. For this example, suppose two types of remotely 

piloted aircraft are of interest, RPA1 and RPA2, both of which are available in two sets, 

denoted by a and b, of some specified quantity. Now with respect to system utilization, 

suppose that each set of RPA1 has two options for basing, two options for routing, and 

three options for sensor packages. Similarly, suppose that each set of RPA2 has three 

options for basing, three options for routing, and one option for sensor packages. Note that 

the experimental design research that follows is not dependent on the portfolio 

representation and types of options shown here, i.e., base, route, and sensor, as the aim here 

is to provide a sense of the number of possible options for a decision space of even limited 

scope. 
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Table 2. Small Portfolio Example (System Set View) 

System Set (𝐵𝐵) Base 
Options 

(𝑅𝑅) Route 
Options 

(𝑆𝑆) Sensor 
Packages 𝐵𝐵 ∙ 𝑅𝑅 ∙ 𝑆𝑆 Total 

Options 
RPA1a 2 2 3 12 13 
RPA1b 2 2 3 12 13 
RPA2a 3 3 1 9 10 
RPA2b 3 3 1 9 10 

 

For this example, there are four sets of systems, RPA1a, RPA1b, RPA2a, and 

RPA2b, represented by the four rows in Table 2. For the two rows of RPA1a and RPA1b, 

there are the same number of choices for the number of base options, 𝐵𝐵, the number of 

route options, 𝑅𝑅, the number of possible sensor combinations, 𝑆𝑆, and thus the same number 

of total usage combinations, 𝐵𝐵 ∙ 𝑅𝑅 ∙ 𝑆𝑆, in addition to the option of not using a system set. 

From Table 2, there are 13∙13∙10∙10 = 16,900 portfolio options, which is a large number of 

possible decisions given that only two system types are considered. If an additional sensor 

package option is permitted for the RPA2 sets, then 𝑆𝑆 = 2 and 𝐵𝐵 ∙ 𝑅𝑅 ∙ 𝑆𝑆 =18, resulting in 

13∙13∙19∙19 = 61,009 total portfolio options, more than triple the number of possible 

decisions. Note that even though there are three choices for sensor combinations available 

to an RPA1 set, this does not imply that there are only three sensor types available. For 

example, suppose there are four possible sensors S1, S2, S3, and S4 available to RPA1, yet 

only three combinations, {S1,S2}, {S1,S3}, and {S1,S4}, are feasible due to physical 

constraints. The combinatorial challenges of such a decision space as well as the often 

significant amount of time required to produce simulation responses motivate an efficient, 

yet robust, approach to experimental design and meta-modeling.  
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In Table 3, a larger portfolio option space example is given that includes remotely 

piloted aircraft (RPA) as well as aircraft (AC) and satellites (SAT), where the decision 

space consists of 3,343,221,000 points, requiring over a century of computation time for 

design point evaluations costing only one second each. It is clear that a decision space of 

larger scope will require an efficient experimental design approach. 

Table 3. Portfolio Space Example (Qualitative System Set View) 

System 
Set 

(B) Base 
Options 

(R) Route 
Options 

(S) Sensor 
Combos B ∙ R ∙ S Total 

Options 
RPA1 1 3 3 9 10 
RPA2a 1 6 3 18 19 
RPA2b 1 6 3 18 19 
RPA3a 2 3 1 6 7 
RPA3b 2 3 1 6 7 
RPA3c 2 3 1 6 7 
AC1 2 2 2 8 9 
AC2a 1 2 2 4 5 
AC2b 1 2 2 4 5 
SAT1 1 1 2 2 3 
SAT2 1 1 1 1 2 
SAT3 1 1 1 1 2 

 

A final example is shown in Table 4 for a notional portfolio space examined in 

support of a real-world simulation effort, which happens to have more of a quantitative 

focus and consists of at most three-level factors. This portfolio example will be explored 

throughout the literature review to present various topics in greater detail. The portfolio 

representation is comprised partially of five two-level factors, to answer the question of 

which combination of systems will create a portfolio of greatest value: 

• The baseline system A is either upgraded or not 
• The baseline system C is either upgraded or not  
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• The baseline system D is either upgraded or not 
• System E is either used or not  
• System F is either used or not 

 
No upgrade option is available to system B. Additionally, to address the question 

of how many A systems to employ, one four-level factor is introduced, representing 

quantities of 0, 1, 2, or 3 for a single route. Similarly, for system C, one three-level factor 

is used, representing quantities of 0, 1, or 2 for a single route. No more than a total of two 

B systems are to be flown on two dissimilar routes. To account for this constraint in 

quantity, two three-level categorical factors are created, one for each individual system B, 

where individual system Ba, and similarly system Bb, each have three options: use on route 

1, use on route 2, and do not use.  

Table 4. Portfolio Space Example (Mixed-Factor View) 

Factor, 𝑥𝑥 Levels, 𝑙𝑙𝑥𝑥 Options Description 

A Type 2 {0,1} 0 - baseline, 1- upgrade 
A Quantity 4 {0,1,2,3} number of A to use 

Ba 3 {1,2,3} 1 - route 1, 2 - route 2, 3 - do not use 
Bb 3 {1,2,3} 1 - route 1, 2 - route 2, 3 - do not use 

C Type 2 {0,1} 0 - baseline, 1- upgrade 
C Quantity 3 {0,1,2} number of C to use 

D Type 2 {0,1} 0 - baseline, 1- upgrade 
E 2 {0,1} 0 - do not use, 1 – use 
F 2 {0,1} 0 - do not use, 1 - use 

 

The non-encoded design matrix representation has nine factors and variable 

columns, while the encoded design for analysis has 11 variable columns, with effect coding 

used for categorical factors Ba and Bb. The design point [0,3,2,3,1,2,0,1,0], before 

encoding, represents the option that uses three baseline A systems, system Ba on Route 2, 

two upgraded C systems, and system E capability, which is in addition to the baseline 
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system D capability. This representation contains 3,456 total portfolio options. For a first 

order model with 𝑚𝑚 variables, 

𝑦𝑦 =  𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1  , 

and effect coding for a categorical factor with 𝑗𝑗 possible categories can be defined as 

follows for a design point or observation having category 𝑘𝑘: 

𝑥𝑥𝑖𝑖 = �
            1, 𝑖𝑖𝑖𝑖 𝑘𝑘 = 𝑖𝑖 < 𝑗𝑗

−1, 𝑖𝑖𝑖𝑖 𝑘𝑘 = 𝑗𝑗
        0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

, 𝑖𝑖𝑜𝑜𝑒𝑒 𝑖𝑖 = 1, 2, … , 𝑗𝑗 

2.3 Desired Properties of Experimental Design 

2.3.1 Overview 

The aspects of experimental design important to this research are examined, 

including mixed factors, orthogonality, balance, efficiency, and space filling. As seen with 

the previous portfolio examples, a mixed-factor design, or mixed design, may be required, 

i.e., a design having some combination of continuous, discrete, and categorical factors in 

addition to possibly having different numbers of levels for each factor.  

Note that there are many standard designs [8]–[11] that do not satisfy these design 

requirements, with disadvantages discussed for the various design properties. Beyond 

factorial and fractional factorial designs, some of the more standard designs include the 

following, as detailed in [12]: 

• orthogonal array (OA) [13]–[15] 
• central composite design (CCD) [16] 
• face central composite design (FCCD)  
• Box-Behnken design (BBH) [17] 
• Hoke design [18] 
• hybrid design [19] 
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• very large fractional factorials and CCDs [20].  
 

Optimal designs are presented in [21]. Space-filling designs include Latin 

hypercube (LH) design [22]–[26], maximum entropy [27], sphere packing [28], and 

uniform [29], [30]. Improvements have been made to Latin hypercube designs, including 

the orthogonal Latin hypercube [31]–[33] as well as the nearly orthogonal Latin hypercube 

(NOLH) [34], [35]. Second-order NOLH designs have been created using a genetic 

algorithm [36]. A construction method for nearly orthogonal-and-balanced (NOAB) 

designs with mixed factors is developed in [1]. A single NOAB design with near 

orthogonality between second-order discrete factors was constructed using a genetic 

algorithm in [12], though the heuristic approach appears to have difficulty satisfying 

specific near balance requirements. Many space-filling designs have been created for 

deterministic simulation, requiring a sufficient number of replications for stochastic 

responses. In [37], there is an example that shows the use of a Latin hypercube design of 

50 design points with 30 replications. 

Other designs, as listed in [38], include: 

• group screening [39], [40]  
• random design [41] 
• sequential bifurcation [42], [43] 
• robust designs [44] 
• Bayes designs [45], [46] 
• search linear models [47], [48] 
• frequency domain [49], [50]. 

 
2.3.2 Orthogonality 

An orthogonal design allows each factor to be examined independently of other 

factors. Depending on the eventual meta-model used for each simulation response, 
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orthogonality can allow for examination of individual factors separately, which permits 

feature reduction. This property can be measured by the maximum absolute correlation of 

all possible pairs of encoded factor columns, denoted by 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, where a design is 

considered orthogonal if 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 0, and nearly orthogonal if 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0.05.  

The rounding of design point values to achieve discrete levels from well-known 

continuous factor space-filling designs such as LH, uniform, and sphere-packing designs 

does not guarantee near orthogonality, and these designs do not address the need for 

categorical factors [1]. An example of rounding of NOLH designs and the associated loss 

of near orthogonality is provided in [12].  

2.3.3 Balance 

An experimental design is balanced when all factor levels occur for the same 

number of design points. A design is considered nearly balanced when the maximum 

imbalance for all factor columns, denoted by δ, is sufficiently close to zero. A nearly 

balanced design ensures that levels within each factor are represented nearly equally. 

Requiring δ < 1 ensures that all factor levels occur in the design [1], with imbalance for a 

factor 𝑥𝑥 defined as 

𝛿𝛿𝑥𝑥 = max
𝑖𝑖=1,…,𝑙𝑙𝑥𝑥

�
𝑒𝑒𝑖𝑖,𝑥𝑥 − (𝑛𝑛/𝑙𝑙𝑥𝑥)

(𝑛𝑛/𝑙𝑙𝑥𝑥)
� 

where 𝑙𝑙𝑥𝑥 is the number of levels, 𝑒𝑒𝑖𝑖,𝑥𝑥 is the number of times level 𝑖𝑖 occurs, and 𝑛𝑛 is the 

number of design points. 
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2.3.4 Space-filling 

Experimental designs for meta-modeling of simulation output require good space-

filling properties in order to efficiently model surfaces over regions that have a large 

number of input combinations. Crossing smaller standard designs to achieve a mixed-factor 

design can be inefficient. In [1], it is stated that orthogonal arrays (OAs) for experiments 

with many mixed factors are not readily available and likely inefficient as well. The 

modified 𝐿𝐿2 discrepancy, or 𝑀𝑀𝐿𝐿2, [51] is a commonly-used space-filling measure, as 

discussed in [1], [12], [52]. 

2.4 Nearly Orthogonal-and-balanced (NOAB) Design from [1] 

2.4.1 Overview 

The NOAB design allows for mixed factors with different numbers of levels and 

has an existing construction method that aims to minimize correlations between pairs of 

design matrix columns (representing first-order model terms) while also satisfying near 

balance constraints. Though efficiency can be a subjective measure, NOAB designs have 

been shown to be consistently orders of magnitude smaller in size than other designs with 

similar design performance properties.  

Inputs for the construction method are as follows: 

• design size / number of design points (matrix rows) 𝑛𝑛, indexed by row 𝑒𝑒 =
1,  2, … ,  𝑛𝑛 

• maximum allowed absolute pairwise correlation 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  
• maximum allowed imbalance δ 
• factor types 𝐶𝐶(𝑥𝑥) for each factor 𝑥𝑥 
• number of levels ℓ𝑥𝑥 for each factor 𝑥𝑥, indexed by level 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 

where  
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𝐶𝐶(𝑥𝑥) =  �
1,           𝑖𝑖𝑖𝑖 𝑥𝑥 𝑖𝑖𝑒𝑒 𝑐𝑐𝑜𝑜𝑛𝑛𝑜𝑜𝑖𝑖𝑛𝑛𝑐𝑐𝑜𝑜𝑐𝑐𝑒𝑒
2,          𝑖𝑖𝑖𝑖 𝑥𝑥 𝑖𝑖𝑒𝑒 𝑑𝑑𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒       
3,          𝑖𝑖𝑖𝑖 𝑥𝑥 𝑖𝑖𝑒𝑒 𝑐𝑐𝑐𝑐𝑜𝑜𝑒𝑒𝑐𝑐𝑜𝑜𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑙𝑙

  

 
For a mixed design, general guidelines for bounds on the number of design points, 𝑛𝑛, are 

presented in [1]:  

3�𝐾𝐾 − 𝐿𝐿 + ∑ (𝑙𝑙𝑥𝑥 − 1) 𝑥𝑥∈𝐿𝐿 � ≤ 𝑛𝑛 ≤ 10�𝐾𝐾 − 𝐿𝐿 + ∑ (𝑙𝑙𝑥𝑥 − 1) 𝑥𝑥∈𝐿𝐿 �  

where 𝐿𝐿 is the number of categorical factors, and 𝐾𝐾 is the total number of factors.  

Pairwise correlation for columns 𝒙𝒙 and 𝒚𝒚 is defined as 

𝜌𝜌(𝒙𝒙,𝒚𝒚) = 1/((𝑛𝑛 − 1) 𝑒𝑒𝒙𝒙𝑒𝑒𝒚𝒚)∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(𝑦𝑦𝑟𝑟 − 𝒚𝒚�)𝑛𝑛
𝑟𝑟=1   

with column elements 𝑥𝑥𝑟𝑟 and 𝑦𝑦𝑟𝑟, means 𝒙𝒙� and 𝒚𝒚�, and standard deviations 𝑒𝑒𝒙𝒙 and 𝑒𝑒𝒚𝒚. 

2.4.2 Balance Feasibility Test  

The construction method is accompanied by a balance feasibility test (Appendix) 

that rules out design sizes based on a specified maximum imbalance parameter 𝛿𝛿∗. This 

feasibility test is updated from [1], with differences highlighted in bold, to ensure that the 

maximum imbalance is calculated in each case. The original value for the imbalance 𝛿𝛿 was 

previously set to infinity (in practice, a sufficiently large number) and not zero, and the 

comparison to determine 𝛿𝛿 for each column is now shown as a maximization and not a 

minimization. For the majority of this research, the suggested bounds for first-order NOAB 

design size are used for the range of possible design sizes, which are then tested for balance 

feasibility.  
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2.4.3 Construction Algorithm 

The NOAB design construction method (algorithm in Appendix) creates the NOAB 

design by sequentially appending columns for a single factor. First, the new factor columns 

are randomly generated to satisfy balance constraints, which serve as an initial solution to 

one of three mixed-integer linear programming (MILP) problems, dependent on factor 

type. The main goal for these first-order NOAB designs from the literature is to identify 

the most important factors to a response, so focus has previously been on near orthogonality 

and D-optimality as performance measures, which aims to maximize the determinant of 

the information matrix, 𝑿𝑿’𝑿𝑿, for design matrix 𝑿𝑿 [8]. Heuristic search parameters for the 

construction method include 𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥, the minimum and maximum allowable time 

for MILP solution search, respectively, as well as ℎ∗, the maximum number of iterations 

per design matrix column, and 𝑏𝑏∗, the maximum number of macro-iterations, i.e., full 

design construction attempts. Note that effect coding is used for categorical factor columns.  

2.4.4 MILP Formulations 

 There are three MILP formulations, one for each factor type: continuous (Figure 

1), discrete (Figure 2), and categorical (Figure 3). Notation for the formulations are as 

follows: 
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Table 5. Notation for NOAB Design Construction 

𝑗𝑗 
number of previously constructed matrix columns, indexed by column 𝑐𝑐 =
1,  2,  … ,  𝑗𝑗 

𝑴𝑴 
previously constructed 𝑛𝑛 × 𝑗𝑗 design matrix (represents only first-order terms in 
the original method and both first- and second-order terms for the full second-
order method) 

𝑚𝑚𝑟𝑟,𝑐𝑐 element of 𝑴𝑴 in row 𝑒𝑒 and column 𝑐𝑐 

𝒎𝒎∙,𝑐𝑐 column 𝑐𝑐 of 𝑴𝑴 

𝐶𝐶1 subset of column indices 1,  2,  … ,  𝑗𝑗 for 𝑴𝑴 that represent first-order terms 
only, indexed by 𝑐𝑐1 

𝒙𝒙 MILP decision variables (𝑛𝑛 × 1 factor column), 𝒙𝒙𝑖𝑖 is the ith column in the 
categorical case 

𝑥𝑥𝑟𝑟 element of 𝒙𝒙 in row 𝑒𝑒 

𝜋𝜋ℓ 
encoded level value (with �𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝜆𝜆(𝒙𝒙)� being all possible values for 
column 𝒙𝒙) 

𝜃𝜃𝑟𝑟,ℓ 
binary decision variable where 𝑥𝑥𝑟𝑟 = ∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1  and ∑ 𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 = 1 for row 

𝑒𝑒 and encoded level ℓ 
 

 For all three formulations, constraints (𝑖𝑖) and (𝑖𝑖𝑖𝑖) ensure that the pairwise 

correlation between the new factor column(s) and all previously constructed columns are 

minimized, noting that the required near balance of each factor permits the removal of 𝑒𝑒𝑥𝑥. 

Constraint (𝑖𝑖𝑖𝑖) allows for the binary representation of the various factor column elements 

in 𝒙𝒙. Constraint (𝑖𝑖𝑖𝑖𝑖𝑖), in addition to the binary constraint on the various 𝜃𝜃 values, ensures 

that each design point has exactly one level selected from {𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑛𝑛} equally spaced 

values for a continuous factor (guaranteeing balance), {𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑙𝑙𝑥𝑥} values in the discrete 

case, and {−1, 0, 1} in the categorical case. The three options in the categorical case are 



21 

 

associated with the effect coding. Note that in the continuous case, constraint (iii) is 

required to ensure balance, ∑ 𝜃𝜃𝑟𝑟ℓ = 1𝑛𝑛
𝑟𝑟=1 , for ℓ = 1, … ,𝑛𝑛. 

Constraints (𝑖𝑖) and (𝑖𝑖𝑖𝑖) for the discrete and categorical cases make sure that the 

specified imbalance is not violated. Additionally, for the categorical case, constraints 

(𝑖𝑖𝑖𝑖𝑖𝑖) − (𝑖𝑖𝑥𝑥) are associated with the effect coding of ℓ𝑥𝑥 − 1 new columns. 

Minimize 𝑖𝑖  

Subject to   

(𝑖𝑖)   𝑖𝑖 ≥ 1
𝑠𝑠𝑐𝑐
∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)�𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1    𝑐𝑐 ∈ 𝐼𝐼(𝑗𝑗) 

(𝑖𝑖𝑖𝑖)   𝑖𝑖 ≥ − 1
𝑠𝑠𝑐𝑐
∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)�𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1    𝑐𝑐 ∈ 𝐼𝐼(𝑗𝑗) 

(𝑖𝑖𝑖𝑖𝑖𝑖)   ∑ 𝜃𝜃𝑟𝑟ℓ = 1𝑛𝑛
ℓ=1   𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛) 

(𝑖𝑖𝑖𝑖)   𝑥𝑥𝑟𝑟 = ∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟ℓ𝑛𝑛
ℓ=1   𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛) 

(𝑖𝑖) 𝜃𝜃𝑟𝑟ℓ ∈ {0,1} 𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛); ℓ ∈ 𝐼𝐼(𝑛𝑛) 

Figure 1. MILP Formulation for Continuous Factor [1] 

For the literature review, the construction method and MILP formulations for the 

three factor types are implemented in MATLAB version2015a using CPLEX V12.6.1 [53] 

to obtain MILP solutions, with calculations performed on a HP Z420 Workstation with an 

Intel® Xeon® CPU E5-1620, 32 GB of RAM, and a 64-bit version of Windows 7.  
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Minimize 𝑖𝑖  

Subject to   

(𝑖𝑖) 𝑖𝑖 ≥ 1
𝑠𝑠𝑐𝑐
∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)�𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1    𝑐𝑐 ∈ 𝐼𝐼(𝑗𝑗) 

(𝑖𝑖𝑖𝑖) 𝑖𝑖 ≥ − 1
𝑠𝑠𝑐𝑐
∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)�𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1    𝑐𝑐 ∈ 𝐼𝐼(𝑗𝑗) 

(𝑖𝑖𝑖𝑖𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟ℓ = 1ℓ𝑥𝑥
ℓ=1   𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛) 

(𝑖𝑖𝑖𝑖) 𝑥𝑥𝑟𝑟 = ∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟ℓ
ℓ𝑥𝑥
ℓ=1   𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛) 

(𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟ℓ ≤ �(1 + 𝛿𝛿) 𝑛𝑛
ℓ𝑥𝑥
�𝑛𝑛

𝑟𝑟=1   𝑙𝑙 ∈ 𝐼𝐼(ℓ𝑥𝑥) 

(𝑖𝑖𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟ℓ ≥ �(1 − 𝛿𝛿) 𝑛𝑛
ℓ𝑥𝑥
�𝑛𝑛

𝑟𝑟=1   𝑙𝑙 ∈ 𝐼𝐼(ℓ𝑥𝑥) 

(𝑖𝑖𝑖𝑖𝑖𝑖) 𝜃𝜃𝑟𝑟ℓ ∈ {0,1} 𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛); 𝑙𝑙 ∈ 𝐼𝐼(ℓ𝑥𝑥) 

Figure 2. MILP Formulation for Discrete Factor [1] 

2.4.5 Known Case Studies  

When compared to many other designs, including NOLHs, NOAB designs have 

been shown to lie on the Pareto frontier with respect to near orthogonality, near balance, 

and space-filling properties, measured by 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿, and 𝑀𝑀𝐿𝐿2, respectively. Figure 4 shows 

how a NOAB design performs when compared to 19 other designs, each with 25 design 

points and four discrete factors having three, four, five, and seven levels each [1]. In [1], 

the NOAB design is compared to the Faced Central Composite, BBH, D-optimal, I-

optimal, sphere packing, uniform, Latin hypercube (LH), maximin LH, maximum entropy, 

and minimum potential designs as well as Sobol’ and scrambled Sobol’ sequences [54].  
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Minimize 𝑖𝑖  

Subject to   

(𝑖𝑖) 𝑖𝑖 ≥ 1
𝑠𝑠𝑐𝑐
∑ �𝑥𝑥𝑟𝑟𝑖𝑖 − 𝒙𝒙�𝒊𝒊��𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1   𝑐𝑐 ∈ 𝐼𝐼(𝑗𝑗); 𝑖𝑖 ∈ 𝐼𝐼(ℓ𝑥𝑥 − 1) 

(𝑖𝑖𝑖𝑖) 𝑖𝑖 ≥ − 1
𝑠𝑠𝑐𝑐
∑ �𝑥𝑥𝑟𝑟𝑖𝑖 − 𝒙𝒙�𝒊𝒊��𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1   𝑐𝑐 ∈ 𝐼𝐼(𝑗𝑗); 𝑖𝑖 ∈ 𝐼𝐼(ℓ𝑥𝑥 − 1) 

(𝑖𝑖𝑖𝑖𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟ℓ𝑖𝑖 = 13
ℓ=1   𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛); 𝑖𝑖 ∈ 𝐼𝐼(ℓ𝑥𝑥 − 1) 

(𝑖𝑖𝑖𝑖) 𝑥𝑥𝑟𝑟𝑖𝑖 = ∑ (ℓ − 2)𝜃𝜃𝑟𝑟ℓ𝑖𝑖3
ℓ=1   𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛); 𝑖𝑖 ∈ 𝐼𝐼(ℓ𝑥𝑥 − 1) 

(𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟ℓ𝑖𝑖 ≤ �(1 + 𝛿𝛿) 𝑛𝑛
ℓ𝑥𝑥
�𝑛𝑛

𝑟𝑟=1   𝑙𝑙 = 1,3; 𝑖𝑖 ∈ 𝐼𝐼(ℓ𝑥𝑥 − 1) 

(𝑖𝑖𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟ℓ𝑖𝑖 ≥ �(1 − 𝛿𝛿) 𝑛𝑛
ℓ𝑥𝑥
�𝑛𝑛

𝑟𝑟=1   𝑙𝑙 = 1,3; 𝑖𝑖 ∈ 𝐼𝐼(ℓ𝑥𝑥 − 1) 

(𝑖𝑖𝑖𝑖𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟3𝑖𝑖 ≤ 1ℓ𝑥𝑥−1
𝑖𝑖=1   𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛) 

(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ∑ 𝜃𝜃𝑟𝑟2𝑖𝑖 ≤ ℓ𝑥𝑥−1
𝑖𝑖=1 ℓ𝑥𝑥 − 2  𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛) 

(𝑖𝑖𝑥𝑥) 𝜃𝜃𝑟𝑟1𝑖𝑖 − 𝜃𝜃𝑟𝑟11 = 0 𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛); 
𝑖𝑖 = 2, 3, … , ℓ𝑥𝑥 − 1 

(𝑥𝑥) 𝜃𝜃𝑟𝑟ℓ𝑖𝑖 ∈ {0,1}  
𝑒𝑒 ∈ 𝐼𝐼(𝑛𝑛); ℓ ∈ 𝐼𝐼(3); 
𝑖𝑖 ∈ 𝐼𝐼(ℓ𝑥𝑥 − 1) 

Figure 3. MILP Formulation for Categorical Factor [1] 
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Figure 4. Design Comparisons for ρmap, δ, and ML2 [1] 

A 300-factor, 512-point NOAB design is available at the SEED (Simulation 

Experiments & Efficient Designs) Center for Data Farming, Naval Postgraduate School 

website [55], comprised of 200 discrete factors and 100 continuous factors. The discrete 

factors are comprised of 10 sets of 20 factors having between two levels and 11 levels each.  

Previous efforts that have used NOAB designs include the work by Wakeman [56], 

examining a discrete event simulation using 32 factors from the 512-point SEED Center 

design. In [57], a custom 19-factor, 1040-point NOAB design is constructed, comprised of 

11 continuous, two discrete, and six categorical factors, where each point is replicated 50 

times due to the stochastic nature of the fleet management simulation. Even when 

restricting the 11 continuous factors of the design to 10 levels each, the total number of 

points in the design space is  9.27E14, which would require over 3.5 million years of 

computation time [57].   
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2.4.6 Categorical Design Construction and Correlation Example  

By the design size guideline, between 249 ≤ 𝑛𝑛 ≤ 830 design points are suggested 

for the ISR portfolio space presented in Table 3, where each system set is represented by a 

categorical factor. Note that each categorical factor again uses effect coding, and the 

maximum 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛿𝛿 are set to 0.05 and 0.15, respectively. A 360-point design is 

constructed, requiring approximately 30 minutes of computation time. The design size was 

chosen ad-hoc by examining the least common multiples of values close to each of the 

number of levels, needing an additional 30 minutes for testing. Figure 5 shows the absolute 

correlation matrix in lower triangular form for the 12-factor, 360-point NOAB design, 

where there is low correlation between encoded columns not of the same factor. The full 

factorial design of 3,343,221,000 points would require approximately 106 years, assuming 

one second is required for each design point evaluation, whereas the 360-point NOAB 

design would require only six minutes of simulation run time. It is certainly true that a 

NOAB design with a larger number of points could be constructed to further improve 

design properties, while meeting the constraints for allowable simulation run time. 
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Figure 5. Absolute Correlation Heatmap for 12-factor, 360-point NOAB Design 

2.5 Considerations for Censored or Survival Data 

2.5.1 Potential for Right-censored Responses  

For the initial ISR portfolio example in Table 2, there is an assumption that each of 

the system sets listed will be utilized for some combination of the three factors: base option, 

route option, and sensor package. Each individual system will be utilized in some way, 

which allows for performance measures to exist for all systems represented in the 

simulation. So given the existence of each individual system, measures regarding 

survivability and reliability may be of interest to a decision maker. Naturally, the time to 

failure/loss of a system (and the associated subsystems, components, or individual sensors) 

may be greater than the time window simulated, even in a long-duration study. This is 

when right-censored data would be injected for a portion of responses, since recording the 
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time to failure/loss of a system as the final timestamp of a simulation would not allow for 

an accurate representation of that reliability/survivability measure.  

It is important to note that right-censoring can have the same censoring time for all 

individual systems or different, random censoring times due to the introduction of 

individual systems to the simulated environment at different times. For simulations capable 

of tracking such information for specific systems and components of interest, these time to 

failure/loss measures should be recorded and observed, where the right-censored data 

provides a lower bound on the times of interest.  

Analysts would then be able to observe how the basing, routing, and sensor 

packages potentially impact the time to failure/loss for each system. It would be important 

to have consistent definitions for such measures, whether based on loss of a specific 

capability, total failure, or total loss. Value-focused thinking [58] could be used to map the 

system failure times of interest to the perceived value of a decision maker. It seems clear 

that a greater failure time would receive a larger value depending on the system, though 

there may be an acceptable time where the value sees diminishing returns for further 

marginal increases in time. These values associated with system survival time could then 

be aggregated into an overall value using relative weightings in a hierarchal structure, 

which may include other performance measures that are not censored. Such a hierarchy 

relies on mutual exclusivity of measures/metrics, so aggregating value or performance at a 

subsystem or component level would require more thought due to the potential for 

associated dependencies. 
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Another instance where right-censored data could be injected into such a simulation 

is if a system task has a finite-duration that may not see completion by the end of a 

simulation. In this case, the measure of completion time for a task may be impacted by the 

sensor package used in combination with environmental factors resulting from choices of 

basing and routing. Though a workaround may be to capture the percentage of completed 

tasks by the end of the simulation, the completion time itself may be of great importance 

to the study. The simulated time window could be associated with the maximum 

completion time that has zero or small value to a decision maker, thus lessening the 

importance of right-censored response estimation. However, if the simulation is stochastic 

rather than deterministic, as is often the case, the ability to provide meaningful average 

performance measures would seem to rely on imputation/estimation of the censored data.  

2.5.2 Meta-model Considerations 

The current design approach assumes no knowledge of the resulting responses, with 

the space-filling properties of the NOAB design allowing for the fitting of high-order meta-

models, as the designs are “amenable to trade-off analysis using non-parametric 

techniques” [1, pp. 266]. However, it is important to consider which meta-models are 

appropriate for censored data. Space-filling designs are typically better for fitting semi-

parametric and non-parametric models, as intended with the NOAB designs, though the 

performance of space-filling designs with respect to variance tends to be lesser near the 

boundaries and greater near the center of design regions [59].  

Maximum likelihood estimation can be used for parametric models of various 

distributions, to include Weibull, exponential, and log-normal, with the likelihood ratio test 
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used to determine significant factors [60].  Other distributions include extreme value, log-

normal, log-logistic, and gamma, while non-parametric methods include the Kapan-Meier 

estimate and the Cox proportional hazards model [61].  

Though far from a comprehensive list, examples of models where censored data 

has been examined include regression [62], regression analysis with randomly right-

censored data [63],  random forests and approximate Gaussian processes to improve 

algorithm runtime prediction [64], neural networks for survival data [65], [66], and support 

vector machines [67]. 

Note that simply ignoring the censored observations and associated design points 

would most likely remove the (near) orthogonality and balance properties that NOAB 

designs are constructed to achieve, and assuming that the right-censored data are 

uncensored (by using each respective lower bound as the observed value) would bias any 

resulting meta-model as discussed in [64]. 

2.5.3 Potential Design Criteria and Design Alternatives 

There are certain design criteria that would possibly be emphasized over others with 

the knowledge that say 30% of the observations in a fixed design region were censored, 

such as D-efficiency (maximize for good parameter estimates), I-efficiency (maximize for 

good prediction accuracy), and 𝑜𝑜𝑒𝑒(𝑨𝑨’𝑨𝑨) (minimize for protection from biased coefficient 

estimates), where 𝐴𝐴 is an alias matrix for design matrix 𝑋𝑋 [68, pp. 520-521]. 

Though there have been designs constructed specifically for censored data and 

associated assumed distributions, it is important to not tailor model construction too 

specifically to a single criteria (or type of response), since this research involves potentially 
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many response surfaces for each individual study. However, if distributions associated with 

survivability and reliability are of primary interest, then designs optimized for the 

associated criteria should be considered. Since many simulation studies require the use of 

non-standard designs, the focus in this section is on computer-generated optimal designs, 

specifically D-optimal designs. 

2.5.4 Optimal Designs 

Regarding censored data, the following research in optimal design construction is 

focused more on optimization for non-normal distributions and censored data. Bayesian D-

optimality for nonlinear models, and logistic regression in particular, is presented in [69]. 

Efficient experimental designs have been constructed for generalized linear models where 

the goal is to maximize |𝑿𝑿′𝑾𝑾𝑿𝑿| for weight matrix 𝑾𝑾 [70]. Optimal designs for two-

parameter nonlinear models have been examined using an example of exponential 

regression with the natural proportional hazards parameterization [71]. Optimal design for 

dual-responses systems has been examined for three cases (choosing two distinct responses 

from binary, normal, and Poisson distributions) using the measures of D-efficiency and 

Bayesian D-efficiency as appropriate in a multiplicative desirability function with a layered 

Pareto front algorithm [72].  

2.6 Multiple Criteria for Design Selection 

The nature of NOAB construction for mixed-factor experimental designs allows for 

many possible parameter settings and heuristic rules to be examined in order to determine 

how to create the “best” performing NOAB design for a specific study. There are several 
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performance criteria of possible interest, which are outlined in [68, pp. 520-521] and 

summarized in Table 6.  

Table 6. Optimization Criteria for Multiple Facets of a Good Design [68] 

Measure Reason Direction 
D-efficiency Parameter estimation Max 
I-efficiency Average prediction variance Max 
G-efficiency Worst-case prediction variance Max 
𝑜𝑜𝑒𝑒(𝐴𝐴′𝐴𝐴) Protection from bias (model terms) Min 
𝑜𝑜𝑒𝑒(𝑅𝑅’𝑅𝑅) Protection from bias (SSE) Min 
𝑜𝑜𝑒𝑒(𝑅𝑅’𝑅𝑅) Estimates for lack of fit Max 
Number of replicates Pure error estimation Max 
Number of design points Experimental cost Min 

 

2.6.1 D-Efficiency and A-Efficiency for Good Model Parameter Estimation 

For the number of design points 𝑛𝑛 and the number of model parameters 𝑝𝑝 in design 

matrix 𝑿𝑿, the moment matrix is defined as 𝑴𝑴 = (𝑿𝑿′𝑿𝑿)/𝑛𝑛, with determinant |𝑴𝑴| =

|𝑿𝑿′𝑿𝑿|/𝑛𝑛𝑚𝑚. As stated in [68, pp. 468], “under the assumption of independent normal model 

errors with constant variance, the determinant of 𝑿𝑿′𝑿𝑿 is inversely proportional to the 

square of the volume of the confidence region on the regression coefficients”, thus the aim 

is to maximize |𝑴𝑴| by choice of design 𝜉𝜉 in order to improve estimation of model 

coefficients.   

A D-optimal design is one where |𝑴𝑴| is maximized. So the D-efficiency of a design 

𝜉𝜉∗ is defined as 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = (|𝑴𝑴(𝜉𝜉∗)|/ max
𝜉𝜉

|𝑴𝑴(𝜉𝜉)|)1/𝑚𝑚  from [68, Equation 9.12]. From [73, 

pp. 223], where D-efficiency is defined as 100∙|𝑿𝑿′𝑿𝑿|1/𝑚𝑚/𝑛𝑛, it is stated “you should use this 

measure rather as a relative indicator of efficiency, to compare other designs of the same 

size, and constructed from the same design points candidate list” as well as “this measure 
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can be interpreted as the relative number of runs (in percent) that would be required by an 

orthogonal design to achieve the same value of …” each respective alphabetical optimality. 

Note that Mitchell [74] states that this definition of D-efficiency can be interpreted as the 

“relative number of runs (expressed as percent) required by a (possibly nonexistent) 

orthogonal design to achieve the same |𝑿𝑿′𝑿𝑿|.” This same definition of D-efficiency that is 

used in many software “is only useful for comparing two designs that have the same scale 

or coding for the experimental factors as well as the same number of runs,” from [75, Sec. 

4.3.3]. However, for different design sizes, this depends on the D-criterion used. A D-

criterion should not already be scaled by the design size when design size is one of the 

multiple criteria for design comparison. Thus, the D-criterion |𝑿𝑿′𝑿𝑿|1/𝑚𝑚 that uses the 

unscaled moment matrix 𝑴𝑴 =  𝑿𝑿′𝑿𝑿, from [76, pp. 362], will be used when design size is 

also a criterion. 

A-Optimality aims to improve estimation of model coefficients, as with D-

Optimality, though covariances among coefficients are ignored, as only the diagonal 

elements of the moment matrix are used in its definition max
𝜉𝜉

𝑜𝑜𝑒𝑒[𝑴𝑴(𝜉𝜉)]−1, from [68, pp. 

472-473]. 

2.6.2 I-Efficiency and Use of Average Unscaled Prediction Variance 

With scaled prediction variance, or SPV, written as the function  

𝑖𝑖(𝑥𝑥) = 𝑛𝑛𝑥𝑥(𝑚𝑚)′(𝑿𝑿′𝑿𝑿)−1𝑥𝑥(𝑚𝑚), I-optimality is defined as min
𝜉𝜉

1
𝐾𝐾 ∫ 𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑅𝑅 = min

𝜉𝜉
𝐼𝐼(𝜉𝜉), 

where 𝑅𝑅 is the region of interest and 𝐾𝐾 =  ∫ 𝑑𝑑𝑥𝑥𝑅𝑅 . So I-optimal designs aim to minimize the 
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average SPV over a design region, where I-efficiency for design 𝜉𝜉∗  is defined as 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 =

min
𝜉𝜉
𝐼𝐼(𝜉𝜉) /𝐼𝐼(𝜉𝜉∗) [68, pp. 473]. 

The unscaled prediction variance, 𝑈𝑈𝑅𝑅𝑈𝑈 = 𝑥𝑥(𝑚𝑚)′(𝑿𝑿′𝑿𝑿)−1𝑥𝑥(𝑚𝑚), can be used instead 

of 𝑆𝑆𝑅𝑅𝑈𝑈 =  𝑖𝑖(𝑥𝑥)   =  𝑛𝑛 ∙ 𝑈𝑈𝑅𝑅𝑈𝑈, when design size 𝑛𝑛 is also a criterion under consideration in 

order to have measures that are as mutually exclusive as possible and accurately examine 

trade-offs. The average UPV can be used as a design criterion and is estimated for 

continuous regions.  

As stated in [68, pp. 407], UPV is an alternative measure to SPV when either design 

size 𝑛𝑛 is not important or the marginal cost of design size is not described accurately by 

the simple penalty of 𝑛𝑛. UPV is a good measure of prediction accuracy and is often used 

over SPV [77, pp. 672].  

The following arguments for use of UPV over SPV are summarized from the 

discussion papers from [77]. Parker states that in cases where a specified prediction quality 

is the focus, it is better to present the prediction variance in engineering units to a subject 

matter expert (SME) rather than an efficiency scaled by the number of design points [78]. 

Piepel gives several reasons for using UPV over SPV, in that different design sizes should 

always be examined and thus the trade-offs between UPV and experimental cost is better 

described when not tied to a single value, the trade-off is easier to make when a specific 

UPV property is desired, and graphical displays of UPV rather than SPV are easier to 

understand and present [59].  

Goos suggests the use of UPV and that neither SPV nor G-efficiency are practical 

measures for ranking different design options [79], stating:  
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“This precision is directly related to the size of the experiment: larger experiments 
often lead to smaller prediction variances and thus to a better predictive precision. 
By looking at unscaled prediction variances, the researcher can evaluate the 
increase in precision obtained from using a larger experiment. Thus, unscaled 
prediction variances provide an experimenter with much more useful information 
than scaled ones.” [79, pp. 658] 
 

Goos explains that smaller experimental designs are typically favored when using SPV for 

evaluation and comparison, since larger experimental designs are penalized. Additionally, 

SPV potentially masks the poor prediction accuracy of much smaller designs, and design 

size may not always be an accurate measure for cost, such as in split-plot experiments, 

where some factors are more difficult to change than others, as well as in experiments with 

significant preparation time when compared to the time required for actual experimental 

runs. Goos also notes that the use of SPV goes against the idea of not relying solely on 

single-number criterion, which is explored in [77] through the use of graphical displays of 

prediction variance information.  

In a rejoinder [80], it is stated that UPV gives the most direct way to examine the 

improvement in prediction variance as experimental cost increases, since the common 

choice of SPV makes a clear assumption regarding this relationship, though it is added that 

the choice to examine the true trade-off between UPV and 𝑛𝑛 is subjective.  In order to have 

a process of design comparison that is less case-specific, this research will emphasize the 

use of UPV as a measure of prediction accuracy with the knowledge that SPV can be used 

in later cases if desired. 
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2.6.3 G-Efficiency  

A G-optimal design minimizes the maximum 𝑖𝑖(𝑥𝑥) over region of interest 𝑅𝑅, so a 

G-optimal design 𝜉𝜉 is one that satisfies min
𝜉𝜉
�max
𝑥𝑥∈𝑅𝑅

𝑖𝑖(𝑥𝑥)� in order to protect against worst-

case prediction accuracy [68, pp. 470]. 

2.6.4 Model Misspecification, Lack of Fit Estimates, and Other Criteria 

When protection against model misspecification is important, 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) and 𝑜𝑜𝑒𝑒(𝑹𝑹’𝑹𝑹) 

can be minimized to protect from bias for coefficient and variance estimates, respectively 

[81, pp. 208]. Here, 𝑨𝑨 = (𝑿𝑿𝟏𝟏′ 𝑿𝑿𝟏𝟏)−1(𝑿𝑿𝟏𝟏′ 𝑿𝑿𝟐𝟐) is the alias matrix, and 𝑹𝑹 = 𝑿𝑿𝟏𝟏𝑨𝑨 −  𝑿𝑿𝟐𝟐, where 

𝑿𝑿𝟏𝟏 is the assumed linear model matrix and 𝑿𝑿𝟐𝟐 includes additional linear terms. Maximizing 

𝑜𝑜𝑒𝑒(𝑹𝑹’𝑹𝑹) to provide estimates for lack of fit is also possible, so it is important for SMEs and 

analysts to understand which criterion are important to their specific application. The 

number of replicates can be used as a measure for estimating pure error with more degrees 

of freedom, and the total number of design points 𝑛𝑛 often serves as a proxy measure for the 

experimental cost.  

For Chapters III and IV, emphasis will be placed on small design size 𝑛𝑛, good 

model parameter estimation (D-criterion using the unscaled moment matrix), and good 

prediction accuracy (average or maximum UPV). Though the minimization of absolute 

pairwise correlations increases D-efficiency for the NOAB design, the space-filling 

properties are said to allow for high-order meta-models of the resulting response surface(s) 

[1], so prediction accuracy and protection from biased coefficient estimates are also of 

interest.  Computation time for design construction will not be considered as a design 
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criteria in this research, due to the relatively small construction times when compared to 

simulation time of supported research efforts. 

2.7 Design Comparison and Evaluation 

2.7.1 Overview 

In [77], the authors discuss how to examine trade-offs of competing criteria for 

several candidate experimental designs, including the various alphabetic optimality 

criteria, graphical methods for examining design properties, design robustness to model 

misspecification, and special cases of design comparison, including split-plots, mixture 

experiments, robust parameter designs, and generalized linear model designs. Their focus 

though is on response surface designs, mostly dealing with fitting first or second-order 

polynomials, which is in contrast to the space-filling NOAB designs of interest for use in 

simulation meta-modeling. The authors state that design considerations for fitting first-

order models is easy when the experimental region is cuboidal or spherical, as first-order 

orthogonal designs possess many desirable characteristics, so there is more focus on 

designs for second-order models. It appears that the more complex mixed-factor design 

spaces with different numbers of levels are not considered in this assessment.  

As suggested in [68, pp. 370], there are 11 characteristics that a good response 

surface design should satisfy as appropriate to each study, to include providing a good 

model fit (1), allowing for sequential model construction (2), blocking (3), and lack of fit 

tests (4), being cost-effective (5) as well as robust to outliers (6) and errors in control of 

design levels (7), providing good model parameter estimates (8), an estimate of pure 

experimental error (9), and a good distribution for prediction variance over a design region 
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(10), and finally, checking on the homogeneous variance assumption (11). It is noted that 

not all of these items are necessary, nor of equal importance in all cases.  

Since I- and G-efficiency for integrated and maximum prediction variance, 

respectively, do not entirely capture the prediction variance properties for a design region 

of interest, graphical methods are suggested in [77].  Alternatives to using a single-number 

for comparison include the variance dispersion graph (VDG) and fraction of design space 

(FDS) plot. VDGs, developed by Giovannitti-Jensen and Myers, “plot the minimum, 

average, and maximum SPVs against distances from the overall center of the design space” 

[77, pp. 631], where multiple designs can be compared on the same plot. The FDS plot, 

developed by Zahran et al., displays the prediction variance by the fraction of design space 

with the prediction variance less than or equal to the current value.  The authors note that 

there are instances of comparing designs where the same G-efficiency is obtained, yet 

different SPV values occur over the design region when examining an FDS plot, and that 

the use of SPV in such plots is “relatively standard” to incorporate the cost of the 

experiment (for completely randomized designs). For model robustness, work has been 

done on assessing design properties for nested models, using subjective weighting as well 

as FDS plots. In particular, FDS plots help to examine the bias-variance trade-off where 

each nested model curve is below the largest model. An important measure for examining 

the trade-off between prediction variance with bias is the mean squared error criterion, and 

a reminder is given in the authors’ rejoinder that the type of model to protect against bias 

must be specified. From the discussion papers that follow [77], Khuri states that quantal 
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plots (QPs) of the prediction variance and the quantile dispersion graphs (QDGs) are also 

useful graphical tools.  

With multiple criteria for design selection discussed in the previous section, the ISR 

portfolio example from Table 4 will serve as an illustrative example for the concepts and 

use of desirability functions, Pareto frontier, and synthesized efficiencies for the design 

comparison and evaluation process. Graphical approaches are used for both direct results 

of Pareto set, desirability, and synthesized efficiencies as well as for complementary results 

when examining UPV with FDS plots. 

2.7.2 Desirability Functions 

The measures of various objectives should have the same scale in order to be 

comparable, so one-sided desirability functions [82] are used for each of the criteria, with 

target 𝑇𝑇 of lower and upper limits 𝐿𝐿 and 𝑈𝑈, respectively [68, pp. 341]: 

𝑑𝑑 =  �

0,                  𝑦𝑦 < 𝐿𝐿

�
𝑦𝑦 − 𝐿𝐿
𝑇𝑇 − 𝐿𝐿

�
𝑟𝑟

, 𝐿𝐿 ≤ 𝑦𝑦 ≤ 𝑇𝑇

1,                 𝑦𝑦 > 𝑇𝑇

 

 

𝑑𝑑 =  �

1,                  𝑦𝑦 < 𝑇𝑇

�
𝑈𝑈 − 𝑦𝑦
𝑈𝑈 − 𝑇𝑇

�
𝑟𝑟

, 𝑇𝑇 ≤ 𝑦𝑦 ≤ 𝑈𝑈

0,                 𝑦𝑦 > 𝑈𝑈

 

Two common approaches for forming an overall desirability function for 

𝑚𝑚 objectives are the additive function 𝐷𝐷 =  ∑ 𝑒𝑒𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚
𝑖𝑖=1  and the multiplicative function 𝐷𝐷 =

 ∏ 𝑑𝑑𝑖𝑖
𝑤𝑤𝑖𝑖𝑚𝑚

𝑖𝑖=1 , where ∑ 𝑒𝑒𝑖𝑖
𝑚𝑚
𝑖𝑖=1 = 1. The additive desirability function allows for high scores in 
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one objective to make up for low scores from other objectives, while the multiplicative 

desirability function ensures that no single score is too low. 

2.7.3 Pareto Front  

Suppose there are multiple objective functions 𝑖𝑖1, 𝑖𝑖2, … ,𝑖𝑖𝑚𝑚, where the goal is for 

each to be maximized. If designs 𝜉𝜉1 and 𝜉𝜉2 exist such that 𝑖𝑖𝑖𝑖(𝜉𝜉1) ≥  𝑖𝑖𝑖𝑖(𝜉𝜉2) for all 𝑖𝑖 =

1,2, … ,𝑚𝑚, yet there is at least one 𝑗𝑗 where (𝜉𝜉1) >  𝑖𝑖𝑖𝑖(𝜉𝜉2), then 𝜉𝜉1 is said to Pareto 

dominate 𝜉𝜉2. A Pareto set, or Pareto frontier, of designs is comprised of all designs 𝜉𝜉 not 

Pareto dominated by any other designs evaluated. Finding the Pareto front of experimental 

designs for a study potentially reduces the number of designs that require further evaluation 

and comparison, since the Pareto dominated designs would not perform as well for the 

measures of interest.  In this case, each objective function is a single desirability function 

in order to have comparable design performance measures.  

For the ISR example detailed in Table 4, five attempts are made to construct NOAB 

designs for each balance-feasible design size within suggested bounds of 33 and 110. Of 

the 298 NOAB designs found, there are 154 distinct designs with respect to the 

performance criteria, comprised of 74 designs in the Pareto set and 80 Pareto-dominated 

designs. The Pareto-dominated designs appear to perform similarly to the Pareto-set 

designs based on the scatter plots shown for the three measures of 𝑛𝑛, D-criterion, and 

average UPV (Figure 6). 
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Figure 6. Performance Measures for 154 NOAB Designs 

Let each individual desirability function be linear (i.e., 𝑒𝑒 = 1). The NOAB designs 

having the best overall desirability for both the additive and multiplicative functions are 

determined for each of 5,000 different weighting combinations, constructed using a space-

filling mixture design in JMP. Mixture plots are used to show the top performing design 

for various weighting combinations in the overall desirability function. Mixture plots for 

the additive desirability function (Figure 7) and the multiplicative desirability function 

(Figure 8) are shown, with a list of the top 10 performing designs based on estimated 

percentage of mixture area. The designs are labeled by design size and attempt number, so 

“110-5” would be the fifth attempt to construct a NOAB design of size 110.  
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Additive 𝐷𝐷 
Design % Area 
108-1 50.30% 
36-1 15.14% 
110-5 13.94% 
54-5 6.54% 
72-1 4.28% 
90-1 2.50% 
92-1 1.78% 
65-1 1.30% 
46-2 0.88% 
44-3 0.78% 

 
 

Figure 7. Best Designs for Weight Space with Additive Desirability  

Promising designs include the top three performers for additive desirability (108-1, 

36-1, 110-5) and the top five performers for multiplicative desirability (72-1, 90-1, 54-5, 

108-1, 103-1). There are 21 designs found to be the top performer for some weighted 

combination in the additive desirability function as well as 33 designs for the multiplicative 

desirability function, comprising 35 distinct designs in total. The trade-off plot in Figure 9 

shows the 35 top performing designs and their desirability score for each objective. As the 

design size 𝑛𝑛 increases (lower desirability), there is a general increase in D-criterion and 

decrease in average UPV (higher desirability for both), so there is an apparent trade-off 

between experimental cost and design quality.  
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Multiplicative 𝐷𝐷 
Design % Area 
72-1 16.62% 
90-1 12.44% 
54-5 10.28% 
108-1 8.86% 
103-1 8.30% 
92-1 7.68% 
86-1 7.14% 
97-1 5.92% 
65-4 2.38% 
65-1 2.30% 

 
 

Figure 8. Best Designs for Weight Space with Multiplicative Desirability  
 

 

Figure 9. Trade-offs of Top Performing Designs 
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2.7.4 Synthesized Efficiency 

Synthesized efficiency is defined as 

𝐷𝐷(𝜉𝜉,𝑒𝑒1, … ,𝑒𝑒𝑚𝑚)
max
𝜉𝜉∗

𝐷𝐷(𝜉𝜉∗,𝑒𝑒1, … ,𝑒𝑒𝑚𝑚) 

and can be used to examine how a single design 𝜉𝜉 compares to the top performing design 

for various weighting combinations (𝑒𝑒1, … ,𝑒𝑒𝑚𝑚) of overall desirability [68, pp. 330]. The 

seven designs of interest for the ISR example are examined further using mixture plots of 

synthesized efficiency for each design (Figure 10). From these mixture plots, it appears 

that designs 36-1 and 110-5 are poor designs as they allow individual desirability scores to 

become too low, as seen with the multiplicative desirability, and have regions for additive 

desirability where synthesized efficiency is also low. Designs 72-1 and 90-1 appear to be 

most promising due to high synthesized efficiency values for much of the additive and 

multiplicative mixture areas. 

2.7.5 Graphical Approaches  

Additionally, a fraction of weight space (FWS) plot is used to compare multiple 

designs of interest, displaying synthesized efficiency by the fraction of weighted 

combinations with efficiency above. Figure 11 shows an FWS plot for five designs of 

interest (now excluding 36-1 and 110-1) and the multiplicative desirability function. 

Design 72-1 appears to be the most promising design, since when the design is compared 

to design 90-1, the synthesized efficiency is higher for FWS of greater than approximately 

0.8 and only marginally lower near FWS of 0.5. 
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Additive Desirability 

 

Multiplicative Desirability  

 

 

Figure 10. Synthesized Efficiency of Designs over Weight Space 
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Figure 11. Fraction of Weight Space (FWS) Plot with Synthesized Efficiency Above 

Additional graphical methods can be used, specifically for the evaluation of UPV. 

To ensure that the UPV is low for a large fraction of the design space, a fraction of design 

space (FDS) plot (Figure 12) can be examined to show the fraction of design space at or 

below a specific UPV [80]. 

 
Figure 12. Fraction of Design Space (FDS) Plot for UPV 

Though design 90-1 sees consistently lower UPV in the FDS plot, design 72-1 

appears to be small enough in size to achieve a higher minimum synthesized efficiency 

over the entirety of the weight space, based on the mixture plots and FWS plot.  
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Upon calculating all UPV values for each design of interest and all 3,456 possible 

points in the ISR example design space to create the FDS plot, it is apparent that the JMP-

reported average UPV values are not consistent with those calculated using the full factorial 

design. From Table 7, the ratio of the two approaches for average UPV values are 

consistent, with the calculated values approximately 71% higher than on average than the 

average UPVs reported in JMP. Thus, it appears that the relative magnitudes for the JMP-

reported average UPVs are correct and the difference in average UPVs is possibly due to 

either JMP not recognizing the encoding of categorical factors with more than two levels 

or additional evaluations of UPV at intermediate points in an assumed continuous design 

space. 

Table 7. Average UPV Comparison 

Average UPV 36-1 54-5 72-1 90-1 103-1 108-1 110-1 
Actual 0.3056 0.2039 0.1528 0.1222 0.1069 0.1019 0.1001 
JMP 0.1787 0.1190 0.0894 0.0714 0.0623 0.0596 0.0585 

(Actual / JMP) 1.7098 1.7135 1.7098 1.7117 1.7145 1.7098 1.7103 
 

2.7.6 Discussion of Model Misspecification Criteria and Example 

The NOAB design approach assumes no knowledge of the resulting responses and 

is stated to be well suited for highly nonlinear response surfaces, so it is reasonable to 

examine model misspecification criteria for higher-order parametric models. For the ISR 

portfolio example, the design matrix 𝑿𝑿 has all first-order terms, while the alias matrix 𝑨𝑨 

accounts for all second-order terms (quadratic terms for quantitative factors with more than 

three levels and all two-way interactions). Of particular interest is the 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) criterion for 
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protection against biased coefficient estimates. The average UPVs as reported by JMP are 

also used here to provide consistency with the previous illustration of design comparison 

and evaluation. 

Of the 298 NOAB designs constructed, there are 246 distinct designs with respect 

to the four performance measures of interest (𝑛𝑛, D-efficiency, average UPV, and 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨)), 

comprised of 106 designs in the Pareto set and 140 Pareto dominated designs. Scatter plots 

for 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) and the three previous measures are provided in Figure 13, with the plots 

between other measures similar to Figure 6. This measure for protection against biased 

coefficient estimates appears to not have as direct of a relationship with the choice of 𝑛𝑛 for 

the NOAB design construction, also seen in the trade-off plot for the four criteria (Figure 

14). 

 

Figure 13. Design Performance of 246 NOAB designs (tr(𝑨𝑨′𝑨𝑨) Included) 

A 5,000-point mixture design was created in JMP for the four criteria. There are 32 

designs found to be the top performer for some weighted combination in the additive 

desirability function as well as 44 designs for the multiplicative desirability function, 
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totaling 48 distinct designs. The top ten performing designs are listed in Table 8, based on 

percentage of weighted combinations where a design has the greatest overall desirability. 

 

Figure 14. Design Performance Trade-offs (tr(𝑨𝑨′𝑨𝑨) Included) 

 

Table 8. Top Performing Designs (% of Weight Space) 

Additive 𝐷𝐷 

 

Multiplicative 𝐷𝐷 
Design % Mixture Design % Mixture 
105-2 58.78% 63-3 22.72% 
52-2 13.48% 105-2 20.72% 
108-1 7.70% 94-3 15.16% 
63-3 6.64% 85-2 9.42% 
110-4 5.16% 52-2 7.52% 
36-2 2.32% 76-3 4.92% 
40-4 2.06% 100-3 3.90% 
110-2 0.62% 76-4 3.08% 
85-2 0.60% 89-3 1.94% 
108-4 0.60% 97-3 1.00% 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Design

D
es

ira
bi

lit
y 

Sc
or

e

n D-criterion Average UPV tr(A'A)



49 

 

The top five performers for multiplicative desirability are promising (63-3, 105-2, 

94-3, 85-2, 52-2), which include the top two performers for additive desirability (105-2, 

52-2).  

 

Figure 15. Top Five Performing Designs in Weight Space (tr(𝑨𝑨′𝑨𝑨) Included) 

Figure 15 is a mixture plot showing the weighted combinations for the top five 

performing designs with respect to multiplicative desirability. The driving weight appears 

to be the design size (with each cluster of points representing 105-2, 94-3, 85-2, 63-3, 52-

2 from left to right in Figure 15). However, the weighting of 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨)  also appears be 

important as well, given that 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) appears to not have as strong of a pattern. It is clear 

that visualization for more than three criteria becomes more challenging to construct and 

describe to a decision maker. A visual that is easier to convey performance information 

with is the FWS plot for synthesized efficiency (Figure 16), which shows design 85-2 as 

the most promising due to the slower decrease in synthesized efficiency over a large 

fraction of the weight space. Though the additional criteria of 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) did change the 
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Pareto set of designs, it is clear that the trade-off between design quality and design size 

still exists to an extent (with designs having size near the guideline bounds not as robust as 

others to the weighting combinations). 

 

Figure 16. FWS Plot for Synthesized Efficiency (tr(𝑨𝑨′𝑨𝑨) Included) 

2.8 Meta-modeling  

With the first-order NOAB design construction method as implemented, the focus 

changes to meta-modeling for mixed factors. Different from traditional simulation 

optimization, the eventual aim is to perform trade-off analyses rather than simply find 

optimal, or sub-optimal, decisions. For global optimization of simulation, heuristics such 

as tabu search, evolutionary algorithms, and simulated annealing are commonly used. 

However, these methods are not as robust with respect to answering decision maker 

questions that focus on trade-offs over an entire decision space or even specific regions of 

a decision space, in particular when such questions can change over time. See [83] for an 
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overview of simulation optimization techniques. Potential meta-model constructions, 

partition trees, and other analytical and graphical methods will be explored in this research 

as appropriate. The following techniques are under initial consideration: 

• artificial neural network (ANN) 
• kriging (i.e., Gaussian process) 
• polynomial regression  
• multivariate adaptive regression splines (MARS) 
• classification and regression trees (CART) 
• radial basis function (RBF) 
• support vector regression (SVR) 
 
With the exception of CART, each of meta-models listed are used in [4]. JMP 12 

allows for ANN, CART, kriging, and polynomial regression. MATLAB has toolboxes for 

ANN and general optimization, functions for CART, polynomial regression, RBF, and 

SVR, and open-source options for kriging and MARS. R software and Python both have 

open-source library packages and scripts available for each of these modeling techniques. 

Though the NOAB design allows for the identification and elimination of 

insignificant factors without fear of losing information, some non-parametric meta-models 

may provide betters fits to simulation output, allowing for more accurate prediction and 

optimization, yet may not be as interpretable as polynomial regression.  

Artificial neural networks [84]–[86] are models that are known to capably represent 

highly nonlinear surfaces. Often comprised of three layers - input, hidden, and output - 

containing nodes that somewhat represent how neurons are connected in a biological 

nervous system. It is possible to increase the number of hidden layers and associated 

neurons in the network, and much work has been done in examining parameter tuning of 

neural networks, as noted in [4]. In [87], general guidelines are provided for developing 
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ANN meta-models for simulation, in addition to a case study for job shop sequencing 

simulation. 

 Kriging [88], also known as a Gaussian process model, is a non-parametric method 

of interpolation that assumes the data are modeled by a Gaussian process, with the model 

comprised of a global polynomial model, 𝑖𝑖(𝑥𝑥), and a Gaussian random process, 𝑍𝑍(𝑥𝑥), with 

zero mean and stationary covariance, as follows: 

𝑦𝑦(𝑥𝑥) = 𝑖𝑖(𝑥𝑥)𝛽𝛽 + 𝑍𝑍(𝑥𝑥) 

where the correlation function in the covariance is often defined as the Gaussian correlation 

function [4]. Kriging has been found to perform well for highly nonlinear surfaces when 

compared to other commonly used models. In [37], general references for kriging are listed 

for both deterministic [89]–[91] and stochastic simulations [92]–[95]. 

 Polynomial regression is a special case of linear regression [96], with polynomial 

terms up to some 𝑛𝑛th degree. As noted in [4], polynomial regression can be unstable for 

highly nonlinear surfaces [97].  

Multivariate adaptive regression splines [98] is a non-parametric regression 

technique that has been show to work well with high dimensional, nonlinear data. The 

model is a weighted sum of a set of basis functions 𝐵𝐵𝑖𝑖(𝑥𝑥), as follows:  

𝑖𝑖(𝑥𝑥) =  𝑐𝑐0 + ∑ 𝑐𝑐𝑖𝑖𝐵𝐵𝑖𝑖(𝑥𝑥)𝑚𝑚
𝑖𝑖=1   

where the basis functions are of three types: constant (i.e., the intercept term), a hinge 

function, and a product of hinge functions. A MARS model is constructed with basis 

functions using a forward and backward pass with generalized cross validation. 
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 A classification and regression tree, or CART [99], is a recursive partitioning 

technique that constructs a binary decision tree for potentially both qualitative and 

quantitative data. Much like polynomial regression, a simple CART model is easier to 

understand than the non-parametric models discussed, yet often does not provide as good 

of prediction accuracy. Improvements to the single CART model with respect to prediction 

include the use of bagging, boosting, and random forests [100].  

 The radial basis function [101] is a linear combination of radial functions, 𝜙𝜙(𝑥𝑥), 

that interpolates some data set {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, defined as follows: 

𝑖𝑖(𝑥𝑥) =  ∑ 𝑒𝑒𝑖𝑖𝜙𝜙(‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖)𝑛𝑛
𝑖𝑖=1   

where the coefficients 𝑒𝑒𝑖𝑖 are found using the least-squares method. Vehicle crash 

simulations are studied in [102], where RBF is shown to perform well for highly nonlinear 

data and the most common basis functions are presented, with 𝑒𝑒 =  ‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖ and 0 < 𝑐𝑐 ≤

1: 

• thin-plate spline: 𝜙𝜙(𝑒𝑒) = 𝑒𝑒2 log(𝑐𝑐𝑒𝑒2) 
• Gaussian: 𝜙𝜙(𝑒𝑒) = 𝑒𝑒−𝑐𝑐𝑟𝑟2 
• multiquadric: 𝜙𝜙(𝑒𝑒) = √𝑒𝑒2 + 𝑐𝑐2 
• inverse multiquadric: 𝜙𝜙(𝑒𝑒) = 1/(𝑒𝑒2 + 𝑐𝑐2) 
 

 Support vector regression [103], or SVR, is a model of the following form that aims 

to have 𝜀𝜀 precision from each of 𝑚𝑚 sample points while also aiming for flatness, resulting 

from a quadratic programming problem using Lagrangian theory: 

𝑖𝑖(𝑥𝑥) =  ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏𝑚𝑚
𝑖𝑖=1   

where 𝛼𝛼𝑖𝑖 and  𝛼𝛼𝑖𝑖∗ are dual variables, and 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) is the kernel function, with common 

choices being linear, polynomial, Gaussian, sigmoid, and inhomogeneous polynomial 
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[104]. In an examination of 26 approximated functions, SVR was found to outperform 

kriging, MARS, RBF, and RSM with respect to overall accuracy as well as robustness 

across different sample sets [104]. 

2.9 Multiple Response Optimization 

Once satisfactory models are obtained that approximate simulation outputs 

sufficiently, the overall value of the various portfolio options can be determined, dependent 

on decision maker questions and preferences. The use of desirability functions, a Pareto 

front, synthesized efficiency, and the various graphical approaches in design comparison 

and evaluation can be implemented, now with multiple simulation responses in place of 

design performance measures. Other simulation output mapping approaches can be 

considered in addition to desirability functions, such as value-focused thinking [58], 

lexicographic [105], or goal programming [106]. A survey of multi-objective optimization 

(MOO) methods is presented in [107]. 

2.10 The Algorithm Selection Problem and Meta-learning 

2.10.1 Summary of [6] 

Meta-learning was developed to understand learning algorithm performance for 

classification problems. In [6], Smith-Miles generalizes the developments in meta-learning 

from fields such as machine learning, artificial intelligence, computer science, statistics, 

and operations research, which are presented in a unified framework that considers the 

algorithm selection problem as a learning problem, generalizing tasks such as regression, 

time-series forecasting, sorting, constraint satisfaction, and optimization.  
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Researchers aim to understand algorithm performance for various problem types 

with the goal of learning which easy-to-obtain problem features are related to algorithm 

performance, with the abstraction of the algorithm selection problem provided in [108].  

The No Free Lunch (NFL) theorems of [109] present an understanding that no single 

algorithm will perform best for a large set of problem types. The machine learning 

community saw the algorithm selection problem as a learning problem and applied such 

algorithms to classification problems. Smith-Miles notes a separation in the literature from 

this initial research in machine learning, which potentially slowed the progress of using 

meta-learning concepts in a broader range of problems. There are four common meta-

learning prerequisites for the algorithm selection problem from the various fields: 1) a large 

number of diverse problem instances, 2) a large number of diverse algorithms, 3) measures 

of algorithm performance, and 4) problem instance features.  

Rice formalizes the algorithm selection problem where the abstract model, 

displayed in Figure 17, is comprised of the problem space 𝑅𝑅, feature space 𝐹𝐹, algorithm 

space 𝐴𝐴, and performance space 𝑌𝑌, with the algorithm selection problem stated as follows: 

“For a given problem instance 𝑥𝑥 ∈ 𝑅𝑅, with features 𝑖𝑖(𝑥𝑥) ∈ 𝐹𝐹, find the 
selection mapping 𝑆𝑆(𝑖𝑖(𝑥𝑥)) into algorithm space 𝐴𝐴, such that the selected 
algorithm 𝛼𝛼 ∈ 𝐴𝐴 maximizes the performance mapping 𝑦𝑦(𝛼𝛼(𝑥𝑥)) ∈ 𝑌𝑌.”  

[6, pp. 3] 
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Figure 17. Diagram of Rice's model [4], [6], [108] 

It is often difficult to capture the feature space 𝐹𝐹 of a problem, due to the inherent 

complexities of many problems, as well as the selection of a mapping function 𝑆𝑆, which is 

itself an algorithm selection problem as noted by Smith-Miles. The training and test 

instances are also important for determining the mapping function 𝑆𝑆.  The meta-learning 

process can lead to automated learning, the ranking of algorithms, algorithm combination, 

and self-adaptive algorithms. 

Smith-Miles proceeds to examine the history of meta-learning for classification 

problems using the framework set by Rice’s model. Foundational work in the machine 

learning community did not reference Rice’s work, though feature spaces were constructed 

using the size and concentration of the problem classes for classification problems, with 

extensions to rule-based learning algorithms, where nearest-neighbor classifiers, set 

covering rule learners, and decision trees were the algorithms used in 𝐴𝐴 as well as to learn 

the mapping 𝑆𝑆. Dynamic search also helped to develop rules to recognize algorithm 

performance and update algorithm selection accordingly. 

From 1991 to 1994, the European Strategic Program on Research in Information 

Technology (ESPRIT) project StatLog (Comparative Testing of Statistical and Logical 

Learning) assessed the performance of machine learning, statistical, and neural methods 
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on classification problems. The feature space 𝐹𝐹 was updated to include not only size of the 

data, but statistical measures and information theory measures as well. Algorithms used to 

learn the mapping 𝑆𝑆 initially included decision trees, and later regression. Researchers 

continued to use the StatLog meta-data, with a notable advancement being the idea of using 

simple algorithms that are more efficient than calculating some meta-features, leading to 

the concept of landmarking. 

A second ESPRIT project from 1998-2001 called METAL (A Meta-learning 

Assistant for Providing User Support in Machine Learning Mining) examined both 

classification and regression problems with goals of developing approaches for model 

selection and combination. Learning algorithms were updated to include neural networks, 

naïve Bayes and linear discriminant approaches, with performances measures of accuracy 

and time base on ten-fold cross-validation. K-nearest neighbor was used as an instance-

based learning to predict algorithm rankings. Other recent developments include the use of 

an unsupervised approach, with self-organizing feature maps used to cluster classification 

datasets to identify common features and examine performance of each cluster.  

Smith-Miles then discusses work in meta-learning for classification beyond 

algorithm selection, such as how to select optimal parameter settings (e.g., which kernel to 

use within support-vector machines (SVMs) for classification), which is argued to 

essentially be algorithm selection. A similar approach has been used for selecting the width 

of a radial basis function (RBF) kernel. In 2001, a framework is presented for using meta-

learning to optimize parameter selection [110]. 
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Smith-Miles then generalizes algorithm selection in other domains, to include 

regression, time-series forecasting, sorting algorithms, constraint programming, and 

optimization. Regression was examined in the METAL project. The suitability of meta-

learning for regression problems was examined using mostly StatLog features, algorithms 

of neural networks as well as linear and quadratic discriminant analysis, and error rate 

performance measured by mean absolute deviation, mean square error, normalized mean 

absolute deviation, and normalized error/residual mean square [111].  

Time-series forecasting work in the 1990’s did not appear to reference the work of 

StatLog or Rice, though were similar in structure, using various forecasting methods as 

potential algorithms and average standard error as the performance measure. A two-stage 

neural network approach was developed to determine which group of algorithms is most 

appropriate for the specific time-series, whereupon a second neural network selects which 

algorithm in the selected group will give the smallest forecasting error. Algorithm ranking, 

clustering, and unsupervised learning approaches were also developed as of 2006. Sorting 

algorithms have been examined with notable classifiers including naïve Bayes and a 

Bayesian network learner, in addition to the use of dynamic algorithm selection for 

recursive sorting algorithms. 

Constraint programming and artificial intelligence (AI) problems are also 

discussed, where the AI community in particular has focused on features associated with 

problem hardness as well as predicting and controlling problem computation time. Leyton-

Brown et al. notably examine a constrained optimization for a combinatorial auction 

problem using a single algorithm in CPLEX, and use up to second-order regression and 
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spline models as learners for the mapping 𝑆𝑆 [112]. Landmarking has also been used in 

constraint satisfaction problems, with simpler algorithm performances captured and used 

as problem features, in addition to dynamic algorithm selection. 

Smith-Miles explains the two broad approaches to solving constraint satisfaction 

problems: the exact approach that may be restricted by computational complexity and 

available memory, and the heuristic approach that aims to find near-optimal solutions 

quickly. Here the performance space 𝑌𝑌 can be defined by computation time or solution 

quality. Meta-heuristics such as simulated annealing, tabu search, ant colony optimization, 

and evolutionary algorithms have been the focus of the operations research community, in 

addition to exact branch-and-bound algorithms. Efforts to learn relationships between such 

algorithm performance and problem features are ongoing, with similarities to landmarking 

and dynamic algorithm selection approaches.  

Smith-Miles reiterates the generalized concepts of landmarking, dynamic algorithm 

selection, real-time analysis of algorithms, and algorithm design rather than selection. Any 

algorithm selection problem from various fields of study can be generalized when the four 

spaces of Rice’s model are available. Additionally, the author proposed a three-phase 

framework for automated algorithm selection where the first phase involves the generation 

of meta-data for some training set of problem instances, the second phase learns from the 

meta-data to develop the mapping from instance features to performance measures and 

provide rules or rankings for the available algorithms, and the third phase examines the 

results from a theoretical view and for algorithm refinement. Domains for extensions 

include financial trading, help-desk automation, data compression algorithms, 
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bioinformatics (sequence alignment, gene prediction, protein identification, and pattern 

matching), cryptography, clustering, and matrix inversion algorithms. 

In conclusion, the author generalizes algorithm selection problems from several 

different problem domains in order to show the common and distinct threads in research 

advancement as well as bridge the gap in vocabulary from the various literature.  

2.10.2 Update of [6] 

As an update to Smith-Miles’ survey of meta-learning and generalization of 

algorithm selection problems from other domains, the aim here is to provide references to 

advancements in classification, regression, time-series forecasting, constraint satisfaction, 

optimization, and meta- modeling problems as well as generalize applications of interest 

from other fields to the language of Rice’s model.   

Bischl et al. have created a standard format for algorithm selection problems in the 

artificial intelligence community as well as the ASlib (Algorithm Selection Library) 

repository for data sets from the literature [113]. An R package is also available that 

provides benchmark machine learning models with problem scenarios, including the 

propositional satisfiability problem (SAT), maximum satisfiability (MAXSAT), and 

constraint satisfaction problem (CSP), among others. In the ASlib paper, Bischl et al. 

examine feature subset selection as well as three approaches to algorithm selection: 

classification to predict to best performer, regression to predict each algorithm’s 

performance, and clustering to assign new instances to known problem instance clusters in 

the feature space with an associated algorithm.  
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Lemke et al. provide a survey on the new directions meta-learning has taken, including 

problems beyond algorithm selection/recommendation, and note that many of the 

frameworks or repositories regarding algorithm selection in particular, such as the METAL 

project, have not been maintained [114, pp. 122]. 

One could argue that the discussion of (meta-) model and parameter selection in the 

associated section in [6] could be combined with the discussion of regression problems or 

placed in a new section for meta-modeling. In line with Smith-Miles’ discussion of SVMs, 

Gomes et al. combine search algorithms (particle swarm optimization and tabu search) with 

meta-learning for parameter selection [115].  

Loterman and Mues use  meta-learning for “comprehensible” regression models, 

including ordinary least squares (OLS), multivariate adaptive regression splines (MARS), 

classification and regression trees (CART), linear trees (CART with OLS leaves), and 

spline trees (CART with MARS at the leaves) [116]. Acknowledging Rice’s framework, 

meta-features are binned by independent variable (size, dimensionality, and composition), 

dependent variable (symmetry and dispersion), and relationships (linear correlation, spline 

correlation, discriminatory power, and nonlinear correlation), with a performance measure 

of root mean square error (RMSE) for the validation set.  

Rossi et al. present a meta-learning based method for algorithm selection called 

MetaStream that maps statistical meta-features from historical and incoming data to six 

algorithms (random forest (RF), SVM, CART, projection pursuit regression (PPR), and 

MARS), or a combination of these algorithms, for regression, using standard parameter 

settings in R for these meta-models [117]. Performance is measured using normalized mean 
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square error (NMSE) and classification error rate, while meta-learners (i.e., mapping 

functions) include RF, k-nearest neighbor, and Naive Bayes (NB). 

Cui et al., also referencing Rice’s framework, create a meta-modeling 

recommendation system with the four components [4]: the problems space P is comprised 

of 44 benchmark functions, the algorithm space 𝐴𝐴 includes six meta-models (polynomial 

regression, kriging, SVR, RBF, MARS, and artificial neural networks), the performance 

space 𝑌𝑌 uses NRMSE (normalized root mean square error) for ranking with measures of 

Spearman’s rank correlation and hit ratio, and the feature space 𝐹𝐹 includes 15 meta-features 

describing the response values: 

• the mean, median, standard deviation and maximum of the gradient of response 
surface point,  

• mean, standard deviation, skewness, and kurtosis of response values,  
• 25%, 50%, and 75% quartile of response values,  
• outlier ratio,  
• ratio of local minima and maxima, and  
• averaged local biggest difference of response values. 

Two meta-learning algorithms (mapping functions) are used: the instance-based k-nearest 

neighbor ranking approach and the model-based ANN. Cui et al. also compare singular 

value decomposition, stepwise regression, and ReliefF for meta-feature selection. 

Wang et al. examine rule induction for selection of forecasting models using 

characteristics of univariate time series, including trend, seasonality, periodicity, serial 

correlation, skewness, kurtosis, non-linearity, self-similarity, and chaos [118]. The 

forecasting models examined include exponential smoothing (ES), auto-regressive 

integrated moving average (ARIMA), random walk (RW) and neural networks. Mapping 
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functions included self-organizing map clustering and characteristic-based meta decision 

trees (CMDT) using the C4.5 algorithm. 

Matijaš et al. use a multi-variate learning system for load forecasting where the 

problem space 𝑅𝑅 consists of 65 load forecasting tasks, the algorithm space 𝐴𝐴 is comprised 

of RW, autoregressive moving average, similar days, layer recurrent neural network, 

multilayer perceptron, v-SVR, and robust LS-SVM, the feature space 𝐹𝐹 introduces new 

meta-features to load forecasting, and the performance space 𝑌𝑌 uses mean absolute scaled 

error (MASE) for one year of testing cycles [119]. The mapping functions include SVM, 

CART, and Gaussian processes among several others.  

Kück et al. study forecasting model selection for different feature sets, including 

error-based features as landmarking and statistical tests [120]. The authors reference Rice’s 

and Smith-Miles’s definitions of the algorithm selection problem for the model selection 

problem, where the problem space 𝑅𝑅 is comprised of 111 time series from industry data, 

the feature space 𝐹𝐹 uses global characteristics of time series, statistical and complexity 

measures, and error-based meta-features, and the algorithm space 𝐴𝐴 are the four forecasting 

models of single, seasonal, seasonal-trended, and trended exponential smoothing. 

Additionally, the performance space 𝑌𝑌 is the averaged rolling-origin symmetric mean 

absolute percentage error (RO-sMAPE) on the hold out set of later time data. Neural 

network was used as a meta-learner (mapping function 𝑆𝑆), benchmarked by the use of 

aggregate model selection. 

Burke et al. provide a survey of the state of the art in hyper-heuristics, examining 

both heuristic selection and heuristic generation and discussing problems such as vehicle 
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routing, bin packing, educational timetabling, satisfiability, the traveling salesman 

problem, workforce scheduling, and production scheduling, in addition to constraint 

satisfaction [121]. Referencing Rice’s model, feature-based algorithm selection is 

developed for constrained continuous optimization among variants of differential 

evolution, particle swarm optimization, and evolution strategies [122]. 

Smith-Miles and Lopes provide a survey of combinatorial optimization problems 

to include assignment, traveling salesman, knapsack, bin-packing, graph, timetabling, and 

constraint satisfaction with a focus on problem features related to algorithm performance, 

where some features are independent of the problem to (fitness landscape and landmarking) 

and other features are problem specific [123]. A greater knowledge of these meta-features 

informs the meta-learning process for combinatorial optimization problems.  

Feurer et al. use meta-learning for the hyper-parameter search problem to initialize 

sequential model-based Bayesian optimization (SMBO) for global optimization of black-

box functions that are costly to evaluate [124]. Meta-features used are binned in five 

groups: principal component analysis (PCA), information theory, statistical, landmarking, 

and simple dataset features.  

Muñoz et al. survey algorithm selection for black-box continuous optimization 

problems, starting from Rice’s model, classifying various landscape analysis methods, and 

detailing the various algorithms and performance measures used [125]. Muñoz and Smith-

Miles examine the use of footprints in the problem space, the regions where an algorithm 

is expected to perform well, for continuous black-box optimization [126].   
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A meta-learning approach to gene expression data classification has been 

developed using statistical, information theory, and basic dataset meta-features with meta-

learners of nearest neighbor and SVM used to rank various algorithms [127]. Algorithm 

performance is measured by mean ranking accuracy (using Spearman’s rank correlation 

coefficient) as well as weighted rank correlation.  

Garcia et al. use meta-learning to predict performance of various noise filtering 

techniques for the identification of noisy data [128]. The performance of the filters is 

measured by the F-score, or F-measure (the harmonic mean of precision and recall, two 

measures common to pattern recognition and information retrieval systems). The mapping 

functions considered are k-nearest neighbor with Gaussian kernel, RF, and SVM. 

Romero et al. use meta-learning to recommend a subset of 19 classification 

algorithms, all rule-based or tree-based, for datasets from an open-source learning platform 

called Moodle [129]. Meta-features include statistical, complexity, and domain (source of 

the dataset, such as report, quiz, or forum) features.  Nearest-neighbor (1-NN) was used to 

recommend the classification algorithms, with a hold-one-out approach used to examine 

the performance of the various combinations of meta-features, measured by F-measure 

[129, pp. 4].  

Meta-learning has also been used for bankruptcy prediction [130] and detecting 

financial fraud [131]. Cui et al. apply their meta-learning recommendation system to short-

term building energy models [5]. 

Though progress has been made in connecting the various domains using meta-

learning for algorithm selection and other problems, there still appears to be duplication in 
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effort across these domains as well as a lack of awareness of the benefits of meta-learning 

in fields such as computer science and software development, as noted in [132]. 
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III. Second-order Extensions to Nearly Orthogonal-and-balanced (NOAB) Mixed-

factor Experimental Designs 

3.1 Abstract 

 When simulation studies involve many quantitative and qualitative factors with 

different numbers of choices for each, meta-models of simulation responses can benefit 

from the use of mixed-factor space-filling designs. The first-order nearly orthogonal-and-

balanced (NOAB) design is a popular approach in these situations. This research develops 

second-order extensions for an existing construction method of NOAB designs, estimating 

the pairwise correlations between possible first-order and second-order terms. These 

extensions permit additional linear constraints in the mixed-integer linear programming 

(MILP) formulations previously developed for first-order NOAB designs. A case study is 

presented for NOAB designs of different sizes and construction approaches. The second-

order MILP extensions show improvements in performance measures for parameter 

estimation and prediction variance for an assumed second-order model as well as for model 

misspecification with respect to second-order terms for an assumed first-order model. 

 Keywords: mixed-integer linear programming; pairwise correlation; categorical 

factor; model misspecification; meta-model  

3.2 Introduction 

 Simulations and studies of black-box systems can involve a large number of both 

quantitative and qualitative factors of interest, and exhaustively simulating decision spaces 

can become infeasible due to computational requirements associated with problem scope 
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and fidelity. An efficient experimental design that can accommodate these computational 

challenges is desired so that meta-models can be constructed to estimate the resulting 

simulation outputs for an entire decision space. If the experimental design is created with 

forethought, meta-models can help facilitate robust decision support processes by 

preventing the need for future costly simulation runs when new questions are asked by 

decision makers.  

 Nearly orthogonal-and-balanced (NOAB) mixed-factor designs from [1] have been 

shown to have good space-filling and parameter estimation properties for large decision 

spaces. Space-filling designs allow for the estimation of models of greater than linear order 

under conditions when the order of the true model being estimated is unknown. NOAB 

designs provide near orthogonality between factors to better examine them independently 

of each other as well as near balance so that the levels of each factor are represented nearly 

equally. A mixed-factor design has some combination of continuous, discrete, and 

categorical factors in addition to possibly different numbers of levels for factors. The first-

order NOAB design construction method from [1] aims to provide near orthogonality for 

linear order terms and uses a balance feasibility test to determine if a design size, 𝑛𝑛, can 

feasibly satisfy a specified maximum allowed imbalance, given design space properties. 

The method constructs design matrix columns for a single factor at a time, iterating until 

all factors are represented. The columns for the first factor can be randomly generated to 

satisfy (near) balance. The column structure of the remaining factors is then determined 

iteratively, one factor at a time, using one of three mixed-integer linear programming 

(MILP) problems based on factor type. The common objective of the sequence of MILPs 
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is to minimize the maximum absolute pairwise correlation between the factor columns 

currently under consideration and all previously constructed columns, while ensuring 

(near) balance with various linear constraints.  

 This paper introduces extensions to the original MILPs that allow for mixed-factor 

designs with near orthogonality between all first-order and second-order terms. Near 

orthogonality for second-order terms permits independent estimates of two-way 

interactions for both qualitative and quantitative factors as well as quadratic effects for 

quantitative factors. Consider a design space that represents a generic portfolio tradespace 

within a simulation study, where the factors can be both qualitative (which system to use) 

and quantitative (how many of a system to use). In addition to capturing the possible 

improvement associated with each individual system, these independent second-order 

estimates also identify any added benefit of using two different systems in combination as 

well as possible diminishing or increasing returns from increases in a system quantity.   

 Background material is next presented relating to the first-order NOAB, or NOAB 

resolution III, design construction method from [1], with design performance measures of 

interest also discussed. Then, the first-order MILP formulations are extended for the 

construction of second-order NOAB, or NOAB resolution V designs, with additional design 

approaches based on which pairs of first- and second-order terms are considered when 

minimizing the maximum absolute pairwise correlation for a design matrix. Four 

approaches are examined: 

• NOAB resolution III (NOAB-III) – minimizes correlation between all first-order 
terms, from [1]  
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• Quadratic only (NOAB-Q) – minimizes correlation between all first-order and 
quadratic terms 

• NOAB resolution IV (NOAB-IV) – ignores correlation between pairs of second-
order terms 

• NOAB resolution V (NOAB-V)  – minimizes correlation between all first- and 
second-order terms  
 

 The NOAB-Q design approach is used to examine possible improvements to design 

performance when selecting a small subset of second-order terms. The NOAB-IV designs 

are considered with the intention of constructing efficient screening designs that protect 

against bias from second-order terms. A case study is presented where NOAB designs are 

constructed using the four different approaches for various design sizes. 

3.3 Material and Methods 

 3.3.1 Experimental Designs 

 There are many standard designs [9]–[11] that do not simultaneously allow for 

mixed factors, a relatively low number of design points, and good parameter estimation, 

with strong space-filling properties. With respect to space-filling designs, improvements 

have been made to the Latin hypercube design, including the orthogonal Latin hypercube 

[31]–[33] as well as the nearly orthogonal Latin hypercube (NOLH) [34], [35]. However, 

these standard designs do not account for categorical factors, and the various techniques’ 

use of rounding of design point values from continuous to discrete does not guarantee near 

orthogonality. An example of this rounding for NOLH designs is provided in [12]. Second-

order NOLH designs have been created using a genetic algorithm approach for continuous 

factors [36]. The first-order NOAB mixed-factor designs presented in [1] perform well 

with respect to measures for good parameter estimation (D-efficiency), near orthogonality 
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(𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚), near balance (𝛿𝛿), and space-filling properties when compared to other designs, 

including orthogonal arrays, computer-generated optimal designs, and various space-filling 

designs (Latin hypercube, maximum entropy, sphere packing, and uniform).  

 3.3.2 First-order NOAB Designs: Notation and General Formulation 

 Inputs for the NOAB design construction method include: 

• number of design points (matrix rows) 𝑛𝑛, indexed by row 𝑒𝑒 = 1,  2, … ,  𝑛𝑛 
• maximum allowed absolute pairwise correlation 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  
• maximum allowed imbalance δ 
• factor types (continuous, discrete, or categorical) for each factor 𝑥𝑥 
• number of levels ℓ𝑥𝑥 for each factor 𝑥𝑥, indexed by level 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 

 Orthogonality permits independent factor effect estimates and, depending on the 

eventual meta-model used for each simulation response, clearer model interpretation. 

Perfect independence among columns is difficult to obtain in designs capable of estimating 

higher order models. Pairwise correlation for columns 𝒙𝒙 and 𝒚𝒚 is defined as 𝜌𝜌(𝒙𝒙,𝒚𝒚) =

1/((𝑛𝑛 − 1) 𝑒𝑒𝒙𝒙𝑒𝑒𝒚𝒚)∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(𝑦𝑦𝑟𝑟 − 𝒚𝒚�)𝑛𝑛
𝑟𝑟=1 , with column elements 𝑥𝑥𝑟𝑟 and 𝑦𝑦𝑟𝑟, means 𝒙𝒙� and 𝒚𝒚�, 

and standard deviations 𝑒𝑒𝒙𝒙 and 𝑒𝑒𝒚𝒚. Orthogonality can be measured by the maximum 

absolute correlation of all appropriate pairs of factor columns, denoted by 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 =

max
𝒙𝒙≠𝒚𝒚

|𝜌𝜌(𝒙𝒙,𝒚𝒚) |, where a design is considered orthogonal if 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 0, and nearly orthogonal 

if 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0.05. The imbalance for a factor 𝑥𝑥 is defined as 𝛿𝛿𝑥𝑥 = max
𝑖𝑖=1,…,ℓ𝑥𝑥

|(𝑒𝑒𝑖𝑖,𝑥𝑥 −

(𝑛𝑛/ℓ𝑥𝑥))/(𝑛𝑛/ℓ𝑥𝑥)|, where 𝑒𝑒𝑖𝑖,𝑥𝑥 is the number of times level 𝑖𝑖 occurs for factor 𝑥𝑥 [1]. A design 

is considered nearly balanced when the maximum imbalance, 𝛿𝛿 = max
𝑥𝑥

𝛿𝛿𝑥𝑥, is close to zero.  

 Table 9 provides a summary of notation used to describe the original first-order 

NOAB design construction approach as well as the second-order extensions derived in this 
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work, with matrices and vectors in bold. The factor type informs which of the three MILP 

formulations in the original method is used for column construction. A single column is 

created for both the continuous and discrete factor cases, while ℓ𝑥𝑥 − 1 columns are created 

for each categorical factor 𝑥𝑥 to account for {-1, 0, 1} effect coding. For simplicity in 

indexing, the three MILP formulations and second-order extensions are generalized to 

show a single factor column 𝒙𝒙. Continuous factor columns are permitted exactly 𝜆𝜆(𝒙𝒙) = 𝑛𝑛 

evenly spaced design point values, which ensures balance. For discrete factor columns, the 

number of possible values is equal to the number of desired levels, so 𝜆𝜆(𝒙𝒙) = ℓ𝑥𝑥. The {-1, 

0, 1} effect coding for categorical factors gives 𝜆𝜆(𝒙𝒙) = 3 possible values in each column. 

Table 9. Notation for Second-order NOAB Design Construction 

𝑗𝑗 number of previously constructed matrix columns, indexed by column 𝑐𝑐 =
1,  2,  … ,  𝑗𝑗 

𝑴𝑴 previously constructed 𝑛𝑛 × 𝑗𝑗 design matrix (represents only first-order terms in 
the original method and both first- and second-order terms for the full second-
order method) 

𝑚𝑚𝑟𝑟,𝑐𝑐 element of 𝑴𝑴 in row 𝑒𝑒 and column 𝑐𝑐 

𝒎𝒎∙,𝑐𝑐 column 𝑐𝑐 of 𝑴𝑴 

𝐶𝐶1 subset of column indices 1,  2,  … ,  𝑗𝑗 for 𝑴𝑴 that represent first-order terms 
only, indexed by 𝑐𝑐1 

𝒙𝒙 MILP decision variables (𝑛𝑛 × 1 factor column) 

𝑥𝑥𝑟𝑟 element of 𝒙𝒙 in row 𝑒𝑒 

𝒙𝒙0 initial randomly-generated MILP solution (𝑛𝑛 × 1 column) 

𝒛𝒛 centered MILP decision variable (𝑛𝑛 × 1 column), with 𝑧𝑧𝑟𝑟 = 𝑥𝑥𝑟𝑟 − 𝒙𝒙� = 𝑥𝑥𝑟𝑟 −
(1/𝑛𝑛)∑ 𝑥𝑥𝑘𝑘𝑛𝑛

𝑘𝑘=1  

𝜆𝜆(𝒙𝒙) number of encoded levels for column 𝒙𝒙, indexed by encoded level ℓ = 1, 2, 
…,𝜆𝜆(𝒙𝒙) 



73 

 

𝜋𝜋ℓ encoded level value (with �𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝜆𝜆(𝒙𝒙)� being all possible values for 
column 𝒙𝒙) 

𝜃𝜃𝑟𝑟,ℓ binary decision variable where 𝑥𝑥𝑟𝑟 = ∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1  and ∑ 𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 = 1 for row 

𝑒𝑒 and encoded level ℓ 

 In the original first-order method, each pairwise correlation between factor column 

𝒙𝒙 and the previously constructed columns in matrix 𝑴𝑴 representing only first-order terms 

(i.e., 𝒎𝒎∙,𝑐𝑐, 𝑐𝑐 = 1,  2,  … ,  𝑗𝑗) is estimated by  

𝜌𝜌∗(𝒙𝒙,𝒎𝒎∙,𝑐𝑐) = 𝜌𝜌(𝒙𝒙,𝒎𝒎∙,𝑐𝑐)𝑒𝑒𝒙𝒙 =  1/((𝑛𝑛 − 1) 𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)�𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1   

in order to have linear constraints for the MILP (Figure 18) when constructing each column 

𝒙𝒙. These estimates are considered accurate enough for the MILP, since changes to a nearly 

balanced 𝒙𝒙 will result in relatively small changes to 𝑒𝑒𝒙𝒙. The general MILP formulation for 

the first-order method is:  

Minimize   𝑖𝑖  
Subject to  (𝑖𝑖)  𝑖𝑖 ≥ 𝜌𝜌∗(𝒙𝒙,𝒎𝒎∙,𝑐𝑐)  𝑐𝑐 = 1,  2, … ,  𝑗𝑗 
  (𝑖𝑖𝑖𝑖)  𝑖𝑖 ≥ −𝜌𝜌∗(𝒙𝒙,𝒎𝒎∙,𝑐𝑐)  𝑐𝑐 = 1,  2, … ,  𝑗𝑗  
   𝒙𝒙 ∈ Ω  

Figure 18. General MILP Formulation for First-order Method 

 Constraints (𝑖𝑖) and (𝑖𝑖𝑖𝑖) ensure that the maximum absolute value of 𝜌𝜌�(𝒙𝒙,𝒎𝒎∙,𝑐𝑐) for 

all 𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 is minimized. For additional constraints that ensure 𝒙𝒙 is balance-

feasible, i.e., 𝒙𝒙 ∈ Ω, based on factor types of continuous, discrete, and categorical, see [1]. 

A general guideline for design size of first-order NOAB designs, which will inform the 

case study that follows, is 3𝐽𝐽 ≤ 𝑛𝑛 ≤ 10𝐽𝐽, where 𝐽𝐽 is the number of encoded columns that 

correspond to first-order terms [1].  
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 3.3.3 Design Performance Measures 

 For design performance measures, emphasis is placed on low experimental cost (as 

measured by design size, 𝑛𝑛) as well as on good model parameter estimation and prediction 

accuracy, while also accounting for model misspecification when appropriate. To 

distinguish among similar designs sizes, the average unscaled prediction variance (UPV = 

𝒙𝒙(𝑞𝑞)′(𝑿𝑿′𝑿𝑿)−1𝒙𝒙(𝑞𝑞) for design matrix 𝑿𝑿) over all possible design points 𝑞𝑞 is examined in 

place of the average scaled prediction variance (SPV = 𝑛𝑛 ∙ UPV) as discussed in [59], [77]–

[79]. UPV can also be examined in fraction of design space (FDS) plots to serve as a 

complementary look at UPV that does not rely solely on the single-valued, average UPV 

[77]. For good parameter estimation, the D-criterion |𝑿𝑿′𝑿𝑿|1/𝑚𝑚 for 𝑝𝑝 model parameters uses 

the unscaled moment matrix as in [76]. If 𝑿𝑿1 is the assumed linear model matrix and 𝑿𝑿2 

includes additional linear terms excluded from the defined model, then the alias matrix 

𝑨𝑨 = (𝑿𝑿1′ 𝑿𝑿1)−1(𝑿𝑿1′ 𝑿𝑿2) gives the degree of biasing of each linear model term in 𝑿𝑿1 due to 

each term in 𝑿𝑿2. A common model misspecification measure is 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) [133]. For this 

research, 𝑿𝑿2 contains all second-order terms, i.e., quadratic terms for continuous and 

discrete factors having more than two levels as well as two-way interactions. The aim is to 

minimize 𝑛𝑛, average UPV, and 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨), while also maximizing the D-criterion.  

3.4 Theory 

 To account for second-order terms with respect to near orthogonality, extensions to 

the MILP formulations from [1] in Figure 18 are made through additional (𝑖𝑖) and (𝑖𝑖𝑖𝑖) 

correlation constraints for five new cases of 𝑖𝑖, denoted by 𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖5. The Hadamard 
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(element-wise) product, denoted by the ∘ operator, is used to account for second-order 

terms in column (vector) form. In the first-order method, only correlations between current 

column 𝒙𝒙 and the columns in 𝑴𝑴 are considered, where 𝑴𝑴 contains only columns associated 

with first-order terms. The second-order method requires matrix 𝑴𝑴 to now include columns 

for the desired two-way interactions and quadratics associated with the previously 

constructed first-order columns. Additionally, first-order columns for quantitative factors 

should be centered to have low correlation between pairs of first-order and second-order 

terms, so the extended formulation needs to account for the centered column 𝒛𝒛, two-way 

interactions with all previous first-order columns (𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 , 𝑐𝑐1 ∈  𝐶𝐶1), and the quadratic 

column (𝒛𝒛 ∘ 𝒛𝒛). This results in the five new cases for pairwise correlations between: 

1. two-way interaction columns 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 , 𝑐𝑐1 ∈  𝐶𝐶1 and columns 𝒎𝒎∙,𝑐𝑐, 𝑐𝑐 =
1,  2,  … ,  𝑗𝑗  

2. quadratic column 𝒛𝒛 ∘ 𝒛𝒛 and columns 𝒎𝒎∙,𝑐𝑐, 𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 
3. first-order column 𝒛𝒛 and two-way interaction columns 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 , 𝑐𝑐1 ∈  𝐶𝐶1 
4. first-order column 𝒛𝒛 and quadratic column 𝒛𝒛 ∘ 𝒛𝒛 
5. quadratic column 𝒛𝒛 ∘ 𝒛𝒛 and two-way interaction columns 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 , 𝑐𝑐1 ∈  𝐶𝐶1 

 Correlation estimates for these five extensions are derived so that they are linear 

with respect to 𝑥𝑥𝑟𝑟 and 𝜃𝜃𝑟𝑟,ℓ  decision variables, which permits the mathematical 

programming formulations to remain linear. An additional extension for correlations 

between two-way interaction columns 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 , 𝑐𝑐1 ∈  𝐶𝐶1 and 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐2 , 𝑐𝑐2 ∈  𝐶𝐶1 such that 

𝑐𝑐1 ≠ 𝑐𝑐2 is not required, since low absolute correlations for terms from the five extensions 

consistently results in low absolute correlations between the associated interaction terms. 

The quadratic terms for categorical factor columns are not of interest, so the second-order 

formulation for categorical factors requires only extensions 1 and 3, using 𝒙𝒙 rather than 
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centered 𝒛𝒛 to preserve effect coding. The general MILP formulation from the original 

method is updated in Figure 19 to show the five (centered) extensions, where the set of 

balance-feasible decision variables 𝒙𝒙 ∈ Ω are defined as in the original first-order method 

based on factor type.  

 Minimize    𝑖𝑖 + 𝑖𝑖1 +  𝑖𝑖2 + 𝑖𝑖3 + 𝑖𝑖4 + 𝑖𝑖5. 
 Subject to  

  (𝑖𝑖)    𝑖𝑖 ≥ 𝜌𝜌�(𝒙𝒙,𝒎𝒎∙,𝑐𝑐)  𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 
 (𝑖𝑖𝑖𝑖)    𝑖𝑖 ≥ −𝜌𝜌�(𝒙𝒙,𝒎𝒎∙,𝑐𝑐)  𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 

  (𝑖𝑖-1)  𝑖𝑖1 ≥ 𝜌𝜌�(𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐) 𝑐𝑐1 ∈  𝐶𝐶1; 𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 
  (𝑖𝑖𝑖𝑖-1)  𝑖𝑖1 ≥ −𝜌𝜌�(𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐) 𝑐𝑐1 ∈  𝐶𝐶1; 𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 

 (𝑖𝑖-2)  𝑖𝑖2 ≥ 𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛,𝒎𝒎∙,𝑐𝑐)  𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 
  (𝑖𝑖𝑖𝑖-2)  𝑖𝑖2 ≥ −𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛,𝒎𝒎∙,𝑐𝑐)  𝑐𝑐 = 1,  2,  … ,  𝑗𝑗 

  (𝑖𝑖-3)  𝑖𝑖3 ≥ 𝜌𝜌�(𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1)  𝑐𝑐1 ∈  𝐶𝐶1  
  (𝑖𝑖𝑖𝑖-3)  𝑖𝑖3 ≥ −𝜌𝜌�(𝒛𝒛, 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1)  𝑐𝑐1 ∈  𝐶𝐶1  

  (𝑖𝑖-4)  𝑖𝑖4 ≥ 𝜌𝜌�(𝒛𝒛,𝒛𝒛 ∘ 𝒛𝒛) 
  (𝑖𝑖𝑖𝑖-4)  𝑖𝑖4 ≥ −𝜌𝜌�(𝒛𝒛, 𝒛𝒛 ∘ 𝒛𝒛) 

  (𝑖𝑖-5)  𝑖𝑖5 ≥ 𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈  𝐶𝐶1  
  (𝑖𝑖𝑖𝑖-5)  𝑖𝑖5 ≥ −𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛, 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈  𝐶𝐶1  
  where    𝒛𝒛 = 𝒙𝒙 − 𝒙𝒙�,    𝒙𝒙 ∈ Ω 

Figure 19. General MILP Formulation with (Centered) Extensions 1 through 5 

 The pairwise correlation from the original method is now estimated by  

𝜌𝜌��𝒙𝒙,𝒎𝒎∙,𝑐𝑐� =  1/((𝑛𝑛 − 1) 𝑒𝑒𝒙𝒙𝟎𝟎𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)�𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐������𝑛𝑛
𝑟𝑟=1 . The linearity of these 

correlation estimates with respect to the decision variables is, in part, made possible by the 

use of a randomly-generated (nearly) balanced initial solution 𝒙𝒙0, rather than decision 

variables 𝒙𝒙, to estimate various means and standard deviations. The derivations also use 

the two propositions that follow. 
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Proposition 1. An important property used to simplify the correlation estimates for second-

order terms is that for any constant 𝑘𝑘 (with respect to 𝑒𝑒) and for any column 𝒙𝒙, 

∑ 𝑘𝑘(𝑥𝑥𝑟𝑟 − 𝒙𝒙�) 𝑛𝑛
𝑟𝑟=1 = 0. 

Proof: By definition, 𝒙𝒙� = (1/𝑛𝑛)∑ 𝑥𝑥𝑟𝑟𝑛𝑛
𝑟𝑟=1 , so ∑ 𝒙𝒙�𝑛𝑛

𝑟𝑟=1 = 𝑛𝑛𝒙𝒙� = ∑ 𝑥𝑥𝑟𝑟𝑛𝑛
𝑟𝑟=1 .  

Thus, ∑ 𝑘𝑘(𝑥𝑥𝑟𝑟 − 𝒙𝒙�) 𝑛𝑛
𝑟𝑟=1 =  𝑘𝑘 ∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)𝑛𝑛

𝑟𝑟=1 = 𝑘𝑘(∑ 𝑥𝑥𝑟𝑟𝑛𝑛
𝑟𝑟=1 − ∑ 𝒙𝒙�𝑛𝑛

𝑟𝑟=1 ) = 𝑘𝑘(0) = 0. ∎ 

Proposition 2. This property concerns the binary representation, 𝑥𝑥𝑟𝑟 = ∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 , where 

∑ 𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 = 1 and 𝜃𝜃𝑟𝑟,ℓ ∈ {0,1}. For any 𝑝𝑝 ∈ ℕ, the following holds: 𝑥𝑥𝑟𝑟

𝑚𝑚 =

(∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 )𝑚𝑚=∑ 𝜋𝜋ℓ

𝑚𝑚𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 .  

Proof: Fix row 𝑒𝑒. By induction, the 𝑝𝑝 = 1 case is true by definition.  

Suppose 𝑥𝑥𝑟𝑟
𝑚𝑚 = ∑ 𝜋𝜋ℓ

𝑚𝑚𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 . Since ∑ 𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 = 1 and 𝜃𝜃𝑟𝑟,ℓ ∈ {0,1}, it is necessary that 

𝜃𝜃𝑟𝑟,ℓ = 1 for exactly one ℓ ∈ {1,2, … , 𝜆𝜆(𝒙𝒙)}.  

Thus, 𝑥𝑥𝑟𝑟
𝑚𝑚+1 =  𝑥𝑥𝑟𝑟

𝑚𝑚(𝑥𝑥𝑟𝑟) = (∑ 𝜋𝜋ℓ
𝑚𝑚𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 )(∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 ) 

= ∑ ∑ (𝜋𝜋ℓ1
𝑚𝑚 𝜃𝜃𝑟𝑟,ℓ1)(𝜋𝜋ℓ2𝜃𝜃𝑟𝑟,ℓ2)𝜆𝜆(𝒙𝒙)

ℓ2=1
𝜆𝜆(𝒙𝒙)
ℓ1=1   

=  ∑ (𝜋𝜋ℓ1
𝑚𝑚 𝜃𝜃𝑟𝑟,ℓ1)(𝜋𝜋ℓ2𝜃𝜃𝑟𝑟,ℓ2) + ∑ (𝜋𝜋ℓ1

𝑚𝑚 𝜃𝜃𝑟𝑟,ℓ1)(𝜋𝜋ℓ2𝜃𝜃𝑟𝑟,ℓ2)𝜆𝜆(𝒙𝒙)
ℓ1=1,ℓ2=ℓ1

𝜆𝜆(𝒙𝒙)
ℓ1=1,ℓ2≠ℓ1     

= 0 + ∑ (𝜋𝜋ℓ1
𝑚𝑚 𝜃𝜃𝑟𝑟,ℓ1)(𝜋𝜋ℓ2𝜃𝜃𝑟𝑟,ℓ2) 𝜆𝜆(𝒙𝒙)

ℓ1=1,ℓ1=ℓ2   

= ∑ 𝜋𝜋ℓ
𝑚𝑚+1𝜃𝜃𝑟𝑟,ℓ

2𝜆𝜆(𝒙𝒙)
ℓ=1   

= ∑ 𝜋𝜋ℓ
𝑚𝑚+1𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 . ∎ 

The second-order MILP extensions are now derived, including the non-centered versions 

of extensions 1 and 3 for categorical factors.  

Extension 1. Correlation estimates between interactions 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1and previous columns 

𝒎𝒎∙,𝑐𝑐, for all 𝑐𝑐1 ∈  𝐶𝐶1 and 𝑐𝑐 = 1,  2, … , 𝑗𝑗:  

𝜌𝜌��𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐� = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎⋅,𝑐𝑐�����)(𝑥𝑥𝑟𝑟 − 𝒙𝒙�)𝑛𝑛

𝑟𝑟=1 . 
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Derivation: From the definition of pairwise correlation and using centered initial solution 

𝒛𝒛0 = 𝒙𝒙0 − 𝒙𝒙0��� to estimate the standard deviation of the interaction terms,    

𝜌𝜌(𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐)(𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
𝑒𝑒𝒎𝒎∙,𝑐𝑐 ≈  ∑ (𝑧𝑧𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1 − 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1����������)(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛

𝑟𝑟=1   

= ∑ (𝑧𝑧𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1)(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1  by proposition 1 for constant −𝒛𝒛 ∘𝒎𝒎∙,𝑐𝑐1���������� with respect to 𝑒𝑒 

= ∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1  for centered 𝒛𝒛.  

 

Extension 1 (non-centered). Similarly, correlation estimates between interactions 

𝒙𝒙 ∘ 𝒎𝒎∙,𝑐𝑐1and previous columns 𝒎𝒎∙,𝑐𝑐, for all 𝑐𝑐1 ∈  𝐶𝐶1 and 𝑐𝑐 = 1,  2, … , 𝑗𝑗:  

𝜌𝜌��𝒙𝒙 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐� = 1/((𝑛𝑛 − 1)𝑒𝑒𝒙𝒙0∘𝒎𝒎∙,𝑐𝑐1
𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎⋅,𝑐𝑐�����)𝑥𝑥𝑟𝑟𝑛𝑛

𝑟𝑟=1 . 

Extension 2. Correlation estimates between quadratic term 𝒛𝒛 ∘ 𝒛𝒛 and previous columns 

𝒎𝒎∙,𝑐𝑐, for all 𝑐𝑐 = 1,  2, … , 𝑗𝑗: 

𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛,𝒎𝒎∙,𝑐𝑐) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒛𝒛0𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ (𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)(∑ (𝜋𝜋ℓ2−2𝒙𝒙0���𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 )𝑛𝑛

𝑟𝑟=1 . 

Derivation: By definition and using 𝒛𝒛0 to estimate the standard deviation of the quadratic 

term, 𝜌𝜌(𝒛𝒛 ∘ 𝒛𝒛,𝒎𝒎∙,𝑐𝑐)(𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒛𝒛0𝑒𝑒𝒎𝒎∙,𝑐𝑐 ≈  ∑ (𝑧𝑧𝑟𝑟2 − 𝒛𝒛 ∘ 𝒛𝒛������)(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1   

= ∑ 𝑧𝑧𝑟𝑟2(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1  by proposition 1 for constant −𝒛𝒛 ∘ 𝒛𝒛������ with respect to 𝑒𝑒  

= ∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)2(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1  for centered 𝒛𝒛 

= ∑ (𝑥𝑥𝑟𝑟2 − 2𝒙𝒙�𝑥𝑥𝑟𝑟 + 𝒙𝒙�2)(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1   

= ∑ (𝑥𝑥𝑟𝑟2 − 2𝒙𝒙�𝑥𝑥𝑟𝑟)(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1  by proposition 1 for constant 𝒙𝒙�2 with respect to  𝑒𝑒 

= ∑ (∑ 𝜋𝜋ℓ2𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 2𝒙𝒙�∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 )(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛

𝑟𝑟=1  by proposition 2 (binary 

representation) 

= ∑ (∑ (𝜋𝜋ℓ2
𝜆𝜆(𝒙𝒙)
ℓ=1 −2𝒙𝒙�𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ)(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛

𝑟𝑟=1   

≈ ∑ (∑ (𝜋𝜋ℓ2−2𝒙𝒙0���𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 )(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛

𝑟𝑟=1  by estimation of 𝒙𝒙� with 𝒙𝒙0���. 
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Extension 3. Correlation estimates between 𝒛𝒛 and interactions 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1, for all 𝑐𝑐1 ∈ 𝐶𝐶1: 

𝜌𝜌�(𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ2−2𝒙𝒙0���𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ +𝜆𝜆(𝒙𝒙)

ℓ=1 𝒙𝒙0���2)𝑛𝑛
𝑟𝑟=1 . 

Derivation: By definition and using 𝒛𝒛0 to estimate the standard deviations, 

 𝜌𝜌(𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1)(𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
≈  ∑ (𝑧𝑧𝑟𝑟 − 𝒛𝒛�)(𝑧𝑧𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1 − 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1����������)𝑛𝑛

𝑟𝑟=1  

 = ∑ (𝑧𝑧𝑟𝑟 − 𝒛𝒛�)𝑧𝑧𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1
𝑛𝑛
𝑟𝑟=1  by proposition 1 for constant −𝒛𝒛 ∘𝒎𝒎∙,𝑐𝑐1���������� with respect to 𝑒𝑒 

= ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑥𝑥𝑟𝑟 − 𝒙𝒙�)2𝑛𝑛
𝑟𝑟=1  for centered 𝒛𝒛 where 𝒛𝒛� = 0 

= ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑥𝑥𝑟𝑟2 − 2𝒙𝒙�𝑥𝑥𝑟𝑟 + 𝒙𝒙�2)𝑛𝑛
𝑟𝑟=1   

= ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ 𝜋𝜋ℓ2𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 2𝒙𝒙�∑ (𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ)𝜆𝜆(𝒙𝒙)

ℓ=1 + 𝒙𝒙�2)𝑛𝑛
𝑟𝑟=1  by proposition 2  

≈ ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ2−2𝒙𝒙0���𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ +𝜆𝜆(𝒙𝒙)
ℓ=1 𝒙𝒙0���2)𝑛𝑛

𝑟𝑟=1  by estimation of 𝒙𝒙� with 𝒙𝒙0���. 

Extension 3 (non-centered). Similarly, correlation estimates between 𝒙𝒙 and interactions 

𝒙𝒙 ∘ 𝒎𝒎∙,𝑐𝑐1, for all 𝑐𝑐1 ∈ 𝐶𝐶1:  

𝜌𝜌�(𝒙𝒙,𝒙𝒙 ∘ 𝒎𝒎∙,𝑐𝑐1) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒙𝒙0𝑒𝑒𝒙𝒙0∘𝒎𝒎∙,𝑐𝑐1
)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ2−𝒙𝒙0���𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 )𝑛𝑛

𝑟𝑟=1 . 

Derivation: By definition and using 𝒙𝒙0 to estimate the standard deviations, 

𝜌𝜌(𝒙𝒙,𝒙𝒙 ∘ 𝒎𝒎∙,𝑐𝑐1)(𝑛𝑛 − 1)𝑒𝑒𝒙𝒙0𝑒𝑒𝒙𝒙0∘𝒎𝒎∙,𝑐𝑐1
≈ ∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(𝑥𝑥𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1 − 𝒙𝒙 ∘ 𝒎𝒎∙,𝑐𝑐1�����������)𝑛𝑛

𝑟𝑟=1   

= ∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)𝑥𝑥𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1
𝑛𝑛
𝑟𝑟=1  by proposition 1 for constant −𝒙𝒙 ∘𝒎𝒎∙,𝑐𝑐1����������� with respect to 𝑒𝑒 

= ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑥𝑥𝑟𝑟2 − 𝒙𝒙�𝑥𝑥𝑟𝑟)𝑛𝑛
𝑟𝑟=1   

= ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ 𝜋𝜋ℓ2𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 𝒙𝒙�∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ

𝜆𝜆(𝒙𝒙)
ℓ=1 )𝑛𝑛

𝑟𝑟=1  by proposition 2 

≈ ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ2 − 𝒙𝒙0���𝜋𝜋ℓ)𝜆𝜆(𝒙𝒙)
ℓ=1 𝜃𝜃𝑟𝑟,ℓ)𝑛𝑛

𝑟𝑟=1  by estimation of 𝒙𝒙� with 𝒙𝒙0���. 

Extension 4. Correlation estimates between 𝒛𝒛 and quadratic 𝒛𝒛 ∘ 𝒛𝒛: 

𝜌𝜌�(𝒛𝒛,𝒛𝒛 ∘ 𝒛𝒛) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒛𝒛0)∑ (∑ (𝜋𝜋ℓ3 − 3𝜋𝜋ℓ2𝒙𝒙0��� + 3𝒙𝒙0���2𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 𝒙𝒙0���3)𝑛𝑛

𝑟𝑟=1 . 

Derivation: By definition and using 𝒛𝒛0 to estimate the standard deviations,   

𝜌𝜌(𝒛𝒛,𝒛𝒛 ∘ 𝒛𝒛)(𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒛𝒛0 ≈  ∑ (𝑧𝑧𝑟𝑟 − 𝒛𝒛�)(𝑧𝑧𝑟𝑟2 − 𝒛𝒛 ∘ 𝒛𝒛������)𝑛𝑛
𝑟𝑟=1   
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 =  ∑ (𝑧𝑧𝑟𝑟 − 𝒛𝒛�)𝑧𝑧𝑟𝑟2𝑛𝑛
𝑟𝑟=1  by proposition 1 for constant −𝒛𝒛 ∘ 𝒛𝒛������ with respect to 𝑒𝑒 

=  ∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)3𝑛𝑛
𝑟𝑟=1  for centered 𝒛𝒛 where 𝒛𝒛� = 0 

=  ∑ (𝑥𝑥𝑟𝑟3 − 3𝒙𝒙�𝑥𝑥𝑟𝑟2 + 3𝒙𝒙�2𝑥𝑥𝑟𝑟 − 𝒙𝒙�3)𝑛𝑛
𝑟𝑟=1   

=  ∑ (∑ (𝜋𝜋ℓ3 − 3𝒙𝒙�𝜋𝜋ℓ2 + 3𝒙𝒙�2𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 𝒙𝒙�3)𝑛𝑛

𝑟𝑟=1  by proposition 2  

≈ ∑ (∑ (𝜋𝜋ℓ3 − 3𝒙𝒙0���𝜋𝜋ℓ2 + 3𝒙𝒙0���2𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 𝒙𝒙0���3)𝑛𝑛

𝑟𝑟=1  by estimation of 𝒙𝒙� with 𝒙𝒙0���. 

Extension 5. Correlation estimates between quadratic 𝒛𝒛 ∘ 𝒛𝒛 and interactions 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1, for 

all 𝑐𝑐1 ∈ 𝐶𝐶1: 

𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) = 1 ((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
� ) 

∙ ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐(∑ (𝜋𝜋ℓ3−3𝒙𝒙0���𝜋𝜋ℓ2 + �4𝒙𝒙0���2 − 𝒙𝒙0 ∘ 𝒙𝒙0����������𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 2𝒙𝒙0���3 + 𝒙𝒙0��� 𝒙𝒙0 ∘ 𝒙𝒙0���������)𝑛𝑛

𝑟𝑟=1   

Derivation: By definition and using 𝒛𝒛0 to estimate the standard deviations,  

𝜌𝜌(𝒛𝒛 ∘ 𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) (𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
≈  ∑ (𝑧𝑧𝑟𝑟2 − 𝒛𝒛 ∘ 𝒛𝒛������)(𝑧𝑧𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1 − 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1����������)𝑛𝑛

𝑟𝑟=1   

=  ∑ (𝑧𝑧𝑟𝑟2 − 𝒛𝒛 ∘ 𝒛𝒛������)𝑧𝑧𝑟𝑟𝑚𝑚𝑟𝑟,𝑐𝑐1
𝑛𝑛
𝑟𝑟=1  by proposition 1 for constant −𝒛𝒛 ∘𝒎𝒎∙,𝑐𝑐1���������� with respect to 𝑒𝑒 

=  ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1((𝑥𝑥𝑟𝑟 − 𝒙𝒙�)3 −  (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(1/𝑛𝑛)∑ (𝑥𝑥𝑘𝑘 − 𝒙𝒙�)2𝑛𝑛
𝑘𝑘=1 )𝑛𝑛

𝑟𝑟=1  for centered 𝒛𝒛 

 =  ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1((𝑥𝑥𝑟𝑟3 − 3𝒙𝒙�𝑥𝑥𝑟𝑟2 + 3𝒙𝒙�2𝑥𝑥𝑟𝑟 − 𝒙𝒙�3) −  (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(1/𝑛𝑛)∑ (𝑥𝑥𝑘𝑘2 − 2𝒙𝒙�𝑥𝑥𝑘𝑘 + 𝒙𝒙�2)𝑛𝑛
𝑘𝑘=1 )𝑛𝑛

𝑟𝑟=1   

=  ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1((𝑥𝑥𝑟𝑟3 − 3𝒙𝒙�𝑥𝑥𝑟𝑟2 + 3𝒙𝒙�2𝑥𝑥𝑟𝑟 − 𝒙𝒙�3) − (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(𝒙𝒙 ∘ 𝒙𝒙������ − 𝒙𝒙�2))𝑛𝑛
𝑟𝑟=1    

 = ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑥𝑥𝑟𝑟3 − 3𝒙𝒙�𝑥𝑥𝑟𝑟2 + (4𝒙𝒙�2 − 𝒙𝒙 ∘ 𝒙𝒙������)𝑥𝑥𝑟𝑟 − 2𝒙𝒙�3 + 𝒙𝒙� 𝒙𝒙 ∘ 𝒙𝒙������)𝑛𝑛
𝑟𝑟=1  

=  ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ3−3𝒙𝒙�𝜋𝜋ℓ2 + (4𝒙𝒙�2 − 𝒙𝒙 ∘ 𝒙𝒙������)𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 2𝒙𝒙�3 + 𝒙𝒙� 𝒙𝒙 ∘ 𝒙𝒙������)𝑛𝑛

𝑟𝑟=1  by proposition 

2  

 ≈ ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ3−3𝒙𝒙0���𝜋𝜋ℓ2 + (4𝒙𝒙0���2 − 𝒙𝒙0 ∘ 𝒙𝒙0���������)𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 2𝒙𝒙0���3 + 𝒙𝒙0��� 𝒙𝒙0 ∘ 𝒙𝒙0���������)𝑛𝑛

𝑟𝑟=1  by 

estimation of 𝒙𝒙� and 𝒙𝒙 ∘ 𝒙𝒙������ with 𝒙𝒙0��� and 𝒙𝒙0 ∘ 𝒙𝒙0���������, respectively.  
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 While approach NOAB-V requires all five MILP extensions where matrix 𝑴𝑴 

represents all first- and second-order terms for previously constructed factors, approach 

NOAB-IV uses extensions 1 through 4 where 𝑴𝑴 represents only first-order terms for the 

extensions and includes second-order terms for the original constraints, and NOAB-Q uses 

extensions 2 and 4 where 𝑴𝑴 represents first-order terms and associated quadratics. 

3.5 Case study 

 3.5.1 Design Space and Parameter Settings 

 The mixed-factor decision space of interest is comprised of two discrete factors 

(four- and three-level) and seven categorical factors (two three-level and five two-level), 

where a full factorial design requires 3,456 points. The two discrete factors have levels of 

{1, 2, 3, 4} and {1, 2, 3}. With 𝐽𝐽 = 11 first-order columns required for the encoded design 

matrix, the suggested lower and upper bounds for first-order NOAB design size 𝑛𝑛 are 3𝐽𝐽 =

33 and 10𝐽𝐽 = 110, respectively. For the second-order design approaches, it is expected that 

larger design sizes are needed to achieve near orthogonality (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0.05), so the upper 

bound is increased to 504. Typically, fewer design sizes within the specified bounds are 

found to be balance-feasible when the maximum allowed imbalance (𝛿𝛿∗) is decreased for 

the balance feasibility test. In this case study, an imbalance restriction in this test allows 

for faster traversal of design size ranges while still obtaining a sufficient number of designs 

to examine. While each NOAB design construction uses 𝛿𝛿∗ = 0.05 for the MILPs, the 

balance feasibility test for 𝑛𝑛 uses 𝛿𝛿∗ = 0.05 for approaches NOAB-III and NOAB-Q when 

33 ≤ 𝑛𝑛 ≤ 110, and the restricted 𝛿𝛿∗ = 0, otherwise. The MILP solver is allowed two 
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attempts to achieve near orthogonality for each factor construction with a time limit of 60 

seconds for NOAB-III, NOAB-Q, and NOAB-IV and 300 seconds for NOAB-V. When a 

solution 𝒙𝒙 gives 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 > 0.05 after the first attempt, 𝒙𝒙 is used as the initial solution 𝒙𝒙0 for 

the second attempt. The construction method is implemented in MATLAB R2015a using 

CPLEX V12.6.1 to obtain MILP solutions, with 222 NOAB designs resulting from the four 

approaches and various balance-feasible design sizes examined. 

 3.5.2 First-order Model Results 

 Let 𝑿𝑿 be the design matrix for the full first-order model. Figure 20 shows the 

performance of the constructed NOAB designs for the four design approaches and various 

balance-feasible design sizes. The smallest design sizes are 𝑛𝑛 = 36 for approaches NOAB-

III and NOAB-Q, 𝑛𝑛 = 96 for NOAB-IV, and 𝑛𝑛 = 264 for NOAB-V, i.e., smaller designs 

using each approach do not satisfy near orthogonality for the intended model terms. 

Approaches NOAB-IV and NOAB-V result in clear improvements for the model 

misspecification measure 𝑜𝑜𝑒𝑒(𝑨𝑨’𝑨𝑨). The design approaches do not appear to change D-

criterion or average UPV when assuming a first-order model.  

 3.5.3 Second-order Model Results 

 Let 𝑿𝑿 be the design matrix for a full second-order model with centered first-order 

columns for quantitative factors, so the performance measures now exclude 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨). Due 

to numerical instability of average UPV calculations for approaches NOAB-III and NOAB-

Q, only designs having average UPV ≤ 100 (and UPV ≤ 2) are displayed in Figure 20. For 

fixed 𝑛𝑛, the second-order extensions tend to improve both the D-criterion and average 

UPV, with greater improvement seen when requiring near orthogonality for more pairs of 
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model terms. In this study, average UPV is generally indicative of the relative quality of 

UPV over fractions of the design space (FDS) for the different design approaches. 

However, approach NOAB-V does see smaller increases in UPV over large FDS when 

compared to NOAB-IV (Figure 21).  

 

Figure 20. NOAB Design Performance by Approach and Design Size 
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Figure 21. UPV by FDS for NOAB-IV and NOAB-V Designs (Second-order Model) 

 3.5.4 Comparison of Absolute Correlations 

 The second-order extensions are shown to improve different performance measures 

depending on the assumed model. However, it is important to also examine the absolute 

pairwise correlations for resulting second-order design matrices. Figure 22 gives the 

absolute correlation matrices for four 264-point designs, each using one of the four 

approaches, with model terms ordered and partitioned by first-order, interactions, and 

quadratics. As the different second-order extensions are used to achieve near orthogonality, 

it is clear that the absolute correlations are decreasing for the appropriate partitions. Though 

it appears that NOAB-V dominates the other approaches for the 264-point designs with 

respect to the absolute correlations in Figure 22, using an approach that minimizes 

correlations for too many model terms with too few design points can result in 

unsatisfactory correlation values. See the Appendix for an example of absolute correlations 
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for a 36-point design using the NOAB-V approach. There is a small number of off-diagonal 

elements with consistently high absolute correlations, which are most apparent for the 

matrix associated with the NOAB-V design. These correlations are associated with 

multiple columns in the design matrix that represent the same categorical factor, meaning 

they should be highly correlated, and thus, are ignored in the second-order method.  

 

Figure 22. Absolute Correlation Matrices for NOAB Designs 
 

 3.5.5 Further Design Evaluation and Comparison 

 In this case study, the assumption is that an analyst would have an initial preference 

for one of the design approaches based on the context of their problem, i.e., near 

orthogonality is desired for some specified set of model terms. When examining different 
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sizes and parameter settings in the construction method for a specific design approach, 

further design evaluation and comparison is warranted. Various performance measures of 

interest to an analyst can be given the same scale by using desirability functions [82], with 

an overall desirability using additive or multiplicative weights. Synthesized efficiency can 

then be examined, as in [68], which is the overall desirability of a design relative to the 

most desirable design for a specific weighting combination. Graphical approaches such as 

trade-off plots and mixture plots can also be used for design comparison [68], [77]. 

3.6 Conclusions and Further Research 

 MILP extensions to the NOAB design construction method allow for near 

orthogonality between first- and second-order terms, improving performance measures 

associated with good parameter estimation and prediction variance for an assumed second-

order model. When assuming a first-order model, the extensions allow for construction of 

designs that protect against model misspecification with respect to second-order terms. 

Even if small design size is of great importance, using the second-order extensions for a 

subset of second-order terms may still improve other performance measures of interest. 

Many studies may see value in a process that uses a first-order (NOAB resolution III) design 

or NOAB resolution IV design for initial screening of a large number of factors, followed 

by a second-order (NOAB resolution V) design for significant factors and associated 

second-order effects.  

 Future research includes the development of a meta-learning framework [6], [108] 

for NOAB design construction parameter selection, based on meta-features extracted from 

the design space. Additionally, a Microsoft Excel tool for first- and second-order NOAB 
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design construction has been created, utilizing the open-source add-in OpenSolver [134], 

[135] to ensure availability of the original method as well as the second-order extensions. 

This tool will be provided online by the Air Force Institute of Technology. 
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IV. Batch Sequential NOAB Designs by Way of Simultaneous Construction and 

Augmentation 

4.1 Abstract 

 Space-filling designs help experimenters to represent simulation outputs efficiently 

when entire input spaces cannot be exhaustively explored. Batch sequential designs allow 

for intermediate analyses to occur as later batches of experimental design points are being 

tested, and give the ability to change later design points based on the outputs observed as 

well as stop the experiment when the current observations are deemed sufficient in order 

to reduce experimental cost. Nearly orthogonal-and-balanced (NOAB) designs have been 

shown to have good space-filling properties and can accommodate design spaces with 

continuous, discrete, and categorical factors. In this paper, mixed-integer linear 

programming (MILP) formulations used to solve for NOAB resolution III, IV, and V 

designs are extended to construct batch sequential NOAB designs, where design stages can 

use different NOAB approaches. A case study is presented where a simultaneous 

construction approach results in overall more desirable designs than when using design 

augmentation, yet requires a predefined number of points for each design stage.   

Keywords: design of experiments; mixed factor; space filling; nearly orthogonal-and-

balanced; mixed-integer linear program; meta-model 

4.2 Introduction 

 Many studies of systems and simulations with complex behavior aim to understand 

relationships between a large number of inputs and outputs, where exhaustively testing all 
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input combinations of interest can quickly become infeasible due to a lack of time and 

resources. Space-filling designs can help experimenters represent simulation outputs for an 

entire input space efficiently by fitting meta-models, or surrogate models, to a relatively 

small set of design points and using each meta-model to predict the behavior of each system 

output. Furthermore, system inputs may be represented by mixed factors, i.e., a mixture of 

continuous, discrete, and categorical factors with potentially different numbers of factor 

levels for each. A popular approach for mixed-factor designs with good space-filling 

properties is the nearly orthogonal-and-balanced (NOAB) design. The original, first-order 

NOAB design approach presented in [1] uses a mixed-integer linear programming (MILP) 

formulation to ensure near balance of factor levels, i.e., for each factor, the individual levels 

are represented nearly equally in the design, while solving for near orthogonality with 

respect to terms in the first-order model: 

𝑦𝑦 =  𝛽𝛽0 + ∑𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜀𝜀  

with response 𝑦𝑦, input factors 𝑥𝑥𝑖𝑖, coefficients 𝛽𝛽𝑖𝑖, and error 𝜀𝜀. Near orthogonality is defined 

as when the maximum absolute correlation among pairs of design columns, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, is less 

than 0.05. Low correlation between design matrix columns representing first-order terms 

allows for separate examination of individual factors. Second-order extensions to the 

original MILP are developed in Chapter III, which can minimize 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 for design matrix 

columns representing a full, second-order model that includes two-way interactions and 

quadratic terms:  

𝑦𝑦 =  𝛽𝛽0 + ∑𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖>𝑖𝑖𝑖𝑖 + ∑𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2 + 𝜀𝜀  
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The first-order NOAB and second-order extensions result in three main approaches that 

aim to have near orthogonality for different sets of model terms: 

• NOAB resolution III (NOAB-III) – minimizes correlation between all first-order 
terms, from [1]  

• NOAB resolution IV (NOAB-IV) – ignores correlation between pairs of second-
order terms 

• NOAB resolution V (NOAB-V)  – minimizes correlation between all first- and 
second-order terms  
 
Currently, the NOAB designs can be thought of as one-shot, or single-stage, 

approaches. To give greater flexibility to experimenters, batch sequential designs have 

multiple stages to allow for intermediate analyses that occur alongside later batches of 

experimental runs as well as to permit early termination of runs when sufficient information 

has been collected. Intermediate analyses can inform the choice of later design points for 

design augmentation, help to determine insignificant factors that can be eliminated from 

further evaluation, and highlight subsets of important factors and specific regions of the 

design space that may be of greater interest. Such advantages, and disadvantages, of 

sequential designs are presented in [42]. 

Designs with good space-filling properties are thought to be preferable for meta-

modeling, as discussed in [136]. Space-filling designs are reviewed in [137], where model-

free methods of geometric criteria, Latin hypercube designs, and other approaches are 

discussed in addition to model-based design methods for Kriging (or Gaussian-process 

modeling) and combinations of space-filling and estimation designs. Some distance 

performance metrics for space-filling designs are reviewed in [138], where a distance 

correlation-based metric is proposed for Latin hypercube designs. An empirical study of 
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prediction performance of space-filling designs in detailed in [139], where the authors state 

that the best approach for improving prediction accuracy is to add design points and suggest 

that efficient augmentation of space-filling designs is an important area of research. 

Sequential sampling is listed as an open research topic for Latin hypercube designs in 

[140], which references the nested Latin hypercube designs from [141] as well as designs 

that are augmented based on information from surrogate models such as Kriging from 

[137], [142], [143]. Quasi-Latin hypercube design sampling is detailed in [143], which 

provides an overview of sequential sampling and notes that objective-oriented sequential 

sampling is suited for design optimization, while space-filling sequential sampling 

concerns the global accuracy of a meta-model. Sequential space-filling designs are 

reviewed in [142], where sequential nested Latin hypercube, global Monte Carlo, and 

optimization-based methods are presented. Space-filling designs for constrained domains 

are developed in [144] using a sequential Monte Carlo based algorithm and distance-based 

design criteria. An overview of criteria for sequential sampling is given in [145], which 

presents extended orthogonal array-based Latin hypercube sampling while introducing two 

distance-based metrics for batch sequential sampling. Sliced full factorial-based Latin 

hypercube designs (sFFLHD) are developed in [146], which are batch sequential and do 

not require a predefined number of total design points. 

  Commonly-used design performance measures and single-stage NOAB designs 

are presented (Section 4.3) as background material for the construction methods of the 

batch sequential NOAB designs (Section 4.4), where each design stage can be constructed 

using either of the NOAB-III, NOAB-IV, or NOAB-V approaches. Two techniques are 
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developed for construction of the multiple design stages: design augmentation and 

simultaneous construction of each stage. Section 4.5 provides a study of design properties 

for the two batch sequential techniques where the design stages use the same NOAB 

approach as well as where the NOAB approaches are different.  

4.3 Background Material  

4.3.1 NOAB Design Notation and Background  

A balance feasibility test is developed in [1] to determine if a design size 𝑛𝑛 can 

feasibly satisfy a specified maximum allowed imbalance δ, given possibly different 

numbers of factor levels. Using a balance-feasible 𝑛𝑛, the NOAB design construction 

methods create design matrix columns for a single factor at a time, iterating until all factors 

are represented. The first column is randomly generated to have imbalance no greater than 

δ. The column structure of the remaining factors is then determined iteratively, one factor 

at a time, using one of three mixed-integer linear programming (MILP) problems based on 

factor type (i.e., continuous, discrete, and categorical). In this paper, the continuous factor 

and discrete factor cases are considered to be the same formulation, since the continuous 

factor case in previous methods assumes 𝑛𝑛 equally-spaced factor levels. Any required 

fidelity for representing a continuous factor can be met by assuming a large enough number 

of equally-spaced factor levels in the discrete factor MILP formulation. Removing the need 

for discretizing all continuous factors by exactly 𝑛𝑛 levels also allows for greater flexibility 

when developing batch sequential techniques. Table 10 provides the notation used for 

NOAB design construction.  
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Table 10. Notation for Batch Sequential NOAB Design Construction 

𝑛𝑛 number of design points (matrix rows), i.e., design size, indexed by row 𝑒𝑒 =
1, 2, … ,𝑛𝑛 

𝑗𝑗 
number of previously constructed matrix columns, indexed by column 𝑐𝑐 =
1,  2,  … ,  𝑗𝑗 (comprising the set 𝐶𝐶) 

𝑴𝑴 
previously constructed 𝑛𝑛 × 𝑗𝑗 design matrix (represents only first-order terms 
in the original method and both first- and second-order terms for the 
extended method) 

𝑚𝑚𝑟𝑟,𝑐𝑐 element of 𝑴𝑴 in row 𝑒𝑒 and column 𝑐𝑐 

𝒎𝒎∙,𝑐𝑐 column 𝑐𝑐 of 𝑴𝑴 

𝐶𝐶1 subset of column indices 1,  2,  … ,  𝑗𝑗 for 𝑴𝑴 that represent first-order terms 
only, indexed by 𝑐𝑐1 

𝒙𝒙∙,𝑖𝑖 
MILP decision variables (𝑛𝑛 × 1  column), indexed by the number of factor 
columns 𝑖𝑖 = 1, … , 𝐼𝐼 (𝐼𝐼 = 1 for discrete, and 𝐼𝐼 = ℓ𝑥𝑥-1 for categorical with ℓ𝑥𝑥 
levels) 

𝑥𝑥𝑟𝑟,𝑖𝑖 element of column 𝒙𝒙∙,𝑖𝑖 in row 𝑒𝑒 

𝒛𝒛∙,𝑖𝑖 
centered MILP decision variable (𝑛𝑛 × 1 column), with 
𝑧𝑧𝑟𝑟,𝑖𝑖 = 𝑥𝑥𝑟𝑟,𝑖𝑖 − 𝒙𝒙∙,𝚤𝚤���� = 𝑥𝑥𝑟𝑟,𝑖𝑖 − (1/𝑛𝑛)� 𝑥𝑥𝑘𝑘,𝑖𝑖

𝑛𝑛
𝑘𝑘=1  

𝒙𝒙0 initial randomly-generated MILP solution (𝑛𝑛 × 𝐼𝐼) 

𝜌𝜌(𝒙𝒙,𝒚𝒚) 
pairwise correlation for columns 𝒙𝒙 and 𝒚𝒚 is 𝜌𝜌(𝒙𝒙,𝒚𝒚) = 1/((𝑛𝑛 −
1) 𝑒𝑒𝒙𝒙𝑒𝑒𝒚𝒚)∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(𝑦𝑦𝑟𝑟 − 𝒚𝒚�)𝑛𝑛

𝑟𝑟=1 , with column elements 𝑥𝑥𝑟𝑟 and 𝑦𝑦𝑟𝑟, means 𝒙𝒙� 
and 𝒚𝒚�, and standard deviations 𝑒𝑒𝒙𝒙 and 𝑒𝑒𝒚𝒚 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 maximum allowed absolute pairwise correlation, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝒙𝒙≠𝒚𝒚

|𝜌𝜌(𝒙𝒙,𝒚𝒚) | 

δ 
maximum allowed imbalance, 𝛿𝛿 = max

𝑥𝑥
𝛿𝛿𝑥𝑥, imbalance for factor 𝑥𝑥 is 

defined as 𝛿𝛿𝑥𝑥 = max
𝑖𝑖=1,…,ℓ𝑥𝑥

|(𝑒𝑒𝑖𝑖,𝑥𝑥 − (𝑛𝑛/ℓ𝑥𝑥))/(𝑛𝑛/ℓ𝑥𝑥)|, 𝑒𝑒𝑖𝑖,𝑥𝑥 is the number of 

times level 𝑖𝑖 occurs for factor 𝑥𝑥 with ℓ𝑥𝑥 possible levels 

𝜆𝜆(𝒙𝒙) number of encoded levels for column 𝒙𝒙, indexed by encoded level ℓ = 1, 2, 
…, 𝜆𝜆(𝒙𝒙) 

𝜋𝜋ℓ 
encoded level value (with 𝜋𝜋1 < 𝜋𝜋2 < ⋯ < 𝜋𝜋𝜆𝜆(𝒙𝒙) being all possible values 
for column 𝒙𝒙) 
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𝜃𝜃𝑟𝑟,ℓ
𝑖𝑖  binary decision variable where 𝑥𝑥𝑟𝑟,𝑖𝑖 = ∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ

𝑖𝑖𝜆𝜆(𝒙𝒙)
ℓ=1  and ∑ 𝜃𝜃𝑟𝑟,ℓ

𝑖𝑖𝜆𝜆(𝒙𝒙)
ℓ=1 = 1 for 

row 𝑒𝑒, encoded level ℓ, and factor column 𝑖𝑖 
 

4.3.2 Design Performance Measures 

As 𝑛𝑛 increases, designs are expected to improve model coefficient estimation and 

prediction accuracy. The D-criterion |𝑿𝑿′𝑿𝑿|1/𝑚𝑚 for 𝑝𝑝 model parameters [76] is used as a 

measure for good model coefficient estimation, with larger values more desirable. The 

average and maximum unscaled prediction variance (UPV = 𝒙𝒙(𝑞𝑞)′(𝑿𝑿′𝑿𝑿)−1𝒙𝒙(𝑞𝑞) for design 

matrix 𝑿𝑿) over all possible design points 𝑞𝑞 are examined as well [77]. When assuming a 

second-order model, the D-criterion and UPV measures have been shown to improve for 

designs of the same size as more second-order terms are considered when 

minimizing 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, i.e., the NOAB-V outperforms the NOAB-IV and NOAB-IV 

outperforms the NOAB-III (Chapter III).  

If 𝑿𝑿1 is an assumed linear model matrix of first-order terms and 𝑿𝑿2 includes 

additional linear terms excluded from the defined model, then the alias matrix 𝑨𝑨 =

(𝑿𝑿1′ 𝑿𝑿1)−1(𝑿𝑿1′ 𝑿𝑿2) gives the degree of biasing of each first-order terms represented in the 

linear model matrix 𝑿𝑿1 due to each second-order term in 𝑿𝑿2 [133]. NOAB-V and NOAB-

IV designs have been shown to improve the common model misspecification measure 

𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) with respect to second-order terms (assuming a first order model) when compared 

to NOAB-III designs. This paper will primarily examine the impact of the different batch 

sequential techniques, in combination with the NOAB design approaches, on the maximum 
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absolute correlation 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, while highlighting any notable differences in the other design 

performance measures. 

4.4 Construction Methods for Batch Sequential NOAB Designs  

Two main approaches are developed for creating the batch sequential NOAB 

designs: simultaneous construction (Section 4.4.2) and design augmentation (Section 

4.4.3). However, for design spaces where there are many factors with low numbers of 

levels for each, repeated design points can commonly occur in NOAB designs. In a batch 

sequential NOAB design, the assumption is that the system of interest is deterministic, 

where the design points would need to be repeated to understand the randomness in a 

stochastic system. Section 4.4.1 describes new constraints in the MILP formulations that 

limit repeated design points for NOAB designs. 

4.4.1 Limiting Repeated Points in NOAB Designs 

 For a discrete factor column 𝒙𝒙 where the element in rows 𝑒𝑒 = 1, 2, … , 𝑛𝑛 is 

denoted 𝑥𝑥𝑟𝑟, let �𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋 ℓ𝑥𝑥� be the ℓ𝑥𝑥 possible levels. The following constraint limits 

repeated design points:  

𝑥𝑥𝑟𝑟′ − 𝑥𝑥𝑟𝑟 ≥  min
𝑖𝑖1≠𝑖𝑖2

�𝜋𝜋𝑖𝑖1 − 𝜋𝜋𝑖𝑖2�, for ordered pairs of rows (𝑒𝑒, 𝑒𝑒′),  𝑒𝑒 < 𝑒𝑒′ 

where ordered pairs of rows (𝑒𝑒, 𝑒𝑒′) are determined by examining which rows from the 

previously constructed columns are currently repeated and by ensuring that the 

corresponding values in the new columns are different. Such row pairs, (𝑒𝑒, 𝑒𝑒′), 𝑒𝑒 < 

𝑒𝑒′comprise the set 𝑅𝑅𝑅𝑅, which are determined in the initial generation of each factor column 

(i.e., initial solution) for use in the MILP formulations (Figure 23). 
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IF discrete factor THEN 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑐𝑐𝑦𝑦 = [𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋ℓ𝑥𝑥] 
IF categorical factor THEN 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑐𝑐𝑦𝑦 = [ ℓ𝑥𝑥, 1, 2, … , ℓ𝑥𝑥 − 1] (levels before encoding) 
IF any repeated points/rows exist in the previously constructed design matrix 

FOR each set of repeated rows that match 
 WHILE |set of repeated rows unassigned| > 1  

Assign distinct 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑐𝑐𝑦𝑦 values to initial solution for up to ℓ𝑥𝑥 rows at a 
time and record ordered row pairs (𝑒𝑒′, 𝑒𝑒) in 𝑅𝑅𝑅𝑅,  where  𝑒𝑒 <  𝑒𝑒′ and 𝑥𝑥𝑟𝑟 
occurs before 𝑥𝑥𝑟𝑟′ in the drawArray for these assignments 

 end WHILE 
end FOR 

end IF statement 
Randomly assign 𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑐𝑐𝑦𝑦 values to remaining non-repeated rows, while satisfying 
balance constraints 

Figure 23. Initial Solution Generation for MILP 

For the set of columns 𝒙𝒙∙,1, 𝒙𝒙∙,2, … ,𝒙𝒙∙,(ℓ𝑥𝑥−1) for a single categorical factor using {-1, 0, 1} 

effect coding, let  

𝑥𝑥𝑟𝑟,𝑖𝑖 = �
1, 𝑖𝑖𝑖𝑖𝑥𝑥𝑟𝑟 = 𝑖𝑖 < ℓ𝑥𝑥 

−1, 𝑖𝑖𝑖𝑖𝑥𝑥𝑟𝑟 = ℓ𝑥𝑥           
0,        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒.     

 

The following constraint helps to limit repeated design points in the categorical factor case: 

∑ 𝑖𝑖ℓ𝑥𝑥−1
𝑖𝑖=1 𝑥𝑥𝑟𝑟′,𝑖𝑖 − ∑ 𝑖𝑖ℓ𝑥𝑥−1

𝑖𝑖=1 𝑥𝑥𝑟𝑟,𝑖𝑖 ≥  1, for ordered pairs of rows (𝑒𝑒, 𝑒𝑒′),  𝑒𝑒 < 𝑒𝑒′ 

Note the difference in the ordering of levels in the drawArray ([ℓ, 1, 2, … , ℓ − 1]) from the 

discrete factor case. An example of how this constraint ensures the correct ordering of 

categorical levels is provided in Table 11 for a categorical factor with four levels. The 

ordering of the 𝑥𝑥𝑟𝑟 values matches that of the drawArray, with the summation used within 

the 𝑅𝑅𝑅𝑅 constraint maintaining the same ordering.  
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Table 11. Example Categorical Factor Level Order for 𝑅𝑅𝑅𝑅 Constraints 

𝑒𝑒 𝑥𝑥𝑟𝑟 𝑥𝑥𝑟𝑟,1 𝑥𝑥𝑟𝑟,2 𝑥𝑥𝑟𝑟,3 � 𝑖𝑖𝑥𝑥𝑟𝑟,𝑖𝑖
ℓ𝑥𝑥−1
𝑖𝑖=1   

1 4 -1 -1 -1 -6 
2 1  1  0  0  1 
3 2  0  1  0  2 
4 3  0  0  1  3 

 

The use of these repeated point (𝑅𝑅𝑅𝑅) constraints encourages diversity of design points for 

each column construction, where it is desired to have the set 𝑅𝑅𝑅𝑅 decrease in size for each 

new column construction and eventually have 𝑅𝑅𝑅𝑅 = ∅ (i.e., there are no repeated design 

rows), though this is not guaranteed. The use of the 𝑅𝑅𝑅𝑅 constraints is important when 

assuming a deterministic simulation, since any repeated points in the design can needlessly 

use valuable experimental resources. As an example, designs using the one-shot NOAB-V 

approach are constructed with and without the 𝑅𝑅𝑅𝑅 constraints for different design sizes, 

where the design space contains two discrete factors (four-level and three-level) and seven 

categorical factors (two three-level and five two-level), with 3,456 possible design points 

in total. The number of repeated points increases as 𝑛𝑛 increases when no 𝑅𝑅𝑅𝑅 constraints 

are used, while the use of 𝑅𝑅𝑅𝑅 constraints prevents repeated points for each of the design 

sizes (Figure 24). Similar patterns in the number of repeated points occur for the other 

NOAB approaches. 
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Figure 24. Limiting Repeated Points in One-shot NOAB-V Designs 

4.4.2 Simultaneous Construction 

 In this section, MILP formulations are presented for simultaneous construction of 

batch sequential NOAB designs, with one formulation for the discrete factor case and one 

for the categorical factor case. Just as in the previous methods for NOAB design 

construction, the columns of the design matrix are solved iteratively, where an 

approximation of 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 is minimized. To extend the batch sequential NOAB design, each 

of the multiple stages have constraints requiring near balanced, while the aim is to 

minimize correlations using one of the three main NOAB design approaches for each stage. 

Let 𝑁𝑁 = 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼𝐼𝐼  ∪ 𝑁𝑁𝐼𝐼 be the set of all design stage sizes of interest, where 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼, 𝑁𝑁𝐼𝐼𝐼𝐼, 

and 𝑁𝑁𝐼𝐼 are the sets of design sizes using either the NOAB-III, NOAB-IV, or NOAB-V 

approaches, respectively. In Figure 25, the column structure for a simultaneous 

construction is presented for a design with stage sizes 𝑛𝑛1 and 𝑛𝑛2, previously constructed 

matrix 𝑴𝑴, and new factor column 𝒙𝒙.  
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Figure 25. Simultaneous Construction for Two Stages 

The MILP formulation for simultaneous construction of the multiple stages for a 

discrete factor is presented in Figure 26. Let 𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 = max
𝑛𝑛∈𝑁𝑁

𝑛𝑛 be the total number of design 

points for the batch sequential design. Constraints (i) and (ii) ensure that decision variable 

𝑖𝑖 is the maximum of absolute correlation estimates between column 𝒙𝒙 and all previously 

constructed first-order columns 𝒎𝒎∙,𝑐𝑐, 𝑐𝑐 ∈  𝐶𝐶1 for each design size 𝑛𝑛 ∈ 𝑁𝑁. The function 𝜌𝜌�𝑛𝑛 

is an estimate of the pairwise correlation 𝜌𝜌 for only rows 1,  2, …, 𝑛𝑛. Constraints (i-1) and 

(ii-1) through (i-5) and (ii-5) similarly help to represent 𝑖𝑖1 through 𝑖𝑖5, respectively, the 

maximum absolute pairwise correlation estimates for the various cases involving second-

order model terms (i.e., 𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼𝐼𝐼 or 𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼). The function 𝜌𝜌�𝑛𝑛 for the various correlation 

cases is defined in the Appendix. The objective is to minimize the sum of these cases, 

which can provide greater control over these values than when minimizing the objective 

function 𝑖𝑖 = 𝑖𝑖1 = ⋯ = 𝑖𝑖5. Constraints (iii) and (iv) require that exactly one level is 

assigned to each row in column 𝒙𝒙 for the entire design. Constraints (v) and (vi) ensure that 

the maximum allowed imbalance 𝛿𝛿 is satisfied for each design stage size 𝑛𝑛 ∈ 𝑁𝑁. The 𝑅𝑅𝑅𝑅 

constraint (vii) limits the number of repeated points in the design size. Constraint (viii) 
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requires the decision variable 𝜃𝜃𝑟𝑟,ℓ to be binary (i.e., either a level ℓ is assigned to row 𝑒𝑒 or 

not). Note that having only a single 𝑛𝑛 in one of the sets 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼, 𝑁𝑁𝐼𝐼𝐼𝐼, and 𝑁𝑁𝐼𝐼 results in a single-

stage NOAB design for that respective design approach. 

Quadratic model terms are not examined in the categorical factor formulation 

(Figure 27), so the correlation estimates for 𝑖𝑖2, 𝑖𝑖4, and 𝑖𝑖5 are not included. Otherwise, 

constraints (i) through (vi) for the categorical case have the same purpose as in the discrete 

case, except now there are possibly multiple factor columns 𝒙𝒙∙,𝑖𝑖, 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 due to 

factor encoding. Constraints (vii) through (ix) make sure that the factor columns use effect 

coding, as in the original method from [1]. The 𝑅𝑅𝑅𝑅 constraint (x) limits repeated points as 

discussed previously, and constraint (xi) ensures a binary 𝜃𝜃𝑟𝑟,ℓ as in the discrete factor case. 

4.4.3 Design Augmentation  

 In contrast to the simultaneous construction technique, design augmentation is used 

to construct the full batch sequential NOAB design by creating a one-shot NOAB design 

for the smallest design stage and repeatedly augmenting the design using the MILP 

formulations and desired NOAB approaches to achieve later design stages. In other words, 

for a set of design stage sizes 𝑛𝑛1 < 𝑛𝑛2 < … < 𝑛𝑛𝑘𝑘 = 𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 for 𝑘𝑘 ≥ 2 stages, once a NOAB 

design of size 𝑛𝑛𝑖𝑖 is constructed, a design of size 𝑛𝑛𝑖𝑖+1 is then created by fixing the first 𝑛𝑛𝑖𝑖 

rows of the design matrix and letting 𝑁𝑁 = {𝑛𝑛𝑖𝑖+1} be the only design size considered in the 

MILP formulations. The MILP decision variables for the factor column then concern only 

rows 𝑒𝑒 = 𝑛𝑛𝑖𝑖 + 1,𝑛𝑛𝑖𝑖 + 2, … ,𝑛𝑛𝑖𝑖+1. The column structure of the design matrix for the 
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augmentation technique is given in Figure 28, where points for an 𝑛𝑛2-point design are 

created by augmenting an 𝑛𝑛1-point design.  

 Minimize  𝑖𝑖 + 𝑖𝑖1 +  𝑖𝑖2 + 𝑖𝑖3 + 𝑖𝑖4 + 𝑖𝑖5 

 Subject to  

 (i) 𝑖𝑖 ≥ 𝜌𝜌�𝑛𝑛(𝒙𝒙,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × (𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼))  

 (ii)  𝑖𝑖 ≥ −𝜌𝜌�𝑛𝑛(𝒙𝒙,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × (𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼))  

 (i-1) 𝑖𝑖1 ≥ 𝜌𝜌�𝑛𝑛(𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐) 𝑐𝑐1 ∈  𝐶𝐶1;  (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × 𝑁𝑁𝐼𝐼)  

 (ii-1) 𝑖𝑖1 ≥ −𝜌𝜌�𝑛𝑛(𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐)       𝑐𝑐1 ∈  𝐶𝐶1;  (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × 𝑁𝑁𝐼𝐼)  

 (i-2) 𝑖𝑖2 ≥ 𝜌𝜌�𝑛𝑛(𝒛𝒛 ∘ 𝒛𝒛,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × 𝑁𝑁𝐼𝐼)  

 (ii-2) 𝑖𝑖2 ≥ −𝜌𝜌�𝑛𝑛(𝒛𝒛 ∘ 𝒛𝒛,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × 𝑁𝑁𝐼𝐼)  

 (i-3) 𝑖𝑖3 ≥ 𝜌𝜌�𝑛𝑛(𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈  𝐶𝐶1;  𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼 

 (ii-3) 𝑖𝑖3 ≥ −𝜌𝜌�𝑛𝑛(𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈  𝐶𝐶1;  𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼 

 (i-4) 𝑖𝑖4 ≥ 𝜌𝜌�𝑛𝑛(𝒛𝒛,𝒛𝒛 ∘ 𝒛𝒛) 𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼 

 (ii-4) 𝑖𝑖4 ≥ −𝜌𝜌�𝑛𝑛(𝒛𝒛,𝒛𝒛 ∘ 𝒛𝒛) 𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼 

 (i-5) 𝑖𝑖5 ≥ 𝜌𝜌�𝑛𝑛(𝒛𝒛 ∘ 𝒛𝒛, 𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈  𝐶𝐶1;  𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼  

 (ii-5) 𝑖𝑖5 ≥ −𝜌𝜌�𝑛𝑛(𝒛𝒛 ∘ 𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈  𝐶𝐶1;  𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼 

(iii) ∑ 𝜃𝜃𝑟𝑟,ℓ = 1 ℓ𝑥𝑥
ℓ=1  𝑒𝑒 = 1, 2, …, 𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 

 (iv)   𝑥𝑥𝑟𝑟 = ∑ 𝜋𝜋ℓ𝜃𝜃𝑟𝑟,ℓ
ℓ𝑥𝑥
ℓ=1   𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 

 (v) ∑ 𝜃𝜃𝑟𝑟,ℓ ≤ �(1 + 𝛿𝛿) 𝑛𝑛
ℓ𝑥𝑥
�𝑛𝑛

𝑟𝑟=1  ℓ = 1, 2, …, ℓ𝑥𝑥;  𝑛𝑛 ∈ 𝑁𝑁 

 (vi) ∑ 𝜃𝜃𝑟𝑟,ℓ ≥ �(1 − 𝛿𝛿) 𝑛𝑛
ℓ𝑥𝑥
�   𝑛𝑛

𝑟𝑟=1    ℓ = 1, 2, …, ℓ𝑥𝑥;  𝑛𝑛 ∈ 𝑁𝑁 

 (vii) 𝑥𝑥𝑟𝑟′ − 𝑥𝑥𝑟𝑟 ≥ 𝑚𝑚𝑖𝑖𝑛𝑛
𝑖𝑖1≠𝑖𝑖2

�𝜋𝜋𝑖𝑖1 − 𝜋𝜋𝑖𝑖2� (𝑒𝑒, 𝑒𝑒′) ∈ 𝑅𝑅𝑅𝑅 

 (viii)  𝜃𝜃𝑟𝑟,ℓ ∈ {0,1} 𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥;  ℓ = 1, 2, …, ℓ𝑥𝑥 

Figure 26. MILP Formulation for Simultaneous Construction - Discrete Factor 
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Minimize  𝑖𝑖 + 𝑖𝑖1 + 𝑖𝑖3 

 Subject to  

 (i)  𝑖𝑖 ≥ 𝜌𝜌�𝑛𝑛(𝒙𝒙∙,𝑖𝑖,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × (𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼));  

   𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

 (ii)  𝑖𝑖 ≥ −𝜌𝜌�𝑛𝑛(𝒙𝒙∙,𝑖𝑖,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × (𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼));  

   𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

 (i-1) 𝑖𝑖1 ≥ 𝜌𝜌�𝑛𝑛�𝒙𝒙∙,𝑖𝑖 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐� 𝑐𝑐1 ∈ 𝐶𝐶1; (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × 𝑁𝑁𝐼𝐼);  

   𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

 (ii-1) 𝑖𝑖1 ≥ −𝜌𝜌�𝑛𝑛(𝒙𝒙∙,𝑖𝑖 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐) 𝑐𝑐1 ∈ 𝐶𝐶1; (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × 𝑁𝑁𝐼𝐼);  

   𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

 (i-3) 𝑖𝑖3 ≥ 𝜌𝜌�𝑛𝑛(𝒙𝒙∙,𝑖𝑖,𝒙𝒙∙,𝑖𝑖 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈ 𝐶𝐶1;  𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼; 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

 (ii-3) 𝑖𝑖3 ≥ −𝜌𝜌�𝑛𝑛(𝒙𝒙∙,𝑖𝑖,𝒙𝒙∙,𝑖𝑖 ∘ 𝒎𝒎∙,𝑐𝑐1) 𝑐𝑐1 ∈ 𝐶𝐶1;  𝑛𝑛 ∈ 𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼; 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

  (iii) ∑ 𝜃𝜃𝑟𝑟,ℓ
𝑖𝑖 = 1 3

ℓ=1  𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥; 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

  (iv)  𝑥𝑥𝑟𝑟,𝑖𝑖 = ∑ (ℓ − 2)𝜃𝜃𝑟𝑟,ℓ
𝑖𝑖3

ℓ=1   𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥; 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

  (v) ∑ 𝜃𝜃𝑟𝑟,ℓ
𝑖𝑖 ≤ �(1 + 𝛿𝛿) 𝑛𝑛

ℓ𝑥𝑥
�𝑛𝑛

𝑟𝑟=1   ℓ = 1, 3;  𝑛𝑛 ∈ 𝑁𝑁; 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

  (vi) ∑ 𝜃𝜃𝑟𝑟,ℓ
𝑖𝑖 ≥ �(1 − 𝛿𝛿) 𝑛𝑛

ℓ𝑥𝑥
�   𝑛𝑛

𝑟𝑟=1           ℓ = 1, 3;  𝑛𝑛 ∈ 𝑁𝑁; 𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

 (vii) ∑ 𝜃𝜃𝑟𝑟,3
𝑖𝑖 ≤ 1ℓ𝑥𝑥−1

𝑖𝑖=1  𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 

 (viii) ∑ 𝜃𝜃𝑟𝑟,2
𝑖𝑖 ≤ℓ𝑥𝑥−1

𝑖𝑖=1 ℓ𝑥𝑥 − 2 𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 

 (ix) 𝜃𝜃𝑟𝑟,1
𝑖𝑖 − 𝜃𝜃𝑟𝑟,1

1 = 0 𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥; 𝑖𝑖 = 2, 3, … ,  ℓ𝑥𝑥 − 1 

 (x) ∑ 𝑖𝑖ℓ𝑥𝑥−1
𝑖𝑖=1 𝑥𝑥𝑟𝑟′,𝑖𝑖 − ∑ 𝑖𝑖ℓ𝑥𝑥−1

𝑖𝑖=1 𝑥𝑥𝑟𝑟,𝑖𝑖 ≥  1  (𝑒𝑒, 𝑒𝑒′) ∈ 𝑅𝑅𝑅𝑅 

 (xi) 𝜃𝜃𝑟𝑟,ℓ
𝑖𝑖 ∈ {0,1} 𝑒𝑒 = 1, 2, … ,𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥; ℓ = 1, 2, 3;  

   𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1 

Figure 27. MILP Formulation for Simultaneous Construction - Categorical Factor 
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Figure 28. Design Augmentation for Two Stages 

4.5 Case Study 

 A relatively small design space is used in this paper to examine the design 

properties resulting from batch sequential NOAB techniques, using the different NOAB 

approaches of NOAB-III, NOAB-IV, and NOAB-V. The design space of interest includes 

four two-level categorical factors and four discrete factors (two six-level, one four-level, 

and one three-level), resulting in a total of 6,912 possible design points. The low number 

of factors is amenable to achieving near orthogonality with respect to second-order models 

for smaller design sizes, with an assumption that some screening of a larger number of 

factors may have already occurred. The low numbers of levels for each factor gives a design 

space that is representative of similar real-world problems where space-filling has been 

desired. The maximum allowed imbalance is set to 𝛿𝛿∗= 0.05 throughout the case study, 

which permits more accurate estimations of standard deviations, and thus, pairwise 

correlations, in the MILP formulations.  Each discrete factor MILP is given 60 seconds and 

each categorical factor MILP is given 300 seconds of solve time, per design stage, using 

MATLAB R2016a with CPLEX v12.6.1. An additional solver attempt is made for each 
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factor if the first column solution does not achieve near orthogonality. The allotted solver 

times make certain that the two techniques, and the individual designs acting as a baseline, 

are given an equivalent amount of time to construct batch sequential NOAB designs. Let 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼 , 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 , and 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  denote the maximum absolute pairwise correlations for models 

terms considered in the NOAB-III, NOAB-IV, and NOAB-V design approaches, 

respectively, to better examine if each approach performs as intended. 

 
4.5.1 Comparison of Augmentation and Simultaneous Construction  

 For the NOAB-III approach, six individual designs with 𝑛𝑛 = 24, 36, 48, 60, 72, and 

84 are compared to multiple-stage designs with the same sizes, using either the 

simultaneous construction (𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 = {24, 36, 48, 60, 72, 84}) or augmentation techniques 

(𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 = {24}, augment with 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 = {36}, and so on). No repeated points were observed in 

the designs resulting from the NOAB-III approach. The 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  values with respect to the 

first-order model are given in Table 12, where the individual designs have lower 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  than 

for the design stages resulting from the batch sequential techniques. However, it appears 

that the augmentation technique sees improving 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  for each new stage constructed, 

while both techniques provide sufficient correlation values for the first-order model 

assumption. Augmentation and simultaneous techniques for the three stages of 𝑛𝑛 = 24, 48, 

and 84 result in 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  near zero, possibly implying that too many stages, or too small of 

batches, may constrain the MILP formulations so much that the 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  suffers.  
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Table 12. 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  for NOAB-III Designs 

𝑛𝑛 Individual Augmentation Simultaneous Augmentation 
(Fewer Stages) 

Simultaneous 
(Fewer Stages) 

24 0.0000 0.0000 0.0488 0.0000 0.0000 
36 0.0000 0.0497 0.0497 -- -- 
48 0.0000 0.0417 0.0417 0.0000 0.0000 
60 0.0000 0.0334 0.0409 -- -- 
72 0.0000 0.0278 0.0373 -- -- 
84 0.0000 0.0250 0.0426 0.0000 0.0000 

 

 The NOAB-IV approach is examined for designs with 𝑛𝑛 = 60, 72, 84, 96, 108, 120, 

and 132 for individual designs as well as the two batch sequential techniques. As with the 

NOAB-III designs, augmentation and simultaneous construction are used for designs with 

fewer stages as well (𝑛𝑛 =60, 96, and 120). The 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼  values, ignoring correlations between 

pairs of second-order terms, are shown in Table 13. The performance of the augmentation 

technique appears to suffer for the larger number of stages, yet is comparable to the 

simultaneous construction technique for the designs with fewer stages. The MILP 

formulation considers only the maximum absolute correlations for each case of 𝑖𝑖, 

𝑖𝑖1, … , 𝑖𝑖5, so the objective functions currently do not account for solutions that could 

improve in later stages and may be constrained by the worst-case 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼  for the 𝑛𝑛 = 60 

stage. This issue may be resolved by choosing a larger 𝑛𝑛 for the first stage with respect to 

each NOAB approach used. Restructuring the MILP formulation to account for 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼  of 

the different stages in addition to the different correlation cases may also provide benefit. 

Both remedies will be examined later in this case study. The 𝑜𝑜𝑒𝑒(𝑨𝑨′𝑨𝑨) measure for 

protection against bias from second-order terms, when assuming a first-order model, 
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follows a pattern similar to that of 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 , where augmentation with more stages creates 

designs that suffer in quality. None of the other performance measures considered show 

clear differences between techniques, and no repeated points were found in the NOAB-IV 

designs. 

Table 13. 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼  for NOAB-IV Designs 

𝑛𝑛 Individual Augmentation Simultaneous Augmentation 
(Fewer Stages) 

Simultaneous 
(Fewer Stages) 

60 0.0656 0.0656 0.0707 0.0656 0.0656 
72 0.0341 0.0802 0.0681 -- -- 
84 0.0337 0.1118 0.0628 -- -- 
96 0.0244 0.1018 0.0634 0.0511 0.0617 

108 0.0262 0.0919 0.0651 -- -- 
120 0.0214 0.0928 0.0613 -- -- 
132 0.0207 0.0940 0.0665 0.0441 0.0612 

 

 When examining the construction of batch sequential NOAB-V designs, an 

improvement step is introduced to determine if there is benefit in restructuring the MILP 

formulations, as hypothesized. For the discrete factor case, after determining a factor 

column 𝒙𝒙′ from the simultaneous construction technique, an additional MILP is solved 

with objective function 

∑ 𝑖𝑖𝑛𝑛𝑛𝑛∈𝑁𝑁 + ∑ (𝑖𝑖1,𝑛𝑛 + 𝑖𝑖2,𝑛𝑛 + 𝑖𝑖3,𝑛𝑛 + 𝑖𝑖4,𝑛𝑛)𝑛𝑛∈𝑁𝑁𝐼𝐼𝐼𝐼∪𝑁𝑁𝐼𝐼 +  ∑ 𝑖𝑖5,𝑛𝑛𝑛𝑛∈𝑁𝑁𝐼𝐼   

where updates to the correlation constraints are made so that each estimate 𝜌𝜌�𝑛𝑛 corresponds 

to the appropriate 𝑖𝑖𝑛𝑛, such as for the example constraints: 

(i)  𝑖𝑖𝑛𝑛 ≥ 𝜌𝜌�𝑛𝑛(𝒙𝒙,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × (𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼)) 

(ii)  𝑖𝑖𝑛𝑛 ≥ −𝜌𝜌�𝑛𝑛(𝒙𝒙,𝒎𝒎∙,𝑐𝑐) (𝑐𝑐,𝑛𝑛) ∈ (𝐶𝐶1 × 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 × (𝑁𝑁𝐼𝐼𝐼𝐼 ∪ 𝑁𝑁𝐼𝐼)) 
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An additional constraint is added to provide an upper bound on each 𝑖𝑖𝑛𝑛 using 𝒙𝒙′, for all 

𝑛𝑛 ∈ 𝑁𝑁:  

𝑖𝑖𝑛𝑛 ≤ max{�𝜌𝜌�𝑛𝑛′(𝒙𝒙′,𝒎𝒎∙,𝑐𝑐)�, (𝑐𝑐, 𝑛𝑛) ∈ (𝐶𝐶1 ×  𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) ∪ (𝐶𝐶 ×  (𝑁𝑁𝐼𝐼𝑈𝑈 ∪ 𝑁𝑁𝑈𝑈)) and 𝑛𝑛′ = 𝑛𝑛}. 

Similar updates and additional constraints are used for 𝑖𝑖1,𝑛𝑛, … , 𝑖𝑖5,𝑛𝑛, 𝑛𝑛 ∈ 𝑁𝑁, and the 

categorical factor MILP is updated as appropriate to comprise the complete improvement 

step. Additional solver time in the improvement step (90 seconds per discrete factor, 300 

seconds per categorical factor) safeguards against a solution 𝒙𝒙′ of poor quality from the 

simultaneous construction technique. 

 The NOAB-V approach is used to construct designs with 𝑛𝑛 = 144 through 240 in 

increments of 12. The augmentation technique sees larger 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  than the simultaneous 

construction for full nine-stage designs as well as three-stage designs where 𝑛𝑛 = 144, 192, 

and 240 (Table 14). The batch sequential techniques see smaller 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  overall when fewer 

stages are required. To lower 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  further, the simultaneous construction is attempted for 

only later stage sizes 𝑛𝑛 =192 and 240 in addition to the improvement step on nine-stage 

and three-stage simultaneous constructions. The restructuring of the MILP decreases 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  

for the nine-stage design, yet has inconsistent results for the three-stage design. Allowing 

the simultaneous construction to consider only stages 𝑛𝑛 =192 and 240, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  decreases 

even further, suggesting that a large enough 𝑛𝑛 should be selected for the first stage with 

respect to each NOAB design approach. A small number of repeated points were found for 

the nine-stage designs using the simultaneous construction technique (three design points) 
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and the improvement step (two points) as well as the two-stage design using simultaneous 

construction (one point).  

Table 14. 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  for NOAB-V Designs 

𝑛𝑛 Ind Aug Sim Imp Aug 
(Fewer) 

Sim 
(Fewer) 

Imp 
(Fewer) 

Sim 
(Later) 

144 0.0734 0.0734 0.0853 0.0772 0.0734 0.0616 0.0779 -- 
156 0.0489 0.1137 0.0859 0.0779 -- -- -- -- 
168 0.0532 0.1085 0.0850 0.0772 -- -- -- -- 
180 0.0541 0.1341 0.0953 0.0812 -- -- -- -- 
192 0.0434 0.1156 0.0885 0.0858 0.0881 0.0688 0.0746 0.0550 
204 0.0393 0.1147 0.0725 0.0727 -- -- -- -- 
216 0.0372 0.1191 0.0926 0.0800 -- -- -- -- 
228 0.0311 0.1111 0.0923 0.0766 -- -- -- -- 
240 0.0358 0.1051 0.0887 0.0753 0.0870 0.0672 0.0632 0.0560 

 

4.5.2 Batch Sequential NOAB Designs with Different Stage Approaches 

 In contrast to the constructions of batch sequential NOAB designs in the previous 

section, the aim now is to create designs that use different NOAB approaches for different 

stages of the overall design. In other words, the first stage design may use a NOAB-III 

approach, an intermediate stage may use NOAB-IV, and the last stage constructed may use 

NOAB-V. This gives even greater flexibility to an experimenter with respect to design 

choice by allowing for later stages to incorporate NOAB approaches that may not have 

been as appropriate in earlier stages. For the simultaneous construction, let 

𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 ={36},𝑁𝑁𝐼𝐼𝐼𝐼 = {72, 120}, and 𝑁𝑁𝐼𝐼 ={168, 240}. Correlations for the five-stage designs 

are also compared to three-stage designs that no longer include the 72-point and 168-point 

stages. The simultaneous construction technique outperforms design augmentation for both 
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the five-stage and three-stage designs (Table 15). The improvement step improves the 

respective correlations for each stage of the five-stage design, with inconsistent results for 

the three-stage design. Repeated points occur for the five-stage designs using augmentation 

(three design points) and the improvement step (three points) as well as the three-stage 

designs using augmentation (one point), simultaneous construction (three points), and the 

improvement step (three points), which typically appear in the later design stages. Such 

small numbers of repeated points can quickly be removed for designs associated with 

deterministic systems, potentially using design augmentation to replace such points. 

Heatmaps of the absolute correlations matrices for each stage of the three-stage design, 

constructed simultaneously and using the improvement step, are provided in Figure 29. 

The matrix rows are partitioned by first-order model terms, then two-way interactions, and 

then quadratics to show exactly which pairs of model terms have low correlations for the 

different stages. 

Table 15. 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 for Stages using Different NOAB Approaches 

Correlation 𝑛𝑛 Ind Aug Sim Imp Aug 
(Fewer) 

Sim 
(Fewer) 

Imp 
(Fewer) 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼   36 0.0000 0.0000 0.0680 0.0680 0.0000 0.0325 0.0325 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼  
72 0.0341 0.1147 0.0625 0.0564 -- -- -- 
120 0.0214 0.1089 0.0740 0.0733 0.0463 0.0375 0.0397 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  
168 0.0532 0.2288 0.0822 0.0731 -- -- -- 
240 0.0358 0.1500 0.0760 0.0699 0.1267 0.0450 0.0412 

 



110 

 

 

Figure 29. Absolute Correlations for Three-stage Design with Improvement Step 

 
4.6 Conclusions and Further Research 

 Simultaneous construction of batch sequential NOAB designs appears to be the 

preferred technique overall, though design augmentation works well when fewer stages are 

required, or when batches contain more design points. Experimenters have greater 

flexibility when using NOAB designs by implementing a batch sequential process, which 

allows for different design stages to use different NOAB approaches, based on which first- 

and second-order model terms are of most interest. Regardless of the NOAB approach used 

for each stage, it appears that the simultaneous construction technique works best when the 

higher resolution NOAB approaches are used at later stages and when each stage has 

enough new design points to achieve near orthogonality. Except for design augmentation 

when there are many stages, with small batches of design points, the batch sequential 

techniques perform relatively well in achieving low correlation values, even if the strict 

definition of near orthogonality is not always met. The developed improvement step for 

simultaneous construction was shown to lower correlations for designs with several stages, 

yet the improvement to correlations was inconsistent for designs with fewer stages. The 
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MILP constraints for limiting the number of repeated points also works as intended, though 

future research may find techniques that result in greater reductions of repeated points. 

 Further research may include updates to the NOAB design augmentation technique 

that could incorporate design points based on meta-model exploration or existing 

sequential sampling techniques, followed by later stages of augmentation based on one of 

the three NOAB approaches. In other words, the simultaneous construction remains a 

model-free space-filling design approach, while an updated augmentation technique could 

incorporate points from model-based sampling approaches that account for mixed-factors. 

For research concerning the combination of space-filling and optimal design, see [147].  
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V. A Recommendation System for First-order NOAB Designs with Multiple 

Performance Measures 

5.1 Abstract 

 The construction of nearly orthogonal-and-balanced (NOAB) designs is examined 

for full first-order models in a framework that is informed by the algorithm selection 

problem for multiple design performance measures and various design size and imbalance 

settings. Based on a randomly-generated set of large decision spaces, the choice of design 

size drives the changes in other design performance measures, with decision space features 

found to impact the measures as well. In this multi-objective setting, prediction of design 

performance within the framework consistently results in the recommendation of designs 

that perform well over an entire weight space in addition to designs for specific weights.  

Keywords: space-filling design, meta-model, desirability function, synthesized 

efficiency  

5.2 Introduction 

 Large decision spaces for complex, black-box systems often cannot be exhaustively 

explored, requiring space-filling experimental designs with possibly mixed factors (i.e., 

quantitative and qualitative with different numbers of levels). Such designs allow for the 

construction of meta-models to efficiently represent system responses, and the nearly 

orthogonal-and-balanced (NOAB) mixed-factor designs are a popular approach for these 

situations. Orthogonality allows for examination of individual factors separately and can 

be measured by the maximum absolute pairwise correlation of design matrix columns, 

denoted by 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚. An orthogonal design has 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 0, while a nearly orthogonal design 
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has 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0.05. The first-order NOAB designs are created to ensure near orthogonality 

between first-order model terms (i.e., main effects). A design is considered nearly balanced 

when the maximum imbalance for all factor columns, δ, is close to zero, which ensures that 

all levels for a factor are represented nearly equally. A construction method is developed 

for first-order NOAB designs in [1], though beyond a suggested range for the number of 

design points there exists a need for greater knowledge of design performance for different 

design sizes and other construction parameter settings. With design matrix columns 

constructed sequentially by solving various mixed-integer linear programs (MILP), there 

are many possible parameter settings that could be examined to determine how to create 

the “best” performing design for a specific study. The framework of an algorithm selection 

problem can aid in such understanding by examining different parameter settings in the 

design construction method for a number of different decision space problems. The aim is 

to accurately predict design performance to allow for efficient design selection and 

construction. This knowledge will also allow for the development of a recommendation 

system that accounts for multiple design performance measures of possible interest to an 

analyst.  

 Meta-learning was developed to understand learning algorithm performance for 

classification problems, and developments in meta-learning from many different fields 

have been generalized and presented in a unified framework in [6] that considers the 

algorithm selection problem as a learning problem. Rice formalized the algorithm selection 

problem in [108], where the abstract model (Figure 30) is comprised of a problem space 𝑅𝑅, 

feature space 𝐹𝐹, algorithm space 𝐴𝐴, and performance space 𝑌𝑌, with the algorithm selection 

problem stated as follows: 
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“For a given problem instance 𝑥𝑥 ∈ 𝑅𝑅, with features 𝑖𝑖(𝑥𝑥) ∈ 𝐹𝐹, find the selection 
mapping 𝑆𝑆(𝑖𝑖(𝑥𝑥)) into algorithm space 𝐴𝐴, such that the selected algorithm 𝛼𝛼 ∈
𝐴𝐴 maximizes the performance mapping 𝑦𝑦(𝛼𝛼(𝑥𝑥)) ∈ 𝑌𝑌.” [6] 
 

 The selection of a mapping function 𝑆𝑆 is also an algorithm selection problem. 

Though the algorithm space 𝐴𝐴 of interest will be a set of parameter settings for design 

construction, previous work in meta-learning for meta-model selection and other selection 

problems from [4], [116], [117], [125] can inform a model-based 𝑆𝑆 that accurately predicts 

design performance measures based on meta-features from the problem space (i.e., set of 

decision spaces). The process permits the ranking of algorithms (i.e., parameter settings) 

and can lead to automated learning. 

 

Figure 30. Diagram of Rice's model [4], [6], [108] 

 Design evaluation and comparison for when multiple performance measures are of 

interest are discussed, which will lead to how the performance space 𝑌𝑌 is defined. The 

algorithm selection problem for first-order NOAB design construction is then presented, 

with computational results for design performance as well as prediction performance of the 

resulting recommendation system provided. 



115 

5.3 Methodology 

5.3.1 Experimental Design Evaluation and Comparison 

 With respect to design performance measures, focus is placed on low experimental 

cost (the number of design points, 𝑛𝑛, for a design matrix 𝑋𝑋) as well as good model 

parameter estimation and prediction accuracy. The average and maximum unscaled 

prediction variance, UPV = 𝑥𝑥(𝑚𝑚)′(𝑋𝑋′𝑋𝑋)−1𝑥𝑥(𝑚𝑚), over all possible design points 𝑚𝑚 are 

examined, as in [77]. When it is infeasible to compute the exact average or maximum UPV 

over a large decision space, an estimate is calculated using a Monte Carlo approach for up 

to ten million points from the design/decision space. In order to consistently estimate UPV 

values, all constructed designs for the same decision space problem are compared using 

the same sampling of points. For good parameter estimation, the D-criterion, |𝑋𝑋′𝑋𝑋|1/𝑚𝑚, 

from [76] is used. Due to finding similar overall trends for the average and maximum UPV 

measures, only maximum UPV is used as a design performance measure in the framework 

due to the greater variability seen over design choices. In this multi-objective setting, the 

aim is to minimize 𝑛𝑛 and maximum UPV, while also maximizing the D-criterion.  

 The measures of various objectives should have the same scale in order to be 

comparable, so linear, one-sided desirability functions [82] are used for each of the criteria, 

with lower and upper limits set relative to the available designs [68]. A common approach 

for forming an overall desirability function for 𝑚𝑚 objectives is the multiplicative function 

𝐷𝐷 =  ∏ 𝑑𝑑𝑖𝑖
𝑤𝑤𝑖𝑖𝑚𝑚

𝑖𝑖=1 , for individual desirability scores 𝑑𝑑𝑖𝑖 and weights 𝑒𝑒𝑖𝑖, where ∑ 𝑒𝑒𝑖𝑖
𝑚𝑚
𝑖𝑖=1 = 1. 

The multiplicative function ensures that no individual objective scores too low. Synthesized 

efficiency (SEff), defined as  𝐷𝐷(𝑋𝑋,𝑒𝑒1, … ,𝑒𝑒𝑚𝑚)/ max
𝑋𝑋∗

𝐷𝐷(𝑋𝑋∗,𝑒𝑒1, … ,𝑒𝑒𝑚𝑚) for design 𝑋𝑋, is 
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used to examine how 𝑋𝑋 compares to the top performing design for various weightings 

(𝑒𝑒1, … ,𝑒𝑒𝑚𝑚) of overall desirability [68]. These techniques for design evaluation and 

comparison are used to obtain aggregate measures for the performance space. 

 
5.3.2 Algorithm Selection Problem 

 The problem space consists of 30 randomly-generated decision spaces (Figure 31) 

with between eight and 20 factors overall, where categorical factors have between three 

and seven levels and discrete factors have between two and 12 levels. Previous work in 

decision support efforts for portfolio selection inform the decision spaces having multiple 

factors of the same type with the same number of levels. Note that continuous factors in 

NOAB designs are a special case of discrete factors with 𝑛𝑛 levels equally spaced between 

zero and one. 

 The algorithm space is comprised of combinations of 𝑚𝑚 = 2, 3, … , 10 and 

maximum allowed imbalance 𝛿𝛿∗ = 0.05, 0.10, 0.15, 0.20, 0.25. The smallest balance-

feasible design size 𝑛𝑛 =  𝑚𝑚𝑏𝑏𝑒𝑒 ∙ 𝑒𝑒 ≥  𝑚𝑚 ∙ 𝑒𝑒 is attempted for each choice of 𝑚𝑚 where 𝑒𝑒 is 

the number of design matrix columns, so it is possible that multiple (𝑚𝑚, 𝛿𝛿∗) combinations 

result in a single combination of (𝑚𝑚𝑏𝑏𝑒𝑒, 𝛿𝛿∗). Larger 𝛿𝛿∗ values allow for greater imbalance 

and typically smaller values of balance-feasible 𝑛𝑛. Each MILP considers the set of design 

matrix columns for a single factor and is permitted up to two attempts of 30 seconds each 

to satisfy near orthogonality (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0.05). However, resulting designs with 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 > 0.05 

are also recorded for better prediction of design performance. It is possible that some 

smaller designs may not be able to achieve near orthogonality, yet may have acceptable 
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𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 depending on the particular study. Larger designs may require more run time in the 

MILP solver to achieve near orthogonality due to greater computational requirements. 

Problem Factor (number of levels) 
21 6 6 6 6 4 4 4 4 12 12 12 8 8 6 4 4 4 4 4 2 
13 6 6 6 6 6 3 3 11 10 10 10 10 10 6 6 6 6 6 2 2 
12 7 7 6 3 3 12 12 12 12 11 11 11 11 11 5 5 5 5 2 2 
15 6 5 5 5 5 12 11 11 10 10 10 8 7 6 6 6 5 3 3 3 
19 6 4 4 4 4 12 11 11 10 10 9 9 9 9 7 4 4 4 4 4 
20 7 7 7 7 7 6 6 11 11 11 11 6 6 6 6 2 2 2 2  
10 7 7 7 6 6 6 6 6 3 12 10 10 9 7 7 7 7 7   
25 3 3 3 11 11 10 10 10 7 7 5 5 5 5 5 3 3 2   
1 7 7 7 7 5 5 11 11 11 11 11 10 7 7 6 6     

29 7 6 6 6 6 6 12 9 9 7 5 5 5 5 2 2     
22 6 6 9 9 9 9 6 6 6 6 6 5 2 2 2 2     
18 7 7 9 9 9 9 9 7 7 6 6 6 6 6       
17 6 6 6 4 4 4 4 4 6 6 6 6 5        
4 7 6 6 6 6 10 10 10 10 9 5 5 5        

23 5 5 5 3 9 9 9 9 5 5 5 5 5        
26 4 4 4 10 10 10 10 10 3 3 2 2 2        
11 6 6 6 6 6 4 4 6 6 6 6 6         
8 6 6 6 3 3 11 11 11 9 4 4 3         
3 5 5 5 8 8 3 3 3 3 3 2 2         
6 6 6 6 10 9 9 7 4 4 4 4 4         
2 6 6 10 10 10 10 10 5 5 5 5 5         

24 4 4 8 8 8 7 7 6 6 6 6 6         
30 4 4 11 11 11 11 6 6 5 5 5 2         
27 6 6 7 7 7 7 7 6 6 6 2    Categorical   
7 3 9 9 9 9 7 4 4 4 3 3          

28 10 10 9 5 3 3 3 3 3 2 2    Discrete   
14 5 5 5 4 4 11 11 11 11 2           
16 7 7 3 3 10 10 8 5 5            
9 4 3 12 8 8 8 8 8 4            
5 7 4 4 8 8 6 6 6             

Figure 31. Generated Problem Set of Decision Spaces 

 The feature space includes 24 meta-features with the goal of sufficiently describing 

each decision space problem: the number of factors for each factor type (discrete and 

categorical) as well as statistical measures of the number of levels for each factor type, to 

include minimum, mean, maximum, Q1, median, Q3, sum, standard deviation, skewness, 

and kurtosis. The product of all numbers of levels (i.e., full factorial design size) and least 

common multiple of all numbers of levels are also included as meta-features. 
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 The performance space is multi-objective where the aim is to minimize design size 

𝑛𝑛 and estimated maximum UPV, while maximizing the parameter estimation measure D-

criterion. As previously discussed, linear desirability functions of the three measures form 

an overall multiplicative desirability, with weights given to each individual desirability. 

The entire weight space {(𝑒𝑒1,𝑒𝑒2,𝑒𝑒3)|∑ 𝑒𝑒𝑖𝑖
3
𝑖𝑖=1 = 1} is sampled using a 5,000-point space-

filling mixture design. While multiplicative desirability for a specific set of weights can be 

informative, designs that are robust to weightings can also be found by examining average 

and minimum synthesized efficiencies (SEffs) over the weight space. With respect to 

overall desirability, average SEff, and minimum SEff over the weight space, the relative 

performance of the top five predicted designs is compared with that of the actual top 

performing design and Spearman’s rank correlation coefficient is used to compare the 

actual and predicted rankings. 

 A model-based approach examines a set of possible mappings 𝑆𝑆 from the parameter 

settings and meta-features to each of the performance measures, where the meta-model 

providing the smallest root mean square error (RMSE) for each measure is selected. The 

meta-models considered include artificial neural networks (ANN) [84]–[86], classification 

and regression trees (CART) [99], multivariate adaptive regression splines (MARS) [98], 

Gaussian processes (GP) with linear, polynomial, and radial kernels [88], [90], [91], 

random forests (RF) [148], and support vector machines (SVM) with linear, polynomial 

and radial kernels [103], [104]. Each meta-model uses the standard parameter grid search 

settings from the R package caret.  The training and test instances are important for 

determining the meta-model 𝑆𝑆, so all observations for the problem to be predicted are held 

out from the training data. In order to reduce bias in design performance predictions, 10-
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fold cross-validation is used where the training data is randomly partitioned so that all 

designs for the same problem instance will exist in either the training or validation set for 

each of the folds.  

5.4 Computational Results 

5.4.1 First-order NOAB Design Performance 

 Design construction is implemented in MATLAB R2015a using CPLEX V12.6.1 

to obtain MILP solutions. Over the 30 decision space problems, there are 1,304 constructed 

designs in total, resulting from distinct combinations of 𝑚𝑚𝑏𝑏𝑒𝑒 and 𝛿𝛿∗ parameters. In Figure 

32, there are clear trends in D-criterion as well as average and maximum UPV estimates 

over the true design size 𝑛𝑛 and relative size 𝑚𝑚𝑏𝑏𝑒𝑒. For designs of the same size, those 

requiring fewer columns tend to be more desirable for each design performance measure. 

The relative design size 𝑚𝑚𝑏𝑏𝑒𝑒 appears to have a strong relationship with average UPV, while 

designs with fewer columns tend to have higher maximum UPV for designs of the same 

relative size. It is clear that the choice of relative design size 𝑚𝑚 is important as well as the 

number of columns 𝑒𝑒 in the design matrix. The number of columns is comprised of defined 

meta-features, since each discrete factor is represented by a single column and each 

categorical factor with ℓ levels is represented by ℓ − 1 columns when using effect coding. 
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Figure 32. First-order NOAB Design Performance 

 Only 181 of 1,304 constructed designs are found to not be nearly orthogonal (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 

> 0.05), yet 26 larger designs (with 𝑚𝑚𝑏𝑏𝑒𝑒 ≥ 8) can be constructed with near orthogonality 

when the MILP solver is permitted 60 seconds rather than 30 seconds per attempt (not 

shown in Figure 32). This is consistent with the overall trend for 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 as well as the idea 

that larger designs have greater computational requirements. When provided enough time 

in construction, it appears that larger designs will generally result in sufficient 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚. The 
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remaining 155 smaller designs that do not satisfy near orthogonality suggest that if small 

𝑛𝑛 is of the greatest concern to an analyst, even for problems requiring a small number of 

design matrix columns, they should examine whether the resulting 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 is sufficient for 

their particular problem.  

5.4.2 Prediction Performance of Recommendation System 

  Design size 𝑛𝑛 is predetermined by each choice of 𝑚𝑚 and 𝛿𝛿∗ (and thus, 𝑚𝑚𝑏𝑏𝑒𝑒) using 

the balance-feasibility test from [1]. For prediction of D-criterion, SVM with a polynomial 

kernel results in the smallest RMSE over all 30 training sets, with no other meta-model 

providing similarly small RMSE. For maximum UPV, RF provides the smallest RMSE for 

all 30 training sets with an average RMSE of 0.0225, while MARS provided the second 

best average of 0.0260. Figure 33 shows the actual versus predicted values of D-criterion 

and maximum UPV as well as their respective desirability scores for all 1,304 designs. The 

desirability scores for D-criterion are scaled relative to the designs found for each problem, 

which appear to resolve some of the bias that exists for a small number of problems. 

 

 

Figure 33. Actual by Predicted Design Performance 
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Table 16. Top-k Relative Performance and Spearman's Correlation Coefficient 

  Robust Selections Multiplicative Desirability  
Over Weight Space 

Over Problem Space avg SEff min SEff min avg 

Top-k  
Relative Performance 

1 

min 

0.9817 0.9809 0.8143 0.9823 
2 0.9906 0.9868 0.8813 0.9888 
3 0.9913 0.9913 0.9601 0.9920 
4 0.9914 0.9922 0.9601 0.9943 
5 0.9914 1.0000 0.9601 0.9974 
1 

avg 

0.9959 0.9966 0.9758 0.9965 
2 0.9978 0.9976 0.9916 0.9983 
3 0.9982 0.9989 0.9926 0.9991 
4 0.9985 0.9994 0.9940 0.9995 
5 0.9987 1.0000 0.9964 0.9998 

Spearman's correlation 
coefficient 

 

min 0.9613 0.9469 0.8475 0.9681 
avg 0.9764 0.9732 0.9652 0.9872 

 

 The larger residuals for high maximum UPV (low desirability) occur when design 

size 𝑛𝑛 is small (high desirability), causing a small region of the weight space to have lower 

top-k relative performance and Spearman's correlation coefficient when examining the 

multiplicative overall desirability (Table 16). Otherwise, the top-k relative performance 

and Spearman’s correlation coefficient are satisfactory for both robust design 

recommendations using average SEff and minimum SEff as well as multiplicative 

desirability for specific weights. For example, if we examine the top-1 relative performance 

for multiplicative desirability, the worst case (minimum) over both the weight space and 

problem space gives 0.8143, while the worst-case average over the 30 problems is 0.9753 

and the worst-case average over the weight space is 0.9823. Though parameters associated 

with the most desirable designs will change over the weight space, common selections for 
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𝑚𝑚𝑏𝑏𝑒𝑒 across all problems are 6 and 7 for high average SEff (often near 0.89) and 6 for high 

minimum SEff (often near 0.5). Increasing 𝛿𝛿∗ generally relaxes balance constraints to 

achieve smaller 𝑛𝑛, and thus, 𝑚𝑚𝑏𝑏𝑒𝑒. 

 For a single decision space in this set of problems, the best and worst case for 

computation time required to construct designs for all (𝑚𝑚𝑏𝑏𝑒𝑒 ,𝛿𝛿∗) combinations are 

approximately two and 14 hours, respectively. For the recommendation system, building 

meta-models for D-criterion and maximum UPV on existing design data requires roughly 

30 seconds when using the respective mappings of SVM with polynomial kernel and RF. 

Constructing a single, recommended design within this problem space needs only between 

three and 19 minutes. It is clear that the developed framework and resulting 

recommendation system allow for efficient selection and construction of first-order NOAB 

designs. 

5.5 Conclusions and Further Research 

 This work shows it is possible to accurately predict first-order NOAB design 

performance measures for various design sizes and maximum allowed imbalance settings. 

These predictions permit a recommendation system that can provide both robust selections 

in the form of designs that have high average and maximum SEff over the weight space as 

well as designs that perform well for specific weights. For the 30 decision space problems 

considered, larger designs are generally more desirable with respect to good model 

parameter estimation as well as low prediction variance. Decision spaces with more design 

matrix columns tend to need more design points to achieve performance similar to other, 

smaller decision spaces.  
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 We have derived extensions to the original first-order construction method to allow 

for the creation of second-order NOAB designs (i.e., near orthogonality includes two-way 

interactions and quadratic effects) (Chapter III), which may be examined in a similar 

framework. The second-order extensions also allow for an examination of NOAB 

resolution IV screening designs, in contrast to the first-order NOAB, or NOAB resolution 

III designs, that are the focus of this work. Additionally, future work could examine the 

computational requirements of these approaches based on the decision space of interest, 

whether by changing the allowed run time or implementing other stopping criteria for the 

MILP solver. A comparison with computer-generated optimal designs is also warranted for 

a large number of decision spaces with multiple performance measures of interest.  
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VI. Comparison of Mixed-factor Space-filling Designs for Meta-model 

Recommendation Systems 

6.1 Abstract 

 Systems often have complex behavior and can be computationally expensive to 

evaluate. When there are many system input variables of interest in a study, exhaustive 

evaluation can be infeasible. Space-filling experimental designs are used to efficiently 

represent an entire design space for such variables, where the system output observed from 

the design are used to fit meta-models that can approximate each output variable for an 

entire input space. Space-filling designs that account for categorical, discrete, and 

continuous input variables (i.e., mixed factors) are compared in a case study with respect 

to the resulting meta-model performance. Beyond the question of which experimental 

design to use, it is not always clear which meta-modeling technique provides the best fit 

for an output variable, and fitting and comparing many meta-models for a large number of 

outputs can be costly and subjective. After selecting a second-order nearly orthogonal-and-

balanced design (NOAB-V) as an appropriate mixed-factor experimental design, a meta-

model recommendation system, based on the features of each output variable, is developed 

for a notional, complex system. The selected recommendation system suggests meta-

models for 30 system outputs, with an average relative performance of 96.52% when 

compared to the true best and worst meta-models. 

Keywords: operations research; computer simulation; experimental design; algorithm 

selection problem; nearly orthogonal-and-balanced 
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6.2 Introduction 

 Systems often have unknown, complex behavior and can be computationally 

expensive to evaluate. In this context, complex behavior may be nonlinear and difficult to 

model due to underlying subsystem or component interactions. When a system has many 

input variables of interest in a study, exhaustive evaluation can be infeasible. Experimental 

designs can accommodate these challenges by evaluating an efficient and representative 

subset of all possible input combinations of interest. Such designs are said to have good 

space-filling properties. The resulting experimental observations for each system output 

are then fitted to a meta-model, or surrogate model, that approximates the output for the 

entire input space. This meta-modeling approach allows engineers and analysts an efficient 

way of gaining insights from a complex system, whether it be a computer simulation or 

even a physical black box. For many systems in general, input variables can be categorical 

(e.g., should a new subsystem/feature be added or not? or which system mode should be 

used?), discrete (e.g., how many subsystems of a certain type are needed?), or continuous 

(e.g., how to set parameters/dials of system components?). When these different types of 

variables (i.e., factors) occur for the same system and different numbers of input values 

(i.e., factor levels) are possible, the system is said to have mixed factors.  

 Section 6.3 details a notional, complex system with mixed factors of interest used 

in the study. Section 6.4 describes a common approach for mixed-factor space-filling 

designs, the nearly orthogonal-and-balanced (NOAB) design, and compares recent 

extensions from Chapter III to the original NOAB design method in [1] for different design 

sizes (i.e., number of design points, or rows in the design matrix). Beyond the question of 
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which experimental design to use, it is not always clear which modeling technique will 

provide the best fit for each output, and fitting and comparing many meta-models for a 

large number of outputs can be costly and subjective. After choosing an appropriate 

experimental design, a recommendation system is developed in Section 6.5 with the aim 

of being able to efficiently recommend a single meta-model to use for new system outputs, 

based on features extracted from each output. The algorithm selection problem [108], as 

presented in [4], [6], provides a framework to develop this meta-model recommendation 

system. 

6.3 Complex System with Mixed Factors  

 The notional system has seven input variables and 30 output variables (Figure 34). 

The aim is to use observations of the true system that result from a space-filling 

experimental design to approximate system output over the entire input space of interest. 

 

Figure 34. Overview of Experimental Design and Meta-modeling for Case Study 

 This complex system with mixed factors is constructed from 30 continuous 

benchmarks functions from the IEEE Congress on Evolutionary Computation (CEC) 2014 

Special Session and Competition on Single Objective Real-Parameter Numerical 

Optimization [149]. Each of the benchmark functions act as an individual output for the 

system, consisting of three unimodal functions, 13 simple multimodal functions, six hybrid 
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functions, and eight composition functions, originally treated as black-box optimization 

problems in continuous space. Each function has 10 input variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋10 with 

domains of [-100,100], which are adapted to represent a system with seven mixed factors 

as follows:  

• five-level categorical factor, where three of the original continuous inputs are 
confounded with randomly-selected choices (𝑋𝑋1,𝑋𝑋2, 𝑋𝑋3) = (-46, -4, -31), (62, 71, -
31), (-45, 10, -45), (-63, -30, -76), or (-9, 48, 62) to represent the five levels 

• three-level categorical factor, where two of the original continuous inputs are 
confounded with randomly-selected choices (𝑋𝑋4,𝑋𝑋5) = (-37, 41), (-38, 79), or (25, 
-16) to represent the three levels 

• three discrete factors with 12, nine, and four evenly-spaced levels over the domain 
[-100,100], respectively, for 𝑋𝑋6,𝑋𝑋7, 𝑋𝑋8 (e.g., the four-level discrete factor can have 
values of approximately -100, -33.33, 33.33,  and 100 for input variable 𝑋𝑋8) 

• two continuous factors with 41 evenly-spaced levels over the domain [-100,100], 
respectively, for 𝑋𝑋9,𝑋𝑋10. 
 

 The system is assumed to be deterministic, i.e., the same output is observed 

whenever inputs are repeated. Otherwise, the experimental designs would require repeated 

points to examine system randomness. No other assumptions are made with respect to the 

behavior of the system other than that 41 levels will provide sufficient fidelity for the two 

continuous factors.  

6.4 Mixed-factor Space-filling Designs 

6.4.1 Design Approaches 

 By comparing how various experimental designs perform with respect to how well 

resulting meta-models fit the data, this case study is intended as a proof-of-concept for 

other studies that may benefit from the use of mixed-factor space-filling designs. A 

common design for complex systems with mixed factors is the nearly orthogonal-and-

balanced (NOAB) design from [1]. Near orthogonality allows for separation of factors (i.e., 
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input variables) when examining relationships with outputs and means that there is 

sufficiently low correlation between columns of the experimental design matrix 

representing each factor (typically, the absolute value of these pairwise correlations are 

less than 0.05). Near balance means that the possible factor levels (i.e., input values) are 

represented a nearly equal number of times for each factor in the design.  

 The three main design approaches are NOAB-III, NOAB-IV, and NOAB-V. The 

NOAB-III from [1] constructs a design so that there is low correlation between design 

columns representing first-order effects. The NOAB-IV and NOAB-V are extensions of 

the NOAB-III that are derived in Chapter III, which are constructed to have low correlation 

between columns representing first- and second-order effects. The NOAB-V approach 

solves for low correlation for all possible pairs of first- and second-order effects, while the 

NOAB-IV approach ignores correlations between second-order effects. These three 

approaches are used to construct designs of size 164, 246, 328, 410, 508, and 600, sizes 

that allow for a maximum imbalance for all factors of 0.05. Imbalance for a factor 𝑥𝑥 is 

defined as 𝛿𝛿𝑥𝑥 = max
𝑖𝑖=1,…,ℓ𝑥𝑥

|(𝑒𝑒𝑖𝑖,𝑥𝑥 − (𝑛𝑛/ℓ𝑥𝑥))/(𝑛𝑛/ℓ𝑥𝑥)|, where 𝑒𝑒𝑖𝑖,𝑥𝑥 is the number of times level 

𝑖𝑖 occurs for factor 𝑥𝑥 with ℓ𝑥𝑥 possible levels for design size 𝑛𝑛. The six design sizes and three 

approaches result in 18 design combinations, each of which are used to construct eight 

different designs to examine possible variation in resulting meta-model performance. 

6.4.2 Design Comparison: Resulting Meta-model Performance 

 While the different design sizes and NOAB approaches have previously been 

compared with respect to traditional design properties, where larger design sizes and the 

NOAB-V designs have been shown to outperform smaller designs and other approaches, 
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respectively, we aim to show a more practical comparison of such designs by examining 

how well the resulting meta-models fit the complex behavior of a system. We consider a 

collection of 10 modeling approaches from the R software package caret, consisting of 

artificial neural networks (ANN), classification and regression trees (CART), multivariate 

adaptive regression splines (MARS), Gaussian processes (GP) with linear, polynomial, and 

radial kernels, random forests (RF), and support vector machines (SVM) with linear, 

polynomial, and radial kernels. Each of the 10 meta-model types was fitted to each of the 

30 system outputs using standard parameter tuning in R and 10-fold cross validation.  

 To examine the performance of a single design approach in practice, the meta-

model resulting in the smallest normalized root mean square error (NRMSE) is selected 

for each of the system outputs and that smallest NRMSE is then averaged for the 30 system 

outputs (i.e., 30 selected meta-models). NRMSE is often normalized using the largest 

observed difference or the mean of a system output with respect to the exact design being 

used. In order to better compare the different design approaches, we calculate the root mean 

square error using 100,000 randomly sampled design points, which is then normalized by 

the actual largest observed difference in system output over the entire design space. This 

normalization gives a more accurate sense of how the design approaches compare with 

respect to the resulting meta-model fits, and is made possible due to the notional system 

having significantly faster evaluation times than one would typically expect when meta-

modeling a complex system. 



 

131 

 

Figure 35. Average NRMSE for Selected Meta-models by Design Size and Approach 

 Figure 35 shows that while larger design sizes appear to generally result in lower 

NRMSE for each selected meta-model, with some variability within the combinations of 

design size and approach, the NOAB-V approach typically outperforms NOAB-IV, and 

NOAB-IV often outperforms NOAB-III. Many of the NOAB-V designs appear to perform 

nearly as well as NOAB-III designs that have approximately 80 more design points. Thus, 

the already efficient NOAB-III is further improved upon by using NOAB-IV and -V 

approaches, with smaller improvements seen for larger design sizes. We will now examine 

how a recommendation system for meta-models performs using a mixed-factor NOAB-V 

design with 600 points, randomly selected from the eight constructed designs of this 

approach and size. 
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6.5 Meta-model Recommendation System 

6.5.1 Framework 

 The algorithm selection problem framework in Figure 36 shows how a meta-model 

recommendation system can be built. For the 30 system outputs to be meta-modeled (which 

comprise the problem space), features are extracted from each system output to be mapped 

to which of the 10 meta-models (the algorithm space) with the aim of having the best meta-

model fit (the performance space), measured again by normalized root mean square error 

(NRMSE).  

 

Figure 36. Diagram of Algorithm Selection Problem Framework [4], [6], [108] 

 The feature space consists of 15 meta-features from [4]:  

• mean, median, standard deviation, and maximum of the gradient of the simulation 
output (1-4),  

• mean, standard deviation, skewness, kurtosis, Q1 (first quartile), median, and Q3 
(third quartile) of the simulation output (5-11),  

• ratio of outliers in the simulation output (by repeatedly using Grubbs test to 
iteratively remove outliers) (12), 

• ratio of local minima and maxima within a neighborhood (13-14), and 
• average local biggest difference in simulation output (15).  

 
 The gradient for each point is defined as the difference between the output values 

for that point and the nearest neighbor. The local neighborhood is defined as the five nearest 

neighbors for features 13 through 15. Effect coding with values of -1, 0, and 1 is used for 
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the categorical factors when fitting meta-models as well as when extracting features from 

the system output that rely on a sense of distance between the input variables.  

 A meta-model based meta-learner (or algorithm selection mapping) is used to map 

the 15 meta-features to predict NRMSE for each of the 10 meta-models. Determining a 

meta-learner that works well is itself an algorithm selection problem. We compare 11 meta-

learners, 10 of which are the meta-models in question for the recommendation system as 

well as an additional meta-learner that uses k-nearest neighbor. The meta-learner parameter 

settings are tuned using the default settings in the R caret package. The recommendation 

system framework from [4] suggests the use of singular value decomposition (SVD) to 

reduce the feature space, which allows us to reduce the dimensionality from 15 meta-

features to a rank five approximation. In all, 22 recommendation systems are developed 

for combinations of 11 meta-learners with and without feature reduction using SVD. 

6.5.2 Recommendation Performance 

 While the performance space of the framework is focused on NRMSE for meta-

model performance, we must also measure the accuracy of the recommendation system 

itself with respect to meta-model selection. Three measures are used to examine meta-

model recommendation performance for the 30 system outputs: average relative 

performance of the recommended meta-model when compared to the true best- and worst-

performing meta-models in Figure 37 (i.e., the NRMSE from each recommended meta-

model is scaled by the largest and smallest NRMSE over all meta-models fitted to the same 

system output so that the meta-models with smallest and largest NRMSE have relative 

performance of 1 and 0, respectively), average difference in NRMSE between the selected 
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meta-model and the true best (Figure 38), and the number of times the true best-performing 

meta-model is recommended (Figure 39). The k-NN meta-learner with and without SVD 

as well as GP with SVD appear to provide the largest average relative performance values 

among the recommendation systems (0.9652, 0.9568, and 0.9557, respectively, in Figure 

37). Feature reduction using SVD does not appear to consistently improve or worsen the 

average relative performance of the 11 meta-learners.  

 The recommendation system with k-NN meta-learner using all 15 features provides 

the smallest average difference in NRMSE between the recommended meta-models and 

true best meta-models (0.00199 in Figure 38). The use of SVD improves the average 

differences in NRMSE for eight of the 11 meta-learners, suggesting that SVD can be useful 

to reduce the dimensionality of the feature space and possibly remove noise in the data, yet 

may worsen the average relative performance of a recommendation system due to 

improving the fit of the true worst meta-model. The two top-performing recommendation 

systems based on the number of times a true best meta-model is selected use the SVM with 

polynomial kernel and k-NN meta-learners, both with all features included (16 and 15, 

respectively, in Figure 39). While these top performers do not select the true best meta-

models in every case, the average relative performance and average difference in NRMSE 

measures would indicate that both recommendation systems perform well for this case 

study. 
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Figure 37. Average Relative Performance over 30 System Outputs by Meta-Learner 

 

 

Figure 38. Average Difference from True Best NRSME over 30 System Outputs by 

Meta-learner 
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Figure 39. Number of True Best Meta-models Recommended for 30 System Outputs by 

Meta-learner 

 Figure 40 shows the NRMSE for 30 selected meta-models using the 

recommendation system with k-NN meta-learner and all 15 meta-features. When compared 

with the true best and true worst meta-models, the recommended meta-models perform 

relatively well overall. While the choice of meta-modeling approach greatly changes the 

NRMSE for most of the system outputs, there are several outputs that do not have a large 

difference in NRMSE for the 10 different meta-models and tend to have the largest 

NRMSE. The 30 true best meta-models include eight GP (poly), 11 RF, eight SVM (poly), 

one MARS, one CART, and one SVM (radial). The 30 recommended meta-models include 

13 GP (poly), 12 RF, and five SVM (poly). It is clear that while the chosen recommendation 

system selects only three different meta-model approaches, relatively good meta-models 

are selected for each system output.  
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Figure 40. NRMSE by System Output 

6.6 Conclusions 

 In this case study of a notional, complex system with mixed factors, the NOAB-V 

designs outperform NOAB-IV and -III designs when examining the best-fitting meta-

models of system outputs. The resulting meta-model recommendation system, built from 

observations using a 600-point NOAB-V design and using a k-NN meta-learner, shows the 

importance of meta-model selection and suggests meta-models that provide relatively good 

fits when compared to the true best- and worst-performing meta-models. However, the true 

best meta-model was typically not recommended for more than half of the system outputs. 

This study uses a feature space that does not incorporate statistical features of input types 

(categorical, discrete, and continuous) or numbers of levels. The inclusion of such meta-

features may not only result in better recommendations, but also allow for the 

recommendation system to extend to multiple mixed-factor systems with different input 

spaces. A construction tool for these NOAB design approaches will be available on the Air 

Force Institute of Technology website.  
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VII. Recommendations for Future Research 

 Future areas of research may include updating the objective functions of the MILP 

formulations to achieve certain design properties. Implementing weights for the maximum 

absolute correlation estimates 𝑖𝑖, 𝑖𝑖1, … , 𝑖𝑖5 may benefit both the individual designs in 

Chapter III as well as the multiple stages of the batch sequential NOAB designs in Chapter 

IV. Techniques such as priority weighting may be useful when specific model terms are of 

greater interest, while low correlations overall are desired. The batch sequential 

formulations could also be updated to account for different maximum allowed imbalances 

depending on the design stage, so that requirements for smaller stages could be relaxed in 

order to have smaller balance-feasible design sizes available. Using the techniques 

developed in this research, deriving similar pairwise correlation estimates for third-order 

or higher model terms with respect to the current factor column(s) may prove difficult, 

though higher-order terms for the set of previously constructed columns (i.e., associated 

first-order model terms) could be incorporated in each MILP formulation. 

 Chapters III and IV placed little emphasis on setting low MILP solver times due to 

the significant amount of time required for planning and simulation in the real-world efforts 

that this research supports. The Appendix provides a batch sequential NOAB design that 

permits only 10 seconds of solver time per factor and stage, showing that significant 

reductions in time requirements may not practically hinder design performance. An in-

depth examination of the time requirements for the construction methods is warranted if 

such techniques were to be used in statistical software, where the commercial expectation 

is typically to receive good designs quickly. However, there may be benefit in allowing 
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longer solver times for later factor columns, since there are more correlations to consider 

in the MILP formulation.  

 In this research, there was an initial attempt at developing a heuristic approach to 

construct the various NOAB designs. However, determining a good move set that ensures 

near balance, while aiming to minimize the various correlations, proved challenging.   

 The MILP formulations lend themselves to partitioning of the design matrix not 

only by consecutive rows as in the batch sequential approach, but also for arbitrary subsets 

of rows, allowing for an improvement scheme where most rows are fixed and a subset of 

rows are resolved in the MILP. As with design augmentation, this approach may alleviate 

issues with computer memory when the number of design points, and the number of 

associated decision variables, becomes too large. Chapter IV also discusses potential 

improvement to the batch sequential NOAB designs by incorporating augmentation of 

model-based or optimal points.  

There is also potential benefit in updating the MILP formulations to account for LH 

sampling with respect to continuous factors, so that factor levels are bound by intervals and 

are not just evenly-spaced within the entire interval. The MILP formulations allow for the 

user to define specific factor level values, so random values could be assigned within the 

appropriate intervals, with reassignments for each additional solver attempt (i.e., if a 

sufficient factor column was not found). Another option would be to keep the evenly-

spaced level values, but add a continuous decision variable that shifts each level 

assignment, though there is no immediately clear way to linearize the constraints for such 

an approach.   
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In the recommendation system for first-order NOAB designs (Chapter V), the 

desirability functions are bound by the worst- and best-performing choices available. An 

examination of how recommendations may change when using user-defined bounds rather 

than relative performance could be beneficial. Though the imbalance parameter was found 

to mostly impact how small a NOAB design could be, due to balance-feasibility, an 

analysis of designs with larger allowed imbalances may be of interest in order to observe 

any practical differences in the first-order NOAB design performance. Note that the 

second-order NOAB designs rely on small imbalances for accurate correlation estimates 

used in the construction method. The recommendation system for NOAB designs could be 

updated to examine additional settings such as computation time and the number of MILP 

solver iterations per design and factor. A similar algorithm selection problem framework 

could be used to develop recommendation systems for second-order NOAB designs and 

batch sequential NOAB designs to better understand and accurately predict performance 

of these new designs.  

With respect to the meta-model recommendation system for mixed-factor systems 

(Chapter VI), future work may include an examination of the important meta-features 

found across the various system outputs. There is also opportunity to incorporate different 

design spaces for a more robust recommendation system. The Appendix provides a 

supplementary look at the correlations of the designs constructed in Chapter VI. 
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VIII. Conclusions 

 While the original, first-order NOAB designs can accommodate the computational 

challenges associated with complex systems, simulations, and real-world decisions, the 

second-order NOAB designs developed in this research are shown to provide practical 

improvement when fitting meta-models to system outputs (Chapter VI), while also 

improving design performance measures associated with second-order model parameter 

estimation and prediction variance (Chapter III). When assuming a first-order model, the 

second-order extensions allow for designs that protect against model misspecification with 

respect to second-order terms. The indexing within the MILP formulations can also be 

updated to focus on specific first- and second-order model terms of interest. Many studies 

may see value in a process that uses a NOAB-III or NOAB-IV design approach for initial 

screening of a large number of factors, followed by the second-order NOAB-V approach 

for significant factors and their associated second-order effects.  

 Two techniques were developed for construction of batch sequential NOAB 

designs, with simultaneous construction outperforming design augmentation overall, 

though each stage requires a predefined number of design points. Design augmentation was 

found to work well when there was a sufficiently large number of design points between 

each stage. The batch sequential NOAB designs give greater flexibility in how an 

experiment is conducted by providing mixed-factor designs that can be implemented in 

multiple stages, have been shown to have good space-filling properties, and can result in 

meta-models having better prediction accuracy. A natural path for future research is to 
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examine how model-based or optimal points can be augmented to these design for even 

better performance. 

 The algorithm selection problem framework was used to develop an accurate 

recommendation system for selection and construction of designs using the NOAB-III 

approach. In a multi-objective setting with a focus on design size, prediction variance, and 

good model parameter estimation, the prediction of design performance measures within 

the framework consistently results in design recommendations that are robust to changes 

in performance weights. The choice of design size was found to be the largest driver of 

changes in performance measures, with relaxed imbalance settings permitting smaller 

balance-feasible design sizes. Design spaces requiring more design matrix columns tend to 

need more design points to achieve performance similar to other smaller design spaces.  

The meta-model recommendation system, built from observations using a 600-

point NOAB-V design and a k-nearest neighbor meta-learner, suggests meta-models that 

provide relatively good fits when compared to the true best- and worst-performing meta-

models. The poor performance of some meta-models, even when using a good 

experimental design, highlights the importance of selecting meta-modeling techniques that 

fit each system output well and of not relying on a single type of meta-model. This research 

not only contributes to the ever-advancing stream of research on experimental designs for 

complex systems, but also provides further examples of how the algorithm selection 

problem framework can be used to gain insight on challenging problems, whether those 

algorithms are construction methods for first-order NOAB designs or meta-models for 

approximation of complex system behavior. 
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Appendix 

Supplementary Background Material from [1] 
 

𝛿𝛿 ← 𝟎𝟎 
for 𝑗𝑗 = 1, 𝑗𝑗 < 𝐾𝐾 do 
 if 𝐶𝐶�𝑥𝑥𝑖𝑖� ∈ {2,3} do 

  𝛿𝛿𝑥𝑥𝑗𝑗 ←  �
ℓ𝑥𝑥𝑗𝑗
𝑛𝑛
� max ��� 𝑛𝑛

ℓ𝑥𝑥𝑗𝑗
� − 𝑛𝑛

ℓ𝑥𝑥𝑗𝑗
� ,� 𝑛𝑛

ℓ𝑥𝑥𝑗𝑗
− � 𝑛𝑛

ℓ𝑥𝑥𝑗𝑗
��� 

  𝛿𝛿 ← 𝐦𝐦𝐦𝐦𝐦𝐦 �𝛿𝛿, 𝛿𝛿𝑥𝑥𝑗𝑗� 
 end 
end 
if 𝛿𝛿 >  𝛿𝛿∗ 
 RETURN “No feasible solution exists with current balance constraints. 
Increase 𝑛𝑛 until the feasibility check is passed, or set 𝛿𝛿∗ =  𝛿𝛿” 
else RETURN “Initial balance feasibility check passed” 

Figure 41. Balance Feasibility Test – Original Notation [1] (Updates in Bold) 
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𝑏𝑏 ← 0 

if {𝑏𝑏 < 𝑏𝑏∗} 

 𝑀𝑀0 ← ∅,𝑀𝑀�0 ← ∅ 
 𝑗𝑗 ← 0 
 if {𝑗𝑗 < 𝐾𝐾} 𝑑𝑑𝑜𝑜 
  𝑒𝑒𝑜𝑜𝑙𝑙𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖+1 ← “FALSE”  
  ℎ ← 1 
  if {ℎ < ℎ∗ AND 𝑒𝑒𝑜𝑜𝑙𝑙𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖+1 =  “FALSE” } 𝑑𝑑𝑜𝑜 
   𝑜𝑜 ← 𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛 
   𝑥𝑥 ← an 𝑛𝑛 × 1 vector, randomly generated from 𝑥𝑥 ∈ ℬ��𝑛𝑛, 𝑐𝑐𝑖𝑖+1� 
   if {𝑜𝑜 < 𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥  𝐴𝐴𝑁𝑁𝐷𝐷 𝑒𝑒𝑜𝑜𝑙𝑙𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖+1 =  “FALSE” } 𝑑𝑑𝑜𝑜  
    call MILP using 𝑀𝑀�𝑖𝑖 , 𝛿𝛿∗, 𝑜𝑜, 𝑥𝑥, ℓ𝑥𝑥 ,  and 𝐶𝐶(𝑥𝑥) 
    𝑖𝑖∗ ← MILP objective function value 
    𝑥𝑥∗ ← MILP modified column vector 
    𝑒𝑒𝑥𝑥∗ ← standard deviation of 𝑥𝑥∗ 
    if {𝑖𝑖∗ ≤ 𝛼𝛼∗𝑒𝑒𝑥𝑥∗} 𝑑𝑑𝑜𝑜 
     𝑒𝑒𝑜𝑜𝑙𝑙𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖+1 ←  “TRUE” 
    else if {𝑖𝑖∗ > 𝛼𝛼∗𝑒𝑒𝑥𝑥∗ AND t < 𝑜𝑜𝑚𝑚𝑚𝑚𝑥𝑥  } do 
     𝑜𝑜 ← 𝑜𝑜 +  𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛 
    else do 
     ℎ ← ℎ + 1 
     𝑜𝑜 ← 𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛 
    end 
   end 
  end 
  if {𝑒𝑒𝑜𝑜𝑙𝑙𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖+1 =  “TRUE”} do 
   if {𝐶𝐶(𝑥𝑥) = 3 (i.e., 𝑥𝑥 is categorical)} do 
    𝑥𝑥∗𝑖𝑖 ←  𝑖𝑖th indicator vector associated with 𝑥𝑥∗ (𝑖𝑖 = 1, 2, … , ℓ𝑥𝑥 − 1) 
    𝑀𝑀�𝑖𝑖+1 ← [𝑀𝑀�𝑖𝑖   𝑥𝑥∗1  𝑥𝑥∗2   ⋯  𝑥𝑥∗(ℓ𝑥𝑥−1)] 
   else do 
    𝑀𝑀�𝑖𝑖+1 ← [𝑀𝑀�𝑖𝑖  𝑥𝑥∗] 
   end 
   𝑀𝑀𝑖𝑖+1 ← [𝑀𝑀𝑖𝑖  𝑥𝑥∗] 
   𝑗𝑗 ← 𝑗𝑗 + 1 
  end 
 end 
 if {𝑒𝑒𝑜𝑜𝑙𝑙𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛𝐾𝐾 =  “TRUE”} RETURN  𝑀𝑀𝐾𝐾 
 else 𝑏𝑏 ← 𝑏𝑏 + 1 
end 
RETURN “No solution found that meets near-orthogonality criteria” 

Figure 42. First-order NOAB Construction Method – Original Notation [1] 
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Summary of Pairwise Correlation Estimates, Derived in Chapter III 

Update to First-order Correlation Estimates from [1] 

𝜌𝜌�(𝒙𝒙,𝒎𝒎∙,𝑐𝑐) =  1/((𝑛𝑛 − 1) 𝑒𝑒𝒙𝒙𝟎𝟎𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ (𝑥𝑥𝑟𝑟 − 𝒙𝒙�)(𝑚𝑚𝑟𝑟,𝒄𝒄 − 𝒎𝒎∙,𝑐𝑐�����)𝑛𝑛
𝑟𝑟=1   

Discrete Factor Case 

Extension 1. 𝜌𝜌�(𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎⋅,𝑐𝑐�����)(𝑥𝑥𝑟𝑟 − 𝒙𝒙�)𝑛𝑛

𝑟𝑟=1   

Extension 2. 𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛,𝒎𝒎∙,𝑐𝑐) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒛𝒛0𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ (𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎∙,𝑐𝑐�����)(∑ (𝜋𝜋ℓ2−2𝒙𝒙0���𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 )𝑛𝑛

𝑟𝑟=1   

Extension 3. 𝜌𝜌�(𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ2−2𝒙𝒙0���𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ +𝜆𝜆(𝒙𝒙)

ℓ=1 𝒙𝒙0���2)𝑛𝑛
𝑟𝑟=1   

Extension 4. 𝜌𝜌�(𝒛𝒛,𝒛𝒛 ∘ 𝒛𝒛) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒛𝒛0)∑ (∑ (𝜋𝜋ℓ3 − 3𝜋𝜋ℓ2𝒙𝒙0��� + 3𝒙𝒙0���2𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ
𝜆𝜆(𝒙𝒙)
ℓ=1 − 𝒙𝒙0���3)𝑛𝑛

𝑟𝑟=1   

Extension 5. 𝜌𝜌�(𝒛𝒛 ∘ 𝒛𝒛,𝒛𝒛 ∘ 𝒎𝒎∙,𝑐𝑐1) = 1 ((𝑛𝑛 − 1)𝑒𝑒𝒛𝒛0∘𝒛𝒛0𝑒𝑒𝒛𝒛0∘𝒎𝒎∙,𝑐𝑐1
� ) ∑ 𝑚𝑚𝑟𝑟,𝑐𝑐(∑ (𝜋𝜋ℓ3−3𝒙𝒙0���𝜋𝜋ℓ2 +𝜆𝜆(𝒙𝒙)

ℓ=1
𝑛𝑛
𝑟𝑟=1

�4𝒙𝒙0���2 − 𝒙𝒙0 ∘ 𝒙𝒙0����������𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ − 2𝒙𝒙0���3 + 𝒙𝒙0��� 𝒙𝒙0 ∘ 𝒙𝒙0���������) 

Categorical Factor Case 

Extension 1. 𝜌𝜌�(𝒙𝒙∙,𝑖𝑖 ∘ 𝒎𝒎∙,𝑐𝑐1 ,𝒎𝒎∙,𝑐𝑐) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒙𝒙0,𝑖𝑖∘𝒎𝒎∙,𝑐𝑐1
𝑒𝑒𝒎𝒎∙,𝑐𝑐)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(𝑚𝑚𝑟𝑟,𝑐𝑐 − 𝒎𝒎⋅,𝑐𝑐�����)𝑥𝑥𝑟𝑟,𝑖𝑖

𝑛𝑛
𝑟𝑟=1   

Extension 3. 𝜌𝜌�(𝒙𝒙∙,𝑖𝑖,𝒙𝒙∙,𝑖𝑖 ∘ 𝒎𝒎∙,𝑐𝑐1) = 1/((𝑛𝑛 − 1)𝑒𝑒𝒙𝒙0,𝑖𝑖𝑒𝑒𝒙𝒙0,𝑖𝑖∘𝒎𝒎∙,𝑐𝑐1
)∑ 𝑚𝑚𝑟𝑟,𝑐𝑐1(∑ (𝜋𝜋ℓ2 − 𝒙𝒙0,𝚤𝚤����𝜋𝜋ℓ)𝜃𝜃𝑟𝑟,ℓ

𝑖𝑖𝜆𝜆(𝒙𝒙)
ℓ=1 )𝑛𝑛

𝑟𝑟=1   
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Supplementary Results for Chapter III 
 
 Using the design space from the Chapter III case study, the NOAB-V approach is used to 

construct a 36-point design. Figure 43 shows the heatmap of absolute correlations for this design, 

where pairwise correlations between only first-order model terms (with 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼 = 0.2222) are much 

higher than for the 36-point design using the NOAB-III approach (satisfying near orthogonality 

with respect to first-order model terms in Chapter III).  

 

Figure 43. Absolute Correlation Heatmap for 36-point NOAB-V Design 
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Supplementary Results for Chapter VI 

 Maximum absolute correlations for different model terms (Table 17) as well as absolute 

correlation heatmaps (Figure 43) are provided for a sample of the NOAB designs constructed to 

study a mixed-factor system with 10,892,880 possible design points.  

Table 17. Maximum Absolute Correlations for Some Chapter VI designs 

Approach 𝑛𝑛 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼  𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  
NOAB-III 164 0.0120 0.3774 0.4578 
NOAB-III 246 0.0079 0.4198 0.4198 
NOAB-III 328 0.0059 0.2899 0.2899 
NOAB-III 410 0.0012 0.4082 0.4082 
NOAB-III 508 0.0038 0.1845 0.1922 
NOAB-III 600 0.0002 0.4428 0.4428 
NOAB-IV  164 0.0195 0.0231 0.2983 
NOAB-IV  246 0.0160 0.0294 0.2472 
NOAB-IV  328 0.0149 0.0326 0.2095 
NOAB-IV  410 0.0166 0.0227 0.1764 
NOAB-IV  508 0.0100 0.0307 0.1614 
NOAB-IV  600 0.0085 0.0445 0.1150 
NOAB-V 164 0.0507 0.0801 0.1176 
NOAB-V 246 0.0339 0.0709 0.0878 
NOAB-V 328 0.0368 0.0560 0.0854 
NOAB-V 410 0.0244 0.0456 0.0636 
NOAB-V 508 0.0198 0.0261 0.0420 
NOAB-V 600 0.0163 0.0333 0.0374 
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𝑛𝑛 NOAB-III Approach NOAB-IV Approach NOAB-V Approach 

164 

   

328 

   

600 

   
Figure 44. Absolute Correlation Heatmaps for Different NOAB Approaches and Sizes
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Fast Computation of Batch Sequential NOAB Design  

The design space from Chapter IV is updated to include one three-level categorical factor, 

four two-level categorical factors, two six-level discrete factors, one five-level discrete factor, and 

one three-level discrete factor, totaling 25,920 possible design points. Let 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 ={30},𝑁𝑁𝐼𝐼𝐼𝐼 ={72, 

120}, and 𝑁𝑁𝐼𝐼 ={168, 240}. To examine an initial reduction in computation time for the 

simultaneous construction approach, we implement a baseline case where each factor is given 180 

seconds per NOAB-III and NOAB-IV stage and 600 seconds per NOAB-V stage in the MILP 

solver. Since there are five stages with two of the later stages using the NOAB-V approach, the 

total number of seconds allowed per factor construction is 1,740 seconds. The “fast” approach is 

then given 10 seconds per stage regardless of the NOAB approach used, totaling 50 seconds per 

factor. We provide maximum absolute correlations for the different stages (Table 18) as well as 

absolute correlation plots (Figure 45 through Figure 49) to show how similar the correlations are 

for the intermediate designs, with pairs of model terms on the x-axis ordered by first-order pairs, 

then between first-order and second-order pairs, and finally, second-order pairs. The design 

constructed using the baseline approach required approximately 24,404 seconds, while the fast 

design required only about 720 seconds, a 97% decrease in time. Further analysis of computational 

requirements is suggested as a future area of research. 
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Table 18. Maximum Absolute Correlations for Batch Sequential NOAB Designs (Time 

Comparison) 

    𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼  𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼  
  𝑛𝑛 Baseline Fast Baseline Fast Baseline Fast 

Stage 

30 0.0816 0.0976 0.4245 0.4910 0.6547 0.7184 
72 0.0890 0.0896 0.0946 0.1295 0.3934 0.5115 
120 0.0621 0.0506 0.0621 0.0845 0.2544 0.3219 
168 0.0583 0.0657 0.0583 0.0713 0.1415 0.1666 
240 0.0343 0.0351 0.0444 0.0544 0.1005 0.1104 

 

 

 

Figure 45. Absolute Correlations for 30-point Stage NOAB-III 
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Figure 46. Absolute Correlations for 73-point Stage NOAB-IV 

 

 

 

Figure 47. Absolute Correlations for 120-point Stage NOAB-IV 
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Figure 48. Absolute Correlations for 168-point Stage NOAB-V 

 

 

 

Figure 49. Absolute Correlations for 240-point Stage NOAB-V 
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