
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-14-2018

Effects of Dynamic Goals on Agent Performance
Nathan R. Ball

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Graphics and Human Computer Interfaces Commons, and the Theory and
Algorithms Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Ball, Nathan R., "Effects of Dynamic Goals on Agent Performance" (2018). Theses and Dissertations. 1829.
https://scholar.afit.edu/etd/1829

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1829?utm_source=scholar.afit.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Effects of Dynamic Goals
on Agent Performance

THESIS

Nathan R. Ball, 2d Lt, USAF

AFIT-ENG-MS-18-J-003

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-J-003

EFFECTS OF DYNAMIC GOALS

ON AGENT PERFORMANCE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Nathan R. Ball, B.S.E.E.

2d Lt, USAF

May 24, 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-18-J-003

EFFECTS OF DYNAMIC GOALS

ON AGENT PERFORMANCE

THESIS

Nathan R. Ball, B.S.E.E.
2d Lt, USAF

Committee Membership:

Maj Jason Bindewald, PhD
Chair

Dr. Gilbert Peterson
Member

Dr. Micheal Miller
Member

AFIT-ENG-MS-18-J-003

Abstract

Autonomous systems are increasingly being used for complex tasks in dynamic

environments. Robust automation needs to be able to establish it's current goal and

determine when the goal has changed. In human-machine teams autonomous goal

detection is an important component of maintaining shared situational awareness

between both parties. This research investigates how different categories of goals

affect autonomous change detection in a dynamic environment.

In order to accomplish this goal, a set of autonomous agents were developed to

perform within an environment with multiple possible goals. The agents perform

the environmental task while monitoring for goal changes. The experiment tests the

agents over a range of goal changes to determine how detection performance is affected

by the different categories of goals.

Results show that detection is highly dependent on what goal is being switch to

and from. The point similarity between goals is the most significant factor in evalu-

ating the change detection time. An additional experiment improved upon the goal

agent and demonstrated the importance of having the proper perception mechanics

for feedback within the environment.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vi

List of Tables . vii

I. Introduction . 1

1.1 Department of Defense Motivation . 1
1.2 Research Motivation . 3
1.3 Research Objective . 4

1.3.1 Research Problem . 4
1.3.2 Investigative Questions . 4

1.4 Methodology Overview . 5
1.5 Thesis Overview. 6

II. Background . 7

2.1 Taxonomy of Change in a Gameplay Environment 7
2.1.1 Elements of a Game . 7
2.1.2 Mechanics . 10
2.1.3 Implementations of Mechanical Changes . 13
2.1.4 Dynamics . 14

2.2 Agent Design . 15
2.2.1 Simple Reflex Agents . 15
2.2.2 Model-Based Reflex Agent . 16
2.2.3 Goal-Based Reflex Agent . 16
2.2.4 Utility-Based Reflex Agent . 16
2.2.5 Learning Agent . 17

2.3 Test Environment . 17
2.3.1 Previous work using Space Navigator . 19

2.4 A* Search . 20
2.5 Concept Drift . 21

2.5.1 Types of Concept Drift . 22
2.5.2 Patterns of concept drift . 23
2.5.3 Taxonomy of an Adaptive Concept Drift Learner 24

2.6 Reinforcement Learning . 26
2.6.1 Exploration Versus Exploitation . 26
2.6.2 Methods of Exploration . 27
2.6.3 Methods of Switching between Exploration and

Exploitation . 28
2.7 Chapter Summary . 30

v

Page

III. Methodology . 31

3.1 Changes to Space Navigator . 31

3.2 Goal Design . 33

3.2.1 Avoid . 34

3.2.2 Match . 35

3.2.3 Destroy . 35

3.2.4 Create . 36

3.2.5 Goal Implementation . 37

3.3 Agent Design . 37

3.3.1 Line Agent . 38

3.3.2 Avoidance Agent . 41

3.3.3 Agent Performance . 44

3.3.4 Goal Agent . 45

3.3.5 Adaptive Learner Framework Implementation 45

3.3.6 Exploitation . 48

3.3.7 Exploration . 49

3.3.8 Switching Methods . 50

3.4 Experimental Design . 50

3.4.1 Objective . 50

3.4.2 Response Variables . 51

3.4.3 Control Variables . 52

3.4.4 Held Constant Factors . 53

3.4.5 Nuisance Factors . 53

3.4.6 Design Matrix . 54

3.4.7 Apparatus . 54

3.5 Chapter Summary . 55

IV. Experiment One . 57

4.1 Score Results . 57

4.2 Time Results . 60

4.3 Goal Similarity . 62

4.4 Chapter Summary . 65

V. Experiment 2 . 66

5.1 Methodology. 66

5.2 Results . 67

5.3 Chapter Summary . 69

vi

Page

VI. Human-Subject Experiment . 70

6.1 Experimental Design . 70
6.2 Recorded Data . 73
6.3 Expected Results . 74
6.4 Chapter Summary . 75

VII. Conclusion . 76

7.1 Summary of Research Question . 76
7.2 Summary of Methodology . 76
7.3 Summary of Contributions . 77
7.4 Future Work . 78

Appendix A. Pre-Experiment Questionnaire . 81

Appendix B. Post-Experiment Questionnaire . 82

Bibliography . 85

vii

List of Figures

Figure Page

1 Model of shared situational awerness, from Endsley et
al. [6]. 2

2 Tree showing the taxonomy of change in a game
environment. 8

3 List of game mechanics for mapping serious games,
recreated from Arnab et al. [3]. 11

4 Game bricks divided into play bricks and goal bricks
(note that the create brick is a member of both
categories), recreated from Djaouti et al. [1]. 12

5 An example of a game of Space Navigator. 18

6 Example of the of the different drift types. 23

7 Example of the of the different drift patterns. Recreated
from Zliobaite [36]. 25

8 Generic framework for an adaptive learning system.
Recreated from Gama et al. [8]. 25

9 Example of the avoid goal scenario. The player earns
points from landing the ship on it's home planet. 34

10 Example of the match goal scenario. The player earns
points by colliding the two blue for the first time and
landing a ship on it's home planet. 35

11 Example of the destroy goal scenario. The player earns
points from first, depleting both red ships' shields and
then for both ships being destroyed from another
collision. 36

12 Example of the create goal scenario. First a green ship
is formed through the collision of a blue and yellow
ship. Then points the player earns points from landing
the ship on the green planet. 36

13 Interaction diagram for the three Space Navigator agents. 38

viii

Figure Page

14 Grid used for A* pathfinding. The red cells around the
planets show penalty zones. 40

15 Example of trajectory generation with the A* line agent. 41

16 Score results from agent baseline performance tests. 45

17 Adaptive learner framework used to create goal agent.
Recreated from Gama et al [8]. 47

18 Average score for each of the 24 conditions. Black bar
shows the 95% confidence interval for the score. 57

19 The difference in the perfect score for each condition
compared to the actual score results. 59

20 The average time to detect the goal change in each of
the conditions. 60

21 The average time taken to detect the goal change in
each of the conditions with outliers removed. 60

22 Detection time versus goal similarity. 63

23 The average time taken to detect the goal change in
each of the conditions with detections >45 seconds
removed, organized by Goal-B. 64

24 Detection time vs. difference between expected and
actual score. 65

25 Comparison of detection time between Experiment 1
and Experiment 2. 68

26 Comparison of score results between Experiment 1 and
Experiment 2. 69

ix

List of Tables

Table Page

1 Breakdown of points earned by action for each goal. 34

2 Response Variable Summary . 51

3 Control Variable Summary . 52

4 Held Constant Factors Summary . 53

5 Nuisance Factors Summary . 54

6 Testing Matrix . 55

7 Number of false positive detections by goal scenario and
goal time. 59

8 Correlation between change and detection times. 61

9 Relative point similarity of goals based on positive
scoring actions. Higher values indicate less similar goals. 63

10 Correlation between goal similarity and detection time. 64

11 Significance test for the detection means between
experiment 1 and 2. (* denotes significance at the 0.05
level.) . 68

12 Testing schedule for human subject experiment. A, C,
D, M are acronyms for the avoid, create, destroy, and
match goals. 72

x

EFFECTS OF DYNAMIC GOALS

ON AGENT PERFORMANCE

I. Introduction

1.1 Department of Defense Motivation

Autonomous agents continue to expand into increasingly complex domains where

greater capabilities are required to achieve mission effectiveness. Whether autonomous

agents are used to fly a drone or detect objects within surveillance images, the mission

goal will not always remain constant. An important capability for future autonomous

agents will be their ability to detect changes in their goal structure and to adapt to

changes forcing the agent to switch to a new goal. The ability to intelligently de-

termine its goal based on environmental factors is a vital capability for both fully

autonomous systems and agents within human machine teams.

Within fully autonomous systems, goal determination is necessary for any system

operating in a highly dynamic environment. For example, if an autonomous supply

convoy detects an improvised explosive device on the road, it should change its goal to

ensure that proper authorities are alerted and other vehicles are aware of the device's

location. In a fully autonomous system, this action should be taken without a human

having to interact with the automation. As humans get pulled farther outside the

control loop, the more important goal determination becomes.

For human machine teams, goal recognition is equally important. In 2015 the

United Sates Air Force Chief Scientist released Autonomous Horizons [6], a docu-

ment detailing a roadmap for the future of autonomy in the service. One of the key

1

Figure 1. Model of shared situational awerness, from Endsley et al. [6].

objectives is utilizing the potential benefits of the human-machine teams to increase

mission effectiveness. One of the key issues to achieving this symbiosis is a shared

situational awareness between the human and autonomous agent. Figure 1 shows the

various levels of the shared situation awareness model. At the top of the model is goal

alignment between the human and machine. Without goal alignment, the machine

and human will be working to complete potentially conflicting goals. For example, in

an airplane there will be conflict if an agent is attempting to land while the pilot is

instead planning to circle around runway [6]. Goal detection provides agents with the

flexibility to react to changes within the environment and maintain alignment with

their human teammate.

Having a shared goal is essential for a high functioning team to ensure that all

members are taking actions that help to achieve the same goal. By definition, a team

is a group that has come together to achieve a common goal. In human machine

teams shared goals are just as important to ensure that the human is not fighting

the automation and showing that the human can trust the automation. Goal flexi-

bility is one way to increase human trust in the automation, further increasing team

2

performance. A human will trust automation more as it demonstrates that it shares

the same goal as the human [14]. Increased trust has the added benefit of allowing

the human to focus on their work for longer, as opposed to continuously monitoring

the work the automation is doing [16]. This added focus fosters the notion that the

human and automation are truly a team.

1.2 Research Motivation

Game environments provide a great way to test methods of goal detection within

dynamic environments that can be easily modified. This thesis examines the problem

of goal detection using a gameplay environment. Goal determination and adaption is

not an inherently new concept in games. Many games have implemented an adaptive

artificial intelligence that can reason over goals to improve realism and difficulty. For

example, the artificial intelligence enemies in, No One Lives Forever 2: A Spy in

H.A.R.M.s Way [22] and F.E.A.R. [23], dynamically choose between different goals

and create an action plan according to the current goal. In both games, however, the

agents are hard coded with all the possible goal states and need only determine which

goal it should accomplish. They do not formulate new goals beyond the ones that

have been hard coded. In this research the agent has no knowledge of the possible

goal changes and must observe the environment to determine the current goal state.

The environment utilized for this research is a dynamic tablet based video game

that is played by a collection of agents, in designed experiments, the goal changes mid-

play, forcing the adaptive agent to detect and adapt to the new goal to maximize its

final score. The environment utilized for this research is comparable to a real-world

air traffic control environment, where a human controller monitors aircraft takeoff

and landings. In real-world air traffic control, the goal for aircraft can suddenly shift

due to the changes within the environment. An aircraft originally told to go to a

3

runway may need to do another pass around due to unforeseen circumstances. This

unpredictability forces controllers to stay attentive to changes in the environment.

The notions of concept drift and reinforcement learning are leveraged to design

the adaptive learning agent. For this research an adaptive learning agent will sim-

ilarly need to monitor the environment for potential changes and adapt its action

accordingly when a change is detected.

1.3 Research Objective

1.3.1 Research Problem.

This research will examines performance of an adaptive agent within the dynamic

goal environment. The question this research aims to answer is, “Do different cate-

gories of goals affect an agent's ability to detect and adapt to goal changes?” The

hypothesis is that different categories of goals affect detection depending on what

goals were switched to and from. These differences can be used to inform the types

of goals the agent can quickly and accurately detect. This can later be compared to

human play to determine differences between how agents and humans detect change.

1.3.2 Investigative Questions.

To answer the proposed research question, the following investigative questions

will be explored:

• Investigative Question 1: How can goals be classified within the context of a

gameplay environment?

Hypothesis: Goals can be uniquely classified based on specific gameplay actions

the goal requires.

• Investigative Question 2: What methods can be used to detect environment

4

goals?

Hypothesis: Methods of reinforcement learning can be used to learn what the

goal of the environment is.

• Investigative Question 3: How can goal changes be detected within the envi-

ronment?

Hypothesis: Concept drift detection can be used to detect goal changes though

analysis of the points earned over time.

• Investigative Question 4: Do the goals being switched to or from affect the time

taken to detect a change?

Hypothesis: Specific categories of goals will take longer to detect after being

changed to, no matter the starting goal.

1.4 Methodology Overview

The methodology for testing the research question involved running experiments

in the Space Navigator route creation environment, modified to have multiple goal

conditions. Where the game previously had only one goal the player had to accom-

plish, modifying the game allowed for multiple different goals. Each new goal required

the player to alter his or her strategy and play. Next, a set of autonomous agents to

play Space Navigator under multiple goal conditions were developed. The collection

of agents works to detect the current goal condition and take the appropriate actions

for that goal. Additionally, the agents track the goal and detect when a goal change

has occurred in the environment. The agents played Space Navigator over a series of

trials in which the goal suddenly changes in the middle of the game. The goals being

switched to and from and the goal change time were modified for each trial. Finally,

the results from the autonomous play are analyzed to determine which goals were the

5

most difficult to detect and adapt too. This informs future work that can contrast

these results with those of a human to determine the difference between how humans

and autonomous agents identify goal changes and what types of goals are easier for

each to adapt to.

1.5 Thesis Overview

The remainder of this is arranged as follows. Chapter II introduces a taxonomy

of game classification that will be used to define goals, presents the application envi-

ronment, and explains concept drift and reinforcement learning as it relates to goal

detection. Chapter III covers changes made to the application environment for this

research, specifics of the agent design, and an overview of the experimental design.

Chapter IV investigates the captured results using statistical analysis. Chapter V

then presents and analyzes a follow-up experiment based on the results of the first

experiment. Chapter VI proposes a human subject experiment to follow-up on this

research. Lastly, Chapter VII outlines the major findings of the data to summarize

the finding and concludes with a discussion of future work that can be done following

this research.

6

II. Background

This chapter discusses work related to the present research. The chapter first

introduces a taxonomy of changes in a gameplay environment, providing a basis for

the types of changes that can be made within an environment. Next the application

environment, Space Navigator, is explained. Next is a brief overview of the A* search

algorithm. It is followed by a discussion of concept drift and a generic system for

handling drift. Lastly, an overview of reinforcement learning literature is presented,

focusing on the concept of exploration versus exploitation and methods for achieving

a proper balance between the two. This background forms the foundation for the

adaptive agent created for this research.

2.1 Taxonomy of Change in a Gameplay Environment

When examining the effects of dynamic goals on an agent's performance in an

environment, it is important to first be able to define the range of goals. What

changes to a gameplay environment constitute a goal change? To that end, this

research created a taxonomy of change in a gameplay environments. Shown in Figure

1, this taxonomy defines the areas of a game where changes can be made, allowing

for better understanding of the effects the change will have. This section defines the

elements of this taxonomy and the reasoning behind it's structure.

2.1.1 Elements of a Game.

The first layer of the taxonomy describes the elements of a game; the areas, that

when combined, create a gameplay environment. Several researchers have outlined

different methods of classifying game elements. Jan Klabber [19] classifies games by

their players, rules, and resources. King et al. [18] classify games through the use

7

Figure 2. Tree showing the taxonomy of change in a game environment.

of five feature categories: social, manipulation and control, narrative and identity,

reward and punishment, and presentation. Salen and Zimmerman [27] define games

by their operational, constitutive, and implicit rules; these are the abstract, written,

and formal etiquette rules for a game. There is no universally agreed upon frame-

work for defining the elements of a game. The presented taxonomy is modeled after

the “Mechanics, Dynamics, and Aesthetics” or MDA model of games by Hunicke et

al. [15]. This model was chosen because it provides a clear distinction between its

elements and can be applied to all games.

According to Hunicke et al. [15], mechanics, dynamics, and aesthetics are the three

fundamental elements of game design. The model can be used to analyize and decom-

pose games into their fundamental part. The first element of the model, mechanics

“describes the particular components of the game” and their rules. The components

of Pac-Man for example are Pac-Man, the ghosts, Pac-dots, power pellets, bonus

fruits, and the game map [21]. These components, together with the rules that define

8

their operation, make up the game mechanics. Next, dynamics “describes the run-

time behavior of the mechanics acting on player inputs and each other outputs over

time.” Put more simply, dynamics are the interactions between the mechanics, that

define the ‘play’ of the game. For example, in the first-person shooter Counter-Strike

[31], because the player has low health and does not respawn after death, they play

slowly and carefully to avoid being caught off guard.

The last element of the MDA model is aesthetics. In this context aesthetics does

not describe the visuals of a game, but rather “describes the desirable emotional

responses evoked in the player, when [they] interact with the game system.” Hunicke

et al. [15] list several different aesthetics that games try to elicit in the player such as

narrative, challenge, and fellowship. Games can take on multiple different aesthetics

to form a cohesive emotional whole. The aesthetics of a game are created through its

dynamics. For example, the aesthetic of tension is created in Counter-Strike through

the slow game speed where enemy encounters are infrequent and resolve quickly.

In the MDA framework, mechanics create dynamics which then create aesthetics.

Fundamentally, mechanics are the only part of the framework that can be directly

changed, as dynamics and aesthetics are informed through the mechanics. If viewed

differently however, numerical and statistical changes to the value of components can

be viewed as changes solely to the dynamics of the game. For example, changing the

speed of Pac-Man or the ghosts will not change the underlying mechanics of Pac-

Man. It will only affect the difficulty of the game by altering the players' ability to

escape the ghosts; this is a change in the dynamics. In the taxonomy of gameplay

change, dynamics will be considered a second category of change in a game, where

mechanics are the components in the game and dynamics are the numerical and

statistical properties of those components.

The last element of games represented in the taxonomy are the audiovisual ele-

9

ments of a game. These are how the components of the game physically look and

sound. Unlike mechanics and dynamics audiovisual changes do not have any effect

on the actual gameplay in the environment. Changing Pac-man to Ms. Pac-man

only changes what the player character looks like. These game elements can play a

large role in player enjoyment, but they do not affect the rules and interactions that

control the components and environment. For this reason, audiovisual changes are

not examined further within this taxonomy.

2.1.2 Mechanics.

The next layer represented in the taxonomy describes the changes that can be

made to the mechanics of a game. Defining how all the components of a game can

change requires mechanics to be decomposed further into separate elements. This is

again an area where there is no industry consensus on a formal definition. Due to

the countless number of unique gameplay mechanics, even within games of the same

genre, generalizing them within a single classification system can be difficult. Most

games research does not attempt to classify mechanics, instead simply defining the

mechanics as “what the player can do” [25, 28]. Some attempts to classify mechanics,

such as that used by Arnab et al. [3] and shown in Figure 3, for serious game analysis

still cover a wide range of mechanics. While the classification is more defined than

most, the mechanics on this list do not all relate directly to gameplay and other

mechanics such as ‘meta-game’ are vague in what they describe.

The present research uses the “Game Bricks” concept created by Djaouti et al.

[1]. Game bricks were created as a tool used to classify games based upon their

mechanics. The game bricks can be used to define the fundamental elements of

a game's mechanics. Figure 4 shows the ten bricks outlined in [1]. This method

for classifying mechanics was chosen over others because all the mechanics listed

10

Figure 3. List of game mechanics for mapping serious games, recreated from Arnab et
al. [3].

directly relate to gameplay rules that can be applied directly to components in a

gameplay environment. It also provides a clear distinction between input and feedback

mechanics. The major limitation of this method is that listed mechanics define only

digital single player games. The following list briefly describes the ten mechanics:

1. Avoid: Gameplay of having a component in the environment avoid other com-

ponents in the environment.

2. Manage: Gameplay of managing some set of resources, such as ammunition in

a shooter or gold in a real-time strategy game.

3. Random: Gameplay that contains random elements, such as the role of a die.

4. Shoot: Gameplay of shooting or throwing a component.

5. Create: Gameplay of creating components in a game through player interaction,

11

Figure 4. Game bricks divided into play bricks and goal bricks (note that the create
brick is a member of both categories), recreated from Djaouti et al. [1].

such as crafting items from resources.

6. Destroy: Gameplay where a component is destroyed by another component such

as the player destroying the aliens in Space Invaders [32].

7. Match: Gameplay of matching the location of components, such as getting to

the finish in a racing game.

8. Write: Gameplay of inputting an alphanumeric string into the game.

9. Move: Gameplay of moving a component from one location to another.

10. Select: Gameplay of selecting objects in the environment, such as choosing a

piece to move in Bejeweled [9].

The gameplay described by these bricks can be combined to describe the overall

mechanics of a game. For example, the mechanics of Pac-Man [21] can be described

using the move, avoid, destroy, and match bricks. The primary gameplay is to move

Pac-Man around the map. The goal of the game is to avoid the ghosts and destroy

all of the Pac-dots by matching Pac-Mans position with the dots.

12

Within the set of bricks there are two distinct classes of mechanics, as shown in

Figure 4. First are ‘gameplay’ bricks that act on player input into the game. They are

the collection of actions that the player is able to do or simply, the actual gameplay of

the game. Second are ‘goal’ bricks that define the goal of the game. These mechanics

“observe the game elements and to return an evaluation of the quality of modifications

made” [1]. They define what the player is trying to accomplish by providing feedback

based on the players' actions. Together these two groups define the mechanics of a

game.

Changes to the mechanics of a game involve replacing or adding new bricks to

components. New gameplay mechanics can be added through the addition of new

gameplay bricks. Goals can be changed through modification of the four goal me-

chanics. Lastly, as shown in Figure 1, an entirely new component can be added to the

game that has its own gameplay and goal mechanics thus adding to both categories.

2.1.3 Implementations of Mechanical Changes.

The final level represented in the taxonomy of gameplay change is concerned with

how mechanical changes to the gameplay or goals can be implemented. The game

bricks define the two areas of game mechanics a change can affect, but not how the

mechanics will be affected by the change. Changes can either add breadth or depth

to the mechanics. In his Game Developers Conference (GDC) presentation about

formal notation for describing games, designer Raph Koster [20] both defines and

creates a method for evaluating the breadth and depth of a game. Koster describes

breadth as the number of challenges or actions that can be undertaken in parallel.

For example, in a real-time strategy game the player has multiple actions avalible

to them at one time, such as creating new buildings, building new units, moving

units, and attacking. The more actions available for the player to undertake at once,

13

the more breadth the game has. Depth is the number of nested actions within a

single meta-action. Fighting games, for example, have depth because performing a

combination attack requires executing other actions in sequence beforehand. The

number of actions required before reaching the final element is the depth.

2.1.4 Dynamics.

Parallel to mechanical changes are dynamics changes. As described earlier, dy-

namics are the numerical and statistical properties of the game mechanics that affect

the balance and feel of the game. Changes to the dynamics will only affect the un-

derlying settings that control the mechanics of the game, not the gameplay or goals

available to the player. Dynamics can fall into three different categories of change:

gameplay, goal, and system dynamics.

Gameplay and goal dynamics are closely related to their mechanics counterparts.

These two groups have game bricks that define them and these bricks have dynamics

inherent to them that can be changed. Thus, changes to gameplay dynamics are

changes to the settings of the gameplay bricks that the components have. These could

be the move speed of a component, how much damage a gun does when it shoots, or

how many components can be selected at one time. These are all numerical elements

of the gameplay that affect the dynamics. Similarly, goals mechanics are subject to

changes to dynamics. The points the player gets for matching locations, time limits

to complete the goal, and how much health an enemy has are all examples of the

dynamics in goal mechanics. Changes in goal dynamics can incentivize certain goals

and change players' behavior.

The last element of dynamics is system dynamics. These are the dynamics that

are not related to the gameplay and goals of components in the environment. They do

not affect how the components behave or are interacted with, but rather the ‘laws of

14

nature’ and world state of the environment. System dynamics include: the location

of objects in the environment, random number generation (RNG) and statistical

distributions in the environment, the size of components, and the controls that players

use to interact with the environment. None of these dynamics directly affect gameplay

or the goal but are inherent to the game system.

2.2 Agent Design

In order to properly design agents, specific architectures must be examined. Sev-

eral agents will be created to play Space Navigator and detect goal changes. Russel

& Norvig [26] define an agent as, “anything that can be viewed as perceiving its envi-

ronment through sensors and acting upon that environment through actuators.” This

definition can be applied to a wide range of entities, such as humans. In this scenario,

however, agents are the computer programs acting in Space Navigator. Russel and

Norvig list four structures for autonomous agents: simple reflex agents, model-based

reflex agents, goal-based agents, and utility based agents.

2.2.1 Simple Reflex Agents.

The simple reflex agent is, as the name suggests, the simplest type of agent.

Simple reflex agents select their actions based only on the current world state. This

is a simple if-then logic approach. If the world is in state X then do action Y. This

type of agent is useful for tasks that do not require any knowledge of past events and

can complete their task using only the information currently available to them. The

danger of this agent is that they can become stuck in one state, such as a vacuum

agent that moves forward, hits a wall, moves back, only to move forward and continue

the cycle over again with no way to escape.

15

2.2.2 Model-Based Reflex Agent.

The model-based reflex agent extends the capabilities of the simple reflex agent

by adding an internal state that holds a world history and information on how the

agents action have affected the world. This history allows the agent to overcome the

infinite loops of the simple reflex agent. By using the internal state knowledge, the

agent can predict the outcome of its actions to better inform its choices.

2.2.3 Goal-Based Reflex Agent.

Goal-based reflex agents build on the simple and model-based reflex agents by

providing the agent with some goal state it must accomplish. The goal-based agent

differs from the reflex agents in the way it selects its actions. Instead of using if-then

logic the agent must utilize search and planning to find the actions that complete the

goal. Using a search algorithm to find the goal is less efficient than a simple look-up

table in the case of a reflex agent. Goal-based agents, however, can be more flexible

than reflex agents due to their ability to adapt to new conditions without having

decision behavior changed.

2.2.4 Utility-Based Reflex Agent.

The utility agent adds further performance to the goal agent through the addi-

tion of a utility function that rates the agent's performance. Because many possible

solutions for a goal exist, the utility function provides a means for the agent to de-

cide between actions. The utility function grades each of its possible actions, then

performs the one that maximizes its expected reward.

16

2.2.5 Learning Agent.

Any of the above agents can also be learning agents with the correct components.

A learning agent requires a performance element, learning element, critic, and problem

generator. The performance element selects what action to take given the world state.

This can be done with any of the four previously described agent architectures. The

critic rates the model's performance based on a performance metric. This metric

is specific to the environment, such as distance to the goal or points earned. This

is important because the world state does not provide an indication of the agent's

success. The learning agent then makes improvements to the performance element

based on the feedback from the critic. Lastly, the problem generator suggests new

actions to the performance element that can lead to new information. Without this,

the performance agent would always pick the best solution given its knowledge and

would eventually stop learning. The problem generator allows for exploration, which

might be suboptimal in the short run, to find better solutions for the long run.

While the learning utility-based agent has the highest flexibility in terms of agents,

it is also the most complex to implement. For a given task it is important to properly

examine the requirements before an agent model is selected. No single agent is optimal

for all tasks. Where one task may require a goal-based agent, another may only require

a simple reflex agent.

2.3 Test Environment

Space Navigator [5] is a tablet based route creation game designed for use in

human-machine team experiments. In the game, the player is tasked with guiding

colored spaceships to their corresponding home planet by drawing a trajectory for

the ship to follow. The goal of the game is to get the most points possible within a

five-minute gameplay period. An example of Space Navigator is shown in Figure 5.

17

Figure 5. An example of a game of Space Navigator.

There are four primary objects in the environment.

• Spaceships: Ships spawn from the edge of the screen every two seconds. When

spawned they have a random initial trajectory aiming them towards the opposite

side of the map. The ships fly forward until a trajectory is drawn by the player.

This is accomplished by selecting the ship with a finger and dragging the colored

marker to create the intended trajectory. The ship will then follow the trajectory

until it reaches the end. Ships are removed from the environment if they either:

reach their home planet, collide with another ship, or fly off the screen. The

side ships spawn on and color of ships is random.

• Planets: Planets are fixed objects on screen. Each of the four ship colors has its

own corresponding colored home planet. When a ship touches its corresponding

home planet the ship is removed from play. Ships can fly through planets

belonging to other colors with no negative effects.

• Bonuses: Bonuses are small grey orbs that spawn randomly throughout the

18

map. A bonus will spawn at a random location on the map every ten seconds.

Bonuses can be collected by ships to earn extra points. When a ship intersects

with a bonus the bonus will be removed and points will be scored. Bonuses do

not move or disappear after spawning until collected by a ship.

• No-Fly Zones: No-fly zones are stationary grey boxes that the player must avoid

having ships fly through. There are two no-fly zones placed as specific locations

on the map. A ship that enters the no-fly zone will lose a small number of points

for each second it remains in the no-fly zone. Multiple ships can be inside a

no-fly zone at once and each ship inside will lose points.

In previous research Space Navigator had four goals that can be defined under the

taxonomy described earlier:

• Match(Ship, Planet): The player obtains 100 points when a ship reaches its

corresponding colored home planet.

• Match(Ship, Bonus): 50 points are received when a ship matches its location

with a bonus.

• Avoid(Ship, No-Fly Zone): 10 points are lost per second that a ship is inside of

a no-fly zone.

• Avoid(Ship, Ship): When a ship collides with another ship, 100 points are lost

per ship and both ships are removed from play.

2.3.1 Previous work using Space Navigator.

Previous studies have used Space Navigator for a wide array of experiments. Space

Navigator has been used for studies of timing within human-machine teams [11],

communication in adaptive environments [30], and reliance versus compliance with

19

automation [10]. None of the previous experiments utilizing Space Navigator have

involved complete automation.

2.4 A* Search

An important function of the agents added to Space Navigator is the ability for

the agents to play at and above human performance levels. Intelligent trajectory

generation for the ships is a key part of accomplishing this goal. To that end the

A* search algorithm is utilized for ship trajectory generation. More detail on the

implementation of the algorithm is discussed in Chapter 3. Here the A* algorithm is

reviewed.

A* is a best first search algorithm used for pathfinding or graph traversal [26].

Being a best first search, it is guaranteed to find the path with the smallest cost. The

algorithm uses the function, f(n) = g(n) + h(n), to calculate the cost of the path at

each node. The variable n represents a specific node in the graph, g(n) is the path

cost from the starting node to node n, and h(n) is the calculated heuristic estimating

the cost of the path to the goal. So long as h(n) is admissible (it never overestimates

the cost to the goal node) A* finds the lowest cost path to the goal node. For grid

searches h(n) is often calculated using the Euclidian or Manhattan distance from n

to the goal node.

The algorithm works by first calculating f(n) for each of the nodes surrounding

the starting node. New nodes are added to an open list and sorted by cost, where

nodes with a low f(n) are first. The first node on the open list, the node with the

lowest cost, is popped and its surrounding nodes are evaluated. This continues until

a path to the goal is found. Because each node stores its parent, the path from the

goal to the start node can be recovered.

20

2.5 Concept Drift

In any supervised learning problem, the goal is to predict a target variable y given

some set of input features X. The target variable y can be a continuous value in a

regression task or discrete valued in a classification task. The learning problem is

to use known (X, y) training pairs to teach the learner how to properly predict y for

future inputs of X. In mathematical terms this problem can be written as attempting

to find p(y|X) [8].

For many learning problems it is assumed that the function p(y|X) will not change

with time. For example, a hypothetical image classifier that can perfectly identify

human faces would not need to be updated because the look of a human face will

not evolve significantly over any reasonable time scale. For many problems, however,

it is not always the case that the data will remain stationary. A spam recognition

algorithm, for example, needs to adapt to be able to recognize new sources of spam

mail that did not exist when it was originally trained. In dynamic environments the

data change over time, making the previously learned predictive model obsolete for

the new distribution of data. The change in data over time is referred to as concept

drift.

The key assumption associated with concept drift is that it is unpredictable to

the learner [13]. The learner has no information about the source of the data thus it

cannot predict the nature of the drift data. This is what differs concept drift problems

from multitask learning, where all the data is known beforehand and an appropriate

classifier can be trained for each concept. In concept drift the system has no ability

to learn an appropriate predictor for the drift data before seeing it, thus the system

must be able to adapt its predictions over time to the new data.

In this research, the goal changes made within the environment can be viewed as

concept drift. An agent tracks the goal state and relates ship actions (X) to score

21

results (y). When the goal changes the system must be able to detect that the data

has changed and learn the new (X, y) pairing. Concept drift literature presents a

number of solutions for overcoming this detection problem.

2.5.1 Types of Concept Drift.

Concept drift can formally be defined as a change in probability between two times

such that, pt1(X, y) 6= pt2(X, y), where p denoted the joint probability of X and y

at time t [8]. As described by Kelly et al. [17] concept drift can occur from several

sources of change in the data:

1. The prior class probability, p(y) may change.

2. The distribution of classes, p(X|y) may change.

3. The posterior distribution of class membership, p(y|X) may change.

These three types of drift are illustrated using a two class, two feature example

in Figure 6. Figure 6a shows population drift where the prior probability of a class,

p(y), has changed. This change lead to a class imbalance problem and additionally

cause a classifier to become miscalibrated to the data [13]. Figure 6b shows virtual

concept drift. Here changes to p(X|y) result from a change in p(X). This change

occurs without altering the decision boundary p(y|X). Virtual drift can cause error

in the learner from shifting the features into areas with no training examples [13].

Lastly real concept drift is illustrated in Figure 6c. Real concept drift corresponds

to a change in the posterior distribution of class membership p(y|X), resulting in a

change the decision boundary between the classes. This change can occur with or

without a change to p(X) [8].

22

Figure 6. Example of the of the different drift types.

2.5.2 Patterns of concept drift.

In addition to the different types of concept drift, different environments also

experience different patterns or speeds of concept drift. An important step in devel-

oping an adaptive learner to handle concept drift is identifying the pattern of drift.

Each presents different challenges for an adaptive learner. The patterns are explained

within the context of a system with two concepts C1 and C2. These patterns extend

to any number of different concepts however.

The first and most basic pattern of concept drift is sudden drift. In sudden drift

the target concept switches from C1 to C2 at some time. An example of sudden drift

is a system that must adapt to new data from a sensor replacement [8].

Gradual drift is the second pattern of concept drift. Here there is a length of

time when C2 has an increasing probability of appearing in the data until completely

becoming the target concept. Early in gradual drift, the instances of C2 may be

categorized as random noise as opposed to the start of drift [36]. An example of

gradual drift is spam classification of emails from a website. When a user first signs

up for promotional emails they are relevant, but as the user uses the site less the

emails can more often be classified as spam.

A second form of gradual drift is incremental drift. Incremental drift differs from

the previous pattern in that there are more than two levels for the target concept.

23

There are multiple levels of small differences between the targets. The concept slowly

drifts between C1 and C2 along these levels so that the drift is only noticed when

looking over a long period of time [36].

Lastly there are reoccurring concepts. This is when a target reappears after some

time not being active. Reoccurring concepts are not always periodic and thus cannot

be easily predicted in the same way basic seasonality could be [36]. For example,

someone may have sudden interest in player statistics from a sports team, but only

if the team won that week.

Figure 7 illustrates the different patterns of concept drift. Not all examples of

concept drift are guaranteed to fall neatly into one of these patterns however. It is

possible that the observed drift displays several of these patterns over time.

2.5.3 Taxonomy of an Adaptive Concept Drift Learner.

A system that can adapt to concept drift must be able to overcome two key

problems [13, 8]. First, it must be capable of detecting the legitimate concept drift

while filtering out noise in the data. After detecting, the system then needs the

capabilities to adapt to the drift. To accomplish this goal the adaptive learner must

accomplish three tasks. First, it must predict ŷt from feature Xt using the stored

predictive model Lt. Next, it diagnoses the prediction by calculating the loss after

the true label yt is received. Finally, the system can update its predictive model to

Lt+1 using the new sample (Xt, yt). Figure 8 shows the generic framework for an

adaptive learning system presented by Gama et al. [8] that accomplishes these goals.

The four key components of the framework are the memory, learning, loss estimation,

and change detection modules.

The four modules make up an adaptive learning system that can handle concept

drift. The memory module handles how much memory is stored and when memory is

24

Figure 7. Example of the of the different drift patterns. Recreated from Zliobaite [36].

Figure 8. Generic framework for an adaptive learning system. Recreated from Gama
et al. [8].

25

forgotten. Just as the model must constantly be updated with new information, old

information must also be forgotten. The learning module handles the mechanisms for

updating the model with new data. It controls how the model is updated, how the

model reacts to drift detection, and if necessary, the handling of multiple ensemble

models. Next, the loss estimation module provides feedback to the system about the

quality of predictions. The system needs to account for possible delays between a

prediction being made and when the true label is finally received. Lastly the change

detection module is used to identify drift in the data using information from the loss

estimation module. This will signal an alarm as to when drift has occurred. For each

of these modules, design decisions are dependent on the problem domain and the data

being analyzed. No one solution will work for all problem domains.

2.6 Reinforcement Learning

Reinforcement learning is the task of using observed rewards to learn the best

action policy for the environment [26]. Reinforcement learning is used when the

environment model and reward function are unknown. In the dynamic environment

created for this thesis, reinforcement learning is utilized to train the agents on the

goals of the environment. This section examines the components of reinforcement

learning, exploration, exploitation, and how to switch between the two.

2.6.1 Exploration Versus Exploitation.

A principle component of reinforcement learning is the concept of exploration and

exploitation. Exploration is the act of taking new actions in the environment to learn

new information about the environment. Exploitation uses this learned knowledge to

maximize the expected reward. The most common example of this dynamic is in the

multi-armed bandit problem [29]. In this problem, there are a number of slot machines

26

which each provide a different payout based on some probability distribution. The

payouts are unknown to a gambler, who is attempting to maximize the reward from a

finite number of plays. The gambler must explore the environment by playing different

machines to determine which one has the highest payout. Exploitation occurs when

the gambler decides to use their exploration knowledge to only play the machine

with the highest payout. In this problem, the gambler must balance exploration and

exploitation to maximize the reward. If the gambler does not explore enough before

exploiting, then their information could be incomplete leading them to exploit a lower

paying machine. If exploration occurs for too long however then the gambler will lose

rewards by continuing to play machines it knows do not provide the most reward.

Finding a balance between the two is an important decision in reinforcement learning.

2.6.2 Methods of Exploration.

Exploration of the environment is important because the agent can only learn

from what it has experienced. Broad exploration is required to ensure that the agent

has enough knowledge of the environment to perform well. There are two methods

of exploration: undirected and directed. Undirected methods use randomization to

explore the environment [34]. Directed methods use knowledge of the learning process

to explore in a guided manner.

Undirected exploration is used when there is no available knowledge of the learning

process. This involves using randomized action selection to explore the environment.

The most basic method is to assign each action a probability based on a uniform

distribution then randomly select an action from the distribution. Alternatively, each

action can be assigned a probability based on the actions expected reward, so that

action's with a higher expected reward are explored more often. Undirected methods

are useful if exploration costs are not factored into the exploitation phase.

27

Directed methods alternatively utilized memory of the learning process to have

guided exploration. Two directed methods are error-based exploration and recency

based exploration. In error-based exploration, actions that have had the largest

change in their prediction error are explored more often. In recency-based explo-

ration, a recency value is given to each object. The recency value tracks the length of

time since the action has taken place. In the explore phase, actions with high recency

value are prioritized for exploration.

2.6.3 Methods of Switching between Exploration and Exploitation.

Another important part of the exploration exploitation paradigm is knowing when

to switch between the two phases. As mentioned earlier, it is important that a proper

balance is maintained between the two phases to ensure the agent is maximizing its

reward. Wilson [35] lists ten different techniques for switching between exploration

and exploitation. The strategies involve calculating a probability that an exploration

action will be taken. A selection of a few of the techniques are presented below.

The first method described is using a constant probability of exploration. That

is, for each action taken there is a set probability that the action taken will follow the

exploration rules as opposed to the exploitation rules. This method allows for precise

control over how much time the agent explores. It does, however, suffer from a slow

rate of exploration early in the system. Additionally, because the probability never

changes, the agent will continue to explore even after it has learned everything about

the environment.

Another strategy is to have a decaying probability so that the agent explores more

at the beginning of the task and less as time moves on. This method solves the issue

of continuing to explore after learning the environment. The down side however,

is that after the probability decays the agent has no chance to explore again. The

28

approach works well in static environments where the agent will not need to reexplore

the environment.

An adaptive strategy involves using a maximum system reward variable, R, to

determine when to explore. R represents the maximum possible reward that can be

obtained by the agent. This is compared against the reward performance of the agent

to determine if there should be more exploration. The further the agent is from the

maximum reward, the greater the chance of exploration. As the agent learns more, it

will approach R and the probability of exploration will decrease. Unfortunately, this

approach requires R to be known, which is not always possible for an environment.

The final of Wilson's approaches discussed here is the use of prediction error

to determine when to explore. In this approach, the average prediction error for an

action is tracked. Every time the agent takes an action the actual reward is compared

against the predicted reward to calculate the prediction error. A high prediction error

implies that the agent must explore more. As the prediction error decreases, so does

the chance of exploration. This method allows the agent to decrease its exploration

rate as its knowledge increases. This approach works in a dynamic environment

because the prediction error will increase as the environment changes, thus increasing

the agent's probability of exploration.

In an experiment of different exploration/exploitation control methods Rejeb et

al. [24] propose a meta-rules-based approach to switching. In this approach, the

agent explores for n periods and then exploits for m periods. Then if performance at

time t + n is greater than performance at time t + n + m then the agent has more

to learn so the number of exploitation periods is reduced by a fixed learning rate. If

performance at time t + n is less than performance at time t + n + m then the agent

has sufficiently explored the environment and the periods of exploration are extended

by the learning rate factor.

29

2.7 Chapter Summary

This chapter presented an overview of how gameplay environments can be changed.

The Space Navigator environment was discussed in detail. The topic of concept drift

was presented, the various forms of drift were reviewed, and lastly how to handle

concept drift. The chapter ended with a discussion of several different methods for

exploring an environment and approaches to switching between exploration and ex-

ploitation. This background will be used in chapter III to develop a version of Space

Navigator with dynamic goals and a collection of agents that will adapt to the dy-

namic environment.

30

III. Methodology

This chapter explains the methodology behind the updates to the Space Navigator

environment and the experiment designed to test how different categories of goals

affect an agents ability to detect and adapt to goal changes. The chapter begins with

the changes made to Space Navigator to give it multiple goals. Next the method

in which the goals are added and the exact changes each of those goals makes to

the environment is discussed. Following that is an overview of the agents designed

to play the adapted version of Space Navigator. Lastly, this chapter will cover the

experiment designed to test and evaluate the performance effects of dynamic goals

on agent performance.

3.1 Changes to Space Navigator

In order to examine how an agent performs in a dynamic goal environment, Space

Navigator first had to be modified to have multiple goals. The four goals implemented

into Space Navigator are the avoid, match, destroy, and create goals described by

Djaouti et al. [1]. These goals were added to the game to provide a collection of

meaningful changes that require a strategy adaption. A previous study with Space

Navigator found that game dynamics changes did not require players to adapt their

strategies [30]. The agents need to change their gameplay to adapt to the new goals

designed for this research.

The new goal scenarios could not be added to Space Navigator as is. Due to the

limited number of mechanics in the default version of Space Navigator, several changes

had to be made to the environment for it to be able to support testing of changes

between multiple goals. The ship object is too mechanically limited for meaningful

new goals to be added. The changes made to the environment all work to give more

31

options for what the ship can do.

The first change implemented was giving each ship a shield. The shield allows

ships to survive a single collision before being destroyed. When a ship has its first

collision its shield is depleted. Then, on the subsequent collision, the ship is destroyed.

This change allow for the implementation of more complex goals with further depth.

Ships can now purposefully perform a collision, then continue to act afterward.

The next change reduced the number of spawning ship colors from four down to

three. Green ships no longer spawn, and the green planet was removed from the

map. This leaves only the possibility for red, blue, and yellow ships to spawn. The

remainder of this thesis will refer to these three colors as the basic ships.

Coupled with the removal of the green ships, is the addition of a ship fusion

mechanic. When two basic ships of different colors collide, a new ship with a fusion

of the two colors is formed. A blue and red ship collide to form a purple ship, red

and yellow form an orange ship, lastly blue and yellow form a green ship. When

different colored ships collide, they are both removed from play and a fusion ship

is spawned at the collision location. The fusion ship spawns with a random initial

trajectory. Additionally, the fusion ships start with a shield just as the basic ships

do. The fusion ships do not have a home planet under most goal conditions and can

only be removed from play through collisions or by flying off the map. When a fusion

ships collide with any other ship, both ships lose their shield or are destroyed if their

shield has already been depleted. Like the first change, fusion ships expands the range

of ship interactions possible in the environment. The fusion mechanic provides the

opportunity for goals that require the player to create objects that do not naturally

spawn within the environment. These changes provide Space Navigator with enough

mechanical capacity to support the addition of new goals into the environment.

The last change made to the environment was removing the no-fly zones and bonus

32

pick-ups. Because neither of these objects are changed across the four goals, their

removal allows for greater clarity about the decisions the goal agent is making. Left

in, they would create noise in the final score, making it more difficult to determine

the true performance of the goal agent. Additionally, previous research using Space

Navigator has shown that players tend to ignore both objects, instead focusing solely

on collision avoidance and trajectory generation [30].

3.2 Goal Design

Four new goals were added to the Space Navigator environment. The new goals

added align with the four goal mechanics: avoid, match, destroy, and create, described

in Chapter 2, Section 1. This section details the implementation of the new goals and

relates them to the taxonomy diagram detailed in Chapter 2. The new goals do not

add any new gameplay mechanics or change how the player will fundamentally play

the game. Across the goals, the player will continue to draw trajectories for ships to

guide them to parts of the screen. What the goals do alter, is the point reward for

the component interactions. Switching between the goals will require the player to

alter their play strategy to compensate for the change in how they will earn points.

To avoid any obfuscation on the effects on performance, goal changes were imple-

mented only through modifications to the ship and planet component interactions.

This means that between each goal only the points scored from ship/ship and ship/-

planet collisions have changed. Table 1 summarizes the point breakdown for each

interaction across the four goals. The points were distributed across the goals such

that at most a single ship can earn 150 points and at worst lose 150 points. A descrip-

tion of the four goal scenarios (avoid, match, destroy, and create) are presented as

follows:

33

Table 1. Breakdown of points earned by action for each goal.

Goal
Action Planet

Collision
Shield
Depletion

Ship
Destruction

Ship Fusion
(Per ship)

Avoid 150 -50 -100 -50
Match 50 100 -150 -75

Destroy -150 50 100 -150
Create 100 -50 -100 100

3.2.1 Avoid.

Figure 9. Example of the avoid goal scenario. The player earns points from landing
the ship on itfls home planet.

The avoid goal is largely the same as the base goal in the default version of Space

Navigator described in Chapter 2. This scenario is characterized by the need for ships

to avoid collisions with other ships in order to maximize score. The player losses points

from all forms of ship collisions: -50 points when a ships shield is depleted, -100 points

when a ship is destroyed, -50 points per ship when a fusion ship is created, and 150

points are gained when a ship lands on its home planet. An example of the avoid

goal is shown in Fig 9. In relation to the change taxonomy the avoid goal is a goal

mechanic with a depth and breadth of one. The player only needs to guide the ships

to their home planets.

34

Figure 10. Example of the match goal scenario. The player earns points by colliding
the two blue for the first time and landing a ship on itfls home planet.

3.2.2 Match.

The match goal tasks the player to match ships of the same color to deplete the

ship's shield. In this scenario the player earns: 100 points when a ship's shields

are depleted, 50 points if the ship lands on its home planet, -150 points if a ship is

destroyed, and -75 points per ship from a ship fusion. An example of the match goal

scenario is shown in Fig 10. The match goal is goal mechanic with a depth and breath

of two. To maximize their score a player needs to first deplete a ships shield, then

guide it to it's home planet. The match goal has added breadth, however, because

the player can land ships on planets without depleting it's shield first.

3.2.3 Destroy.

In the destroy goal, the player earns points from ships destroyed through multiple

collisions. The player gains: 50 points are gained when a ships shields are depleted,

100 points when a ship is completely removed from the map, 150 points when a ship

lands on its home planet, and -150 points per ship when a ship fusion occurs. An

example of the destroy goal scenario is shown in Fig 11. The destroy scenario is

a breadth one and depth two goal mechanic. The player must first deplete a ships

35

Figure 11. Example of the destroy goal scenario. The player earns points from first,
depleting both red shipsfl shields and then for both ships being destroyed from another
collision.

shield before it can be destroyed.

3.2.4 Create.

Figure 12. Example of the create goal scenario. First a green ship is formed through
the collision of a blue and yellow ship. Then points the player earns points from landing
the ship on the green planet.

In the create goal scenario, the home planets for the basic ships are removed

from the map and the fusion color home planets are put in their place. The goal then

is to match ships of different colors to form fusion ships and then land those fusion

ships on their corresponding home planets. The player gains: 100 points per ship

from a ship fusion, 100 points if a ship lands on its home planet, -50 points when a

ships shields are depleted, and -100 points when a ship is destroyed. An example of

the create goal scenario is shown in Fig 12. Like the destroy goal, create is also a

breadth one, depth two, goal mechanic. The player must create a fusion ship in order

to land ships on planets.

36

3.2.5 Goal Implementation.

Across the four new goals, two are actually achieved through repetition of the

match goal mechanic. The destroy and create goals are accomplished through

avoid and match mechanics. Due to the gameplay mechanics of Space Navigator the

true goal mechanics of destroy and create could not be added. The destroy goal

mechanic generally requires an object not controlled by the player that the player is

then trying to destroy. The create goal requires a resource that the player spends to

create new objects. In real time strategy games for example gold is accrued by the

player and then spent to create units. The idea of having the player shoot asteroids for

the destroy goal and spending points to spawn a fusion ship for the create goal were

initially considered, but the ideas were ultimately thought too complicated for the

player to balance with the other tasks required within the environment. The destroy

and create goals have thus been abstracted through the other two goals. The destroy

goal is a match followed by another match. The create goal is accomplished through

a match then an avoid. While the match and create scenarios have the same subgoals

for optimal points, a key difference between the two is that in the create goal the

player does not have the option to land ships on a planet prior to the completion of

the match subgoal. This helps make each goal distinct, even though they share the

same goal mechanics.

3.3 Agent Design

The “player” for this experiment is a collection of three agents coded to play

Space Navigator across all of the goals and adapt when changes occur. A line agent

and avoidance agent work in conjunction to play Space Navigator at a high level

with few errors. Meanwhile, a goal agent agent designed to track the goal of the

environment, detect when the goal changes, and assigns targets to aforementioned

37

line and avoidance agents. The line and avoidance agent provide autonomous play

of Space Navigator. The goal agent will be used to answer the research question of

whether different categories of goals affect the ability to detect and adapt to goal

changes.

Figure 13. Interaction diagram for the three Space Navigator agents.

3.3.1 Line Agent.

The line agent outputs a trajectory for the ship to follow. To be successful, the

agent needs to quickly determine a path to the intended target and update the path

to compensate for changes in the environment. Two different line agents were created

and tested for this purpose.

The first line agent was a simple straight-line agent. The agent would accept a

target object and then draw a straight trajectory directly to the object. The straight-

line trajectory was extremely efficient to create and always provided ships with the

fastest route to their target. In practice, however, this agent suffered from multiple

38

short-comings. Most importantly, the agent had no way to path around the other

planets and ships. The straight line agent relied on a collision avoidance agent to

move the ship around another object. The effect of this behavior was that the agent

would most often create trajectories through the center of the map. Then, because

there was so much traffic through the center, ships clustered up and the collision

avoidance agent was not able to properly route the ships around the traffic. This

behavior showed the necessity for more intelligent trajectory generation from the line

agent.

The new line agent had to be able to create trajectories that avoided congested

areas of the map and reduce the reliance on the collision avoidance agent. The A*

pathfinding algorithm was chosen for a variety of reasons. A* has been shown to

work well for pathfinding and is widely used across many video games. For example

the popular games, StarCraft [7] and Dragon Age: Origins [4], both use variations of

A* for unit pathfinding [2]. It was additionally choosen due to how easily it could be

added to Space Navigator through outside asset packages.

Instead of writing an A* pathing agent from scratch, the free A* Pathfinding

Project Unity package by Aaron Granberg [12]. The A* Pathfinding Project pro

version is the top-rated pathfinding solution in the Unity assets store and has been

used in several commercial games [12]. The free version of the package only removes

several specialized features that are not required for this project.

Seen in Figure 14, the Space Navigator map has a 32x64 grid placed over it. This is

the grid over which the A* algorithm performs the search. The grid dimensions were

chosen to balance resolution and performance. Larger grids with more nodes take too

many resources to update while smaller grids did not provide enough resolution for

the agent to make good trajectories.

To have the A* algorithm avoid congested areas of the map, each game object has

39

Figure 14. Grid used for A* pathfinding. The red cells around the planets show penalty
zones.

a zone of influence. These zones add a penalty to all overlapping nodes, raising the

path cost for future A* agents that are searching the grid. This causes the agents

to avoid these areas when pathing a route to the target object. Thus, when the A*

algorithm is searching for a route to the target it avoids making a path directly along

the path of another ship. As seen in Figure 14, each planet has a penalty zone around

the planet causes the agents to avoid the planet. If a planet is the the target of a ship,

then the A* pathing will accept the penalty and draw a trajectory to the planet, but

will otherwise avoid drawing trajectories near planets. That way planets will be clear

for ships that are trying to move there. Ultimately, the penalty zones define where

ships will be and make it clear to other ships that those areas of the map should be

avoided. Figure 15 shows an example of the pathing behavior of the A* agent. As

seen, the agent avoids drawing trajectories close to other trajectories, allowing ships

to move around each other with minimal chance of collision.

Each ship has its own line agent attached to it. There is not a singular agent at

40

Figure 15. Example of trajectory generation with the A* line agent.

the top level of the environment drawing trajectories for each ship. Whenever a ship

spawns, a copy of the A* line agent is also spawned and attached to the ship object.

While the line agent has not target the A* agent simply stays at the ships location.

After a target has been passed to the ship, the agent will then find a path to the

target and begin to move along the path. Path markers are regularly instantiated as

it travels along its route. When the A* agent reaches its destination, it is deleted.

When a ship has another ship as the target, the agent paths to the target ship's line

agent, and they meet in the middle. When a ship avoids a collision, a new line agent

is spawned and the ship's path is redrawn. This allows ships to update their path

around obstacles that were not there when the path was originally created.

3.3.2 Avoidance Agent.

The avoidance agent provides ships with the capability to avoid other objects in

the environment. The pseudocode for this algorithm is shown in Algorithm 1. A

version of this agent was originally built in [10], which used a step-back behavior to

41

avoid ship/ship collisions. Whenever a ship collision was about to occur, the ship

would move back several steps then continue forward again. This, however, is an

imperfect solution to the problem required for this thesis because it only accounts

for ship/ship collisions. Additionally, when the ship was stepping back to avoid a

collision, it would not simultaneously check to see if the stepping back location was

clear of other ships. This resulted in ships causing collisions by stepping back into

other ships in an attempt to avoid a collision.

Algorithm 1 Avoidance algorithm for avoiding unwanted collisions

1: Start:
2: target = null
3: goalAgent = Goal Agent Pointer
4: lineAgent = Ship Line Agent Pointer

5: function CheckIfTarget(raycastHit)
6: if raycastHit == target then
7: Return(true)
8: else
9: Return(false)

10: end if
11: end function

12: function StepBack
13: moveLocation = current position + (0,0,-1)
14: MoveTo(moveLocation)
15: lineAgent.resetTrajectory()
16: end function

17: Update:
18: if target == null then
19: goalAgent.GetTarget(self)
20: lineAgent.PassTarget(target)
21: end if
22: raycastHit = Spherecast object collision
23: if raycastHit != null && !CheckIfTarget(raycastHit) then
24: StepBack()
25: end if

The implemented avoidance agent can avoid all objects in the environment. The

42

agent starts by querying the goal agent for a target object. The target is then passed

from the collision avoidance agent to the line agent. Having one agent in charge of

getting the target from the goal agent ensures that both the collision avoidance and

line agent always have the same target. For the collision avoidance agent, the target

is the one object that the collision avoidance agent will not avoid, thus allowing the

target to be reached. The agent works to avoid collisions with all other target objects.

If the agent is not given any destination object then it will simply avoid all objects

in the environment until the ship eventually flies off the map, at which point it is

removed from the game.

Spherecasts are used for collision detection. Spherecasts work by projecting a

sphere along a ray and returning the first object that the sphere collides with [33].

They are a computationally efficient approach to detect future collisions. On each

update cycle, Algorithm 1 line 22, a sphere cast (the size of the ship) is projected a

full ship's-length in front of the ship. If the sphere cast collides with an object, the

hit object is returned. This lets the ship know if it is going to collide with anything

directly in front of it. The hit object is then compared against the target object to

determine if they are the same. If they are, then the collision is allowed to occur,

otherwise avoidance occurs.

Two behaviors were created for collision avoidance. The first was utilized in

conjunction with the straight-line version of the line agent. In this version, avoidance

was accomplished based on the Y position of the two objects. If the ship has a lower

Y position than the object it is going to collide with, then the ship moves down. If

it has the higher Y position then it moves up. Up and down in this context refers to

movement along the Y axis relative to the ships rotation, not the Y axis as defined

by the map. This movement behavior allows ships to navigate around both moving

and stationary objects. While this behavior worked well for single pairs of ship's,

43

when, more than two ships were in the same area, the behavior did not help ships

path around one another. When this behavior was tested with the A* line agent

it would often push ships into the path of other ships. Thus, it was found that a

simpler behavior improved performance. By reverting to a simple step-back agent, a

ship creates distance between itself and the potential collision and then relies on the

A* pathing to guide the ship around the object due to the penalty zones.

To improve on the previous step-back agent from [10], ships continue to actively

avoid collision even while already avoiding a collision. Instead of blindly stepping

back the ship first turns and checks if the location it would be moving to is open. If

the ship would have a collision with another ship whilst already avoiding a collision,

it will also avoid the new collision. This behavior causes the ship to stay in place

by quickly stepping back between the two potential collisions. Finally, when a ship

avoids a collision it sends a flag back to the line agent that it should redraw the

trajectory. This allows ships to avoid objects that may have traveled into their path.

3.3.3 Agent Performance.

Tests of the line and collision avoidance agents were performed to determine base-

line performance across the four goals. The two agents were provided the correct

goals at the start of the game and played for five minutes. Thirty games were run for

each goal. Figure 16 shows the results of the baseline trials. In a five-minute game,

the maximum possible score is around 21,750, dependent on the final ship spawn lo-

cations. The figure shows that the agents perform best in the avoid and match goals,

scoring close to the maximum at an average score of 20,875 and 20,300 respectively.

The agents score roughly 2,000 less points when tested on the avoid and destroy

goals. This is likely due to the fact that ships are on screen longer in these goals,

resulting in more ships on screen and more unintended collisions.

44

Figure 16. Score results from agent baseline performance tests.

3.3.4 Goal Agent.

The goal agent is the central agent that tracks the goals, assigns targets to the line

and avoidance agents, and adapts to changes in the environment. The goal arbiter

utilizes the adaptive learner framework presented in Section 2.6 to detect concept drift

in the goals. Additionally, the agent utilizes exploration to search the environment

and create a predictive model. Exploitation then utilizes this model to maximize

score. The goal arbiter begins with no knowledge of the environment and is reset

between all game instances. Psudocode for the goal agent is shown in Algorithm 2.

3.3.5 Adaptive Learner Framework Implementation.

As discussed in Section 2.6 and seen in Fig 17, for an adaptive system to com-

pensate for concept drift it requires distinct memory, learning, loss estimation, and

change detection modules. Before these are designed, the type of drift present in the

environment must be analyzed. In this environment, prediction target Y is how many

points will be earned from a specific ship interaction, X. Here the features of X are

the ship color, shield level, target object, and target shield if applicable. The drift

between goals is sudden drift. At the change point, the goal switches from one to

another instantly and then does not change again for the rest of the game.

The memory module is implemented by using single instance memory. Only the

most recent sample of each interaction is stored in memory. Because the data is

45

Algorithm 2 Adaptive Learner Agent algorithm for detecting change and assigning
targets.

1: Start:
2: exploreT ime = currentT ime + 45
3: Exploring = true

4: function GetTarget(ship)
5: if Exploring = true then
6: target = unexplored interaction object
7: else
8: Compile list of targets
9: if Target exists then

10: target = object
11: else if Target not assigned in 20 sec then
12: target = random object on screen
13: end if
14: end if
15: return(target)
16: end function

17: function checkDrift(feedback, prediction)
18: Update memory
19: Calculate loss
20: Update loss windows
21: if avg(5 sample Loss) > avg(10 sample Loss) + 25 then
22: Clear loss windows.
23: exploreT ime = currentT ime + 45.
24: Exploring = true
25: end if
26: end function

27: Update:
28: After Delay: checkDrift(feedback, prediction)
29: if Exploring && currentT ime > exploreT ime then
30: Exploring = false
31: Compile exploration knowledge
32: Formulate goal
33: Distribute goal across all ships
34: end if

46

Figure 17. Adaptive learner framework used to create goal agent. Recreated from
Gama et al [8].

noiseless, the score can be predicted from a single instance sample of an interaction.

The most recent samples are more accurate than older samples and thus continually

overwrite the previous sample for each X.

The learning module uses a predictive model generated by forming a look-up table

between X and the true y feedback from memory. When a ship has a target assigned,

the lookup table is used to determine how many points were earned from the last

instance of the interaction and this value is used as the predicted number of points

for the interaction. The learner uses local replacement to update the predictive model.

As new samples are collected, they overwrite the old samples which are discarded from

memory.

When a ship completes its assigned interaction, the agent receives a noisy value

for the number of points earned. The noise added to the score is drawn from a unit

normal distribution then multiplied by 25 to increase its effect. The noise avoids

giving perfect information to the agent that would allow it to instantly detect when a

change occurs. This represents how a player may not notice the change due to their

attention being taken up from drawing trajectories and avoiding collisions. The noisy

47

score feedback is compared against the predicted number of points for the interaction

to get the prediction error. The agent maintains a short (five sample) and long (10

sample) window of the error to compare the loss over time. The average loss in the

short window will be affected more quickly after a change than the long window.

When the average error in the short window is 25 points greater than the average loss

in the long window a change alarm is triggered. The alarm signals to the agent that

it should begin exploring the environment to learn the full extent of the changes.

3.3.6 Exploitation.

In addition to the adaptive learner, the goal agent utilizes exploration and ex-

ploitation to determine when and how the environment should be explored versus

when the learned knowledge should be utilized for points. The goal arbiter can be

in either exploration or exploitation mode depending on feedback from the adaptive

learner.

During exploitation the goal arbiter utilizes the predictive model generated by the

learner to assign targets to the ships that spawn. Whenever a ship spawns, the line

agent and the avoidance agent query the goal arbiter for a target object. The goal

arbiter uses the lookup table to determine what interaction will give the most points.

If the interaction requires an object that is not currently present in the environment,

then the goal arbiter will wait to pass a target object until the correct object has

spawned. When an object that satisfies the interaction spawns or becomes available,

the goal arbiter passes the object to the agents. If a ship reaches its first target and

has not been destroyed, then it re-queries the goal arbiter for another destination

object.

48

3.3.7 Exploration.

The goal arbiter uses exploration to inform the predictive model. It works to

assign a variety of interactions to gain an understanding of how the points are dis-

tributed across the environment. Exploration is accomplished through a combined,

random and recency approach. Randomness is introduced in exploration through the

ship spawn system. The color of the spawning ship is a random uniform distribution

between the three basic colors. This means that there is no way to determine when

ships of a certain color will spawn. Thus, the exploration is bounded by the random-

ness of the ship spawns. If a blue ship does not spawn during the exploration period

then there is no way for the goal arbiter to learn the reward structure for blue ships.

Recency is used in exploration to determine if the goal arbiter should explore an

action or not. Whenever an interaction occurs, the time stamp is also recorded. When

the goal arbiter is exploring the environment it first checks to see if the interaction

has already been explored. If it has, then it checks the time stamp to determine

how long ago the interaction was explored. Only interactions older than 30 seconds

are explored again. The more recent interactions are ignored as the predictions are

assumed to be correct due to how recently the data was collected.

Thus, when a ship spawns during an exploration phase the goal arbiter searches for

the first available object that will result in a new point reward prediction occurring.

However due to the randomness of the spawn there is no way to determine the order

these will occur or which interactions will take place. For this reason, at the end of

each exploration phase the predicted rewards are shared across all ships with missing

interactions. For example, if by the end of the exploration phase there was no record

of the reward from a blue ship interacting with a bonus, but there was one for yellow

and a bonus, then the prediction for the yellow/bonus interaction will be shared to

the blue ship. This assumes that different colored ships are likely to have the same

49

goals. If two ships have entries for the same interaction with different point value

than the pessimistic approach is taken and the lower point reward is shared.

3.3.8 Switching Methods.

Switching between exploration and exploitation is dictated by time and the adap-

tive learner. While in exploration mode the goal arbiter will explore the environment

for a fixed 45 seconds. Then the goal arbiter will switch to exploitation mode. While

in exploitation mode the adaptive agent can trigger exploration again when drift is

detected. This starts another 45 seconds of exploration.

It should be noted that usually exploration should be continuous, even if in-

frequent, in most systems. This is because drift could occur outside actions being

exploited. Without exploration the system may never notice the drift and continue

exploiting potentially suboptimal actions. Across the four goal the points change

such that the positive point action always changes between goals. This ensures that

the goal agent will always detect the drift after a goal change.

3.4 Experimental Design

3.4.1 Objective.

In the proposed experiment, the agents play Space Navigator, then at some time

mid-game the goal switches to one of the other three goals. The objective is to deter-

mine the effects of goal changes on agent performance. The experiment determines if

any one of the four goals is more difficult to learn and adapt to. The hypothesis for

this experiment is that there will be a difference in the performance based on the type

of goals, thus the null hypothesis is that goal switching has no effect on the outcome

of the game.

50

3.4.2 Response Variables.

The response variables being collected are summarized in Table 2. Average Regret

and average ship point rate will both be calculated after the experiment by processing

the raw data output from the game of Space Navigator. There will not be any precision

error in the measurements due to the experiment being fully simulated.

Table 2. Response Variable Summary

Response
variable

Normal operating
level and range

Measurement
precision

Relationship of response
variable to objective

Total Score
[-45,000, 45,000]
Points

Exact
measurement

Direct measure of
performance for the trial

Detection Time (0, 300] Seconds
Exact measurement
to 0.01 seconds

Measure of goal
agent perfromance

Learn Time (0, 45] Seconds
Exact measurement
to 0.01 seconds

Time taken until
goal agent has enough
information to determine
the new goal

Total Score.

This is a measure of the total number of points scored at the end of the 10-minute

game. The point distributions have been standardized so that the total number of

points available is the same across all goals. In each goal condition the ships can

earn a maximum of 150 points. Total score provides a simple measure to quickly

understand the performance of the agents for a given set of conditions.

Detection Time.

Detection time is the time it takes the goal agent to detect a goal change after it

has occurred. This is the primary measure of performance for the goal agent. The

faster the detection time, the better the goal agent is performing.

51

Learn Time.

Learn time is the length of time, after a change has been detected, that it takes

the goal agent to learn what the new primary goal is. The goal agent explores for

a fixed length of time after a change is detected, however this measure records how

soon into the 45 second period the agent has sufficient information to determine the

goal. Because all ships share the same goal, once the goal arbiter has tested each

action it will have learned enough to determine the goal. Analysis of the difference

in lengths of time between different goal changes will reveal which changes are more

difficult for the agent to adapt to.

3.4.3 Control Variables.

Although there are many variables in Space Navigator, this experiment is primarily

concerned with the effects of goal changes and the length of time before the goals

change. Table 3 shows a summary of the control variables and the proposed changes.

Table 3. Control Variable Summary

control
variable
(units)

normal
level &
range

proposed settings, based
on predicted effects

predicted
effects
(for various
responses)

Goal - A - Match, Destroy, Create Difference
Goal - B - Avoid, Match, Destroy, Create Difference
Change Time 0 150, 300 Unknown

Goals.

Each combination of goal pair changes will be tested, resulting in 12 unique goal

change scenarios. In each trial, the agent will start with no knowledge of the goals.

Goal-A is that starting goal and Goal-B is the goal that is switched to after the change

52

time is reached. This experiment is not concerned with more than two goal changes

per trial because multiple goal changes can be seen as linking 2 trials together.

Time to Change.

This is the length of time, in seconds, that passes until the goal switches from

goal-A to goal-B. There are 2 different change times being tested, 300 seconds and

150 seconds. The 300 second switch time will change the goal at the half way point in

the game. It will provide feedback on performance when both goals are given equal

time in the round. The 150 second trial will test the system's agents' ability to adapt

to a quick goal change. Additionally, after the change it tests the performance of the

agent when the goal remains steady for a longer period.

3.4.4 Held Constant Factors.

The held-constant factors, shown in Table 4 within the environment are the vari-

ables that remain constant across all trials. The ship spawn rate and game length

are constant across all trails to ensure that the same number of points are available,.

Table 4. Held Constant Factors Summary

Factor (units)
Desired experimental
level & allowable
range

How to control
(in experiment)

Anticipated effects

Ship spawn rate 2 ships every 2 seconds Set in environment
Total points available
in the environment

Game Length 600 Seconds Set in environment
Total points available
in the environment

3.4.5 Nuisance Factors.

Nuisance factors are limited due to the experiment being fully simulated. Most

all of the factors can be accounted for by hard coding them to a set value. The one

53

nuisance factor in the experiment is the random ship spawn distribution. Because

the ship spawning in Space Navigator is completely random, some scenarios may have

more possible points than other due to how the ship spawns. For example, if a ship

spawns on the opposite side of the screen from its home planet, there may not be

enough time left in the game for the ship to reach its planet, thus those points could

not possibly score. This causes variability in total points available in the environment.

This variance should be minimized by running a sufficient number of trials of each

condition.

Table 5. Nuisance Factors Summary

Nuisance factor
(units)

Strategy
(e.g., randomization,
blocking, etc.)

Anticipated
effects

Ship spawn distribution Repeated trials Variation in total points

3.4.6 Design Matrix.

From the two control variables 24 different test conditions have been tested. Table

6 shows the testing schedule for the 24 conditions. Each condition was run 30 times

to ensure that enough data has been collected for statistically significant results.

3.4.7 Apparatus.

To avoid any issues with computational limitations, the trials were run in real

time. With each trial being 10 minutes, 24 different conditions, and 30 captures for

each condition, running the experiment on a single computer takes 120 hours in total.

To speed up the data capture trials was spread across six different computers. This

sped up the time taken to capture the data down to only 20 hours.

54

Table 6. Testing Matrix

Condition Goal-A Goal-B
Change
Time

Total
Score

Detection
Time

Learn
Time

1 Avoid Match 300 - - -
2 Avoid Destroy 300 - - -
3 Avoid Create 300 - - -
4 Match Avoid 300 - - -
5 Match Destroy 300 - - -
6 Match Create 300 - - -
7 Destroy Avoid 300 - - -
8 Destroy Match 300 - - -
9 Destroy Create 300 - - -

10 Create Avoid 300 - - -
11 Create Match 300 - - -
12 Create Destroy 300 - - -
13 Avoid Match 150 - - -
14 Avoid Destroy 150 - - -
15 Avoid Create 150 - - -
16 Match Avoid 150 - - -
17 Match Destroy 150 - - -
18 Match Create 150 - - -
19 Destroy Avoid 150 - - -
20 Destroy Match 150 - - -
21 Destroy Create 150 - - -
22 Create Avoid 150 - - -
23 Create Match 150 - - -
24 Create Destroy 150 - - -

3.5 Chapter Summary

In summary, this chapter covers the methodology for the changes made to Space

Navigator, the design of the agents, and the experimental design. The mechanical ca-

pacity of Space Navigator was increased through the addition of more ship interaction

mechanics. This allowed for the implementation of the four goals into the environ-

ment. Three agents were designed to both play Space Navigator and adapt to the

changing goals. Concept drift methods and reinforcement learning were utilized to

learn the goals and adapt upon changes. Lastly, the chapter presents an experiment

55

to analyze the effect that dynamic goals has on agent performance.

56

IV. Experiment One

This chapter presents the results of the experiment proposed in Chapter 3. Re-

sults focus on goal agent performance and how different goals affect overall system

performance. Section 1 analysis the score results of the experiment. Section 2 details

the change detection performance. Section 3 further analyzes the detection time re-

sults by looking at the relationship between detection time and goal similarity. These

results are used to answer the thesis question showing how different categories of goals

affect detection and performance.

4.1 Score Results

The score results present a general overview of the performance across the 24

conditions. Figure 18 shows the scores for the 12 goal combinations at the two change

times. Across the 720 games, the maximum score was 36,100 points (occurring once

in the avoid-create and destroy-create conditions) and the minimum score was -

1,200 points (in the match-avoid condition). The average score over all the conditions

was 30,052 points. The create-avoid conditions with a quarter change time achieved

the highest average score of 32,990 points. The lowest average score of 26,825 point

was obtained from the destroy-match with a half change time condition.

Figure 18. Average score for each of the 24 conditions. Black bar shows the 95%
confidence interval for the score.

These results are consistent with the baseline results discussed in Section 3.2. The

57

baseline results showed that the line and collision avoidance agents performed best

in the avoid and create goals, while the agents performed worse in the match and

destroy goals. Thus, it is expected that any game with the match or destroy goal

will have a lower final score.

The varying baseline performance of the line and collision avoidance agents across

the goals explains the score difference between the two change times for the same

goal combination. Because the goals are not present for equal time in the quarter

change time scenario Goal-B has a larger affect on the final score compared to Goal-A.

Thus, conditions with avoid or create as the second goal will have a higher score

than conditions with match or destroy as Goal-B. For example, in the match-avoid

condition, the average score in the quarter game change time is 3,527 points higher

than in the half time goal change.

Next, scores are compared to the score results. Perfect in this context refers to the

scenario where the goal agent instantly detects goal changes and adapts immediately.

However, because the goal agent cannot instantly detect changes, the actual score will

always be less than this ideal score. The ideal score for each condition was calculated

using the mean baseline results from Section 3.2. Figure 19 shows the comparison of

the perfect scores to actual score. The figure shows that actual scores follow the same

trends as the corresponding baseline scores, but at a lower average score. On average

the actual score is 9,047 points lower than the perfect score. With respect to the

ideal score, the match-create conditions had the best performance with an average

difference of 7,585 points. The avoid-create goal had the worst performance with

an average difference of 10,714 points.

The 9,000 point difference between the perfect and actual scores is a byproduct of

the exploration to learn the goal, and negative feedback required to recognize a goal

change. A large number of potential points are lost during the exploration phase as

58

Figure 19. The difference in the perfect score for each condition compared to the actual
score results.

a result of searching the environment for the goal. Additionally, for the goal agent to

detect a change the agent requires some negative feedback which results in more lost

points. The match-create goal has the best performance compared to its perfect

score because the major negative scoring action, ship destruction, is a depth two

mechanic meaning it will happen less often during the exploration phase.

Further reducing performance was the presence of false positive detections in

games. False positives here are defined by the goal agent flagging a change when

none had occurred. Each false positive triggers a period of exploration that further

reduces the score. Across the 720 trials, there were a 101 total false positive detec-

tions in 95 games. The breakdown of false positive detections by goal is shown in

Table 7. These most often occurred in the destroy goal state. A false positive was

triggered 67 times across the destroy goal. At 23, create had the second highest

number of false positive detections.

Table 7. Number of false positive detections by goal scenario and goal time.

False Positives Avoid Match Destroy Create

Goal-A 2 3 20 13
Goal-B 0 0 47 10

59

4.2 Time Results

The next performance measure examined is detection time. Detection time is

defined as the time it takes the goal agent to detect a change after the goal has

change. Figure 20 shows the average detection time and 95% confidence interval for

each condition. The key feature of this figure is the large avoid-create detection

time result. In this goal scenario it takes the goal agent on average 2 minutes to

detect a goal change.

Figure 20. The average time to detect the goal change in each of the conditions.

To gather more information the time results must be filtered to remove outliers.

Detection times longer than 45 seconds can be reasonably assumed to be a pseudo

false positive that has been triggered by means other then genuine change detection.

Figure 21 shows the filtered detection time results where the long detection times

have been removed. In this figure the detect time range has been greatly reduced

making comparisons across conditions easier.

Figure 21. The average time taken to detect the goal change in each of the conditions
with outliers removed.

The match-destroy conditions have best detection time, taking an average of 4.99

60

seconds to detect the goal change. The avoid-create condition continues to be the

worst performer, taking an average of 35.1 seconds to detect a change. Across all goals

the average detection time is 9.19 seconds. Lastly this chart shows that detection time

is not affected by change time. As seen in Table 8 there is no significant correlation

between the change time and the detection time. This proves the null hypothesis that

the time a goal change occurs effect the agents ability to detect the change.

Not captured in either Figure 20 or 21 are the number of games without any

detections. In 18 games no goal change was detected. This was a serious issue in the

avoid-create condition. Of the 60 games in this condition no change was detected

in 14 of them. In addition to those, a change was detected over 45 seconds after the

goal switch in 30 other trials. That results in a change detection between (0, 45]

seconds in only 26% of the avoid-create trials. Additionally the detection time in

the 26% of proper detections has the worst performance across all conditions.

Further investigation of the avoid-create condition was conducted to determine

the cause of the longer detection time. In each goal scenario, when the goal changes

ships continue to pursue their original Goal-A targets, as the goal agent is unaware of

the change. When they encounter their intended target that is when the goal agent

receives feedback that a change has occurred and triggers a period of exploration to

discover the change. For example, in avoid-destroy the goal agent only notices the

change after it sees that ships are receiving -150 for landing on planets as opposed

to the predicted 150 points. In the avoid-create scenario, however, ships cannot

generate the necessary feedback. When the goal changes from avoid to create, all

of the base colored planets are removed from the screen and replaced with the fusion

Table 8. Correlation between change and detection times.

Correlation Pearson’s Coefficient (r) P-Value
Change Time x Detection Time -0.0166 0.681

61

color planets. However, because the primary ships on screen are still targeting their

home planets they fly off screen where they are deleted without sending any feedback

to the goal arbiter. Then, new ships that spawn have to wait 20 seconds for the

time delayed exploration to occur. If a change is not detected before the goal arbiter

begins learning from the time delayed exploration, no change may be detected.

These results show that both the goals being switched to and from affect detection

time.

4.3 Goal Similarity

Next the detection time was compared to the relative similarity of each goal to

determine how the similarity of goals affected detection. Table 10, shows the point

difference between the positive scoring actions of Goal-A to the corresponding points

for the action in Goal-B. For example, if avoid were Goal-A, a ship receives 150 points

for landing on a planet, if match were Goal-B, then a ship instead scores 50 points

for landing on a planet. This results in a 100 point difference between the goals. The

lower the number the more similar the goals are. Similarity was calculated using only

the positive score actions because those are the actions that the goal agent will be

assigning during steady state. The goal agent will detect goal drift based on changes

to the positive score actions because those are the actions it will be taking. The

assumption is that negative score actions will not be taken after exploration, thus

the goal agent will not be detecting change based off them. Then, when comparing

the similarity of goals it is most important to look at how the positive score actions

change from Goal-A to Goal-B.

The create goal creates a special exception due to the mechanics of Space Naviga-

tor. Because the planets swap between create and the other three goals, the planet

action is not applicable to either the primary or fusion ships. Thus, when going to or

62

Table 9. Relative point similarity of goals based on positive scoring actions. Higher
values indicate less similar goals.

Goal A
Goal B

Avoid Match Destroy Create

Avoid - 100 300 0
Match 250 - 250 150

Destroy 300 300 - 300
Create 150 175 250 -

from create, the planet action is not taken into account when calculating goal simi-

larity. This causes a 0-point difference from avoid to create because the ships do not

have the opportunity to test landing on a planet due to the colors changing. This is

in line with the avoid-create behavior described earlier. In relation to the positive

score action the two actions are essentially the same due to the agent's inability to

get feedback.

Figure 22. Detection time versus goal similarity.

63

Table 10. Correlation between goal similarity and detection time.

Correlation Pearson’s Coefficient (r) P-Value
Goal Similarity x Detection Time -0.5079 <0.001

Comparing the goal similarity to the detection time results shows a strong corre-

lation between the two variables. Table 10 shows relation is significant beyond the

p ≤ 0.05 level. The correlation can be seen visually in Figure 22. The detection for

the three conditions across each of the starting goals closely matches the similarity

between the goals. From the avoid goal, destroy is the fastest to detect, match

is second and create is third. In destroy no goal is fastest to detect with each of

the three conditions all having overlapping confidence intervals. The create goal is

the goal that does not follow this logic. Based on similarity create-destroy should

be the fastest to detect, but that is not matched in the data, with it being only 0.1

seconds faster on average than create-match.

Figure 23. The average time taken to detect the goal change in each of the conditions
with detections >45 seconds removed, organized by Goal-B.

For example, we would expect a Goal-B match to be detected earliest when

destroy is Goal-A, but the confidence intervals for each Goal-B match condition

are overlapping. It holds true for the other three goals however.

One interesting discovery is that there is no correlation between the time it takes to

detect a change and the difference between expect vs actual score. We would expect

that the longer it takes to detect a change, the greater the difference in expected

versus actual score. That is not the behavior seen in Figure 24. The figure shows the

64

Figure 24. Detection time vs. difference between expected and actual score.

detection time for each of the 24 conditions compared to the difference in expected

versus actual score. There is no correlation between the two metrics. Some conditions

with longer detection times have a smaller point difference. Thus, the score difference

is truly a product of the exploration and not detection time.

4.4 Chapter Summary

This chapter outlined the results from the experiment described in Chapter 3.

The experimental results show that the goal agent is able to detect goal changes and

adapt when the change occurs. The detection time does depend on both the goal

being switched too and the goal being switched from. The similarity of the goals is

a highly significant factor in the time it takes to detect a goal. The less similar the

goals, the faster change detection is.

65

V. Experiment 2

This chapter details the methodology and results of the follow-on experiment that

was conducted after analyzing the results from the first experiment. The second

experiment aims to resolve several of the shortcomings of the first experiment to

make the results more comparable to human performance. Section 1 details the

methodology for the second experiment. Section 2 outlines the results and compares

them to the results obtained from Experiment 1. The chapter concludes with a

discussion on the importance of the new results and how they can be used in future

work.

5.1 Methodology

One curious result from the first experiment is the avoid-create detection time.

To a human, this change would be the easiest to detect due to the visual transforma-

tion of the planets. Once the primary and fusion colored planets swap, the human

would know that an accompanying goal change has also occurred. Yet for the goal

agent it is the scenario that takes the longest to detect the change. The human has a

clear advantage of being able to use the visual feedback of the environment to detect

a change. In order to obtain results that are more comparable to human performance,

the goal agent needs to be updated with expanded perception capabilities.

Specifically, changes were made to the goal arbiter's target assignment perceptions.

Because the goal arbiter does not have the ability to directly monitor the planets'

locations, when the planets swap for the create goal no feedback is obtained. The

goal agent would simply update its memory to ensure that off-screen planets were

no longer passed as targets. To increase the agent's capabilities, feedback was added

such that when an off-screen planet was passed as a target, a large error value is

66

passed to the change detection module. Thus, when several off screen targets would

be passed, the change detection flag is triggered and exploration begins.

The hypothesis for this experiment is that this system will greatly improve the

detection time for the avoid-create scenario and to a lesser extent improve the

match-create, create-avoid, create-match, and create-destroy scenarios. The

system will not improve the destroy-create detection time because at no point in

the destroy goal are ships directed toward planets, thus the error is never passed

indicating to the goal agent that planets have moved off screen. Finally, this change

should have no effect on any scenario where the create goal is not present.

For the second experiment only games with the half game change time were run.

This reduced the number of conditions from 24 to 12. This change was made to reduce

the simulation run time and remove unnecessary data. The results from experiment

1 showed that there is no correlation between change time and detect time. The goal

change time only affects the score results due to varying performance across the four

goals. This thesis is primarily focused on the effects different goals have on detection

rather than overall score performance. Thus, having two different change times yields

redundant information. All comparisons made with Experiment 1 will be made using

only the half game change times as to keep the comparisons valid.

5.2 Results

The detection time results, seen in Figure 25, show that the change to the goal ar-

biter greatly improved the detection time in the avoid-create scenario. The average

detection time was reduced from 36 second down to 5.6 seconds. All 30 avoid-create

games had proper detections compared to only 8 in Experiment 1. Additionally, as hy-

pothesized the match-create, create-avoid, create-match, and create-destroy

detection times were reduced. The destroy-create scenario was the only that had

67

an increase in average detection time.

Figure 25. Comparison of detection time between Experiment 1 and Experiment 2.

Table 11 shows the statistical significance from the comparisons of means using

a t-test between the two experiments. The difference in means is significant for

the avoid-create, match-create, and create-avoid scenarios. It is significant for

the create-match scenario. Lastly the change for both the destroy-create and

create-destroy scenarios was not significant. These results show that change did

have the intended effect of improving detection time.

Despite the improvements to detection time, the overall score performance did

not have a corresponding increase. At 29,920 points, the average score across all

games from Experiment 2 is only marginally higher than the average score of 29,888

for Experiment 1. This indicates that, although a change was not being explicitly

detected in Experiment 1, the goal agent was still learning the new goal. Both

experiments had a similar number of false positive detections which could be what

caused the similar scores. Reducing the false positive detections is likely the best way

Table 11. Significance test for the detection means between experiment 1 and 2. (*
denotes significance at the 0.05 level.)

Scenario DF F-Statistic P-Value
avoid-create 36 -20.099 <0.001*
match-create 58 -3.233 0.002*
destroy-create 53 0.777 0.440
create-avoid 57 -4.543 <0.001*
create-match 56 -1.746 0.086
create-destroy 57 -1.359 0.179

68

to improve overall score performance.

Figure 26. Comparison of score results between Experiment 1 and Experiment 2.

The results of this experiment are significant because they provide a new baseline

for comparison to human performance. The change to the goal agents fix the detection

shortcoming found in Experiment 1. The feedback from off-screen planets mirrors a

humans capability to visually detect the color change of the planets. The Experiment

2 results provide a much fairer comparison to the human performance due to the goal

agent change. The change to the goal agent increases it's performance without giving

it specific knowledge of the goal scenarios.

5.3 Chapter Summary

This chapter outlined the results from the second experiment. The goal agent

was given increased capabilities to detect when planets left the screen. This mimics

a humans ability to recognize the visual change. The detection time results improved

significantly for three of the goal scenarios. The increased detection time performance

did not correlate with a similar increase in score. The results provide a baseline of

results that will be more comparable to human performance on the same task.

69

VI. Human-Subject Experiment

A human subject experiment has been designed to test the human's change de-

tection capabilities at the same Space Navigator task as the agents, which will help

to identify the categories of goal changes that each group excels at. The primary goal

of the experiment is to determine if there is a difference between human and agent

performance. Additionally, it will look at how humans detect change within the envi-

ronment. This chapter first outlines the experimental design, then explains the data

to be collected during the experiment. As of writing, the outlined experiment has

not been conducted. The hope is the the experiment can be run as part of the future

work for this research.

6.1 Experimental Design

In the human-subject experiment, participants will complete the same task as the

autonomous agents in the previously described experiments. The human will take the

place of the agents to compare goal detection between the two groups. The objective

is to keep the task as similar as possible to what the goal agent experienced during

Experiment 2. This allows the measurements to remain comparable between the two

groups.

First, each participant is taught how to play Space Navigator by demonstrating

the various mechanics for the ships. For each of the mechanics: landing on a planet,

shield depletion, ship destruction, and ship fusion, participants are shown a short

video of how the mechanic functions. After being taught how to play the game,

participants engage in a five minute practice round of Space Navigator. The practice

round is intended simply to familiarize the subject with the mechanics of the game.

No points are rewarded for any of the actions. This allows the player practice the

70

various ship interactions without biasing them toward any one action.

After completion of the practice round, participants complete six games with a goal

change. The number of rounds is decreased from twelve in the automated experiment

to six for the human-subject experiment, in order to prevent player fatigue and to

limit the number of redundant goals seen by the player. If tested on all twelve goal

change conditions, the player would likely be able to learn each goal and quickly

identify each change by the end of the experiment. The goal agent, however, starts

with no knowledge of the goals, so games where the human is still learning are more

comparable. Each goal will be seen three times across the six rounds. Additionally,

the games are shortened to 5-minutes to reduce player fatigue.

Because six different rounds would require 720 participants to test all combi-

nations, blocking is used to confound the learning effects of experiencing the goal

changes multiple times. Randomized complete blocking with 24 participants is used

to determine the testing order. The test schedule for the twenty-four participants is

shown in Table 12.

Within each round, the goal changes at a random time between 105 to 195 seconds

into the game, or ± 45 seconds from the midpoint of the game. After the participant

notices the goal change, they are asked to write down the game time at which they

noticed the change. Subjects are told beforehand that only one goal change will

occur during each game. After each round the participant then writes down what

they thought each of the goals were. While players will be told to try and achieve the

highest score possible, this experiment is primarily interested in the human's change

detection capabilities. It is highly unlikely that any human player will be able to

perform to the same level as the line and collision avoidance agents, making final

score an unfair comparison between the two groups.

71

Table 12. Testing schedule for human subject experiment. A, C, D, M are acronyms
for the avoid, create, destroy, and match goals.

User Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
1 M-D C-A A-D A-M C-M D-C
2 C-M C-A A-D M-D A-M D-C
3 C-A M-D D-C C-M A-M A-D
4 D-C C-M M-D A-M A-D C-A
5 A-M M-D C-A C-M D-C A-D
6 C-M C-A A-M A-D M-D D-C
7 A-D M-D A-M D-C C-M C-A
8 M-D C-M A-M D-C A-D C-A
9 C-M M-D C-A A-M D-C A-D
10 A-M C-A C-M D-C M-D A-D
11 A-M A-D C-M C-A D-C M-D
12 D-C A-M C-M A-D C-A M-D
13 D-C A-D M-D C-A A-M C-M
14 C-M A-D A-M M-D D-C C-A
15 C-A M-D A-M C-M A-D D-C
16 D-C A-D A-M M-D C-M C-A
17 A-M A-D D-C C-M M-D C-A
18 A-M A-D C-A D-C C-M M-D
19 M-D A-M D-C C-M C-A A-D
20 C-A M-D D-C A-M A-D C-M
21 C-M A-D A-M D-C C-A M-D
22 A-D C-A D-C C-M M-D A-M
23 A-M M-D A-D C-A D-C C-M
24 A-M C-M C-A A-D D-C M-D

72

6.2 Recorded Data

Before the experiment begins, participants are asked to complete a basic demo-

graphic questionnaire (Appendix A). Of particular interest on this questionnaire is

the subject's prior experience with Space Navigator and their general gameplay ex-

posure. Prior experience with Space Navigator could negatively affect the subjects'

performance, as previous experiments using the environment only had one goal. The

subject may be biased towards the avoid goal, because that is the goal they know

from previous experiments with the game. General gameplay exposure will likely

increase a subject's ability to detect change, as many of the goal changes are similar

to what might be encountered in other video games.

During each trial the participant is asked to note down when they notice a goal

change. Additionally at the end of each trial, the participant is asked to write down

what they thought the starting and ending goals were. This primarily is used to

determine how long the participant took to detect the goal change. Additionally, it

will reveal if the participant has fully learned the goals or is only accomplishing one

layer of the goal.

In addition to the questionnaire, participants will be recorded during the experi-

ment and be asked to comment on what they are doing during the game. This will

provide greater insight into how the subject is noticing goal changes and the varia-

tions they are making to their behavior in response. The recording will also allow for

the subject to identify when they notice a change, but have not fully confirmed it.

After the participants complete all of the games, they fill out a final questionnaire

(Appendix B) where they are asked about how they detected the goal changes and

which goal they thought was the hardest to detect. Additionally, are asked to com-

plete a personality test to determine if certain personality traits are more conducive

to detecting change over others.

73

Gameplay data is recorded from within Space Navigator. The gameplay data

include:

• Basic game data, including the round identifier, final score, goal scenario, and

change time.

• Player action data, containing the information on all trajectories drawn by the

player.

• Ship data, containing all ship related events. This includes: spawn time, colli-

sions, fusions, planet collisions, and screen exits.

The gameplay data provides objective measures for the participants behavior. The

data will be used to determine how a player responds to changes. Mapping the players

points over time will inform how quickly the player is learning the goal. Trajectory

data will be used to determine how play changes near the goal change. Measures such

as trajectory draws per second, number of trajectory redraws, and length of time a

ship is on screen before a trajectory is drawn can be used to determine the impact of

a goal change beyond just score.

6.3 Expected Results

The expected results from this experiment are that the human will perform sig-

nificantly worse than the goal agent at the beginning of the experiment, but improve

and potentially surpass the goal agent with practice. For the first several trials the

participant will likely have a difficult time detecting the change due in inexperience

with the task. Each new goal the participants encounters will also make it harder

for the participant to detect a change. Lack of experience with the goal will make it

harder to determine if a change has occurred. For these trials, it is expected that the

goal agent will greatly outperform the human.

74

The experiment will likely have a large learning effect. For later trials the partic-

ipant will have experienced each of the goals and will be able to identify each more

quickly. Additionally, the participant will have a better idea of what they need to do

to identify the goal change. By the end of the experiment it is likely that the human

will perform at the same level as the goal agent. For scenarios with the create goal,

it is likely that the human will be able to instantly detect a change due to the visual

alteration of the planets swapping.

6.4 Chapter Summary

This chapter presented a human-subject experiment to complement the results

detailed in Chapter 5. A human-subject experiment will provide valuable information

on the differences between agent and human goal change detection. This data could

ultimately be used in the creation of a human-machine team proficient at identifying

goal changes. The hope is this experiment will be run after the completion of this

thesis to further extend this research.

75

VII. Conclusion

This chapter summarizes the research question, methodology used to answer the

research and investigative questions, and the contributions of this research. The

chapter concludes with a look at limitations of the research and potential future work

that can expand on the results of this experiment.

7.1 Summary of Research Question

This research answered the question of whether different categories of goals affect

an agents ability to detect and adapt to goal changes. Investigative questions an-

swered: how goals can be defined within a gameplay environment, how change can

be detected by an agent, and how does the order of goals affect detection?

The answer to these questions can help inform the development of goal detection

agents within simulated environments. This research provides additional insight in to

how agents can goal detect changes and how the goals affect detection performance.

This is a vital step in developing autonomous agents for highly dynamic environments.

Additionally this research will aid in the development of agents for human machine

team, that can compensate for the humans weakness and inform the human as to

potential goal changes within the environment.

7.2 Summary of Methodology

This research utilized the tablet-based computer game Space Navigator to simulate

a dynamic goal environment. In order to test the research question a new set of goals

were defined and added to Space Navigator based on Djaouti et al.’s [1] classification

of goal mechanics within games. The four goals, avoid, match, destroy, and create,

were implemented into the environment. In addition to the goals, new game mechanics

76

were added giving ships a shield to survive single collisions and a fusion mechanic to

form new ship colors.

Fully autonomous play of Space Navigator was achieved with new line and collision

avoidance agents that improved upon those previously developed for the environment.

The line agent utilizes the A* path finding algorithm to draw intelligent trajectories

for the ships that avoid other objects in the environment.The collision avoidance

agent uses raycasting to detect potential collisions and a step back behavior to avoid

collisions. The agents were tested across the four new goals within the environment

to baseline their performance in each goals.

A goal detection agent was created to learn the current goal and detect when a

goal change occurs. The goal agent used concept drift detection to detect change

within the environment. Two sliding windows track the prediction error for ship

actions. When the error passes the threshold a flag is triggered that a goal change

has occurred. When a change is detected by the agent it begins to explore the

environment to learn the goal. In addition to goal detection the agent is responsible

for passing target objects to the ships.

The experimental portion of this research examined the performance of the goal

agent across 24 different goal change scenarios. Each of the 12 possible 2-goal scenarios

were tested with two different change times. Each condition was run 30 times. After

data collection, statistical analysis was done to determine the effects the goals had

on performance and detection. After the initial experiment analysis, new research

questions were raised and addition experiments were run.

7.3 Summary of Contributions

The first contribution of this research is the proposed taxonomy of change within

a gameplay environment. This taxonomy helps formalize how changes effect an en-

77

vironment by listing the three areas of a game where changes can be made and how

the changes can be made. For a game like Space Navigator, which has undergone nu-

merous changes across research efforts, it is important to be able to formally describe

how new changes to the game affect the underlying structure of the game. This helps

to ensure that changes are accomplishing their intended purpose. This taxonomy can

be utilized for analyzing other environments that many be used for change detection

research.

The second contribution of this research is the development of new agent for the

Space Navigator environment. These agents can be utilized for future research and

help to make Space Navigator a more robust testing environment.

Finally the experimentation results provide insight into goal detection. The results

of the first experiment showed that detection is affected by the goal being switch

from. Similarity of the goals had a statistically significant affect on detection time.

The more similar the goals were, the longer it took the goal agent to detect the goal

change. The results from he avoid-create conditions demonstrated the limitation

of detecting change purely on feedback detection. In Experiment 2, adding further

detection capabilities to the goal agent based on planet changes showed that detection

time could be further reduced. This suggests that a goal detection agent should be

provided with more perception to increase detection capabilities.

7.4 Future Work

The results of this thesis present many avenues for future research in the area

of goal detection. The following are suggestions of future work that can be done to

follow up and extend this research:

• Compare results to human performance: The results from this research only

inform how the autonomous agent is affected by different categories of goal

78

changes. Running the human-subject experiment detailed in Chapter 6 could

provide a wealth of new data to explore. Analysis of the differences between hu-

man and agent performance is vital for the creation of effective human machine

teams that can work in adaptive goal environments.

• Test goal agent in a human-machine team: An additional human subject exper-

iment can test how a human would perform when paired with the goal agent.

This experiment would aim to answer the question of whether a human ma-

chine team between a human and the goal agent would perform better than an

individual human. In this setup, the goal agent would inform the player when

it detects a goal change with the aim to increase the human's detection and

reaction time.

• Repeat within a different environment: Space Navigator has a relatively limited

set of mechanic which restricts the variety of goals available in the environment.

The goals in this experiment were limited to the avoid and match mechanics

with varying depth and breadth to form the four goal set. A new environment

with additional play mechanics opens up the possibility for different types of

goals to be tested. This experiment would also serve to validate the function of

the goal agent within another environment.

• Test harder goal scenarios: For this research all ships shared the same goal, and

each goal had a max depth complexity of two. Testing the agent under more

complex goal scenarios could reveal further information about detection. Having

individual goals per ship color will increase the complexity of detecting changes.

Additionally, goals with greater depth may make detection and adaption harder.

• New methods for switching between exploration and exploitation: The goal

agent currently explores for a fixed length of time before switching to exploita-

79

tion. While a new switching method would have no effect on detection time,

it would increase overall performance within the environment. Other methods

of switching could be used to exploit earlier, thus reducing the point loss of

needless exploration. This would additionally help reduce the impact of false

positive detections on the total score.

80

Appendix A. Pre-Experiment Questionnaire

1. Participant Number (Assigned By Researcher):

2. Name:

3. Email Address:

4. Age:

5. Handedness: Left Right Ambidextrous

6. Gender: Male Female

7. Number of previous Space Navigator studies you have participated in:

8. How much experience do you have with the following:

In a given year, on how many days do you interact with the following types of devices?

Never <1 per month 1-3 per month 1-2 per month 3-6 per week Daily
Laptop Computer 0 1 2 3 4 5
Tablet computer 0 1 2 3 4 5
Smart phone 0 1 2 3 4 5
Desktop computer 0 1 2 3 4 5
Gaming consoles 0 1 2 3 4 5

In a given year, on how many days do you interact with the following types of devices?

Never <1 per month 1-3 per month 1-2 per month 3-6 per week Daily
Any Kind 0 1 2 3 4 5
Simulation (SimCity) 0 1 2 3 4 5
Battle-Arena (LoL, Overwatch) 0 1 2 3 4 5
Role-Playing (WoW) 0 1 2 3 4 5
Action (Mario, Donky Kong) 0 1 2 3 4 5
First Person Shooter (Halo) 0 1 2 3 4 5
Strategy (Civilization) 0 1 2 3 4 5
Puzzle (Tetris) 0 1 2 3 4 5
Casual (Angry Birds) 0 1 2 3 4 5
Music (Guitar Hero) 0 1 2 3 4 5
Sports (Madden Football) 0 1 2 3 4 5
Board (Ticket to Ride) 0 1 2 3 4 5
Card (Poker, Pinochle) 0 1 2 3 4 5

81

Appendix B. Post-Experiment Questionnaire

1. Participant Number (Assigned By Researcher):

2. What method were you using to identify goal changes?

3. What goal was the easiest to identify?

4. What goal was the hardest to identify?

82

On the following pages, there are phrases describing people’s behaviors. Please use

the rating scale below to describe how accurately each statement describes you. De-

scribe yourself as you generally are now, not as you wish to be in the future. Describe

yourself as you honestly see yourself, in relation to other people you know of the same

sex as you are, and roughly your same age. So that you can describe yourself in an

honest manner, your responses will be kept in absolute confidence. Please read each

statement carefully, and then fill in the bubble that corresponds to your reply.

Very
Inaccurate

Moderately
Inaccurate

Neither Inaccurate
nor Accurate

Moderately
Accurate

Very
Accurate

1. Feel comfortable
around people

� � � � �

2. Keep in the
background

� � � � �

3. Have frequent
mood swings

� � � � �

4. Carry out my plans � � � � �
5. Suspect hidden
motives in others

� � � � �

6. Have a vivid imagination � � � � �
7. Enjoy hearing new ideas � � � � �
8. Pay attention to details � � � � �
9. Am not interested
in abstract ideas

� � � � �

10. Make people feel at ease � � � � �

Very
Inaccurate

Moderately
Inaccurate

Neither Inaccurate
nor Accurate

Moderately
Accurate

Very
Accurate

11. Get back at others � � � � �
12. Often feel blue � � � � �
13. Know how to
captivate people

� � � � �

14. Do not like art � � � � �
15. Carry the conversation
to a higher level

� � � � �

16. Rarely get irritated � � � � �
17. Seldom feel blue � � � � �
18. Find it difficult to get
down to work

� � � � �

19. Would describe my
experiences as
somewhat dull

� � � � �

20. Do not enjoy going
to art museums

� � � � �

83

Very
Inaccurate

Moderately
Inaccurate

Neither Inaccurate
nor Accurate

Moderately
Accurate

Very
Accurate

21. Am skilled in handling
social situations

� � � � �

22. Dislike myself � � � � �
23. Make friends easily � � � � �
24. Panic easily � � � � �
25. Make plans and
stick to them

� � � � �

26. Don’t talk a lot � � � � �
27. Am always prepared � � � � �
28. Get chores done right away � � � � �
29. Tend to vote for
conservative political
candidates

� � � � �

30. Insult people � � � � �

Very
Inaccurate

Moderately
Inaccurate

Neither Inaccurate
nor Accurate

Moderately
Accurate

Very
Accurate

31. Am very pleased
with myself

� � � � �

32. Have a good word
for everyone

� � � � �

33. Believe that others have
good intentions

� � � � �

34. Don’t like to draw
attention to myself

� � � � �

35. Am not easily bothered
by things

� � � � �

36. Do just enough
work to get by

� � � � �

37. Have a sharp tongue � � � � �
38. Have little to say � � � � �
39. Shirk my duties � � � � �
40. Tend to vote for liberal
political candidates

� � � � �

Very
Inaccurate

Moderately
Inaccurate

Neither Inaccurate
nor Accurate

Moderately
Accurate

Very
Accurate

41. Accept people as they are � � � � �
42. Respect others � � � � �
43. Am the life of the party � � � � �
44. Cut others to pieces � � � � �
45. Avoid philosophical
discussions

� � � � �

46. Feel comfortable
with myself

� � � � �

47. Believe in the
importance of art

� � � � �

48. Don’t see things through � � � � �
49. Waste my time � � � � �
50. Am often down
in the dumps

� � � � �

84

Bibliography

1. A Gameplay Definition through Videogame Classification. International Journal
of Computer Games Technology, pages 1–7, 2008.

2. James Anhalt, Alexander Kring, and Nathan Sturtevant. Ai navigation: It’s not
a solved problem - yet. Game Developers Conference, 2011.

3. Sylvester Arnab, Theodore Lim, Maira B Carvalho, Francesco Bellotti, Sara Fre-
itas, Sandy Louchart, Neil Suttie, Riccardo Berta, and Alessandro De Gloria.
Mapping learning and game mechanics for serious games analysis. British Jour-
nal of Educational Technology, 46(2):391–411, 2015.

4. Eletronics Arts. Dragon age: Origins. [CD-ROM], 2009.

5. Jason Bindewald. Adaptive automation design and implimentation, 2015.

6. Mica R Endsley. Autonomous horizons: System autonomy in the air force: A
path to the future. Washington, DC: US Air Force Office of the Chief Scientist,
2015.

7. Blizzard Entertainment. Starcraft. [CD-ROM], 1998.

8. João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys
(CSUR), 46(4):44, 2014.

9. PopCap Games. Bejeweled. [Windows], 2001.

10. Chris Garnick. A study of human reliance on imperfect automation, 2017.

11. Tyler Goodman, Michael E Miller, Christina F Rusnock, and Jason Bindewald.
Timing within human-agent interaction and its effects on team performance and
human behavior. In Cognitive Methods in Situation Awareness and Decision
Support (CogSIMA), 2016 IEEE International Multi-Disciplinary Conference on,
pages 35–41. IEEE, 2016.

12. Aaron Granberg. A* pathfinding project, 2017.

13. T Ryan Hoens, Robi Polikar, and Nitesh V Chawla. Learning from streaming data
with concept drift and imbalance: an overview. Progress in Artificial Intelligence,
1(1):89–101, 2012.

14. Kevin Anthony Hoff and Masooda Bashir. Trust in automation: Integrating
empirical evidence on factors that influence trust. Human Factors, 57(3):407–
434, 2015.

85

15. Robin Hunicke, Marc LeBlanc, and Robert Zubek. MDA: A Formal Approach to
Game Design and Game Research. Workshop on Challenges in Game AI, pages
1–4, 2004.

16. Kevin HWynee and Joseph Lyons. An integrative model of autonomous agent
teammate likeness. Theoretical Isssues in Ergonomics Science, 2016.

17. Mark G Kelly, David J Hand, and Niall M Adams. The impact of changing
populations on classifier performance. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 367–371.
ACM, 1999.

18. Daniel King, Paul Delfabbro, and Mark Griffiths. Video game structural charac-
teristics: A new psychological taxonomy. International Journal of Mental Health
and Addiction, 8(1):90–106, 2010.

19. Jan.H.G Klabbers. The Gaming Landscape: a Taxonomy for Classifying Games.
LEVEL UP: Digital Games Research Conference, pages 54–67, 2003.

20. R Koster. A grammar of gameplay: game atoms: can games be diagrammed. In
Presentation at the Game Developers conference, 2005.

21. Namco. Pac-man. [Arcade], 1980.

22. Jeff Orkin. Applying goal-oriented action planning to games. AI Game Program-
ming Wisdom, 2:217–228, 2003.

23. Jeff Orkin. Three states and a plan: the ai of fear. In Game Developers Confer-
ence, volume 2006, page 4, 2006.

24. Lilia Rejeb, Zahia Guessoum, and Rym MHallah. The exploration-exploitation
dilemma for adaptive agents. In Proceedings of the Fifth European Workshop on
Adaptive Agents and Multi-Agent Systems, 2005.

25. Richard Rouse. Game Design: Theory and Practice (2nd Edition). Jones Bartlett
Learning, 2004.

26. Stuart Jonathan Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach (3rd edition), 2009.

27. Katie Salen and Eric Zimmerman. Rules of Play: Game Design Fundamentals.
2004.

28. Miguel Sicart. Defining game mechanics. Game Studies, 8(2):1–14, 2008.

29. Aleksandrs Slivkins and Eli Upfal. Adapting to a stochastically changing envi-
ronment: The dynamic multi-armed bandits problem. Technical report, Rapport
technique, Technical Report CS-07-05, Brown University, 2007.

86

30. Jake Spuller. Analysis of how communication affects human teams in a dynamic
game, 2017.

31. Sierra Studios. Counter strike. [CD-ROM], 1999.

32. Taito. Space invaders. [Arcade], 1978.

33. Unity Technologies. Physics.spherecast documentation, 2018.

34. Sebastian B Thrun and Knut Möller. Active exploration in dynamic environ-
ments. In Advances in neural information processing systems, pages 531–538,
1992.

35. Stewart W Wilson et al. Explore/exploit strategies in autonomy. In From animals
to animats 4: Proceedings of the 4th international conference on simulation of
adaptive behavior, pages 325–332, 1996.

36. Indrė Žliobaitė. Learning under concept drift: an overview. arXiv preprint
arXiv:1010.4784, 2010.

87

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

14 Jun 2018 Master’s Thesis Sept 2016 — Jun 2018

EFFECTS OF DYNAMIC GOALS
ON AGENT PERFORMANCE

Nathan R. Ball

Air Force Institute of Technology
Graduate School of Electrical and Computer Engineering (AFIT/ENG)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-J-003

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research investigates how different categories of goals affect autonomous change detection in a dynamic environment.
In order to accomplish this goal, a set of autonomous agents were developed to perform within an environment with
multiple possible goals. The agents perform the environmental task while monitoring for goal changes. The experiment
tests the agents over a range of goal changes to determine how detection performance is affected by the different
categories of goals.
Results show that detection is highly dependent on what goal is being switch to and from. The point similarity between
goals is the most significant factor in evaluating the change detection time. An additional experiment improved upon the
goal agent and demonstrated the importance of having the proper perception mechanics for feedback within the
environment.

LaTeX,Thesis

U U U UU 88

Major Jason Bindewald, PhD, AFIT/ENG

(312)-785-3636, x4614; jason.bindewald@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	6-14-2018

	Effects of Dynamic Goals on Agent Performance
	Nathan R. Ball
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Department of Defense Motivation
	Research Motivation
	Research Objective
	Research Problem
	Investigative Questions

	Methodology Overview
	Thesis Overview

	Background
	Taxonomy of Change in a Gameplay Environment
	Elements of a Game
	Mechanics
	Implementations of Mechanical Changes
	Dynamics

	Agent Design
	Simple Reflex Agents
	Model-Based Reflex Agent
	Goal-Based Reflex Agent
	Utility-Based Reflex Agent
	Learning Agent

	Test Environment
	Previous work using Space Navigator

	A* Search
	Concept Drift
	Types of Concept Drift
	Patterns of concept drift
	Taxonomy of an Adaptive Concept Drift Learner

	Reinforcement Learning
	Exploration Versus Exploitation
	Methods of Exploration
	Methods of Switching between Exploration and Exploitation

	Chapter Summary

	Methodology
	Changes to Space Navigator
	Goal Design
	Avoid
	Match
	Destroy
	Create
	Goal Implementation

	Agent Design
	Line Agent
	Avoidance Agent
	Agent Performance
	Goal Agent
	Adaptive Learner Framework Implementation
	Exploitation
	Exploration
	Switching Methods

	Experimental Design
	Objective
	Response Variables
	Control Variables
	â•œHeld Constantâ•š Factors
	Nuisance Factors
	Design Matrix
	Apparatus

	Chapter Summary

	Experiment One
	Score Results
	Time Results
	Goal Similarity
	Chapter Summary

	Experiment 2
	Methodology
	Results
	Chapter Summary

	Human-Subject Experiment
	Experimental Design
	Recorded Data
	Expected Results
	Chapter Summary

	Conclusion
	Summary of Research Question
	Summary of Methodology
	Summary of Contributions
	Future Work

	Pre-Experiment Questionnaire
	Post-Experiment Questionnaire
	Bibliography

