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Abstract

Unmanned aerial vehicles (UAVs) increasingly require the capability to fly au-

tonomously in close formation including to facilitate automated aerial refueling (AAR).

The availability of relative navigation measurements and navigation integrity are es-

sential to autonomous relative navigation. Due to the potential non-availability of the

global positioning system (GPS) during military operations, it is highly desirable that

relative navigation can be accomplished without the use of GPS. This paper develops

two algorithms designed to provide relative navigation measurements solely from a

stereo image pair. These algorithms were developed and analyzed in the context of

AAR using a stereo camera system modeling that of the KC-46. Algorithms were

analyzed in simulation and then in flight test using two C-12C aircraft at the United

States Air Force Test Pilot School.

The first algorithm, the Vision and Bayesian Inference Based Integrity Monitor

(V5), uses Bayesian inference and template matching to return a probability mass

function (PMF) describing the position of an observed aircraft. This PMF provides

a relative position estimate as well as a protection level—which characterizes the

uncertainty of the relative position estimate—thus providing a degree of navigation

integrity. Using both simulation and flight test data, mean V5 spherical error was less

than one meter and protection levels reliably characterized algorithm uncertainty.

The second algorithm, relative pose estimation with computer vision and itera-

tive closest point (R7), uses stereo vision algorithms and the iterative closest point

algorithm to return relative position and attitude estimates. Using both simulation

and flight test data, mean R7 spherical error was less than 0.5 meters. Additionally,

in flight test, mean R7 attitude errors were less than 3◦ in all axes.
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INTEGRITY MONITORING FOR AUTOMATED AERIAL REFUELING:

A STEREO VISION APPROACH

I. Introduction

This thesis and the associated research at the Air Force Institute of Technology

(AFIT), the Air Force Research Laboratory (AFRL), and the United States Air Force

(USAF) Test Pilot School seek to demonstrate the feasibility of using computer vi-

sion algorithms to develop a robust relative navigation capability for the purpose of

automated aerial refueling (AAR). The key features of the envisioned vision-based

relative navigation system include (1) the system is passive, (2) the system need not

be reliant on the Global Positioning System (GPS) constellation, and (3) the system

is deliberately designed to leverage the camera system implemented on the KC-46.

An AAR capability is highly desirable from a strategic standpoint for a number

of reasons. Primarily, the ability to refuel unmanned aerial vehicles (UAVs) would

enable the fielding of more capable UAV systems. These systems would be able to fly

longer duration missions, would be capable of flying more fuel intensive missions (such

as those requiring the ability to rapidly maneuver in relation to threat systems), and

could carry greater payloads. Additionally, an AAR capability with no GPS depen-

dency would provide valuable support during contested, degraded operations (CDO).

Overall, a reliable and routinized AAR capability would strengthen the combat power

available to combatant commanders. Vision-based relative navigation systems have

the potential to provide this capability in GPS-denied and CDO environments.

The key components of a hypothetical vision-based AAR system are depicted in

Figure 1. This thesis addressed a subset (the pose estimation and state measurement

1



components which are outlined in red) of the overall system depicted. The system

is iterative and begins with image capture. Captured images are used to obtain a

relative position and/or attitude measurement with an associated uncertainty. These

measurements are fused with measurements from other systems, such as inertial mea-

surement units (IMUs), in a Kalman filter (or other recursive estimation algorithm)

to obtain an updated relative navigation state estimate. This result is fed into the

formation control laws for either or both aircraft, which results in a new relative nav-

igation state between the tanker and UAV. At this point, the process continues with

the next image capture.

Figure 1. Hypothetical AAR System Block Diagram.
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1.1 Problem Statement

This thesis developed two algorithms designed to provide the relative pose esti-

mates depicted in Figure 1. The first algorithm, the Vision and Bayesian Inference

Based Integrity Monitor (V5), uses a stereo image pair to estimate a probability mass

function (PMF) describing the relative position of a receiver aircraft. This PMF is

constructed by comparing the observation image pairs to a reference image database

with Bayesian inference. This PMF is then used to compute both a relative position

measurement and a protection level applicable to the precise time at which the stereo

image pair was observed. Hence, the algorithm is designed to provide an independent

measure of navigation integrity in addition to a relative navigation measurement.

This algorithm was based upon the work of Calhoun in [2] and [5].

The second algorithm, Relative Pose Estimation with Computer Vision and Iter-

ative Closest Point (R7), utilizes a stereo image pair to obtain a three-dimensional

point cloud representing the receiver aircraft. This observation point cloud is then

matched to a model point cloud with the iterative closest point (ICP) algorithm to

obtain a relative position and relative attitude measurement. This algorithm is closely

related to the work of Parsons [6], but utilized different point cloud filtering methods,

ICP implementations, and data analysis methods.

Both these algorithms were designed to facilitate AAR on the KC-46. In order

to meet this design objective, the test effort sought to reproduce the camera config-

uration of a KC-46 in both simulation and in flight test. However, the algorithms

developed in this thesis could also be applied in other relative navigation applications.

1.2 Scope of Analysis

Algorithms were analyzed with both simulation and flight test data. The simula-

tion environment captured simulated images of a C-12C aircraft. These images were
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generated by a simulated stereo camera pair. The stereo cameras were separated by a

0.5 meters and were mounted on the simulated tanker such that their optical axes had

a 25◦ downlook angle with respect to the tanker’s longitudinal axis. This geometric

configuration mimics that of the KC-46. Additionally, the camera focal lengths, im-

age sizes, and fields of views were defined such that they modeled the cameras found

on the KC-46. The generated simulated images were provided to both algorithms

and the resulting algorithm errors and performance were evaluated.

Flight test data was collected as part of the Have Vision test management project

at the USAF Test Pilot School [7]. Testing was accomplished by mounting two stereo

camera pairs on a C-12C pseudo-tanker in a manner designed to emulate the KC-46

camera configuration. These stereo camera pairs were mounted in the same geometric

configuration used in simulation and the cameras had the same properties (image

size, focal length, field of view, spectral range, etc.) as those found on the KC-46.

With this configuration installed, the C-12C pseudo-tanker flew a series of maneuvers

typical in aerial refueling (AR) while the cameras captured images of a second C-12C

aircraft flying maneuvers typical of an AR receiver. A subset of the captured images

was processed post-flight through the R7 and V5 algorithms. Algorithm returns

were compared to relative navigation truth data to compute algorithm errors and to

facilitate analysis of algorithm performance.

1.3 Overview

The remainder of this thesis covers applicable background information, algorithm

development and methodology, and algorithm analysis. It is structured as follows.

Chapter II covers background information and is comprised of four primary com-

ponents. First, vision-aided AAR research is reviewed. Attention is paid to techniques

focusing on template matching and navigation integrity. Second, Calhoun’s Bayesian
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inference integrity monitor is covered in detail [2], [5]. The V5 algorithm is a direct

follow on from these efforts, so special attention is paid to his work. Third, the cam-

era model and computer vision techniques applicable to this thesis are discussed in

detail. Special attention is paid to stereo vision techniques. Fourth, the ICP algo-

rithm is covered in detail. The ICP algorithm is essential to the operation of the R7

algorithm. This discussion summarizes the work and Besl and McKay in [8].

Chapter III covers the methodology used for data analysis in this thesis and is

comprised of seven primary parts. First, the applicable reference frames and coor-

dinate systems are defined. Second, a set of variable and notational definitions are

made to facilitate discussion in the remainder of the thesis. Third, the simulation en-

vironment used for simulation data analysis is described. Fourth, the V5 algorithm is

developed. Fifth, the R7 algorithm is developed. Sixth, the method used to compute

algorithm errors is described. Seventh, the statistical tests used to analyze algorithm

performance are described.

Chapter IV covers simulation data analysis. The performance of the V5 and R7

algorithms are examined separately and then compared to one another.

Chapter V covers the methodology and hardware specific to the flight test portion

of this thesis and is comprised of four parts. First, the Have Vision test program

is summarized. Second, the flight test equipment is described. Third, the flight

test methodology, to include camera calibration methodology and formation flight

profiles, is described. Fourth, data analysis methodology specific to flight test data

is developed.

Chapter VI covers flight test data analysis. First, the resolution of the truth data

system used in flight test is presented. Then, the performance of the R7 and V5

algorithms are examined separately and then compared to one another.
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Chapter VII presents the conclusions and recommendations for this thesis. The

primary contributions stemming from both algorithms are presented. Additionally,

specific recommendations are made on how to improve both V5 and R7 performance.

Finally, an outline for new algorithm that capitalizes on the strengths of both the V5

and R7 algorithms is proposed.
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II. Background

This chapter has four primary components. First, previous vision-aided AAR

research efforts and previous work on vision-based integrity monitors are reviewed.

Second, special attention is paid to Calhoun’s Bayesian Inference based integrity

monitor developed in [2] and [5], since this V5 algorithm developed in this thesis

builds upon Calhoun’s efforts. Third, the pinhole camera model, camera calibrations,

and stereo vision are discussed. Fourth, the Iterative Closest Point (ICP) algorithm

is outlined. These four background elements are foundational to the V5 and R7

algorithms developed in Chapter III.

2.1 Vision-Aided AAR Research

Numerous researchers have worked on vision-based or vision-aided approaches to

AAR. However, to date only a handful of researchers have examined the concept

of integrity in a vision-based AAR or a vision-based precision relative navigation

context. This section reviews relevant work on both vision-based AAR and on efforts

to quantify the integrity of such systems. First, the work of researchers on various

vision-based AAR approaches and methods are reviewed. Second, special attention

is payed to image rendering approaches to precision relative navigation. Finally,

research on vision-based integrity monitors is discussed in greater detail.

2.1.1 Fravolini et al’s Simulation Environment for Vision-Aided AAR.

In [9] Fravolini et al developed a comprehensive simulation environment designed

specifically to investigate the use of computer vision systems in the AAR context.

This paper was the culmination of work done by these authors and other colleagues

primarily at West Virginia University in [10], [11], [12], [13], [14], [15], and [16].
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The authors framed the AAR problem in terms of a UAV refueling with a manned

tanker. As envisioned by the authors, the overall goal of an AAR system is to obtain

an accurate relative pose estimate of the UAV-tanker formation, to use that pose

estimate to successfully guide the UAV from the pre-contact to the contact position,

and finally to maintain the contact position once established in the AR envelope.

To ensure the realism of their virtual environment, Fravolini et al incorporated

realistic models of tanker and UAV dynamics, the refueling boom, atmospheric tur-

bulence, wind gusts, tanker wake turbulence, sensor noise, and UAV docking control

laws. Moreover, the environment allowed for the variation of initial conditions, the

location and orientation of the camera on the UAV, and the location of additional ob-

jects such as passive markers on the tanker. The net result of their work was a highly

realistic, comprehensive AAR simulation environment that enabled the authors to

investigate several candidate computer vision algorithms and sensor fusion methods

in subsequent research efforts.

For the purposes of their research, the authors assumed that the UAV was equipped

with a single digital camera mounted such that it captures images of the tanker. Once

the UAV captured a tanker image in the simulation, the authors’ virtual environment

was designed to analyze any comp algorithm of interest via four step process:

1. Feature extraction: the computer vision algorithm identified features in the

tanker image. The authors considered corners to be features of interest and

identified these with a corner detector algorithm.

2. Feature matching: the identified corners were matched to a set of projected

corner locations.

3. Pose estimation: based on the geometry of the identified corners, the position

and orientation of the UAV relative to the tanker was estimated.
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4. Sensor fusion: the computer vision estimate was fused with data from other

available simulated sensors such as inertial measurement units (IMUs) and the

global positioning system (GPS).

At the end of these four steps, the relative pose estimate was passed to the UAVs

control systems thereby facilitating simulated AAR.

Implicit in the authors’ method was the assumption that the tanker had passive

markers affixed to its body in known locations. In the feature extraction stage,

when a corner detector algorithm was applied to the captured imagery, these passive

markers manifested as strong corners. In the real-world these markers would be retro-

reflective tape or some other physical feature designed to yield greater pixel intensity

in an image.

For the sensor fusion portion of their algorithm, Fravolini et al applied an extended

Kalman filter (EKF) to combine differential GPS (DGPS) position data with the

output of their computer vision algorithm. The authors evaluated the accuracy of

the relative navigation solution output from the EKF as the receiving aircraft moved

from a pre-contact to a contact position using their computer simulation environment.

The authors also conducted a robustness analysis, subjecting the receiving aircraft

to randomly generated position and attitude perturbations. Results showed that the

authors’ EKF was had typical total position errors of less than 0.003 meters in the

absence of sensor noise and bias. In the presence of simulated sensor noise and bias,

typical errors were on the level of approximately 0.2 meters These results were an

order of magnitude or more better than results obtained with a linear interpolation

sensor fusion scheme applied by the same researchers in [10].

The accuracy levels obtained by this group of researchers would likely be sufficient

to enable AAR were they to be obtained in a real world flight test. This research group

did not conduct any form of integrity analysis on their developed system. Nonethe-
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less, the robustness of the Fravolini et al’s simulation environment and sensor fusion

techniques represent a standard against which other AAR efforts can be measured.

Additionally, the general architecture of their computer vision-based approach, where

computer vision pose estimates were fused with pose estimates from other sensors in

an EKF, was a significant contribution.

2.1.2 Wilson et al’s Unscented Kalman Filter.

Wilson et al [17] built upon the work of Mammarella et al in [14] and Williamson

et al in [18]. The authors conducted sensor fusion with an Unscented Kalman Filter

(UKF) rather than an EKF and incorporated measurements from magnetic and at-

mospheric sensors in addition to GPS and inertial measurements. Much like previous

work, the authors assumed that a single camera was mounted on the receiving aircraft

and obtained their results in simulation. Within this context, they developed a UKF

that incorporated DGPS data, INS data, and computer vision data. The computer

vision data was obtained using the same feature extraction, feature matching, and

pose estimation algorithms that Mammarella et al developed in [16]. The authors

improved the feature matching portion of the algorithm by including an additional

check that helped reject incorrect point matching.

Simulation results showed that the authors’ UKF outperformed the EKF devel-

oped by Mammarella et al in [14]. Moreover, the algorithm was shown to be some-

what robust against visual occlusions. Again, the authors did not conduct any form

of integrity analysis their system’s errors and only performed 100 simulations. More

significantly, in [19], Wilson et al conducted a flight test of their system using two

small drone aircraft.

During flight tests, the follower aircraft was commanded to remain 7 meters in

trail of and 1 meter below the lead aircraft. During the test of their system, their
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trail aircraft was able to maintain a position within 1.5 meters of horizontal error

and and 1 meter vertical error during most of the flight test. No large divergences

were encountered. Moreover, during deliberately forced visual sensor outages, the

system degraded gracefully to INS-only performance levels. The flight test results of

Wilson et al demonstrated the potential for a computer vision-aided Kalman filter to

effectively maintain close formation flight.

2.1.3 Image Rendering Approaches to AAR.

The work of researchers like Wilson et al and Fravolini et al has done much to

develop the use of feature matching techniques in AAR relative pose estimation.

However, passive markers are problematic in a military application as they could

highlight friendly assets to an adversary. Thus, in a military application, it is much

more desirable that vision-based pose estimation is accomplished without the use of

either passive or active markers. As a a result, this thesis is centered upon using

purely passive pose estimation techniques. One method of passive pose estimation

that has promise is an image rendering approach. In this section, research efforts on

image rendering in the AAR context are discussed.

2.1.3.1 Howard and Veth’s Image Rendering Approach.

Rather than rely on a feature matching scheme, Howard and Veth [20] utilized a

predictive rendering approach to derive a computer vision-based relative navigation

state estimate for AAR. The predictive rendering scheme was utilized to overcome

many of the challenges associated with feature matching. The authors noted that

feature matching algorithms tend to struggle with changes in aircraft attitudes, vari-

able lighting conditions, and image occlusion. Additionally, they noted that feature
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matching algorithms can encounter difficulties if mismatches occur or if a feature is

not identified.

The authors incorporated the vision-based state estimate into a Kalman filter for

integration with INS data. Their algorithm is summarized below.

1. The propagated relative navigation states from a Kalman filter were converted

into the camera frame, resulting in a direction cosine matrix (DCM) representing

the relative attitude of the two aircraft and a vector representing the relative

position vector of the two aircraft.

2. INS updates from the trail aircraft were incorporated into the filter, resulting

in updated relative attitude and relative position estimates. These estimates

were used to generate the first rendered image.

3. A three-dimensional model of the lead aircraft with the relative attitude and

position specified in step 2 was rendered. That model was used to create a

template image.

4. The rendered image from step 3 and several other rendered images depicting

position and attitude perturbations were compared to the observed image via a

template comparison process. The specifics of the template comparison process

used by Howard and Veth is discussed in detail below.

5. The best matching rendered template image was used to estimate the relative

attitude and position captured in the observation image.

6. This estimate was provided to the Kalman filter in the form of a measurement

vector. The authors did not discuss how they quantified the uncertainty asso-

ciated with this measurement.
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The most interesting result from Howard and Veth’s research was the specifics of

how they identified a best matching rendered template image. The search for the

best rendered image consisted of two primary steps:

1. The initial rendered image was translated along the x and y axes of the observed

image until a best match was identified. This was done with the OpenCV

function cvMatchTemplate. The best match was declared based upon which

template translation yielded the best normalized correlation coefficient. The

normalized correlation coefficient was based upon the degree of similarity be-

tween corresponding pixel intensities in the template and observation image.

2. The best matching rendered image was perturbed in the yaw, pitch, and roll

axes until a best match was identified via the same process. The magnitude of

the search perturbations was heuristically determined based on observed lead

aircraft movement during data collection as well as the experience of Air Force

pilots during manned AR.

At the end of this process, the resulting best match was used as the measurement

update for the Kalman filter as described above. Of particular note, the authors were

able to significantly reduce the number of rendered images that had to be searched

by making several key assumptions. First, they assumed that most changes in the

relative navigation state were presumed to be along the longitudinal translation axis

and in roll. Second, they bounded the perturbation search space as described above.

Third, they assumed that any changes in yaw and pitch would be slow and gradual,

so checks for these changes were only performed every third measurement. The net

result was that only 9 or 13 rendered images were searched during the perturbation

phase.

To test their system, the authors were able to make use of flight test data collected

at the USAF Test Pilot School. In their approach, the authors mounted a single
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camera inside the cockpit of an LJ-24 Learjet to collect observation images; this

aircraft flew as the receiving aircraft. During the majority of flight tests, the camera

collected images at 10 Hz. A T-38A was flown to act as the tanker aircraft. Flight

test results yielded maximum position component errors on the order of 1 meter and

maximum attitude errors of 2◦ in roll during benign test conditions.

While flying into the Sun, the algorithm required significant modification to

achieve desirable results. In order to accomplish a relatively accurate match, the

observed and rendered images had to be processed prior to executing the matching

phase of the algorithm. The processing consisted of contouring the images, thus high-

lighting curves of consistent intensities within the image. This modification improved

performance, but still resulted in up to 3 meters of position error.

Overall, this research demonstrated the plausibility of using an image-rendering

approach to AAR during an actual flight test. The authors did not systematically

characterize the error present in their image rendering approach, but did recommend

future research examine the integrity of the system.

2.1.3.2 Calhoun, Curro, and Raquet’s Image Rendering Flight Test.

In [21] Calhoun, Curro, and Raquet conducted a flight test of an image rendering

relative navigation approach to AAR. In the flight test a Learjet was flown in trail

of a KC-135. The Learjet was equipped with an Electro-Optical (EO) camera with

which to capture images of the tanker. Additionally, both aircraft were equipped

with a Novatel embedded global positioning system/inertial navigation system (EGI)

to determine precise “truth data” of the relative position and attitude of the two

aircraft.

Similar to Howard and Veth’s work in [20], rendered image intensities were com-

pared with observed image intensities on a pixel-by-pixel basis. However, instead of
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examining the correlation coefficient as Howard and Veth did in [20], the authors

instead examined the sum-squared difference (SSD) of pixel intensities between the

observed and rendered image. Additionally, they first applied an edge filter to both

the rendered and observed images prior to applying the SSD matching algorithm.

The intent of the using edge features was to make the SSD comparison environmen-

tally invariant. The SSD of the transformed observation image (Io) and transformed

rendered image (Ir) was computed as:

SSD =
n∑
i=1

(Io − Ir)2 (1)

Where n is the number of pixels.

The three-dimensional tanker model used to generate the rendered imagery was a

high-fidelity model developed by Science Applications International Corporation for

the AFRL. For each observed image, a set of rendered images was searched to find

the best match in an iterative fashion:

1. The algorithm used an initial position estimate and defined the uncertainty in

this estimate.

2. The algorithm divided the search space into a set of discrete rendered images.

3. The algorithm searched over this set of images and identified the best match.

The best match was considered to be the rendered image with the smallest SSD

between it and the observation image.

4. The algorithm collapsed the search space around this best match and repeated

the process a user-defined number of times in order to refine the relative navi-

gation estimate.
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Algorithm parameters for this sequence of operations were defined by four modi-

fiable software variables: initial position uncertainty, number of divisions (essentially

the number of rendered images to create in each search space), reduction factor (de-

termines by what factor the search space is reduced during each state space search

iteration), and maximum search level (determines the number of iterations that will

be performed).

Using this approach, the authors were able to attain a good level of environmental

invariance in flight test due to two factors. First, the camera used during the flight test

divided the image into at least four different quadrants of different exposure settings.

This enabled the camera to handle diverse lighting conditions within a single image

observation. When flying into the Sun, this feature of the camera was able to mitigate

the masking effect the Sun would otherwise have caused. Second, the use of an edge

filter minimized noise effects arising from variability in lighting conditions. As a

result, the flight tests revealed good results when flying into the Sun—a significant

improvement upon previous work done by Howard and Veth in [20]. No resultant

divergences or biases in the relative navigation solution were noted during flight tests,

even when the camera was looking directly into the Sun.

A total of eight flight tests were flown with this system. At the astern position

(approximately 20 meters in trail of the tanker), the image rendering algorithm was

able to maintain accuracy within 35 centimeters of the Novatel data with a mean

error of 16 centimeters. Forward translational error (i.e. toward or away from the

tanker’s longitudinal axis) was determined to be the biggest error contributor. Inter-

estingly, performance was slightly worse in the contact position (which is much closer

to the tanker at 13 meters in trail), maintaining accuracy within 60 centimeters of the

Novatel data with a mean error of 17 centimeters The authors assessed this was due

to a combination of worsening formation geometry and occlusion of tanker features
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relative to the camera. Occasional error divergences were also noted. These were

attributed to the possibility of locking onto a local minimum during the algorithm’s

search over the rendered image space. The authors suggested this possibility could

be eliminated by increasing search resolution, but noted that this would come at a

computational cost.

This research directly contributed to Calhoun, Raquet, and Peterson’s work on a

vision-based integrity monitor [1] which is discussed in Section 2.1.5.

2.1.4 Navigation Integrity Definitions.

Prior to discussing previous work on AAR integrity monitors, this section defines

several key terms of relevance to these research efforts. Since this thesis in part closely

follows the work of Calhoun [2] the definitions adopted are the same as those used in

Calhoun’s work.

First, the Radio Technical Commission for Aeronautics, an advisory committee

chartered by the Federal Aviation Administration, defines navigation integrity as,

“The ability of a system to provide timely warnings to users when the system should

not be used for navigation.” Second, an alert limit is defined as the maximum ac-

ceptable navigation system error tolerance. For example, an alert limit could be a

position error tolerance of three meters. Third, the integrity risk level is the prob-

ability that the navigation system error exceeds the alert limit without providing a

warning. Thus, an integrity risk level must be a real number between zero and one,

inclusive. For example, an integrity risk level of 0.001 would mean that there is a 0.1%

chance that the system navigation error exceeds the alert limit. Fourth, a protection

level is a real-time navigation system output that statistically bounds the navigation

system error to the required integrity risk level. For example, if the integrity risk level

were 0.001, then a protection level of two meters would mean there was a 0.1% chance
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that the navigation system error was actually greater than two meters. Finally, a loss

of integrity is defined to be a situation in which navigation system error exceeds the

alert limit without notifying the operator in a timely fashion [22], [23], and [24].

2.1.5 Calhoun, Raquet, and Peterson’s Vision-Based, Binary Hypoth-

esis Test Integrity Monitor.

In part following from the work done by Howard and Veth in [20], Calhoun,

Raquet, and Peterson [1] developed an integrity monitor for vision-based precision

relative navigation applications in a simulation environment. This integrity monitor

was designed in the context of an AAR scenario. In the simulations, the receiving

aircraft was equipped with a single camera which captured images of the tanker

flying in the lead position. The authors processed the resulting imagery to make a

determination of whether or not the receiving aircraft was at a formation position

acceptable for AR. In turn, they used this information as the basis for an integrity

monitor. The integrity monitor developed in [1] can be thought of as a binary scheme

which assesses the confidence that the system will correctly declare an aircraft inside

or outside the AR envelope.

The relative navigation system developed by the authors considered two hypothe-

ses. First, that the receiving aircraft was inside the refueling envelope, also called

operating region (XOR). This was termed the H0 hypothesis. Second, that the re-

ceiving aircraft was dangerously far outside the refueling envelope, in an area called

the alert region (XAR). This was termed the H1 hypothesis. This situation is depicted

in Figure 2.

With these definitions, the authors noted that four distinct conditions can re-

sult: detection, false alarm, rejection, and missed detection. Each condition has

an associated probability: the probability of detection (PD), the probability of false
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Figure 2. Calhoun’s Depiction of Operating and Alert Regions. The Operating Region
Falls Within the Blue Refueling Envelope, the Alert Region Falls Outside the Red
Safety Boundary but Within the Green Validity Region. [1].

alarm (PFA), the probability of rejection (PR), and the probability of missed-detection

(PMD). The authors’ depiction of the relationship between these conditions and the

two hypotheses is shown in Figure 3.

Figure 3. Calhoun’s Possible Results from the Binary Hypothesis Test [1].

Next, the authors showed that with knowledge of the probability density functions

(PDFs) describing H0 and H1 hypotheses, the probabilities of the PFA and PMD can

be computed as:

PFA =

∫ ∞
δ

pH0(x)dx, (2)

PMD =

∫ δ

−∞
pH1(x)dx (3)

Where δ is the appropriate parameter for the specific binary detection scheme being

implemented and x is the dependent variable for the PDFs. PD and PMD are com-
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plements as are PFA and PR. Therefore, to develop a binary hypothesis test, only PD

and PFA needed to be assessed.

Correct PDF construction was vital to the authors’ process. As a basis for PDF

construction, the authors used an image rendering approach. Initially, their rendered

database only included simulated images within the operating region. Using their

approach, the PDF pH0(x) describes the probability of observing an image correspon-

dence metric x between the best matching rendered image and the observation image

when the observed aircraft is actually in the operating region. Similarly, pH1(x) de-

scribes the probability of observing an image correspondence metric x between the

best matching rendered image and the observation image when the observed aircraft

is actually in the alert region.

The authors examined two different image correspondence techniques as means to

obtaining these PDFs. In the first case, they transformed each image into a binary

silhouette in which pixels were assigned a 1 or 0 based upon being greater or less

than a user-defined intensity threshold. For this technique, the authors computed

an image correspondence metric (SILCORR) as the percentage of overlap between the

observed and rendered silhouette for all rendered images evaluated:

SILCORRi
(IO, IRi

) =
|IOSIL

∩ IRSILi
|

|IOSIL
∪ IRSILi

|
(4)

Where IOSIL
represents the observed image transformed into a silhouette and IRSILi

represents the rendered image i transformed into a silhouette. Then, the best match-

ing rendered image of all rendered images i was determined by identifying which

rendered image yielded the maximum value of SILCORRi
. This result served as a im-

age correspondence data point (XSILj
) for the development of the PDFs p(H0) and

p(H1):

XSILj
= min

i
[SILCORRi

(IO, IRi
)] (5)
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Where “SIL” signifies the use of the silhouette image processing technique.

This process was repeated thousands of times in simulation. In order to construct

the p(H0) PDF, observation images were used that were known to be in the operating

region. In order to construct p(H1) PDF, observation images were used that were

known to be in the alert region. The final result obtained by the authors with this

process is depicted in Figure 4.

Figure 4. Calhoun’s PDFs for the Sil-
houette Correspondence Metric; p(H0)
is Depicted in Blue, p(H1) is Depicted
in Red [1].

Figure 5. Calhoun’s PDFs for the SSD
Correspondence Metric; p(H0) is De-
picted in Blue, p(H1) is Depicted in Red
[1].

In the second case, rendered and observation images were put through a gradient-

based edge detector and then Gaussian blurring was applied. The authors applied

a Gaussian blur because the reference image set was discrete. Without Gaussian

blurring, insufficient overlap between observed and reference images would cause the

correspondence between reference-observation image pairs to collapse toward zero.

Thus, applying Gaussian blurring enabled a match to be determined between the

observed image and the discrete reference image set.

Once this transformation was complete, the SSD between the observation image

and all rendered images was computed as in Equation (1). Again, the rendered image

i that yielded the best match for the observation image was identified. In this case,

the authors identified which rendered image i yielded the smallest SSDi. This SSD
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value was used as a data point XGRDj
for PDF construction, where “GRD” signifies

the use of the gradient-based edge detection and Gaussian blurring image processing

technique:

XGRDj
= min

i
[SSDi] (6)

Using the points XGRDj
, the PDF construction process was identical to that used

in the silhouette case. The final result of this process is depicted in Figure 5.

In all cases, during PDF construction the authors assumed that the prior probabil-

ity of the true receiver location was uniformly distributed throughout a finite region

within and outside the refueling envelope. As the authors noted, the region of overlap

between the two PDFs characterizes the trade space between PD and PFA. Since PD

and PMD are complements, as are PR and PFA, this trade space, depicted in Figure

6, completely characterizes probabilistic system behavior.

Figure 6. Calhoun’s Depiction of PMD

and PFA [1].

Figure 7. Calhoun’s ROC Curves
for Both Image Correspondence Tech-
niques Used in [1].

Using each H0 and H1 PDF pair, Calhoun, Raquet, and Peterson constructed a

receiver operating characteristics (ROC) curve for each feature matching technique

used. Figure 7 shows both ROC curves obtained by the authors. These curves specify

the system’s PD given a PFA. These curves were constructed by setting a threshold

(specifically, the detection rule depicted in Figure 6) for the image correspondence
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metric above or below which the system will declare the receiving aircraft to be within

or outside the refueling envelope. In other words, using this technique the threshold

image correspondence metric dictates for what range of image correspondence values

the system hypothesizes H0 and H1. Analysis of the ROC determined that the system

could achieve a 10−3 PMD (equivalent to a 0.999 PD) with a corresponding PFA of

less than 5%. In this manner, the authors demonstrated that the ROC curve can be

used to quantify system integrity for a given image correspondence threshold.

Using this work as a baseline, the authors performed several sensitivity studies

and examined several modifications to the integrity monitor. Sensitivity analysis

revealed substantial trade space in the size of the reference image set, and some level

of robustness against image distortions, lower pixel resolutions, and changes in lighting

conditions. As their first modification, the authors analyzed what would happen if

observation images were also generated in the region between the operating region

and safety boundary depicted in Figure 2. Observation images in this region were

redefined in this case to be part of the alert region. As would be expected, included

observation images drawn from this region diminished integrity monitor performance–

achieving a 96% detection rate with a 5% false alarm rate. The authors results for

this case are shown in Figure 8.

As a second modification, the authors expanded the reference image set to include

a finite set of images within the alert region. Using this reference set, the authors

redefined the test statistic to be the ratio of the best image correspondence metric

between the observed image (IS) and a rendered image within the operating region

(IROR
) to the best image correspondence metric between the observed image and a

rendered image within the alert region (IRAR
). The authors applied this modification

to simulations conducted with both the silhouette processing approach as well as the
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gradient-based edge detection approach:

X(ICSIL,j) =
maxi

[
CORRSIL(IS, IROR,i

)
]

maxi
[
CORRSIL(IS, IRAR,i

)
] (7)

X(ICGRD,j) =
mini

[
SSD(IS, IROR,i

)
]

mini
[
SSD(IS, IRAR,i

)
] (8)

Where X(ICSIL,j) is the ratio correspondence metric when using silhouette detection

as image processing, and X(ICGRD,j) is the ratio correspondence metric when using

edge detection and Gaussian blurring as image processing.

These ratios were used to develop the ROC curves shown in Figure 9. Use of the

silhouette ratio test with the extended imagery set yielded superior results—achieving

Figure 8. Calhoun’s Simulation Results with Observation Images Included from the
Region Between the Refueling Envelope and Safety Boundary. (a) Silhouette PDFs,
(b) GRD PDFs, (c) Silhouette ROC Curve, (d) GRD ROC Curve [1].
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Figure 9. Calhoun’s ROCs for the Ra-
tio Tests Compared to the Baseline
Tests [1].

Figure 10. Calhoun’s Zoom-in of the
ROC curve for the SIL Ratio Test [1].

a 10−5 integrity level performance with a false alarm probability of approximately

0.5%.

Overall, this work developed a viable method by which to construct a binary in-

tegrity monitor for vision-based precision relative navigation. Calhoun utilized many

of the lessons learned from this research effort in subsequent work on vision-based

integrity monitors for AAR. Notable takeaways included the use of edge detection as

a potentially viable means to make template images environmentally invariant and

the construction of a reliable simulation environment.

2.2 Calhoun’s Bayesian Inference Integrity Monitor

Calhoun built upon the work discussed in Section 2.1.5 in his dissertation [2] and in

a paper with Raquet [5]. Much of the V5 algorithm developed in this thesis is a direct

follow-on from Calhoun’s work in these papers. As a result, much attention is paid to

his work in this section. First, a general overview of his Bayesian inference integrity

monitor algorithm is presented. Second, Sections 2.2.2 through 2.2.8 discuss the

mechanics and theory underlying his methodology in greater detail. Third, Section

2.2.9 summarizes his results.
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2.2.1 Overview of Calhoun’s Bayesian Inference Integrity Monitor.

Calhoun utilized Bayesian inference techniques to derive a probability mass func-

tion (PMF) describing the relative navigation state of a tanker-receiver formation.

This PMF was obtained solely by comparing observation images to a reference image

database. Based on the PMF obtained via Bayesian inference, Calhoun was able to

estimate both the relative position of the formation and a protection level for that es-

timate. By contrast, the binary hypothesis test integrity monitor he developed in [1]

only assessed whether or not the receiver was inside or outside of the alert region and

assigned a confidence level to that assessment. Calhoun’s Bayesian inference integrity

monitor is outlined below:

1. Likelihood Function Determination:

(a) Reference Image Database Generation: Generate a reference image

database comprised of images rendered in a simulation environment. These

reference images must depict the reference aircraft at a level attitude at

known, discrete points in space relative to the observing aircraft. In Cal-

houn’s work the reference aircraft was the tanker and the observing aircraft

was the receiver. Calhoun’s database consisted of simulated images cap-

tured at a rectangular box of receiver positions. Each of these positions

was spaced from its nearest four neighbors by a set distance. In most of

his analysis this distance was 0.5 meters.

(b) Observation Image Collection: Next, collect a set of observation im-

ages in simulation. The relative position captured in the observation image

must be randomly sampled from the geometric space containing the ref-

erence images. The relative position depicted in each observation image

must be known in order to enable likelihood function determination. In
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Calhoun’s work these observation images depicted the reference aircraft in

level flight.

(c) Image Processing: Process both the reference and observation images

in the following fashion.

i. Edge Detection: Apply a Prewitt edge detector to all images, re-

sulting in depictions of only the edges detected in each image. For

convenience these are referred to as “edge-space images.”

ii. Blurring: Apply Gaussian blurring to all the resultant edge-space

images.

(d) Identify Best Reference-Observation Image Pair: Identify the ref-

erence image generated in step 1(a) that most closely represents the same

relative position captured by each observation image generated in step

1(b).

For instance, assume there are only three reference images. These de-

pict the reference aircraft located at three-dimensional positions (1,2,3),

(4,5,6), and (7,8,9) relative to the observing aircraft. If there is an obser-

vation image whose relative position is known to be (1,2,4), then the first

reference image is the best match and would be selected for comparison to

the observation image.

(e) Compare Best Reference-Observation Image Pairs: Compare the

features depicted in the best reference-observation image pair. Calhoun

simply differenced the pixel intensities of the reference and observation

images at randomly selected pixel locations. These pixel locations were

randomly selected from the population of sample image edge pixels.

(f) Construct the Likelihood Function: Identify a PDF that models

the feature differences between the best reference-observation image pairs.
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Enough reference-observation image pairs must be used to adequately rep-

resent the sample space of interest. This PDF serves as the likelihood

function used in all subsequent steps. Calhoun selected a PDF to model

the ensemble of all edge pixel intensity differences he observed when per-

forming the comparisons described in step 1(e).

2. Observation Image Collection: Collect a set of observation images either

in the real-world or in simulation. Calhoun’s work was confined to simulation.

These observation images must fall within the confines of the reference image

database. However, now that a likelihood function has been determined, the

relative position of these observation images need not be precisely known.

3. Prior Probability Determination: Determine the prior probability for each

relative position represented in the reference image database generated in step

1(a). Note that the possible relative positions form a discrete set. Calhoun had

the best results when assuming a uniform prior. However, in practice, this prior

probability could be the output of an EKF, an UKF, or some other form of a

recursive estimation algorithm.

4. Reference Database-Observation Image Comparison:

(a) Reference Database Image Attenuation: If possible, confine the ref-

erence image database to be searched to a subset of the entire reference

image database generated in step 1(a). Calhoun confined his search space

to a 6 meter-by-6 meter-by-6 meter box centered near the true location of

the observation image.

(b) Image Comparison: Compare the observation image to all reference

images identified in step 4(a) according to the same metric used in step

1(e). Compare multiple pixels to make the ultimate results more robust.
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For his metric, Calhoun differenced the pixel intensities of the reference

and observation images at randomly selected pixel locations. These pixel

locations were randomly selected from the population of sample image edge

pixels.

(c) Compute Likelihood Scores: Based on the results from 4(b) and the

likelihood function determined in step 1(f), compute a likelihood score for

each reference image-observation image pair. For example, in Calhoun’s

work the likelihood of observing edge pixel intensity differences was com-

puted.

5. Bayesian Inference: For each point analyzed in the attenuated the reference

image database obtain in step 4(a), determine the posterior probability that the

observation image depicts the formation at that relative position. This is done

using each computed likelihood score and each prior probability with Bayes’

Law. Since the reference image database is discrete and the prior probabilities

form a PMF, the posterior probability obtained from Bayes’ Law will be a PMF.

6. Relative Position Estimate: The relative position estimate is given by the

location of the reference image with the highest posterior probability of depicted

the observation image.

7. Protection Level Determination: Starting from the relative position esti-

mate, geometrically move outward from the that position in the reference image

database, summing posterior probabilities as you move outward. Continue this

process until reaching the desired integrity risk level. The distance moved away

from the relative position estimate when the desired integrity risk level is reached

constitutes the protection level. Calhoun split this into vertical and horizontal

protection level components.
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2.2.2 Image Processing.

In the image rendering approach used in Calhoun’s work in [2] and [5], comparison

of a sample image to the reference image database requires that the features being

compared are consistent in different environmental conditions and that these features

are able to span the gaps in the reference image database. For these reasons, Calhoun

applied both a Prewitt edge detector and a Gaussian blur to his observation images

and his reference image database.

Calhoun applied edge detection in order to make the image features to be com-

pared environmentally invariant. Calhoun applied Gaussian blurring for two primary

reasons. First, the application of blurring can help correct for template modeling er-

rors. Second, the rendered image database contains reference images of the aircraft at

discrete points in space. Contrastingly, observed images are drawn from a continuous,

infinite set of relative positions. These possible locations exist along the entire con-

tinuum of points located both at and between the discrete locations of the reference

image database. This is true both in simulation and in flight. If no Gaussian blurring

were applied, then the only time an observed image would be a good match with a

reference image would be when the observed aircraft happens to be located at or very

close to a point depicted in the discrete reference image database. Hence, Gaussian

blurring must be applied to either the reference image database, the observed images,

or both.

Moreover, the level of Gaussian blurring must be tuned such that the discrete

reference image database sufficiently overlaps with all possible sample images. This

is done by changing the standard deviation parameter, σ. Alternatively, blurring

functions other than Gaussian could be applied. Calhoun chose Gaussian blurring

due to its simplicity (only the standard deviation parameter, σ, must be tuned)
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and low-pass filtering effects. [2]. Edge detection is discussed in Section 2.2.2.1 and

Gaussian blurring in Section 2.2.2.3.

2.2.2.1 Gradient-Based Edge Detection.

Image gradients are commonly used to find edges in an image. The gradient vector

of a function f is [25]:

∇f = [gx, gy]
T =

[
∂f

∂x
,
∂f

∂y

]T
(9)

The magnitude of the gradient vector is [25]:

∇f =
[
g2x + g2y

]1/2
(10)

A gradient vector points in the direction of maximum rate of change. Applied

to pixel intensities in an image, the gradient at a given pixel identifies the direction

of maximal intensity change. Moreover, the magnitude of the gradient at each pixel

can be used to identify pixels where the rate of intensity change surpasses a given

threshold value [25]. Points where this occurs are deemed edge points, the collection

of which are used to identify edges [26]. In practice one of several approximations to

Equation (10) can be used to identify pixels in an image where the intensity change

exceeds a given threshold. This paper uses a Prewitt edge detector.

2.2.2.2 Prewitt Edge Detection.

As previously mentioned, Calhoun [2], [5] used a Prewitt filter to identify edges

within each image. A Prewitt edge detector takes the difference in pixel intensities

in a three-by-three region to approximate the partial derivatives used in Equation

(9). Gonzalez, Woods, and Eddins [25] provide an excellent visual depiction of this
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process which is replicated in Figure 11. The figure and commensurate discussion

summarizes their description.

Figure 11. Representation of Pixels Used in Prewitt Edge Detector.

Consider the pixel, p5. In a Prewitt edge detector, the partial derivatives in the x

and y directions, gx and gy, are approximated as [25],

gx = (p7 + p8 + p9)− (p1 + p2 + p3), (11)

gy = (p3 + p6 + p9)− (p1 + p4 + p7). (12)

Equation (10) is then applied and the resulting magnitude of gradient is compared

against a threshold value, T . If the magnitude of gradient exceeds the threshold value,

then pixel p5 is declared as an edge point.

2.2.2.3 Gaussian Blurring.

Blurring of an image can be used to simulate sensor noise. As outlined by Cal-

houn [2], [5], blurring is also useful when performing template matching and/or

when estimating object poses with templates pulled from a discrete rendered image

database. In this context, appropriately tuned blurring of an observed image and/or

the discrete database will help to account for template modeling errors. Moreover,
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when using a discrete template dataset for pose estimation, blurring helps to ensure

that the discrete dataset “covers” the spatial gaps between each discrete position

represented in the database.

The most common method of blurring involves the use of a Gaussian filter. In [26],

Forsyth and Ponce outline how convolving the partial derivative of the Gaussian

blurring function with the image results in the derivative of a Gaussian blurred image

along the direction of interest. Their discussion is summarized below:

∂IB
∂x

=

(
∂Gσ

∂x

)
∗ I (13)

Here, IB represents the blurred image, I the raw image, Gσ represents the Gaus-

sian smoothing function parameterized by its standard deviation, σ, and x specifies

that blurring is along the x pixel direction. The mean of the Gaussian smoothing

function is zero. The Gaussian smoothing function itself, with x and y expressed in

units of pixels, is given in [26] as,

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
. (14)

Recall from Equation (9), that a vector of the partial derivatives in x and y

comprises an image gradient. Hence, using Equation (13) one can obtain the image

gradient of a Gaussian blurred image , IB:

∇IB =

[
∂IB
∂x

,
∂IB
∂y

]T
(15)

In practice, the normalizing coefficient can be ignored since we are only concerned

with relative differences in blurred image pixel intensity and not in absolute blurred
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image pixel intensity. Forsyth and Ponce describe several important properties of

Gaussian blurring [26]:

1. The net effect of Gaussian blurring is to create a weighted average of pixel

intensity that places more weight on nearby pixels.

2. Increasing the standard deviation, σ, of the Gaussian blur filter increases the

weight of further afield pixels.

3. Gaussian blurring acts as a low pass filter; the effect of high spatial frequency

intensity changes is attenuated.

As a result of these properties, performing Gaussian blurring on an edge-space

image tends to spread out image edges [2].

2.2.3 Template Matching.

Template matching is fundamental to Calhoun’s Bayesian inference-based in-

tegrity monitor. In the context of his work an this thesis, template matching is a

computer vision technique that matches an observed image to an explicit template

of the object or feature of interest. In general, the purpose of this technique is ob-

ject recognition. Brunelli noted that when an observation image and template image

are not a perfect match, a template matching algorithm is faced with comparing a

template to a modified version of itself, plus additional content, plus noise [27]. In

this circumstance, a statistical quantification of the goodness of a template’s match

to an observed image is necessary in order to draw meaningful conclusions from any

template matching process. In the context of this thesis and Calhoun’s work [2], [5],

wherein a probabilistically quantifiable relative position estimate is the ultimate goal,

a rigorous statistical quantification of the quality of match between the observed im-

age and the template is essential.
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Brunelli [27] frames template matching as “a two-person statistical game between

nature and a computational agent.” This game can be thought of as an algorithm’s

attempt to achieve a set of goals. The goal of Calhoun’s Bayesian inference integrity

monitor is to estimate a PMF describing the relative position of the formation based

solely on images captured by a single camera. As described above, this enables both

relative position and protection level estimation [2]. For this thesis, the algorithm

goals include the relative pose of two aircraft given stereo camera imagery. The goal

of the V5 algorithm would include PMF and protection level estimation while the goal

of the R7 algorithm would include attitude estimation. As described by Brunelli, the

game proceeds as follows:

1. Nature selects a physical state x ∈ X. In the context of this thesis and Calhoun’s

work, x is the relative pose of the two aircraft and X represents the set of all

possible relative poses.

2. Based on the state x selected by nature, a set of observations θ are made ac-

cording to a conditional probability distribution p(θ|x). In the context of the

V5 algorithm and Calhoun’s work, the observation θ is the difference between

the observation image and the relevant images in the reference image database.

In part, these differences depend upon the image processing algorithms used to

detect features of interest. These observations are the consequence of an un-

known conditional probability distribution that depends on the state of interest,

x, and on the construction of the image processing algorithm itself. Properly es-

timating p(θ|x) is critical if the overall algorithm is to probabilistically estimate

the true state x and its confidence in that estimate.

3. Based on the observations θ, the algorithm estimates the unknown true state of

nature, x, according to its decision function φ(θ) = δ, where δ is the algorithm’s

best estimate of the true state x. In the context of the V5 algorithm and
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Calhoun’s work, the estimate δ is attained via likelihood computations and

Bayesian inference as discussed in Section 2.2.4. The algorithm’s statistical

confidence in its relative state estimate δ is required to return a protection

level.

In the following section, Bayesian inference and its relation to template matching

is introduced. Next, the details of the template matching process outlined above are

discussed in the context of Calhoun’s work in [2] and [5].

2.2.4 Template Matching and Bayesian Inference.

According to Bayes’ Law, for a discrete set of mutually exclusive and mutually

exhaustive events, x1, x2, ..., xN :

p(xj|θ) =
p(θ|xj)p(xj)∑N
1 p(θ|xj)p(xj)

(16)

Where p(·) represents the probability of an event. Here, p(θ|xj) is commonly referred

to as the likelihood function, p(xj) as the a priori probability of event xj, and p(xj|θ)

as the a posteriori probability of event xj given the observations θ [28], [29].

As described in steps 2 and 3 of Brunelli’s template matching process (outlined

in Section 2.2.3), the conditional probability distribution p(θ|xj) is needed in order

to probabilistically obtain an estimate of the true state xj. Calhoun demonstrated

in [2] and [5] that Bayesian Inference can be used to accomplish this task. Hence,

in the context of Bayes’ Law, Brunelli’s conditional probability distribution, p(θ|xj),

can be thought of as the likelihood function. The next section describes the method

Calhoun used to determine an appropriate likelihood function for his algorithm.
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2.2.5 Likelihood Function Determination.

In [2] and [5], Calhoun used the difference in pixel intensities between a processed

observation image and a processed reference image as his set of observations, θ. To

recap, processed images were obtained from raw images in the following manner:

1. Raw images were transformed into edge-space with a Prewitt edge detector.

2. Gaussian blurring was applied to the resulting images at a heuristically deter-

mined level.

Once these processed images were generated, Calhoun computed the difference in

intensities at pixel i as:

gb(xi, yi) = IGBO
(xi, yi)− IGBR

(xi, yi) (17)

Where IGBO
(xi, yi) is the intensity of the processed observation image at pixel i,

IGBR
(xi, yi) is the intensity of the processed reference image at pixel i, and gb(xi, yi)

is the difference of these intensities at pixel i. Calhoun only examined pixel intensity

differences at pixels identified as edge features in the processed observation image,

IGBO
.

To determine the likelihood function, Calhoun generated a probability density

function (PDF) describing p(gb(xi, yi)), the probability of observing any given pixel

intensity difference between the observed and rendered images at pixel i. This quan-

tity will be denoted as p(gbi). In the context of Bayesian Inference, p(gbi) constitutes

the likelihood function p(θ|xj) if the observations are confined to a single pixel. Ex-

tension to multiple pixel observations will be discussed below.

In order to generate the PDF p(gbi), Calhoun evaluated many observation image-

reference image pairs. From each of these pairs, multiple pixels were randomly se-
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lected. The intensity difference between these images at these pixels, as described in

Equation (17), was used to construct the PDF [2], [5].

Critically, in order to generate p(gbi), Calhoun deliberately selected IGBR
such that

the relative navigation state captured by IGBR
was known to be the best match for

the relative navigation state captured by IGBO
out of all images in the reference image

database. For the purposes of likelihood function generation, the best match reference

image was chosen since the algorithm’s objective is to accurately estimate the relative

navigation state. In simulation, the researcher has perfect knowledge of the relative

navigation state of every reference and observation image. Hence, determining the

best match reference image for the observation image is trivial in simulation.

Calhoun used an unspecified number of randomly generated observation image-

reference image pixel pairs in order to obtain an estimate of p(gbi). His results are

depicted in Figure 12.

Figure 12. Calhoun’s Gaussian fit for the pixel intensity difference likelihood function
p(gb) or p(θ|xj) [2].
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As can be seen in the Figure 12 and as noted by Calhoun, the actual PDF closely

resembles a Laplace distribution with one major caveat—there is a small local maxi-

mum on the positive tail of the distribution.

Calhoun asserted that the local maximum was mostly attributable to the fact that

gb was calculated based on differencing pixel intensities at pixels identified as edges

in the observation image. Non-edge pixels have an intensity value of zero. Recall

that gb(xi, yi) = IGBO
(xi, yi)− IGBR

(xi, yi) and pixels were deliberately selected such

that the value of IGBO
(xi, yi) is non-zero. Hence, unless the observation and reference

images are identical, there will almost certainly be cases where pixels in IGBO
are

edges while the corresponding pixels in IGBR
are not. Moreover, the discrete nature

of the reference image database and the level of Gaussian blurring applied would

affect both the location and magnitude of this small intensity difference peak. As a

result of this positive tail artifact, Calhoun chose to overbound the distribution with

a Gaussian fit.

However, while this fit does better account for the local maximum in the data,

Figure 12 clearly shows that the overall fit is poor. Additionally, Calhoun noted that

overbounding was necessary to achieve desired performance. Likelihood function

analysis performed in this thesis for the V5 algorithm, discussed in Section 4.1.5,

helps to demonstrate why overbounding is necessary with this sort of method.

2.2.6 Likelihood Score Computation.

Using the likelihood PDF p(gbi), an observation image can be compared to any

image in the reference image database. If the observation image is compared to a

set of reference images, then each reference image will have its own likelihood score.

Theoretically, the reference image that is truly the best match for the observation

image will typically have the highest likelihood score. However, Calhoun observed
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that if only one pixel were evaluated it is likely that “bad matches” in the reference

image database might score higher than “good matches.” Hence, it is advantageous

to use multiple pixels.

In order to utilize multiple pixels, Calhoun assumed that the intensity difference

gb observed at each pixel i is independent of all others. He noted that similar as-

sumptions were made in related work by Olson [30] and Wells [31]. Calhoun asserted

that the independence assumption made the likelihood score computation tractable

and increased the chances of identifying a “good match.” Based on this assumption,

Calhoun’s used his Gaussian fit of p(gbi) to compute an overall likelihood function

according to the equation:

p(θ|xj) =
N∏
i=1

p(gbi) (18)

Where θ represents the set of all N pixel observations and i denotes pixel i. Recall

that the likelihood function p(gbi) is applicable at the individual pixel level. Con-

trastingly, the likelihood score p(θ|xj) applies to a set of pixels obtained from a single

observation-reference image pair.

Using the fit that Calhoun applied to p(gbi), he showed that the overall likelihood

function can be computed as:

p(θ|xj) =

(
1√
2πσ

)N
exp

[
− 1

2σ2

N∑
i=1

(gbi − µ)2

]
(19)

Where µ is the mean intensity difference parameterizing Calhoun’s Gaussian fit and

σ is the standard deviation parameterizing Calhoun’s Gaussian fit.

2.2.6.1 Log-Likelihood Computation.

When dealing with multiple pixels, Calhoun noted that computing a product of

probabilities in this manner will quickly converge toward zero and could run into
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machine-precision issues [2], [5]. Hence, he deemed use of a log-likelihood metric to

be preferable. By taking the logarithm of the likelihood function p(θ|xj) given in

Equations (18) and (19), a product is turned into a summation, thereby avoiding

potential machine precision issues:

log(p(θ|xj)) =
N∑
i=1

log(p(gbi)) (20)

log(p(θ|xj)) = N log(
1√
2πσ

)−
N∑
i=1

(gbi − µ)2

2σ2
(21)

In this manner, a log-likelihood can be computed for every observation image-reference

image pair of interest.

2.2.7 Posterior Probability Computation.

Once obtaining likelihood scores, Calhoun leveraged Bayes’ Law as shown in Equa-

tion (16), in order to compute a probability distribution describing the relative po-

sition of the aircraft. Calhoun examined the use of both a normal distribution and

a uniform distribution as prior probability functions. Obtaining a probability dis-

tribution describing the aircraft state with Bayes’ Law enabled Calhoun to garner

information on the uncertainty of the relative position estimate returned by his algo-

rithm and to compute a protection level [2], [5].

2.2.8 Protection Level Computation.

As described in the previous section, the posterior probability that the relative

navigation state is xi can be computed via Bayesian inference. Every reference point

examined (that is, every relative position xj in the search space) has a posterior

probability. The sum of all these probabilities is one. Calhoun took the state xj with

the highest posterior probability as the system’s best estimate for the relative pose
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of the two aircraft. Based on this assumption, Calhoun determined a protection level

for the estimate by expanding outward from this best estimate until achieving the

desired integrity risk level [2], [5]:

[i, j, k] = arg min
i,j,k

∑
i

∑
j

∑
k

p(xi, yj, zk|θ) < 1− IRL, (22)

PL =
√

(xi − xo)2 + (yj − yo)2 + (zk − zo)2, (23)

VPL = |zi − zo|, (24)

HPL =
√

(xi − xo)2 + (yi − yo)2. (25)

Above, (xo, yo, zo) is the relative position estimate, the acronym IRL stands for in-

tegrity risk level, the acronym PL stands for protection level, the acronym VPL stands

for vertical protection level, and the acronym HPL stands for horizontal protection

level. Correspondingly, the position (xi, yi, zi) is the closest position to (xo, yo, zo) for

which the required integrity risk level was met. Note that the quantity 1− IRL must

be a probability. Recall that using Calhoun’s relative position estimation method,

the relative position estimate was by necessity a position depicted in the reference

image database.

For the purposes of his analysis, Calhoun defined the horizontal and vertical direc-

tions relative to the body frame of the tanker aircraft—thereby making these direc-

tions consistent with the geometry of the refueling envelope. Recall that protection

levels are distances, typically expressed in meters or feet depending upon the user’s

preference.
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2.2.9 Calhoun’s Results.

Calhoun conducted simulation analysis of his Bayesian inference integrity mon-

itor in [2] and [5]. To conduct his analysis, Calhoun simulated images of a tanker

taken from 181 distinct receiver positions both within and just outside the refueling

envelope. Both aircraft were simulated to be at level flight for both the observation

images and the images in the reference database.

As described in Section 2.2.1, Calhoun attenuated the reference image database

when conducting comparisons to observation images. The attenuated reference database

consisted of a 6 meter-by-6 meter-by-6 meter box of images taken from evenly spaced

receiver positions. The center of the database was chosen as the true receiver location

plus a random error in all dimensions. The random error was chosen to be normally

distributed with a mean of zero and a standard deviation of 0.5 meters. Each of the

images in the reference database was spaced 0.5 meters from its nearest neighbors,

thereby generating a database of 2,197 images centered in the proximity of the re-

ceiver’s true relative position. One can visualize the rendered image set as forming a

cube. Thus, each of the 181 unique observation images was compared to a different

database of 2,197 reference images.

As described in Section 2.2.5, Calhoun computed a likelihood score for image in

the rendered image database using an overbounded Gaussian distribution. In order

to do this, he randomly sampled 100 pixels identified as edges in the processed ob-

servation image. As previously mentioned, he had best results when using a uniform

distribution as the prior probability distribution. When using 100 pixels with a uni-

form prior, typical navigation position errors returned by his algorithm were less than

approximately 0.5 meters—a figure equivalent to the spacing of the reference images

in his database. This indicates that his algorithm was typically able to converge pre-

cisely or very close to the best possible approximation of the true navigation solution
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in his simulation environment. Calhoun analyzed results using an integrity risk level

of 10−6. The navigation position error never exceeded the protection level during his

simulations. Typical protection levels returned by the algorithm were on the order of

1-2.5 meters in the horizontal dimension and 0.5-1.5 meters in the vertical dimension.

Figure 13 presents these results.

Figure 13. Calhoun’s Results for 10-6 Integrity Risk Level, 100 Sample Pixels, and
Uniform Prior [2].

Calhoun also conducted several sensitivity studies to analyze the effect of using

fewer sample pixels and/or less restrictive integrity risk levels. His analysis revealed

the potential to use fewer than 100 pixels while still achieving satisfactory results.

Additionally, it revealed, as expected, that a less restrictive integrity risk level re-

sults in a protection levels that are smaller in magnitude. For instance, using a less

restrictive integrity risk level of 0.05 and sampling only 20 pixels from each image,

typical protection levels were on the order of 0.5 meters, with an occasional excursion
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to greater than 1 meter. When using this lower number of sample pixels, typical

position errors were still less than 0.5 meters. These results are depicted in Figure

14.

Figure 14. Calhoun’s Results for 0.05 Integrity Risk Level, 20 Sample Pixels, and
Uniform Prior [2].

Overall, Calhoun’s work demonstrated that a relatively simple computer vision

algorithm has the potential to provide a degree of navigation integrity to close for-

mation flight. This V5 algorithm developed in this thesis attempts to build upon his

work by (1) taking advantage of a stereo camera system, (2) analyzing the effect of

a tanker-based, rather than a receiver-based vision system, (3) conducting a more

in depth analysis of appropriate likelihood functions, (4) analyzing algorithm errors

based upon the geometry of the vision system rather than the geometry of the tanker,

(5) using a more realistic and robust simulation environment, (6) exploring the effect
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of non-level attitudes, and (7) more aggressively exploring areas of potential integrity

violations. These items are discussed in detail in Chapters III, IV and VI.

2.3 Camera Model and Computer Vision

The V5 and R7 algorithms developed in this thesis are designed to take advantage

of the images output by electro-optical (EO) sensors, specifically digital cameras.

While EO sensors can target various portions of the electro-magnetic (EM) spectrum,

the flight test analysis performed in this thesis utilized EO cameras that targeted the

visible spectrum.

The USAF Test Pilot School’s generalized EO sensor model is summarized here,

and depiction of the model is shown in Figure 15 [3]. In the figure, the EO sensor has

a specific target which has associated EM radiation. However, background clutter

present in the sensor’s field of view will also emit or reflect radiation. Radiation

from the scene must pass through the atmosphere which will scatter and absorb

EM radiation in a manner primarily dependent upon frequency resulting in signal

losses. Radiation which reaches the sensor first passes through an objective lens,

then a reticle, and then a field lens. These components condition the EM signal

for acquisition by the detector. The detector transforms the EM radiation into an

electrical signal suitable for digital processing, such as a digital image. The ultimate

objective of the system is to capture information on the target.

In practice, a simplified camera model can be used in vision-aided navigation.

This section outlines the model used in this thesis. In the forthcoming discussion,

capitalized vectors are used to represent three-dimensional points, lowercase vectors

are used to represent two-dimensional points.
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Figure 15. USAF Test Pilot School’s EO Sensor Model [3].

2.3.1 Camera Coordinate Frame.

Throughout this thesis, the following convention is used to define a camera-

centered coordinate frame:

1. The origin is located at the center of projection of the camera. In a pinhole

camera model (described in Section 2.3.2), this corresponds to the pinhole.

2. The positive z -axis extends directly out from the origin, through the center of

the lens along the optical axis of the camera.

3. As viewed form the behind the camera, the positive x -axis extends to the right,

parallel to the image plane of the camera.

4. As viewed form the behind the camera, the y-axis extends downward, parallel

to the image plane of the camera. Hence, this is a right-handed coordinate

system.
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Figure 16 depicts this convention, where Xc = [x′c, y
′
c, z
′
c]
T represents the three-

dimensional coordinates of a real-world point in the camera frame.

Figure 16. Camera Coordinate Frame

Another parameter of interest to cameras is the field of view. The field of view

describes, in terms of angles, how much of a scene is visible to the camera at an

given instant in time. The horizontal field of view (HFOV) describes the angular

coverage with respect to the z -axis in the xz -plane of the camera coordinate frame.

The vertical field of view (VFOV) describes the angular coverage with respect to the

z -axis in the yz -plane of the camera coordinate frame.

2.3.2 Pinhole Camera Model.

In computer vision, cameras are often modeled as a pinhole camera; this con-

vention is referred to as the pinhole camera model. In the pinhole camera model,

light rays enter the camera through an infinitesimally small hole (a pinhole). These

rays are then projected onto an image plane. The image plane is located behind
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the pinhole at a distance equal to the physical focal length of the camera. The net

result is an inverted image of the scene being observed. To ease visualization, it is

common practice to define a virtual image plane that is located in front of the pin-

hole at a distance equal to the focal length. The image formed on this plane is not

inverted [32], [33], [4].

Figure 17 depicts this model. In the figure, F is the physical focal length of the

camera, which is typically expressed in millimeters. The optical axis passes through

the center of both the image plane and the virtual image plane. The point Xc =

[xc, yc, zc]
T represents a real-world point in the camera frame while the point xV I =

[x′V I , y
′
V I ]

T represents the corresponding point on the virtual image plane and xI =

[−x′V I ,−y′V I ]
T represents the point on the image plane. In both planes, the coordinate

origin is located at the center of the image plane (also called the principal point), with

the positive x-axis defined in the right direction and the positive y-axis defined in the

down direction.

Figure 17. Pinhole Camera Model
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It is evident from similar triangles that [32], [33], [4]:

xV I =

x′V I
y′V I

 = F

xc/zc
yc/zc

 (26)

Based on this relationship, the location of a real-world point in the camera frame can

be directly related to a corresponding point on the virtual image plane. However,

as Equation (26) makes clear, the three-dimensional real-world location of a known

point on the virtual image plane can not be directly deduced without knowledge of

the physical focal length of the camera, and, critically, the z -coordinate of that point

in the camera frame. When the value of zc is unknown, this problem is commonly

referred to as depth ambiguity.

2.3.3 Normalized and Pixel Coordinates.

Since digital images are most commonly expressed in pixels, it is much more

convenient to express the coordinates of our virtual image plane in units of pixels. This

subsection outlines how one obtains pixel coordinates for an image. Dividing Equation

(26) by the focal length results in what is termed normalized coordinates [32], [33], [4]:

xn =

xn
yn

 =

xc/zc
yc/zc

 (27)

Where [xn, yn]T is the resulting normalized coordinate. The origin of the normalized

coordinates is located at the center of the virtual image plane.

In practice, these normalized coordinates are typically converted to pixel coordi-

nates for convenience. This is done by shifting the origin to the top left corner of the

virtual image plane, as depicted in Figure 18. In the figure, xp represents the point
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of interest in the image in pixel coordinates, and the terms nx and ny represent the

number of pixels along the x and y pixel axes of the virtual image plane [4].

Figure 18. Raquet’s Depiction of the Relationship Between Pixel and Normalized
Coordinates [4]

.

Mathematically, pixel coordinates and normalized coordinates are related by the

focal length of the camera, f (expressed in units of pixels), and the location of the

optical center of the image, [nx, ny]
T (expressed in units of pixels) [4]:

xp =

xp
yp

 =

f 0

0 f


xn
yn

+

nx/2
ny/2

 (28)

The focal length in pixels, f , is directly related to the physical focal length of the

camera in units of millimeters (referred to as F in the preceding description of the
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pinhole camera model) according to the relationship [32]:

f = Fs (29)

Where s represents the number of pixels per millimeter on the actual camera sensor.

When dealing with real-world cameras, it is not uncommon that s will differ between

the x and y axes of the camera sensor. Hence, two different pixel focal lengths are

defined where fx is the focal length in pixels along the x-axis and fy is the focal length

in pixels along the y-axis.

This same relationship can be expressed in homogeneous coordinates. Homoge-

neous coordinates merely add an additional unitary dimension to the coordinate defi-

nitions described above, but enable one to express the relationship given in Equation

(28) as a single multiplication instead of a multiplication and an addition. Incorpo-

rating this change, Equation (28) becomes [4]:

xp =


xp

yp

1

 =


fx αcfx x

0 fy y

0 0 1



xn

yn

1

 = K


xn

yn

1

 (30)

Where αc is a skew coefficient corresponding to the angle between the x and y pixel

axes [34], [35], [4]. Typically this coefficient can be assumed to be zero in modern

cameras, but it can also be estimated with most commonly implemented camera

calibration tools to be described later [34]. This coefficient is related to φ, the angle

between the x and y axes of the physical sensor, by the Equation αc = tan(π/2− φ)

[34], [35]. In the Equation, the terms x and y are the x and y pixel coordinates for

the principal point in the image plane, where x = nx/2 and y = ny/2 for an ideal

camera.
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By combining the Equation (27) and Equation (30), the relationship between a

homogeneous set of three-dimensional camera frame coordinates and homogeneous

pixel coordinates can be defined as [4]:

xp =
1

zc
K

[
I3x3|03x1

]
Xc (31)

For clarity, the homogeneous world coordinates are Xc = [xc, yc, zc, 1]T and the ho-

mogeneous pixel coordinates are xp = [xp, yp, 1]. Again, zc is typically unknown when

examining an image produced by a camera. Therefore, in absence of knowledge of

the value of zc, Equation (31) does not allow one to relate pixel coordinates directly

to a unique three-dimensional point in the camera frame.

The relationship between the camera frame coordinates of a point of interest

and the coordinates of the same point in an arbitrary world frame is given by the

equation [4]:

Xc = Rc
w (Xw −Cw) (32)

Where Xc is the point’s camera frame coordinates, Rc
w is the DCM from the world

frame to the camera frame, Xw is the point’s world frame coordinates, and Cw is the

location of the camera frame origin in the expressed in the world frame. Converting

this result to homogeneous coordinates and combining it with Equation (31) one can

obtain:

xp =
1

zc
K [Rc

w|tc] Xw (33)

Where tc = −Rc
wCw is the location of the world origin expressed in the camera

frame [4].

The product K [Rc
w|tc] can be combined into a single matrix called the projection

matrix:

P = K [Rc
w|tc] (34)
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The projection matrix, P, describes how a real-world point (aside from scale) is

projected into the image plane.

Based on this equation, one can relate the three-dimensional coordinates of a point

in an arbitrary world frame to the pixel coordinates of the same point in a camera

image. However, when the problem is reversed (going from pixel coordinates to world

coordinates) the problem of depth ambiguity remains in the absence of additional

information.

2.3.4 Intrinsic Camera Calibrations.

In equations (30), (31), and (33), the matrix K is called the camera calibration

matrix:

K =


fx αcfx x

0 fy y

0 0 1

 (35)

Each element in the matrix is typically not directly observable or known (due to

camera manufacturing defects, error tolerances, etc.) but is instead attained from an

intrinsic camera calibration.

Additionally, real-world cameras will distort an image such that it differs from

the image an ideal camera would produce. There are two components of distortion,

radial and tangential. Radial distortion describes image distortions caused by lens

effects while tangential distortion describes image distortions cause by the lens and

imaging plane not being perfectly parallel [34], [32], [4]. Intrinsic camera calibration

routines return parameters describing these two components of distortion.
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For the intrinsic camera calibration methods used in this thesis, the radial and

tangential distortion model is:

xd
yd

 =
(
1 + k1r

2 + k2r
4 + k5r

6
)xn

yn

+

2k3xnyn + k4 (r2 + 2x2n)

k3 (r2 + 2y2n) + 2k4xnyn

 (36)

Where xd and yd represent the undistorted normalized coordinates of a point of in-

terest, the parameters k1, k2, and k5 are radial distortion parameters, the parameters

k3 and k4 are tangential distortion parameters, r =
√
x2n + y2n, and xn and yn are the

raw (i.e. distorted) normalized coordinates of a point in the raw image. A common

convention for non-wide angle, modern cameras is to set the k5 term and tangential

distortion terms to zero since such cameras typically lack higher order radial distortion

and tangential distortion [34].

Jean-Yves Bouguet of the California Institute of Technology developed a tool to

perform intrinsic camera calibrations utilizing these models in MATLAB R© and his

process has also been implemented in OpenCV (OpenCV is an open source computer

vision toolbox implemented in C and C++) [34], [32]. The MATLAB R© implementa-

tion was used in this thesis. The algorithm utilizes multiple images of a checkerboard

of known dimensions. These images are taken at various poses. Bouget’s calibration

algorithm is based primarily on the work of Brown [36], Heikkila [37], and Zhang [38]

and returns the following:

1. An estimate and an associated uncertainty for each element in the camera cal-

ibration matrix given in Equation (35).

2. An estimate and an associated uncertainty for each distortion coefficient from

Equation (36).
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3. A DCM, Rb
c, describing the rotation from the camera frame to the checkerboard

frame, and a translation vector Bc describing the location of the checkerboard

origin in the camera frame.

The specifics of how these parameters are attained is not discussed in this thesis.

However, Bradski presents a very useful discussion of the algorithm in [32].

With these camera calibration parameters in hand, a raw image can be undistorted

and three-dimensional world camera coordinates can be related to undistorted pixel

coordinates in an image captured by the camera.

2.3.5 Extrinsic Camera Calibrations.

To make imagery useful for navigation, the camera frame often must be related to

an arbitrary world frame as described by Equation (32). Typically, this frame would

be the most useful frame for describing the position and orientation of the body to

which the camera is attached. The quantities of interest are the DCM describing the

relative orientation of the camera frame and the world frame, Rw
c , and the position

of the camera origin in the world frame, Cw.

Figure 19 shows the translation vectors and DCMs of interest to a stereo camera

configuration where the p-frame is the world frame of interest. In the figure, the two

DCMs, Rp
L and Rp

R, characterize the rotation between the p-frame and the left and

right camera frames, respectively. The two translation vectors, Cp
L and Cp

R, specify

the locations of the left and right camera origins, respectively, in the p-frame. The

image planes for the left and right cameras are depicted in red and blue, respectively.

The three-dimensional point X corresponds to the pixel points xLp and xRp . The

relationship between the various coordinizations of X (XL, XR, and Xp) can be

deduced from the extrinsic camera calibration parameters.

56



Figure 19. Extrinsic Camera Calibration Parameters.

Numerous approaches exist to conducting extrinsic camera calibrations, two of

which are described below. In flight testing, this thesis utilized the direct measure-

ment approach.
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2.3.5.1 Direct Measurement.

In this approach the lever arm in the world frame, Cw, from the origin of the world

frame to the origin of the camera frame is measured directly as is the DCM from the

world frame to the camera frame, Rc
w. This method relies upon the assumption that

the external camera body corresponds ideally to the imaging plane (i.e. the imaging

plane is normal to the sides of the camera body) and that the imaging plane is located

precisely where the camera manufacturer says it is located. Hence, the accuracy of

this method is dependent upon the precision of the manufacturing process used to

construct the cameras.

2.3.5.2 Checkerboard Image Based Extrinsic Camera Calibration.

This approach takes advantage of the Bouguet’s intrinsic camera calibration al-

gorithm to deduce the lever arm, Cw, and the DCM, Rc
w. Recall that in addition

to returning the camera calibration matrix and the distortion coefficients, Bouguet’s

algorithm also returns the translation between the camera and the checkerboard in

the camera frame, Bc, and the DCM from the camera frame to the checkerboard

frame, Rb
c for each image used in the calibration. Therefore, if one of these images is

taken at a known position and orientation of the checkerboard relative to the world

frame (Bw and Rb
w, respectively), then Cw and Rc

w can be deduced as follows:

Rw
c = Rw

b Rb
c (37)

Cw = Bw −Rw
c Bc (38)

In practice, the position and orientation of the checkerboard in the world frame (Tw

and Rb
w, respectively) can be determined either by placing the checkerboard at a

precisely known location and orientation. This process will inherently involve taking
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direct measurements similar to those described above. However, these measurements

may be less prone to error since one need not directly measure the position and

orientation of a camera frame.

2.3.6 Stereo Vision.

As discussed in Section 2.3, the depth of a three-dimensional point corresponding

to a pixel in a single image is unknown. However, given the following information

from two images, one can deduce depth information:

1. Two images of the same scene, taken from different vantage points.

2. Knowledge of which specific pixels in the first image match with which specific

pixels in the second image.

3. Knowledge of the relative translation and rotation between the two cameras.

Based on this information, one can obtain the three-dimensional points locations

for each pair of matched pixels. Note that more than two images could be employed

in a similar fashion, but this research only focuses on the results attainable from a

stereo camera pair. This section describes this process.

2.3.6.1 Epipolar Geometry.

Images captured by stereo camera pairs obey epipolar geometry. Szeliski’s discus-

sion of epipolar geometry in [39] is summarized in this section as is information from

Raquet found in [4]. Figure 20 depicts epipolar geometry in the same fashion as these

two authors. Epipolar geometry can be usefully employed to derive depth informa-

tion about scenes captured by stereo camera pairs. Essentially, epipolar geometry is

a special case of planar geometry pertaining to a stereo camera pair.
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In Figure 20, the left camera origin is L0, and right camera origin is R0. The

image planes of the respective cameras are depicted in front of the camera centers.

The projection of R0 in the left camera’s image plane is called an epipole (depicted as

eL in Figure 20). Likewise, the epipole eR is the projection of L0 in the right camera’s

image plane. The vector TR specifies the translation from the right camera origin to

the left camera origin expressed in the right camera frame. The magnitude of this

vector is also referred to as the baseline. The matrix RR
L is the DCM specifying the

rotation from the left camera to the right camera [39].

Figure 20. Depiction of Epipolar Geometry.

Assume that there is a real-world point of interest, Xp, common to both images

expressed in the arbitrary p-frame. This point could also be expressed in the left

and right camera frames as XL and XR, respectively. This point manifests as the
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pixel xL
p in the left camera’s image plane. The epipolar plane is then defined by the

baseline (the line segment formed by the vector TR), and the ray extending from the

camera center L0, through the pixel xL
p, through the point of interest Xp to infinity.

Projecting the epipolar plane into the image plane of the right camera results in the

epipolar line lR. Epipolar geometry dictates that the pixel corresponding to Xp must

fall along the epipolar line segment lR in right camera’s image plane. The epipolar

line segment is bounded on one end by the epipole eR and on the other end by the

edge of the right camera’s image plane.

The exact location of where this pixel falls on the epipolar line segment directly

depends upon the geometry of the point of interest Xp relative to the cameras, the

relative geometry of the stereo camera pair as defined by RR
L and TR, and the intrinsic

properties of the cameras. In the specific situation shown in Figure 20, the pixel xR
p

is the pixel in right camera’s image plane that corresponds to Xp as a result of the

particular geometry depicted [39].

It is important to note that the precise location of xR
p can not be known unless

the precise location of Xp is known. Lacking this data, one again is confronted with

the problem of depth ambiguity discussed in Section 2.3. However, in the case of

a stereo camera system, even if one only knows where xL
p falls in the left camera’s

image plane, one does know with certainty that xR
p must fall on the epipolar line lR

in the right camera image [4], [39].

This is the key takeaway from the foregoing discussion of epipolar geometry. If

one knows that the matching pixel to xL
p must fall on lR and knows the geometry

defining lR, then one can much more easily employ a pixel matching algorithm to

identify the correct pixel (i.e. xR
p ). The following three points from Bradski and

Kaehler nicely summarize this particular utility of epipolar geometry [32]:
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1. Every real-world, three-dimensional point that is in view of both cameras is

located in an epipolar plane. This epipolar plane intersects both image planes

along an epipolar line.

2. The epipolar constraint dictates that the matching pixel in one image for a pixel

of interest in the other image must fall along the corresponding epipolar line.

3. Based on the epipolar constraint, one can much more easily employ a pixel

matching algorithm to correctly identify matching pixel pairs. This is because

one only needs to search along the proper epipolar line instead of through the

entire image.

2.3.6.2 The Essential and Fundamental Matrices.

Mathematically, the epipolar constraint is applied with the essential and funda-

mental matrices. The essential matrix, E, and fundamental matrix, F, both relate

the epipolar geometry of a stereo camera system. They differ in that the fundamental

matrix also incorporates the intrinsic properties of the two cameras in the system,

while the essential matrix relates only the geometry between the two cameras. Brad-

ski and Kaehler’s discussion of these properties is summarized in this section [32].

One obtains these matrices via application of the following definition of a plane:

(x− a) · n = 0 (39)

Where x is any point in the plane, n is a vector normal to that plane, and a is the

point at which n passes through the plane.

Applying Equation (39) to the special case of epipolar geometry, one can assert

[32], [4]: (
XL −TL

)T · (TL ×XL
)

= 0 (40)
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Where XL is the three-dimensional coordinates of the point of interest in the left

camera frame, and TL is the vector from the left camera origin to the right camera

origin expressed in the left camera frame. Note that the endpoints of both XL and

TL fall in the same epipolar plane by definition.

A three-dimensional point in the right camera frame, XR, is related to a point in

the left camera frame according to:

XR = RR
L

(
XL −TL

)
(41)

Therefore,

XRTRR
L =

(
XL −TL

)T
(42)

Thus, one can relate the the planar definition of epipolar geometry given in Equa-

tion (40) with reference to the point of interest expressed in both the left and right

camera frames [32]:

XRTRR
L

(
TL ×XL

)
= 0 (43)

Applying the skew symmetric matrix form of the cross product in Equation (43):

XRTRR
LTL
×XL = 0 (44)

Equation (44) can be converted to homogeneous normalized coordinates via divi-

sion by ZLZR/(FLFR), where ZL and ZR are the z-coordinates of the points XL and

XR, respectively, and FL and FR are the physical focal lengths (expressed in units of

distance) of the left and right cameras, respectively. Applying this divisor:

xRn
T
RR
LTL
×xLn = 0 (45)
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Where xRn and xLn are the homogeneous normalized coordinates of a point in the right

and left image planes, respectively.

Now, the essential matrix, E, can now be defined to be:

E = RR
LTL
× (46)

Thus, the epipolar constraint can be defined in terms of the essential matrix as:

xRn
T
ExLn = 0 (47)

Again, the essential matrix, as the above derivation makes clear, only relates

the planar geometry of the stereo camera system. Specifically, it is a product of the

DCM describing the rotation between the two camera frames and the skew symmetric

matrix corresponding to the translation between the two camera frames.

By applying the relationship between pixel and normalized coordinates, one can

obtain the fundamental matrix which also contains information contained in the cam-

era calibration matrices of both the left and right cameras. From Equation (30) recall

that:

xp = Kxn (48)

Where xp is a set of homogeneous pixel coordinates, K is the camera calibration ma-

trix, and xn is a set of homogeneous normalized coordinates. Applying this definition

to Equation (47):

xRp
T (

K−1R
)T

EK−1L xLp = 0 (49)

Where xRp and xLp are the homogeneous pixel coordinates of a point in the right

and left image planes, respectively, and KR and KL, are the right and left camera

calibration matrices, respectively.
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From this the fundamental matrix, F, can now be defined as:

F =
(
K−1R

)T
EK−1L (50)

Thus the epipolar constraint can now be expressed in terms of the fundamental ma-

trix:

xRp
T
FxLp = 0 (51)

The fundamental matrix relates the planar geometry of the stereo camera system

as well as the camera calibration matrices of both cameras. Specifically, it is a prod-

uct of the DCM describing the rotation between the two camera frames, the skew

symmetric matrix corresponding to the translation between the two camera frames,

and the camera calibration matrices of both cameras. Hence, almost all information

about the stereo camera system, aside from the distortion coefficients described in

Section 2.3.4, is contained in the fundamental matrix, F. To use F in the context

of a camera with non-zero distortion coefficients, one would merely undistort both

images as described in section 2.3.4, and apply these undistorted pixel coordinates in

Equation (51).

In summation, Equations (47) and (51) state that the product of matching feature

image coordinates with the essential or fundamental matrix ought to be zero. In

reality this property will not hold perfectly when using real cameras and real images,

but one should expect the products described by these two equations to be very near

zero.

2.3.6.3 Stereo Camera Calibration.

In order to usefully employ the properties of epipolar geometry discussed in Section

2.3.6.1, one must have knowledge of the relationship between the left and right camera
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frames. Mathematically, as the foregoing discussion has stated, the DCM RR
L and

the translation vector TL describe this relationship. Solving for these parameters can

be accomplished in one of two ways: either by applying the eight point algorithm to

solve for E and then deducing RR
L and TL [4] , or with an algorithm, implemented

by Bouguet, which makes use of the same procedure utilized for Bouguet’s intrinsic

camera calibration [32]. This thesis utilizes the second method because it yields

only one solution (utilizing the eight point algorithm yields a translation vector of

ambiguous sign), is less susceptible to outliers, and has been implemented in both

OpenCV and MATLAB R© [34], [32], [4].

The chosen method makes use of the fact that Bouguet’s intrinsic camera cali-

bration algorithm returns a translation vector, Bc, to the checkerboard origin in the

camera frame and a DCM, Rb
c, from the camera frame to the checkerboard frame for

each image (see Section 2.3.4). For the left and right cameras, the translation vectors

are denoted as BL and BR, respectively. Likewise, the DCMs are denoted as Rb
L and

Rb
R, respectively.

With these terms, one can solve for the DCM between the left and right camera

frames, RR
L , and the translation between the two frames, TR or TL, per the following

[32]:

RR
L = RR

b Rb
L (52)

TR = BR −RR
LBL (53)

TL = −RL
RTR (54)

Thus, for any pair of intrinsic camera calibration images taken from the left and

right cameras (note that these must be images of the same scene), one can solve for

the stereo parameters RR
L and TR. In Bouguet’s application, any number of image

pairs can be utilized. The Levenberg-Marquadt algorithm is applied iteratively to
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the image set to return a solution for RR
L and TR which minimizes the error in the

estimate (note that Levenberg-Marquadt returns a local minimum so the algorithm

must be properly initialized) [32].

Additionally, applying this algorithm to stereo image pairs optionally enables

simultaneous estimation of the camera calibration matrices for both cameras and

the distortion coefficients for both cameras [34], [32]. To accomplish this, Bouguet’s

algorithm forces the absolute pose of the checkerboard to be the same in both the

left and right camera images, and then optimizes estimated parameters based on this

assumption [34]. To aid with convergence, it helps to seed the algorithm with an

initial guess of both the camera calibration matrices and the distortion coefficients

for both cameras [34], [32].

As with the discussion of intrinsic camera calibrations in Section 2.3.4, the de-

tails of the stereo calibration algorithm are not discussed here. However, it is worth

emphasizing that this routine returns the following:

1. Optionally, the routine returns an estimate and an associated uncertainty for

each element in the both the left and right camera calibration matrices param-

eterized as in Equation (35).

2. Optionally, the routine returns an estimate and an associated uncertainty for

each distortion coefficient for both the left and right cameras parameterized as

in Equation (36).

3. The routine returns a DCM describing the rotation from the camera frame to

the checkerboard frame for both the left and right cameras, and a translation

vector describing the location of the checkerboard origin in the camera frame

for both the left and right cameras.
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4. Critically, the routine returns an estimate of the DCM from the left camera

frame to the right camera frame, RR
L , and the translation vector from the origin

of the right camera frame to the origin of the left camera frame expressed in

the right camera frame, TR.

If one already is confident of their estimates of the camera calibration matrices

and distortion coefficients, then the algorithm can hold other parameters fixed and

only return an estimate of RR
L and TR.

2.3.6.4 Stereo Image Rectification.

The goal of stereo image rectification is to transform the left and right camera

image such that corresponding epipolar lines fall along the same pixel rows (scan

lines) in both rectified images. As discussed at the end of Section 2.3.6.1, pixels

corresponding to the same feature in both images must fall along the corresponding

epipolar lines. Hence, if images are rectified, these matching pixels must fall along

the same pixel row in both images, and the search process to identify matching pixels

will be greatly simplified [39].

Physically, a real world stereo camera pair would generate rectified imagery if the

cameras were frontal parallel, had the same focal lengths, had the same principal

points, and were both free of distortion [32]. In frontal parallel cameras, the image

planes are row aligned and parallel, and both optical axes are parallel as well. This

situation is depicted in Figure 21.

In the figure, cameras are depicted as gray boxes and virtual image planes are

shown as blue rectangles. The principal points of the two cameras are (cxRr
, cyRr

) and

(cxLr
, cyLr

). Epipolar lines are depicted as dashed lines. Corresponding epipolar lines

fall along the same pixel row in both images. The vector TRr is the baseline between
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the cameras. The baseline falls completely along the x -axis of both cameras. The

DCM between the two cameras, RLr
Rr

, is equal to the identity matrix, I3.

Figure 21. Depiction of Frontal Parallel Cameras.

When using actual cameras, it is likely impossible to definitively place a stereo

camera system in a frontal parallel arrangement due to imperfections in manufac-

turing, the difficultly in definitively determining the location of a camera’s imaging

plane, etc. Instead, it is much more feasible to correct for these deficiencies with a

rectification algorithm.

Like the camera calibration algorithms discussed above, this thesis utilizes a recti-

fication algorithm developed by Bouguet [34], [32]. The precise details of the process

are not covered in this thesis, but a more detailed discussion of the algorithm can

be found in Bradski and Kaehler’s work [32]. Other implementations have been de-

veloped including by Fusiello, Trucco, and Verri [40]. Bouguet’s is selected for its

efficiency and readily available implementation in both OpenCV and MATLAB R©.

Based on the stereo calibration parameters, RR
L and TR, Bouguet’s rectification

algorithm seeks to reproject the left and right camera images into a rectified image

pair. In doing so, the algorithm is designed to minimize the change in the images

required to do so (thereby reducing consequent distortions) and to maximize the

common viewing area of the resulting rectified images [32].
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Essentially, the algorithm operates by ensuring the optical axes of both cameras

are parallel and that the x -axes of both cameras are parallel with the baseline. This

is accomplished via computation of a rectification DCM for the left and right images.

Additionally, the algorithm returns a DCM for each camera that relates each camera

frame to the frame of each rectified (frontal parallel) camera. In this thesis, these

DCMs are called RLr
L and RRr

R . This notation specifies a rotation from the camera

frame to the rectified camera frame for the left and right camera frames, respectively.

These DCMs are computed as [32]:

RLr
L = RrectRl (55)

RRr
R = RrectRr (56)

Here, Rrect is a rectification DCM applicable to both the left and right cameras. The

DCM Rl applies to the left camera and accounts for half of the rotation specified

by the stereo calibration DCM RR
L . The DCM Rr applies to the right camera and

accounts for half of the rotation specified by the stereo calibration DCM RL
R. Of

importance for the forthcoming discussion in Section 2.3.6.6, applying RLr
L and RRr

R

to the left and right cameras would result in the camera images becoming rectified.

Figure 22 shows an example of the rectification DCMs for a pair of stereo cameras.

In the figure, the actual virtual image planes of the cameras are depicted in red. The

rectified virtual image planes are depicted in black. Epipolar lines are depicted as

dashed lines. In the non-rectified images, corresponding epipolar lines are not parallel.

In the rectified images, corresponding epipolar lines fall along the same pixel row (scan

line) in both images. The rectification DCMs, RLr
L and RRr

R , describe the relationship

between the non-rectified and rectified camera frames. The vector TR is the baseline

between the cameras expressed in the non-rectified right camera fame. It does not
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necessarily fall only along the x -axis of the right camera frame since the cameras are

not frontal parallel. The stereo camera calibration DCM, RR
L , describes the rotation

between the non-rectified left and right cameras, and is not necessarily equal to the

identity matrix. The point X could be expressed in any of the four frames depicted

and would have different coordinizations in each frame. Similarly, the pixel points,

such as xLp and xLr
p , have different coordinates in the rectified and non-rectified images.

Figure 22. Depiction of Stereo Camera Image Rectification.

Besides the rectification DCMs described above, Bouguet’s rectification algorithm

also computes new camera calibration matrices, KLr and KRr , for the left and right
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rectified camera frames, respectively. An important consequence of the rectified cam-

era calibration matrices is discussed in Section 2.3.6.6.

Once these DCMs and camera calibration matrices have been computed, the algo-

rithm generates a pixel mapping from the raw, non-rectified images, to the rectified

images. Both the rectification DCMs and the rectified camera calibration matrices

are used to generate the pixel mapping. Based on this mapping, the algorithm deter-

mines what pixel in each raw image corresponds to a given pixel in the newly created

rectified image. In this manner, the rectified image is computed pixel-by-pixel.

To summarize, in a non-rectified stereo image pair, common features will fall along

corresponding epipolar lines, but these epipolar lines will not fall along the same rows

of pixels (scan lines). By contrast, in a rectified pair of images, pixels corresponding

to common features fall along the same pixel rows (horizontal scan lines) in both

transformed images. This is because the corresponding epipolar lines are aligned in

rectified images. In a rectified image pair, the horizontal displacement of common

features in a scan line can be directly related to depth information.

2.3.6.5 Pixel Matching and Disparity Map Generation.

Once a stereo image pair has been rectified, identifying matching pixels present in

the two images is greatly simplified. The relationship between common feature pixel

coordinates in a rectified stereo image pair is given by [39]:

xRr = xLr − d(xLr , yLr), yRr = yLr (57)

For a given feature, this value d can also be expressed as:

d = xLr − xRr (58)
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Here, the x-axis of each image plane is aligned with the horizontal and the y-axis

with the vertical. The variables xLr and yLr represent the pixel coordinates of the

feature of interest in the left rectified camera image while the variables xRr and yRr

represent the pixel coordinates of the feature of interest in the right rectified camera

image. The value d(xLr , yLr) is termed the disparity value. The disparity is equal to

the difference in the x-location of the feature in the left rectified image relative to

the x-location of the feature in the right rectified image. Once rectification has been

done, one can obtain disparity values of all common features in the rectified stereo

image pair and store these values as a disparity map [39].

The disparity map is the same size as each rectified image and uses the coordinate

system of the left rectified image. Each pixel is assigned a value equal to the disparity

observed at that pixel. Since the algorithm operates on rectified images, pixel matches

must occur in the same row.

The disparity map algorithm used in this thesis is an OpenCV implementation

based upon the work of Konolige [41]. This method uses local block matching, as op-

posed to global or semi-global block matching, as computational speed was considered

desirable for both the V5 and R7 algorithms. Prioritizing speed makes the method

more readily applicable to real-time implementation of AAR, relative navigation,

and/or automated formation flight. For completeness and the sake of comparison,

the added features that would be included in a semi-global block matching algorithm

are also discussed in this section.

The algorithm has three principle steps [32], [41], [42]:

1. For the semi-global matching technique only, each image is filtered to normalize

image brightness and increase texture. This is accomplished by applying a

window of user-specified size over the image. Within each window, the center
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pixel’s intensity is normalized according to the equation:

Iout = min[max(Iin − Ī ,−Imax), Imax] (59)

Where Iout is the output intensity of the center pixel, Iin is the input intensity

of the center pixel, Ī is the mean pixel intensity within the window, and Imax

is a user-specified positive intensity limit.

2. A sum of absolute differences (SAD) window is used to search along each hori-

zontal epipolar line and identify matching pixels. The user specifies a minimum

and maximum disparity value for the search. Below, these are termed d0 and

d1, respectively. The algorithm uses each pixel in the left image as a starting

point. For reference, say this pixel is at position (xl, yl) in the left image. For

every disparity value, d, in the inclusive set [d0, d1], the algorithm computes a

SAD metric. The SAD metric sums the absolute differences for a window of size

n-by-n, where n must be odd. The window is centered on pixel (xl, yl) in the

left image and on pixel (xl−d, yl) in the right image. The absolute difference of

intensities between pixel pairs of the form (xl + i, yl + j) in the left image and

(xl + i− d, yl + j) in the right image are computed, for all pixels included in the

set −m < i < m, −m < j < m, where m = (n− 1)/2. These absolute intensity

differences are summed together to generate the SAD metric. Mathematically,

this can be expressed as [43],:

SAD(xl, yl, d) =
m∑

i=−m

m∑
j=−m

|IL(xl + i, yl + j)− IR(xl + i− d, yl + j)| (60)

In this manner the algorithm generates a SAD metric for all candidate disparity

values in the set [d0, d1]. The algorithm also estimates intensity differences
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at sub-pixel increments of 1/16 by fitting a curve to the intensity difference

computed at each pixel. The right image pixel that minimized the SAD metric

is declared as a preliminary match with the corresponding left image pixel. The

preliminary disparity value is the difference between the right and left image

x -coordinates of the matched pixels.

Within this step, the algorithm applies logic to enforce the geometry of the

features being observed. Specifically, this is done with an order constraint which

dictates that the order of image features must be preserved in the left and right

images. Say the algorithm has already identified feature A as being located

at pixel (xl, yl) in the left image and pixel (xl − 3, yl) in the right image. Say

a second feature, feature B, has been preliminarily declared. The algorithm

will reject the feature B pixels as a valid match if the SAD window search

has returned a matching pair at pixel (xl + 1, yl) in the left image and pixel

(xl − 4, yl) in the right image. Doing so would mean the feature B was to the

right of feature A in the left image, but to the left of feature A in the left image.

Hence, the matching process ensures that feature order is preserved.

If no pixel pair is identified for a given pixel location in the left image due to

rejection, then no preliminary disparity value is assigned. Disparity values for

these pixels are assigned in the final step of the algorithm.

3. The algorithm applies logic to eliminate bad matches. In both block matching

and semi-global block matching algorithms, a speckle filter is applied. Speckle

filters seek to eliminate extreme disparity values that occur at the boundary

of objects. The filter works by examining contiguous regions of preliminary

disparity values. The maximum size of these regions (in pixels) is user spec-

ified and is termed the speckle window size. Regions larger in size than this

value are not speckle filtered. Within a speckle window, the difference between
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the minimum and maximum observed disparity value must not exceed a user-

specified threshold, called the maximum disparity difference. If the threshold is

exceeded, all pixels within the blob are assigned a user-specified disparity value

(typically zero).

If a semi-global block matching algorithm is used, then two additional filters

are applied. First, any matches are eliminated that exceed a uniqueness ratio

according to the following:

R = (I1 − Imin)/Imin (61)

Where R is the computed uniqueness ratio, I1 is the intensity difference of the

potential match, and Imin is the minimum intensity difference of all potential

matches observed in the image. If R exceeds a user defined threshold, then the

match corresponding to I1 is thrown out. Second, if the intensity difference I1

of a potential match exceeds a user-specified threshold, the match is rejected.

Finally, for both the block matching and semi-global matching methods, any

pixels for which no disparity value has been assigned as a result of pixel matching

are assigned a disparity value of zero.

The images shown in Figure 23 were used to generated the disparity map shown

in Figure 24 with the MATLAB R© function disparity. These images were generated

in simulation and model the three-dimensional position of C-12C aircraft. As can

be seen in the figures, more distant features have lower disparity values while closer

features have greater disparity values. This property of disparity values can be used

to deduce depth information.
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Figure 23. Left and Right Images Used to Generate the Disparity Map Shown in Figure
24.

Figure 24. Disparity Map Generated from the Images in Figure 23.

2.3.6.6 Obtaining Depth Information from Disparities.

A disparity map can be reprojected into a three-dimensional point cloud. Each

point in the three-dimensional point cloud represents the real-world point correspond-

ing to every pixel in the disparity map for which there is a measured disparity value.
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For points in the disparity map without a valid disparity value, no reprojection is

computed.

The governing equation for reprojection is [32]:

Q



xLr

yLr

d

1


=



t

u

v

w


(62)

Where (xLr , yLr) is the pixel coordinate in the left rectified image of a pixel with a

disparity value of d. The resulting parameters t, u, v, and w are discussed later in

this section.

The matrix Q is the reprojection matrix. The values of the elements in Q are

based upon the rectified camera calibration matrices discussed in Section 2.3.6.4. The

Q matrix is parameterized as:

Q =



1 0 0 −cxLr

0 1 0 −cyLr

0 0 0 fc

0 0 − 1

TRr
x

cxLr
−cxRr

TRr
x


(63)

Here, (cxLr
, cyLr

) is the location of the principal point in the left rectified image, fc

is the focal length in pixels of the left rectified camera, cxRr
is the x -coordinate of

the principal point in the right rectified image, and TRr
x is the x -component of the

translation vector TRr between the right and left rectified cameras. Note that due

to the alignment of the each camera’s x -axis in rectification, the magnitude of TRr
x

will be equal to the magnitude of the entire vector TRr . This figure is equal to the

baseline (i.e. the distance between the camera origins or the magnitude of TR) and
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its sign will be negative. The sixteenth element of the matrix,
cxLr

−cxRr

TRr
x

, will be equal

to zero unless one deliberately utilizes a rectification scheme that does not simulate

frontal parallel cameras.

This thesis utilizes a frontal parallel rectification, therefore:

Q =



1 0 0 −cxLr

0 1 0 −cyLr

0 0 0 fc

0 0 − 1

TRr
x

0


(64)

Applying Equation (62), yields the vector [t, u, v, w]T . This vector is directly re-

lated to the three-dimensional coordinates of the rectified left camera frame according

to the equation [32]:

XLr =


XLr

YLr

ZLr

 =


t/w

u/w

v/w

 (65)

Expanding this relationship in terms of each element in Equation (62), the follow-

ing relationship is established:

XLr =


XLr

YLr

ZLr

 =


(cxLr

−xLr)T
Rr
x

d

(cyLr
−yLr)T

Rr
x

d

−fcTR
x

d

 =


(xLr−cxLr

)ZLr

fc

(yLr−cyLr
)ZLr

fc

−fcTR
x

d

 (66)

Recall that due to the alignment of the each camera’s x -axis in rectification, the

magnitude of TRr
x will be equal to the baseline (i.e. the total separation of the

cameras) and its sign will be negative. Additionally, for frontal parallel cameras the

smallest disparity value observable is zero. Hence, ZLr will be positive by definition

for frontal parallel cameras.

79



Since a disparity map corresponds to a digital image, the coordinates that com-

prise it are inherently discrete. Additionally, the set of possible disparity values any

coordinate can have is a discrete set. Recall from Equation (58) that a disparity value

is merely the difference, in pixels, of the pixel location of a feature in the left rectified

image and the pixel location of that same feature in the right rectified image. Since

the algorithm used in this thesis can use values of xLr and xRr that are non-integer,

in 1/16 pixel increments, the smallest change in disparity that the algorithm can re-

solve is 1/16 of pixel. This is referred to as the disparity resolution of the algorithm.

Based on this disparity resolution, the smallest possible change in depth that can be

resolved based upon the value of ZLr given in Equation (66) is [44]:

∆ZLr =
Z2
Lr

fTRr
x

∆d (67)

Where ∆d is the algorithm’s disparity resolution and ∆ZLr is the depth resolution.

Recognizing that XLr and YLr are proportional to ZLr :

∆XLr =

∣∣∣∣∣
(
cxLr
− xLr

)
∆ZLr

f

∣∣∣∣∣ (68)

∆YLr =

∣∣∣∣∣
(
cyLr
− yLr

)
∆ZLr

f

∣∣∣∣∣ (69)

Where ∆XLr and ∆YLr are the x and y position resolution in the left rectified camera

frame.

Hence, resolution in all left rectified camera frame dimensions worsens quadrat-

ically with the object’s depth along the z -axis in the left rectified camera frame.

Additionally, position resolution along the left rectified camera frame’s x -axis and

y-axis worsens proportionally to the feature’s pixel displacement from the x and y

coordinates of the disparity map’s principal point. Finally, note that these values of
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∆XLr , ∆YLr , and ∆ZLr are best case values. If there is random or systematic error

in the location of the principal point, the focal length, the camera baseline, or the

disparity values, then the accuracy of the coordinate estimates given by Equation (66)

will worsen. Hence, to obtain optimal results, intrinsic, stereo, and extrinsic camera

calibrations, as well as the disparity map generation algorithm, must be as precise as

possible.

2.3.6.7 Relating Points to an Arbitrary Frame.

The coordinates yielded by Equation (62) can be related to an arbitrary world

frame according to a modification of equation (32):


Xw

Yw

Zw

 = Rw
LRL

Lr


XLr

YLr

XLr

+ Lw (70)

Here, the vector [Xw, Yw, Zw]T gives the coordinates of a point in an arbitrary world

frame. The DCM Rw
L goes from the left camera frame to the chosen world frame.

As discussed in Section 2.3.6.4, RL
Lr

is the DCM describing the rotation from the left

rectified camera frame to the left camera frame. The vector [XLr , YLr , ZLr ]
T gives the

coordinates computed from Equation (62). Lastly, the vector Lw is the location of

the left camera in the chosen arbitrary world frame.

Hence, using the output from Equation (62), one can apply Equation (70) to relate

three-dimensional points observed with a stereo camera system to an arbitrary world

frame.
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2.3.6.8 Stereo Vision Summary.

With a pair of stereo camera images of the same scene, one can generate a three-

dimensional point cloud of the observed scene. As previously discussed, this is done

in the following manner:

1. Perform a stereo camera calibration. The stereo camera calibration will

yield the camera calibration matrices of both cameras (KL and KR), the dis-

tortion coefficients for both cameras, the DCM between the two cameras (RR
L),

and the translation vector between the two cameras (TR).

2. Perform an extrinsic camera calibration for both cameras. The extrin-

sic camera calibration will yield the translation vector between each camera and

the world frame (for instance, the location of the left camera in the world frame

Cw
L) as well as the DCMs between the world frame and each camera frame (for

instance, Rw
L).

3. Capture a set of stereo camera images of the scene of interest. If the

scene is dynamic, these images must be captured as close to the same time as

possible.

4. Rectify the captured stereo image pair. This can be done with Bouguet’s

rectification algorithm. This algorithm takes RR
L , TR, KL, KR, and the dis-

tortion coefficients for both cameras as inputs. The algorithm yields DCMs

describing the rotation between the real-world cameras and the virtual rectified

cameras (RLr
L and RRr

R ). This calibration algorithm will also yield a camera cal-

ibration matrix for both the rectified cameras (KLr and KRr), and, importantly,

the reprojection matrix Q.
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5. Conduct pixel matching on the rectified image pair. In other words,

identify features common to both images. Since the images have been rectified,

these features should be in the same pixel row in both images.

6. Generate a disparity map from the matched pixel pairs identified

in the rectified images. The disparity map characterizes the pixel location

difference between features common to both scenes.

7. Project the disparity map into three dimensions. This is done using the

reprojection matrix, Q. If using the methodology described in this chapter, the

resulting point cloud is expressed in the left rectified camera frame.

8. Relate the left rectified point cloud to an arbitrary world frame. This

can be done with Equation (70).

2.4 The Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) algorithm can be used to identify the transla-

tion and rotation between an observed point cloud, P, and a model point cloud, X.

Published by Besl and McKay [8], they proved that ICP converges monotonically to

a local minimum of the mean square distance function between the two point clouds.

More generally, the algorithm can also be applied to sets of line segments, parametric

curves, implicit curves, triangles, parametric surfaces, and implicit surfaces. This

section’s discussion on the ICP algorithm summarizes Besl and McKay’s paper and

uses similar notation [8].

The algorithm works by applying sequential registration vectors to the observed

point cloud until sufficient registration with the model point cloud is achieved. The

unit quaternion describing the rotation of a point cloud is called ~qR = [q0, q1, q2, q3]
T .

The translation vector describing the translation of the observed point cloud is called

83



~qT = [q4, q5, q6]
T . The authors therefore define the complete registration state vector

as ~q = [~qR|~qT ]. The observed point cloud, comprised of Np points, is termed P = ~pi

while the model point cloud, comprised of Nx = Np points is termed X = ~xi. Each

observed point corresponds to the model point of the same index i. For example, the

model point corresponding to ~pi is ~xi.

The authors demonstrate that the following function, describing the mean square

difference between the translated and rotated observed point cloud and the model

point cloud, is minimized with the ICP algorithm:

f(~q) =
1

Np

Np∑
i=1

‖~xi −R~pi − ~qT‖2 (71)

Where R is the DCM corresponding to the unit quaternion ~qR.

The mean of the observed and model point clouds, are defined as ~µp and ~µx,

respectively:

~µp =
1

Np

Np∑
i=1

~pi, ~µx =
1

Nx

Nx∑
i=1

~xi (72)

The cross-covariance between the two point clouds, Σpx is defined as:

Σpx =
1

Np

Np∑
i=1

[
~pi~x

T
i

]
− ~µp~µTx (73)

With these definitions, the authors form the matrix A = (Σpx − ΣT
px), and from

A, the vector ∆ = [A2,3, A3,1, A1,2]
T . Using the above definitions, the authors form a

matrix based principally on the cross-covariance of the two point clouds:

Q(Σpx) =

tr(Σpx) ∆T

∆ Σpx + ΣT
px − tr(Σpx)I3

 (74)

Where tr(·) is the trace operator and I3 is an order three identity matrix.
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From this matrix Q(Σpx), the maximum eigenvalue’s corresponding unit eigen-

vector is identified. This eigenvector is taken to be the optimal rotation quaternion,

~qR = [q0, q1, q2, q3]
T , with a corresponding DCM R. The optimal translation vector,

is then identified as:

~qT = ~µx −R~µp (75)

The identified translation and rotation is then applied to the entire observed point

cloud, P. The authors denote this translation and rotation operation with an operator:

(~q, dms) = Γ(P,X) (76)

Where dms is the mean square of the point matching error given by the function f(~q).

With these operations now defined, the ICP algorithm is developed as follows.

First, each point ~pi in the observed point cloud, P, is paired with a point ~xi in

the model point cloud, X. Prior to this pairing Np need not be equal to Nx. This is

accomplished by simply identifying the point ~xi that is closest to the point ~p according

to the equation:

d(~p,X) = min
~xiεX
‖~xi − ~p‖ (77)

Where d(~p,X) is the smallest distance between all model points ~xi in X and the

observed point ~p.

Once these pairs have been identified, the point ~xi that minimized the distance

metric with ~pi is assigned to be equal to ~yi. From these, the point set Y is formed.

The operation is notationally summarized as:

Y = C(P,X) (78)

85



Where C(·) denotes the operation to identify the entire point set Y from the original

model point set X.

With the definitions of the translation and rotation operator Γ(·) and the closest

point operator C(·) as given above, the authors summarize the ICP algorithm as

follows [8]:

1. The algorithm is provided with an observed point cloud P with Np points and

a model point cloud X with Nx points.

2. The algorithm is initialized with the initial, unaltered observed point cloud,

P0 = P and with the index set to k = 0. Iterated registration vectors are relative

to the previous data set, such that the final registration vector represents the

complete rotation and translation from the initial point cloud P to the identified

local minimum. Next, steps 3-6 are repeated until the desired tolerance level τ

is reached.

3. The closest points Yk = C(Pk, X) are computed.

4. The registration vector is computed with the translation and rotation operator,

(~qk, dk) = Γ(Pk, Yk).

5. The translation and rotation are applied to the observed point cloud according

to Pk+1 = RPk + ~qT .

6. Repeat steps 3-5 until dk − dk+1 < τ .

As previously mentioned, the ICP algorithm converges monotonically to a local

minimum. Additionally, the ICP algorithm yields useful translations and rotations

even when the observed point cloud P matches only a subset of the model point

cloud X. However, the algorithm is susceptible to large statistical outliers and noise.

Additionally, the algorithm may not produce useful results if some portion of the
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observed point cloud, P, is not represented in the model point cloud, X [8]. Hence, in

practical applications, such as using stereo vision to deduce the relative pose of two

aircraft, pre-processing of the observation point cloud is often needed.
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III. Methodology

The overall objective of this thesis is to develop and analyze two approaches to

vision-based relative navigation, the V5 and R7 algorithms. This chapter discusses

the implementation of both algorithms. Analysis and development are conducted in

the context of AAR and algorithm design is intended to have direct applicability to

the KC-46 program. The V5 algorithm is a Bayesian-inference integrity monitor that

yields a PMF describing the relative position of a receiver aircraft. Using this PMF

the V5 algorithm returns a relative position estimate and an associated protection

level. The R7 algorithm yields a relative position and relative attitude estimate in

part by leveraging the ICP algorithm.

This chapter begins with a description of the frames and variables relevant to

both methods. Next, the simulation environment used to analyze both methods is

discussed. After these preliminaries, the V5 algorithm is discussed in detail, followed

by a description of the R7 algorithm. Then, the method used to compute V5 and R7

algorithm errors is described. Finally, the

The V5 and R7 algorithms outlined in this chapter are analyzed with simulation

data in Chapter IV and with flight test data in Chapter VI. Methodology pertaining

only to flight test data analysis is described in Section 5.4.

3.1 Frame and Coordinate System Definitions

This thesis requires the definition of a multitude of frames and coordinate systems.

Starting globally, flight test hardware used in this thesis outputs aircraft position in

the Earth-Centered Earth Fixed (ECEF) frame. The ECEF frame origin is located

at the center of the Earth. A right-handed Cartesian frame, the frame’s z -axis points
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through the Earth’s true North pole, while the x -axis points through the intersection

of the Equator and the Prime Meridian [45].

Additionally, flight test hardware also referenced local North-East-Down (NED)

frames in attitude calculations. The origin is defined at a point of interest. For flight

test data analysis in this thesis, the origin was defined to be located at the origin of

the tanker aircraft body frame. A right-handed Cartesian frame, the frame’s x -axis

points to true North, the frame’s y-axis points due East, and the z -axis points down

with respect to the local vertical [46].

On the scale of the aircraft formation, seven Cartesian frames are relevant. First,

the p-frame, or primary frame, is a nose-right wing-down frame centered on a reference

point on the lead aircraft (i.e. the aircraft upon which the cameras are mounted). In

the context of the AAR problem examined in this thesis, this would be the tanker

aircraft.

Second, a re-coordinization of the p-frame, called the v -frame, is also used. The

v -frame is a nose-left wing-up frame centered on the same point on the lead aircraft

as the p-frame. This frame is primarily used to relate the returns from the simulation

environment described in Section 3.3.

Third, the L-frame is a camera frame centered on the left camera origin. This

camera frame follows the convention defined in Section 2.3.1.

Fourth, the R-frame is an analogous camera frame centered on the right camera.

This camera frame also follows the convention defined in Section 2.3.1.

Fifth, the B -frame, or boom frame, is centered at the boom joint (i.e. the point on

the tanker surface where the boom attaches to the aircraft hull). The frame’s z -axis

extends down the length of the boom. The frame’s x -axis is orthogonal to this axis

and extends upward. Upward in this sense means it parallels the the z -axis of the
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v -frame as closely as possible while maintaining orthogonality with the z -axis of the

B -frame.

Sixth, the s-frame, or secondary frame, is a nose-right wing-down frame centered

on a reference point on the trailing aircraft (i.e. the aircraft which the cameras are

intended to observe). In the context of AAR, this aircraft would be the receiver.

Seventh, the d -frame is a nose-left wing-up frame centered on the receiver. The

d -frame is the same as the s-frame except that the directions of the y and z axes

are reversed. Similar to the v -frame, the d -frame is defined to ease use of computer

modeling software. The relationship between the p-frame and v -frame as well as the

relationship between the s-frame and d -frame is defined by the DCM:

Rp
v = Rd

s =


1 0 0

0 −1 0

0 0 −1

 . (79)

Figure 25 depicts four of the formation frames discussed in this section.

Figure 25. Relevant Formation-Level Coordinate Frames.
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On the scale of the cameras, two additional frames merit discussion. These are

the left and right rectified camera frames. Per the discussion in Section 2.3.6.4, the

rectified camera frames are conceptual frames that enable the generation of a rectified

image. The DCM from the rectified camera frame to the non-rectified camera frame

completely describes the relationship between two frames. The relationship between

these frames is depicted in Section 2.3.6.4 in Figure 22.

Finally, the relationship between the p-frame and the camera frames merits em-

phasis. The DCM and translation vectors returned from an extrinsic camera cali-

bration completely characterize this relationship. As discussed in Section 2.3.5 and

Figure 19, the parameters of interest are the DCMs between the frame of reference

(in this thesis, the p-frame) and the two camera frames, as well as the translation

vectors to the two camera origins expressed in the frame of reference.

3.2 Variable Definitions and Notation

Throughout this thesis, the relationship between the various frames are defined

in terms of vectors and DCMs. In general, the vectors represent the location of one

frame’s origin in another frame and the DCMs represent the rotation between two

frames. Vectors and matrices are bolded. For vectors, the superscript denotes the

frame in which the vector is expressed. For DCMs, the subscript represents the initial

frame and the superscript represents the ending frame. For instance, the DCM RJ
K

would operate on a vector expressed in the K -frame and would transform it into

an equivalent vector expressed in the J -frame (provided the origins of the K and J

frames are collocated).

Additionally, each camera has its own set of physical properties, distortion coeffi-

cients, and camera calibration parameters. The camera such parameters correspond

to is denoted with a subscript.
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Column vectors are used for all three-dimensional and pixel point coordinates.

Finally, point clouds are constructed as arrays wherein the i th column contains a

vector representing the location of the point i in the point cloud.

Table 1 lists all frames from Section 3.1 (as well as objects of interest such as the

left camera) and their corresponding notational abbreviation. Using these notational

conventions, Table 2 defines key variables of interest. The contents of these tables

are used for the remainder of this thesis. Parameters expressed in other frames use

analogous notation to the variables given in Table 2. For instance, a three-dimensional

coordinate in the left rectified camera frame is expressed as XLr .

Table 1. Frames and Their Corresponding Superscripts and Subscripts.

Frame, Coordinization, or Object Superscript or Subscript

ECEF frame ECEF

NED frame NED

p-frame p

v-frame v

s-frame s

d-frame d

L-frame or Left Camera/Image L

Lr-frame or Left Rectified Camera/Image Lr

R-frame or Right Camera/Image R

Rr-frame or Right Rectified Camera/Image Rr

B-frame B
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Table 2. Variable Definitions. Vectors and Matrices are Bolded. Point Cloud Variables
are Arrays Comprised of Columns of Three-Dimensional Coordinate Vectors Wherein
Each Column is a Distinct Point.

Variable Left Camera Right Camera p-Frame

Focal Length (mm): FL FR N/A

Focal Length in x and y (pixels): fxL , fyL fxR , fyR N/A

Principal Point (pixels): (cxL , cyL) (cxR , cyR) N/A

Distortion Coefficients: kiL kiL N/A

Camera Calibration Matrix: KL KR N/A

Translation Between Cameras: TL TR N/A

Rotation Between Cameras: RR
L RL

R N/A

Position of Camera in p-frame: N/A N/A Cp
L, Cp

R

Rotation from Camera to p-frame: Rp
L Rp

L RL
p , RR

p

Rotation from Rectified Camera: RL
Lr

RR
Rr

N/A

Pixel Coordinate: xLp xRp N/A

Three-Dimensional Coordinate: XL XR Xp

Observed Point Cloud in Rectified Frame: OLr ORr N/A

Observed Point Cloud: OL OR Op

Model Point Cloud: ML MR Mp

Location of Receiver: sL sR sp

Orientation of Receiver: Rs
L Rs

R Rs
p
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3.3 Simulation Environment

The simulation environment used in this thesis, hereafter denoted as the three-

dimensional virtual world (3DVW), was developed by Dr. Scott Nykl of AFIT. Among

many other capabilities, the 3DVW enables the generation of realistic aircraft, cam-

era, and scene representations in real-time. The geometry of the 3DVW and the

objects therein can be specified by the user. For the purposes of this thesis, a par-

ticularly useful application of the 3DVW is the ability to test and implement vision

algorithms on synthetically generated virtual images as well as images captured by

real-world systems.

Figure 26 shows an example snapshot from the 3DVW. In the figure, one can see

a tanker and aircraft that have been rendered above imagery of Wright-Patterson

Air Force Base. The tanker is geometrically identical to a KC-135 and the receiving

aircraft is geometrically identical to a C-12C. In the 3DVW, any aircraft for which

the user has a model could be rendered as the receiver or as the tanker. The terrain

has the same coordinates (including elevation) as the real world. The boom on the

tanker is that of a KC-10. In this thesis, a KC-10 boom was affixed to a KC-135

body to increase relevance to the KC-46 program. The KC-46 has a boom similar to

that found on the KC-10. For the purposes of gathering 3DVW simulation images,

the body of the aircraft upon which the cameras are mounted is irrelevant. Hence, a

KC-135 body is used merely for the purpose of aiding user visualization.

In the lower left and lower right corners of the figure are the simulated stereo

images captured by the tanker’s cameras. These images have the same dimensions as

the stereo cameras used in the flight test portion of this thesis. Additionally, these

stereo cameras are mounted on the tanker in the same configuration used in flight

testing. The baseline of the stereo camera pair is 0.5 meters and the cameras are

mounted at a 25◦ down-look angle relative to the longitudinal axis of the tanker.
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This configuration was designed to mimic the configuration found on the KC-46. The

3DVW can render aircraft poses and output images captured by the 3DVW cameras

in real-time.

Using the 3DVW, one can apply vision algorithms to this stereo image pair. An

example result of this process is depicted on the figure. On the boom and C-12,

there are multiple yellow dots. These dots represent a three-dimensional point cloud

that a stereo vision processing algorithm operating on the stereo image pair output

has yielded. The 3DVW enables such algorithms to be tested for both speed and

accuracy. Algorithm design and analysis in this thesis focus primarily on algorithm

accuracy rather than speed.

Figure 26. Example Snapshot Taken of the 3DVW.
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3.4 Vision & Bayesian Inference Based Integrity Monitor (V5)

This section describes the V5 algorithm. The algorithm generates a PMF de-

scribing the relative position of an aircraft. This PMF is generated by comparing

observation imagery to a reference image database with Bayesian inference. From

this PMF, the V5 algorithm provides a relative position estimate and a degree of

navigation integrity in the form of a protection level. This section describes the V5

algorithm in detail. First, an overview of the V5 algorithm is presented. Following

the overview, this section discusses algorithm components in detail. Where relevant,

this discussion includes the MATLAB R© functions used in implementation. Much of

the algorithm description in this section is identical to the description found in the

Have Vision test information memorandum [7]. The V5 algorithm is analyzed with

simulation and flight test data in Chapters IV and VI, respectively.

3.4.1 V5 Algorithm Overview.

The V5 algorithm builds upon Calhoun’s Bayesian inference integrity monitor [2],

[5] which is outlined in Section 2.2. Broadly speaking the V5 algorithm uses the same

structure as Calhoun’s integrity monitor. However, several important modifications

and additions are included. For clarity, the same format that is used to outline Cal-

houn’s Bayesian inference integrity monitor in Section 2.2.1 is used in this section. In

the outline, the most substantial differences between the V5 algorithm and Calhoun’s

approach are emphasized.

1. Likelihood Function Determination:

(a) Reference Image Database Generation: Generate a reference image

database comprised of rendered images. These reference images depict the

trailing aircraft at a level attitude at known, discrete points in space rela-
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tive to the observing aircraft. Process these images in accordance with Step

1(c). In this thesis the reference aircraft is the receiver and the observing

aircraft is the tanker. Additionally, the tanker is assumed to be equipped

with a stereo camera pair. Therefore, the reference database includes a left

and right camera image for every position included in the database. The

stereo camera pair is constructed to mimic the stereo camera system used

on the KC-46.

(b) Observation Image Collection: Collect a set of observation image pairs

either in the 3DVW or in flight test. Process these images in accordance

with Step 1(c). Each distinct observation position will have two corre-

sponding simulation images—one for each camera in the stereo image pair.

The relative position depicted in each observation image must be known.

Additionally, the stereo configuration parameters must be known.

(c) Image Processing: Both reference and observation images must be pro-

cessed. The V5 algorithm processes both the left and right camera images

obtained from the stereo camera configuration mounted on the observing

aircraft (the tanker). Additionally, these stereo images are used to filter

out any background pixels in the images, resulting, ultimately, in a blurred

depiction of only the trailing aircraft in edge-space. Image processing is

detailed in Section 3.4.3.

i. Edge Detection: Apply a Prewitt edge detector to all images in the

reference image database and to each observation image.

ii. Disparity Map Using the raw images, generate a disparity map for

each image pair in the reference image database and for all observation

image pairs. Each disparity map is based upon the known stereo config-
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uration parameters and is generated according to the method described

in Section 2.3.6.

iii. Depth Filter Using the disparity map generated in Step 1(c)(ii), filter

out any pixels from the edge-space images that are determined to be

outside the region of interest for aircraft observation.

iv. Blurring: Apply a pre-determined level of Gaussian blurring to all

edge-space, depth filtered images.

(d) Identify Best Reference-Observation Image Pair: Identify the refer-

ence image pair generated in Step 1(a) that is nearest to representing the

same geometric formation represented by each observation image pair gen-

erated in Step 1(b). For instance, assume there are only three reference im-

age pairs. These depict the reference aircraft located at three-dimensional

positions (1,2,3), (4,5,6), and (7,8,9) relative to the observing aircraft. If

there is an observation image pair whose relative position is known to be

(1,2,4), then the first reference image pair is the best match and would be

selected for comparison to the observation image pair.

(e) Compare Best Reference-Observation Image Pairs: Compare the

features depicted in the best reference-observation image pair. The V5

algorithm randomly selects an equal number of edge pixels from both the

observation and reference image. This results in an essentially symmetric

likelihood function. This method is discussed in detail in Section 3.4.4.

(f) Construct the Likelihood Function: Identify a PDF that models

the feature differences between the best reference-observation image pairs.

Enough reference-observation image pairs must be used to adequately rep-

resent the sample space of interest. This PDF serves as the likelihood
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function used in all subsequent steps. The details of this process are dis-

cussed in Section 3.4.4.

2. Observation Image Collection: Collect a set of observation images either

in the real-world or in simulation. Process these images in accordance with

Step 1(c). This simulation and flight test observation images analyzed in this

thesis include attitude perturbations. Now that a likelihood function has been

determined, the relative position of these observation images need not be known.

3. Prior Probability Determination: Determine the prior probability for each

pose represented in the reference image database generated in Step 1(a). This

thesis explores the use of both uniform and Gaussian priors.

4. Reference Database-Observation Image Comparison:

(a) Reference Database Attenuation: If possible, confine the search space

of the reference image database to a subset of the entire reference image

database generated in Step 1(a). This is necessary to reduce processing

times.

(b) Image Comparison: Compare the observation image pair to all reference

image pairs identified in Step 4(a) according to the same metric used in

Step 1(e). Optionally, only examine edge pixels that exceed a user-specified

intensity threshold after image processing. Compare multiple pixels to

make the ultimate results more robust.

(c) Compute Likelihood Scores: Based on the results from Step 4(b) and

the likelihood function determined in Step 1(f), compute a likelihood score

for each reference image pair-observation image pair coupling.
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5. Bayesian Inference: For each point in the reference image database, deter-

mine the posterior probability that the observation image depicts the formation

at that pose. This is done using each computed likelihood score and each prior

probability with Bayes’ Law. Since reference image database is discrete, the

posterior probability distribution obtained from Bayes’ Law is a PMF. In this

the V5 algorithm, this process is performed separately for both left and right

camera images. These results are then probabilistically combined to obtain a

single PMF. The details of this process are discussed in Section 3.4.6.

6. Relative Position Estimate: The relative position estimate can be taken

to be the location of the reference image with the highest associated posterior

probability. The V5 algorithm also yields an alternative relative position esti-

mate which takes into account the entire PMF. This technique is explained in

Section 3.4.7.

7. Protection Level Determination: Starting from the relative position es-

timate, geometrically move outward from that position in the reference im-

age database, summing posterior probabilities as you move outward. Continue

this process until reaching the desired integrity risk level. The distance moved

away from the relative position estimate when the desired integrity risk level is

reached serves as the protection level. The V5 algorithm moves out uniformly in

all directions while summing posterior probabilities captured within the bounding

sphere. This results in what can best be described as a spherical protection level.

This is described in detail in Section 3.4.8.

Once the likelihood function has been determined, the V5 algorithm operates by

applying Steps 2-6. These steps are depicted in block diagram form in Figure 27.
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Figure 27. Block Diagram Depicting the V5 Algorithm.

3.4.2 Reference Image Database Generation.

For both flight test and simulation data analysis, the raw images used to create the

reference image database were created in the 3DVW. The geometry of the database

used in data analysis is described below. Other geometries could be applied with the

V5 algorithm.

The database consisted of images of the receiver captured at surfaces of equal

range from the center of the tanker’s stereo camera pair. Within each surface, every

image was at the same distance from the center of the stereo camera pair. Successive

surfaces were separated by a user-specified Euclidean distance in meters. Within each

surface, images were separated by a user-specified equiangular spacing in azimuth and

elevation, as measured from a ray beginning at the center of the stereo camera pair

and extending to the location of the last reference position generated. The azimuth
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limits of each surface, extending left or right of the tanker’s longitudinal axis, were

user-specified. Similarly, in elevation the angular limits of each surface below the

tanker’s longitudinal axis were user-specified. Therefore, each surface within which

reference images were generated was a portion of the surface of a sphere. As a result

of this method, each rendering surface contained the same number of images. This

precluded an unnecessarily dense reference image database at far ranges. Figure 28

depicts this scheme. More detail on the reasons for using this scheme is discussed in

Section 4.1.4.

Figure 28. Depiction of the Rendered Image Database.

3.4.3 Image Processing.

Image processing for the V5 algorithm was implemented in MATLAB R©. MathWorks R©

developed functions included as part of the Computer Vision System Toolbox were

used to perform the majority of image processing. The V5 algorithm could use other

image processing libraries in the future.
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3.4.3.1 Prewitt Edge Detection.

Edge detection was performed with the MathWorks R© developed function edge.

This function includes the option to use a Prewitt filter in order to perform edge

detection. A Prewitt filter was used in order to make the results of this thesis more

directly comparable to the work of Calhoun, but other edge detection options could

be explored in future work.

The function edge also includes the ability to use an algorithmically defined

threshold for edge declaration. This option was exercised in this thesis in order

to eliminate what would have been an extensive tuning process and in an attempt to

improve the algorithm’s robustness to environmental change. Using this method, the

threshold is set to the mean of the squared intensity gradient values in the image [47].

3.4.3.2 Disparity Map Generation.

Disparity maps were generated with raw reference database image pairs and sam-

ple image pairs via the four step process described below.

1. Intrinsic camera calibration and stereo camera calibration results were obtained.

In simulation, these calibration results were deterministic and could be deduced

based upon the properties of the simulated images captured in the 3DVW.

For real-world cameras, these results were obtained via Bouguet’s MATLAB R©

Camera Calibration routine [34].

2. Images were rectified with the MATLAB R© function rectifyStereoImages. Re-

quired inputs to this function include stereo camera calibration results and the

raw image pairs.

3. The rectified images were converted to black and white with the MATLAB R©

function rgb2gray to facilitate further processing.
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4. The black and white rectified image pairs were used to generate a disparity map

with the MATLAB R© function disparity.

3.4.3.3 Depth Filter.

As described in Section 2.3.6.6, three-dimensional coordinates can be obtained for

each pixel in a disparity map if the stereo parameters of the camera pair are known.

This property of stereo cameras was used to develop the V5 algorithm’s depth filter.

This depth filter eliminates features in both the left and right processed images

that fall outside a user-specified depth window. This process is made possible by the

relationship between disparity maps and rectified images described in Section 2.3.6.5.

Since a disparity map has the same coordinate system as the left rectified image, any

three-dimensional point obtained from a disparity map corresponds to a particular

pixel in the left and right rectified images. The pixels in the left rectified image have

the same mapping as the pixels in the disparity map. Corresponding pixels in the

right rectified image are determined with Equation (58).

The depth window MATLAB R© implementation which was used in data analysis

is described below, but an analogous process could be built with other libraries. In

simulation stereo parameters were deterministic. In flight test, these parameters were

obtained with a stereo camera calibration.

1. The disparity map was projected into a set of three-dimensional coordinates

in the left camera frame with the MATLAB R© function reconstructScene.

Necessary function inputs include the disparity map and the stereo parameters

of the camera pair.

2. The user specified two threshold depth values, a minimum and a maximum.

These constituted a depth window. This depth value corresponds to the z -
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component of each three-dimensional point as expressed in the left rectified

camera frame.

3. Every three-dimensional point whose z -component did not fall within the depth

window was identified.

4. The intensities of pixels in the blurred, edge-space, rectified images that cor-

responded to the three-dimensional points falling outside the depth window

(identified in Step 3) were set to zero.

3.4.3.4 Gaussian Blurring.

Blurring was applied to all edge-space, depth filtered images. Gaussian blurring

was performed with the MathWorks R© function imgaussfilt. The function operates

in the manner described in Section 2.2.2.3. The only arguments to the function are

the input image and the σ parameter desired for use. The sole output is the blurred

image. The level of Gaussian blurring for this thesis was set to a σ parameter of 5.

The same level of blurring was used on simulated and flight test images. The analysis

conducted to determine this blurring level is discussed in Section 4.1.4.

3.4.3.5 Image Processing Block Diagram.

The overall image processing method is depicted in Figure 29. For this thesis,

pixels that were algorithmically determined to be between 0 and 100 meters from

the stereo camera pair center were retained; all others were eliminated. As Figure

29 shows, without the depth filter, it would be essentially impossible to distinguish a

trailing aircraft in the edge-space image.
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Figure 29. Depiction of the Image Processing Method Used in this Thesis.

3.4.4 Likelihood Function Determination.

Likelihood function determination with the V5 algorithm is a tuning intensive

process and must be completed prior to application of the algorithm. As described

above, the reference image whose relative position most closely represents the obser-

vation image is identified. Next, n edge pixels from the processed reference image

(processed images depict blurred edge pixels of the aircraft) and n pixels from the

simulation-generated processed observation image are randomly selected. Figure 30

depicts this random sampling for an example reference-observation image pair.
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Figure 30. Random Pixel Sampling Example Shown For an Observation Image and the
Reference Image that is Closest to Depicting the Same Relative Position. Both Images
Were Generated in the 3DVW and Have Been Transformed to Edge Space and Been
Blurred with a 5σ Gaussian Blur.

The intensity values at these randomly selected pixels are compared to one another

using the same method used by Calhoun in [2]:

IntDiffi = IntRef(xi, yi)− IntObs(xi, yi) (80)

Where (xi, yi) are the coordinates of the randomly selected pixel, IntRef(xi, yi) is the

intensity of the randomly selected pixel in the reference image, IntObs(xi, yi) is the

intensity of the randomly selected pixel in the observation image, and IntDiffi is the

intensity difference present at random pixel i. These results are then used to find a

probability distribution that best fits the intensity difference distribution while still

yielding acceptable V5 performance. Specific results for this thesis are discussed in

Section 4.1.5. The same likelihood function was used on both simulation and flight

test data.
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3.4.5 Likelihood Score Computation.

In [2] and as described in Section 2.2.6, Calhoun assumed that every random

intensity difference was independent from all other observed intensity differences. The

V5 algorithm makes the same assumption. Additionally, to facilitate processing the

V5 algorithm computes likelihood scores in the logarithmic domain as did Calhoun

in [2]. Leveraging the independence assumption, a likelihood score is computed via

the following process for any given reference-observation image pair. During V5

algorithm implementation, this process iterates over numerous reference-observation

image pairs in an attempt to identify the reference image that most closely represents

the relative position captured in the observation image.

1. A total of n edge pixels are randomly sampled from the reference image and n

edge pixels are randomly sampled from the observation image. Edge pixels are

pixels that have an intensity value that exceeds a user-specified threshold after

image processing.

2. The intensity difference between the images at each pixel is computed per Equa-

tion (80).

3. The likelihood of observing the computed intensity difference at each pixel is

calculated using the likelihood function obtained via the method described in

Section 3.4.4. Again, this is the same approach as that used by Calhoun in [2].

For a Gaussian likelihood function:

p(IntDiffi|xj) =

(
1√
2πσ

)
exp

[
− 1

2σ2
(IntDiffi − µ)2

]
, (81)

Where σ is the standard deviation of the distribution, IntDiffi is the pixel in-

tensity difference computed per Equation (80), µ is the mean of the normal
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distribution, and p(IntDiffi|xj) is the likelihood of observing the pixel inten-

sity difference IntDiffi given that the reference image is the best match for the

observation image.

4. In the linear domain and under the independence assumption, these likelihoods

could be combined via multiplication. However, performing this combination

in the logarithmic domain enables the use of addition. Again, this is a similar

approach to that used by Calhoun in [2] as discussed in Section 2.2.6. For a

Gaussian likelihood function, the total log-likelihood score for a given reference-

observation image pair is computed as:

log(p(θ|xj)) = N log(
1√
2πσ

)−
N∑
i=1

IntDiffi − µ2

2σ2
, (82)

Where N = 2n is the total number of pixels examined from the reference-

observation image pair, and p(θ|xj) is the likelihood of observing the entire set

of pixel intensity differences if the reference image is the best match for the

observation image. All other parameters are identical to those used in Equation

(81).

3.4.6 Probability Mass Function Computation.

Once likelihood scores have been obtained for all reference-observation image pairs,

Bayesian inference can be used to obtain a PMF describing the probability that the

aircraft is at any relative position depicted in the reference image database. This

approach is similar to that developed by Calhoun in [2] as described in Section 2.2.7.
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Bayes’ Law, for a discrete set of mutually exclusive and mutually exhaustive

events, x1, x2, ..., xN , is presented in Equation (16) as:

p(xj|θ) =
p(θ|xj)p(xj)∑N
i p(θ|xj)p(xj)

(83)

In the context of this thesis, these “events” are the condition that the aircraft is

located at the relative position xj contained within the reference image database.

With respect to Equation (83), logarithms are also useful in computing the nu-

merator, p(θ|xj)p(xj). Here, p(xj) is the prior probability that the aircraft is located

at the relative position xj. Taking the logarithm of this product results in the com-

putationally more tractable summation:

log(p(θ|xj)) + log(p(xj)) (84)

In order to obtain the PMF and to compute a protection level, the probabilities

must be transformed back into linear space per the equation:

p(θ|xj)p(xj) = exp [log(p(θ|xj)) + log(p(xj))] (85)

Finally, these resulting probabilities are normalized according to Bayes’ Law, yielding

a PMF describing the variable of interest, x, i.e. the relative pose of the formation:

p(xi|θ) =
p(θ|xj)p(xj)∑N
i p(θ|xj)p(xj)

(86)

The net result is a PMF describing the posterior probability that the aircraft is

located at all relative positions, xi, represented by the reference images that were

examined. Since the reference image database is discrete, so too is the probability

space output from the application of Bayes’ Law. Hence, the ultimate result from
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the V5 algorithm is a PMF that assumes the relative pose of the tanker-receiver for-

mation can only occupy a discrete set of positions. It is critical to understand that

xi is inherently a position depicted in the reference image database. As a result, the

V5 algorithm implicitly assumes that the true aircraft state is represented somewhere

in the discrete database. As noted by Calhoun in [2], this makes the algorithm exe-

cutable but also inherently limits algorithm accuracy based upon the spacing between

adjacent reference images in the database.

When using images from two cameras, a left and a right, two PMFs are obtained.

These PMFs are combined by giving equal weighting to both distributions per the

equation:

p(xi|θ)net = 0.5p(xi|θ)L + 0.5p(xi|θ)R (87)

Where p(xi|θ)net is the PMF giving equal weight to the left and right camera solu-

tions, p(xi|θ)L is the PMF obtained from the left camera reference-observation image

comparisons, and p(xi|θ)R is the PMF obtained from the right camera reference-

observation image comparisons.

3.4.7 Relative Position Estimation.

Two different relative position estimators can be used with the V5 algorithm.

The first is a maximum likelihood estimator that identifies the mode of the PMF

returned by the algorithm. This was the method developed by Calhoun in [2] and [5].

This method uses the PMF found with Equation (87), to identify the reference image

location that best represents the observation image. This determination is made by

simply identifying which reference image position has the highest probability mass:

[i] = arg max
i
p(xi|θ)net (88)
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The relative position depicted by these reference images is the most likely location

of the aircraft. The maximum likelihood estimator can only return relative position

estimates that are present in the rendered image database.

The second estimator is called the composite position estimate in this thesis.

Rather than identifying the mode of the PMF, this estimator identifies the mean. The

composite position estimate makes use of the entire PMF obtained in Equation (87)

by weighting each discrete relative position contained in the PMF by its associated

probability mass:

µxi
= p(xi|θ)net · xi. (89)

The composite position estimate can return relative position estimates that are

not present in the reference image database. Additionally, the composite position

estimate better accounts for the fact that the PMF returned by Equation (87) is not

necessarily unimodal

3.4.8 Protection Level Computation.

Equation (87) is also used to compute a spherical protection level. This is done

by summing probability mass outward from the most likely aircraft position until

the desired integrity risk threshold is reached. This outward summing action is done

in a radial sense. This same method was used when using either relative position

estimation technique. For example, suppose the V5 algorithm run with an integrity

risk level of 0.1. If the probability mass of all points falling within one meter of the

best match sums to 0.9, then the V5 algorithm would return a protection level of one

meter. This means the algorithm is asserting there is a 0.1 probability that algorithm

error exceeds one meter in the spherical sense.
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Mathematically, this process is similar to Calhoun’s in [5] as described in Section

2.2.8, and can be represented as:

[i] = arg min
i

∑
i

p(xi|θ) < 1− IRL (90)

PL =
√

(xi − xe)2 + (yi − ye)2 + (zi − ze)2 (91)

Here, (xe, ye, ze) is the relative position estimate, IRL is the integrity risk level,

the PL is the protection level. The set of relative positions depicted in the reference

images examined, xi, have been sorted by distance from what the V5 algorithm’s

relative position estimate. In practice, this was done with the MATLAB R© function

sort. Hence, the relative position depicted in index i + 1 is an equal or greater

distance form the relative position estimate than the relative position depicted in

index i. As a result, one can simply sum upward in index values until the desired

integrity risk level is reached. Correspondingly, the position (xi, yi, zi) is the closest

position to (xe, ye, ze) for which the required integrity risk level was met. As a result,

the spherical protection level is simply the Euclidean distance between this point in

the reference image database and the location of the relative position estimate.

3.5 Relative Pose Estimation with Computer Vision and ICP (R7)

The R7 algorithm leverages computer vision algorithms and the ICP algorithm to

return a relative position and a relative attitude estimate. As with the V5 algorithm,

the algorithm was designed and analyzed in the context of AAR, but could be applied

to close formation relative navigation more generally. This section outlines the R7

algorithm and the implementation used in this thesis. A similar description can be

found in the Have Vision test information memorandum [7].
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3.5.1 R7 Algorithm Overview.

The R7 algorithm operates on a pair of images captured by a stereo camera

configuration. Three high-level steps describe the basic operation of the R7 algorithm:

1. The first step is observation point cloud generation. A series of computer vi-

sion algorithms transform the observed stereo images into an observation point

cloud. This process is detailed in Section 3.5.3. In this thesis, this process was

implemented with OpenCV.

2. Next, the observation point cloud is filtered to remove noise and outliers. Fil-

tering includes a boom filter, a median filter, denoising, and downsampling.

This process is detailed in Section 3.5.4. This thesis implemented this step in

MATLAB R©.

3. Lastly, the ICP algorithm is used to compare the observation point cloud to

a model point cloud. This thesis implemented this step in MATLAB R©. Sec-

tion 3.5.5 details this process. The return from the ICP algorithm provides the

relative position and relative attitude measurements. The R7 algorithm also in-

cludes an optional modification wherein the relative attitude of the two aircraft

is provided to the ICP algorithm.

Within all three high-level steps, multiple sub-steps are taken. The sub-steps are

detailed in the sections referenced above. While not explicitly part of the R7 algo-

rithm, the model point cloud must be developed and pre-processed prior to algorithm

operation. Model point cloud development and pre-processing is discussed in Section

3.5.2. Figure 31 depicts the R7 algorithm in block diagram form.
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Figure 31. Block Diagram of the R7 Algorithm.

3.5.2 Model Point Cloud Development.

The model point cloud used in this thesis was based on a C-12 computer model

obtained from TurboSquidTM. This model was edited within the 3DVW by Dr. Scott

Nykl of AFIT to ensure it matched actual C-12 dimensions provided by the USAF

Test Pilot School. This model was used to render all C-12 imagery processed in

simulation.

This computer model was used to develop the model point cloud. This was done

in the following manner:

1. The computer model file, a .obj file type, was opened in BlenderTM (BlenderTM

is a free, open-source computer modeling program).
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2. In BlenderTM, extra vertices were added to the C-12 model in locations of sparse

density, such as the wings. Excess vertices were removed from the C-12 model

in locations of high density, such as the fuselage.

3. The modified .obj file was saved to disk and then opened with a text editing

program. Within the text editor, all parameters not associated with vertices

were eliminated.

4. The edited text file, containing only object vertex coordinates, was read into a

MATLAB R© array and used to construct a MATLAB R© point cloud object.

5. The resulting MATLAB R© point cloud object was downsampled using the same

pcdownsample function discussed in Section 3.5.4.4.

6. The resulting point cloud object was saved to file as a .MAT file type so that

it could be loaded prior to running the R7 algorithm. This point cloud is the

model point cloud, Mv, used in the ICP step of the R7 algorithm.

The model point cloud used on simulated data is shown in Figure 32. As can be

seen in the figure, this point cloud models all parts of the C-12C, even those not likely

to be visible to the cameras.
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Figure 32. Model Point Cloud Used with Simulation Images.

3.5.3 Point Cloud Generation with OpenCV.

Section 2.3.6.8 summarizes three-dimensional point cloud generation from stereo

image pairs. This thesis primarily implements that methodology with a few caveats.

One caveat pertains to camera calibrations in simulation, and two caveats apply to

camera calibrations in flight test.

With respect to simulation data, the 3DVW cameras were assumed to be ideal

and distortion free. Hence, for simulation data analysis all distortion coefficients were

zero for both 3DVW cameras, and the camera calibration matrix for both cameras

was known perfectly. Additionally, the precise location and orientation of both cam-

eras was known perfectly with respect to the p-frame and to one another. Hence,

no camera calibrations of any kind were required to generate and process 3DVW

simulation imagery.

With respect to flight test data, two key modifications were made to the cali-

bration steps outlined in Section 2.3.6.8. First, prior to flight tests, intrinsic camera

calibrations were performed on both cameras using Bouguet’s MATLAB R© camera

calibration software. Additionally, a stereo camera calibration was performed using
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Bouguet’s MATLAB R© camera calibration software. The results from the intrinsic

calibrations (i.e. distortion coefficients, kiL and kiR , and camera calibration matrices

for both cameras, KL and KR) were used to seed and validate the stereo camera

calibration results.

Second, the extrinsic camera calibrations performed on both cameras were com-

bined in order to obtain an alternative estimate for the stereo camera calibration

results (i.e. alternative estimates of RR
L and TR). Ultimately, analysis was conducted

to confirm that these various calibration methods yielded consistent results. This

comparison can be found in the Have Vision test information memorandum [7].

With these modifications in mind, the steps outlined in Section 2.3.6.8 constitute

the approach used to generate a three-dimensional point cloud from stereo imagery.

The OpenCV implementation is very similar to that used by Parsons in [6]. In the

implementation used in this thesis, the observation point cloud was returned in the

v -frame. Notationally, it can be expressed as Ov. The v -frame was chosen to allow

for utilization of the processing and visualization capabilities of the 3DVW. The same

coordinate system was used for the model point cloud, Mv.

In Table 2 the reprojection steps from Section 2.3.6.8 are listed along with the

approach used to implement them in this thesis. Also included are the pertinent input

and output variables for the function or algorithm used. These variables correspond

to those defined in Table 2. Many of these functions require the user to specify a set

of tuning parameters. Due to time constraints, an extensive tuning process was not

conducted in this thesis. Hence, some improvements in algorithm performance could

be gained with a greater emphasis on tuning. Sections 3.5.3.1 through 3.5.3.7 discuss

the steps and corresponding functions in greater detail.
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Table 3. R7 Implementation with OpenCV and MATLAB R©.

Step OpenCV or Other Implementation Principal Inputs Principal Outputs

1. Stereo Camera Calibration Performed with Bouguet’s

MATLAB R© implementation.

KL, KR, kiL , kiR ,

Raw Images

KL, KR, kiL , kiR ,

RR
L , TR

2. Extrinsic Camera Calibration Performed with

direct measurement.

Vector measurements.

See Section 5.4.1
Rp
L, Rp

R

3. Image Capture N/A N/A N/A

4. Image Rectification StereoRectify(),

InitUndistortRectifyMap(),

Remap()

KL, KR, kiL , kiR ,

RR
L , TR

RLr
L , RRr

R , Q,

Rectified Images

5. Pixel Matching Completed in Step 6. Completed in Step 6. Completed in Step 6.

6. Disparity Map Generation StereoBM(),

filterSpeckles

Rectified Images,

Tuning Parameters

Disparity Map

7. Projection into 3D reprojectImageTo3D() Q, Disparity Map OLr

8. Relate to v -frame Coded with C++ in 3DVW. OLr , RL
Lr

, Rv
L, Cv

L Ov

3.5.3.1 Stereo Camera Calibration.

As discussed in Section 2.3.6.3, stereo camera calibrations are primarily used to

obtain estimates of RR
L and TR. As previously discussed, this calibration was only

performed when using real-world data since calibration parameters were known per-

fectly in the 3DVW simulation runs. When examining the flight test data, intrinsic

camera calibrations were also performed on both cameras prior to the stereo camera

calibration. This enabled seeding of the stereo camera calibration algorithm with

estimates of the camera calibrations matrices and distortion coefficients.

After the stereo camera calibration was completed, that algorithm’s returns for

KL, KR, kiL , and kiR were compared to the inputs provided by the intrinsic calibra-

tions. The returns were found to be consistent, as detailed in the Have Vision test

information memorandum [7].
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3.5.3.2 Extrinsic Camera Calibration.

Section 2.3.5 describes how extrinsic camera calibrations are used to relate camera

frames to an arbitrary world frame. In this thesis, the world frame of interest is the

p-frame, and the quantities of interest are Rp
L, Rp

R, Cp
L, and Cp

R. Figure 19 depicts

these DCMs and vectors.

For extrinsic camera calibrations, direct measurements were used during flight

testing. These measurements returned DCM estimates for RL
p and RR

p and vec-

tor estimates of Cp
L and Cp

R. The USAF Test Pilot School special instrumentation

team performed these measurements using a FaroArm R© system. The FaroArm R© was

capable of providing vector measurements at the sub-millimeter level and relative ori-

entation estimates at the sub-milliradian level. More detail on this process is found

in Sections 5.3.1.1, 5.4.1, and 5.4.4.

Since both cameras were extrinsically calibrated, the results were used to validate

the stereo camera calibration results. The two DCMs, RL
p and RR

p , were used to

obtain stereo camera calibration estimates according to the equation:

RR
L = RR

p Rp
L (92)

For this DCM, the extrinsic and stereo camera calibration results were found to be

consistent, as detailed in the Have Vision test information memorandum [7].

The two vectors obtained from direct measurement, Cp
L and Cp

R, were used to

validate the stereo camera calibration estimate of TR per the equation:

TR = RR
p (Cp

L −Cp
R) (93)
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Again, both estimates of TR were consistent, as detailed in the Have Vision test

information memorandum [7]. Table 4 summarizes how intrinsic, stereo, and extrinsic

camera calibrations can be used to validate one another.

Table 4. Overview of Camera Calibration Routines. Items Marked with a † Are
Quantities That Must Be Provided as Estimates. Items Marked with a ∗ Are Optional
Outputs. Deducible Outputs Are Not Directly Returned but Can Be Estimated from
the Outputs.

Camera Calibration Required Inputs Outputs Deducible Outputs Can Validate

Intrinsic None KL, KR, kiL , kiR None Stereo

Extrinsic

Stereo K†L, K†R, k†iL , k†iR K∗L, K∗R, k∗iL , k∗iR ,

RR
L , TR

None Intrinsic

Extrinsic

Extrinsic (Direct

Measurement)

None Cp
L, Cp

R, RL
p , RR

p TR, RR
L Stereo

3.5.3.3 Image Capture.

In the 3DVW, stereo images were generated to be consistent with distortion free

cameras of the same focal length and image size as those captured in flight test.

In flight test, stereo images were captured by a pair of Prosilica GT1290C models

with a Kowa 4.4 millimeter fixed focus lens and a Gigabit Ethernet (GigE) interface

produced by Allied Vision R©. These cameras operated in the 400-to-700 nanometer

spectral range with a 55.5◦ horizontal field of view and a 43.0◦ vertical field of view.

The cameras produced images at 30 Hz; image sizes were 1280-by-960 pixels. Section

5.2 discusses the cameras and all other flight test hardware in greater detail.

3.5.3.4 Image Rectification.

The stereo image rectification implementation followed the process outlined in

Section 2.3.6.4. Three OpenCV functions were used to execute the process. These
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functions are described in detail by Bradski and Kaehler [32] and in OpenCV’s online

documentation [42]. The first, StereoRectify(), accepts as inputs the variables KL,

KR, kiL , kiR , RR
L , and TR. Applying the process described in Section 2.3.6.4, the

function returns RLr
L , RRr

R , and Q.

The second, InitUndistortRectifyMap(), uses the StereoRectify() DCM out-

puts to generate a mapping from raw images to rectified images. This mapping takes

the form of four arrays—map1x, map1y, map2x, and map2y. The arrays map1x and

map1y describe the x and y pixel mapping, respectively, for the raw left camera im-

age. The arrays map2x and map2y describe the analogous mapping for the raw right

camera image. Third, the function Remap() accepts each mapping array pair along

with a raw image from the corresponding camera and returns the rectified image.

3.5.3.5 Pixel Matching and Disparity Map Generation.

Section 2.3.6.5 describes the method used to match pixels and generate a disparity

map from a rectified image pair. This thesis implemented the block matching method

described therein with the OpenCV functions StereoBM() and filterSpeckles().

A semi-global block matching approach was briefly examined, but ran approximately

20 times more slowly than the block matching implementation. In the future, with

greater computational power, a semi-global block matching technique could reach

viable speeds for real-time implementation.

The first function, StereoBM(), is initialized with a user-specified number of dis-

parities parameter and a SAD window size. Throughout this thesis, the disparities

were set to vary between [0, 64], inclusive, and the SAD window size was set to 9-

by-9. These parameters were not extensively tuned, but were determined to yield

acceptable performance.
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The second function, filterSpeckles(), accepts a maximum speckle size argu-

ment, a maximum disparity difference argument, and a disparity value to assign any

eliminated speckles. The first two parameters are as described in Section 2.3.6.5 and

were set to 144 and 4, respectively. The third parameter was set to zero. As a result,

any pixels contained within an eliminated speckle were assigned a disparity value of

zero. Again, these parameters were not tuned extensively.

3.5.3.6 Projection into 3D.

Section 2.3.6.6 describes how a disparity map can be transformed into a three-

dimensional point cloud in the left rectified camera frame with the matrix Q. The

OpenCV function reprojectImageTo3D() was used to perform this task. The only

required inputs to the function are listed in Table 3—no tuning parameters are re-

quired. The output is an three-dimensional point cloud expressed in the left rectified

camera frame, OLr .

3.5.3.7 Relate to v-frame.

Finally, Section 2.3.6.7 describes how points in the left rectified camera frame can

be re-defined into an arbitrary frame. With real world data, this process relies upon

the DCM between the left rectified camera and the left camera frames as well as the

returns from the left camera extrinsic camera calibration. Based on Equation 70, the

point cloud returned by reprojectImageTo3D() can be transformed into the v -frame

according to,

Ov = Rv
LRL

Lr
OLr + Cv

L. (94)
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Here, Rv
L = Rv

pR
p
L and Cv

L = Rv
pC

p
L, where:

Rv
p =


1 0 0

0 −1 0

0 0 −1

 (95)

In this manner, the observed point cloud expressed in the v -frame was obtained

using OpenCV functions. Next, this point cloud was filtered and then used to deduce

the relative pose of the two aircraft with the ICP algorithm.

3.5.4 Observed Point Cloud Filtering.

As discussed in Section 2.4, the ICP algorithm is sensitive to noise and outliers.

More specifically, the ICP algorithm will converge to a local minimum under the

condition that the observed point cloud contains only points that correspond to the

model point cloud. Any points derived from objects other than the object of interest

will cause errors in the ICP algorithm’s rigid transformation estimate. Conversely, the

model point cloud need not necessarily contain points corresponding to all parts of the

observed point cloud provided that the ICP algorithm is seeded with an appropriate

initial transformation.

Based on these considerations, it is essential to eliminate noise and outliers from

the observed point cloud prior to matching it with the model point cloud with the ICP

algorithm. As a result, the R7 algorithm implements three distinct filtering methods

to eliminate nuisance points, outliers, and noise. First, a boom filter is applied in cases

in which a tanker boom is in the field of view. Second, a median filter is applied to

eliminate gross outlier clusters. Third, a MathWorks R© developed denoising algorithm

is applied to eliminate any remaining outliers. After these three filters have been
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applied, the point cloud size is reduced to enable quicker implementation of ICP with

a MathWorks R© developed downsampling algorithm.

3.5.4.1 Boom Filtering.

In the AR context examined in this thesis, the tanker boom will typically be in the

field of view of both cameras. As a result, the boom will be captured in the disparity

map and ultimately in the reprojected point cloud with the R7 algorithm. The ICP

algorithm will not converge properly if the observed point cloud contains points not

found in the model point cloud [8]. Hence, in order to obtain an accurate relative

pose estimate from the ICP algorithm, a method to remove the boom-generated points

from the observed point cloud is required, referred to henceforth as a boom filter.

The boom filter discussed in this section achieved good results with 3DVW simu-

lation data. However, further improvements upon it could be made and filter design

did not account for data sampling rates or the sensors used on USAF tanker booms.

The design of the boom filter used in this thesis is intended to provide a useful starting

point for future research efforts.

USAF tankers can output information on boom extension, boom azimuth, and

boom elevation. The definitions of these three parameters can be defined in any

arbitrarily selected Cartesian frame affixed to the tanker. This thesis used the follow-

ing definitions of these three parameters, which can easily be related to the output

available from USAF tanker boom systems.

Boom extension was defined as the total length of the boom from the point at

which it is affixed to the airframe body to the boom nozzle. Boom elevation and

boom azimuth were defined with Euler angles. The Euler angles were initialized from

the v -frame (a nose-left wing-up right-handed, Cartesian frame affixed to the tanker).

Following the 3-2-1 convention, a rotation about the v -frame’s y-axis followed by a
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rotation about the resulting frame’s x -axis will align the z -axis of the final frame

with the shaft of the tanker boom. Using this convention, the boom elevation was

defined as the required rotation about the v -frame’s y-axis and the boom azimuth

was defined the required rotation about the resultant x -axis.

These rotations result in the B -frame described in Section 3.1. The origin of the

B -frame was defined to be located at the point where the tanker boom affixes to the

body the tanker.

For example, a “neutral” boom orientation on a KC-10 or KC-135, the boom is

located 30◦ below the longitudinal axis of the tanker (the x -axis of the v -frame).

Based on the definition of boom elevation above, this is a boom elevation of 240◦.

Any left or right angular movement of the boom from this position would constitute

a change in the boom azimuth from zero. A move toward the right wing of the tanker

would be a positive azimuth and a move toward the left wing would be a negative

azimuth. The relationship between the v -frame and the B -frame is depicted in Figure

33.
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Figure 33. Depiction of the v-Frame and the B-Frame. Following the 3-2-1 Convention,
Boom Elevation is the Required Rotation About the v-Frame’s y-Axis and Boom Az-
imuth is the Required Rotation About the Resultant x -Axis to Align the Two Frames.

The DCM describing the rotation between these two frames, was specified in terms

of these definitions of boom elevation, θ, and boom azimuth, φ:

RB
v =


cos θ 0 − sin θ

sin θ sinφ cosφ cos θ sinφ

sin θ cosφ − sinφ cos θ cosφ

 (96)

In order to filter out the boom in simulation, the observed point cloud was trans-

formed into the B -frame per the equation:

OB = RB
p (Ov −Bv

MAT) (97)

Where Bv
MAT is a matrix of the same size as Ov wherein every column is the location

of the B -frame origin in the v -frame (i.e. the vector Bv). Equation (97) was used to
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express the observed point cloud in the B -frame. As a result, every column in OB

was a Cartesian point coordinate of the form (XB, YB, ZB).

In order to apply the designed boom filter, these Cartesian coordinates were par-

tially expressed as cylindrical coordinates according to:

LB = ZB, (98)

rB =
√
X2
B + Y 2

B. (99)

Here, LB is the cylindrical coordinate form of the Cartesian B -frame’s z -axis. The two

coordinates are equivalent. Hence, there is no need to compute LB. The coordinate

rB is the radius component of the cylindrical coordinate system. It describes how

far out a point is from cylindrical coordinate system’s LB-axis. The third cylindrical

component, the angular deflection, was not required. This resulted in computational

savings since computing the angular component requires knowledge of the point’s

x -component in the Cartesian frame, the radius component in the cylindrical frame,

and an arcsin operation.

For every point in OB, the x -component and the z -component were stored in a

vectors of the same length as OB called XB and LB, respectively. Additionally, for

every point in OB a value for rB was computed. This value was stored in a vector

of the same length OB termed rB. These three vectors were used to apply the boom

filter.

The boom itself can be thought of as consisting of four components, as shown in

Figure 34. This components are most easily defined with respect to the z -axis of the

B -frame. The first segment extends from the point at which the boom connects to the

tanker (where ZB = 0) to a point near the boom wings (where ZB = L1). The second

portion consists of a section encompassing the boom wings. It begins where ZB = L1
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and ends where ZB = L2. The third section begins at the end of the second section

(where ZB = L2) and extends to the point where the extendable portion of the boom

emerges from the boom housing (where ZB = L3). The final portion consists of the

extendable portion of the boom. It begins where ZB = L3 and terminates at the end

of the boom (where ZB = L4). Each of these components can also be thought of as

having a radius, Ri, as shown in the figure. Finally, point cloud points resultant form

the boom wings only manifest above a certain value of XB. In Figure 34, this value

is Xmin.

Figure 34. Depiction of the Tanker Boom and the Parameters Defining the Boom
Filter.

Based on these definitions, the boom filter was implemented as follows. A point

was removed from the point cloud if any of the following four conditions were met:

1. LB ≤ L1 AND rB ≤ R1

2. L1 ≤ LB ≤ L2 AND rB ≤ R2 AND Xmin ≤ XB

3. L2 ≤ LB ≤ L3 AND rB ≤ R3
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4. L3 ≤ LB ≤ L4 AND rB ≤ R4

Where LB, rB, and XB are the elements corresponding to the point XB in the vectors

LB, rB, and XB, respectively. Table 5 shows the values that were used for the boom

filter during simulation in this thesis.

Table 5. Boom Filter Parameterization. For Simulation Data, L4 Was Set to Equal the
Total Length of the Boom, as Rendered, in Meters. At Full Extension, L4 = 18 meters.

L1 L2 L3 L4 R1 R2 R3 R4 Xmin

6 m 5 m 2 m Boom length 0.8 m 2.75 m 0.8 m 0.8m -0.5 m

These settings achieved what the author considered to be acceptable results, but

further tuning could lead to improvement. Alternate implementations could also

result in improved performance.

3.5.4.2 Median Filtering.

In simulation the boom filter typically eliminated almost all points corresponding

to the tanker boom. However, at times outlier point clusters, arising from the boom

or poor pixel matching, remained. Additionally, outlier point clusters also arose from

background features in simulation. These clusters did not correspond to any actual

object at that distance, but would arise when the stereo camera pair observed highly

patterned objects in the far distance. An example of this is shown in Figure 35.
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Figure 35. Example of a Nuisance Point Cluster Manifesting After Model Point Cloud
Generation.

The median filter was designed specifically to eliminate such nuisance clusters.

As implemented, it filtered out any points that were farther than 20 meters plus the

Euclidean norm of the ∆XLr , ∆YLr , and ∆ZLr from the location of the point cloud’s

median point. The values of ∆XLr , ∆YLr , and ∆ZLr were computed at the location

of the point cloud’s median point. The equations needed to compute these three

discrete resolution values are given in Equations (67), (68), and (69).

In order to accomplish the filtering process, the observed point cloud, Ov was

converted back to the Lr-frame per the equation:

OLr = RLr
L RL

p (Rp
vO

v −Cp
L,MAT) (100)

Where Cp
L,MAT is an array of the same dimensions as Ov. Every column in Cp

L,MAT is

the vector Cp
L, the location of the left camera frame origin expressed in the p-frame.
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Next, the disparity value, d, corresponding to the median point was computed

from Equation (66) as were the image pixel values corresponding to the median point.

These pixels coordinates are denoted as xLR
and yLR

in Equation (66). These pixel

coordinates and disparity values were then used to compute the values of ∆XLr ,

∆YLr , and ∆ZLr at the median point.

The design of the median filter was heuristic and not considered by the author to

be the ideal solution to such nuisance point clusters. Two important aspects of the

filter merit emphasis. First, it operates under the assumption that the median point

in the point cloud relates to the aircraft. Second, due to the nature of the filter’s

logic, nuisance point clusters that fall within 20 meters plus the Euclidean norm of

the position resolutions will not be filtered.

In the future, this filter could be improved with any number of modifications.

Filter operation may be improved if the filter was based on a position estimate of

the receiving aircraft from a Kalman filter as opposed to basing operation on the

median point. Additionally, a host of other algorithms, such as K -nearest neighbors

implementations and clustering algorithms used in multi-target tracking, could merit

exploration as alternative implementations.

3.5.4.3 Point Cloud Denoising.

After filtering, the point cloud was denoised with a MathWorks R© developed al-

gorithm. Within MATLAB R©, the algorithm is called with the function pcdenoise.

Using this function, the algorithm can be configured in a number of ways. The

configuration used in this thesis performs the following:

1. Computes the mean distance of every point to a user-defined number of nearest

neighbors, k, in the point cloud.
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2. The mean and standard deviation of this mean distance value is calculated for

the point cloud population.

3. If an individual point’s mean distance is greater than the population’s mean

distance plus a user-defined number of standard deviations, n, then that point

is eliminated from the point cloud.

This thesis used values of k = 4 and n = 1. Again, an extensive tuning process was

not undertaken.

3.5.4.4 Point Cloud Downsampling.

After filtering and denoising, the point cloud was downsampled to enable faster

operation of the ICP algorithm. A MathWorks R© developed algorithm was used for

downsampling via the MATLAB R© function pcdownsample. A number of different

algorithm implementations are available with this function. The configuration used

in this thesis performs the following:

1. The function computes a bounding box for the entire point cloud.

2. The bounding box is divided into cubes of user-defined dimensionality with side

length s.

3. Points falling within each cube are averaged to return a single point whose

location is the mean location of all points within that cube.

This thesis used a value of s = 0.3 meters. Again, an extensive tuning process was

not undertaken.

3.5.5 ICP Implementation.

This section describes the implementation of the ICP algorithm used in this thesis.

First, an explanation of how the ICP algorithm returns the desired relative position
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and attitude measurements is given. Second, the method used to position and rotate

the model point cloud is described. Third, the implementation used in MATLAB R©

is described. Fourth, the method used to transform the ICP algorithm’s outputs into

a desired reference frame is described. Fifth, the method used to identify an initial

transformation for the ICP algorithm is described. Lastly, the attitude fed version of

the ICP algorithm is developed.

3.5.5.1 Obtaining Measurements from ICP.

In the context of the R7 algorithm, the ICP algorithm works by translating and

rotating the observation point cloud to achieve an acceptable match with the model

point cloud. Both the model and observation point clouds represent the body of the

target aircraft. However, the position and orientation of the model point cloud must

be carefully defined in order to achieve useful measurements from the ICP algorithm.

The method used to achieve this in an AR context is described below.

In AR a particular point of interest on or within the tanker aircraft is the point

from which relative position is measured. This point can be referred to as the origin of

the frame of interest. Likewise, a particular point of interest on or within the receiver

aircraft is the point to which relative position is measured. This point is referred to as

the receiver feature of interest. The points in the model point cloud correspond to the

receiver. To achieve the desired measurements from the ICP algorithm, the points in

the model point cloud must be translated such that its representation of the receiver

feature of interest is positioned at the origin of the frame of interest. Additionally

the axis system of the model point cloud must be aligned with the frame of interest.

The frame of interest is typically the body frame of the tanker aircraft. However the

frame of interest could also be defined to be any frame that has a known geometry

with respect to the tanker aircraft’s body frame.
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The ICP algorithm will return a translation vector and DCM that align the ob-

servation point cloud with the model point cloud. If the position and orientation of

the model point cloud is conditioned as described above, then the ICP algorithm will

return the desired relative position and relative attitude measurements.

3.5.5.2 Model Point Cloud Positioning.

The 3DVW was used for processing of all simulation and flight test observation

images. As a result, the model point cloud origin was positioned so as to be co-located

with the origin of the v -frame. When using flight test data, the origin of the v -frame

was defined to be collocated with the origin of the truth data measurement system

(Section 5.4.6.2 explains this in greater detail). Additionally, the axis system of the

model point cloud was defined to be a nose-left wing-up, right-handed, Cartesian

coordinate system. This is the same convention used with the v -frame and the d -

frame. Prior to execution of the ICP algorithm, the model point cloud’s axis system

was aligned with the axis system of the v -frame. Hence, the model point cloud can

be referred to as Mv.

Similarly, since the 3DVW was used for observation point cloud generation, the

observation point cloud was expressed in the v -frame. Recall that the equivalent

to the v -frame for the receiver is called the d -frame. Hence, the relative attitude

depicted by the observation point cloud is a representation of the relative orientation

of the d -frame with respect to the v -frame.

Since this pose was chosen for the model point cloud and since observation point

clouds were expressed in the v -frame, the translation vector and DCM returned by

the ICP algorithm represented the relative position, sv, and attitude, Rd
v, of the

trailing aircraft’s d -frame with respect to the lead aircraft’s v -frame. In practice, the

nose-right wing-down frames p and s, or the left camera frame, the L-frame, are of
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greater interest than the nose-left wing-up v and d -frames. Results were converted

to the frames of interest via the appropriate DCMs and vectors, yielding the results

of interest, such as sp and Rs
p.

3.5.5.3 Implementation in MATLAB R©.

The MATLAB R© function pcregrigid was used to implement the ICP algorithm.

The function includes the ability to set several parameters dictating algorithm oper-

ation.

First, the pcregrigid function enables the user to specify an inlier ratio parameter

with a value between 0 and 1. The inlier ratio determines the percentage of points

in the observed point cloud that will be used during ICP. Two things occur if the

inlier ratio is set to a fraction, such as 0.8. First, the Euclidean distance between all

points and their nearest neighbor is computed. Second, for an inlier ratio of 0.8, only

points corresponding to the smallest 80% of nearest neighbor distances are retained

for that iteration of the ICP algorithm. In this manner points far from the rest of the

point cloud are not considered. If the parameter is set to 1, then all points are used

at every iteration; if it were set to 0, then ICP would not be executed. For data in

this thesis, an inlier ratio of 1 was used.

Second, the user can specify a maximum number of iterations to allow the algo-

rithm to run. This parameter was set to 20 for the data in this thesis. More iterations

can yield more accurate results at a cost of greater computational time. Additionally,

the benefit of an additional iteration diminishes as the number of allowed iterations

increases.

Third, the user can specify a maximum translation and rotation change toler-

ance. The algorithm will stop iterating if both the translation and rotation tolerance

values are reached in three consecutive iterations before the maximum number of
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iterations is reached. This enables faster algorithm operation. The translation toler-

ance parameter relates the Euclidean distance between successive overall translation

vector estimates. The rotation change tolerance relates the total difference in angular

change, in radians, between successive rotation vector estimates. In this thesis, a

value of 1 centimeter was used for the translation change tolerance and a value of

0.001 radians was used for the rotation change tolerance.

Fourth, the user can specify an initial affine transformation with which to seed the

algorithm. This affine transformation is passed as an affine transformation matrix

containing a DCM and translation vector. The method of determining an initial

transformation is discussed in detail in Section 3.5.5.5.

3.5.5.4 Transforming ICP Outputs.

Since the model and observed point clouds used in MATLAB R© are expressed in

the v -frame (Mv and Ov, respectively), the ICP portion of the R7 algorithm will

return relative position and attitude estimates in relation to the v -frame and d -frame

(in the form of the vector sv and the DCM Rd
v). Additionally, when using simulated

data, truth data is available relative to the d -frame for the relative attitude DCM (in

the form of the matrix Rd
v).

These outputs can be converted to quantities relative to the p-frame and s-frame

with the equations:

sp = Rp
vs
v (101)

Rs
p = Rs

dR
d
vR

v
p (102)

More generally, the relative pose estimates returned by R7 can be transformed

into any set of arbitrary frames with linear algebra.
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3.5.5.5 Initial Transformation for ICP.

As discussed in Section 2.4, an appropriate initial transformation is important to

aiding convergence of the ICP algorithm. Ideally, the initial transformation would be

based upon some combination of data contained in the observed point cloud and the

output from a Kalman filter. Alternatively, a feature matching algorithm could be

used to help identify the origin of the s-frame in the imagery, and that point could be

used as an initial translation vector. Since the methods in this thesis did not include

the operation of a relative navigation Kalman filter and did not utilize any feature

matching algorithm, only data from the observed point cloud was available for use.

For the initial transformation vector, the location of the median point in the

point cloud was used. This value was selected for two reasons. First, the median was

selected instead of the mean since the median is far less sensitive to outliers. Second,

it was assumed that the median point would correspond to a point somewhere near

the center of the observed aircraft.

For the DCM, the identity matrix was chosen, unless the attitude fed version of

ICP was being examined. This value was chosen because the receiving aircraft should

be expected to be somewhere relatively close to level flight during AR operations.

As discussed above, the initial translation vector and DCM must be combined into

an affine transformation matrix in order to be passed to the MATLAB R© pcregrigid

function. An understanding of how pcregrigid utilizes this transformation matrix is

essential to proper seeding of it. The transformation matrix operates in the following

fashion: [(
pB
)T
, 1
]

=
[(

pA
)T
, 1
] RA

B,3x3 03x1

−
(
RB
ATA

)T
1

 . (103)

The four-by-four matrix on the right hand side is the affine transformation matrix

used in pcregrigid. Here, pB and pA represent the point p expressed in the B -frame
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and A-frame, respectively. The matrix RB
A is a DCM that goes from the A-frame to

the B -frame, and TA is the location of the origin of the B -frame in the A-frame. The

net effect of Equation (103) is to transform the point pA into the B -frame.

Therefore, if one had perfect knowledge of the the translation and rotation between

the observed and model point clouds, then perfect initial transformation matrix, F,

for the variables of interest in this thesis would be:

F =

 Rv
d 03x1

−
(
Rd
vd

v
)T

1

 . (104)

Where the vector dv gives the location of the origin of the d -frame in the v -frame.

The result of the operation −
(
Rd
vd

v
)

is therefore to return the location of the origin

of the v -frame in the d -frame, vd.

Recall that the d -frame is a nose-left wing-up frame centered on the receiver

and the v -frame is a nose-left wing-up frame centered on the tanker. As a result,

the vectors dv and sv are identical. Therefore, if one has an estimate for sp, say

from a Kalman filter, then one can easily obtain an estimate of dv via the operation

sv = Rv
ps
p. As described above, for this thesis, the median point cloud point served

as an estimate of sv.

Likewise, the DCM Rd
v can easily be related to the DCM Rs

p that would be

output from a Kalman filter or that could be obtained directly from inspection of

IMU measurements. This is done via the simple relationship Rd
v = Rd

sR
s
pR

p
v. As

described above, for this thesis, the identity matrix was used as an initial estimate for

Rd
v unless the attitude fed version of the ICP algorithm was being used. The attitude

fed version of the ICP algorithm is described in the next section.
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3.5.5.6 Attitude Fed ICP.

When providing the ICP algorithm with a highly accurate relative attitude es-

timate, it is possible to confine the ICP iterations to only estimate a translation

vector from iteration to iteration. The rotation estimate can be left fixed at the

initial estimate. This reduces the required computations to two types. First, the

nearest neighbor model point for each observation point must be identified. Second,

an incremental shift given by the optimal translation vector in Equation (75) must

be computed. In this equation, R is identity.

The result is a large savings in computational cost. No cross-covariance between

point clouds need be computed, nor does the Q(Σpx) matrix described in Equation

(74) need to be formed, nor do eigenvalues and eigenvectors of this Q(Σpx) matrix

need to be computed.

In practice, the position estimates obtained via this alteration to ICP proved to

be as accurate or better than those obtained via full implementation of the ICP

algorithm.

3.6 Error Computations

For tests of the V5 and R7 algorithms conducted with simulated imagery in the

3DVW, perfect knowledge of the true relative position, sp and relative orientation of

the tanker-receiver formation, Rs
p, were available. When using flight test data, precise

estimates of the relative position and attitude of the two aircraft were available from

the truth data system. The truth data system’s estimates were assumed to be perfect

for error computations.

Relative position estimate errors were computed as:

perror = pestimate − ptruth (105)

140



Where p is a 3-by-1 position vector in the frame of interest, pestimate is the position

estimate returned from V5 or R7, and ptruth is the truth data value taken either from

the 3DVW or the truth data system.

To compute relative attitude estimate errors, the DCM Rs
p was converted to a

relative roll, pitch, and yaw in accordance with the 3-2-1 convention. Then, the

relative errors were computed using the same method as that for positions shown in

Equation (105).

3.7 Tests of Statistical Significance

On simulation and flight test data, MATLAB R© functions were used to execute

tests of statistical significance. A significance level of 5% was considered to be statis-

tically significant. These tests were used to analyze the means and variances of relative

position and attitude estimate errors. The results of these tests were not taken to

strictly quantify performance achievable in the various algorithm configurations, but

were used to support qualitative conclusions, especially regarding comparisons.

The tests and their corresponding MATLAB R© functions are described below. Each

of these tests assumes that the sample data are independent draws from a normal

distribution [48], [49]. Hence, to facilitate qualitative analysis, it was assumed the

V5 and R7 estimator errors met this condition. This is a typical assumption used

on measurements applied in a Kalman filter, and these measurements are intended

to ultimately be applied in a Kalman filter. However, tests of normality were not

applied to error data in this thesis, but should be before the measurements of either

algorithm are applied in a filter. Also, spherical errors inherently will not be normally

distributed. However, these tests were still applied when comparing spherical errors

to facilitate qualitative conclusions.
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3.7.1 One-Sample and Paired t-tests.

The t-test statistic is:

t =
x̄− µ
s/
√
n

(106)

Here, the sample mean is x̄, the population mean is µ, the sample standard deviation

is s, and the sample size is n. The test has n− 1 degrees of freedom [48].

The MATLAB R© function ttest was used to execute one-sample and paired t-

tests. One sample t-tests were used to obtain the 95% confidence intervals of mean

algorithm errors. In this case, x̄ was the average error and s the standard deviation

of the errors.

Paired t-tests were used to compare estimated population means when the two

data sets being compared were drawn from the same sample set of images. In the

paired t-tests, x̄ was the mean of the difference of the two errors being compared and

s was the standard deviation of those differences.

3.7.2 Two-Sample t-tests.

The two-sample t-test statistic is:

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(107)

Where the sample means are x̄i, the sample standard deviations are si, and the sample

sizes are ni. The test has n1 + n2 − 2 degrees of freedom [48].

When observation images were not drawn from the same sample set, the function

ttest2 was used to execute two-sample t-tests. These tests were executed without

an assumption of equal variances.
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3.7.3 Two-Sample F -tests.

The two-sample F -test statistic is:

F =
s21
s22

(108)

Where the sample standard deviations are si. The numerator has n1 − 1 degrees of

freedom and the denominator has n2 − 1 degrees of freedom where ni is the sample

size [49].

The MATLAB R© function vartest2 was used to execute two sample F -tests. Two-

sample F -tests were used to compare the population variances of the two samples.
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IV. Simulation Data and Analysis

Simulation data for the V5 and R7 algorithms are presented and analyzed in

this chapter. First, V5 simulation results are presented. The V5 discussion includes

generation of reference and observation images, determination of Gaussian blur level,

likelihood function determination, and pixel intensity threshold determination. Then,

V5 simulation results are presented making use of different relative position estima-

tors, likelihood functions, prior probability distributions, and pixel intensity threshold

levels. Overall, it is shown that an overbounded likelihood function is required for

V5 implementation and that a composite position estimator outperforms a maximum

likelihood estimator.

Second, R7 simulation results are presented. The R7 discussion begins with sim-

ulation results with no tanker boom present in the image. For the no boom case,

results when providing the R7 algorithm with the relative attitude of the two air-

craft are contrasted with results when allowing R7 to estimate the relative attitude.

Results show that using the attitude fed version of the R7 algorithm reduces mean

position errors, but may increase position error variances. Next, results with a boom

in the camera fields of view are presented. The discussion highlights the efficacy of

the boom filter and contrasts performance with the no boom case. It is shown that a

boom in the field of view, even with an effective boom filter, modestly increases R7

estimate errors.

Third, R7 and V5 simulation results are compared. This comparison was made

using the same random images used in the V5 simulation results presented earlier in

the chapter. This comparison shows that the R7 algorithm had lower overall mean

errors and error variances, but was more prone to depth bias than the V5 algorithm.
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4.1 V5 Data and Analysis, Simulation

This section details the analysis of the V5 algorithm conducted in simulation.

Sections 4.1.1 through 4.1.3 describe the images used in algorithm analysis. Section

4.1.4 describes how the level of Gaussian blurring was determined. Section 4.1.5

describes how the likelihood function was identified. Section 4.1.6 describes how a

suitable pixel intensity threshold was determined. Finally, leveraging the findings

of these preceding sections, Section 4.1.7 details the most significant V5 simulation

results.

4.1.1 Reference Image Database Generation.

The reference image database was created in the 3DVW as discussed in Section 3.4.

The database consisted of images of the C-12C receiver in front of a blue background

captured at ranges varying between 22 and 30 meters from the center of the stereo

camera pair. Successive surfaces were separated by 0.5 meters of Euclidean distance.

Within each plane, images were separated by an equi-angular spacing of 1◦ in azimuth

and elevation, as measured from a ray beginning at the center of the stereo camera

pair and extending to the location of the last point rendered position generated. In

azimuth, each surface extended to ±10◦ left or right of the tanker’s longitudinal axis.

Azimuth was defined as the angular position left or right of the tanker’s longitudinal

axis in the tanker xy-plane. In elevation, each surface extended from 15◦ to 35◦ below

the tanker’s longitudinal axis. Elevation was defined as the angular position below

the tanker’s longitudinal axis in the tanker xz -plane.

This simulation space was chosen to mimic the relative positions actually observed

during flight test. Props were not included in the C-12C model. Figure 36 shows an

example reference image pair.
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Figure 36. From Left to Right, Examples of a 3DVW Left Camera Reference Image
and Right Camera Reference Image.

4.1.2 Reference Image Database Attenuation.

When comparing observation images to the reference image database, the search

space was confined to a 6 meter-by-6 meter-by-6 meter box. This search space was

centered on the relative position in the reference image database closest to the relative

position depicted in the observation image. Hence, instead of comparing the entire

reference database to a given observation image, only those reference images falling

within this 6 meter-by-6 meter-by-6 meter box were used for comparison. This was

the same scheme used by Calhoun in [2] and [5]. From a practical standpoint, this

bounding was necessary to reduce V5 processing times to durations low enough to

enable data analysis. A similar bounding scheme could only be used in a fielded

system if the V5 algorithm had high confidence in the likely location of the aircraft

before running a given iteration. Flight test results presented in Chapter VI indicate

such a scheme is feasible. Figure 37 shows how this bounding scheme operates for

relative positions near the center and boundary of the reference image database.
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Figure 37. Examples of a the Attenuated Reference Image Database for a Position Near
the Center of the Database and for a Position Near the Boundary of the Database.

4.1.3 Observation Image Generation.

Simulated observation images were generated in the 3DVW at an altitude of 1,500

meters above a depiction of Area B at Wright-Patterson Air Force Base. The images

depicted 250 randomly generated C-12C receiver positions contained within the ref-

erence image database. Props were not included in the C-12C model. Additionally,

the attitude of the receiver at each of these positions was randomly generated. The

relative roll of the receiver was randomly selected from a uniform distribution varying

between ±7◦. The relative pitch of the receiver was randomly selected from a uniform

distribution varying between ±4◦. The relative yaw of the receiver was randomly se-

lected from a uniform distribution varying between ±1◦. Figure 38 shows an example

observation image pair.
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Figure 38. From Left to Right, Examples of a 3DVW Left Camera Observation Image
and Right Camera Observation Image.

4.1.4 Gaussian Blur Level Determination.

In order to determine an appropriate level of Gaussian blurring, 150 randomly

generated observation images were created in the 3DVW and compared to their best

matching image from the reference database. In this context, the best matching refer-

ence image is the reference image that most closely depicts the same relative position

depicted in the observation image. For the purposes of this analysis, no random

attitude perturbations were applied to the observation images and no background

features were included. Only a level aircraft and a flat blue background were in each

image. A Prewitt edge detector was then applied to every observation-reference im-

age pair, but no other form of processing was applied. Next, the distance from every

edge pixel in the observation image to the nearest edge pixel in the best matching

reference image was measured. This process was performed for images generated by

both the left and right cameras.

Figure 39 shows a histogram plot of the results for every edge pixel in all 150 images

analyzed. Figure 40 depicts the same data as a cumulative distribution function

(CDF). As can be seen in both figures, the vast majority of edges in the observation
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images have a nearest neighboring edge pixel in the appropriate reference image within

10 pixels of distance. However, some nearest neighbors are separated by as many as

86 pixels.
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Figure 39. Histogram of Pixel Dis-
tance from all Edges in all Observa-
tion Images to the Nearest Edge Pixel
in the Best Match from the Rendered
Database. Data Depicted as Counts in
Each Bin.
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Figure 40. Histogram of Pixel Dis-
tance from all Edges in all Observa-
tion Images to the Nearest Edge Pixel
in the Best Match from the Rendered
Database. Data Depicted as a CDF at
Each Bin.

In order to determine an appropriate level of Gaussian blurring, the mean and

median of these edge pixel distances were computed. The overall mean was approxi-

mately 2.88 pixels and the overall median was 2 pixels. Additionally, the mean and

median of every observation image examined was plotted versus two quantities. First,

these parameters were plotted versus the separation, in meters, between the position

of the aircraft in the observation image and the position of the aircraft in its best

matching reference image. Second, these parameters were plotted versus the range, in

meters, from the observation aircraft to the center of the stereo camera pair capturing

the images.

These results are shown in Figure 41. As can be seen in the figure, the mean

separation did not exceed 6 pixels while the median separation did not exceed 5

pixels. For this reason, and based upon the satisfactory results obtained in doing so,

the σ parameter for the Gaussian blurring operation was set to 5.
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A brief analysis of greater and lesser σ parameters was executed and the results

with a the parameter set to 5 was deemed the most acceptable. Tuning was not the

focus of this thesis, so a more extensive tuning process could be carried out which

could marginally enhance the results obtained from this algorithm.
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Figure 41. Plots Depicting Mean or Median Edge Separation Distance of all Edges in
all Observation Images to the Nearest Edge Pixel in the Best Match from the Refer-
ence Image Database. Data was generated when Using a “Spherical” Reference Image
Database.

Additionally, the option of using a square rendered database was also examined

during the Gaussian blur level determination. Notice in Figure 41, that there is a

fairly strong correlation between sample aircraft-to-reference aircraft distance and the

average edge separation. As one would expect, the farther the observed aircraft is

from its best match in the rendered database, the greater the average and median edge
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separation. However, no such correlation is readily apparent with respect to range

from the camera. An analogous plot to Figure 41 is shown in Figure 42 and was

generated by comparing the random imagery to a “square” database of the sort used

by Calhoun in [2] and [5]. Note that when using a “square” type database there is a

strong correlation between range from the cameras and average edge separation. This

would imply that different levels of blurring would be needed based upon aircraft range

from the camera pair. Hence, the author deemed it preferable to use a “spherical”

type reference image database as described in Section 3.4.
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Figure 42. Plots Depicting Mean or Median Edge Separation Distance of all Edges in
all Observation Images to the Nearest Edge Pixel in the Best Match from the Rendered
Database. Data was generated when Using a “Square” Reference Image Database.
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4.1.5 Likelihood Function Determination.

The likelihood function identified in this section was used in both simulation and

flight test data analysis. To identify candidate likelihood functions, a total of 150

observation-sample image pairs were generated in the 3DVW. Next, n = 500 pixels

from each reference image and from each observation image were randomly selected.

Intensity differences were computed for the entire ensemble of all randomly selected

pixels from all sample image pairs. Intensity differences were computed according to

Equation (80). These pixel intensity differences were used to create a pixel intensity

difference distribution.

Next, the MATLAB R© function fitdist was used to identify the best fit for this

pixel intensity difference data for a Gaussian distribution. This best fit Gaussian

distribution was determined to have a mean of zero and a standard deviation of 0.057.

Additionally, several parameterizations of the Cauchy and Laplace distributions were

examined. Figure 43 shows a plot of example fits superimposed on a histogram

depicting the observed intensity differences for the ensemble of all samples. The

histogram has been normalized to model a PDF.
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Figure 43. Candidate Fits for a Likelihood Function. The Histogram Depicts the
Intensity Differences for the Entire Ensemble of Observation-Reference Image Pairs.

However, as observed by Calhoun in [2], using the best fit Gaussian distribution

as a likelihood function produced an unacceptable number of integrity violations

when applied in the V5 algorithm. This same phenomenon was observed when using

parameterizations of the Cauchy distribution and Laplace distribution as a likelihood

function, even though these fits tightly contoured the intensity difference histogram.

The simulation results presented in Figures 44 through 47 and Table 7 show

this phenomenon. The following likelihood function parameterizations were used to

generate the data in the figures and the table:

• The overbounded Gaussian distribution had a mean of 0 and a standard devi-

ation of 0.1. Results are shown in Figure 44.
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• The best fit Gaussian distribution had a mean of 0 and a standard deviation of

0.057. Results are shown in Figure 45.

• The overbounded Cauchy distribution had a location parameter of 0 and a scale

parameter of 0.06. Results are shown in Figure 46.

• The overbounded Cauchy distribution had a location parameter of 0 and a scale

parameter of 0.06. Results are shown in Figure 47.

These simulations were run on a set of 250 observation images. The same config-

uration of the R7 algorithm was used in all four cases. This configuration is shown in

Table 6. In the table, the mean of the Gaussian prior probability distribution, µi, is

defined to be the true simulated position of the aircraft, xi, and the covariance matrix

is Σ. Additionally, the results shown made use of the composite position estimator.

As will be shown in Section 4.1.7, these simulation conditions result in superior R7

performance and hence gave the best chance of acceptable performance when making

the use of a given likelihood function form.

Table 6. Configuration of the V5 Algorithm Used to Compare Likelihood Functions.

Prior

Probability

Distribution

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Gaussian

µi = xi

Σ =


1 0 0

0 1 0

0 0 1

m2

0.05 Composite 0.05
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Despite these ideal conditions, each of these likelihood functions except for the

overbounded Gaussian resulted in a significant number of integrity violations. On

average, only 12.5 integrity violations should be observed on 250 sample images when

using an integrity risk level of 0.05. Additionally, as can be seen in the table, all three

of these likelihood forms resulted in greater mean spherical error and greater spher-

ical error variance than when using the overbounded Gaussian likelihood function.

Results from paired sample t-tests showed that using each “tight” form of the likeli-

hood function resulted in greater mean spherical error than use of the overbounded

Gaussian likelihood function at a confidence level � 99%. Additionally, results from

two-sample F -tests showed that using each “tight” form of the likelihood function

resulted in greater spherical error variance than use of the overbounded Gaussian

likelihood function at a confidence level � 99%.

Table 7. Candidate Likelihood Function Spherical Errors and Integrity Violations for
a 0.05 Integrity Risk Level.

Spherical Error

Mean (m)

Spherical Error

Standard Deviation (m)

Integrity

Violations

Overbounded

Gaussian
0.539 0.335 6

Best Fit

Gaussian
0.863 0.537 40

Overbounded

Cauchy
0.725 0.448 24

Overbounded

Laplacian
0.770 0.471 31
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Figure 44. Simulation Results with Overbounded Gaussian Likelihood Function.

Figure 45. Simulation Results with Best Fit Gaussian Likelihood Function.
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Figure 46. Simulation Results with Overbounded Cauchy Likelihood Function.

Figure 47. Simulation Results with Overbounded Laplacian Likelihood Function.
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An examination of the pixel intensity difference distribution on the level of sin-

gle reference-observation image pairs elucidates why tight distributional fits per-

form poorly as likelihood functions. The intensity difference distribution of a single

reference-observation image pair does not necessarily match the intensity difference

distribution of the ensemble of all reference-observation image pairs. Figure 48 depicts

this phenomenon. In the figure, while Sample B closes matches the distribution of the

ensemble, Sample A has much more probability density concentrated in areas further

from zero. A tight fit on the ensemble distribution would fail to adequately model

the distribution exhibited in Sample A. Hence, the diversity of sample distributions

explains why an overbounded distribution is required for a likelihood function in the

V5 algorithm.

Ultimately, an overbounded Gaussian distribution yielded acceptable performance

with simulation and flight test data. This was the same result obtained by Calhoun

in [2]. However, an extensive tuning process was not undertaken to identify an ideal

likelihood function. An ideal likelihood function for all sets of environmental condi-

tions and all types of formation dynamics likely does not exist. Were the V5 algorithm

to be implemented in a real-world system, the chosen likelihood function or set of like-

lihood functions would need to be generalizable and not be over-tuned. As the data in

Figure 48 shows, the high variability in sample pixel intensity difference distributions

must be taken into account.
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Figure 48. Pixel Intensity Difference Distributions for Two Sample Reference-
Observation Image Pairs and an Ensemble of 150 Reference-Observation Image Pairs.
A Total of 100 Pixels Were Randomly Sampled from Each Pair.

4.1.6 Pixel Intensity Threshold Determination.

As discussed in Section 3.4.5, the V5 algorithm can be applied with a user-specified

pixel intensity threshold. When exercising this option, the V5 algorithm only com-

pares pixels in the reference and observation images that exceed the threshold in-

tensity value. As a result, only relatively strong edges are used for comparison. To

determine a candidate threshold value, 150 processed observation images were exam-

ined in simulation. All pixels with an intensity value greater than zero were used

to generate a cumulative distribution function (CDF) of pixel intensities with the

MATLAB R© function histogram. The results are depicted in Figure 49.
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Figure 49. CDF of Pixel Intensities for 150 Processed Observation Images.

As shown in the figure, the strongest edge pixels had intensity values as great as

0.28 while the weakest edge pixels had intensity values only slightly greater than 0. A

threshold intensity value of 0.05 was selected for analysis of flight test and simulation

data since approximately 38% of pixels in this data had intensity values equal to or

greater than this value. This determination was somewhat arbitrary, but ultimately

proved to yield superior results to lower threshold values. Precise determination of

an ideal threshold value would be tuning intensive and would likely yield a result

particularly suited to the data set under examination.

4.1.7 V5 Simulation Results.

The likelihood function identified in Section 4.1.5 and the pixel intensity threshold

of 0.05 that was identified in Section 4.1.6 were used to perform a series of simulations

with the V5 algorithm. These simulations compared the estimate errors resulting from

various algorithm configurations. Component position errors were computed in the
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left camera frame for reasons outlined in Section 4.1.7.4. Simulation results revealed

seven primary findings:

1. The composite position estimator performed better than the maximum likeli-

hood estimator. This result is detailed in Section 4.1.7.1.

2. As expected, higher integrity risk levels resulted in smaller magnitude protection

levels. This result is detailed in Section 4.1.7.2.

3. Using a non-zero pixel intensity threshold value led to lower errors and protec-

tion levels. This result is detailed in Section 4.1.7.3.

4. Using a non-zero pixel intensity threshold value resulted in PMF concentration

along the camera system’s line-of-sight. This result is detailed in Section 4.1.7.4.

5. Combining the posterior probability estimates from the left and right cameras

led to better performance than when using a single camera. This result is

detailed in Section 4.1.7.5.

6. Informed prior probability distributions can lead to better protection level es-

timation than uniform prior probability distributions. This result is detailed in

Section 4.1.7.6.

7. As implemented, the V5 algorithm requires significant processing time to op-

erate on a single observation-reference image pair. This result is detailed in

Section 4.1.7.7.

Based on these results, the configuration specified in Table 8 was selected as the

baseline configuration for analysis of flight test data in Chapter VI. A uniform prior

was selected as a baseline because the informative priors used in simulation depended

upon knowledge of truth data. Additionally, this configuration was used to compare

V5 and R7 simulation performance in Section 4.3.
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Table 8. Baseline Configuration of the V5 Algorithm Identified for Use on Flight Test
Data.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0.05 Composite 0.05

4.1.7.1 Relative Position Estimator Comparison.

The performance of the maximum likelihood estimator defined in Equation (88)

was compared against the performance of the composite position estimator defined

in Equation (89). As discussed in Section 3.4.7, the maximum likelihood estimator

identifies the mode of the PMF returned from the V5 algorithm while the composite

position estimator identifies the mean of the PMF. This comparison was made via

use of uniform and Gaussian prior probability distributions, various likelihood func-

tions, and threshold intensity values of 0 and 0.05. A total of 250 observation images

were used in each case. For all V5 algorithm configurations examined, the compos-

ite position estimator was on average more accurate than the maximum likelihood

estimator.

Results using the V5 configuration shown in Table 9 are presented in this section.

These results were typical of those found with other V5 configurations. The uniform

prior probability distribution assigned an equal probability mass to all relative posi-

tions contained within the attenuated reference image database described in Section

4.1.2. A non-uniform prior probability distribution would have skewed the results

returned from both estimators toward the prior probability distribution. Hence, a
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uniform prior probability distribution was considered to be ideal for comparing rela-

tive position estimator performance.

Table 9. Configuration of the V5 Algorithm Used for Position Estimator Comparison.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0 0.05

Figure 50 plots the spherical error of the maximum likelihood estimator relative

position solution for the simulation. Figure 51 depicts the same information with re-

spect to the composite position estimator. As can be seen in the figures, the composite

position estimator was much more accurate overall than the maximum likelihood es-

timator. When using the maximum likelihood estimator, a total of four protection

level violations were observed while none were observed when using the composite

position estimator.
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Figure 50. Spherical Error for the V5 Algorithm Using the Maximum Likelihood
Estimator.

Figure 51. Spherical Error for the V5 Algorithm Using the Composite Position Esti-
mator.
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As shown in Table 10, the mean spherical error of the composite position estimator

was 39% lower than that of the maximum likelihood estimator. A paired t-test

revealed that the mean spherical errors had a statistically significant difference at

a confidence level � 99.9%. The 95% confidence interval for this difference was

[0.871 m, 1.078 m] greater error in the maximum likelihood estimator. Additionally,

the standard deviation of the spherical error of the composite position estimator

was 47% lower. A two-sample F -test revealed that the variance of the maximum

likelihood estimator mean spherical error was greater than that of the composite

position estimator at a confidence level � 99.9%. The 95% confidence interval for

the true ratio of the variances (maximum likelihood estimator to composite position

estimator) was [2.771, 4.559].

Likewise, the mean error and the standard deviation of the error were lower in

each axis of the camera frame for the composite position estimator. However, the

differences in means were not found to be statistically significant using one-sample

t-tests. Conversely, the difference in variances along each position error component

were found to be statistically significant at confidence levels � 99.9% with two-

sample F -tests. Again, these significantly lower errors manifested when using other

prior probability distributions, likelihood functions, and threshold values.

165



Table 10. Maximum Likelihood Estimator and Composite Position Estimator Errors,
Left Camera Frame.

Maximum

Likelihood

Estimator Mean

Maximum

Likelihood

Estimator Standard

Deviation

Composite Position

Estimator Mean

Composite Position

Estimator Standard

Deviation

Spherical

Error (m)
2.498 1.041 1.523 0.552

x Position

Error (m)
0.071 1.733 0.048 1.136

y Position

Error (m)
0.507 1.132 0.495 0.540

z Position

Error (m)
-0.440 1.614 -0.3521 0.8242

An analysis of the PMF returned by the V5 algorithm reveals why the composite

position estimator typically performs better. Figure 52 depicts the PMF returned

from sample number seven of the observation images. As can be seen in the figure,

the distribution is multi-modal. Since the maximum likelihood estimator identifies

the mode of the PMF, the multi-modal properties of the PMF subject it to higher

errors. As a result, the composite position estimator does a superior job of accurately

estimating the receiver position than the maximum likelihood estimator. Addition-

ally, there is significant distributional scatter in all axes of both the tanker frame and

the camera frame. Figure 53 depicts this scatter from side and top-down views. The

distributional spread directly influences the computed protection levels. The amount

of scatter relates to the threshold value of zero run with this simulation. The effect

of the threshold value on the PMF distribution will be analyzed further in Section

4.1.7.4.
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Figure 52. PMF Distribution Computed with a Pixel Intensity Threshold of Zero.

Figure 53. PMF Distribution Computed with a Pixel Intensity Threshold of Zero, Side
and Top-Down Views.
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4.1.7.2 Integrity Risk Level Effect.

As noted by Calhoun in [2], smaller integrity risk levels should lead to larger

protection levels. During simulation this result was observed, confirming proper op-

eration of the V5 algorithm’s protection level computation. The results presented in

this section used the V5 configurations given in Table 11. The presented results were

typical of the results with other prior probability distributions, likelihood functions,

and threshold intensity values.

Table 11. Configurations of the V5 Algorithm Used for Integrity Risk Level Analysis.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0 Composite 0.05 and 10−6

Figure 54 depicts the protection level returned with integrity risk levels of 0.05

and 10−6. As can be seen in the figure, the protection level for the 10−6 integrity risk

level mostly contours with that of the 0.05 integrity risk level, but is substantially

larger. For an integrity risk level of 0.05, the mean protection level was 4.56 meters

with a standard deviation of 0.91 meters. For an integrity risk level of 10−6, the

mean protection level was 6.18 meters with a standard deviation of 0.99 meters. A

two-sample F -test was applied to the two protection level cases with the MATLAB R©

function vartest2. These results showed that the variance of these two protection

levels did not have a statistically significant difference. This indicates that protection

level fluctuations of similar magnitude would be expected when using integrity risk

levels of 0.05 or greater.
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Figure 54. Protection Level Comparison with Different Integrity Risk Levels.

4.1.7.3 Thresholding Comparison.

The results presented in this section used the V5 configurations given in Table 12.

These two test cases utilized the same set of randomly generated observation images,

but utilized different edge pixel samples drawn from the reference and observation

images. Despite the fact that two different pixel sets were used, the results strongly

suggested that utilizing a non-zero threshold value yields more accurate V5 results.

It is important to understand that a pixel intensity threshold of zero does not imply

that pixels with an intensity of zero will be sampled. With a zero threshold setting,

a pixel must be just greater than zero to be sampled.

169



Table 12. Configurations of the V5 Algorithm Used for Pixel Intensity Threshold
Analysis.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0 and 0.05 Composite 0.05

Figure 55 depicts the spherical error and protection level with a pixel intensity

threshold of 0. Figure 56 depicts the spherical error and protection level with a

pixel intensity threshold of 0.05. As can be seen in the two figures, typical spherical

errors and protection levels were much lower in the 0.05 pixel intensity threshold case.

Additionally, the 0.05 pixel intensity threshold case yielded 11 instances of protection

level violations, while the 0 pixel intensity threshold case yielded no protection level

violations. At an integrity risk level of 0.05, an average of 12.5 integrity risk violations

would be expected from 250 random samples. Observing a number significantly less

than 12.5 indicates that the PMF assigned to great a probability mass to positions

far from the estimated position. Hence, the higher number of protection violations in

the 0.05 threshold case indicates superior performance.
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Figure 55. Spherical Error When Using a Pixel Intensity Threshold of 0.

Figure 56. Spherical Error When Using Using a Pixel Intensity Threshold of 0.05.
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Table 13 compares the accuracy of the relative position estimate and the mag-

nitude of the protection levels returned in the two different threshold cases. As can

be seen in the table, mean position component errors were much closer to zero and

the mean spherical error was 42% less in the 0.05 threshold case. A two-sample t-

test, without an assumption of equal variances, was used to test if the differences

observed in the mean errors were statistically significant. A two-sample t-test was

used because each threshold case sampled different sets of edge pixels. The difference

in mean spherical error was found to be statistically significant at a confidence level

� 99%. The 95% confidence interval for this difference was [0.532m, 0.722m] greater

error in the 0 pixel intensity threshold case.

With respect to each position error component, only the mean error of the y-

component was found to have a statistically significant difference. This conclusion

was reached at a confidence level � 99%. The 95% confidence interval for the y-

component mean error difference was [0.416m, 0.557m] greater error in the 0 pixel

intensity threshold case. The z -component mean error difference was found to have

a p-value of 0.0501, only just failing the chosen threshold for statistical significance.

Additionally, the standard deviations of the errors were generally lower in the

0.05 threshold case. The sole exception was along the z -axis in the left camera

frame. Results from a two-sample F -test revealed that the difference in spherical

error variances was not statistically significant. However, all position error component

variances had statistically significant differences.

In the x and y-components, the differences in these variances were significant at a

confidence level� 99%. For the x and y-dimensions, the 95% confidence intervals for

the ratio of the 0 threshold error variance to the 0.05 threshold error variance were

[7.187, 11.826] and [7.499, 12.339], respectively. In these components, the 0 intensity

threshold case was found to have significantly greater variance. In the z -component,
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the 0.05 intensity threshold case was found to have modestly greater error variance at

the 95% confidence level. In the z -dimension, the 95% confidence interval for the ratio

of the 0 threshold error variance to the 0.05 threshold error variance was [0.606, 0.997].

Hence using a pixel intensity threshold of 0.05 was found to significantly reduce error

variance in the left camera frame x and y-dimensions while only modestly increasing

error variance in the z -dimension.

Moreover, the average protection level was 35% smaller in the 0.05 threshold case,

but had a larger standard deviation. Using a two-sample t-test, the difference in

means was statistically significant at a confidence level � 99%. The 95% confidence

level for this difference was [0.907m, 1.801m] greater mean protection levels in the 0

threshold case. Additionally, using a two-sample F -test the difference in protection

level variances was statistically significant at the 99% confidence level, with more

variance in the 0.05 intensity threshold case. The 95% confidence interval for the

ratio of the 0 threshold protection level variance to the 0.05 threshold protection level

variance was [0.496, 0.815]. Overall, as discussed above, given the number of integrity

risk level violations observed in the two cases, the PMF and resultant protection level

estimated in the 0.05 threshold case was likely superior to that estimated in the 0

threshold case.

Overall, using a pixel intensity threshold value of 0.05 significantly improved es-

timation of the receiver relative position, the PMF describing that relative position,

and the protection level returned from the PMF. As a result, this threshold value was

selected for use on analysis of flight test data.
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Table 13. Threshold Comparison, Composite Position Estimator Errors, Protection
Levels, Left Camera Frame.

Mean,

Threshold = 0

Standard

Deviation,

Threshold = 0

Mean,

Threshold = 0.05

Standard

Deviation,

Threshold = 0.05

Spherical

Error (m)
1.523 0.552 0.896 0.527

x Position

Error (m)
0.048 1.136 0.004 0.374

y Position

Error (m)
0.495 0.540 0.008 0.174

z Position

Error (m)
-0.3521 0.8242 -0.197 0.935

Protection

Level (m)
4.575 0.907 2.956 1.138

4.1.7.4 Consequences of Thresholding.

As noted in Section 4.1.7.3, using a threshold of 0.05 increased the standard

deviation z -position estimate error in the left camera frame. Additionally, as can

be seen in Table 13, the standard deviation of the error in the z -component was

greater than the standard deviations along the x and y-components.

Figure 57 depicts the PMF distribution resulting from sample number two in the

0.05 intensity threshold case. Figure 58 depicts the same sample distribution from

side and top-down views. Qualitatively, the PMF form from this sample was typical

of the other samples generated in the 0.05 intensity threshold case. As can be seen

in the figures, the probability mass of the PMF was concentrated along the camera

line-of-sight. The camera line-of-sight in this case is defined as a ray drawn from the

origin of the left camera to the true position of the receiver. Based on the position
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of the boom envelope and hence the reference image database, this line-of-sight most

closely corresponds to the z -axis of the camera frame. Hence, PMF mass is also

mostly concentrated along the z -axis of the left camera frame in the figure.

Contrastingly, the PMF for the 0 intensity threshold case depicted in Figures 52

and 53 manifested no such concentration along the camera line-of-sight. The fact that

probability mass tends to concentrate along the camera line-of-sight in the non-zero

threshold case explains why the bulk of PMF uncertainty occurs along the z -axis of

the camera frame.

Figure 57. PMF Distribution Computed with a Pixel Intensity Threshold of 0.05.
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Figure 58. PMF Distribution Computed with a Pixel Intensity Threshold of 0.05, Side
and Top-Down Views.

From the perspective of the tanker frame (the p-frame), the camera line-of-sight

falls most strongly along the x -axis. Figure 59 depicts the 0.05 intensity threshold

simulation errors in the tanker frame. As can be seen in the figure, the bulk of the

error is concentrated in the x -axis. Indeed, in eight cases protection level violations

could be solely attributed to error in the x -component of the tanker frame relative

position estimate.

Figure 60 depicts the same errors in the left camera frame. As can be seen in

the figure, the bulk of the error is concentrated in the z -axis. In ten cases protection

level violations could be solely attributed to error in the z -component of the left

camera frame relative position estimate. Based on the geometry of the rendered

databases used in simulation and flight test, the camera line-of-sight projected more

strongly onto the camera frame z -axis than onto the tanker frame x -axis. As a result,

V5 relative position errors are plotted with respect to the left camera frame for the

remainder of this thesis.
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Figure 59. Composite Position Estimator Errors, Tanker Frame.

Figure 60. Composite Position Estimator Errors, Left Camera Frame.
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Figure 61 reveals one additional property associated with non-zero thresholds. For

receiver positions closer to the stereo camera system, the algorithm tended to overes-

timate the z -position in the left camera frame. In other words, the algorithm tended

to estimate a position farther away than the actual receiver position. Contrastingly,

for receiver positions farther from the stereo camera system, the algorithm tended to

underestimate the z -position in the left camera frame. In other words, the algorithm

tended to estimate a position closer than the actual receiver position.

This property manifests because the reference image database is finite and is

bounded at specific left camera frame z -ranges. Since the PMF is concentrated along

the camera line-of-sight, more probability mass will be concentrated aft of the actual

receiver position when the receiver is close to the front of the reference database. The

converse is true for receiver positions close to the back of the reference database. This

phenomenon could be overcome with use of a larger reference image database.

Figure 61. Composite Position Estimator Errors Sorted by z -Position, Left Camera
Frame.
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4.1.7.5 Single Camera Versus Stereo Camera Results.

In the V5 algorithm, as described in Section 3.4.6, the left and right camera

images are used to generate two separate PMFs. These are referred to as the left

camera PMF and the right camera PMF. These PMFs are then combined by giving

equal weighting to each as shown in Equation (87). This resulting PMF is called

the combined PMF. The results in this section show that use of the combined PMF

results in better algorithm performance than using a single camera PMF. The V5

algorithm configuration specified in Table 14 was used for this comparison. A total

of 250 simulation observation images were used.

Table 14. Configuration of the V5 Algorithm Used to Compare Single Camera PMF
and Combined Camera PMF Performance.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0.05 Composite 0.05

Table 15 shows the results from the left camera PMF, the right camera PMF,

and the combined PMF for this scenario. Figures 62 through 64 plot the spherical

errors, protection levels, and integrity risk violations from each PMF. The superior

performance observed in the combined PMF was typical of other configurations.

As the data show, the combined PMF resulted in lower errors and error vari-

ances in almost all cases. A paired t-test showed that the spherical error reduction

achieved in the combined PMF case was statistically significant at a confidence level

� 99%. Additionally, a two-sample F -test showed that the reduction in spherical
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error variance achieved in the combined PMF case was statistically significant at the

98% confidence level.

The combined PMF resulted in a statistically significant increase in the mean

protection level. However, most critically, both the left and right camera PMFs

resulted in unacceptable numbers of integrity risk violations. For a set of 250 samples

and an integrity risk level of 0.05, an average of 12.5 integrity risk violations would be

expected. Both the left and camera PMFs grossly exceeded this number. Hence, the

results show that the combined PMF did a superior job of estimating an appropriate

protection level.

Overall, these results show that the combined PMF produces superior results

in terms of both estimate errors and protection levels to the single camera PMFs.

Consequently, the combined PMF was used for analysis of flight test data.
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Table 15. Comparison of V5 Algorithm Errors When Using a the Left Camera PMF,
the Right Camera PMF, and the Combined PMF.

Left Camera Right Camera Combined

Mean
Standard

Deviation
Mean

Standard

Deviation
Mean

Standard

Deviation

Spherical

Error (m)
1.041 0.661 0.992 0.619 0.896 0.527

X Position

Error (m)
0.028 0.479 -0.020 0.469 0.004 0.374

Y Position

Error (m)
0.023 0.194 -0.007 0.193 0.008 0.174

Z Position

Error (m)
-0.264 1.089 -0.131 1.047 -0.197 0.935

Protection

Level (m)
2.496 1.282 2.689 1.255 2.956 1.138

Integrity Risk

Violations
35 25 11
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Figure 62. Spherical Error When Using Only the Left Camera PMF.

Figure 63. Spherical Error When Using Only the Right Camera PMF.
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Figure 64. Spherical Error When Combining Camera PMFs.

4.1.7.6 Prior Probability Distribution Comparison.

The V5 algorithm configuration specified in Table 16 was used to examine the

effect of different prior probability distributions on performance.

Table 16. Configurations of the V5 Algorithm Used for Prior Probability Distribution
Analysis.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Various

Gaussian

µ = 0

σ = 0.1

0.05 Composite 0.05

Three prior probability distributions were examined. The first was a non-informative

uniform prior. The uniform prior probability distribution assigned an equal proba-
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bility mass to all relative positions contained within the attenuated reference image

database as described in Section 4.1.2.

The second was an informative prior called Gaussian distribution A. This distri-

bution was a three-dimensional Gaussian distribution with a mean centered precisely

on the true relative position of the receiver. The covariance matrix of this distribution

was set to:

C =


4 0 0

0 4 0

0 0 4

m2 (109)

The third was an informative prior called Gaussian distribution B. This distri-

bution was a three-dimensional Gaussian distribution with a covariance matrix of C

and a mean centered on the true relative position of the receiver plus an amount

of random error. The random error was drawn from a three-dimensional Gaussian

distribution with a mean of [0, 0, 0]T and a covariance matrix equal to C.

Figure 65 depicts the spherical errors and protection levels when using a uniform

prior probability distribution, Figure 66 depicts the spherical errors and protection

levels when using a Gaussian distribution A as the prior, and Figure 67 depicts

the spherical errors and protection levels when using a Gaussian distribution B as

the prior. Table 17 shows the mean relative position estimate errors and standard

deviations as well as the mean protection levels and standard deviations returned

when using each of the prior probability distributions.
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Figure 65. Spherical Error When Using a Uniform Prior Probability Distribution.

Figure 66. Spherical Error When Using Gaussian Prior Probability Distribution A.

185



Figure 67. Spherical Error When Using Gaussian Prior Probability Distribution B.

As would be expected, Gaussian distribution A resulted in the lowest mean errors

and the lowest error variances since it weighted the PMF toward the true position

of the aircraft. Using a one-sample t-test, the reduction in mean errors when using

Gaussian distribution A instead of a uniform distribution as a prior was statistically

significant at a confidence level of more than 99% in all dimensions except for the

x -component. The reduction in mean spherical error was statistically significant at

a confidence level � 99%. Additionally, according to the results of two-sample F -

tests, using Gaussian distribution A as a prior led to lower variances of statistical

significance in spherical error, the x -component of the error, and the z -component of

the error than the uniform prior case.

Using Gaussian distribution B as a prior also resulted in lower average errors than

the uniform prior case. However, only the difference in mean y-component errors

was found to be statistically significant at the 95% confidence level with a paired
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t-test. Based on two-sample F -tests, using Gaussian distribution B as a prior did not

result in statistically significant differences in variances from the uniform prior case.

The biggest advantage of using Gaussian distribution B as a prior was found in the

protection level computation as will be discussed below.

With respect to protection levels, both forms of the Gaussian prior led to lower

average protection levels than the uniform prior case. Using a one sample t-test,

these reductions were found to be statistically significant at confidence levels� 99%.

Eleven protection level violations were observed when using a uniform prior probabil-

ity distribution, nine were observed when using Gaussian distribution A as the prior,

and twelve were observed when using Gaussian distribution B as the prior. Since an

integrity risk level of 0.05 was utilized in these experiments, an average of 12.5 pro-

tection level violations would be expected in each case. Hence, each form of the prior

probability distribution yielded an acceptable number of protection level violations.

Again, the mean spherical error in the Gaussian distribution B prior case was

not found to have a statistically significant difference from the mean spherical error

with the uniform prior case. However, it reduced the average protection level by 11%

without radically increasing the number of protection level violations. Additionally,

based on the results of a two-sample F -test, the Gaussian B prior case was found to

have a lower protection level variance than the uniform prior case at a 95% confidence

level. Hence, simulation results indicate that the use of an informative prior, including

one with some amount of random error, may marginally improve algorithm position

estimate performance and will likely lead to smaller, less variable, but still accurate

protection levels.

Previously, Calhoun’s work [2] showed that a uniform prior outperformed a Gaus-

sian prior of the form of Gaussian distribution B. However, he utilized a much tighter

form of the covariance matrix, C, with elements equal to 0.25 m2 rather than 4 m2.
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Simulations run with the same Gaussian distribution used by Calhoun resulted in

similarly poor performance. When using that distribution, mean spherical error was

1.861 meters and actually exceeded the mean protection level of 1.523 meters. This

resulted in 140 protection level violations out of 250 total samples. However, the

results with Gaussian distribution B indicate that the use of an informative prior can

improve R7 performance if the magnitude of the covariance matrix is not set too low.

Table 17. Prior Probability Distribution Comparison, Composite Position Estimator
Errors, Left Camera Frame, Pixel Intensity Threshold of 0.05.

Mean,

Gaussian

Prior

Std Dev,

Gaussian

Prior

Mean,

Gaussian Prior

With Error

Std Dev,

Gaussian Prior

With Error

Mean,

Uniform

Prior

Std Dev,

Uniform

Prior

Spherical

Error (m)
0.767 0.457 0.851 0.530 0.896 0.527

x Position

Error (m)
0.008 0.316 0.008 0.376 0.004 0.374

y Position

Error (m)
0.002 0.163 -0.002 0.171 0.008 0.174

z Position

Error (m)
-0.151 0.806 -0.131 0.905 -0.197 0.935

Protection

Level (m)
2.619 1.011 2.624 0.974 2.956 1.138

4.1.7.7 V5 Simulation Processing Times.

No effort was made to optimize processing times in this thesis, but algorithm pro-

cessing times were examined to assess how easily each algorithm could be implemented

in a real-time system. Simulation observation images were processed in MATLAB R©

using the method described in Section 3.4.3. The total processing time for the 250

simulation observation images was 101.2 seconds, an average of 0.405 seconds per
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image. Performing the image processing in a program other than MATLAB R© could

reduce image processing times.

Simulation images were processed prior to execution of the remainder of the V5

algorithm. In other words, pre-processed images were provided to the algorithm.

Figure 68 shows the processing time required to execute the R7 algorithm on each

of the 250 pre-processed images. The mean run time was 53.8 seconds. Hence, a

mean run time of approximately 54.2 seconds would be expected if images were not

pre-processed. These long run times represent a significant challenge to V5 implemen-

tation in a real-time system as such a system may need to process tens or hundreds

of images each second, rather than one image every minute.

Figure 68. Time to Execute the V5 Algorithm on Pre-Processed Observation Images.
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4.2 R7 Data and Analysis, Simulation

This section details the analysis of the R7 algorithm conducted in simulation. The

R7 algorithm is less tuning intensive than the V5 algorithm. As a result, this section

is comprised of two parts. First, Section 4.2.1 describes the observation image sets

used in simulation. Second, Section 4.2.2 details the most significant R7 simulation

results.

4.2.1 Observation Image Generation.

Two observation image sets were created in the 3DVW for analysis of the R7

algorithm—one with the tanker boom in the camera fields of view and one without a

tanker boom present. Each set placed the simulated cameras at an altitude of 3,000

meters above a depiction of Wright-Patterson Air Force Base Area B. The images

depicted 6,000 randomly generated C-12 receiver positions. Props were not included

in the C-12 model. The positions were randomly sampled from a geometric space

specified using the same methodology used with V5 simulations (see Section 4.1.3).

Receiver range was randomly selected from a uniform distribution spanning 20

to 250 meters. Receiver azimuth was randomly selected from a uniform distribution

spanning -15◦ to 15◦. As with the V5 database, azimuth was defined as the angular

position left or right of the tanker’s longitudinal axis in the tanker xy-plane. Receiver

elevation was randomly selected from a uniform distribution spanning 5◦ to 35◦ below

the tanker’s longitudinal axis. As with the V5 database, elevation was defined as the

angular position below the tanker’s longitudinal axis in the tanker xz -plane. This

simulation space was chosen to cover relative positions likely to be encountered during

AR operations. Figure 69 depicts the positions contained within a randomly generated

set of 6,000 positions.
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Figure 69. Depiction of 6,000 Randomly Generated Positions in Yellow and the Camera
Fields of View in Red.

The attitude of the C-12 at each position was randomly generated with the same

scheme used in V5 analysis. The relative roll of the receiver was randomly selected

from a uniform distribution varying between ±7◦. The relative pitch of the receiver

was randomly selected from a uniform distribution varying between ±4◦. The relative

yaw of the receiver was randomly selected from a uniform distribution varying between

±1◦.

4.2.2 R7 Simulation Results.

The R7 algorithm was applied to five different cases in simulation. Table 18

summarizes these cases. Cases in which the boom was not in the fields of view utilized

the observation image set created without a boom. Cases in which the attitude was

provided to the R7 algorithm, used the attitude fed version of the ICP algorithm
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described in Section 3.5.5.6. For Case 5, the R7 algorithm was applied to the same

data set used in V5 simulation analysis.

Table 18. R7 Simulation Cases.

Case 1 Case 2 Case 3 Case 4 Case 5

Boom in

Fields of View?
No No Yes Yes No

Provide

Attitude?
No Yes No Yes No

This scheme enabled the comparison of algorithm performance with and without

attitude feeding and with and without the tanker boom in the field of view. The

simulation results revealed five primary findings:

1. Relative position error growth was most strongly correlated with the z -axis of

the camera frames, that is, the depth of the observed receiver.

2. Error distributions were mostly stable within 40 meters of depth. Errors within

this depth did not show depth correlation.

3. The attitude fed version of the R7 algorithm reduced average position estimate

errors.

4. The presence of a boom in the camera fields of view increased R7 errors and error

variances. This resulted manifested despite the implementation of an effective

boom filter.

5. Using the attitude fed version of the ICP algorithm reduced R7 processing times.

The following conventions were used to generate the plots and data analysis in this

section. Since relative position error growth was most strongly correlated with the
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receiver’s z -position in the camera frames, algorithm position errors were computed

in the left camera frame and plotted against the receiver’s true left camera frame

z -position. Attitude errors were expressed in the tanker body frame, but were also

plotted against the receiver’s true left camera frame z -position. Additionally, in the

figures, mean errors and standard deviations were computed at two meter intervals

of depth. Each of these intervals contained, on average, approximately 50.8 samples.

This method was used to help identify correlation between error growth and increasing

depth. Charts in which markers indicate “No valid measurements” mean that fewer

than three points were obtained in the point cloud for that observation. This small

number of points precludes execution of the ICP algorithm. Finally, a depth of 40

meters was chosen for more in-depth analysis, since the bulk of contact and pre-

contact operations are conducted within approximately this range.

4.2.2.1 Case 1: No Boom in Field of View, No Attitude Feeding.

In simulation, the R7 algorithm was first applied to the 6,000 observation images

without the boom in the fields of view and without the true relative formation attitude

being provided to the algorithm. As described in Section 3.5, this form of R7 provides

both a relative position and relative attitude measurement.

Figures 70 and 71 depict the spherical error of each observation image plotted

against the receiver’s z -position in the left camera frame. As can be seen in the

figures, both the mean and standard deviation of the error increased strongly with

increasing depth from the camera. Figure 71 shows that this effect was essentially

negligible within 40 meters of depth. Table 19 presents the mean and standard

deviations of the spherical position errors observed within 40 meters of depth.
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Figure 70. Spherical Position Errors, Case 1.

Figure 71. Spherical Position Errors, Case 1, Zoom In.
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Figures 72 and 73 plot the relative position error in each axis of the left camera

frame against the receiver’s left camera frame z -position. As can be seen in the figures,

error growth was most strongly correlated with the z -component of the relative posi-

tion estimate. Additionally, the z -component mean becomes increasingly biased with

depth. The error distributions were fairly stable within 40 meters of depth and did

not show depth correlation. However, within 40 meters of depth the z -axis presented

a consistent bias of approximately -0.48 meters. This bias was negative indicating

that the R7 algorithm was underestimating the depth of the receiver. Similarly, the

y-axis also presented a slight bias of approximately 0.16 meters. As shown in Section

2.3.6.6, based on how x and y-positions are computed, the y-axis bias could be at-

tributed to the presence of the z -axis bias. Table 19 presents the mean and standard

deviations of the position errors observed within 40 meters of depth.

Figure 72. Position Errors, Case 1, Left Camera Frame.
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Figure 73. Position Errors, Case 1, Left Camera Frame, Zoom In.

As was shown in Section 2.3.6.6, the z -position in the camera frame is computed

as:

ZLr = −fcT
R
x

d
(110)

Where fc is the focal length in pixels, TRx is the baseline between the stereo camera

pair, and d is the observed disparity. Hence, the z -axis bias could be due to errors

in the focal length, camera baseline, or disparity computations. However, since the

camera focal lengths and baselines were known perfectly in simulation, these are

unlikely causes. Additionally, errors in the model point cloud could contribute to

bias, but this is also unlikely because the model point cloud was derived from the

same model used to depict the simulated C-12C receiver in the 3DVW. A more likely

culprit is disparity.
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As was shown in Section 2.3.6.6, the depth resolution of each point in the obser-

vation point cloud is limited by the disparity resolution of the underlying algorithm:

∆ZLr =
Z2
Lr

fTRr
x

∆d (111)

Where ∆d is the disparity resolution and ∆ZLr is the commensurate depth resolution.

The R7 algorithm used a disparity resolution of 1
16

. Additionally, the focal length used

in simulation was 962.9 pixels and the stereo baseline was 0.5 meters. Therefore, at a

ranges of 22 and 40 meters, a depth resolution of 0.063 meters and 0.208 meters would

be expected, respectively. This resolution limit could partially explain the observed

bias.

Further analysis of R7 disparity computations, revealed that the algorithm errors

tended to get worse further from integer disparity values. A simulation was run which

generated 5,000 receiver images at z -ranges between 22 and 250 meters. The x and

y position of the receiver in the left camera frame were forced to be 0.25 meters

and 0 meters, respectively, in each instantiation. This meant that the receiver fell

precisely between the optical axes of the left and right cameras at each position.

Figure 74 plots the resultant spherical position errors from the R7 algorithm. In

the figure, the disparity values depicted were computed for a point falling exactly at

the receiver position, which in simulation was essentially the geometric center of the

C-12C. As can be seen in the figure, the spherical error had a pronounced tendency

to grow in magnitude at ranges corresponding to non-integer disparity values. This

phenomenon became more drastic with increased depth. As can be seen in Figure

75, this tendency was less pronounced with respect to z -position errors, but was

still present. Although this does not directly explain the observed depth bias, it

does indicate that the disparity computations, particularly at the sub-pixel level, are
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imperfect. Hence, these observations suggest that errors in disparity computations

are likely a primary source of algorithm error.

Figure 74. Spherical Position Error and Disparity Values.
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Figure 75. Position Errors, Left Camera Frame, and Disparity Values.

With respect to attitude estimation, the R7 algorithm proved to be a relatively

poor estimator as can be seen in Figures 76 and 77. These attitude errors are expressed

in the tanker frame. Table 19 presents the mean and standard deviations of the

attitude errors observed within 40 meters of depth. Although the errors were very

close to having zero means within 40 meters, the standard deviations of these errors

were relatively large. Roll and pitch error standard deviations were notably higher

than that of the yaw error. Additionally, a strong bias in the pitch axis manifests at

farther ranges. By contrast, the roll and yaw errors tended to stay closer to zero mean

even at farther ranges. These high attitude error variances could possibly be overcome

by bounding magnitude of the rotations that R7 allows the ICP algorithm to apply

to the observed point cloud. Doing so, however, would not enable to algorithm to

observe actual unusual attitude cases.
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Figure 76. Attitude Errors, Case 1, Tanker Frame.

Figure 77. Attitude Errors, Case 1, Tanker Frame, Zoom In.
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Table 19. Position Errors in the Left Camera Frame and Attitude Errors in the Tanker
Frame for Samples at Less than 40 Meters of Depth, Case 1.

Mean Standard Deviation

Spherical Position Error (m) 0.512 0.264

x Position Error (m) -0.020 0.103

y Position Error (m) 0.156 0.112

z Position Error (m) -0.480 0.232

Roll Error (deg) -0.248 7.879

Pitch Error (deg) 0.195 5.045

Yaw Error (deg) 0.117 1.676

4.2.2.2 Case 2: No Boom in Field of View, Attitude Feeding.

For Case 2, the R7 algorithm was applied to the 6,000 observation images without

the boom in the field of view and with the true relative formation attitude being

provided to the algorithm. Section 3.5.5.6 describes how ICP was modified to enable

attitude provisioning. In this form, the R7 algorithm provides only a relative position

measurement.

Figures 78 and 79 depict the spherical error of each observation image plotted

against the receiver’s z -position in the left camera frame. As can be seen in the

figures, both the mean and standard deviation of the error increased strongly with

increasing depth from the camera. The figures show that this effect was essentially

negligible within 40 meters of depth. Figures 80 and 81 depict the position error

components in the left camera frame. At first glance, results were very similar to

Case 1, with z -position bias growth with depth. Table 20 presents the mean and

standard deviations of the position errors observed within 40 meters of depth for

Case 2 alongside those found in Case 1.
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Figure 78. Spherical Position Errors, Case 2.

Figure 79. Spherical Position Errors, Case 2, Zoom In.
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Figure 80. Position Errors, Case 2, Left Camera Frame.

Figure 81. Position Errors, Case 2, Left Camera Frame, Zoom In.
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Figures 82 and 83 plot the spherical position errors from Case 1 and Case 2

together. As can be seen in the figures and in Table 20, providing an attitude solution

to the R7 algorithm reduced position errors on average, including at close ranges.

Paired t-tests were performed to test whether the attitude fed version of the R7

algorithm significantly reduced errors. These tests were applied to the errors from

Cases 1 and 2 for observations collected at depths of 40 meters or less.

In terms of mean spherical error, the attitude fed version of ICP (Case 2) was

found to modestly reduce mean error at a statistically significant level. The 95%

confidence interval for this reduction spanned 0.033 to 0.055 meters. The x -position

error means were not found to be significantly different. In terms of mean y-position

error, the attitude fed version of ICP was found to reduce mean error at a statistical

significance level of � 99%. The 95% confidence interval for this reduction spanned

0.105 to 0.129 meters. In other words, the non-attitude fed version (Case 1) had

roughly 11 centimeters more positive y-position estimate bias. In terms of mean z -

position error, the attitude fed version of ICP was found to modestly reduce mean

error at a statistical significance level of � 99%. The 95% confidence interval for

this reduction spanned 0.068 to 0.042 meters. In other words, the non-attitude fed

version (Case 1) had roughly 5 centimeters more negative z -position estimate bias.

The fact that the most improvement was seen in the y-axis component of the

estimate may be correlated with the fact that the R7 algorithm is worst at estimating

pitch. In the case in which the R7 algorithm is estimating both attitude and position,

it may be mistakenly applying a pitch rotation instead of a translation in y.

Paired F -tests were applied to the variances of the position errors observed in

Cases 1 and 2. Interestingly, these tests revealed that Case 2 had significantly more

error variance in the x and y-position errors at confidence levels � 99%. Spherical

error variance and x -position error variance differences were not statistically signif-
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icant. Hence, simulation results suggested that although the attitude fed version of

R7 may be less biased, it may also be subject to greater error variances in some di-

mensions. However, as is discussed in Chapter VI, flight tests results indicated the

opposite result. If greater variance were to manifest with real-world tests, then fu-

ture researchers will have to balance the costs of this possibly greater noise with the

benefits of having possibly less bias.

Finally, the attitude fed version of R7 was found to reduce processing times. It

took a total of 82.7 seconds to process all the observations for Case 1. It took a total

of 78.4 seconds to process all the observations for Case 2. This is a 5.2% reduction in

processing time. Although this is only a single example, results from other simulations

conducted during research consistently showed that utilizing the attitude fed version

of ICP decreased processing times.

Figure 82. Position Errors, Cases 1 and 2, Left Camera Frame.
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Figure 83. Position Errors, Cases 1 and 2, Left Camera Frame, Zoom In.

Table 20. Position Errors in the Left Camera Frame for Samples at Less than 40 Meters
of Depth, Cases 1 and 2.

Case 1 Case 2

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical

Error (m)
0.512 0.264 0.468 0.263

X Position

Error (m)
-0.020 0.103 -0.023 0.140

Y Position

Error (m)
0.156 0.112 0.039 0.169

Z Position

Error (m)
-0.480 0.232 -0.425 0.240
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4.2.2.3 Boom Filtering.

As discussed in Section 2.4, the ICP algorithm will not converge properly if the

observed point cloud contains points not found in the model point cloud [8]. Hence,

boom filtering, as outlined in 3.5.4.1 is critical to R7 implementation with a boom

in the field of view. With a boom filter, the algorithm can overcome many of the

negative effects of boom occlusion. Figure 84 depicts the results of the R7 algorithm

with and without a boom filter being applied. With the boom filter applied, the

point cloud points corresponding to the boom are successfully eliminated and the R7

solution converges nicely to the observed point cloud. Spherical position error in this

case was 0.05 meters and attitude errors were each less than one degree. With the

boom filter not applied, the R7 solution is skewed toward the point cloud points that

correspond to the boom. Spherical position error in this case was 2.5 meters and

attitude errors were substantial.

It may seem logical to conclude that the biasing effect of the boom would be

reduced at greater ranges. However, Figure 85 shows that this is not true. This

figure plots the results of applying R7 to the same data set used in Cases 3 and 4

(images with a boom in the fields of view) but without a boom filter. As the receiver

gets farther in range from the tanker, the number of points corresponding to the boom

quickly begin to outnumber or reach parity with the number of points corresponding

to the receiver. At far ranges, it is evident that the algorithm was estimating the

boom position as the position of the aircraft. At close ranges this phenomenon can

still occur and substantial errors were still present. The lower portion of the figure

elucidates this fact. This effect is aggravated in cases in which the boom obscures

much of the receiver. Hence, the biasing effect of the boom is substantial and highly

unpredictable. These results show that a boom filter is essential for proper operation

of the R7 algorithm or any algorithm leveraging the ICP algorithm in the AR context.
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Figure 84. Effect of Boom Filtering, Observed Point Cloud Shown in Red, R7 Solution
Shown in Blue.
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Figure 85. Spherical Position Errors, Boom in Field-of-View, No Boom Filter Applied.

4.2.2.4 Case 3: Boom in Field of View, No Attitude Feeding.

For Case 3, the R7 algorithm was applied to the 6,000 observation images with

the boom in the fields of view and without the true relative formation attitude being

provided to the algorithm. In this form, the R7 algorithm provides both relative

position and attitude measurements.

Figures 86 and 87 depict the spherical error of each observation image plotted

against the receiver’s z -position in the left camera frame. Table 21 presents the mean

and standard deviations of the spherical position errors observed within 40 meters of

depth for Cases 1 and 3. As can be seen in the figures, both the mean and standard

deviation of the error increased strongly with increasing depth from the camera as

with the other cases. The figures show that this effect was essentially negligible

within 40 meters of depth. However, there were many more instantiations in which

the R7 algorithm lacked a sufficient number of points to provide measurements than

in Cases 1 and 2. In Cases 1 and 2, only 25 such results were returned, 0.42% of all

observations. In Case 3, 173 such results were returned, 2.88% of all observations.

Hence, the obscuring effect of the boom substantially increased the chances that
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the R7 algorithm was unable to provide a measurement. In practice, this could be

mitigated with receiver flight paths that deliberately avoid the obscured portion of

the fields of view.

Additionally, as can be seen in the figures, there were more outliers in Case 3 than

in the Cases 1 and 2. There was a particularly strong outlier at just over 100 meters

of depth. Figures 88 and 89 plot the spherical errors resultant from Cases 1 and

3 together, showing the greater errors, variance, outliers, and missed measurements

present in Case 3. As discussed in the previous section, the obscuring effect of the

boom drove these changes.

Figure 86. Spherical Position Errors, Case 3.
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Figure 87. Spherical Position Errors, Case 3, Zoom In.

Figure 88. Spherical Position Errors, Cases 1 and 3.
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Figure 89. Spherical Position Errors, Cases 1 and 3, Zoom In.

Figure 90 shows the left and right camera images that correspond to the extreme

outlier. In the right camera image, the C-12C receiver is almost completely obscured

by the boom wings. With such large obscuration, the pixel matching component of

the R7 algorithm was unable to correctly match receiver pixels, even in this idealized

simulation environment.

Figure 90. Simulation Images Captured on the Extreme Outlier.
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Figure 91 shows the resultant point cloud and the boom filter. The “tanker frame”

referenced in the figure is the v -frame. As can be seen in the figure, the point cloud

that remained after filtering corresponds neither to the true position of the aircraft,

which was at a range of over 100 meters from the origin of the tanker frame, nor to

the boom. The remaining points were quite likely the consequence of incorrect pixel

matching. For instance, it is possible that the algorithm matched pixels corresponding

to the aircraft in the left image with pixels corresponding to the boom in the right

image. Regardless of the precise cause of the mismatch, this outlier exemplifies the

problems that a boom in the fields of view can present, even when using an effective

boom filter.

This outlier could have been eliminated by changing the configuration of the R7

algorithm, such as setting a higher threshold for the minimum number of points in

the filtered point cloud. As executed, the point cloud count threshold was three. If

the threshold had been set to a greater number, such as twenty, then a “no valid

measurements” result when have been returned and no estimate would have been

provided.

Figure 91. Boom Filtering Applied to the Outlier Point Cloud.
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Figures 92 and 93 depict the position error components in the left camera frame.

Table 21 presents the mean and standard deviations of the left camera frame compo-

nent position errors for Cases 1 and 3. Results were qualitatively similar to Cases 1

and 2, with notable z -position bias growth with depth, but contained more outliers,

and more cases in which no measurements were returned. Errors were once again

fairly stable within 40 meters of depth.

With respect to attitude errors, results were qualitatively similar to Cases 1 and 2,

as shown in Figures 94 and 95. Table 21 presents the mean and standard deviations of

the tanker frame attitude errors for Cases 1 and 3. From the figure, a strong pitch bias

manifested with depth. Additionally, standard deviations were high throughout the

depth ranges, including within 40 meters. Roll and pitch error standard deviations

were notably higher than that of the yaw error. Mean errors were fairly close to zero

within 40 meters of depth.

Figure 92. Position Errors, Case 3, Left Camera Frame.
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Figure 93. Position Errors, Case 3, Left Camera Frame, Zoom In.

Figure 94. Attitude Errors, Case 3, Tanker Frame.
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Figure 95. Attitude Errors, Case 3, Tanker Frame, Zoom In.

Two sample t-tests concluded that the Case 3 had significantly more spherical er-

ror and x -position error than Case 1 at confidence levels� 99%. The 95% confidence

intervals for the differences between the two cases were [0.125m, 0.049m] and [0.265m,

0.211m] for the spherical and x -position errors, respectively. Despite the fact that the

mean of the x -position error in Case 1 was slightly negative, the results of this test

indicate that Case 3 had a substantial positive x bias that was not present in Case

1. With respect to position error variances, two sample F -test results concluded that

Case 3 had significantly greater spherical error variance, x -position error variance,

and y-position error variance at confidence levels � 99%. Interestingly, z -position

error variances were not significantly different.

With respect to attitude errors, only the variance of the yaw estimates were found

to be significantly different, with greater variance present in Case 3 than in Case 1.

No significant difference was found between means or the variances of other attitude
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components. These results indicate that the presence of a boom will increase the

error and the uncertainty of R7 measurements even when using an effective boom

filter.

Table 21. Position Errors in the Left Camera Frame and Attitude Errors in the Tanker
Frame for Samples at Less than 40 Meters of Depth, Cases 1 and 3.

Case 1 Case 3

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical Error (m) 0.512 0.264 0.599 0.336

X Position Error (m) -0.020 0.103 0.218 0.286

Y Position Error (m) 0.156 0.112 0.164 0.136

Z Position Error (m) -0.480 0.232 -0.485 0.246

Roll Error (deg) -0.248 7.879 -0.102 8.010

Pitch Error (deg) 0.195 5.045 0.443 4.995

Yaw Error (deg) 0.117 1.676 0.040 2.057

4.2.2.5 Case 4: Boom in Field of View, Attitude Feeding.

For Case 4, the R7 algorithm was applied to the 6,000 observation images with

the boom in the fields of view and with the true relative formation attitude being

provided to the algorithm. In this form, the R7 algorithm provides only relative

position measurements.

Figures 96 and 97 depict the spherical error of each observation image plotted

against the receiver’s z -position in the left camera frame. Table 22 presents the mean

and standard deviations of the spherical position error for Cases 3 and 4. As can be

seen in the figures, results were qualitatively very similar to Case 3 as both the mean

and standard deviation of the error increased strongly with increasing depth from
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the camera. Again, this effect was essentially negligible within 40 meters of depth.

As with Case 3, there were 173 instantiations in which the R7 algorithm lacked a

sufficient number of points to provide measurements and there were substantially

more outliers than in Cases 1 and 2. The strong outlier observed in Case 3 remained

when providing R7 with the true relative attitude of the receiver.

Similarly, Figures 98 and 99 show that component position errors in the left camera

frame were qualitatively similar to Case 3. Table 22 presents the mean and standard

deviations of the left camera frame component position errors for Cases 3 and 4.

Figure 96. Spherical Position Errors, Case 4.
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Figure 97. Spherical Position Errors, Case 4, Zoom In.

Figure 98. Position Errors, Case 4, Left Camera Frame.
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Figure 99. Position Errors, Case 4, Left Camera Frame, Zoom In.

Statistical comparisons between the results of Cases 3 and 4 revealed similar re-

sults to the the statistical comparisons conducted between Cases 1 and 2. Again,

paired t-tests were used to compare means and two-sample F -tests were used to com-

pare variances. In Case 3, when no attitude information was provided to R7, mean

spherical error was greater, and mean x, y, and z -position errors were more strongly

biased at confidence levels � 99%. The 95% confidence intervals for the differences

between the means were [0.080m, 0.110m], [0.247m, 0.274m], [0.111m, 0.131m], and

[0.073m, 0.045m], respectively. Although the mean error in the x -position for Case 4

was slightly negative, all results indicate that Case 3 had stronger bias (positive in

the x and y dimensions and negative in the z dimension) than Case 4.

Again, interestingly, with respect to variances, Case 3 was found to have less

spherical error, x -position error, and y-position error variance than Case 4 at con-

fidence levels greater than 99%. However, flight test data analyzed in Chapter VI

showed the opposite result.
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In terms of processing time, it took a total of 81.1 seconds to process all 6,000

observations in Case 3 and 77.5 seconds to do so in Case 4, a reduction of 4.3%. This

result was consistent with the processing time reduction found when comparing Cases

1 and 2.

Table 22. Position Errors in the Left Camera Frame, Cases 3 and 4.

Case 3 Case 4

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical Error (m) 0.599 0.336 0.503 0.389

X Position Error (m) 0.218 0.286 -0.042 0.331

Y Position Error (m) 0.164 0.136 0.039 0.201

Z Position Error (m) -0.485 0.246 -0.427 0.265

4.2.2.6 Case 5: V5 Data Set.

For Case 5, the same observation set used to generate V5 results was also processed

with the R7 algorithm. Specifically, R7 was applied to the 250 images processed by

V5 with a pixel intensity threshold of 0.05. For this case, the R7 algorithm estimated

both relative position and attitude and no boom was in the fields of view.

Figure 100 depicts the resultant spherical error. Within these close ranges, span-

ning 22 to 30 meters, the error of the R7 algorithm was shown to be fairly stable in

Cases 1 through 4. During data analysis, plotting this data against depth revealed

no growth trend over this small of a spread of ranges. Hence, the data in this section

are plotted against sample number. As can be seen in the figure, the mean spherical

error was very similar to that observed in Case 1 at ranges less than 40 meters. The

mean and standard deviation of the spherical errors are tabulated in Table 23.
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Figure 100. Spherical Error, R7 Applied to the V5 Simulation Data.

Figure 101 depicts the resultant position error components in the left camera

frame. A significant z -axis bias and a slight y-axis bias were present in the data, as

was seen with Case 1. The variance of the error was relatively tight in all each dimen-

sion, without a substantial number of outliers. Position error means and standard

deviations are tabulated in Table 23.
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Figure 101. Position Errors, Left Camera Frame, R7 Applied to the V5 Simulation
Data.

Figure 102 depicts the resultant attitude error components in the tanker frame.

Attitude error means and standard deviations are tabulated in Table 23. Again,

R7 attitude measurements proved to be approximately zero mean with relatively

high magnitude standard deviations. Roll and pitch error standard deviations were

notably higher than that of the yaw error as was observed in the other cases.
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Figure 102. Attitude Errors, Tanker Frame, R7 Applied to the V5 Simulation Data.

Table 23. Position Errors in the Left Camera Frame, Attitude Errors in the Tanker
Frame, R7 Applied to V5 Data Set.

Mean Standard Deviation

Spherical Position Error (m) 0.517 0.123

x Position Error (m) -0.018 0.048

y Position Error (m) 0.149 0.048

z Position Error (m) -0.491 0.118

Roll Error (deg) -0.796 7.907

Pitch Error (deg) 0.292 4.539

Yaw Error (deg) -0.074 1.300
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4.2.2.7 R7 Simulation Processing Times.

No effort was made to optimize processing times in this thesis, but algorithm

processing times were examined to assess how easily each algorithm could be im-

plemented in a real-time system. For the R7 algorithm, image processing of 250

simulation image pairs in the 3DVW took approximately 60.18 seconds, an average

of 0.241 seconds per image. The point clouds returned from the 3DVW were then

processed with MATLAB R©. In total, it took 7.412 seconds to process all 250 point

clouds, an average of approximately 0.030 seconds per image. Image processing times

represented easily the most time-intensive portion of the algorithm. Overall, the R7

algorithm required relatively little processing time in simulation.

4.3 R7 and V5 Comparison

The results from R7 simulation Case 5 were compared to the V5 results obtained

with the configuration specified in Table 24. The exact same set of 250 observation

image pairs was used to generate the V5 and R7 results.

Table 24. Configuration of the V5 Algorithm Used for Simulation Comparison with
the R7 Algorithm.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0.05 Composite 0.05

Figure 103 plots the spherical error present in the two algorithms for this data

set. As can be seen in the figure, the R7 error had both a lower mean and less

variance than the V5 error. A comparison of the V5 and R7 data in Table 25 shows
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that in terms of spherical error V5 had both a larger mean and a higher variance. A

paired t-test and two-sample F -test revealed that these differences were statistically

significant at a confidence level� 99%. The 95% confidence interval for the difference

in mean spherical error was [0.312m, 0.446m] more spherical error when using V5.

The 95% confidence interval for the ratio of the V5 to R7 spherical error variance was

[14.3, 23.4].

Figure 103. Comparison of R7 and V5 Spherical Errors.

However, a comparison of the V5 and R7 data in Table 25, also reveals that R7 was

a more biased estimator in the y and z -dimensions than V5. Paired t-tests revealed

that R7 had more bias in these dimensions at confidence levels � 99%. The 95%

confidence intervals for the difference in means were [0.164m, 0.119m] and [0.178m,

0.410m] in the y and z -dimensions, respectively. When using the attitude fed version

of the R7 algorithm, the differences in the mean y and z -component errors were not

statistically significant.
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Two-sample F -tests revealed that the V5 algorithm had higher levels of error

variance in all dimensions at confidence levels � 99%. The 95% confidence intervals

for the ratios of the V5 error variance to R7 error variance were [47.2, 77.7], [10.3,

16.9], [48.9, 80.4] in the x, y, and z -dimensions, respectively. Overall, this comparison

indicates that spherical error for the R7 algorithm is likely lower with substantially

less error variance than V5 spherical error. Additionally, the results indicate that

R7 estimates may be more prone to bias in certain dimensions, especially depth, but

have substantially less error variance even in more biased dimensions. With respect

to estimate errors, the substantially smaller error variances in the R7 algorithm are

the most significant result. The large variance differences help to explain why the R7

algorithm had significantly less mean spherical error than the V5 algorithm.

Table 25. Comparison of V5 and R7 Position Errors, Left Camera Frame.

V5 R7

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical Error (m) 0.896 0.527 0.517 0.123

X Position Error (m) 0.004 0.374 -0.018 0.048

Y Position Error (m) 0.008 0.174 0.149 0.048

Z Position Error (m) -0.197 0.935 -0.491 0.118

Average image processing time for the V5 and R7 algorithms were approximately

0.40 seconds and 0.24 seconds, respectively. The image processing routines were

similar, but utilized different software. Hence, the difference in achievable image pro-

cessing times is likely negligible. Both these image processing times were inflated by

the need to save data to file that would not be required in a real-time implementation.
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Figure 104 compares the time required to run each algorithm on pre-processed

imagery. Image processing times are not included in the plot. No effort to optimize

speed was attempted in this research effort. However, as can be seen in the figure, as

currently implemented the R7 algorithm is three orders of magnitude faster than the

V5 algorithm when operating on pre-processed imagery. These long V5 processing

times represent a significant challenge to use in a real-time system.

Figure 104. Comparison of R7 and V5 Processing Times.
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V. Flight Test Hardware and Methodology

This chapter describes the flight test hardware and methodology used to acquire

data for this thesis. First, Section 5.1 summarizes the flight test effort. Second,

Section 5.2 describes the flight test equipment. Third, Section 5.3 describes flight

test data collection methodology. Finally, Section 5.4 describes data reduction and

analysis techniques used specifically on flight test data.

Flight test data was collected as part of the Have Vision test management project

at the USAF Test Pilot School. This chapter reproduces much of the information

presented by Stuart (the author of this thesis) et al in the test information memoran-

dum prepared after completion of the Have Vision test program [7]. More details on

hardware components, aircraft modifications (to include system specification sheets

and design drawings), and flight test methodology can be found in the Have Vision

test information memorandum.

5.1 Have Vision Test Management Project Summary

Testing was conducted from 5 to 14 September 2017 in the Restricted Area 2508

(R-2508) complex and surrounding airspace. Testing consisted of ground data col-

lection and six flight test missions totaling 11 sorties and 17.3 flying hours. Four of

the missions were flown with two C-12Cs, tail numbers 76-00161 and 76-00158, flying

in formation with tail number 76-00161 flying as the pseudo-tanker and tail number

76-00158 flying as the pseudo-receiver. One of the missions used a T-38C, tail num-

ber 65-10403, as a pseudo-receiver. The sixth mission was used for troubleshooting

systems issues and did not collect images of a pseudo-receiver.

Testing was accomplished by mounting two stereo camera pairs on the C-12C

pseudo-tanker. The first camera pair captured images in the visible spectrum. This
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stereo pair is referred to as the EO stereo camera pair in this thesis. The second cam-

era pair captured images in the long-wave infrared (LWIR) spectrum. This stereo

pair is referred to as the LWIR stereo camera pair in this thesis. These stereo camera

pairs were used to capture images of the pseudo-receiver. The two aircraft flew in

formation positions typical of those used in AR at altitudes ranging from approxi-

mately 10,000 to 15,000 feet above ground level (AGL), while at airspeeds between

160 to 220 knots indicated airspeed (KIAS). GPS-Aided, Lite (GLITE) time, space,

and position information (TSPI) systems captured position and attitude truth data

on both aircraft.

Unfortunately, technical difficulties with the LWIR cameras significantly con-

strained the collection of LWIR image pairs, but hundreds of thousands of EO image

pairs were successfully captured. Overall, 415,800 image pairs, totaling 4.25 ter-

abytes of data, were collected to support research efforts in this thesis and in the

future. These images feature both C-12C and T-38C pseudo-receivers over various

backgrounds and at various altitudes. Each flight data set included a set of checker-

board images captured during pre-flight ground operations. Additionally, truth data,

captured from the GLITE TSPI systems, was recorded during each formation test

mission. During post-processing, 221 EO image pairs of a C-12C in the contact po-

sition over a mountainous background were used to analyze both the V5 and R7

algorithms. The results from this analysis are presented in Chapter VI.

5.2 Flight Test Equipment

The flight test vision system included two stereo camera pairs—a LWIR stereo

camera pair and an EO stereo camera pair, each mounted on a fabricated lateral

support on the belly of the C-12C pseudo-tanker. Figures 105 and 106 show the

camera system as installed on the C-12C pseudo-tanker. As in simulation, the cameras
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within a stereo pair were separated by approximately 0.5 meters and were oriented

such that they looked aft of the aircraft at an approximate 25◦ down look angle.

This configuration was intended to be representative of the camera configuration

used on the KC-46, with the cameras mounted approximately two feet forward of the

hypothetical boom attachment point, as illustrated in Figure 107. The two sensor

pairs (EO and LWIR) covered the same spectrum as the stereo cameras found on the

KC-46, offered additional redundancy, and were intended to enable analysis of the V5

and R7 algorithms in two different spectra.

Figure 105. Have Vision Camera Configuration, View from Aft of Aircraft.

The external camera mount developed for the C-12C pseudo-tanker was connected

to an orifice in the aircraft’s external structure previously used for other external

modifications. The orifice was located approximately below the copilot’s seat, 18

inches right of centerline. Structural loads and aerodynamic analysis identified two

possible problems resulting from the external modification: excessive static loads

on the mount at the aircraft’s maximum allowable airspeed, and objectionable stall

characteristics. Ultimately, pseudo-tanker airspeed was restricted to 230 KIAS below

10,000 ft pressure altitude (PA), with standard airspeed limits (260 KIAS) applying

above 10,000 ft PA. Additionally, power-off stall characteristics were evaluated to
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Figure 106. Have Vision Camera Configuration, View from Side of Aircraft.

identify a safe landing configuration. As a result, a no flap configuration was used for

all pseudo-tanker landings.

5.2.1 LWIR Cameras.

The LWIR cameras were AtomTM 1024G models with a 16.4 millimeter fixed focus

lens and a Gigabit Ethernet (GigE) interface produced by Sofradir R©. These cameras

operated in the 8-to-14 micron spectral range and produced 1294 x 768 pixel images

at 30 Hertz. The LWIR cameras had a 56.0◦ HFOV and 43.5◦ VFOV. Figure 108

shows the cameras installed on the pseudo-tanker.

5.2.2 EO Cameras.

The EO cameras were Prosilica GT1290C models with a Kowa 4.4 millimeter

fixed focus lens and a GigE interface produced by Allied Vision R©. These cameras

operated in the 400-to-700 nanometer spectral range with a 55.5◦ HFOV and a 43.0◦
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Figure 107. Stereo Camera Illustration and Field of View on Pseudo-Tanker Aircraft.

VFOV. This range of operation is essentially the visible spectrum. The cameras

produced images at 30 Hertz; image sizes were 1280-by-960 pixels. Figure 108 shows

the cameras installed on the pseudo-tanker.

5.2.3 Data Acquisition Computer.

The shutters on the AtomTM LWIR and Prosilica EO cameras were triggered at a

rate of 30 Hertz by a data acquisition computer via an intermediate triggering board.

The data acquisition computer, including applicable software, was built by Dr. Scott

Nykl of AFIT specifically for use in this flight test. The data acquisition computer

had an Intel R© Xeon R© dual central processing unit with 32 gigabytes of random access

memory, an NVIDIA Titan X graphical processing unit, with a 4 terabyte peripheral

component interconnect express solid state drive.
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Figure 108. Close Up of the Have Vision Stereo Camera System.

5.2.4 Geodetics Geo-RelNav R© System.

Truth data systems were necessary to determine the error in position and/or

attitude estimates returned by the V5 and R7 algorithms. Two sources of truth

data were installed to ensure redundancy. First, a Geodetics Geo-RelNav R© system

was installed on both C-12C aircraft. The system was designed to operate via a

communications link that connected a GPS-INS installed on the pseudo-receiver to

a GPS-INS installed on the pseudo-tanker. Fusing the data from the two GPS-INS

systems in a Kalman filter, the Geo-RelNav R© system was intended to provide a time

stamped measurement of the relative position and attitude of the pseudo-receiver in
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the pseudo-tanker body frame. However, this system did not achieve connectivity

during flight test and no useful data was captured from it.

5.2.5 GLITE TSPI System.

As a redundant source of truth data, a GLITE TSPI system was installed on the

C-12C pseudo-tanker and each pseudo-receiver aircraft. The specific configuration

flown on the C-12Cs was configuration C2B. This system returned absolute posi-

tion and attitude measurements from each aircraft. Position accuracy was 1.5 feet

(approximately 0.46 meters) circular error probable (CEP). Based on accuracy speci-

fications, 95% of all system errors should fall within this CEP; hence this figure could

also be reported as CEP95. Attitude CEP95 uncertainties were 0.10◦ in roll, pitch,

and yaw attitude. All measurements were time-stamped with GPS system time.

A different GLITE TSPI variant, configuration C1, was flown on the T-38C

pseudo-receiver. This variant had the same position accuracy specifications as the

C2B configuration, but did not include attitude measurements. Collection of atti-

tude data occurred separately using a previously installed data acquisition system

(DAS) with an accuracy of 0.05◦ in roll, pitch, and yaw. All DAS measurements were

time-stamped with GPS system time.

For all GLITE TSPI systems, installation and single-ship data reduction were

performed by 412th Range Squadron personnel at Edwards Air Force Base, California.

DAS data was reduced by USAF Test Pilot School personnel. The method used to

obtain differential truth data with these absolute measurements is described in Section

5.4.2.
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5.2.6 Test Aircraft.

Flight testing required flying two aircraft in relative positions similar to those used

during AR. As described above, the pseudo-tanker aircraft was a uniquely-modified

C-12C (tail number 76-00158). The pseudo-receiver aircraft was either a C-12C (tail

number 76-00161) or T-38C (tail number 64-10403).

The C-12C is a light transport aircraft primarily used operationally for executive

transport. The aircraft was flown by two pilots and, in the test configuration, had

seats for four additional occupants. Both C-12Cs used during the test incorporated

the enhanced performance improved capability (EPIC) modification. Twin turboprop

engines are mounted on the wings and, with the EPIC modification, feature four-

bladed, swept propellers.

For one sortie, a T-38C Talon was used as the pseudo-receiver aircraft instead of

the C-12C. The T-38C is a two-place twin-turbojet supersonic trainer. The fuselage is

an area-rule (Coke bottle) shape with moderately swept-back wings and empennage.

Data from the T-38 flight is not analyzed in this thesis.

5.2.7 Have Vision System Block Diagram.

The hardware and software components of the Have Vision system are depicted in

block diagram form in Figure 109. After the data acquisition computer triggered the

cameras, the cameras captured images and sent these images back to the computer for

storage. The test conductor (TC) on board the aircraft accessed the data acquisition

computer and toggled between recording and non-recording camera modes. Addi-

tionally, the TC had real-time access to images from all four cameras. After images

reached the computer, the computer applied a time stamp to each image. The time

stamp was referenced to the GPS clock. These images were then fed to the R7 and

V5 algorithms post-flight. Additional inputs to the R7 and V5 algorithms included
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the camera calibration results obtained from using checkerboard images. The outputs

from the R7 and V5 algorithms were compared to the truth data captured from the

GLITE TSPI systems in order to estimate algorithm errors.

Figure 109. Block Diagram of Flight Test Hardware and Data Processing Flow.

5.2.8 Hardware Limitations and Constraints.

An insufficient quantity of LWIR image pairs were collected for algorithm char-

acterization in the LWIR spectrum. One of the LWIR cameras became unresponsive

in flight and did not accept trigger pulses throughout the test effort. Analysis re-

vealed this was most likely due to faulty wiring. Interestingly, both LWIR cameras

demonstrated proper operation on the ground including while on engine power and

during taxi. During these ground operations, the cameras were successfully pulsed

at 30 Hertz and time-stamped images were collected. However, the dropouts en-

countered during flight were not recoverable, and the symptoms remained following
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in-flight restarts of the data acquisition computer. Due to these issues, only approx-

imately 300 LWIR image pairs were collected with a pseudo-receiver aircraft in the

camera fields of view. Unfortunately, these image pairs were mostly captured with

the pseudo-receiver in the pre-contact position, outside the range of interest for algo-

rithm analysis in this thesis. Hence, data analysis for this effort was restricted to the

image pairs collected in the visible spectrum.

Due to unknown causes, the Geodetics Geo-RelNav R© system did not establish

connectivity between test aircraft during execution. Possible causes include incorrect

antenna installation, faulty wiring, or other hardware defects. As a result, the system

did not provide relative position and attitude truth data for analysis. Resource con-

straints dictated that troubleshooting efforts were focused on addressing the issues

with the LWIR cameras, rather than the connectivity issue with the Geo-RelNav R©

system. The GLITE TSPI systems installed in the C-12C and T-38C aircraft per-

formed satisfactorily throughout the test effort, and provided all necessary parame-

ters. However, advertised uncertainties in GLITE TSPI position data (0.46 meters)

exceeded the expected uncertainties provided by the Geo-RelNav R© system (less than

0.15 meters).

5.3 Flight Test Data Collection Methodology

C-12C tail number 76-00158 was flown as the pseudo-tanker. As outlined in

Section 5.2, this aircraft was modified with a data collection computer, EO and

LWIR stereo camera pairs, and a C2B GLITE TSPI system utilized for truth data

collection. Intrinsic, stereo, and extrinsic camera calibrations were completed in a

laboratory setting prior to the first test mission. This aircraft was flown in formation

with a pseudo-receiver aircraft.
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During flight tests, the pseudo-receiver aircraft was either another C-12C aircraft

(tail number 76-00161) modified with the C2B GLITE TSPI system, or a T-38C

(tail number 65-10403) equipped with a C1 GLITE TSPI system and a DAS. The

formation was flown through various formation positions to emulate operational AR

maneuvers. These maneuvers included closure from trail to contact, level and turn-

ing flight in contact, movement to observation positions, and practice breakaways.

The stereo camera pairs were used to collect imagery of the pseudo-receiver aircraft

at these various relative positions over various background environments at various

altitudes.

During post-processing, a subset of the collected EO imagery was fed into the

R7 and V5 algorithms. The algorithm position and/or attitude measurements were

compared to collected position/attitude truth data to characterize algorithm perfor-

mance. Due to hardware limitations and constraints outlined above, only data from

the EO camera pair was available for analysis. The chosen EO imagery excerpt was

taken during the fifth flight test with the C-12C pseudo-receiver in a simulated con-

tact position. This data set captured includes three minutes and three seconds of

images captured over mountainous terrain and is analyzed in Chapter VI.

5.3.1 Calibrations.

Boresighting was performed on all critical components to determine precise relative

positions and orientations. These components included each GLITE system’s IMU

and each camera. Boresighting of the camera systems comprised the extrinsic camera

calibrations. Additionally, camera calibrations were executed in order to provide the

necessary inputs to both the R7 and V5 algorithms. The calibrations included an

intrinsic camera calibration completed on each camera and a stereo camera calibration

completed for each stereo camera pair.
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5.3.1.1 Extrinsic Camera Calibrations and System Boresighting.

Boresighting was accomplished by the USAF Test Pilot School instrumentation

team using a Platinum Series, six-foot, seven-axis FaroArm R© system. System accu-

racy was considered to be 0.001 inches. Using this system, the USAF Test Pilot School

instrumentation team directly measured the position of the origin of each frame of

interest with respect to the origin of the GeoRelNav R© IMU. This measurement was

expressed in the GeoRelNav R© IMU frame. Additionally, one inch long unit vectors

for each frame of interest were defined using this system. The location of the tips of

each of these unit vectors (x, y, and z ) were also measured in the GeoRelNav R© IMU

frame. Frames of interest include the aircraft body frame, the GLITE TSPI system

frame, the left and right LWIR camera frames, and the left and right EO camera

frames.

These measurements enabled the computation of vectors and DCMs expressing the

relative position and orientation of any system component with respect to another.

This process is outlined in Section 5.4.1.

5.3.1.2 Intrinsic Camera Calibrations.

Intrinsic camera calibrations were performed individually on each camera to de-

termine camera distortion parameters and camera calibration matrices as described

in Section 2.3.4. This was accomplished by capturing still images of a checkerboard

of precisely known dimensions and processing them through the Camera Calibration

Toolbox for MATLAB R© [34]. The images used for algorithm analysis were captured

prior to flight test with the cameras installed on the mounting tray. Subsequently, this

mounting tray was installed onto the underside of the pseudo-tanker aircraft. Both

the EO and LWIR camera pairs captured images. The checkerboard, as depicted in

Figure 110, was made of polished steel and white paint that contrasted in both the

240



visible and LWIR spectrums after brief exposure to heat (sunlight). This checker-

board measured 39 centimeters by 36 centimeters and was comprised of squares with

edges 50.8 millimeters long. Checkerboard pattern dimensions were measured within

0.1 millimeters of precision.

Figure 110. From Left to Right, EO and LWIR Images of the Checkerboard Used for
Camera Calibrations.

The steel checkerboard reflected LWIR and EO energy from behind the cameras

which caused difficulties in corner extraction during processing in MATLAB R©. The

software had difficulty distinguishing corners that were washed out by these reflec-

tions. Careful manipulation of the checkerboard was required to capture high contrast

images by ensuring that the clutter reflected in the checkerboard was minimized. This

was accomplished by gathering images that reflected areas of uniform temperature,

such as the sky, as shown in Figure 111. The images in this figure were used to

conduct the intrinsic and stereo camera calibrations.

Additionally, images of a smaller steel checkerboard were captured during ground

operations just prior to each flight with the camera system completely installed on

the pseudo-tanker aircraft. These images were retained as part of the flight test data

set. The edges on the smaller checkerboard were 30.0 millimeters long. The smaller

checkerboard measured 21 centimeters by 27 centimeters.
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Figure 111. Images from EO Cameras Used in Intrinsic and Stereo Camera Calibra-
tions. Images Were Down-Sampled to Create this Figure.

5.3.1.3 Stereo Camera Calibrations.

Stereo camera calibrations were performed on each camera pair (EO and LWIR)

to determine relative position and orientation of the two cameras in each pair. Again,

this was accomplished using Bouguet’s Camera Calibration Toolbox for MATLAB R©

[34].

The stereo camera calibrations used the same images as those used during in-

trinsic calibrations. Results from the intrinsic camera calibrations were used to seed

the stereo calibration algorithm with respect to distortion coefficients and camera

calibration matrices. The stereo camera calibration returned new estimates for the

intrinsic calibration results (distortion coefficients and camera calibration matrices)

as well as estimates of the relative position and orientation of the two cameras in a

given stereo pair. The intrinsic results produced by the stereo camera calibrations

were compared to the initially input intrinsic calibrations for each individual camera
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to ensure accuracy. Appendix A contains the results from the stereo and extrinsic

camera calibrations. The Have Vision test information memorandum also contains

the results for the intrinsic camera calibrations [7].

5.3.2 Simulated Aerial Refueling In-Flight Methodology.

The formation was flown in a manner representative of operational AR procedures.

Formation positions for the pseudo-receiver aircraft were defined based on the cam-

era system location on the pseudo-tanker aircraft. These relative positions attempted

to mimic the geometry observed by the cameras on the KC-46 tanker aircraft. The

defined positions are shown in Figure 112 and Figure 113. The red area in Figure

112 was a no-fly area due to safety considerations. Pseudo-receiver pilots maintained

the proper contact window by visually aligning the leading edge of the pseudo-tanker

aircrafts wing with the top of its propeller arc while also maintaining nose-tail separa-

tion between the two aircraft. Laterally, pseudo-receiver pilots centered their aircraft

on the camera mount, which was offset to the right of the pseudo-tanker aircrafts

centerline by roughly two feet. The view from the contact position is shown in Figure

114.

During each mission, maneuver blocks were flown to capture images of the pseudo-

receiver aircraft throughout various operationally representative AR positions over

various backgrounds. Two AR maneuver blocks were flown: a full AR maneuver

block and an abbreviated AR maneuver block. Generally, the full AR maneuver

block was utilized whenever feasible.

For the full AR maneuver block, the profile was initiated with the lead (pseudo-

tanker) aircraft level at the test point altitude and airspeed (160 ± 10 KIAS with

a C-12C target aircraft, 210 ± 10 KIAS with a T-38C target aircraft). The target

(pseudo-receiver) aircraft was initially 500-1,000 feet below the test altitude at the
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Figure 112. Side View of Contact Position Used in Flight Test.

same airspeed as the lead aircraft, at a range of 0.5-1.0 nautical miles (NM) in trail.

Once both aircraft were ready, the target aircraft was cleared to the pre-contact

position, closing at relative velocity of approximately 20 knots. The pre-contact

position was defined as 50 feet behind the contact position, as shown in Figure 113.

Once stabilized at pre-contact, the target aircraft was cleared to the contact position,

closing at a rate of approximately 1 foot per second. Once in position, the target

aircraft maintained the center of the contact window for at least two minutes.

Next, the formation executed a 360◦ turn at a 30◦ angle of bank while the target

aircraft maintained the contact position. After both aircraft rolled wings level and

stabilized, the target aircraft moved through the pre-contact position to a left or

right observation position outside of camera fields of view. After moving to both
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Figure 113. Formation Positions Flown During Flight Test (Not to Scale).

observation positions, the target aircraft moved back through the pre-contact position

to the contact position.

Finally, from the contact position, the formation executed a simulated breakaway

maneuver. During this maneuver, the lead aircraft advanced power while maintaining

straight and level flight. The target aircraft retarded power and initiated a descent

while maintaining visual contact with the pseudo-tanker. Once well clear, defined as

outside a 500 foot bubble and in visual contact, the target aircraft terminated the

maneuver. The lead aircraft maneuvered to test conditions for the next point while

the target aircraft maneuvered to a position 0.5 NM in trail and 500 feet below the

lead aircraft.
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Figure 114. View from the Contact Position.

For the abbreviated AR maneuver block, the target aircraft closed visually to

the pre-contact position. When cleared, the target aircraft closed to and maintained

the contact position. The target aircraft returned to the pre-contact position when

necessary to alleviate pilot fatigue.

These maneuver blocks were flown over a diverse set of backgrounds during the

five formation test missions. Figure 115 depicts the maneuver areas planned to be

flown over. In the figure, “D” denotes a desert background, “M” a mountainous

background, “U” an urban background, and “O” an oceanic background. Of these all

areas except “M2,” “D2,” and “U2” were utilized during flight tests. Data collected

in area “M3” is analyzed in Chapter VI.
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Figure 115. Background Environments Captured During Flight Test.

5.4 Flight Test Data Analysis Methodology

This section describes methodology used only on data collected in flight test.

Aside from the specific methods pertaining solely to flight test data that are outlined

in this section, algorithm and analysis methodology was the same as described in

Chapter III.

5.4.1 Boresight Data Reduction.

As described in Section 5.3.1.1, boresight data was provided by the USAF Test

Pilot School instrumentation team in the form of high precision vector measurements.

These measurements were taken from the origin of the GeoRelNav R© IMU installed in

the C-12C pseudo-tanker and the C-12C pseudo-receiver. Two forms of measurements

were taken:
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1. The position of the origin of each frame of interest with respect to the origin of

the GeoRelNav R© IMU. This measurement was expressed in the GeoRelNav R©

IMU frame.

2. The position of the tips of one inch long unit vectors for each frame of interest

expressed in the GeoRelNav R© IMU frame. Three such measurements were made

for each frame of interest—the tip of the x, y, and z unit vectors.

The following method was used to reduce this data into any given DCM or vector

quantity of interest. Consider a frame of interest, A, and the GeoRelNav R© frame,

Geo. The location of the origin of the A-frame in the GeoRelNav R© frame is the

vector AGeo. The location of the tip of the A-frame’s x, y, and z unit vectors in the

Geo-frame are Ax,Geo, Ay,Geo, and Az,Geo, respectively. Hence, the unit vectors of the

A-frame expressed in the Geo-frame are:

Ai,Geo = Ax,Geo −AGeo (112)

Aj,Geo = Ay,Geo −AGeo (113)

Ak,Geo = Az,Geo −AGeo (114)

Unit vectors for a frame B can be obtained in the same manner.

The resultant unit vectors for frames A and B can be used to directly compute

the DCM expressing the rotation between the A-frame and B -frame:

RB
A =


Bi,GeoT

Bj,GeoT

Bk,GeoT


[
Ai,Geo Aj,Geo Ak,Geo

]
(115)

Where a vector of the form Xp is a three-by-one column vector.
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The translation vector from the origin of frame A to the origin of frame B can

then be computed as:

BA = RA
Geo

(
BGeo −AGeo

)
(116)

Where RA
Geo is computed using the same methodology described in Equations (112)

through (115), and BA is the position of the origin of frame B in the A-frame. Note

that the unit vectors for the Geo-frame, expressed in the Geo-frame would simply be

[1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T . Using this methodology, the DCMs and translation

vectors between all frames of interest were computed.

5.4.2 Truth Data Reduction.

The GLITE TSPI system recorded the absolute position and attitude of the both

the pseudo-tanker and the pseudo-receiver. Position data was expressed in the ECEF

frame. Attitude data was expressed as a roll, pitch, and yaw describing the rotation

from the local NED frame to the aircraft body frame in the sense of the 3-2-1 conven-

tion. All data was time-stamped to the GPS clock. In order to serve as truth data,

these absolute measurements had to be converted into measurements describing the

position and orientation of the pseudo-receiver relative to the pseudo-tanker. The

following method was used to obtain this result. This method utilized MATLAB R©

functions developed by the Autonomy and Navigation Technology (ANT) Center at

AFIT. The details of each function’s operation are not described in this document.

First, ECEF positions from the pseudo-receiver were converted into a local, NED

position centered on the position of the pseudo-tanker. This was done with the ANT

Center MATLAB R© function EcefToLocalLevel. The resulting quantities were the

position of the pseudo-receiver with respect to the pseudo-tanker expressed in the

local NED frame, sNED.
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Second, roll, pitch, and yaw attitude data from each aircraft were transformed

into a DCM describing the rotation from the NED frame to each aircraft’s body

frame, Rs
NED and Rp

NED. This was done with the ANT Center MATLAB R© function

RpyToDcm.

Third, using these results, the position of the pseudo-receiver in the pseudo-tanker

frame was computed as:

sp = Rp
NEDsNED + Rp

NEDRNED
s ∆Gs (117)

Where the vector ∆Gs accounts for the difference in GLITE TSPI system installation

location between the C-12C pseudo-receiver and the C-12C pseudo-tanker. This

vector is expressed in the receiver aircraft frame and goes from where the receiver

aircraft’s GLITE system was actually installed to the coordinates the system would

have had if it had been installed in the same location as it was in the tanker aircraft.

Since the pseudo-tanker and pseudo-receiver aircraft were the same type (C-12C), the

addition of this vector simplified algorithm analysis.

Fourth, the DCM expressing a rotation from the pseudo-tanker frame to the

pseudo-receiver frame was computed as:

Rs
p = Rs

NEDRNED
p (118)

5.4.3 Truth Data Uncertainty.

As discussed in Section 5.2.5, the CEP95 of the GLITE TSPI system known to be

1.5 feet. The following methodology was used to convert this figure into dimensional

and spherical uncertainties. Uncertainties were determined for both single data points

and for mean errors for a sample of size n. Several assumptions were made in this

analysis. It was assumed that the errors of the GLITE TSPI system were normally
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distributed with a mean of zero. Additionally, it was assumed that the CEP95 figure

described the 95% confidence interval of a single sample error in any two dimensions.

These two dimensions were assumed to have equal 95% confidence intervals. Finally,

it was assumed that the error distributions of each dimension were independent.

Given these assumptions and the figure for CEP95, the 95% confidence interval

for a measurement in a single dimension, ε, can be computed as:

ε = ±
√

CEP952/2 (119)

Where ε describes the dimensional uncertainty of a single system taking an absolute

measurement. When combining the measurements of two systems into a relative

position measurement, the 95% confidence interval for the relative measurement, εrel,

can be computed as:

εrel = ±
√
ε2 + ε2 = CEP95 (120)

The 95% confidence interval of the spherical uncertainty, εsphere would therefore be:

εsphere =
√

3CEP95 (121)

These 95% confidence intervals pertain to a single sample.

To compute the 95% confidence interval for the mean error taken from a sample

size of n measurements, one must compute the standard deviation of the mean,

SDOM, with the equation [50]:

SDOM =
σ√
n

(122)
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Where σ is the known standard deviation of the normal distribution. Based on the

assumptions outlined above:

CEP95 = 1.96σ (123)

Therefore the 95% confidence interval for the mean error in the GLITE TSPI system

in a sample size of n in a single dimension can be computed as [48]:

[
−CEP95√

n
,
CEP95√

n

]
(124)

The 95% confidence interval of the mean spherical error is a more complicated

computation. This value was estimated in MATLAB R© by generating three Gaussian

random variables with means of zero and standard deviations of CEP95/1.96. A total

of 221 random draws were taken from each of these random variables. This experiment

was repeated ten million times in MATLAB R©. The results were then used to generate

a histogram normalized as a CDF with the MATLAB R© function histogram. This

plot is shown in Figure 116. As can be seen on the plot, this experiment indicated

that 0.390 meters comprised the upper limit of the 95% confidence interval for mean

spherical error.
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Figure 116. Experimental Results Used to Determine 95% Confidence Interval of Mean
Truth Data System Spherical Error.

5.4.4 Relating Camera Data to the p-Frame.

The method outlined in Section 5.4.1 was used to compute DCMs and translation

vectors between the EO cameras and the GLITE TSPI truth data system. The GLITE

TSPI system was essentially aligned with the aircraft body frame during flight test.

Hence, frame of the pseudo-tanker’s GLITE TSPI system was considered to the be

the p-frame for the purposes of analyzing the V5 and R7 algorithms. This frame is

described in Sections 3.1 and 3.2.

5.4.5 V5 Algorithm Considerations.

5.4.5.1 Reference Image Database Generation.

In order for the V5 algorithm to operate properly, a reference image database had

to be generated with simulated cameras having the same orientation with respect

to the pseudo-tanker as the cameras actually used in flight test. This database was

generated in the 3DVW using the results obtained from the extrinsic camera calibra-
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tions. Additionally, this database was defined such that it completely contained all

images that would be analyzed. The dimensions of this database were the same as

those used in simulation, which are described in Section 4.1.1.

As described in Section 3.4, each image in the reference image database has a

corresponding position that is known and defined. In order to correctly relate the

reference images to flight test images, these positions must correspond to the positions

that would be returned from the truth data system. In the 3DVW, the position of

depicted in each reference image was defined to be the vector going from the tanker’s

left camera to the position on the C-12 receiver where a left camera would be installed

were it flying as the pseudo-tanker. The “tanker” in the 3DVW is purely notional

and can be considered to be a C-12C. Hence, if one considers the 3DVW tanker and

receiver to be identical aircraft, this vector points from a position on the tanker to the

same spot on the receiver. As a result, this is the same vector as that returned after

GLITE TSPI data reduction since this vector points from a spot on the tanker to

the same spot on the receiver. This is true because in the reference image database

is generated with both the tanker and receiver aircraft in identical attitudes (e.g.

the receiver is not yawed, pitched, or rolled with respect to the tanker body frame).

Figure 117 depicts this situation.

5.4.5.2 Image Rectification and Scaling.

When working with flight test observation images, one additional challenge arose

relating to image rectification. Based on the construct of the 3DVW, the simulated

cameras generate ideal images. For instance, the images lack distortion, the prin-

cipal point of the images is precisely centered, and the focal length of the cameras

essentially matches the theoretical value. By contrast, when working with actual

real-world cameras, the optics of the camera differ significantly from their idealized
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Figure 117. Methodology Used to Relate Reference Image Database to GLITE TSPI
Data.

values. Hence, rectified image pairs generated from 3DVW images differ from the

rectified image pairs generated from real-world cameras.

This difference manifests in the mapping describing the transformation from a

non-rectified image to a rectified image. This effect of this change is most noticeable

in terms of the size of the returned images. Table 26 describes how the rectified,

3DVW reference images differed from the rectified, real-world observation images in

terms of size.

Table 26. Difference in Processed Image Sizes Between Reference Images and Flight
Test Observation Images

Image Type Size (pixels)
Processed 3DVW Reference Images 961 x 1283

Processed Real-World Observation Images 1000 x 1328

The V5 algorithm operates on a fundamental level by comparing the pixels located

at the same coordinates in the reference and observation images. If these two image
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sets are different sizes, the algorithm will not operate properly. Hence, the size

difference resulting from rectification is a major challenge for the V5 algorithm.

This challenge was overcome by re-scaling the observation images to be the same

size as the reference images. In order to accomplish this, the edges of the obser-

vation images were cropped such that the resultant image as the same size as the

reference images, 961-by-1283 pixels. During data analysis, experimentation with the

MATLAB R© function imresize was also used to resize the observation images. This

method yielded similar results. However, either method is not an ideal solution to

this problem, and could likely contribute to errors in the V5 algorithm’s solution as is

described in Section 6.3. Ideally, one would alter the simulation environment used to

generate the reference imagery such that the simulated cameras could better mimic

the optics to the real-world cameras. This would result nearly identical reference and

observation image rectification mappings.

5.4.6 R7 Algorithm Considerations.

5.4.6.1 Shell Model Point Cloud.

In addition to the full model point cloud used in simulation, a shell model point

cloud was used for the ICP portion of the R7 algorithm on flight test data. This shell

model was developed by Parsons in [6]. While this shell point cloud did not yield

significantly different results in simulation in this research effort, in flight test this

shell proved to be more effective as is discussed in Section 6.2. The shell model point

cloud used is depicted in Figure 118. Essentially, this model point cloud eliminates

points that are not likely to be visible to the cameras since they are looking down at

the receiver.
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Figure 118. Shell Model Point Cloud Used with Flight Test Data.

5.4.6.2 Miscellaneous Data Processing Changes and Example.

During R7 execution on flight test data, observed point cloud points were returned

in the v -frame. The origin of the v -frame and p-frame were defined to be at the

location the pseudo-tanker’s GLITE TSPI system. Hence, as can be seen in Figure

118, the model point cloud was translated such that its origin was positioned where

the origin of the GLITE TSPI system would be located in the model point cloud.

Image pairs collected in flight test were fed into the 3DVW for processing. Us-

ing the camera calibration results obtained during ground testing, image pairs were

transformed into three-dimensional point clouds expressed in the v -frame. This pro-

cess made use of the same methodology used in processing simulated imagery and is

described in Section 3.5. Figure 119 shows an image pair collected in flight test and

the resultant point cloud generated in the 3DVW.

After conducting image processing in the 3DVW, point cloud data was then fed

into MATLAB R© for further processing. The MATLAB R© processing performed on

flight test data was identical to that used with simulation data, the only difference
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Figure 119. Image Pair and Resultant Point Cloud Generated in 3DVW Viewed from
Front and Side.

being the source of truth data. As in simulation, raw point clouds were filtered and

denoised using the process outlined in Section 3.5.4. Figure 120 shows an example

raw point cloud and the filtered point cloud returned in MATLAB R©.

Figure 120. At Left, the Raw Point Cloud is Shown in Red. At Right, Blue Circles
Depict the Raw Point Cloud and the Red Dots Depict the Results After Filtering.

Next, in MATLAB R© the filtered point cloud was fed into the ICP algorithm. This

was the same process used with simulated images, except for the use of the shell

model point cloud. The left portion of Figure 121 shows the result of filtered point
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cloud being matched to the shell model point cloud with ICP. The right portion of

Figure 121 shows a visualization of the error in the R7 algorithm’s solution for this

example.

Figure 121. From Left To Right, the ICP Solution and an Error Visualization. At
Left, the Red Dots Depict the Raw Point Cloud and the Blue Circles Depict the Model
Point Cloud. At Right, Red Dots Depict the R7 Estimate and the Blue Circles Depict
the True Solution.

5.4.7 Partial Autocorrelation Function and Data Decimation.

The partial autocorrelation function can be used to determine how much data

should be decimated to attain statistically independent samples. In time series data,

this process is necessary when there is a strong correlation between consecutive sam-

ples [51]. The MATLAB R© function pacf, developed by Jorris of Lockheed-Martin,

was used to apply a partial autocorrelation function to flight test data. This was

done to ensure the independence of the data samples used to analyzed the R7 and

V5 algorithms.

Using this function, one can determine how many consecutive samples need to

be decimated from a data set to eliminate unacceptably high correlation between

time-consecutive samples. The threshold used on flight test data was an R2 value

of 0.05. Based on the returns from the partial autocorrelation function on position

and attitude errors, R7 error results were decimated to a subset suitable for analysis.
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This decimated data set was the used for both R7 and V5 analysis. This process is

detailed in Section 6.2.1.
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VI. Flight Test Data and Analysis

The Have Vision test management project collected a data set of 415,800 im-

age pairs with either a C-12C or T-38C aircraft positioned as a pseudo-receiver at

10,000 to 15,000 feet AGL over various desert, oceanic, urban, cloud, and mountain-

ous background environments. In this chapter, both the R7 and V5 algorithms are

analyzed using a subset of these images. The subset consisted of 221 independent,

time-matched stereo image pairs captured from the EO cameras. This particular data

set was collected with the pseudo-receiver C-12C aircraft positioned in the contact

position before a mountainous background (area “M3” depicted in Figure 115) at ap-

proximately 10,000 feet AGL. This data set spanned a three minute and three second

time interval.

Flight results from the Have Vision project were also presented in the program’s

test information memorandum [7]. However, flight test results presented in this chap-

ter differ substantially from those presented in the test information memorandum due

to algorithm developments and analysis occurring after completion of that document.

Consequently, the results presented in this thesis supersede those presented in the

Have Vision test information memorandum.

6.1 Truth Data Resolution

In this chapter, the 95% confidence intervals plotted for the truth data system

apply to the 95% confidence interval of truth data error at a single data point. The

95% confidence intervals for the mean truth data system error are not plotted. The

middle column of Table 27 presents the 95% confidence intervals for the truth data

system with respect to single data points. The right column presents the 95% confi-
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dence interval for the mean truth data system error in a sample of 221 data points.

Section 5.4.3 describes how these values were estimated.

Table 27. Truth Data System Confidence Intervals, GLITE TSPI System.

Single Data Point (m) Mean of 221 Data Points (m)

One Dimension

Error

95% CI

[-0.457, 0.457] [-0.031, 0.031]

Spherical Error

95% CI
[0, 0.792] [0, 0.390]

Any given single data point falling within the 95% truth data confidence intervals

depicted on a plot may actually have been error free. However, the confidence interval

for the mean error in the truth data system was much lower than the single point

confidence interval. Hence, any mean algorithm errors that exceed the 95% confidence

interval of the truth system mean error indicate a possible algorithm bias. The

confidence intervals for attitude errors are not tabulated or plotted because the truth

data attitude uncertainties at a single point were much smaller in magnitude than

the attitude errors observed in the R7 algorithm.

6.2 R7 Data and Analysis, Flight Test

This section describes analysis of the R7 algorithm performed with flight test data.

Section 6.2.1 describes the process used to obtain a time-independent data set suitable

for analysis. Section 6.2.2 presents the results obtained when using the non-attitude

fed version of the R7 algorithm. Section 6.2.3 presents the results obtained when the

attitude fed version of the R7 algorithm. Section 6.2.4 details the algorithm processing
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times observed when working with flight test data. Flight test data analysis revealed

five primary findings:

1. Mean R7 spherical errors fell within the uncertainty of the truth data system.

2. The R7 algorithm manifested a persistent bias of several decimeters in the z -

component of its position estimate in the left camera frame.

3. Attitude error variances were much smaller in magnitude than those observed

in simulation at similar ranges.

4. The attitude fed version of the R7 algorithm reduced spherical errors, depth er-

rors, and the variance of these errors at a statistically significant level compared

to the non-attitude fed version. The error variance result contradicts simulation

results.

5. Point cloud generation was the most time consuming component of the algo-

rithm. Algorithm operation on the resultant point cloud required only 0.026

seconds on average.

6.2.1 Data Set Decimation.

Initially the R7 algorithm was applied to 5,501 image pairs captured between

17:50:53 coordinate universal time (UTC) and 17:53:56 UTC on 13 September 2017.

These results showed a high degree of time correlation in terms of spherical position

error, component position errors, and attitude position errors. Time series plots of

these errors can be seen Figures 122, 124, and 125, respectively. Figure 123 depicts

the spherical error plotted against three-dimensional position in the v -frame.
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Figure 122. R7 Spherical Error in Flight Test, All Data Points, No Attitude Feeding.

Figure 123. R7 Spherical in Flight Test, All Data Points, No Attitude Feeding.
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Figure 124. R7 Position Errors in Flight Test, All Data Points, No Attitude Feeding,
Left Camera Frame.

Figure 125. R7 Position Errors in Flight Test, All Data Points, No Attitude Feeding,
Left Camera Frame.
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The partial autocorrelation function was applied to the x, y, z, roll, pitch, and

yaw errors returned from this set of 5,501 error values. The left camera frame z -

position error exhibited the most persistent correlation. Figure 126 shows the return

from the MATLAB R© pacf function for this error value. PACF returns for other

error components can be found in Appendix B. As can be seen in the figure, the

correlation between consecutive samples does not fall below the 0.05 threshold until

the 18th sample. Based on this result, the data set of 5,501 image pairs was decimated

to retain only every 25th image. A higher value than 18 was chosen to as a conservative

measure to ensure time independence and to reduce the size of the subset to be used

with the V5 algorithm. This decision was based on the V5 algorithm’s long processing

time requirements. This resulted in a time-independent subset of 221 observation

images.
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Figure 126. Partial Autocorrelation Function Results, Z Position Error, Left Camera
Frame.

6.2.2 Case 1: No Attitude Feeding.

The decimated set of 221 images was first processed through the R7 algorithm

configured to include attitude estimation. Spherical error results are shown in Figure
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127. As can be seen in the figure, mean spherical error less than 35 centimeters and

the distribution of the error was fairly consistent throughout the time series covered

by this data set. All errors, except for one value fell within the single sample 95%

confidence interval of the relative position computed with GLITE TSPI system data.

Additionally, the mean spherical error fell within the 95% confidence interval for the

mean truth data system spherical error as can be seen from Table 27. Hence, no

assertion of algorithm error can be made based on examining spherical error only.

Interestingly, these errors were smaller than those observed in simulation. This

phenomenon could be attributed to the fact that the receiver was essentially centered

in the camera fields of view in flight test, while in simulation the receiver was delib-

erately placed closer to the boundaries of the fields of view. Table 28 presents the

mean and standard deviation for spherical error for this case. Table 29 presents the

95% confidence interval for the mean spherical error for this case.

Figure 127. R7 Spherical in Flight Test, Decimated Data Set, No Attitude Feeding.
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Figure 128 plots the component position errors observed in the left camera frame.

As can be seen in the figure, mean x and y-position errors were very close to zero,

while a bias of approximately 30 centimeters was present in the z -position error.

Standard deviations in all dimensions were on the order of centimeters. Comparison

with the confidence interval for the mean error of the truth data system indicates

that the z -position estimate was likely biased. Additionally, small bias may exist in

the y-position estimate as well. As discussed in Sections 2.3.6.6 and 4.2.2.1, any bias

in the x and y-component estimates, could be attributed to errors in depth. Table 28

presents the means and standard deviations of the position errors for this case. Table

29 presents the 95% confidence intervals for the mean position errors for this case.

Figure 128. R7 Position Errors in Flight Test, Decimated Data Set, No Attitude
Feeding, Left Camera Frame.

This bias constitutes an error in depth estimation. “Depth” in this context refers

to the z -position in the left rectified camera frame, ZLr . As was discussed in Section

2.3.6.6 and Section 4.2.2.1, this depth value and the corresponding resolution are
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computed as:

ZLr = −fxT
Rr
x

d
(125)

∆ZLr =
Z2
Lr

fxTRr
x

∆d (126)

Where fx is the focal length in pixels, TRr
x is the x distance between the stereo

cameras in the right rectified camera frame, d is the computed disparity value, and

∆d is the disparity resolution. An error in any fx, T
Rr
x , or d will lead to errors in

depth estimation.

This speaks to the criticality of camera calibrations. A 1% error in fx or TRr
x , will

lead to a persistent 1% error in depth if disparity values are perfectly computed. For

the camera configuration used in flight test, 1% error in fx would be approximately 10

pixels while a 1% error in TRx would be approximately 5 millimeters. With respect to

the focal length obtained in camera calibrations, the 3σ uncertainty for focal length

estimates was less than 7.2 pixels in all cases. Based on this result and the high

precision with which the baseline was measured, errors fx and TRr
x likely do not

solely account for the observed depth bias.

At a depth of 30 meters, with a disparity resolution of 1
16

of a pixel, and based

on the camera calibration results presented in Appendix A, the depth resolution for

any given point in the observed point cloud should have been approximately 0.095

meters. Hence, depth resolution could account for a substantial portion of the bias.

Figure 129 depicts the R7 and truth data system computed depths and the ratios

of these depths for the non-decimated data set of 5,501 samples. As can be seen in

the figure, R7 persistently underestimated the depth by approximately 1%. Based

on the discussion above, the portion of the bias not attributable to depth resolution

could be attributed to small errors in fx and TRx or to persistent over-estimation of

disparity values as was discussed in Section 4.2.2.
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Figure 129. At Left, Left Camera Frame Depths for the Non-Decimated Data Set. At
Right, the Ratio of True Depth to Estimated Depth for the Non-Decimated Data Set.

With respect to attitude errors, flight test data revealed performance that was

somewhat different from performance observed in simulation. These errors are de-

picted in Figure 130. Truth data confidence intervals are not presented on this plot

because they were 0.1◦ for a single sample. As with position truth data, the 95%

confidence interval of the mean attitude error in each dimension would be several

orders of magnitude smaller than this. Hence, any computed errors in R7 attitude

estimation were likely true errors.

Similar to simulation, the R7 pitch estimate exhibited a persistent negative bias

(the algorithm tended to estimate greater pitch down than was present). However,

standard deviations of the attitude estimates were on the order of about a degree,

much lower than that predicted in simulation. Additionally, flight test yaw errors

exhibited a positive bias (nose right) which was not observed in simulation. Table

28 presents the means and standard deviations of the attitude errors for this case.

Table 29 presents the 95% confidence intervals for the mean attitude errors for this

case. These results indicate that the R7 algorithm may be better at providing rough

attitude estimates than was suggested by simulation results.
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Figure 130. R7 Attitude Errors in Flight Test, Decimated Data Set, Tanker Frame.
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Table 28. Flight Test Results for the R7 Algorithm Using the 221 Decimated Samples.

Case 1 Case 2

Mean Standard Deviation Mean Standard Deviation

Spherical

Error (m)
0.326 0.147 0.270 0.119

x Position

Error (m)
0.015 0.079 0.016 0.074

y Position

Error (m)
0.076 0.094 0.045 0.090

z Position

Error (m)
-0.283 0.165 -0.225 0.142

Roll

Error (deg)
0.498 1.315

Pitch

Error (deg)
-2.614 1.105

Yaw

Error (deg)
1.144 0.630
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Table 29. Mean Error 95% Confidence Intervals for the R7 Algorithm on Flight Test
Data. Intervals Indicated with a “*” Overlap with the 95% Confidence Interval of the
Truth Data Mean Error.

95% Confidence Interval of the Mean

Case 1 Case 2

Spherical Error (m) [0.307, 0.346]* [0.254, 0.285]*

X Position Error (m) [0.005, 0.026]* [0.006, 0.0256]*

Y Position Error (m) [0.063, 0.089] [0.033, 0.057]

Z Position Error (m) [-0.305, -0.262] [-0.244, -0.206]

Roll Error (deg) [0.324, 0.672] N/A

Pitch Error (deg) [-2.761, -2.468] N/A

Yaw Error (deg) [1.060, 1.227] N/A

6.2.3 Case 2: Attitude Feeding.

Next, the decimated data set of 221 observation image pairs was processed through

the attitude fed variant of the R7 algorithm. Spherical error results are shown in

Figure 131. As can be seen in the figure, mean spherical error was less than 30

centimeters and the distribution of the error was fairly consistent throughout the

time series covered by this data set. All errors fell within the 95% confidence interval

of the relative position computed with GLITE TSPI system data for a single sample.

Additionally, the mean spherical error fell within the 95% confidence interval for the

mean truth data system spherical error. Hence, no assertion of algorithm error can

be made by an examination of spherical error alone. Both the mean spherical error

and the standard deviation of the spherical error were lower than in Case 1. Table

28 shows this result. Table 29 shows that the 95% confidence interval for the mean

spherical error in Cases 2 does not overlap with that from Case 1.
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A paired t-test showed that the Case 1 and Case 2 mean spherical errors had a

difference of statistical significance. At the 95% confidence level, the mean spherical

error in Case 2 was 0.045 to 0.068 meters less than in Case 1. Similarly, a two-sample

F -test showed that the variance of this error was significantly smaller in the attitude

fed case. This result is the opposite of what was observed in simulation. The 95%

confidence interval for the ratio of the variance in Case 1 to the variance in Case

2 was [1.181, 2.006]. These results indicate that the attitude fed version of the R7

algorithm can reduce mean spherical error and spherical error variance.

Figure 131. R7 Spherical in Flight Test, Decimated Data Set, Attitude Feeding.

Figure 132 plots the position errors for this case. As in Case 1, a strong bias

was observed in the z -position estimate. Mean errors in the x and y-dimensions were

much closer to zero. Based on the uncertainties of the truth data system, the observed

z -axis bias in all likelihood represents a real bias. Again, as can be seen in Table 28,

the mean and standard deviation for the z -component were lower in Case 2. Table
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29 shows that the 95% confidence interval for the mean z -position error for Case 2

does not overlap with that from Case 1.

A paired t-test showed that z -position error differences between Cases 1 and 2

were statistically significant. At the 95% confidence level, the magnitude of the mean

z -position error in the attitude fed case was 0.068 to 0.047 meters less than in the

non-attitude fed case. Similarly, a two-sample F -test showed that the variance of this

error was likely somewhat smaller in the attitude fed case. This result is the opposite

of what was observed in simulation. The 95% confidence interval for the ratio of the

variance in Case 1 to the variance in Case 2 was [1.026, 1.743].

Additionally, the mean y-position error was lower in Case 2. This can likely

be attributed to the reduction in z -position error. A paired t-test showed that y-

position error differences were statistically significant. At the 95% confidence level,

the magnitude of the mean y-position error in the attitude fed case was 0.024 to 0.038

meters less than in the non-attitude fed case. Differences between other means and

variances were not found to be statistically significant.
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Figure 132. R7 Position Errors in Flight Test, Decimated Data Set, Attitude Feeding,
Left Camera Frame.

Overall, the attitude fed variant of the R7 algorithm reduced mean errors and error

standard deviations. Although these reductions were only on the order of centimeters,

error reductions of this magnitude are significant in an AAR application due to the

precision required. Most importantly, these differences were statistically significant

in terms of error in the depth dimension (left camera frame z -position). Errors in

depth directly contribute to errors in other position estimate components as detailed

in Section 2.3.6.6. Hence, based on the results from this data set, the attitude fed

variant of R7 results in better performance than the non-attitude fed variant.

6.2.4 R7 Flight Test Processing Times.

Image processing times in the 3DVW were longer when reading flight test images

from disk than when using simulation generated imagery. It took approximately 69.75
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seconds to process the 221 observation images analyzed in the decimated data set, an

average of 0.316 seconds per image. In a system designed to work in real-time, these

processing times would need to be reduced. However, no attempt was made in this

test effort to optimize processing times. In the future, speed improvement could be

accomplished in part by directly feeding captured imagery into R7 image processing

routines or, more generally, with architecture specifically designed to optimize speed.

MATLAB R© processing times were similar to those observed in simulation, requir-

ing 144.08 seconds to process 5,501 point clouds returned from the 3DVW. This is

an average of 0.026 seconds per point cloud. The R7 algorithm’s speed, in absence of

any speed optimization efforts, would ease implementation in a real-time system.

6.3 V5 Data and Analysis, Flight Test

The same decimated set of 221 flight test observation images used to analyze the

R7 algorithm were used to analyze the V5 algorithm. As described in Section 5.4.5,

a reference image database was created specifically for comparison against flight test

observation images. Errors were analyzed in the left camera frame. An integrity risk

level of 0.05 was utilized in the analysis. With this integrity risk level and sample

size of 221, an average of 11.05 protection level violations would be expected.

Based on the simulation results outlined in Section 4.1, two configurations of

the V5 algorithm were tested against flight test data. Table 30 describes these two

configurations. The uniform prior probability distribution was identical to that used

with simulation data. By contrast, the Gaussian prior did not make use of truth data,

but instead relied upon the V5 algorithm’s estimate at the last epoch.

With respect to the Gaussian prior, µi is the mean of the prior probability distri-

bution used on sample i, x̂i−1 is the composite position estimate from sample i − 1,
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and Σ is the covariance matrix. When using the Gaussian prior, the first sample used

a uniform prior probability distribution identical to that used with simulator data.

Table 30. Configurations of the V5 Algorithm Used on Flight Test Data.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0.05 Composite 0.05

Gaussian

µi = x̂i−1

Σ =


1.1 0 0

0 1.1 0

0 0 1.1



Gaussian

µ = 0

σ = 0.1

0.05 Composite 0.05

6.3.1 Case 1: Uniform Prior.

In Case 1 a uniform prior probability distribution was used to apply the V5 algo-

rithm to flight test data. Figure 133 shows that mean spherical error was less than

a meter, and that no protection level violations were observed. Using this config-

uration, protection levels greatly exceeded error levels as can be seen in Table 31.

Since these results were returned with from an integrity risk level of 0.05, this implies

that the PMF resulting from this configuration was assigning too great a probability

mass to relative positions distant from the estimated position. However, spherical

error magnitudes were similar to those observed in simulation. Table 31 presents the

means and standard deviations of these error components. Table 32 presents the 95%

confidence intervals of the mean spherical error and the mean protection level.
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Figure 133. V5 Spherical Position Error on Flight Test Data Using a Uniform Prior.

Figures 134 and 135 show the left camera frame component position errors re-

turned in this case. As the figures show, there was a strong x -position bias. This

phenomenon was not observed in simulation where the V5 algorithm was an essen-

tially unbiased estimator of x and y-positions in the camera frame. As with simulation

data, the most variability was present in the z -position errors. However, the mean

error in this case was very close to zero. Table 31 presents the means and standard

deviations of these error components. Table 32 presents the 95% confidence intervals

of the mean position errors.
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Figure 134. V5 Position Error on Flight Test Data Using a Uniform Prior, Left Camera
Frame.
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Figure 135. V5 Position Error on Flight Test Data Using a Uniform Prior, Zoomed In,
Left Camera Frame.

Table 31. Flight Test Results for the V5 Algorithm Using the 221 Decimated Samples,
Left Camera Frame.

Uniform Prior Gaussian Prior

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical Error (m) 0.917 0.337 1.018 0.430

x Position Error (m) 0.567 0.180 0.535 0.124

y Position Error (m) 0.084 0.185 0.113 0.181

z Position Error (m) 0.063 0.746 0.178 0.919

Protection Level (m) 4.152 1.143 2.462 0.682

Protection Level

Violations
0 11
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Table 32. Mean Error and Mean Protection Level 95% Confidence Intervals for the
V5 Algorithm on Flight Test Data, Left Camera Frame. Intervals Indicated with a “*”
Overlap with the 95% Confidence Interval of the Truth Data Mean Error.

95% Confidence Interval of the Mean (m)

Case 1:

Uniform Prior

Case 2:

Gaussian Prior

Test Case:

Uniform Prior,

Reference Image

Pixel

Sampling Only

Spherical Error [0.872, 0.961] [0.961, 1.075] [0.904, 1.003]

X Position Error [0.544, 0.591] [0.519, 0.552] [0.533, 0.584]

Y Position Error [0.059, 0.108] [0.089, 0.137] [0.094, 0.142]

Z Position Error [-0.036, 0.162]* [0.056, 0.300] [-0.140, 0.075]*

Protection Level [4.001, 4.304] [2.371, 2.552] [3.388, 3.702]

6.3.1.1 Flight Test PMF Analysis.

Figure 136 shows an example PMF generated with flight test images. A bias

in the positive y-direction of the v -frame (equivalent to positive x -direction in the

left camera frame) is present. Neglecting the bias, most of the probability mass is

concentrated along the camera line-of-sight. The resulting distribution was multi-

modal. These two properties were also observed in simulation. As a result of the

multi-modal nature of the distribution, on average the maximum likelihood estimator

was an inferior estimator to the composite position estimator. This is discussed

further in Section 6.3.1.6. Additionally, though not presented in this section, use of

the combined PMF resulted in better performance than single camera PMFs.
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Figure 136. Example V5 PMF and V5 Position Estimates Returned from Flight Test
Data.

6.3.1.2 Test Case.

In an attempt to address the observed biases, flight test data was analyzed with

an altered form of the V5 algorithm. In this configuration, pixel intensity differences

were only evaluated at pixels corresponding to edges in the reference image. This

pixel sampling scheme was intended to reduce the error induced by noise present in

the sample images. The results from this scheme are listed in Table 32 in the “Test

Case” column.

As can be seen in the table, error results proved to be statistically similar to

those observed in Case 1. However, reduced protection levels were observed (which

also resulted in two protection level violations). The V5 likelihood function and

thresholds were not optimized for only sampling based on edge pixels identified in the

reference images. Despite these limitations, the Test Case performed essentially as

well as Case 1 and seemed to better estimate protection levels. These results indicate

that the Test Case pixel sampling scheme could improve performance in the future.

The results also indicated that pixel sampling was an unlikely source of bias.
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6.3.1.3 Bias Analysis.

As can be seen in Table 32, only the z -component of the V5 position estimate

was likely unbiased in Case 1. One contributing factor to the non-zero mean errors

observed in the x and y axes was the discrete nature of the rendered image database.

At a range of 30 meters, each adjacent x and y-position in the database was sepa-

rated by approximately 0.52 meters. As was discussed in Sections 2.2 and 3.4, the

discretized nature of the database limits achievable position resolution even when

using the composite position estimator. Thus, much of the y-position bias could be

attributed to database resolution limits. However, the magnitude of the x -position

bias suggests that other causes likely increased mean error.

Figure 137 shows a flight test reference image and a flight test observation im-

age. The reference image shown most closely depicts the position captured by the

observation image. As can be seen in the figure, a fair amount of noise is present in

the observation image. Additionally, the right wing of the receiver did not manifest

in the processed observation image. The noise present in the processed observation

images collected in flight test could drive algorithm error, but other causes are likely

more dominant as will be detailed below. An improved image processing sequence

specifically designed to eliminate noise could yield superior results in the future. This

could be accomplished with better speckle filtering or better tuning of other disparity

map algorithm parameters described in Sections 2.3.6.5 and 3.5.3. Image processing

for the V5 algorithm was performed in MATLAB R©. Utilizing other image process-

ing libraries, such as the OpenCV library used with the R7 algorithm, could yield

improved results.

Figure 138 superimposes the processed left camera observation image (sample 20)

with the reference image that most closely models the true position of the receiver.

This reference image is referred to as the “true best match.” Figure 139 superimposes
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Figure 137. At Left, Reference Image Corresponding to the Observation Image Shown
at Right.

the same observation image with the reference image that most closely models the

composite position estimate. Figure 140 superimposes the same observation image

with the reference image that yielded the highest posterior probability. The position

depicted by this reference image would be the position solution returned when using

the maximum likelihood estimator.

In this case, error was actually significantly smaller when using the composite posi-

tion estimator (0.515 meters spherical error) than when using the maximum likelihood

estimator (2.593 meters spherical error). This is the opposite of what is suggested by

the figures. In the left camera frame, the composite and maximum likelihood position

estimate errors in this case were:

Composite Position Error (m) = [0.364, 0.321, 0.173]T (127)

Maximum Likelihood Error (m) = [0.612, 0.527, 2.464]T (128)

Based on the figures, the V5 algorithm did an excellent job of identifying an im-

age with a high pixel-to-pixel correspondence as the maximum likelihood image. This

implies that the noise present in the observation images was not a major source of
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error. However, this reference image depicts a position that is actually significantly

different than the position captured in the observation image. The maximum likeli-

hood estimate also strongly exhibited the depth ambiguity problem, as can be seen in

the z -component error. Additionally, based on the Figure 139, the x -position error of

the composite position solution should be negative and not positive. This is because

the the solution image is to the left (negative left camera frame x -direction) of the

observation image.

Figure 138. True Best Match Reference Images Superimposed Onto Observation Im-
ages. Reference Images are Shown in Red, Observation Images are Shown in Blue.

Figure 139. Reference Images Most Closely Depicting the Composite Position Esti-
mate Superimposed Onto Observation Images. Reference Images are Shown in Red,
Observation Images are Shown in Blue.
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Figure 140. Reference Images for the Maximum Likelihood Estimate Superimposed
Onto Observation Images. Reference Images are Shown in Red, Observation Images
are Shown in Blue.

These discrepancies can most likely be attributed to one of two causes. First,

as outlined in Section 5.4.5.2 different rectification mappings were applied to the

reference and observation images. This difference existed because the 3DVW cameras

used to generate the reference images did not perfectly model the optics of the real-

world cameras. As is discussed in Section 2.3.6.4, both the rectification DCMs and

the rectified camera calibration matrices are used to generate the pixel mapping for

image rectification. These parameters depend upon both the stereo camera geometry

as well as the intrinsics of both stereo cameras. Hence, two stereo camera systems

that exhibit either different geometry or different camera intrinsics will have different

rectification mappings. In the future, this source of error could be overcome with

a reference image database that better models the optics of the real-world cameras

collecting the observation images. Otherwise, systematic error, as was observed in

flight test, is likely to result. Rectification mapping could be confirmed as a primary

source of error by comparing the mapping functions applied to the reference images

to the those applied to the observation images. Due to time constraints, this analysis

was not undertaken in this thesis.
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By contrast, simulation results yielded no such bias in the left camera frame x or

y-position estimates. In simulation the rectification mapping used to generate the

reference and observation images were identical and the extrinsic camera calibrations

were known perfectly. Hence, results suggest that differences in rectification mapping

were likely a primary contributors to V5 estimate bias.

Second, errors in the orientations measured in the extrinsic camera calibrations

would cause the images in the reference image database to have an an incorrect per-

spective. Since a flight test specific reference database was generated based on these

extrinsic measurements, errors would directly lead to bias in the V5 algorithm. How-

ever, were substantial extrinsic camera calibration errors present, the R7 algorithm

would have exhibited similar biases. Since the mean R7 x and y-errors in the left

camera frame were small, extrinsic camera calibration error is not a likely source of

bias in this case.

Overall, observation image noise, while problematic, was likely not a major con-

tribution to algorithm error. Instead, the problem is likely related to the reference

image database. Generating a reference image database that appropriately models

real-world observation images is a significant challenge to V5 algorithm development.

This challenge is caused by the fact that the V5 algorithm utilizes image rectification

to obtain a disparity map. Image rendering and template matching approaches that

utilize a single camera do not encounter the same problem since no disparity map

is generated. However, as discussed in Section 3.4.3 when using a camera configu-

ration that points to a region of significant clutter, a disparity map is essential to

eliminating image features other than the receiver aircraft. The image rectification

mappings used to generate these disparity maps will differ between the reference and

observation image sets unless the simulated cameras used to generate the reference

set perfectly model the real-world cameras. Future efforts on the algorithms similar
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to the V5 algorithm should focus on ensuring that a reference image database can be

generated that appropriately models real-world observation imagery.

6.3.1.4 Processing Times.

Processing times similar in magnitude to simulation were observed with flight test

data. Figure 141 shows the processing times for flight test data examined in Case 1.

These processing times reinforce the conclusion that the V5 algorithm would require

a substantial improvement in speed to be implementable in a real-time system.

Figure 141. V5 Processing Time on Pre-Processed Flight Test Images.
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6.3.1.5 Integrity Risk Level Effect.

As expected, higher integrity risk levels led to higher protection levels. Figure 142

shows this result for integrity risk levels of 10−6 and 0.05. For the 10−6 case, the mean

and standard deviation of the protections level were 5.717 meters and 1.011 meters,

respectively. For the 10−6 case, the mean and standard deviation of the protections

level were 4.152 meters and 1.143 meters, respectively. A two-sample F -test showed

that the protection level variances for these two integrity risk levels did not have a

statistically significant difference. This reinforces the conclusion that protection level

fluctuations of similar magnitude would be expected when using integrity risk levels

of 0.05 or greater.

Figure 142. Integrity Risk Level Effect on the V5 Protection Level in Flight Test.

6.3.1.6 Maximum Likelihood Estimator.

As was seen in simulation, the maximum likelihood estimator performed worse, on

average, than the composite position estimator. Figure 143 and Table 33 show this
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result. Both mean error and the standard deviation of the error were higher when

using the maximum likelihood estimator. As was discussed in Section 6.3.1.3, much

of the translational error (x and y-dimensions in the left camera frame) could be at-

tributed to differences in rectification mapping between the reference and observation

images or to errors in the extrinsic camera calibrations.

Besides the translational errors, depth ambiguity remained a problem when using

the maximum likelihood estimator. This could be overcome by using a reference image

database that deliberately staggers images at different depths. Using this scheme, the

location depicted by each image in the reference image database would fall on a unique

vector from the camera origin. This would help eliminate depth ambiguity since the

depiction of a receiver in any given reference image would overlap less strongly with

the depictions in other reference images that fall along similar line-of-sight vectors.

Figure 143. V5 Spherical Position Error on Flight Test Data Using a Uniform Prior
and the Maximum Likelihood Estimator.
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Table 33. Comparison of Maximum Likelihood Estimator and Composite Position
Estimator Errors, Left Camera Frame, Flight Test Data.

Maximum

Likelihood

Estimator

Composite

Position

Estimator

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical Error (m) 1.766 0.887 0.917 0.337

X Position Error (m) 0.565 0.405 0.567 0.180

Y Position Error (m) 0.112 0.373 0.084 0.185

Z Position Error (m) 0.197 1.802 0.063 0.746

6.3.2 Case 2: Gaussian Prior.

Case 2 utilized Gaussian prior scheme described in Table 30. This scheme differed

significantly from the informative priors used with simulation data.

Rather than setting the mean of the prior to the known true relative position

of the receiver, the mean of the prior was set to the V5 algorithm’s most recent

composite position estimate. In doing so, the algorithm was not artificially relying

on truth data in order to generate a PMF with an informative prior. The accuracy

achievable from this scheme was limited by the fact that it did not account for any

receiver or tanker dynamics in the time between samples. Properly accounting for

these dynamics would improve performance.

The Case 2 covariance matrix was identified in a tuning process designed to yield

11 protection level violations, since on average 11.05 violations would be expected for

an integrity risk level of 0.05 and 221 samples. The covariance matrix was chosen in

this fashion to facilitate a qualitative assessment of how the V5 protection level was
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affected when using an informative prior with flight test data. A diagonal covariance

matrix was chosen to simplify the tuning process.

Figure 144 shows the spherical error and protection level resulting from the use

of this prior. As can be seen in the figure, protection levels were substantially lower

than when using a uniform prior. Additionally, there appears to be greater time

correlation of errors. This result is expected because the relative position of the

receiver was fairly stable during data collection. Since formation dynamics were not

modeled, any estimated position biased the next several estimates toward its estimate

resulting in time correlation. Table 31 presents the means and standard deviations

of these spherical error and protection level. Table 32 presents the 95% confidence

intervals of the mean spherical error and the mean protection level. Both these tables

are found in Section 6.3.1.

Figure 144. V5 Spherical Position Error on Flight Test Data Using a Gaussian Prior.
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Figures 145 and Figure 146 shows the position errors resulting from this prior.

As can be seen in the figures, most variability and time correlation were present in

the z -position error, and the x -position error exhibited the same bias observed with a

uniform prior. Additionally, most of the protection level violations can be attributed

to z -estimate errors. Table 31 presents the means and standard deviations of these

error components. Table 32 presents the 95% confidence intervals of the mean position

errors.

The data show that V5 errors were fairly similar in Case 1 and Case 2. However,

protection levels and protection level variance were significantly reduced when using

the Gaussian prior. A paired t-test showed that Case 2 had lower mean protection

levels than Case 1 at a confidence level � 99%. The 95% confidence interval for the

protection level reduction in Case 2 was 1.546 meters to 1.835 meters. A two-sample

F -test showed that the 95% confidence interval for the ratio of the uniform prior

protection level variance to the Gaussian prior protection level variance was 1.546 to

1.835.

Overall, Case 2 results indicate that an informative prior can significantly im-

prove V5 protection level computations without much increase in error, even when

failing to account for formation dynamics. Accounting for formation dynamics would

likely lead to significant performance improvement when using the Gaussian prior.

Additionally, the informative prior in Case 2 was limited by the fact that its search

space was centered on the V5 estimate from the last epoch. Sequential epochs were

separated in time by approximately 0.83 seconds and formation dynamics in this

interval were typical of what could be expected from experienced pilots performing

AR. Despite these limitations, the true aircraft relative position of each sample fell

within the attenuated reference image database which was centered on the relative

position estimate from the previous epoch. This result is significant because it sug-
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gests that reference image database attenuation is a feasible approach in a real-time

system. Results would be expected to improve significantly if the system accounted

for formation dynamics.

Figure 145. V5 Position Error on Flight Test Data Using a Gaussian Prior, Left Camera
Frame.
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Figure 146. V5 Position Error on Flight Test Data Using a Gaussian Prior, Zoomed
In, Left Camera Frame.

6.4 R7 and V5 Comparison

In terms of speed, both flight test and simulation results supported the conclusion

that as implemented the R7 algorithm is significantly faster than the V5 algorithm.

However, no effort at speed optimization has been attempted in either case.

Figure 147 plots the spherical errors observed in flight test for the R7 and V5

algorithms. This comparison was made using the non-attitude fed version of R7

(Case 1) and in the uniform prior configuration of the V5 algorithm (Case 1). As

can be seen in the figure, R7 errors were substantially lower overall than V5 errors.

Much of this difference can be attributed to the x -bias that was present in the V5

algorithm as well as the greater variance in that algorithm’s estimate errors.

Table 34 presents the 95% confidence intervals of both algorithm’s errors, obtained

with a one-sample t-test. The table also shows 95% confidence interval resulting from
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a paired t-test comparing the R7 and V5 errors. In the final column, the results of a

two-sample F -test are shown, comparing the variance observed in the two algorithms.

The data show that overall all, the R7 algorithm had lower mean error, at a

statistically significant level, in the x -dimension of the left camera frame. This result

could be attributed to the unresolved bias in the V5 algorithm. The R7 algorithm also

had more than 0.5 meters less spherical error than the V5 algorithm at a statistically

significant level. On the other hand, the V5 algorithm had lower mean error, at a

statistically significant level, in the z -dimension of the left camera frame. This result

could be attributed to the unresolved bias in the R7 algorithm. All error variances,

spherical and in each position, were lower at a statistically significant level with the

R7 algorithm.

These results indicate that the R7 algorithm was overall more accurate and had

less variability than the V5 algorithm. Both algorithms were prone to some degree

of bias in certain dimensions. Additionally, V5 variances may have been smaller if

a more dense reference image database had been utilized. However, a more dense

database would have resulted in longer processing times.
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Figure 147. Comparison of R7 and V5 Spherical Errors in Flight Test, Left Camera
Frame.

Table 34. Statistical Comparison of R7 and V5 Error Distributions, Flight Test.

95% Confidence Interval

R7 Mean,

No Attitude

Feeding (m)

V5 Mean,

Uniform

Prior (m)

R7 - V5

Mean (m)

Ratio of

R7 Variance to

V5 Variance

Spherical Error [0.307, 0.346] [0.872, 0.961] [-0.673, -0.544] [0.147, 0.249]

X Position Error [0.005, 0.0256] [0.544, 0.591] [-0.576, -0.529] [0.147, 0.250]

Y Position Error [0.063, 0.089] [0.059, 0.108] [-0.033, 0.017] [0.199, 0.338]

Z Position Error [-0.305, -0.261] [-0.036, 0.162] [-0.450, -0.242] [0.037, 0.063]
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VII. Conclusions and Recommendations

In this thesis, two relative navigation measurement algorithms, V5 and R7, were

designed and analyzed. Both algorithms were developed in the context of AAR

and were designed to be applicable to the KC-46 program. More generally, both

algorithms provide relative navigation measurements from a stereo camera system.

The AAR context was chosen to facilitate analysis and to support development of a

robust USAF AAR capability that is not reliant on the GPS constellation.

Both algorithms were analyzed in simulation and in flight test. This chapter sum-

marizes the major findings and contributions resulting from these efforts. Commen-

surate with these findings, recommendations are made on how to improve algorithm

operation and on areas to focus on in future research. These recommendations are

made with the goal of implementation in a real-time system in mind. This is done

first for the V5 algorithm and second for the R7 algorithm. The chapter concludes

with a rough sketch for an algorithm that would leverage the strengths of the V5 and

R7 algorithms. This sketch is intended to suggest a possible way forward in develop-

ing an algorithm capable of providing a relative navigation measurement as well as

an independent assessment of navigation integrity in real-time.

7.1 V5 Algorithm Contributions and Recommendations

The V5 algorithm was designed principally by building upon Calhoun’s Bayesian

inference integrity monitor developed in [2] and [5]. Utilization of Calhoun’s Bayesian

inference techniques enabled the V5 algorithm to provide an independent measure of

navigation integrity in the form of a protection level. However, the AAR problem

addressed by the V5 algorithm differed from the AAR problem addressed by Calhoun

in two key ways. First, in V5 development, camera systems were considered to be
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mounted on a tanker aircraft looking down at a receiver aircraft. This geometry

dictated that the V5 algorithm had to be designed to contend with background clutter.

Second, the V5 algorithm examined the use of a stereo camera system. Based on this

change to the problem space, the V5 algorithm was specifically designed to leverage

the stereo camera configuration to filter out background clutter. This was achieved

with stereo image processing techniques.

The V5 algorithm was analyzed with both simulation and flight test images. Over-

all, the V5 algorithm output PMFs that adequately characterized the uncertainty of

its relative position estimates. This was evidenced by the fact that the expected num-

ber of integrity risk violations were observed during both simulation and flight test

analysis. Regardless of the error levels achieved, this is a finding of importance. It

demonstrates that stereo vision-based Bayesian inference can be used to obtain navi-

gation integrity (via protection levels) even in the presence of substantial background

clutter.

For reference in the discussion below, a subset of V5 simulation and flight test

results are summarized in Table 35. These results were generated with the V5 con-

figuration specified in Table 36. Based on simulation and flight test data analysis,

this thesis yielded seven primary contributions with respect to the V5 algorithm.

These contributions are outlined in the subsections below and are accompanied by

commensurate recommendations.

7.1.1 Image Processing.

First, the V5 stereo image processing technique was shown to effectively eliminate

background clutter. The resultant images were shown to be edge-space images of the

target of interest. In the simulation environment, the resultant images were free of

noise stemming from the background or poor pixel matching. When using flight test
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images, noise artifacts were present in the images, but analysis revealed that noise

levels were likely not substantial enough to skew the the reference-observation image

matching process. In future work, noise in the processed images could be eliminated

with better speckle filtering or with point cloud filters similar to those developed

with the R7 algorithm. R7 results, which performed image processing with OpenCV

in C++, indicate that use of image processing libraries other than those found in

MATLAB R© may yield superior results.

7.1.2 PMF Estimation.

Second, analysis showed that the PMF estimated by probabilistically combining

the left and right camera PMFs was superior to the PMF estimated by either camera

in isolation. The combined PMF led to lower error levels and superior protection

level estimation. In simulation, the combined PMF resulted in approximately 10

centimeters less mean spherical error than the best performing single camera PMF.

Moreover, both single camera PMFs yielded extremely high numbers of integrity

violations while the combined PMF yielded the expected number for the applied

integrity risk level. The KC-46 program is designed to have two stereo camera pairs.

Future work could examine algorithm gains from incorporating measurements from

all four camera systems.

7.1.3 Relative Position Estimates.

Third, the composite position estimate developed in this thesis was shown to

outperform the maximum likelihood estimate used in previous work. The composite

position estimate operated by using the mean of the V5 PMF rather than the mode

to estimate the relative position of the receiver aircraft. This resulted in substantial

improvements in relative position estimation. Simulation results showed that use
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of the composite position estimator reduced error variance in all components at a

statistically significant level and reduced mean spherical error by nearly one meter.

Similar results were observed in flight test, where mean spherical error was reduced

by approximately 80 centimeters.

7.1.4 Pixel Intensity Thresholds and Protection Level Computations.

Fourth, analysis showed the criticality of identifying a pixel intensity threshold

when using the V5 algorithm. In simulation, use of a 0.05 pixel intensity threshold was

shown to concentrate probability mass along the camera system’s line-of-sight. This

effect substantially reduced variance in the camera frame x and y-component errors in

comparison to the zero threshold case. Use of this non-zero threshold reduced mean

spherical error by approximately 60 centimeters or 41%. Moreover, this threshold

was shown to decrease mean protection levels by approximately 45 centimeters while

still yielding an acceptable number of integrity risk violations.

Given the fact that probability mass was concentrated along the line-of-sight, an

alternative protection level computation scheme could be developed that leverages

this fact. Additionally, future work could estimate separate protection levels for

each camera frame dimension. This would result in protection levels that provide

more information to a user about which specific dimensions account for the bulk of

algorithm uncertainty and hence which dimension poses the greatest risk for a safety

violation. Future work could also leverage the superior left camera frame x and

y-position estimation capabilities to improve z -position estimation. This could be

accomplished by deliberately staggering the reference images generated at sequential

depths. Using this scheme, the location depicted by each image in the reference

image database would fall on a unique vector from the camera origin. This would

help eliminate depth ambiguity since the depiction of a receiver in any given reference
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image would overlap less strongly with the depictions in other reference images that

fall along similar line-of-sight vectors.

7.1.5 Informative Priors.

Fifth, analysis showed that an informative prior can substantially improve pro-

tection level estimation even when failing to account for formation dynamics. When

using an informative prior on the flight test data set, the mean protection level was

2.462 meters, a reduction of approximately 1.7 meters from the uniform prior case.

The protection level standard deviation with the informative prior was 0.682 meters, a

reduction of approximately 0.46 meters from the uniform prior case. Additionally, use

of an informative prior on flight test data yielded an acceptable number of integrity

risk violations and did not result in significantly worse errors. These results were

achieved despite not taking formation dynamics into account between observations.

This result is important because the key advantage of the V5 algorithm is the degree

of navigation integrity it is designed to provide. Tighter, reliable protection levels are

essential to its utility. Future work should focus on using an informative prior that

is based on the output of a recursive estimation algorithm, such as a Kalman filter.

In this manner, the prior would take into account formation dynamics. This would

likely lead to smaller algorithm errors and smaller, but still reliable, protection levels.

7.1.6 Rectification Mapping and Flight Test Errors.

Sixth, flight test data revealed a persistent left camera frame x -position estimate

bias. Differences between the reference image database and observation image recti-

fication mappings were assessed to be the most likely source of this error. In future

work rectification mapping could be confirmed as a primary source of error by com-

paring the mapping functions applied to the reference images to the those applied
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to the observation images. Additionally, rectification mapping differences could be

overcome by developing simulation cameras that are capable of closely imitating the

optics of the real-world cameras. Preferably, mapping differences could also be over-

come by adding an additional step to the image processing routine. In this step, the

processed, rectified images would be re-mapped back into non-rectified images. In

doing so, the background filtering properties of the image processing routine would

still be retained. This would obviate the requirement to develop better simulation

camera models.

7.1.7 Algorithm Processing Times.

Seventh, the V5 algorithm was shown to require extensive processing times. On

a fundamental level, the multiple pixel sampling and template matching techniques

at the heart of the V5 algorithm are time intensive. This is an obstacle to real-time

implementation. To reduce processing times, future work should focus on developing

selective sampling techniques that reduce processing times while still yielding accept-

able PMF returns. Techniques applied in particle filters and unscented Kalman filters

may offer insights [52].

Table 35. V5 Algorithm Simulation and Flight Test Results, Left Camera Frame.

Simulation Results Flight Test Results

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical Error (m) 0.896 0.527 0.917 0.337

X Position Error (m) 0.004 0.374 0.567 0.180

Y Position Error (m) 0.008 0.174 0.084 0.185

Z Position Error (m) -0.197 0.935 0.063 0.746

Protection Level (m) 2.956 1.138 4.152 1.143
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Table 36. Configuration of the V5 Algorithm for Data Shown in Table 35.

Prior

Probability

Distribution

Likelihood

Function

Pixel Intensity

Threshold

Relative Position

Estimator

Integrity Risk

Level

Uniform

Gaussian

µ = 0

σ = 0.1

0.05 Composite 0.05

7.2 R7 Algorithm Contributions and Recommendations

The R7 algorithm was designed to leverage well established stereo vision tech-

niques and the ICP algorithm to obtain relative position and attitude measurements

of an AR receiver. This approach was taken to facilitate real-time implementation

in the future. Algorithm development also included the addition of several features

to avoid negative effects from clutter, such as a boom filter. However, unlike the V5

algorithm, the R7 algorithm was not designed to provide an independent assessment

of navigation integrity.

The R7 algorithm was analyzed with both simulation and flight test images. Over-

all, the R7 algorithm was shown to be capable of rapidly producing accurate relative

position measurements. Additionally, R7 errors were shown to be low variance. These

results bode well for implementation of similar approaches in a real-time system.

For reference in the discussion below, R7 simulation and flight test results are

summarized in Table 37. The simulation results in the table were generated in Case 5

which simulated receiver depths equivalent to those observed in flight test. Based on

simulation and flight test data analysis, this thesis yielded six primary contributions

with respect to the V5 algorithm. These contributions are outlined in the subsections

below and are accompanied by commensurate recommendations.
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7.2.1 Depth Error.

First, depth error (error in the left camera frame z -position estimate) proved to

be the largest driver of R7 relative position estimate error. Both simulation and flight

test data revealed a persistent negative bias in the z -position estimate indicating that

the R7 algorithm tended to underestimate the depth of the receiver. In flight test,

this bias was approximately 30 centimeters. Depth error is problematic because it is

the primary driver of error in the other two dimensions [32]. Analysis in this thesis

suggested that disparity estimation error was likely a key driver of depth estimate

error. Hence, future work should examine methods to improve disparity estimation.

Particular attention should be paid to improved sub-pixel disparity estimation tech-

niques.

7.2.2 Attitude Fed ICP.

Second, the attitude fed version of the ICP algorithm was shown to reduce R7

depth error and depth error variance in flight test. This reduction was approximately

0.06 meters in depth bias and a roughly 25% reduction in depth error variance.

Despite these small magnitudes, this finding is significant because, as stated earlier,

depth error is the primary driver of algorithm error. Reductions in depth error and

error variance also lead to reductions in spherical error. Moreover, using the attitude

fed version of the R7 algorithm reduced R7 processing times by approximately 5%.

These speed savings could ease real-time implementation. Similarly, future work

could develop an attitude bounded version of the ICP algorithm. This would be

accomplished by setting a maximum allowable rotation limit. This could confine the

attitude search space to a window more realistic for the AAR application and preclude

estimation of unlikely attitudes.
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7.2.3 Boom Filtering.

Third, simulation results with a boom in the camera fields of view showed that

the R7 boom filter was effective at eliminating boom-related clutter in all but one

of 6,000 test cases. R7 errors did increase when using the filter in comparison to

cases examined with no boom in the fields of view. However, these increases in error

means and standard deviations were not drastic; the largest increase in mean error

was 0.2 meters in the x -component. Moreover, using the attitude fed version of ICP

with a boom in the field of view essentially eliminated the increase in error biases

as well as much of the increase in error variances. This finding indicates that the

boom filter designed in this thesis is a good starting point for implementation in a

real-world flight test. It also indicates that the attitude fed version of ICP may be

important to reducing error in the presence of boom occlusion. Future work on boom

filtering should focus on incorporating the actual extension, azimuth, and elevation

data output from real-world USAF tanker booms. This could be done in simulation

or with bus data from real-world boom systems. This would facilitate development

of a boom filter capable of using boom measurements in real-time.

7.2.4 Flight Test Attitude Errors.

Fourth, flight test attitude error variances were substantially lower than those

observed in simulation. While the flight test errors were also more biased, this result

indicates that the R7 algorithm has greater potential to provide some attitude esti-

mation capability than simulation results suggest. For instance, while the algorithm’s

attitude measurements may not be nearly as accurate as those obtainable from IMUs,

they could provide a means to monitor for unusual attitudes. Future work on develop-

ing an attitude bounded version of the ICP algorithm could also improve R7 attitude

estimates.
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7.2.5 R7 Error Variance.

Fifth, simulation and flight test results showed that R7 algorithm errors had low

standard deviations. In flight test, error variance was low enough that the mean R7

spherical and x -position estimate errors fell within the uncertainty of the truth data

system. This finding indicates that R7, or a similarly constructed algorithm, has

the potential to provide low uncertainty measurements to a Kalman filter or other

algorithm. In order to be implemented in a filter, R7 algorithm errors need to be

characterized. Appendix C suggests one possible method for error characterization in

simulation. More generally, methods to characterize R7 and ICP error distributions

should be examined including ones that take into account the stochastic nature of

disparity measurements [53].

7.2.6 R7 Processing Times.

Sixth, the R7 algorithm was shown to have very rapid processing times. This find-

ing indicates that an ICP based approach to stereo vision relative navigation (such as

the R7 algorithm) is a good candidate to be implemented as a real-time measurement

system. Future efforts on developing a real-time protection level estimate should

leverage the speed inherent in the ICP algorithm. A rough sketch for an algorithm

that does so is presented in Section 7.3.
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Table 37. R7 Algorithm Case 5 Simulation and Flight Test Results, Left Camera Frame.

Simulation Results Flight Test Results

Mean
Standard

Deviation
Mean

Standard

Deviation

Spherical Error (m) 0.517 0.123 0.326 0.147

X Position Error (m) -0.018 0.048 0.015 0.079

Y Position Error (m) 0.149 0.048 0.076 0.094

Z Position Error (m) -0.491 0.118 -0.283 0.165

Roll Error (deg) -0.796 7.907 0.498 1.315

Pitch Error (deg) 0.292 4.539 -2.614 1.105

Yaw Error (deg) -0.074 1.300 1.144 0.630

7.3 Future Work: Leveraging ICP and Bayesian Inference

As was stated in Chapter I, the ultimate vision for both algorithms would be to

incorporate their measurements into a vision-based AAR control system as depicted

in Figure 148. In such a system, algorithm measurements would be taken from stereo

image pairs captured at rates on the order of 30 Hertz. These measurements would

be intended to replace GPS measurements in cases of GPS non-availability. In such a

system, the algorithm measurements would be incorporated in a recursive estimation

algorithm, such as a Kalman filter, whose state estimate outputs would be used to

execute the control laws of a relative navigation control algorithm in real-time. Future

work should continue efforts to implement a vision-based AAR control system (to

include the formation control laws) in real-time. For purposes of navigation integrity,

it is highly desirable that an independent, real-time protection level could also be

generated as a safety precaution.
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Figure 148. Hypothetical AAR System Block Diagram.

Wit this goal in mind, data analysis revealed that the ICP-based approach taken

with the R7 algorithm is capable of achieving much more rapid processing times than

the template matching approach taken with the V5 algorithm. The ICP-based ap-

proach was also shown to be more accurate for the algorithm configurations developed

and tested in this thesis. However, the R7 algorithm is capable only of providing a

relative navigation measurement, it is not capable of providing an independent mea-

sure of navigation integrity. Navigation integrity is highly desirable in the context of

AAR due to the close proximity of the two aircraft in formation. Hence, an algorithm

that possesses both the speed of the R7 algorithm as well as the V5 algorithm’s ability

to provide a protection level would be desirable.
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One could begin design of such an algorithm with the general architecture sug-

gested below. This algorithm would be most easily implemented with the attitude-fed

version of ICP developed in this thesis.

1. Utilize an algorithm similar to R7 to obtain a relative navigation measurement

by leveraging the ICP algorithm. The ICP algorithm operates by computing

the Euclidean distance, D, between every observation point cloud point and its

nearest neighbor in the model point cloud [8]. Retain these measurements.

2. Construct a likelihood function, L(D), that describes the likelihood of observ-

ing the distance, D, in a perfectly matched model and observation point cloud.

Using this approach, a likelihood could be computed for each point in an obser-

vation point cloud. As in the V5 algorithm, this likelihood function would have

to be developed prior to algorithm implementation. One could also examine the

use of a likelihood function that utilizes a measure of the entire point cloud, such

as the root mean square of all the computed D values. In this case only a single

likelihood could be computed for an observation-model point cloud comparison.

Machine learning could be usefully employed to identify a parameterization for

the likelihood function that minimizes estimate errors [52].

3. With L(D), compute the likelihood that the solution obtained in Step 1 pro-

duces an ideal match between the observation and model point clouds.

4. Selectively render the model point cloud at positions other than that obtained in

Step 1. Compute the distance between every observation point cloud point and

its nearest neighbor in these selectively rendered model point clouds. Compute

the likelihood that these positions have produced an ideal match with the ob-

servation point cloud with the likelihood function L(D). These positions should

be selected based upon the most recent estimate of the PDF describing the po-
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sition of the receiver. Selected positions should be most heavily concentrated

in the vicinity of the solution obtained in Step 1. Sparser sampling should be

done as distance from the solution obtained in Step 1 increases. Distribution

sampling methods used in Unscented Kalman Filters or particle filters may also

offer useful insights.

5. Optionally, assume a distributional form for the likelihoods present in the gaps

between the samples taken in Step 4. Using this assumption will enable genera-

tion of a PDF rather than a PMF. For instance, as distance from the observation

point cloud increases, the growth rate of the distance metrics measured in Step

4 will eventually become essentially equal for all points. In this case, since one

has knowledge of how the growth rate of the D values, one can predict what the

likelihood will look like at points far from those sampled. Additionally, growth

of D values or a similar metric can be used to indicate when the model and

observation point cloud no longer overlap. This or a similar indicator can be

used to bound the search space.

6. Using the likelihood distribution obtained in Step 4 or Step 5, use Bayesian

inference to compute probability distribution describing the relative receiver

position. Using the method in Step 4 would result in a PMF, using the method

in Step 5 would result in a PDF. Either method would enable the computation

of a protection level.

7. Optionally, iterate the sampling process to reduce error and, possibly, reduce

the number of required computations. Iteration could be based on the com-

posite position estimate obtainable from the PMF or PDF obtained in Step 6.

Alternatively, iteration could be based on the likelihoods observed in Step 4 and

could be initiated prior to applying Bayesian inference.
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Appendix A. Camera Calibration Results

This appendix presents the camera calibration results for the Prosilica GT1290C

EO cameras used in flight test. All results, except for the extrinsic parameters, were

yielded from Bouguet’s MATLAB R© stereo camera calibration software. The pre-

sented intrinsic camera calibration results follow the convention yielded by Bouguet’s

MATLAB R© software [34]. See Sections 2.3.4 and 2.3.6.3 for more details.

The intrinsic camera calibration matrix and distortion coefficients for the left EO

camera were computed to be:

KL,EO =


1181.2 0 655.0

0 1182.6 491.8

0 0 1

 (129)

dL,EO = [−0.0852, 0.1468, 0.0007,−0.0009, 0] (130)

The intrinsic camera calibration matrix and distortion coefficients for the right

EO camera were computed to be:

KR,EO =


1181.6 0 629.7

0 1182.4 513.4

0 0 1

 (131)

dR,EO = [−0.0837, 0.1477, 0.0015,−0.0004, 0] (132)

The translation vector (expressed in millimeters) and DCM describing the geom-

etry of the EO stereo camera system were computed to be:

TR,EO = [−500.2,−0.4313, 0.6761]T (133)
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RL,EO
R,EO =


1.0000 −0.0017 0.0040

0.0017 1.0000 −0.0018

−0.0040 0.0018 1.000

 (134)

Processing of USAF Test Pilot School instrumentation team measurements were

used to perform the extrinsic camera calibration of the left EO camera. The vector

(expressed in meters) and DCM describing this camera’s orientation and position

with respect to the C-12C pseudo-tanker’s GLITE TSPI system were computed to

be:

lpEO = [1.9550, 0.6686, 0.4339]T (135)

Rp
L,EO =


−0.0258 0.4214 −0.9065

−0.9993 0.0150 0.0356

0.0285 0.9067 0.4208

 (136)
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Appendix B. PACF Returns

Figure 149. From Top to Bottom,
PACF Results for X, Y, and Z Position
Errors, Left Camera Frame.

Figure 150. From Top to Bottom,
PACF Results for Roll, Pitch, and Yaw
Attitude Errors, Tanker Frame.
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Appendix C. R7 Error Characterization

One can conceive of the aircraft position estimate returned from R7 as being

analogous to a single point that has been projected into three-dimensions from the

rectified stereo camera image pair. Hence, the error in the R7 algorithm’s relative

position and attitude estimates can be characterized in simulation according to the

aircraft’s z -position in the left rectified camera frame. This can be done in the 3DVW

by repeatedly rendering the receiver aircraft at random positions and attitudes within

a given z -plane. Within each left rectified camera z -plane, the error in the algorithm’s

estimate of the receiving aircraft’s z -position (ZLr) would be fit to a normal distribu-

tion with mean µZLr
and variance σ2

ZLr
. This would serve to characterize the error in

ZLr . Alternatively, distributional fits other than a normal distribution could be used.

Recall from Section 2.3.6.6 that the x and y-coordinates of a point in the left

rectified camera frame are linearly related to the z -coordinate of that point in the left

rectified camera frame per the equation:

XLr =


XLr

YLr

ZLr

 =


(xLr−cxLr

)ZLr

fc

(yLr−cyLr
)ZLr

fc

−fcTR
x

d

 (137)

Hence, if a normal distribution is assumed for the error in ZLr , then the error in

XLr and YLr will also be normally distributed if the pixel coordinates xLr and yLr ,

the principal point (cxLr
, cyLr

), and focal length fc are assumed to be non-random

constants. The parameterization of these distributions will be directly related to the

parameterization of the error distribution of ZLr . The parameter values for the error

distribution in XLr will be:

µXLr
=

(
xLr − cxLr

)
fc

µZLr
(138)
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σ2
XLr

=

[(
xLr − cxLr

)
fc

]2
σ2
ZLr

, (139)

Where µXLr
is the mean and σ2

XLr
is the variance.

Similarly, the parameter values for the error distribution in YLr will be:

µYLr
=

(
yLr − cyLr

)
fc

µZLr
, (140)

σ2
YLr

=

[(
yLr − cyLr

)
fc

]2
σ2
ZLr

, (141)

.

Hence, one can ascertain from the above equations that the XLr and YLr coordi-

nates of point position estimates will have greater errors the farther the aircraft is

from the principal point in the image.

In practice, R7 would return a three-dimensional relative position estimate of the

aircraft in the p-frame. Below, estimated point coordinates are indicated with a

hat. This could be transformed into the left rectified camera frame according to the

equation:

X̂Lr =


X̂Lr

ŶLr

ẐLr

 = RLr
L RL

p


X̂p

Ŷp

Ẑp

 (142)

With these values in hand, one can obtain the pixel coordinate (x̂Lr , ŷLr) needed to

obtain the error distributions of the three-dimensional coordinate estimates X̂Lr and

ŶLr per the equations:

x̂Lr =
X̂Lrfc

ẐLr

+ cxLr
(143)

ŷLr =
ŶLrfc

ẐLr

+ cyLr
(144)
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With these pixel coordinates, error distribution estimates in all three left rectified

camera frame dimensions could be obtained from an analysis conducted along the

lines described in this section. Since these distributions are all assumed to be normal,

one could transform these distributions into an arbitrary frame that is linearly related

to the left rectified camera frame and still retain normality. These error distribution

estimates could then be incorporated into a Kalman filter utilizing the outputs of

the R7 algorithm. Alternatively, if the pixel coordinates xLr and yLr , the principal

point (cxLr
, cyLr

), or the focal length fc were not assumed to be non-random, then an

alternative analysis would be required.
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