
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Digital Forensics Event Graph Reconstruction
Daniel J. Schelkoph

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer and Systems Architecture Commons, and the Data Storage Systems
Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Schelkoph, Daniel J., "Digital Forensics Event Graph Reconstruction" (2018). Theses and Dissertations. 1822.
https://scholar.afit.edu/etd/1822

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277525602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1822?utm_source=scholar.afit.edu%2Fetd%2F1822&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

DIGITAL FORENSICS EVENT GRAPH
RECONSTRUCTION

THESIS

Daniel J. Schelkoph, Capt, USAF

AFIT-ENG-MS-18-M-058

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-M-058

DIGITAL FORENSICS EVENT GRAPH RECONSTRUCTION

THESIS

Presented to the Faculty

Department of Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Daniel J. Schelkoph, B.S

Capt, USAF

March 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-18-M-058

DIGITAL FORENSICS EVENT GRAPH RECONSTRUCTION

THESIS

Daniel J. Schelkoph, B.S
Capt, USAF

Committee Membership:

Dr. Gilbert Peterson
Chair

Dr. Douglas Hodson
Member

Maj Alan Lin, PhD
Member

AFIT-ENG-MS-18-M-058

Abstract

Ontological data representation and data normalization can provide a structured

way to correlate digital artifacts. This can reduce the amount of data that a foren-

sics examiner needs to process in order to understand the sequence of events that

happened on the system. However, ontology processing suffers from large disk con-

sumption and a high computational cost. This paper presents Property Graph Event

Reconstruction (PGER), a novel data normalization and event correlation system

that leverages a native graph database to improve the speed of queries common in

ontological data. PGER reduces the processing time of event correlation grammars

and maintains accuracy over a relational database storage format.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . ix

Acknowledgements . x

I. Introduction . 1

1.1 The Digital Forensic Process . 2
1.2 Problem Statement . 3
1.3 Hypothesis . 4
1.4 Assumptions . 4
1.5 Result . 5
1.6 Conclusion . 5

II. Related Work . 6

2.1 Data Extraction . 6
Single Data Source . 6
Supertimeline . 7
Investigative Tools . 8
Pre-Event Collection . 8

2.2 Data Representation . 9
Visualization . 9
Ontological . 10

2.3 Event Reconstruction Techniques . 13
Finite State Machines . 13
Machine Learning . 14
Inference Rules . 15
Data Correlation in Non-Forensic Fields . 16

2.4 Graph Databases . 17
Triples . 19
Labeled Property Graph . 20

2.5 Summary . 20

III. Property Graph Event Reconstruction (PGER) . 21

3.1 Environment . 22
Virtualized Containers . 23
File Structure . 24

3.2 Data Extraction . 26

v

Page

3.3 Graph Conversion . 27
Subgraphs . 28
neo4j . 34

3.4 Normalization . 36
3.5 Abstraction . 36

Expert Rules . 36
TEAR Ruleset . 45

3.6 Conclusion . 54

IV. Results . 55

4.1 Testing Environment . 55
4.2 Data Extraction Performance . 56
4.3 Graph Conversion Performance . 58
4.4 neo4j Performance . 60
4.5 Expert Rule Results . 62

Power Events . 62
Downloaded Files . 64

4.6 TEAR Ruleset Application Results . 64
Processing Time . 66
Accuracy . 67

4.7 Conclusion . 68

V. Conclusion . 69

5.1 Future Work . 70
Bibliography . 72

vi

List of Figures

Figure Page

1. NIST Forensics Phases. 3

2. Temporal Event Abstraction & Reconstruction
Hierarchy. 15

3. Graph Database Spectra [37]. 18

4. PGER Processing Layers. 22

5. Data Extraction Layer. 26

6. Graph Conversion Layer via Logstash. 28

7. Event Processing Pseudocode . 29

8. Core Subgraph. 30

9. File Table Subgraph. 31

10. Web History and Download Subgraphs. 32

11. Standard Registry Subgraph. 32

12. MRU Registry Subgraph. 32

13. Time Tree Format [20]. 35

14. Normalizing MRU Entries. 35

15. Shutdown Event (Red), Startup Event (Green). 39

16. Installation Subgraph. 40

17. Download/File System Integration. 44

18. Steps to Create an n Level Abstraction. 44

19. Example Abstraction Tree. 46

20. Steps to Apply TEAR Ruleset. 46

21. Temporal Event Abstraction & Reconstruction
Hierarchy. 47

vii

Figure Page

22. Portion of Production Rule Tree, Production Rules
(Red), Term (Blue). 49

23. Example of Term List Construction. 49

24. Example of Time Window, Seconds (Blue), Time
Window (Purple). 51

viii

List of Tables

Table Page

1. PGER Tool Origins. 21

2. Data Extraction Processing Time. 58

3. Graph Conversion Processing Time. 59

4. neo4j Database Parameters After Graph Conversion. 60

5. SQLite and neo4j Query Comparison. 61

6. Power Event Sequence. 63

7. Downloaded File Expert Rule Result. 65

8. PGER Processing Times. 66

9. PGER and TEAR Runtime Comparison (h:mm:ss). 67

ix

Acknowledgements

I would like to thank Dr. Peterson for his advice and guidance on this project.

Additionally, I would like to thank Dr. Okolica for his efforts in creating the TEAR

dataset and assistance in incorporating machine-generated abstraction into PGER.

Finally, I would like to thank my family who provided support for me in order to

complete the project.

Daniel J. Schelkoph

x

DIGITAL FORENSICS EVENT GRAPH RECONSTRUCTION

I. Introduction

With society’s ever-increasing reliance on technology, the demand for digital foren-

sics has risen significantly. This is noted in the 2017 Bureau of Labor Statistics ten-

year job outlook figures for the related fields of Forensic Technicians (up 17%) [6]

and Information Security Analysts (up 28%) [7]. This need is, in part, driven by the

time-consuming task of manual data correlation required for digital forensics investi-

gations [12]. Forensics research tries to provide data correlation tools for examiners

that reduce the time needed to process each case. Any forensics tools must focus

on solutions for three main challenges: data volume, heterogeneous data, and legal

requirements [12].

Data volume is a serious problem for examiners [12]. Not only have storage capac-

ities risen, but consumers are now also likely to own multiple digital devices. A study

from the Pew Research Center states that smartphone ownership has risen from 35%

in 2011 to 77% in 2016, and tablet usage, typically used as a secondary device, has

increased from 8% in 2011 to 51% in 2016 [36]. The large amounts of forensic data

provided by multiple devices presents an overwhelming amount of data for examiners

to process [12]. Automated tools are needed to combine events together or eliminate

unimportant events.

Heterogeneous data complicates data processing [12]. Many types of forensic arti-

facts contain unique data that is important for a forensics investigation. For example,

a New Technology File System (NTFS) file table contains creation, access, and mod-

ification times where a registry key contains a value. This can lead to disparate

1

formats for different types of data, requiring more work from examiners during cor-

relation [12]. Developed tools need to normalize heterogeneous data into a standard

format, allowing easy correlation for either examiners or computers.

The last major challenge is meeting legal requirements. Any results from an

automated tool must be verifiable by digital forensics experts and explainable to a

court. This means the automation must provide transparency into how correlations

were established. Further, the methods used to create the correlations should be

credible and rely on a formal model [12].

1.1 The Digital Forensic Process

The National Institute of Standards and Technology (NIST) highlights the four

main phases of digital forensics investigations: Collection, Examination, Analysis,

Reporting [25]. Figure 1 presents these phases and indicates important topics in a

specific phase to the right. Each step is explained in further detail below.

The collection phase deals with the physical acquisition of digital forensics artifacts

like computers, cell phones, or logs. Steps should be taken to preserve and ensure the

integrity of digital data. The National Institue of Justice provides a good starting

point for digital forensics collection [15].

The Examination phase processes forensic artifacts. This involves manual or auto-

mated methods to extract data of particular interest [25]. Both methods can represent

data in many different formats that affect how data is analyzed. As with all steps,

integrity of the data must be preserved [25].

The third phase, analysis, uses legally justifiable methods to extract useful in-

formation from the data obtained in the previous step [25]. This analysis provides

answers to questions posed by the investigation [25]. Event reconstruction is one way

of accomplishing this step and attempts to understand the sequence of events on a

2

Figure 1. NIST Forensics Phases.

digital device.

The final phase, reporting, can have varying requirements, but it generally includes

the following: investigative actions performed, reasoning behind tool section and

procedures, the results of the analysis, and further actions that can be performed

[25].

1.2 Problem Statement

Property Graph Event Reconstruction (PGER) examines and attempts to solve

two challenges while maintaining legal admissibility: the storage of event data, and

event abstraction.

Current research has determined that an ontological approach is an effective way

to handle the problem of heterogeneous data [9]. This method creates standard-

ized data structures for events, allowing for relationships between heterogeneous data

sources. This creates data that is highly connected, representing a graph-like struc-

ture. However, this research stores event data based on a relational database standard

for use on the internet, prioritizing the ability to split or shard the data onto multiple

servers. This structure makes it more difficult to quickly query data based on the

3

ontological relationships.

Forensic examiners need assistance to handle the overwhelming amount of data.

Many different types of research have developed ways of abstracting portions of foren-

sics data into higher-level events, giving examiners a smaller dataset to investigate.

For example, AutoProv attempts to provide examiners the provenance of a file on the

forensics image [19]. Any new forensics tool should be able to perform some sort of

abstraction.

1.3 Hypothesis

PGER is a novel attempt to improve the storage of event data by using a native

graph database for storage. By using this storage method, PGER should able to

query event data faster by leveraging the established relationships. It also simplifies

query construction for users, allowing for intuitive traversal through the graph to find

specific patterns. PGER also attempts to provide two methods for abstracting data.

The first is to use expert knowledge from forensic investigators to create rules that

identify patterns in the graph. The second method uses rules provided by machine

generated patterns to find higher-level events. Allowing for multiple types of event

abstraction, PGER aims to be a flexible forensics tool. Performance

1.4 Assumptions

There are several assumptions PGER uses to operate. First, PGER is currently

configured to process Windows forensics images only. Next, it is assumed that all

timestamps are accurate and not maliciously modified. Finally, any abstraction gen-

erated by either method only serves to provide guidance to examiners. Abstracted

events may represent false positives or false negatives and need to be verified by

examiners to ensure legal admissibility.

4

1.5 Result

Designed in a layered format using the visualization tool docker, PGER is flexible

and allows for multiple methods of data input, processing, and abstraction. PGER

is able to provide an ontological database for events in a native database format,

providing query simplification and speed improvements for common queries. It also

provides runtime improvements to machine-generated ruleset abstraction while main-

taining the accuracy of Temporal Event Abstraction and Reconstruction (TEAR).

Expert rules can be applied to the a forensics image, providing useful information for

the examiner.

1.6 Conclusion

Forensics examiners face three main challenges: data volume, data heterogene-

ity, and legal admissibility. The four NIST phases help provide guidance on how

to produce legally admissible results. Research has shown that ontological storage

of event data provides rich results for examiners by creating relationships between

events, but that data is stored in a format that does not quickly query relationships.

PGER’s novel approach utilizes a native graph database that takes advantage of the

ontological relationships for faster performance. PGER also allows for two types of

abstraction to help examiners handle the immense data volume of modern forensics

images. This research tests the effectiveness and processing speed of PGER compared

to relational database solutions.

5

II. Related Work

Reconstructing events from digital artifacts can be broadly categorized into three

steps: data extraction, data representation, and event reconstruction. Research shows

that there are many ways to accomplish each step. Research into event reconstruc-

tion, for example, has attempted to use finite state machines, machine learning, and

inference rules. The most appropriate methods for PGER must be chosen for the tool

to be successful. The method of event storage is also important and can drastically

impact performance. Native graph database operation is critical to understanding

why neo4j was selected as the storage medium.

The first three sections examine current research in the steps listed above. The

last section discusses graph databases and some of their inherent advantages in certain

circumstances.

2.1 Data Extraction

After forensic evidence is gathered in the collection phase, event data must be

extracted to perform analysis. Although data extraction can be performed manually,

the time requirements are too great and automated tools are generally used instead.

Automated tools can be broken down into four categories: Single Data Source, Su-

pertimelines, Investigative Tools, and Pre-Event Collection.

Single Data Source.

Many topics of digital forensics research focus on how to extract data from one

area of interest on a target machine. These techniques can be very specific, focusing

on a small set of data for a certain operating system. For example Alghafli, et al. [1]

extract details like network connectivity and most recently used files of the Windows 7

6

registry through their developed tool. Other research focuses on certain applications

like web history for Firefox [35] or download history [43]. Specific data collection tools

can be valuable to examiners, but they suffer isolation from other data sources [41]

and cannot easily form correlations between disparate extracted datasets. This forces

examiners to use multiple tools and make correlations manually. Despite the lack

of interoperability, however, these single data source tools do often highlight cutting

edge research and are adopted into other data collection techniques that provide a

standardized data representation.

Supertimeline.

Supertimelines utilize multiple tools, called parsers, and combine the results into

a standardized format [21]. log2timeline is the best recognized tool for the creation

of supertimelines. Expanding on ideas from zeitline [5], it stores heterogeneous data

ordered by time, allowing examiners to group events temporally. It was originally

written in perl [21], but has been ported to Python and is now called PLASO (Plaso

Langar Aő Safna Öllu) [12]. PLASO still receives regular updates from the community

and contains hundreds of different parsers. Parser highlights include file metadata,

web history, link files, prefetch, sqlite, recycle bin, system event logs and Windows

registry entries. Many of these parsers are modified versions of single source tools

such as regripper for registry files and the sleuth kit for file table entries.

The wide variety of information provided can provide context for examiners but

also creates another problem: overwhelming data [12]. Supertimelines contain a lot

of data, making it harder for examiners to find essential information [12]. This extra

data necessitates a lot of manpower from examiners to find relevant data. Addition-

ally, supertimelines are only matched temporally to each other. This means a search

is required to find all entries pertaining to a specific file. Furthermore, the standard

7

17 field format for log2timeline includes useful information unique to a specific event

type in the “message” field. For instance, registry keys may have the filename of a

most recently used document in the message field. As another example, the target of

a link file is also contained in the message field. Because of varying data, information

in the message field requires additional parsing or examination to extract, adding dif-

ficulty for examiners if supertimelines are the only tool utilized. To be truly effective,

supertimelines need to extract data that depicts relationships between events.

Investigative Tools.

Forensic tools like EnCase, Autopsy, The Sleuth Kit (TSK), and The Forensic

Toolkit (FTK) provide a graphical interface to examine evidence on a forensic image

[5]. These programs focus on recovering data from the filesystem, particularly hidden

or deleted data [5]. Investigative tools index all files and allow users to search by

keywords, but additional analysis is limited to web history or recent files [5]. Us-

ing investigative tools to determine a sequence of events is time intensive, forcing

examiners to piece together a sequence of events and likely use other tools to help

corroborate these events. Further, most of these tools store data in proprietary or

non-standard ways, preventing data from being combined with other sources. Super-

timelines provide a much richer picture of the temporal events on a computer, but

the keyword searches of investigative tools rapidly identify evidence for examiners.

Pre-Event Collection.

Some data collection tools utilize a constant logging and monitoring of system

events, not just a snapshot of a disk image. Collecting data in this fashion can

be costly on resources, but it can provide a richer sequence of events for examiners,

allowing them to ‘step-through’ the sequence of events [18]. These systems also require

8

collection tools to be in place before an incident occurs [30], making the use of these

tools very dependent on their implementation by system administrators. Outside of

a corporate environment, this type of system would be rare, limiting its usefulness

[18].

2.2 Data Representation

A common problem with the data collection techniques is the inability to handle

heterogeneous data. Single data source and investigative tools typically have a unique

output format that is not easily combined with other sources. The best known super-

timeline, PLASO, provides a common format for all events, but hides rich data into

the catch-all field of ‘message’, requiring additional parsing to understand. A com-

mon data representation for events is critical to establishing relationships between

heterogeneous data and creating a richer set of events for the examiner.

Visualization.

Displaying events on a visual time line is one method that makes data processing

easier for examiners. This technique sorts events by a timestamp field and displays

events on an interactive timeline. By providing a temproal context between events,

this method has the ability to speed up investigations that only use investigative

tools similar to FTK [33]. With the timeline, it is easy to see the order of events or

how one event affects another. However, just like a supertimeline, visualizations can

quickly overwhelm examiners, and steps must be taken to limit the number of events

displayed. Zeitline, for example, allows users to create complex events, grouping many

events into one [5]. Still, while visual timelines can help speed up investigations in

certain cases, they do not help with automated event reconstruction, limiting their

impact on this research.

9

Ontological.

Several recent forensic researchers have leveraged an ontological approach to rep-

resenting events. This approach uses well-defined definitions (semantics) for objects,

properties of objects, and relationships between objects. The goal of this represen-

tation is to organize data in a consistent way that computers can understand [41].

Further, it allows for experts to design rules that allow for inferred facts based on the

presented knowledge [41]. For example, Google uses an ontology for its knowledge

graph, allowing for richer data to be displayed in search results [16]. Typing the

name of a music album will present the name and other biographical information of

the artist, as well as display similar artists. This works because many different web-

sites are providing information using the same definitions. Ontologies can be stored

in many different ways, but these models will be discussed in another section. The

forensic ontologies important to this research are discussed below.

ECF.

Event Correlation for Forensics (ECF) [13] contains a simple ontology consisting

of a source, an action, and a target as an atomic event. The source is the object

(program, system process, etc.) that causes an action, the action is a description of

the activity, and the target is object that is affected by the source [13]. This style

allows events to depict cause and effect relationships between objects in an image. An

example would be an executable program that changes a .txt file. The event-based

entry would describe the source as the executable, the action as ‘Changed File’, and

the target as the .txt file; this creates a visible relationship between the executable

and the .txt file that is not apparent in a standard supertimeline format.

10

SOSLA.

In the Single Object String and Loops Abstraction (SOSLA) [32], each event

consists of a start and end time along with an activity [32]. The activity is made up

of an operator (source), an action, and a set of objects (targets). This varies from the

ECF format in that there can be multiple objects affected in one event. This makes it

possible for SOSLA to combine many low-level events into one. If an antivirus scans

all files in a system, it could create a large number of similar events called a loop.

With SOSLA, these activities can be consolidated to one event, using the antivirus

as the operator and all the affected files as targets. In addition, SOSLA can merge

multiple diverse events that affect one object into one event. For example, if there are

create, access, modify, and change time events for the same file, and they all happen

at the same time, the events could be combined into one event with an action of ‘File

Created’ [32]. These abstraction techniques can significantly reduce the number of

events a supertimeline represents.

FORE.

Forensic of Rich Events (FORE) [39] was one of the first digital forensics tools to

use the Web Ontology Language (OWL) to define its semantics. The basic ontology

consists of two main categories: entities and events. Entities are similar to objects

in the ECF/SOSLA examples; they are tangible objects in the forensic image [39].

The entity can associated properties like username and domain for a user ID found

in the system. Events describe changes in state, for instance, downloading a file [39].

Events map changes to entities in order to track changes. More current research

has pointed out some failures of this model [11], insisting that the semantics are not

detailed enough to accurately describe all forensic events. However, it does serve as

a starting point for the next ontology.

11

DFAX.

Digital Forensics Analysis Expression (DFAX) [9] is an attempt to include law en-

forcement requirements in a forensic ontology. Its mission is to create an ontology so

law enforcement agencies can easily share digital forensics information. As such, the

ontology details more than just the events of a forensic image. It contains semantics

for case numbers, attorneys, investigators, subjects, victims, and other case infor-

mation [9]. As a subset of this ontology is another ontological language to describe

digital observables called Cyber Observable Expressions (CybOX). This language is

an open-source model with development led by the Department of Homeland Security

and MITRE [9]. CybOX uses a top level designation of ‘Observable’ to describe a

series of events. Events consist of metadata and actions. Actions are the base-level

event and consist of extracted properties and other metadata. The strength of this

model is its flexibility to describe many different artifacts. For instance, CybOX has

different models for emails and registry entries and can create additional semantics

for more data types [12]. Since publication, it has merged with Structured Threat

Information Expression (STIX) [14].

ORD2I.

The Ontology for the Representation of Digital Incidents and Investigations (ORD2I)

draws inspiration from CybOX and the Provenance (PROV-O) ontologies [12]. PROV-

O is a W3C recommendation similar to the law enforcement semantics included in

the DFAX ontology [28]. ORD2I consists of 3 main layers: specialized knowledge,

common knowledge, and traceability knowledge. Traceability knowledge incorporates

the PROV-O standard, providing semantics for the examiner, tools, and case number

[12]. The common knowledge layer includes information that every event possesses,

such as a physical and/or virtual location, event name, and an object. The special-

12

ized knowledge layer incorporates the CybOX ability to distinguish artifacts from

one another. This gives more fidelity to the object created in the common knowledge

layer [12]. ORD2I is very close to the DFAX ontology, but it is part of a larger tool

to help reconstruct events.

2.3 Event Reconstruction Techniques

Due to the ever-increasing amounts of data forensic examiners have to analyze,

a focus of digital forensics research is to try and create an automated way to con-

solidate data and reconstruct events. In addition, many forensic investigations are

for legal proceedings with strict rules regarding evidence, so it is desirable that event

reconstruction be the result of a formal theory [17]. Previous research has tried many

different methods to establish such a theory: finite state machines [17], machine

learning [26], and inference rules[39].

Finite State Machines.

Finite state machines provide a mathematical foundation for forensic events, pro-

viding rigor to findings [17]. Finite state machines are constructed by working back-

wards from the final state and using expert knowledge to make transitions and states,

eventually ending with the events that need to happen before the final state can be

accomplished [24]. Unfortunately, the number of possible variations from each fi-

nal state produce very large finite state machines and are hard to create by experts

[10]. At times, the finite state machines may be shrunk by previous events or other

evidential information [24]; however, this is currently a manual task and limits the

usefulness of this process [10].

13

Machine Learning.

Expert-created event patterns can be complex and time-consuming to create.

Some researchers have tried using machine learning to automatically find patterns

in data. In 2006, researchers proposed a neural network that found the execution of

various sequences in Internet Explorer [26]. This neural network was able to recon-

struct events with an accuracy of 90%. However, neural network techniques do not

show how low-level actions are associated with other events to infer a high-level ac-

tivity [10]. Since examiners were not able to explain why the neural network created

a certain series of events, this technique is hard to use in evidential situations [12].

TEAR.

Temporal Event Abstraction and Reconstruction (TEAR) is another attempt at

using machine learning [31]. Unlike neural networks, this method of pattern matching

allows humans to certify the identified patterns and trace the high-level events to the

individual low-level events. Its algorithms create a hierarchy of events using pattern

matching in order to represent a high-level event (See Figure 21) [31]. At the lowest

level are terms which represent an atomic event such as a registry key modification.

Each term has an action, a type, and a regular expression to determine what events

get a specific term label. A term representing a created file in a user’s document

directory would have an action of ’Created’, a ’file’ type, and a regular expression of

’ˆ.*/Documents/.*$’. The next level on the hierarchy is strings. Strings are composed

of other strings and/or terms. Next, production rules consist of both terms and

strings, and provide a successful pattern for a high-level event. This helps represent

multiple paths to the same high-level event. If a production rule with no parent finds

a match in the data, then the high-level event occurred.

14

Figure 2. Temporal Event Abstraction & Reconstruction Hierarchy.

Inference Rules.

Inference rules allow forensic tools to reconstruct events by applying rules to ex-

isting information from the device image. This method performs similarly to Expert

Systems; some tools even use an Expert System directly [39]. The rules are used to

find patterns in existing data and, if a rule matches a pattern, a reconstructed event

is created. For instance, an inference rule could look for events that contributed to

the insertion of a USB device. If the rule triggers on the appropriate registry entries,

it could create a new reconstructed event stating that the USB device was inserted.

In order for this technique to work, examiners must have well-structured ontological

data because the applied rules rely on the semantics of the data [10]. In research, the

FORE tool uses the expert system in the Jena Apache Framework [39]. The Semantic

Analysis of Digital Forensic Cases (SADFC) uses the ORD2I ontology and queries

on the dataset as its rule set. If a query matches a set of data, they are combined

15

to form a reconstructed event [10]. A tool called Parallax Forensics (ParFor) uses its

own tool to query data and functions similarly to SADFC [41].

Data Correlation in Non-Forensic Fields.

Establishing correlations in data is an important problem outside of digital foren-

sics as well. Expert systems that use inference rules are used extensively to solve

this problem in the medical field, and some of the established techniques have direct

applicability to digital forensics. A survey paper written in 2007 for real-time tem-

poral abstraction states that ontological approaches can lead to better results but

are computationally difficult to perform in real-time [40]. However, post-event digital

forensics does not always have such a time constraint and provides further credence

to the ontological approaches above. The following paragraphs list other techniques

that utilizes inference rules and/or ontological data schema.

Some expert systems try to combine machine learning with expert knowledge to

create a more adaptable expert system. Sequence Clustering-Based Automated Rule

Generation (SCARG) does this by establishing initial rules using expert knowledge,

and as data is analyzed, machine learning alters the rules [29]. This technique pro-

vides a significant advantage over traditional expert systems, recording about a 20%

classification improvement in the paper’s test case. Since the changes in rules are

visible, SCARG could be applied to digital forensics while still maintaining legal

acceptability.

Research on genetic sequencing provides further proof that normalizing data is

essential to utilizing inference-based systems [4] because genetic sequence alignment

uses heterogeneous data. This research first normalizes the data into common classes

and then applies expert rules to the refined data.

Another validation of the ontological approach is GIDL (GenBank Intelligent Data

16

Loading) [34]. This program normalizes data from several different genetic databases

into a standard ontology and applies expert system rules to develop correlations.

This system uses both OWL (Ontological Web Language) and CLIPS (C Language

Integrated Production System) to generate new facts. Additionally, it is built from

the ground up to be distributed if large datasets require additional processing power.

Finally, there are two other main types of expert systems commonly cited in

research, probabilistic and fuzzy. Probabilistic expert systems use Bayesian belief

networks and a concept of entropy to establish correlations [23]. This does not appear

to be an effective mechanism for digital forensics due to the effort required to build

the extensive belief network required. Fuzzy expert systems rely on predetermined

membership functions that determine the likelihood of event B happening if event

A occurs [27]. The huge variety of digital forensics data limits the potential of this

technique, as the number of membership functions required is very large.

2.4 Graph Databases

A graph database allows the user to interact with data as nodes and edges. This

is much different from a traditional relational database that represents data as tables.

Using a graph representation can result in performance benefits for connected data,

but it is highly dependent on how the graph database model is constructed [37].

Each graph database model is on two spectrums: the data format and the processing

method (Figure 3) [37].

Although all graph databases represent a graph, each graph model has a data

format on a spectrum between non-native and native [37]. Non-native storage converts

nodes and edges to relational database tables or another format (e.g. document-

based). This can be useful if the database is large, allowing for a straightforward

way to shard the data [37]. Sharding allows the data to be distributed from multiple

17

Figure 3. Graph Database Spectra [37].

servers. For native storage, the graph is the storage mechanism. This can provide

performance benefits for certain queries, as the database does not have to construct

the graph before processing [37].

Graph databases also have processing method on the spectrum between non-

native and native. This is how the graph handles all Create, Read, Update, Delete

(CRUD) operations [37]. Non-native processing does not use a graph to conduct

an operation. Instead, it deals directly with how the data is stored. This style

can utilize performance benefits like indexes from relational or document databases

[37]. Native processing utilizes a graph to perform CRUD operations, providing

performance benefits unique to graph databases [38].

One of the biggest performance benefits for native graph processing is the ability

to perform an index free traversal [38]. In highly connected data, it is often useful to

examine the relationship between data. To determine if two pieces of data share a

relationship, a traditional database (non-native processing) would need to perform a

18

join on multiple tables. This would require at least two index-based searches with a

runtime of O(log2 n) [38]. To determine more complex relationships, like finding if a

particular walk on a graph exists, the queries become even more complex and time-

consuming. Native graph processing allows a search on related data (data incident to

another piece of data) in constant time, otherwise known as an index free traversal

[3]. Searching a graph for a particular walk can be much faster by processing in a

native format.

There are advantages and disadvantages to utilizing certain choices on the spec-

trum. Below are the most common graph database models and their attributes.

Triples.

Triples is a non-native storage model where an atomic entry consists of a sub-

ject, predicate, and object [42]. The most popular version of this storage method is

Resource Description Framwork (RDF) [2]. RDF is a World Wide Web Consortium

(W3C) standard that outlines the structure of the subject, predicate and object [22].

The Ontological Web Language (OWL) is another W3C standard that sits on top of

RDF and describes how semantics are defined [8]. Most ontological digital forensics

research uses RDF and OWL to store event data. FORE, DFAX, and ORD2I are all

stored using these standards. Since this is a non-native storage model, the previous

examples use relational database tables to store all triples. This means that these

databases do not have the ability for index-free traversal, making queries regarding

graph structure time consuming [2]. However, due to its use of established standards,

one of RDF’s strengths is the ability to easily share information with other systems.

Another strength is that its non-native storage allows for sharding of the dataset

between multiple servers.

19

Labeled Property Graph.

Labeled Property Graphs are typically native storage and processing models. Data

in the graph is created by inserting nodes and edges. One major difference between

this model and triples is the ability to store data in nodes, allowing for more compact

graphs in certain instances [2]. This model also allows for index-free traversal of the

graph, allowing queries to take advantage of relationships between nodes for rapid

queries [2]. In fact, the main use of labeled property graphs is for rapid transactions

[2]. neo4j is one of the leading databases of this type.

2.5 Summary

The first section of this chapter detailed the main challenges in creating an event

reconstruction tool for digital forensics. PGER must solve data volume, data hetero-

geneity, and legal requirements challenges of digital forensics. The biggest challenge

of data extraction and data representation is to provide a consistent model for event

reconstruction. Ontologies are the main way this is performed in current research. In

regards to event reconstruction, inference rules were the most common solution, uti-

lizing expert-created rules. Finally, the main types of graph databases were detailed,

stating that index-free traversal is a key benefit of Labeled Property Graphs.

20

III. Property Graph Event Reconstruction (PGER)

Property Graph Event Reconstruction (PGER) was created for this research to

perform abstraction of user actions from digital media. It utilizes a native labeled

property graph to store event data and uses an ontology-based storage method while

earning performance gains through the index-free traversal of native graphs. Unlike

other ontological approaches in Chapter 2, users can directly query event data by

ontological relationships without the cost of constructing a graph or completing nu-

merous join queries. By discussing events in terms of types and relationships, queries

become easier to understand and create. It also allows users to leverage quick path

searching and utilize index-free traversals to quickly find subgraph patterns in event

data. PGER is a combination of several tools, some were created specifically for

PGER and others were re-purposed for PGER. The origin of the tools used in PGER

is in Table 1.

PGER accomplishes these tasks in four processing layers (Figure 4). The first layer

takes a device image and extracts events. The second layer converts the extracted

events into ontological subgraphs stored in neo4j. The normalization layer ensures

identical objects are represented by the same object. Finally, the abstraction layer

Table 1. PGER Tool Origins.

PGER Step Tool Name Existing Tool Created

Data Extraction
PLASO X

TEAR Event Extractor X

Graph Conversion
Logstash X

Logstash Parsers X
Python Script X

Normalization Normalizer X

Abstraction
Expert Rules X

Application of TEAR Ruleset X
TEAR Ruleset X

21

Figure 4. PGER Processing Layers.

uses either expert rules or a machine-generated ruleset to extract higher-level events.

The next section discusses the PGER environment configuration, followed by details

on each component.

3.1 Environment

Each forensics image is represented by a separate neo4j database and is created or

enhanced by PGER in several steps. Each of these steps is designed as atomic entity,

allowing for independent operation. This design isolates versions of a database during

testing or multiple cases so they can be processed in a pipeline-like fashion. Docker

is the key technology that allows for this separation and is described below. The file

structure is also detailed to help explain PGER execution.

22

Virtualized Containers.

Docker, a level 2 virtual machine, is core component of all the processing layers.

A user can run self-contained programs called a containers on any machine that

has the docker software installed. This allows PGER to run on any machine with

a limited set of requirements and dependencies. It also allows users to overcome

neo4j’s limitation of operating one graph database per instance by easily spawning

new instances. Containers are obtained by downloading from the docker repository.

The two most common containers in PGER, neo4j and python, have existing images

in the repository. If changes to a container are desired, a dockerfile can be used to

add additional features. For example, plugins for neo4j are installed in a dockerfile

for PGER to operate.

Several configuration options are available for containers, but the most impor-

tant options are networks and volumes. Multiple containers can communicate with

each other by setting up isolated networks and can communicate outside of these

networks by exposing ports to the host machine. Any data created when containers

are running is not permanent unless it is stored in a mounted data volume. Data vol-

umes can be created by docker for use only by containers or can be shared between

container and host by mounting a host directory to a specific container. Docker

container parameters such as networks and data volumes can be configured using a

YAML (docker-compose.yml) file if the docker-compose program is used. Using this

configuation file allows for multiple containers to be run using one command.

23

File Structure.

PGER has the following file structure:

PGER

installPrereq.sh

docker

initialSetup.sh

dockerComposeEnv

commonCode

startup

commonDockerfiles

<container type>

<container variant>

<processing layer>

<container name>

<container files>

.env

startup.py

config.yml

docker-compose.yml

installPrereq.sh This file is used when PGER is first run on a debian-based linux

machine. It installs docker, docker-compose, and python pip, as well as increases the

virtual memory address space for the elastic stack (elasticDB, Kibana, Logstash).

docker The folder that contains all the processing layers of PGER, with each

layer using atomic docker containers.

initialSetup.sh A script that updates the host’s version of python pip, installs

necessary python packages, builds docker containers and starts elasticDB and Kibana.

dockerComposeEnv A text file that contains environmental variables for docker-

compose.yml files in each processing layer. Contains the elastic stack version used

and the location of the data directory.

commonCode A folder that contains the python code that is used in all process-

ing layers.

commonDockerfiles A folder that contains dockerfiles that are used in all pro-

24

cessing layers. neo4j and Python are examples of container types. neo4j plugins and

neo4j no plugins are examples of variants.

Processing Layer Each processing layer contains this file structure. Each docker

container used in a processing layer has its own separate folder that contains the files

necessary to run. For example, a neo4j folder will have the neo4j configuration file

and a python folder will have the scripts that execute the processing layer.

.env A symbolic link to dockerComposeEnv.

startup.py To ease the execution of each processing layer, a python startup

script is used to configure and start the appropriate docker containers. This script

allows users to interface with a simple command line program instead of needing to

understand the appropriate docker commands. This script also sets neo4j settings that

cannot be configured directly by a docker-compose configuration file. This python

script accomplishes the following tasks:

• Accepts layer specific arguments

• Finds location of neo4j database on host machine

• Configures neo4j to use the selected database

• Starts neo4j database and waits until it is running

• Starts python script responsible for processing layer

For configuration options that do not commonly change, such as the URL of a

neo4j instance, a configuration file is used. This is a YAML file that is loaded at the

beginning of the startup script.

In addition to PGER, a data directory located anywhere on the host machine is

necessary to store database and forensics image information. The file structure of

this directory is as follows:

25

<Data Directory>

elastic

neo4j

eventData

images

rulesets

elastic/neo4j Folders that store database information for the elastic stack and

neo4j.

eventData A folder that stores TEAR’s generated event files for a forensics image.

images A folder that contains device images for processing.

rulesets A folder that stores the TEAR rulesets.

3.2 Data Extraction

The first processing layer takes a device image and converts it into an intermediate

format. This format can then be converted to a graph database in another processing

layer. There are two ways PGER can create this intermediate format: PLASO and

TEAR event extraction (Figure 5).

PLASO converts a device image into a supertimeline and outputs the resulting

data to an elastic database. PLASO uses two commands to complete this process.

Figure 5. Data Extraction Layer.

26

The first command, log2timeline, extracts events from a device image and creates a

datastore unique to PLASO. All partitions and volume shadow copies are analyzed.

The second command, psort, converts the PLASO data store into an elastic database.

The other method of data extraction is utilizing the TEAR event extraction. It is

a C++ program that takes the device image and creates a series of event files. File

table, registry, and Windows events are among the data sources that are stored as

CSV files. Web history is stored in a series of sqlite files.

3.3 Graph Conversion

Graph conversion transforms events stored in an intermediate format (either an

elastic database or TEAR event extraction files), into a subgraph that is stored into a

neo4j database. There are two methods for conversion in PGER (Figure 6): logstash

and a python script. Logstash is a more flexible method of conversion, allowing for

either intermediate format as an input and easy expansion of the analyzed events

through its pipeline. However, Logstash suffers from a speed bottleneck when send-

ing subgraphs to neo4j, as it must send each event as a single HTTP transaction,

overwhelming connection limits for neo4j. The second conversion method provides

bulk uploads to neo4j via a python script, significantly increasing conversion speed,

but it is only currently configured to convert the TEAR event extraction. Regardless

of the selected conversion method, different event types require separate processing.

Different event types, such as registry keys or prefetch information, contain unique

details that provide additional insight on the forensics image. Examples include the

values of a registry key or the time an executable was run. The processing steps

required for an event are controlled by the identification of the event type. In PLASO,

the event type is contained in the parser field, and in the TEAR event extractor, it is

contained in the filename. The identified event type’s processing steps are included

27

Figure 6. Graph Conversion Layer via Logstash.

in a parser. The parsers applied by the graph conversion programs are controlled by

profiles in its configuration file (config.yml is the default). Each profile has a name,

a type (blacklist or whitelist), and a list of parsers to include or exclude. If an event

type is not included on the selected list of parsers, it is not processed. This allows

users to control the events that appear in the neo4j database so they can focus on a

small set of event types or remove event types that are not currently relevent to an

investigator. A psudocode example of event processing is in Figure 7. The various

types of subgraphs created during this process are in the next section.

Subgraphs.

The main purpose of the graph conversion processing layer is to convert hetero-

geneous events into a semantic, graph-based format. Every event creates a subgraph

that is combined with the existing subgraphs in the neo4j database. The base of

the semantic format is the core subgraph (Figure 8). This is based on the standard

format found in SOSLA [32]. Every event contains this subgraph and consists of

28

1 #get profile information from processing layer configuration file

2 profileList = importProfile(<config.yml file >)

3
4 #create a function for the profiles included in the profile list

5 profileFunction = profileFactory(profileList)

6
7 #import the events from the intermediate format

8 #eventList is a list of dictionaries that are of the following

format:

9 #{"Type": <event type as a str >, "Data": <varies between

intermediate formats >}

10 eventList = getEvents(<intermediate format >)

11
12 #process each individual event

13 for eventDict in eventList:

14 #eventData stores event information in a format for use

in neo4j

15 eventData = None

16
17 #find the unique data of an event based on the

profileList

18 eventData += profileFunction(eventDict)

19
20 sendToNeo4j(eventData)

21
22 #sample profileFunction

23 def profileFunction(eventDict):

24 profileEventData = None

25 if eventDict["Type"] is "mactime":

26 profileEventData += mactimeParser(event["Data"])

27 elif eventDict["Type"] is "prefetch":

28 profileEventData += prefetchParser(event["Data"])

29 <Additional elif statements as necessary >

30 #if no matches in the profile , return nothing

31 else:

32 return None

33 #get information common in every event

34 profileEventData += getCoreSubgraph(event["Data"])

35 return profileEventData

Figure 7. Event Processing Pseudocode

an action, an object, a parser, and a time. The time is a unix timestamp and is

unique in the database. This represents the time that an action occured. The action

contains a description of an action that affects a digital object. The object is the

digital object that is affected by the action and contains an identifying name of an

object such as a URL, registry key, or file path. The identifying name is unique in the

29

Figure 8. Core Subgraph.

database. Since objects are unique, they are also indexed by neo4j, providing speed

improvements during queries. If there are different objects with the same name, such

as registry keys in user hives, the username is appended to the beginning of the iden-

tifying name. The sections below show the most common types of subgraphs in a

forensics image.

File Table.

The File Table parser produces at least one subgraph for each item in a system’s

file table. This subgraph contains an additional node to the core subgraph that rep-

resents the extension of the file object. The extension node is unique in the database.

To help reduce congestion in the database, file table times (created, changed, modi-

fied, accessed) are combined into the same action if they occurred at the same time.

The action description lists all the times that have changed during that timestamp

(‘Modified, Created Time Altered’) and a new field is added to the action where each

changed time type is an item in a list (“[‘Modified’, ‘Created’]”).

Web History.

Each web browser has its own parser due to differences in history recording. In

general, a parser records three different events: history, downloads, and keyword

30

Figure 9. File Table Subgraph.

searches. Figure 10 details subgraph examples. History events adds a visit ID to the

core subgraph. Visit IDs link to other visit IDs to indicate a sequence of events in

a browser. Downloaded events show the location of the downloaded object and the

URL source. Keyword search subgraphs add the core subgraph but include a field in

the action node that indicates the words used in a search.

Registry Keys.

All parsed registry keys that are unique for each user (userclass.dat and ntuser.dat

files) contain the subgraph in Figure 11. All other registry keys omit the user node in

their subgraph. Both the registry type and owner nodes are unique in the database.

The action node contains a field that holds the value of the registry key. Registry

keys that provide more information are below.

Recent Apps (SOFTWARE/Microsoft/Windows/CurrentVersion/Search/

RecentApps/) and User Assist (SOFTWARE/Microsoft/Windows/CurrentVersion/

Explorer/UserAssist) registry keys help provide evidence of program execution. Both

keys are updated when a program is run to populate recently used programs lists

in Windows. These entries use the registry subgraph but add an additional object

node with an edge to the action, indicating the program specific program that was

executed.

Most Recently Used (MRU) registry entries (SOFTWARE/Microsoft/Windows/

31

Figure 10. Web History and Download Subgraphs.

Figure 11. Standard Registry Subgraph.

Figure 12. MRU Registry Subgraph.

32

CurrentVersion/Explorer/RecentDocs/) retain a list of recently used files for each

extension (.doc, .jpg, etc). The recently used files for each extension are listed in

ascending numerical order where 0 represents the most recently used file. The MRU

subgraph (Figure 12) captures this data by creating a sub-registry type node that

represents the most recently used files of a particular extension. In Figure 12, this is

.ppt. The numerical order of an extension’s MRU files are created as separate nodes

to allow easy traversal of the files in order of use. There is also an additional object

attached to the action node that was extracted from the value of the correct registry

key and indicates the used file. The rest of the subgraph follows the standard registry

subgraph.

Additional registry entries that can be processed are appcompatcache and shell-

bag keys. Like recent apps and users assist entries, appcompatcache helps provide

evidence of program execution, updating registry values when a program is executed.

Shellbag entries maintain UI information for folders viewed in the Windows File Ex-

plorer. These values can remain in the registry if the origial directory is deleted,

possibly providing additional information on the filesystem.

Other Subgraphs.

Windows event log parsers produce the core subgraph for selected events. The

action contains the event message and the object uses an identifying name of

〈 Event Type 〉/〈 Event Code 〉. Windows events that are parsed include Customer

Experience Improvement logon/logoff; event log service start/stop; computer up-

time report; computer name changes; network interface connections/disconnections;

wake/sleep states; installation result; and installer-initiated restarts.

The link parser analyzes all the link files in Windows and establishes a relationship

between the link file and the target of the link file. This allows investigators to match

33

events that affect a link with its corresponding target file. The link subgraph follows

the same structure as the Downloaded File Subgraph in Figure 10, with the link file

and the target file as the object.

Prefetch files store information to help load programs that have been previously

executed. Prefetch files also include up to the last eight execution times, making them

a valuable forensics tool. The parser creates an event for each of these execution times

in the same subgraph style as the Downloaded File Subgraph using the prefetch file

and the executable file as the two objects.

The mountpoints parser examines the addition or removal of removable media.

The subgraph contains the device ID and the root of the file structure on the operating

system. Again, this subgraph takes a form similar to the Downloaded File Subgraph.

neo4j.

Once neo4j receives data from the parser, it performs a transformation of the time

node. Using the timetree plugin from GraphAware, these time events are converted

into a time tree (Figure 13) [20]. The timestamp is divided into year, month, day,

hour, minute, and second levels, and all actions are attached to the second nodes.

This transformation allows queries that search consecutive events by following the

next relationship. neo4j allows for queries that find variable length paths, so all

events that occur in a X second window (starting at time Z) can be found with the

following query:

1 MATCH (: Second {time: Z}) -[:NEXT *0..X]->(window:Second)

2 MATCH (window) <-[:AT_TIME]-(act:action)

3 RETURN act

34

Figure 13. Time Tree Format [20].

Figure 14. Normalizing MRU Entries.

35

3.4 Normalization

The next processing layer normalizes the neo4j database by combining objects

that are the same but have a different identifying name. For example, MRU Registry

Values only list the filename of the used file (Snowball Fighting(1).doc) in an object

node where the file table entry for the same file will be listed in an object node

using the whole path (C:/Users/user/Downloads/Snowball Fighting(1).doc). In order

to properly see all the actions that happen on an object, these nodes need to be

combined. The normalization processing layer combines nodes if there is only one

match. If there are multiple matches, the node is linked to the possible matches with

the relationship called ‘POSSIBLE REAL PATH’ (Figure 14).

3.5 Abstraction

Abstracting low-level event data into higher-level events is the final processing

layer. Abstraction in PGER can be accomplished in two different ways: expert rules

and applying TEAR rulesets.

Expert Rules.

Expert forensics knowledge can extract high-level events from a sequence of low-

level events. For example, if there is evidence of a program execution, and a file

is accessed with an extension associated with the executable within a certain time

window, it is likely that the two actions are related. These known sequences can be

quantified into rules to find specific subgraphs. Examples of these patterns can be

found in the subsequent paragraphs.

36

History of a File.

A simple example of extracting information from the graph database is determin-

ing a file’s history. Since every file is unique in the database, the specific node can

be expanded to list all the actions that affect the file. This can be done with the

following query:

1 MATCH (obj:object)

2 WHERE obj.filename = "<filename >"

3 MATCH (sec:Second) <-[:AT_TIME]-(act:action) --(obj)

4 OPTIONAL MATCH (obj) <-[:LINK_TARGET]-(lnkObj) --(lnkAct:action)

5 RETURN sec.time , collect(act.action), collect(lnkAct.action)

The first two lines find the desired object. The third line finds all the actions and

times that affect the desired object. Line four gives the history of link files that are

associated with the desired object.

Power Events.

Using a combination of objects from the Windows event logs, power events can

be determined (shutdown, startup, sleep). If enabled, the Windows Customer Ex-

perience Improvement (CEI) service will start and stop just before power events.

The Windows Event Log service does the same. The Event Log also records the

Windows Version and uptime when Windows powers on. Each of these events ap-

pear at every power event and serves as the baseline for power events for a given

time window. Additional events may appear in the shutdown/startup process: Mi-

crosoft Windows Power Troubleshooter - System Returned from a Low Power State;

Network Interface Connected/Disconnected; Microsoft Windows RestartManager -

Starting/Ending Session. These optional events help raise the likelihood of a power

event occurring. Altogether, these events create a subgraph that shows power events:

37

1 MATCH (: parser {parserName: "eventLog"}) <-[:PARSER]-(act:action)

-[:EFFECTS]->(event:object)

2 WHERE event.filename IN ["EventLog /6006", "EventLog /6005"]

3 MATCH (act) -[:AT_TIME]->(sec:Second)

4 MATCH p = () -[:NEXT*5]->(sec) -[:NEXT*5]->()

5 WITH p

6 UNWIND nodes(p) AS secNodes

7 MATCH (secNodes) <-[:AT_TIME]-(reqAct:action) --(reqObj:object)

8 WHERE reqObj.filename IN ["Microsoft -Windows -Winlogon /7001", "

Microsoft -Windows -Winlogon /7002", "EventLog /6006", "EventLog

/6009", "EventLog /6013", "EventLog /6005"]

9 OPTIONAL MATCH (secNodes) <-[:AT_TIME]-(optAct:action) --(optObj:

object)

10 WHERE optObj.filename IN ["Microsoft -Windows -RestartManager /10000

", "Microsoft -Windows -RestartManager /10001", "e1iexpress /32",

"e1iexpress /27", "Microsoft -Windows -Power -Troubleshooter /1"]

11 RETURN nodes(p), collect(reqAct), collect(optAct)

Lines 1-4 find a time window that contains one of the required events (event log

service start or stop). The time window is then searched for related events in lines

5-11. If the required events are in the time window (reqAct), then it is recorded as a

abstracted event. Optional matches bolster the likelihood of the extracted event and

are also included in the abstracted event. An example of a subgraph that this query

generates is in Figure 15.

Installed Programs.

Installed programs can also be determined by event logs. MSI Installer provides

several event entires:

• 1040: Beginning Install Transaction

38

Figure 15. Shutdown Event (Red), Startup Event (Green).

• 11707: Installation Completed

• 1033: Install Info

• 1042: Intall Transaction Complete

• 1005: Installer Initiated Restart

• 1038: Windows Installer Requires a System Restart

These entries contain valuable information on the installation of a program. As the

first event, the Beginning Install Transaction stores the location of the installation file.

The next entries indicate if the installation was successful or if a restart is required.

Combining these events together can be used to abstract an installation attempt on

the forensics image. A sample query is below:

1 MATCH (: parser {parserName: "eventLog"}) <-[:PARSER]-(act:action)

-[:EFFECTS]->(event:object)

2 WHERE event.filename IN ["MsiInstaller /1040"]

3 MATCH (act) -[:AT_TIME]->(sec:Second)

4 MATCH p = (sec) -[:NEXT *10]->()

5 WITH p, act , event

6 UNWIND nodes(p) AS secNodes

7 MATCH (secNodes) <-[:AT_TIME]-(act2:action) --(obj2:object)

39

8 WHERE obj2.filename IN ["MsiInstaller /11707", "MsiInstaller /1033"

, "MsiInstaller /1042", "MsiInstaller /1005", "MsiInstaller /1038

"]

9 WITH act , event , collect ({ event: obj2.filename , act:act2}) AS

actList

10 RETURN p, act , event , actList

Since this query also uses event log information, the query is similar to the power

event abstraction in the previous section. An example of the install subgraph is

in Figure 16. To extract more useful data, a file search can be conducted in the

time window between the start and end of the installation to find the files installed,

including the new executable file.

Office Suite Execution.

There are several artifacts that can indicate the execution of an program in the

Office Suite. In this section, Word will serve as the example. The first identifying

artifacts are prefetch files, covered in a previous section. There are also Word MRU

registry entries. This set of registry keys can store several files that have been opened

by Word, but it only stores time data for the last time a file was used. By expanding

the history of all files except the most recent, more artifacts may be uncovered to

Figure 16. Installation Subgraph.

40

determine when a file was opened in Word.

Artifacts from the file history can include recent apps and recent item registry

keys. Each user on the computer has a unique set of keys located in the ntuser.dat

file. Executables have a specific application ID and are linked with this application

ID using the keys following the pattern: /SOFTWARE/Microsoft/Windows/

CurrentVersion/Search/ RecentApps/〈 APPLICATION ID 〉/AppId. The value of

this key is the path to the executable represented by the application ID. The keys

for files have a naming convention as follows: /SOFTWARE/Microsoft/Windows/

CurrentVersion/ Search/RecentApps/〈 APPLICATION ID 〉/RecentItems/

〈 FILE ID 〉/〈 DATA TYPE 〉. The data type of ‘path’ links a file ID with a filename.

There are many other data types that include telemetry data from Microsoft like

longitude and latitude. By linking the application IDs with the data type of path, it

can be determined that a specific application used a certain file.

Another artifact is link files. Both Windows and the Office Suite make links

to files and store them in the file system when used, helping to provide execution

information. These files are located in the following locations:

• /Users/〈 USERNAME 〉/AppData/Roaming/Microsoft/Office/Recent/

〈 FILENAME 〉.LNK

• /Users/〈 USERNAME 〉/AppData/Roaming/Microsoft/Windows/Recent/

〈 FILENAME 〉.LNK

• /Users/〈USERNAME 〉/Local/Microsoft/Windows/History/〈 FILENAME 〉.LNK

The final type of artifact is Word Reading Locations. These registry keys help re-

member where a user was located in a file so the program can start the file in the same

place. The location of these keys is /SOFTWARE/Microsoft/Office/15.0/Word/Reading

Locations/Document 〈 DOCUMENT NUMBER 〉. The keys are unique per user and

41

are located in the ntuser.dat file. The keys also store file and time information for

further evidence of program execution.

These artifacts can be gathered quickly by using the following query on the

database:

1 MATCH (ft:fileType) <-[:TYPE]-(obj:object)

2 WHERE ft.name IN ["doc", "docx"]

3 OPTIONAL MATCH (obj) <-[:LINK_TARGET]-(obj2:object)

4 WITH DISTINCT obj , obj2

5 WITH [x IN collect(obj) + collect(obj2) | id(x)] AS docObjIds

6 MATCH (docObjs:object) --(docAct:action) -[:AT_TIME]->(docSec:

Second)

7 WHERE id(docObjs) IN docObjIds

8 RETURN docSec.time AS time , docObjs.filename AS filename , docAct.

action AS action

9 UNION

10 MATCH (obj:object)

11 WHERE toLower(obj.filename) CONTAINS "winword.exe"

12 OPTIONAL MATCH (obj) <-[:LINK_TARGET]-(obj2:object)

13 WITH DISTINCT obj , obj2

14 WITH [x IN collect(obj) + collect(obj2) | id(x)] AS exeObjIds

15 MATCH (exeObjs:object) --(exeAct:action) -[:AT_TIME]->(exeSec:

Second)

16 WHERE id(exeObjs) IN exeObjIds

17 RETURN exeSec.time AS time , exeObjs.filename AS filename , exeAct.

action AS action

18 UNION

19 MATCH (: parser {parserName: "mactime"}) <-[:PARSER]-(act:action)

--(hist:object)

20 WHERE hist.filename CONTAINS "AppData/Roaming/Microsoft/Office/

Recent" OR hist.filename CONTAINS "AppData/Local/Microsoft/

Windows/History" OR hist.filename CONTAINS "AppData/Roaming/

42

Microsoft/Windows/Recent"

21 OPTIONAL MATCH (hist) -[:TYPE]->(ft:fileType)

22 WITH DISTINCT hist , act , ft

23 WHERE ft IS null OR ft.name <> "lnk"

24 MATCH (act) -[:AT_TIME]->(sec:Second)

25 RETURN sec.time AS time , hist.filename AS filename , act.action AS

action

26 UNION

27 MATCH (: regType {type: "ntuser.dat"}) <-[:REG_TYPE]-(key:object)

--(keyAct:action) -[:AT_TIME]->(keySec:Second)

28 WHERE key.filename CONTAINS "Word/Reading Locations"

29 RETURN keySec.time AS time , key.filename AS filename , keyAct.

action AS action

This query is a set of sub queries joined by the ’UNION’ statements. The first sub-

statement (Lines 1-8) find relevant files (’.doc’ and ’.docx’ files) and any corresponding

link files. Lines 10-17 return Word’s executable file and associated link files. The

next statement finds relevant Office or Windows files, and the final statement finds

the Reading Location Registry Files.

Web History.

Combining web history entries can show complex activities. As mentioned previ-

ously, there are three main types of data recorded in the graph: history, downloaded

files, and keyword values. By chaining consecutive web visits using the visit IDs and

time, a sequence of visits can be obtained. Furthermore, downloaded files can be

tracked to the destination on the host file system where file history can be obtained

(Figure 17). This figure shows the web history entry (1) and the downloaded location

of the file (2). The subgraph also shows that Word opened using a prefetch file (3).

43

Figure 17. Download/File System Integration.

1. Match a pattern of level n− 1 abstractions

2. Find the earliest and latest timestamps in matched abstractions

3. Create level n abstraction node

3.1. Create relationships with all matched abstractions of level n− 1

3.2. Create relationships with matched values in step 2

Figure 18. Steps to Create an n Level Abstraction.

Combining Expert Rules.

The previous abstractions can also combine together to create new layers of ab-

straction. Figure 17 is a basic concept of this idea. Both web history and file table

information are combined to enrich an examiner’s understanding of events that oc-

curred. A graph database is a great way to structure abstraction using a tree-like

structure (Figure 19). The steps to create this structure is in Figure 18. Consider

44

actions as a level 0 abstraction. Level 1 abstractions have edges that link them to

the events loaded into the subgraph. For example, a shutdown event would have

edges to the Customer Experience Improvement Service Shutdown and the Window

Event Log Service Shutdown. To represent the time window for an abstraction, the

actions would also be used. The two actions with the earliest and latest time would

be used for the ‘Start’ and ‘End’ times for an abstraction. Using Figure 17 as an

example again, a level 1 abstraction would have edges to all action nodes (A-D) and

a start time of (I) and a end time of (III). Multiple level 1 abstractions could then be

abstracted into a higher level event.

TEAR Ruleset.

The second method of abstraction is to use a machine-generated ruleset created

by Temporal Event Abstraction and Reconstruction (TEAR). As mentioned in Chap-

ter 2, TEAR is a machine-generated method of modeling high events using pattern

matching. The steps to prepare the graph database for the application of the TEAR

ruleset are as follows: build the ruleset tree, apply terms to the graph, create the

time windows, and find the high-level events.

Build Ruleset Tree.

As shown in Figure 21, strings, production rules, and terms can be built in a tree-

like structure. The very first step is to ensure that all production rules, terms, and

strings are unique in the graph database by setting uniqueness constraints. These

constraints allow for indexing and faster lookup. Adding rules to the tree occurs in

two steps: first the production rules are built and second the strings and terms are

added.

The production rules, like the terms and strings, are stored in a SQLite database

45

Figure 19. Example Abstraction Tree.

1. Build ruleset tree

1.1. Import production rules

1.1.1. Remove single variants

1.1.2. Remove chain rules

1.1.3. Create root rule

1.2. Import strings and terms

1.2.1. Add ‘parent’ relationships

1.2.2. Remove orphan nodes

1.2.3. Label levels of the rule tree

1.2.4. Create term lists

2. Apply terms

3. Create time windows

4. Find high-level events

Figure 20. Steps to Apply TEAR Ruleset.

by TEAR. This ruleset must be converted into a graph format. The conversion starts

by understanding the construction of production rules. These rules can be composed

of other production rules, terms, and strings. Additionally, if a production rule is a

child of another production rule, there are two relationship options. Component is

46

Figure 21. Temporal Event Abstraction & Reconstruction Hierarchy.

the first type of relationship. Component relationships are an ‘AND’ relationship; all

children must exist in order for the parent to exist. Further, all children must occur

in a specific temporal order. Each child has a number that determines the sequence of

events. Variant is the second type of relationship. This relationship creates an ‘OR’

relationship with its children. If one child matches, then the parent exists. Conversion

into the graph database makes these relationships explicit (Figure 22).

Production rules and a child are retrieved from each row of the SQLite query.

These items are added a list of entries in Python for mass upload to the graph

database. These entries are then sent to the neo4j database using the commands

‘UNWIND’ and ‘MERGE’. The unwind command breaks down a list to each individ-

ual element, allowing entries to be processed one at a time. The merge commands

only add an object if it does not already exist in the database. This command, along

with the uniqueness constraint, allows separate references to the same object.

Once the production rules are added to the rule tree, there are several ways to

47

clean it up before adding terms and strings. First, single variants can be removed.

Some production rules have one child and a variant relationship with another pro-

duction rule. These rules can be combined without affecting the end result of the

rule tree; if the child exists, the parent will exist. Another cleanup procedure is to

remove ‘Chain’ production rules. These are production rules with one child and a

component relationship. Like the previous rule, if the child exists, the parent will

exist as well. The last procedure is to create a root rule and establish an relationship

labeled ‘ROOT’ between the root rule any production rules without a parent. Any

production rule with this relationship to the root rule is considered a top-rule. If

a top-rule exists, a high-level event has occurred. Once the cleanup procedures are

complete, the rule tree’s terms and strings can be added

Terms and strings are added to the root tree in a similar manner to the production

rules. Also like production rules, there are several cleanup procedures that occur to

the rule tree after the terms and strings are added. The first procedure is to add

a ‘PARENT’ relationship to each set of nodes that has a parent/child relationship,

as in Figure 22. Prior to this procedure, nodes only have a component or variant

relationship. Adding this relationship makes rule tree traversal easier in neo4j since

all parent/child relationships have a common label. Another procedure eliminates

‘orphan’ nodes. These nodes do not have a path to the root node and cannot affect

the execution of a high-level event. The next procedure breaks the rule tree into

levels. Level 0 is all terms, level 1 is all strings composed of only terms, and levels

2 to n are determined by the distance a string or production rule is from a level 1

string. Figure 21 provides a small example of level determination. Establish levels

helps future procedures in ensuring that all lower-level items are processed before

higher items in the tree. The next procedures create all possible event combinations

for high-level events.

48

Figure 22. Portion of Production Rule Tree, Production Rules (Red), Term (Blue).

Figure 23. Example of Term List Construction.

49

The order of terms in a production rule is important for determining if a high-level

event occurred. The order of terms refers to the arrangement of terms at the bottom

of the rule tree. Since all terms have component relationships, there is an order of

terms for all subsequent strings and production rules. Special node(s) called term lists

are attached to each string and production rule (See Figure 23) to reflect this order.

Production rules B and C have a single term list, reflecting the order of terms below it.

However, production rule A has variant relationship with the production rules below,

changing how term lists are created. In this relationship, the term list(s) of the child

nodes are copied and added to production rule A, since any term sequence is valid. If

production rule A encounters a component relationship above it, the number of term

lists for the parent node is determined by the multiplying the number of term lists

of each component. For example, say there is another production rule, D, that has

three term list nodes. If production rule A and production rule D were components

of the production rule E, there would be six term lists attached to E. This is because

any term list attached to A can be combined with any term list in D. Term lists are

created by level, ensuring that all child nodes have at least one term list node when

the parents are processed. When this process is complete, all possible term lists for

top-rules are determined.

The last procedure before terms can be applied is to add a property to all term

list nodes that represents top-rules. This property represents the unique terms in

each term list. This is used when finding high-level events.

Apply Terms.

Now that the rule tree is complete, terms can be applied to the event graph. As

discussed in Chapter 2, all terms have a regular expression pattern, an object type,

and an action. If an object matches both the object type and the regular expression

50

Figure 24. Example of Time Window, Seconds (Blue), Time Window (Purple).

of the term, and the term action matches the action that corresponds to the object,

there is a term match. A term match creates an edge between the matched action and

the term. Objects might match more than one regular expression, so the tiebreaker

is the longest match. Terms are applied by type. The graph finds all terms and

object/action pairs of the same type and finds matches until all object/action pairs

are exhausted.

Create Time Windows.

The next step is to create time windows. The default time windows are 90 seconds

for TEAR rulesets and are created so no time window is a subset of another. A

time window has a start and end relationship with the first and last second nodes

respectively in the time window (Figure 24). All second nodes in the time window

have a relationship titled ‘COMPONENT OF’ with each applicable time window. An

example of a time window is presented in Figure 24.

After time window creation is complete, additional procedures are accomplished

to shorten high-level event processing. The first procedure is to find the unique terms

in each second of the graph. This is done through the neo4j query below:

51

1 MATCH (sec:Second)

2 SET sec.TEAR_terms = []

3 WITH sec

4 MATCH (sec) <-[:AT_TIME]-(act:action)

5 MATCH (act) -[: MATCHED_TERM]->(term:TEAR_Term)

6 WITH DISTINCT sec , term.ID AS termID

7 WITH sec , collect(termID) AS termList

8 SET sec.TEAR_terms = termList

Lines 1-3 find all the second nodes and sets the TEAR terms property to an empty

list. Lines 4-6 find all distinct seconds and terms. Lines 7-8 create a list of the distinct

terms and set the TEAR terms property. The next procedure finds unique terms for

each time window using a similar query.

Find High-Level Event.

The final step in this process is to match terms contained in time windows to

the top-rule variants. The top-rule variants are acquired from neo4j and are stored

in Python dictionary (rule dictionary) for comparison. The next step is to import

all time windows into another dictionary (time window dictionary) for comparison.

Each time window has an entry in the dictionary and contains terms grouped by Unix

timestamps.

Once the time windows and top-rule variants have been stored in Python, the next

two procedures filter time windows based on the probability that they will contain a

specific top-rule. Shrinking the amount of time windows to test for a particular top-

rule is important for fast execution. This is accomplished by reviewing all variants for

a particular top-rule to find terms that appear in 100% of variants. These terms are

then compared to the unique terms in a time window; if a window contains all these

terms, the time window is retained for further analysis. The retained time windows

52

then compare its unique terms to the unique terms in each top-rule variant. If a time

window contains a specific threshold (default is 90%) of the terms in a variant, the

variant is stored in the time window dictionary for further processing. A time window

can have many variants that meet the threshold. These procedures can significantly

cut the number of time windows and variants that need further processing. The next

steps process the remaining time windows and variants to find high-level events.

The first method of finding high-level events is to ignore term order. All remaining

time windows and variants compile the number of each term. The number of each

term is compared, and if the time window is only missing a specific threshold (default

is four) of terms from a specific variant, the time window matches the variant.

The second method of finding high-level events is to find substrings in time win-

dows. Each matching variant has a term list indicating the order of terms, and the

time window has an ordered dictionary of timestamps (key) and terms (values). The

terms contained in the first timestamp in the time window are compared to the first

term of the variant term list. If there is a match, the term from both the variant and

the time window is deleted. This process repeats until there are no more terms or

there is no match. In either case, the next timestamp in the time window is reviewed

until the whole time window has been examined. If the variant term list is empty or

contains a certain percentage of the original term list, the time window is determined

to match the high-level event.

Using the substring method, steps must be taken to ensure duplicates are elim-

inated. If two time windows contain the same sub-window with all the terms in a

variant, the same event appears as a duplicate event. Therefore, the program records

the beginning and end timestamps of a matched variant. If two events share the same

timestamps, they are duplicates and only one match is kept.

53

3.6 Conclusion

In conclusion, PGER accomplishes its goal of abstracting user action events from

digital artifacts in four steps. The first step extracts data from a device image. The

second and third layer convert the extracted data into a usable ontological graph

using neo4j. The last step allows examiners to extract user actions by expert rules or

through machine-generated rulesets.

Performance is improved over traditional ontological databases by using a native

graph processing and storage format. This allows users to leverage the advantages

of a graph database without the cost of just-in-time assembly of a graph or the

completion of many join statements. Utilizing a graph database also allows for more

natural queries of ontological data, and enables users to find subgraphs by searching

for path patterns.

54

IV. Results

PGER utilizes a graph database to help improve performance of queries common

in ontological datasets. By allowing fast path traversals to explore relationships, a

graph database avoids the costly join statements of a traditional database. PGER is

also able abstract low-level events into higher-level events that are easier for examiners

to understand. It does so through two methods, expert rules and machine-generated

data sets. This chapter evaluates the effectiveness of PGER in five different categories.

The results of this project are divided into six sections. The first section elabo-

rates on the testing environment for all tests in the chapter. Sections 2 and 3 examine

different methods inside the graph conversion and data extraction processing layers.

Section 4 highlights some speed advantages that neo4j has over SQLite when con-

ducting certain queries. Section 5 examines PGER as a platform to apply expert

rules to forensics images. Examples are provided to show potential applications. The

final section provides a performance comparison between TEAR and PGER when

applying machine-generated rulesets.

4.1 Testing Environment

All tests were conducted on a machine with the following specifications:

• CPU: i3-6100U (2 Cores, 4 Threads)

• RAM: 12 GB

• HDD: 250 GB Samsung 840 EVO SSD

• OS: Ubuntu 16.04 LTS

• Docker Version: 17.09

55

• Python Version: 3.6

• Elastic Stack Version: 5.5.2

• neo4j Version: 3.2.2

• PLASO Version: 1.5.1

The test image was a 65 GB Window 10 image with sample activities that included:

• Web Browsing/Downloading Files from Microsoft Edge, Mozilla Firefox, and

Google Chrome

• Microsoft Office: Creation/Manipulation of Word, Excel and PowerPoint

Files

• Viewing Downloaded PDFs

• Sleep, Startup, and Shutdown Sequences

• View image files

• Manipulate files in Windows Explorer

There were two additional Windows 7 images in .dd format (10 GB and 20 GB)

that were used to test data extraction performance.

4.2 Data Extraction Performance

The PLASO and TEAR event abstraction methods contained in the data extrac-

tion processing layer are compared using consistency, the number of events captured,

and processing time. Consistency is the most important attribute; an examiner needs

to know the data extractor can find events if they are on the forensics image. The

56

number of events captured reflects how closely extracted events represent the ac-

tions that occurred on a device image. This provides a more complete picture to

the examiner, making event reconstruction more accurate. Finally, processing time

is measured. This is not the most important metric, but it can direct an examin-

ers choice if time is a factor. It is important to note that neither method involves

the neo4j database; PLASO outputs results to an elasticDB and the TEAR event

extractor outputs several text and SQLite files. However, these tests are important

as the output of the event extractor affects the efficacy of the graph conversion and

abstraction processing layers.

All tests were conducted on three Windows images in .dd format, sizes of 10 GB,

20 GB, and 65 GB. Both PLASO and TEAR event extraction were run as the only

docker containers on the test machine. Timing results were an average of three runs.

In regards to the number of parsers used, PLASO had the clear advantage by using

57 on the win7 slow preset. It records events types such as scheduled events, recycle

bin activity, and metadata inside files. In addition, PLASO parsed registry keys

common to forensics investigators such as MRU lists, userassist, and appcompatcache.

In contrast, the TEAR event extractor recorded 14 different types of events. Registry

entries from each hive were stored in a single file so useful keys could be parsed in

the next processing layer.

In terms of consistency, the TEAR event extractor excelled. In every image, the

program was able to find entries on all 14 parsers. PLASO, however, did not find any

registry entries on two of the three images. This is a critical failure because registry

entries provide essential information for examiners. The cause for this is currently

unknown, but Windows 10 might contribute to this problem since one of failed images

used this Windows version.

The processing times for each method are listed in Table 2. PLASO took a

57

Table 2. Data Extraction Processing Time.

Image Size (GB) PLASO (h:mm:ss) TEAR Event Extractor (h:mm:ss)
10 0:36:12 0:04:23
20 0:45:44 0:05:03
65 2:15:16 0:08:23

significantly longer time to generate event, but it also captured many more events

compared to the TEAR event extractor. The advantage in this evaluation depends

on how important processing time is to user. If the need is urgent, TEAR provides

events quickly, even if it does not provide as much context as PLASO.

Due to its consistency, the TEAR event extractor was used in the remaining tests.

The PLASO version that was tested missed critical events, making it unusable for the

other evaluations in this chapter. If future versions become more consistent, PLASO

is worth the time penalty for the extra fidelity on the device image unless time is a

critical factor.

4.3 Graph Conversion Performance

PGER also provided two methods to import parsed artifacts into the graph

database: logstash and a python script. To compare these methods, flexibility, pro-

cessing time, and accuracy were important factors. A flexible method of graph con-

version can handle multiple formats of data extraction and easily add the ability to

convert a new type of event into a subgraph. Processing time is important because

PGER must be able to compete with other tools such as TEAR; any performance

benefit of PGER is minimized if converting a dataset is time-consuming. Finally,

accuracy is important as well because both methods should produce the same graph

if they used the same extracted events and parsed the same events.

All tests involved the 65 GB image described in the first section. Timing results

58

were an average of three runs. Both methods converted the following events from the

TEAR event extractor dataset: firefox history, chrome history, all registry entries,

NTFS file table entries, prefetch files, and Windows event log entries.

Logstash provided a more flexible interface for graph conversion. It contains plu-

gins to ingest 48 different formats, and 3d party plugins are available to process even

more formats. In PGER, logstash ingested three different input formats: elasticDB,

csv, and SQLite. If event extractors developed different output formats, logstash

would likely be able to ingest the new format with little additional programming. In

contrast, the python script only ingests the TEAR event extractor.

The processing times for each method are in Table 3. There are two main reasons

why the python script was substantially faster than logstash. First, logstash needed an

operational elastic stack (elasticDB and kibana) to operate, requiring more resources

than a python script; CPU utilization on the test machine was consistently above

90%. The second, more important factor was the lack of bulk operations with the

neo4j database. Each event is sent to neo4j as a separate REST query, quickly

overwhelming connection limits. A potential work-around would be to take the results

from logstash and place them in an intermediate elasticDB index. Logstash interfaces

directly with elasticDB, so it caches processed entries for bulk imports. The entries

in this intermediate database could be processed by a python script to bulk import

the data to neo4j.

Both methods provided accurate results; each method produced identical graph

characteristics (Table 4).

If processing speed can be improved, logstash provideed a more flexible method of

Table 3. Graph Conversion Processing Time.

Logstash (h:mm:ss) Python Script (h:mm:ss)
1:13:44 0:15:26

59

Table 4. neo4j Database Parameters After Graph Conversion.

neo4j Database Size 656.18 MB
Node Count 1,069,671

Relationship Count 2,587,503

graph conversion, but the immense speed difference and resource requirements makes

the python script the ideal method at this time.

4.4 neo4j Performance

To analyze the performance of neo4j compared to the SQLite database where the

TEAR dataset is stored, three types of queries were evaluated by time. Timing results

were an average of three runs.

The first query type was a join query to find all files in the MRU registry keys.

The SQLite database has a separate table for MRU entries that includes a timestamp.

The file represented by the MRU entry is located in the items table, containing all

objects in the forensics image. A join is required to connect both tables. The syntax

used to find the MRU files for both databases is below:

1 #SQLite Query

2 SELECT mruList.TimeStamp , items.sort

3 FROM mrulist

4 JOIN items ON mruList.TraceID = items.TraceID

5

6 #neo4j Query

7 MATCH (: regType {type: "MRU"}) <-[:REG_TYPE]-(key:object) --(act:

action)--(mruObj:object)

8 MATCH (act) -[:AT_TIME]->(sec:Second)

9 RETURN sec.time , mruObj.filename

The second query type filtered a single table to find all files with the extension of

60

‘doc’. This query filters the rows of the items table in the SQLite database by the

extension column. The syntax for the second query is below:

1 #SQLite Query

2 SELECT items.sort

3 FROM items

4 WHERE items.ext IS "doc"

5

6 #neo4j Query

7 MATCH (: fileType {name: "doc"}) <-[:TYPE]-(obj:object)

8 RETURN obj.filename

The last query retrieved all rows from the item name (called sort) column in the

database. The SQLite query returns the sort column in the items database. The

syntax for this query is below:

1 #SQLite Query

2 SELECT items.sort

3 FROM items

4

5 #neo4j Query

6 MATCH (obj:object)

7 RETURN obj.filename

The performance of all query types are in Table 5. In queries that require a join

statement from the SQLite database, the advantages of a graph database become

Table 5. SQLite and neo4j Query Comparison.

Query Type Database Type Time (ms)

Join
neo4j 45

SQLite 5548

Filter
neo4j 31

SQLite 128

Whole Column
neo4j 987

SQLite 162

61

apparent. neo4j was able to leverage the relationships in the database, only requiring

one index lookup to find the correct regType node. Since there are only eight nodes

of this type in the database, this lookup is extremely fast. It then utilized the rela-

tionships in the database to traverse the registry key and action nodes to find all files

that belonged to the MRU registry keys. For the filter query, neo4j was still faster,

but the gap is narrowed. neo4j still took advantage of conducting one index lookup

for the fileType, of which there are only 582 nodes. However, not every query was

faster in neo4j; the whole column query type serves as an example. SQLite was much

faster at requesting data from one table where neo4j could not leverage relationships

to its advantage.

4.5 Expert Rule Results

PGER can use expert rules to abstract forensics artifacts into more understandable

events. This is accomplished by matching a specific pattern of low-level events to

create a higher-level event. An example of this is combining several Windows event

logs to determine a device shutdown. PGER’s ability to abstract events is evaluated

by the power events and file downloader rules.

Power Events.

A power event represents a shutdown or startup on the forensics machine. To

find the power events on the device image, the rules in Chapter 3 were used. As an

overview, a power event is primarily determined by the status of the CEI and Windows

Log Services. If they are shutdown, it indicates a shutdown event; the opposite is

also true. Startup also can contain optional Windows log entries to further bolster

the evidence of a startup event.

After applying rules to the dataset, a total of 65 shutdown events and 67 startup

62

Table 6. Power Event Sequence.

Start Time End Time Event
1491971379 1491971414 Startup
1491972643 1491972656 Shutdown
1491972859 1491972888 Startup
1492112687 1492112712 Startup
1492113771 1492114425 Shutdown

events were detected. There was apparently an error in the rules as two shutdown

events were missing. After examination, there were two sequences that contained

consecutive startup events. One such sequence is in Table 6.

After reviewing the actions between the two consecutive startup events using the

query below, a Windows Update seemed to occur.

1 MATCH (sec:Second {time: 1491972888})

2 MATCH p = (sec) -[:NEXT *..500] - >(: Second {time: 1492112687})

3 UNWIND nodes(p) as secNode

4 MATCH (secNode) <-[:AT_TIME]-(act:action) -[:EFFECTS]->(obj:object)

5 RETURN secNode.time , collect(act.action), collect(obj.filename)

Of the 5706 objects that had altered timestamps, 4830 matched the pattern C:/

Windows/WinSxS/*; these files are known to be related to Windows updates. The

shutdown sequence during Windows updates differs from other shutdowns and do not

include additions to the event logs.

Updates might also explain the large gap in the start and end times for some shut-

down events. For example, the last event in the table has a difference of 654 seconds

between its start and end times. Upon examination, several files are changed 361 sec-

onds after the start of the event. These files match the pattern C:/Windows/WinSxS/

amd64 windows-defender-am-sigs or C:/ProgramData/Microsoft/Windows Defender

/Definition Updates/. As a result, it appears that Windows Defender Definitions are

updated before a shutdown.

63

Downloaded Files.

The downloaded files expert rule is a great example of utilizing many different

low-level event types to create a complex abstraction. The expert rules combine the

following:

• Previous web history

• URL source for the downloaded file

• Location of the download file on the forensics image

• File history of the downloaded file

• Username responsible for modified registry keys

Firefox history shows nine files were download from the browser in the image and

that the rules found all nine entries. One example entry is contained in Table ??.

These tables highlight the insights gained through connected data. Through this

abstraction, an examiner can see recent web history, the URL source, the file system

destination for the downloaded file, and what actions took place on the downloaded

file. PGER was able to perform this relationship-heavy query for all nine objects in

18 ms.

4.6 TEAR Ruleset Application Results

Applying expert rules, as evidenced by the results above, can be an effective way

to abstract data. However, both of these rules in the previous section are short, only

matching a few different events in a time window. Some user actions are incredibly

hard to capture using expert knowledge alone due to the immense number of objects

and events that affect the outcome. TEAR tackles this problem by using a machine

64

Table 7. Downloaded File Expert Rule Result.

Download Information
Username user

Download Time 1497574737
Filename C:/Users/user/Downloads/Snowball Fighting(2).doc

Shortened URL http://files.geekdo.com/geekfile download.php?

Web History
Time URL

1497574730 /filepage/28906/snowball-fighting-rules-word-doc
1497574732 /file/download/2hkk77tped/Snowball Fighting.doc

All URLs start with https://www.boardgamegeek.com

File History
Time Action

1497574765 Accessed, Created Time Altered
1497574767 Modified Time Altered
1497574768 Changed Time Altered
1499350036 Recent .doc Changed
1499350036 Recent Docs Changed

to generate patterns for complex events. For example, TEAR has found 86 different

combinations of events that can occur when Mirosoft Word opens. Incorporating the

TEAR method of finding high-level events is important for PGER to find complex

events.

The final evaluation tested PGER’s ability to replicate the results produced by

TEAR on the same dataset. Both processing time and accuracy in replicating TEAR’s

results were the criteria for evaluating PGERs performance.

Testing for both PGER and TEAR used the same device image, event extractor,

and pre-processed ruleset. The ruleset was is limited to Opening Word as the lone

top-level rule. Terms that represented accessed prefetch files appeared in all term

sequences. Since both tools used the same data extraction method, this step was

ignored in both testing categories. Timing results were an average of three runs.

65

Processing Time.

Performance is based on the time required to determine high-level events from the

output of the TEAR data extractor. TEAR accomplishes this in the following steps:

1. Load event data from a SQLite database to memory

2. Apply terms to events, abstract terms to strings

3. Process the generated term list in chronological order. Find high-level events

by matching a variant with the term list of the current time window.

To accomplish the same feat, PGER uses the graph conversion, normalization,

and abstraction processing layers. Graph conversion and normalization matches with

TEAR’s first step. PGER’s abstaction layer accomplishes both steps 2 and 3. To

provide a direct comparison, the PGER abstaction layer splits into two categories

to better match TEAR’s steps. The first group, corresponding to TEAR’s second

processing step, contains building the ruleset tree, term application, and time window

creation. Finding high-level events corresponds with TEAR’s third processing step.

In both programs, steps 1 and 2 are only accomplished once per image as long as

the same ruleset is applied. Table 8 contains the runtimes for PGER and Table 9

compares TEAR and PGER runtimes.

Table 8. PGER Processing Times.

Processing Layer Time (mm:ss)
Graph Conversion 15:26

Normalization 1:02
Build Ruleset Tree/Apply Terms 2:44

Create Time Windows 1:48
Find High-Level Event 1:12

Total 22:12

66

Table 9. PGER and TEAR Runtime Comparison (h:mm:ss).

TEAR Step TEAR Time PGER Step PGER Time

1 0:29:52
Graph Conversion

0:16:28
Normalization

2 3:02:06
Build Ruleset Tree/Apply Terms

0:04:32
Create Time Windows

3 0:09:34 Find High-Level Events 0:01:12

PGER applies the machine-generated ruleset to a forensics image in less time

than TEAR. This advantage is shown the best in step 2 where the TEAR ruleset is

constructed into a tree and used to find the objects that apply to each term. One

significant factor in the processing time difference is that PGER does not abstract sets

of terms into strings; PGER finds all high-level rules only as different compositions

of terms. This results in longer comparisons between time windows and rulesets, but

PGER filters time windows in step 3 that do not include terms that are in every

variant. In this case, the difference is significant, eliminating nearly 80% of all time

windows (From 10,178 to 2,444). If there were rules that did not filter out as many

time windows, the PGER runtime to find high-level events could increase by a factor

of five. However, PGER would still provide a performance advantage over TEAR.

Accuracy.

Running the TEAR program on this image resulted in the identification of 12

high-level events. In the case of this ruleset, all high-level events represented the user

activity ‘Word Opened’ corresponding with start and end times established by the

tool. There were two methods developed for PGER to find high-level events: un-

ordered and substring. When applying the unordered methodology, PGER found 87

possible activities. This high amount of false positives was due to the shorter variants

in the ruleset. The shortest rule required prefetch file exeuction and two modifications

67

to registry files whose key matches the regular expression ‘ˆ .*/Windows/*’. If taken

out of order, different combinations of a variation matched in many places causing

false positives.

Substring matching cares about the order listed in the variant, but does not stop

if there are extra terms that are not included in the variant. This significantly reduces

matching time windows down to 26. The extra findings are not false positives, but are

duplicates. If two time windows contain the same sub-window with all the terms in a

variant, the same sub-window appears twice. Eliminating duplicates brings the total

matches down to 12 with slightly different time windows compared to their TEAR

counterparts due to different matching methods. Eliminating duplicates gives PGER

duplicate results to the TEAR program.

4.7 Conclusion

The results of the PGER evaluation show that a graph database can provide

performance gains over other storage methods using queries common in ontological

datasets. PGER can also match the accuracy of TEAR and provide an increase in

processing speed by filtering time windows and not abstracting terms into strings.

In regards to specific methods inside of PGER, PLASO did not provide consistent

results making the TEAR event extractor the default method for event extraction.

For graph conversion, logstash lagged behind the python script due to a lack of bulk

imports to the neo4j database. Finally, expert rules were applied to the database,

providing useful information for the examiner. However, longer rules might be better

created by machine pattern matching, like TEAR, due to the difficulty in codifying

the execution of a large set of events and objects.

68

V. Conclusion

The demand for digital forensics has risen significantly. This need is, in part,

driven by the time-consuming task of manual data correlation required for digital

forensics investigations. Forensics research tries to provide data correlation tools for

examiners that reduce the time needed to process each case. Researchers face three

main challenges: data volume, data heterogeneity, and legal admissibility. The NIST

model helps provide guidance on how to produce legally admissible results. Research

has shown that ontological storage of event data provides rich data for examiners

by creating relationships between events, but data is stored in a format that does

not quickly query relationships. PGER utilizes a native graph database that takes

advantage of the ontological relationships for faster performance. PGER also allows

for two types of abstraction to help examiners handle the immense data volume of

modern forensics images.

Previous research focused on four different categories: data extraction, data rep-

resentation, event reconstruction, and graph databases. Data extraction involves

finding events within a forensics image. Tools can focus on one type of data, but the

most useful tools extract multiple types of data, allowing for a more complete picture

of an image. Data representation organizes data in a common format to provide con-

sistency for event reconstruction. PGER utilizes the SOSLA ontological format as a

base subgraph for all events in the database and adds elements of ORD2I to expand

subgraphs as needed. PGER also relies on inference rules and the TEAR method as

event reconstruction methods. Finally, graph databases have two main structures:

triples and labeled property graphs. Both structures have different advantages, but

index-free traversal is a key benefit of labeled property graphs and important for

PGER’s performance.

PGER is designed into four processing layers: data extraction, graph conversion,

69

normalization, and abstraction. The first step extracts data from a device image. The

second and third layer convert the extracted data into a usable ontological graph using

neo4j. The last step allows users to extract data by expert rules or through machine-

generated rulesets. Each layer is separated from the others using docker containers.

This virtualization helps minimize the dependencies on the machine running PGER

and allows multiple instances of neo4j to run concurrently.

The performance of PGER is improved over traditional ontological databases by

using a native graph processing and storage format. This allows users to leverage the

advantages of a graph database without the cost of just-in-time assembly of a graph

or the completion of many join statements. Utilizing a graph database also allows for

more natural queries of ontological data, affording users the ability to find subgraphs

by searching for path patterns. PGER can also match the accuracy of TEAR and

provide an increase in processing speed by filtering time windows and not abstracting

terms into strings. In regards to specific methods inside PGER, PLASO did not

provide consistent results, making the TEAR event extractor the default method for

event extraction. For graph conversion, logstash lagged behind the python script due

to a lack of bulk imports to the neo4j database. Finally, expert rules were applied

to the database, providing useful information for the examiner. However, longer

rules might be better created by machine pattern matching, like TEAR, due to the

difficulty in codifying the execution of a large set of events and objects.

5.1 Future Work

PGER has highlighted many areas areas in need of improvement. First, PLASO’s

effectiveness should be tested. During development, PLASO did not provide consis-

tent results for data extraction. However, a new version has since been posted and

may provide more consistent results. PLASO provides many different data types for

70

evaluation, providing a richer dataset for examiners. The ability to use this tool could

ease in the generation of expert rules by incorporating more events.

A second area of improvement involves PGER’s graph conversion processing layer.

The python script providing bulk imports is markedly faster than using logstash and

the elastic stack. However, it can only process events from the TEAR event extraction

process. If expanded to incorporate PLASO inputs, it could provide a performance

benefit for PLASO imports when they become more reliable.

Another possible area for improvement is human curation of the TEAR rulesets.

With machine generation, there may be terms or strings that are not significant in the

production rules. This expands the rule trees and increases processing time. Human

experts may be able to identify these extra items and eliminate them, thus improving

performance.

User accessibility is also an extensive area of possible improvement. PGER in its

current form is not user friendly for non-technical examiners. A user interface that

used the neo4j database as the back-end would give non-technical users the ability

to execute queries on the database. In addition, a script could be used to link and

execute all processing layers together; currently each process layer has to be executed

manually.

A final improvement would be the design and addition of a standardized interface

for expert rules. PGER currently relies on queries and python scripts programmed

by the user to create rules. This results in a non-standardized approach and requires

knowledge of the database and programming. The ideal situation would enable a

user to simply identify a set of objects or actions within a certain time frame that

indicates a high-level event. The standardized interface would then interact with the

database and provide the abstraction, requiring no special programming skills.

71

Bibliography

1. K. Alghafli, A. Jones, and T. Martin, “Forensic Analysis of the Windows 7 Reg-
istry,” Journal of Digital Forensics, Security and Law (December), p. 17, 2010.

2. R. Angles, “A comparison of current graph database models,” Proceedings - 2012
IEEE 28th International Conference on Data Engineering Workshops, ICDEW
2012 , pp. 171–177, 2012.

3. R. Angles and C. Gutierrez, “Querying RDF Data from a Graph Database Per-
spective,” European Semantic Web Conference , pp. 346–360, 2005.

4. M. R. Aniba, S. Siguenza, A. Friedrich, F. Plewniak, O. Poch, A. Marchler-Bauer,
and J. D. Thompson, “Knowledge-based expert systems and a proof-of-concept
case study for multiple sequence alignment construction and analysis,” Briefings
in Bioinformatics 10(1), pp. 11–23, 2009.

5. F. Buchholz and C. Falk, “Design and Implementation of Zeitline: A Forensic
Timeline Editor,” Digital Forensics Research Workshop , pp. 1–7, 2005.

6. Bureau of Labor Statistics, “Occupational Outlook Handbook: Forensic Science
Technicians,” 2017.

7. Bureau of Labor Statistics, “Occupational Outlook Handbook: Information Se-
curity Analysts,” 2017.

8. J. Carroll, I. Herman, and P. F. Patel-Schneider, “OWL 2 Web Ontology Lan-
guage RDF-Based Semantics (Second Edition),” 2012.

9. E. Casey, G. Back, and S. Barnum, “Leveraging CybOX to standardize represen-
tation and exchange of digital forensic information,” Digital Investigation 12(S1),
pp. S102–S110, 2015.

10. Y. Chabot, A. Bertaux, C. Nicolle, and M.-T. Kechadi, “A complete formalized
knowledge representation model for advanced digital forensics timeline analysis,”
Digital Investigation 11, pp. S95–S105, 2014.

11. Y. Chabot, A. Bertaux, C. Nicolle, and T. Kechadi, “Automatic timeline con-
struction and analysis for computer forensics purposes,” Proceedings - 2014 IEEE
Joint Intelligence and Security Informatics Conference, JISIC 2014 , pp. 276–279,
2014.

12. Y. Chabot, A. Bertaux, C. Nicolle, and T. Kechadi, “An ontology-based ap-
proach for the reconstruction and analysis of digital incidents timelines,” Digital
Investigation 15, pp. 83–100, 2015.

72

13. K. Chen, A. Clark, O. De Vel, G. Mohay, and Q. Brisbane, “ECF Event Corre-
lation for Forensics,” 1st Australian Computer, Network & Information Forenics
Conference 2003 (November), pp. 1–10, 2003.

14. Cyber Threat Intelligence Technical Committee, “CTI Documentation,” 2017.

15. D. J. Daniels and S. V. Hart, “Forensic Examination of Digital Evidence : A
Guide for Law Enforcement,” U.S. Department of Justice Office of Justice Pro-
grams National Institute of Justice Special 44(2), pp. 634–111, 2004.

16. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang, “Knowledge vault: a web-scale approach to probabilistic
knowledge fusion,” Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining - KDD ’14 , pp. 601–610, 2014.

17. P. Gladyshev and A. Patel, “Finite state machine approach to digital event re-
construction,” Digital Investigation 1(2), pp. 130–149, 2004.

18. A. Goel, Wu-chang Feng, D. Maier, Wu-chi Feng, and J. Walpole, “Forensix:
A Robust, High-Performance Reconstruction System,” 25th IEEE International
Conference on Distributed Computing Systems Workshops (October), pp. 155–
162, 2005.

19. R. A. Good, AutoProv : An Automated File Provenance Collection Tool. Masters
thesis, AFIT, 2017.

20. GraphAware, “GraphAware Neo4j TimeTree,” 2018.

21. K. Gujónsson, “Mastering the Super Timeline With log2timeline,” 2010.

22. P. J. Hayes and P. F. Patel-Schneider, “RDF 1.1 Semantics,” 2014.

23. E. H. Herskovits and G. F. Cooper, “Kutato: An Entropy-Driven System for Con-
struction of Probabilistic Expert Systems from Databases,” Clinical Orthopaedics
and Related Research , p. In print, 2013.

24. J. James, P. Gladyshev, M. Abdullah, and Y. Zhu, “Analysis of evidence using
formal event reconstruction,” Digital Forensics and Cyber Crime 31, pp. 85–98,
2010.

25. K. Kent, S. Chevalier, T. Grance, and H. Dang, “Guide to integrating forensic
techniques into incident response,” tech. rep., 2006.

26. M. N. Khan, E. Mnakhansussexacuk, and I. Wakeman, “Machine Learning for
Post-Event Timeline Reconstruction,” PGnet (January 2006), pp. 1–4, 2006.

27. J.-S. Kim, D.-g. Kim, and B.-N. Noh, “A fuzzy logic based expert system as a
network forensics,” in Proceedings. 2004 IEEE International Conference on Fuzzy
Systems, 2, pp. 879–884 vol.2, 2004.

73

28. T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Corsar, and
E. Al., “PROV-O: The PROV Ontology,” 2013.

29. O. J. Lee and J. E. Jung, “Sequence Clustering-based Automated Rule Generation
for Adaptive Complex Event Processing,” Future Generation Computer Systems
66, pp. 100–109, 2017.

30. K. K. Muniswamy-Reddy, D. a. Holland, U. Braun, and M. I. Seltzer,
“Provenance-Aware Storage Systems,” in USENIX Association Annual Technical
Conference, pages(TR-18-05), pp. 43–56, 2006.

31. J. S. Okolica, Temporal Event Abstraction and Reconstruction. PhD dissertation,
AFIT, 2017.

32. J. S. Okolica, G. L. Peterson, and R. F. Mills, “Temporal Event Abstraction and
Reconstruction.” 2017.

33. J. Olsson and M. Boldt, “Computer forensic timeline visualization tool,” Digital
Investigation 6(SUPPL.), pp. S78–S87, 2009.

34. P. Pannarale, D. Catalano, G. De Caro, G. Grillo, P. Leo, G. Pappad, F. Rubino,
G. Scioscia, and F. Licciulli, “GIDL: a rule based expert system for GenBank
Intelligent Data Loading into the Molecular Biodiversity database,” BMC Bioin-
formatics 13(Suppl 4), p. S4, 2012.

35. M. T. Pereira, “Forensic analysis of the Firefox 3 Internet history and recovery
of deleted SQLite records,” Digital Investigation 5(3-4), pp. 93–103, 2009.

36. Pew Research Center, “Pew Research Center: Mobile Fact Sheet,” 2016.

37. I. Robinson, J. Webber, and E. Eifrem, Graph Databases, O’Reilly Media, Inc.,
2nd ed., 2015.

38. M. A. Rodriguez and P. Neubauer, “The Graph Traversal Pattern,” Computing
Research Repository , pp. 1–18, 2010.

39. B. Schatz, G. Mohay, and A. Clark, “Rich Event Representation for Com-
puter Forensics,” Asia Pacific Industrial Engineering and Management Systems
APIEMS 2004 (April 2016), pp. 1–16, 2004.

40. M. Stacey and C. McGregor, “Temporal abstraction in intelligent clinical data
analysis: A survey,” Artificial Intelligence in Medicine 39(1), pp. 1–24, 2007.

41. B. Turnbull and S. Randhawa, “Automated event and social network extraction
from digital evidence sources with ontological mapping,” Digital Investigation 13,
pp. 94–106, 2015.

74

42. C. Vicknair, M. Macias, Z. Zhao, and X. Nan, “A comparison of a graph database
and a relational database: a data provenance perspective,” Proceedings of the 48th
Annual ACM Southeast Regional Conference , 2010.

43. M. Yasin, A. R. Cheema, and F. Kausar, “Analysis of Internet Download Manager
for collection of digital forensic artefacts,” Digital Investigation 7(1-2), pp. 90–94,
2010.

75

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2018 Master’s Thesis Sept 2016 — Mar 2018

Digital Forensics Event Graph Reconstruction

Schelkoph, Daniel, J, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-058

DoD Cyber Crime Center
1190 Winterson Rd
Linthicum, MD 21090
POC: Eoghan Casey
Email: eoghan.casey@dc3.mil

DC3/DCCI

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Ontological data representation and data normalization can provide a structured way to correlate digital artifacts. This
can reduce the amount of data that a forensics examiner needs to process in order to understand the sequence of events
that happened on the system. However, ontology processing suffers from large disk consumption and a high
computational cost. This paper presents Property Graph Event Reconstruction (PGER), a novel data normalization and
event correlation system that leverages a native graph database to improve the speed of queries common in ontological
data. PGER reduces the processing time of event correlation grammars and maintains accuracy over a relational
database storage format.

graph databases, labeled property graphs, ontology, forensics, event abstraction

U U U U 87

Dr. Gilbert Peterson

(937) 255-3636; gilbert.peterson@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2018

	Digital Forensics Event Graph Reconstruction
	Daniel J. Schelkoph
	Recommended Citation

	tmp.1541091684.pdf.Fo9SC

