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Abstract

Modern militaries rely upon remote image sensors for real-time intelligence. A typi-

cal remote system consists of an unmanned aerial vehicle, or UAV, with an attached

camera. A video stream is sent from the UAV, through a bandwidth-constrained

satellite connection, to an intelligence processing unit. In this research, an upgrade

to this method of collection is proposed. A set of synthetic images of a scene cap-

tured by a UAV in a virtual environment is sent to a pipeline of computer vision

algorithms, collectively known as Structure from Motion. The output of Structure

from Motion, a three-dimensional model, is then assessed in a 3D virtual world as a

possible replacement for the images from which it was created.

This study shows Structure from Motion results from a modifiable spiral flight

path and compares the geoaccuracy of each result. A flattening of height is observed,

and an automated compensation for this flattening is performed. Each reconstruction

is also compressed, and the size of the compression is compared with the compressed

size of the images from which it was created. A reduction of 49-60% of required space

is shown.
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ASSESSMENT OF STRUCTURE FROM MOTION FOR RECONNAISSANCE

AUGMENTATION AND BANDWIDTH USAGE REDUCTION

I. Introduction

1.1 Basic Intelligence Imagery Collection

Modern militaries rely upon remotely-transmitted imagery for intelligence, surveil-

lance, and reconnaissance. This imagery is typically transmitted from a collection

device, such as an unmanned aerial vehicle (UAV), to an analysis center through a

bandwidth-constrained satellite connection.

As defense budgets are scrutinized more heavily now than in the past, it is be-

coming cost- and time-prohibitive to increase available bandwidth by developing and

deploying new military satellites. The increasingly uncertain fiscal future suggests

that a stronger emphasis on cost-effective technologies and techniques may be critical

for continued United States military strength. Development and deployment of a new

satellite can cost hundreds of millions of dollars; while this may have been a reason-

able expense in the past, new budgets may be less accommodating and consider it an

excessive cost instead.

Additionally, investments in new satellites become risky as nations increasingly

contest the space environment. In 2007, the People’s Republic of China tested an

anti-satellite missile, destroying a defunct Chinese weather satellite and generating

an estimated 35,000 pieces of debris [1]. Models have been created to show the hazards

of increased space debris, and intentional military actions to destroy objects in space

increase the threat of second-order collisions exponentially [2]. As time goes on, the

1



threat of intentional or accidental damage to satellites increases; new investments

must weigh the fiscal cost of satellite production against the increasing risk of space

collisions rendering the satellites inoperable.

An alternative approach to alleviate the bandwidth constriction is to decrease

the amount of bandwidth required to send information from collection devices to

intelligence analysts.

1.2 Reduced Bandwidth Requirement via Structure from Motion

One approach to reduce the required bandwidth is to preprocess imagery on the

collection device and transmit only useful information back to the analysis center.

As mobile computing power increases, this strategy becomes more feasible. Improve-

ments in computer vision algorithms further support a preprocessing approach. UAVs

which once operated alone and acted essentially as always-on security cameras may

be augmented to operate in swarms which collect and intelligently process images in

real-time. In such a setup, only information deemed relevant would be sent back to

an analysis center, reducing the amount of bandwidth required, and the information

could be augmented with additional geospatial information which previously required

too much computation power for feasible calculation on a mobile platform such as a

UAV.

In this study, a set of computer vision algorithms collectively known as Structure

from Motion (SfM) are examined for use in adding geospatial information and re-

ducing bandwidth required for transmission of imagery through a constrained link.

A SfM pipeline takes as input a set of two-dimensional images and outputs a three-

dimensional meshed and textured model, known as the reconstruction, based on infor-

mation deduced from features of the input set of images. Ideally, the reconstruction

exactly matches the original scene from which the input images were created, but re-
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alistically some warping and aberration occurs in the process. This study assesses the

geospatial accuracy of reconstructions from input sets under various reconnaissance

conditions. Potential bandwidth savings are also investigated by comparing the sizes

of compressed reconstructions to the sizes of their corresponding input image sets.

A three-dimensional virtual world is utilized to reduce overall cost of the study

and ensure repeatability of results. Use of a virtual world prevents the need to

purchase a UAV, camera, and navigation equipment, obtain operator licenses, plan

and coordinate flights, etc. The virtual world also enables precise positioning and

collection of images which would be impossible in real-world tests, and the parameters

of this collection are modifiable in a simple configuration file. Because the virtual

world includes the original scene and can load the reconstruction as an additional

model in the scene, it is possible to overlay the reconstruction on the original to view

the differences between the two. Small differences, e.g. in spatial characteristics of a

reconstructed building compared to the corresponding characteristics of the original

building, may make a drastic difference in an intelligence scenario. A quantification

of error reveals differences among input sets, which aids determination of UAV flight

paths and camera settings for the best reconstruction results.

This thesis contributes an assessment of a common SfM pipeline’s geoaccuracy

when given slightly different sets of images from a virtual UAV orbiting around a set

of buildings. It shows, using georeference points, that the height (Z-scale) error is

typically the greatest error component and proposes a method to automatically cor-

rect this error. Finally, reconstructions are compressed and compared with input set

sizes for the purpose of reducing satellite bandwidth required in intelligence imagery

applications, and recommendations are proposed to reduce reconstruction sizes.

3



II. Background

2.1 Technical Overview

This thesis describes the Structure from Motion (SfM) computer vision process.

An SfM pipeline takes 2D images of an object or scene as input and outputs a 3D

model based on the images. The 3D model ideally represents the correct dimensions

and proportions of the real-world object in the 2D images. This chapter describes

the basic foundations and stages of a common SfM pipeline and discusses some useful

applications of SfM in areas such as geology, architecture, and movie production.

Human Vision Versus Computer Vision.

The process of capturing imagery, whether by a biological eye or a camera, involves

conversion of a 3D scene into a 2D image, thus losing 3D spatial information in the

process. Human vision accounts for some of this 3D loss by interpreting lighting

conditions, such as shadows, and distance conditions, such as the size of a known

object on a 2D plane. For instance, a shadow in a picture may give the human viewer

a hint about the object’s position, and a recognizable object may give the viewer an

idea about the image’s overall scale or about the 3D positioning of the object in that

scene. Figure 1 shows an easily-recognizable scene: a closeup picture of a coin.

Computers have no such intuition; to a computer, an image is a long string of

numbers which may be thought of as a two-dimensional matrix. Each position of

the matrix represents a pixel–the smallest unit of visual information in the picture.

Computer vision algorithms must perform operations on the pixels of an image to

deduce information without the benefit of understanding its content.

Figure 1 helps to demonstrate this difficulty. To a human observer, it is obvious

that the image is of a coin with a strong leftward light source casting a shadow

4



to the right. The edges are clearly defined, and the strong light does not impact

understandability of the image. However, the lighting and shadows may wreak havoc

on computer vision algorithms, especially those which rely on edge detection. The

edges toward the left of the image are strongly white, while the edges toward the

right are dark; a computer vision algorithm may incorrectly interpret the light (or

dark) edges as non-edges, thus losing information that would otherwise be obvious to

humans. This is one of many potential issues in automated analysis of images, and

while much work has been completed in the computer vision field to alleviate these

issues, the simplest way to work through them is often to focus on capturing images

without such issues before attempting automated analysis.

Camera Properties.

A digital imaging device consists of several electronic components which work to-

gether to detect and record bundles of light as usable data. In general, the components

include a lens, aperture, shutter, sensor chip, analog-to-digital converter, and some

post-processing hardware. The lens serves to gather and angle light into the camera

body, and the aperture controls how much light reaches the sensor chip. The shutter

aids in gathering a precise amount of light in a single image capture by opening and

closing at a set interval, thereby letting only a certain amount of light hit the sensor

chip during image capture. The analog-to-digital converter then creates binary data

based on sensor’s detection of photons, which is then processed and utilized in any

image-based computer application.

Variations on these components change the results of the final image output, and

some tradeoffs must be made in real-world applications. For instance, the camera

lens brings more light into the sensor than a lens-less alternative (known as a pinhole

camera), but the lens itself introduces distortion which may interfere with computer

5



Figure 1. A quarter with strong light source from the left; edges on the left are
bright white, but edges on the right are dark, causing potential confusion to automated
analysis programs

6



vision-based applications which require a high degree of precision. Various tech-

niques exist to reduce and correct this inherent distortion, from better manufacturing

processes to algorithmic post-processing, but no solution can completely remove the

distortion introduced by a lens.

The distance between the lens and the sensor chip also greatly affects the resulting

image. This distance, known as the focal length, is a key parameter on camera lenses

and determines the field of view and magnification of images. A longer focal length

results in a narrower field of view and higher magnification, while a shorter focal

length results in a wider field of view and lower magnification. Lenses are created for

different situations and focal lengths, from telephoto lenses with long focal lengths to

fisheye lenses with very short focal lengths. In computer vision applications, different

focal lengths may produce different results even when the rest of the system is the

same.

In computer vision, the terms intrinsic properties and extrinsic properties are used

to refer to the camera’s hardware and positioning in the world, respectively. Intrinsic

properties include aspects such as focal length and corrections for lens and sensor

distortion, while extrinsic properties relate to the camera’s location (often specified

in latitude/longitude/altitude coordinates) and orientation (often determined by ac-

celerometer). These properties are associated with every image and are utilized in

undistortion and feature-matching algorithms.

Due to imperfections and defects in the manufacturing process, commodity cam-

era sensors may produce imagery with slight distortions from reality; this is most

noticeable in cameras with fisheye lenses, which capture a greater field of view but

tend to produce images with curved lines which would otherwise be straight. Some

distortions are also caused by imprecise placement of the light sensor in the camera

body or misalignment of the lens. Because some computer vision processes require

7



extremely high precision, these distortions can cause certain algorithms to fail or yield

poor results. To counter the distortions, it is possible to perform a camera calibration

process which results in a 4x4 matrix known as the calibration or intrinsics matrix.

The matrix serves to reposition pixels from an uncorrected image to their correct

position in a corrected image. The camera intrinsics matrix is described in detail in

Kaehler and Bradski’s Learning OpenCV 3 book, and the OpenCV 3 library provides

functions to calibrate a camera by holding up a known object (such as a chessboard)

in varying positions in front of the camera [3].

In computer vision systems with multiple (typically three or more) views, such as

in SfM, it is possible to obtain a camera calibration matrix without the chessboard-

style routine. This process, known as self-calibration or auto-calibration, takes un-

calibrated images and produces a calibration matrix for each image [4].

Structure from Motion Pipeline.

An SfM pipeline consists of several stages from initial collection of images to a

simplified, textured mesh ready for use. This section provides an overview of each

stage of a typical SfM pipeline.

Image Collection and Preprocessing.

SfM processes seek to determine 3D information when given only 2D images as

input. The images must be collected carefully and with conditions as ideal as possible.

A good input image contains plenty of bright light but few or no shadows. Glare from

shiny surfaces must also be avoided, because the glare may appear differently from

various perspectives and disrupt the feature detection and matching stages. Partially

cloudy scenes are ideal for outdoor reconstruction, but the area must still be bright

enough to capture images without grainy noise from the camera sensor. Figure 2
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shows a set of input images taken from an indoor environment with little glare.

Sparse Reconstruction.

With a set of undistorted images, various algorithms and techniques from the

computer vision field can 1) detect important points, known as features, in the images;

2) determine similarity of features and cross-correlate their locations across images;

and 3) determine the 3D location of each feature point. This is known as sparse

reconstruction, which is the first step of a SfM pipeline.

Feature detection algorithms have an extensive history within computer vision,

beginning with edge detection, progressing through corner detection, and eventually

resulting in modern algorithms to detect important points in an image. A widely-

used feature detector is David Lowe’s Scale-Invariant Feature Transform (SIFT), a

patented algorithm which seeks to identify features without respect to an image’s

scale, rotation, or lighting conditions. The algorithm is freely available for research

and academic use, and the pipeline used in this work utilizes SIFT in its sparse

reconstruction step.

The SIFT algorithm is useful in SfM and other feature matching algorithms due

to its assignment of a unique keypoint descriptor to each feature it detects. The

keypoint descriptor is a set of vectors which may be used to compare with other key-

point descriptors: the more similar the magnitudes and directions of two descriptors’

vectors, the more likely the features are to correspond to the same point in an image.

The sparse reconstruction process begins by detecting features in a set of input

images, often using SIFT. Figure 3 shows an input image with feature points detected

by SIFT. When all features are detected, they are then matched among the images.

Figure 4 shows the matching detected between two images. This process involves
(
n
2

)
matching operations, where n denotes the number of input images, because each image

9



Figure 2. A set of images to be utilized in a SfM pipeline

must be compared with every other image. There are therefore O(n2) comparisons to

make in this step, which necessitates careful selection of a number of input images:

too few images will result in very little information for future SfM stages to work

with, but too many images will result in unacceptably high processing requirements.

When feature matches are determined, epipolar geometry, a geometric system

useful for relating two cameras facing a similar scene, is utilized to triangulate the

relative locations of the cameras and the 3D locations of feature points in space. The

feature points’ locations are subject to reprojection error, a phenomenon that occurs

when two camera angles do not agree on the precise positioning of a feature. By

incorporating more camera angles for a specific feature, it is possible to statistically

determine the most correct location of the feature in 3D space. A process known

as bundle adjustment minimizes the reprojection error of all points simultaneously.

Figure 5 shows the result of the sparse reconstruction step.

Dense Reconstruction.

Sparse reconstruction does not give a full appreciation of the original scene, so

extra work, known as dense reconstruction must be accomplished to fill in the gaps. A
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Figure 3. An input image with SIFT features shown

Figure 4. Two input images with feature matches shown
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Figure 5. The output of the sparse reconstruction step, performed in the VisualSFM
program
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common method of dense reconstruction involves the Patch-based Multi-View Stereo

(PMVS) framework [5]. PMVS takes as input a sparse point cloud and set of regis-

tered (i.e., correctly positioned and oriented in 3D space) camera views and outputs

a patch of 3D points from each camera perspective by determining the depth of each

pixel in the image and rejecting outliers. These patches are combined into a dense

point cloud, which is a superset of the sparse cloud from the previous step [6].

This dense point cloud then serves as input to further algorithms for refinement.

A zoomed-out view of a dense point cloud may give the appearance of a meshed model

due to the quantity and density of points, but the SfM process is not entirely finished

at this stage. Figures 6 and 7 show two angles of the dense point cloud resulting from

dense reconstruction step.

Mesh Creation.

With the dense point cloud complete, it is possible to create a 3D model from the

points. A 3D model imbues a topology upon a set of vertices, creating a watertight

set of faces. In this application, the topology is a connected set of triangles, where

each triangle’s vertices correspond to three vertices in the dense point cloud. A 3D

model is superior to a simple point cloud in this application, because it acts as a non-

porous structure and can be further processed and tweaked for computer graphics

applications. The creation of a 3D model from a set of points is known as mesh

reconstruction, and there are several methods available to complete this step. In this

study, Pierre Moulon’s implementation of Michael Kazhdan’s Poisson Reconstruction

process is used for mesh reconstruction [28]. Figure 8 shows the result of the Poisson

Reconstruction on the dense point cloud in Figures 6 and 7.

When mesh reconstruction is complete, the resulting model may have too many

vertices to be readily usable in graphics rendering applications, even with powerful
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Figure 6. The output of the dense reconstruction step, performed in the VisualSFM
program
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Figure 7. Another view of the output of the dense reconstruction step

video cards. To combat this, decimation techniques exist to reduce the number of

vertices in 3D models. One such technique is Quadric Edge Collapse Decimation,

which is employed in this work. Figure 9 shows the result of applying Quadric Edge

Collapse Decimation to the reconstructed model; the simplified model requires less

space and uses less graphical processing power to render. While the mesh in Figure 8

contains nearly 1.4 million faces, the decimated mesh in Figure 9 contains just under

50,000 faces–a reduction by a factor of 28.

Mesh Texturing.

Once a simplified, easily-renderable 3D model is created, it may be textured with

pieces of the starting image set. This is accomplished by placing the images into 3D

space according to where the camera was (the camera positions are derived during

the SLAM process in the sparse reconstruction stage), which is a process called raster
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Figure 8. A Poisson Reconstruction of the model, performed in Meshlab
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Figure 9. The result of decimating the model to reduce the number of vertices
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registration. With the images properly positioned in 3D space, each model face nor-

mal is compared with the normal direction of each image. In naive implementations,

each model face simply uses the image with the smallest normal angle difference as

its source for texturing information. However, newer algorithms add improvements

to account for blur, bad lighting conditions, improperly-registered images, etc. These

improvements are discussed extensively in [7]. When the 3D model is textured, the

SfM process is complete, and the model may be imported into various 3D graph-

ics applications. Figure 10 shows a final, textured model, and Figure 11 shows the

source image of the model’s textures. In this case, the combined space requirement

of the output model and its texture file is 3.58MB, which is 3% of the original 116MB

required for the pictures input into the pipeline.

Virtual Experiments.

Analysis of algorithm performance is typically subject to unwanted interference

from unfortunate realities. In the case of computer vision, these unfortunate reali-

ties include camera sensor imperfections, non-ideal lighting conditions, and adverse

weather. Additionally, real-world experiments often require extensive planning and

expensive equipment, and the early stages of experimentation can reveal costly mis-

takes which require repetition of the process and purchase of new equipment.

These conditions are unavoidable for the development of real-world systems, but

algorithmic analysis targets a much earlier phase of development and can afford to

abstract many of the unfortunate realities away. In computer vision, this abstraction

may involve the use of a 3D virtual environment rather than an experiment site in the

real world. A virtual environment provides a myriad of benefits for the researcher,

including very precise measuring ability, control over otherwise-uncontrollable param-

eters such as weather, lighting, and camera sensor conditions, and access to otherwise-
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Figure 10. A final, textured model created by a SfM pipeline with some manual
processing
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Figure 11. The source image for texturing the model; automatically generated in
Meshlab from pieces of the input images
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unknowable truth data such as absolute 3D positioning of elements of the truth scene.

By using a virtual world, it is possible to define bright, shadowless lighting with

perfect, particle-free visibility, and the camera sensor may be defined to be a perfect

pinhole model with no lens. The perfect pinhole camera is modifiable per experiment,

removing the need for costly camera equipment and allowing precise definition of the

camera’s intrinsic properies. Furthermore, the use of a virtual world ensures that the

absolute position of specific features in the scene are known, rather than estimated,

and this perfect knowledge enables noise-free quantification of error.

Virtual experiments also allow for perfect rebuilding of results from well-defined

starting conditions, whereas real-world experiments are always subject to slight en-

vironmental differences which may alter results. Replayability helps researchers to

reproduce and verify accuracy of results and build on previous work with more rigor

and confidence.

Alignment.

A virtual world also enables overlaying a reconstruction on the original scene for

comparison, such that a 3D model intersects with another 3D model in the world.

However, the SfM process cannot infer scale and absolute world-position properties

from images (though some experiments with GPS-tagged images may rectify this),

so the reconstruction must be scaled and positioned to be as close to the original

scene as possible [8]. In the case of outdoor reconstruction, the ground plane serves

as a base for the scaling and positioning effort: by aligning the ground plane of the

reconstruction with the ground plane of the original scene, all other elements (such

as buildings or cars) are also scaled and positioned with respect to the ground. This

will reveal any geometric or texturing flaws in the reconstruction which may have

resulted from the SfM process.
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Error Quantification.

In an ideal SfM implementation, the output model is perfectly indistinguishable

from the original scene: each vertex or edge in the reconstruction perfectly represents

a corresponding vertex or edge in the original, with no missing vertices or edges,

and the textures are also perfectly matched. However, no such ideal implementation

exists; the reconstructed model must always contain some difference from the original

scene in the form of simplification (i.e. fewer vertices and edges) and/or deformation

(i.e. inaccuracies in the reconstruction). This deviation from the original scene may

be quantified to help determine the usefulness or accuracy of the SfM implementation.

There are two potential quantification methods: visual similarity and model simi-

larity. In the visual similarity approach, an image is captured from a specific angle in

the original scene, and a corresponding image is captured from the same perspective

of the reconstruction. The two images are compared, and the difference between them

is the quantification of error. The visual similarity approach is a difficult computer

vision problem, because it requires human-like intuition to determine how similar

two pictures are. The current technology for general image similarity quantification

is not advanced enough for SfM analysis, so the more useful approach involves de-

termining similarity of models. More research in visual similarity-based methods is

recommended in [6].

The model similarity method is also not trivial. It is possible to compare the model

of the reconstruction to the original scene, but significant differences prevent a direct

geometric comparison. The reconstruction, while visually similar, has a different

number of vertices and edges than the original model; this prevents a one-to-one

comparison. Even if the reconstruction were decimated or interpolated to contain the

same number of vertices and edges, the issue of vertex mapping remains: it is not

possible to say which vertex of the reconstruction corresponds to a particular vertex
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of the original.

Due to the inherent differences between the reconstruction model and the origi-

nal model, a geopoint-based system may be a more manageable approach to model

comparison. In this approach, a set of relevant points are chosen on the original

model. When the recontruction is created, the same set of points are marked on the

reconstruction. This provides two sets of points with a one-to-one mapping, and the

3D distances between the points can be determined and averaged for an overall error

metric.

Error Correction.

In the case of outdoor reconstruction, images are generally captured from a down-

ward angle, resulting in loss of information about the height of the scene [9]. The

result is a slightly flattened reconstruction where all other aspects are relatively ac-

curate. The degree of flattening depends on several factors, such as the flight path,

focal length and downward angle of the camera, and geometry of the scene itself.

For this reason, it may be useful to conduct a second, error-correcting alignment

step which involves scaling in the Z dimension only. Once a reconstruction is initially

aligned with its original model and geopoints are chosen, it is possible to scale the

reconstruction in the Z dimension in small increments, checking the error metric at

each step. As the reconstruction changes scale, its geopoint markers will also change

position and yield different distances to the corresponding truth points on the original

model. The Z-scale which provides the smallest overall error is then accepted as the

best compensation for the flattening in the Z dimension.

In a real-world scenario, it would not be possible to use this small-increment

method to correct the Z-dimension error without manually measuring the positions

of the geopoints in the real-world scene. If this measurement is not possible, e.g. in
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an intelligence-gathering situation, it may be necessary to utilize a different method

for Z-dimension correction. Assuming alignment of the reconstruction can be done

sufficiently well and in real-time (by using GPS or other positioning information), the

tallest point of the reconstruction could be determined. Then, the collection device

(such as a UAV) could fly to the corresponding point in the real-world scene and

utilize a range-finding sensor to determine the height of the point. The model could

then be scaled accordingly to match the highest point of the reconstruction with the

highest point of the real-world scene.

Compression and Space Comparison.

For this work, it is necessary to compare the bandwidth usage of the traditional

video-streaming approach to the usage of the model-streaming approach. If the

model-streaming approach offers great accuracy but requires excessive bandwidth,

it may not be a useful improvement in the great intelligence-gathering situation. Be-

cause specifications for military UAVs and satellites are generally not available for

public use, this work focuses primarily on the size of the reconstructed model in com-

parison to the size of the images from which the reconstruction was created. The use

of original images offers a useful frame of reference for comparison, because a real-

world video-streaming approach will typically require more bandwidth than sending

still images; therefore, comparison of a reconstructed model to still images will offer

a more conservative, pessimistic improvement metric than comparison to the more

realistic, higher-bandwidth video stream.

To accomplish the comparison, one may use a freely-available compression utility

to simulate the compression which would take place in a real-world scenario. The

compressed size of the images may be compared to the compressed size of all necessary

vertices, edges, textures, and texture-mapping indices of the model. Because the
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model contains repetitive information in its vertex and texture-mapping coordinates,

it may have a much greater compression ratio, i.e. the ratio between compressed and

uncompressed size, than the set of images. Additionally, the image set may already

utilize a compressed format such as Portable Network Graphics, in which case further

compression will have little or no effect on the image set size.

2.2 Related work

SfM algorithms find use in a wide array of computer vision fields. In this section,

a few applications of SfM are discussed, particularly those which utilize unmanned

aerial vehicles (UAV) and/or virtual environments to capture or synthesize imagery.

We emphasize applications and methods which may assist the goals of reduced satel-

lite bandwidth usage and increased geospatial awareness for military intelligence pur-

poses.

Structure from Motion Applications.

A review of UAV technology was conducted by Nex and Remondino, including a

brief history of UAV usage, modern capabilities, and applications for imagery capture

[10]. The review describes uses of UAVs for 3D imaging and reconstruction, includ-

ing agriculture, forestry, archeology, architecture, environmental monitoring, emer-

gency management, and traffic analysis. Difficulties with accurately reconstructing

large-scale, non-flat scenes such as buildings are discussed, and additional research is

suggested [10]. The advent of inexpensive UAVs with high-quality visual sensors has

simplified work which was traditionally far more expensive and dangerous, such as

tasks requiring flight of a manned helicopter with Light Detection and Ranging (Li-

DAR) equipment into remote areas. This decrease in cost may also benefit small-scale

and/or swarm-based intelligence applications.
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A study of UAV usage in wilderness vegetation monitoring was conducted, showing

that UAVs are generally superior to satellites for this purpose due to higher resolution

of imagery and no limit on revisit times. The study shows the use of physical geo-

reference points to assess and improve the accuracy of post-analysis and combination

of individual images. An improvement of the geopoint-based technique is shown over

the typical sole reliance on GPS truth data from the sensor platform [11].

Another study captured topographic data of an outdoor area with both a tradi-

tional LiDAR setup and an experimental UAV setup with a consumer grade camera to

create a SfM reconstruction. The analysis showed that the SfM approach performed

as well as the more-expensive LiDAR approach. The application of measuring soil

erosion is briefly discussed [12]. Other studies also assess and praise the accuracy

of SfM, compared with LiDAR, for geoscience applications. Accuracies within one

decimeter are reported [13][14]. The relative accuracy of SfM approaches may assist

UAV-based military intelligence applications by enabling robust 3D reconstructions

without the need for heavy, expensive LiDAR sensors. Additionally, SfM may ben-

efit stealth intelligence missions due to its passive nature, whereas LiDAR requires

actively sending an electromagnetic signal to the target area of interest, potentially

revealing the intent and/or location of the UAV.

Koutsoudis et al. assessed the accuracy of a commercial SfM software package

as compared with results from a 3D range scanner for the purpose of heritage build-

ing reconstruction. The accuracy of reconstruction was also assessed by measuring

specific line segments on the physical building and comparing them with the math-

ematically similar measurements of the reconstruction. Strong emphasis was placed

on the importance of good lighting conditions and powerful PC hardware for a useful

SfM experience [15].

Specific difficulties of outdoor scene reconstruction, such as in the case of intelli-
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gence gathering and movie production, were described and partially mitigated by Kim

et al. The difficulties involved poor lighting conditions (too bright, causing strong

shadows, or too dark) and background scenes which may interfere with accuracy of

the SfM process. A background separation scheme was proposed, where the fore-

ground and background are reconstructed in separate pipelines and recombined at

the end of the process [16]. In a real-world intelligence application, one must mitigate

these compounding factors; however, a virtual world may omit the sky or background

details and thus avoid the issues of foreground and background separation. Addi-

tionally, a virtual world offers greater lighting flexibility for experimentation, such as

toggling of shadows, fog, and/or glare.

The use of synthetic environments, such as 3D virtual worlds, to measure SfM

accuracy has been demonstrated in other work. Nilosek, Walvoord, and Salvaggio

utilized synthetic imagery and its associated truth data to measure the accuracy of

a 3D reconstruction from imagery taken at nadir angle. They found that GPS and

orientation data are sensitive to noise inherent in the SfM process itself and attributed

this sensitivity to errors in the image-to-image correspondence step. Inaccuracies of

reconstructed building height were also discussed and attributed to the nadir angle of

capture. A process of georegistration is discussed in which the reconstructed points

are transformed from an arbitrary coordinate frame to an earth-centric frame [9].

These findings may benefit satellite-based intelligence activities, where the sensor is

often nadir to its target; however, for applications involving small, agile UAVs, it

is possible to capture images from a wider variety of angles and distances. Further

research may reveal flight paths which can counteract or overcome the poor image-

to-image correspondence found in this study.

A demonstration and assessment of a SfM-based visual navigation system was

conducted by Alix. The experimental setup utilized the simultaneous localization
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and mapping (SLAM) technique to determine the image sensor’s position, and the

SLAM technique’s estimation of the sensor’s position was compared with its actual

position in the virtual environment. Similar to [9], a method to transform from

arbitrary to world space was proposed, and synthetic imagery was utilized to carry

out the experiment [17].

An experiment conducted by Ekholm showed the ideal capture angle of a UAV-

based sensor for SfM accuracy in a particular scenario. The experiment involved a

virtual scene of an untextured cityscape over which a virtual UAV flew at various

angles and flight patterns. An image capture angle of around 45 degrees was found to

be ideal for reconstruction accuracy in the given scenario. Accuracy was determined

by comparison of truth to reconstruction model vertices in the world rather than by

depthmap or specific geopoint comparison. The experiment was created and run in

the Blender 3D modeling application [18]. This experiment served as a starting point

for finding a useful flight path in this paper’s experiment, but Ekholm’s flight path

styles were designed for larger UAVs flying in relatively straight lines, as opposed to

the finer, more circular orbits employed in this study, and thus a constant 45-degree

angle was not ideal in this case.

SfM and other computer vision techniques also find use in other novel defense

applications. Colson demonstrated a SfM-based approach for the application of auto-

mated aerial refueling, which is a necessary technique to refuel UAVs due to latency

issues between the UAV and UAV pilot. He utilized a scaled-down fighter jet model,

suspended on cables and approaching stereo cameras, within a high-fidelity motion

capture chamber to simulate a fighter aircraft approaching a fuel tanker aircraft. He

estimated the accuracy of SfM based on the truth data from the chamber and assessed

that the SfM setup was not sufficiently accurate for this purpose [19]. Other vision-

based techniques, such as shelled point cloud registration, have proven successful for
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automated aerial refueling in virtual environments and are now under assessment in

real-world experiments [20]. With sufficient refinement, these techniques may benefit

intelligence applications by enabling 3D model-based recognition of objects of interest

after reconstruction.

While time and space efficiency are not specifically studied in this work, they

are critical for the intended application of onboard reconstruction. An embedded

processor on a UAV is tightly constrained in processing ability and electrical power

availability, and it relies on efficient algorithms to perform any complex task satisfac-

torily. A voxel-hashing technique is proposed in [21], which would drastically reduce

graphical processing unit (GPU) memory required to represent 3D point clouds, and

[22] builds upon this work by processing small batches of imagery in a stream rather

than individually, further reducing the amount of GPU memory required for recon-

struction.

Structure from Motion Tools.

A typical SfM workflow consists of sparse reconstruction, dense reconstruction,

mesh creation, and texturing. A detailed explanation of each stage is not summarized

here, but a selection of software capable of performing these processes is discussed.

An increasing number of free, open-source SfM tools are available for research.

Each tool has its own abilities and nominal application sets, and most tool developers

focus on performing a specific part of the reconstruction well rather than spreading

effort over the entire process.

The graphical user interface-based VisualSFM was developed by C. Wu and uti-

lizes the Clustering Views for Multi-view Stereo (CMVS) and Patch-based Multi-view

Stereo (PMVS) tools to construct a dense point cloud from a set of pictures [23][24][5].

A command-line based alternative to VisualSFM is Noah Snavely’s Bundler, which
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performs a sparse reconstruction suitable for input to CMVS and PMVS [25][26].

A newer framework, the Multi-view Environment (MVE), is capable of perform-

ing all steps of the reconstruction except texturing, for which the Multi-view Stereo

Texturing (MVS-Texturing) tool is built [27][7]. An alternate mesh creation pro-

cess may be substituted by utilizing Pierre Moulon’s PoissonRecon tool, which offers

empirically better results for different scene types [28].

The model visualization program Meshlab can perform mesh creation (via the

aforementioned PoissonRecon tool) and texturing as well as mesh simplification and

manual trimming of undesired points and mesh planes [29].

Other software programs are also under active development or available for exper-

imentation on niche SfM situations. OpenMVG is designed to be a simple pipeline

for SfM and is intended for small-scale reconstruction [30][31]. The Colmap program

utilizes Nvidia’s Compute Unified Device Architecture (CUDA) framework to enable

GPU-accelerated dense cloud and surface reconstruction [32][33] but may need further

development to handle a wider array of use cases efficiently. The OpenCV framework

may be compiled with a third-party module to construct a sparse 3D cloud and per-

form SLAM, but it is not developed and maintained as heavily as the other software

discussed [34]. Theia is a newer program capable of sparse reconstruction, and its

primary goals are “usability, extendibility, and scalability.” It states adherence to

rigorous, modern coding standards and includes unit tests to ensure correctness of its

algorithms [31].
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III. Methodology

3.1 Methodology

To examine the feasibility of SfM-augmented intelligence collection with real-world

devices would be expensive, time-consuming, and error-prone, especially for such an

early assessment. For this reason, a virtual world is utilized, from which a virtual

UAV captures imagery from a sample scene of interest under varying conditions. To

conduct a real-world test, just a few requirements are UAV equipment with high-

precision navigation and camera apparatus, a license to operate the UAV, consistent

and ideal weather conditions throughout the study, and a relevant, unchanging scene

of interest. In real-world tests, errors in navigation measurements and aberrations in

the camera lens and sensor introduce noise into the SfM process, and the result of

SfM with these undesired inputs contains a mix of errors from sensors and from the

SfM process itself. These errors are difficult to distinguish from one another. Thus,

a virtual experiment was favored over a real-world experiment, though a real-world

experiment may be conducted in the future if merited by the results of the virtual

experiment.

Virtual World.

A virtual representation of a relevant scene was created using the AfterBurner en-

gine [35]. The engine builds upon the OpenGL graphics rendering library by including

resource management, input/output support for software and hardware devices, and

hierarchical transformations in the virtual world.

The scene includes a set of adjacent buildings representing a cityscape, clustered

together on a block. The particular structures in the scene vary in height, layout, and

texture, while still maintaining simple box-like structure; this enables easier visual
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Figure 12. Original scene, rendered in AfterBurner
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inspection for discrepancies between the reconstruction and the original structure.

Figure 12 shows a visualization of the scene. The placement of buildings in the

middle of a street intersection is an artifact of modifying the original model for use in

the experiment; only cosmetic appearance is affected. Within the virtual world, the

height of the building is set to 65.858 meters, and the length and width of the block

are both 58.528 meters.

The scene also includes a small unmanned aerial vehicle with an attached camera.

The camera is capable of capturing images within the world for later processing

through a reconstruction pipeline, and its intrinsic (such as field of view) and extrinsic

(such as position and orientation) properties can be modified dynamically to produce

different types of imagery.

Structure from Motion Pipeline.

A set of open-source programs were compiled and combined to create an au-

tomated structure from motion pipeline which takes as input a set of images and

produces as output a three-dimensional, textured mesh which can be loaded into the

virtual world and overlaid on the original scene for comparison. Figure 17 shows an

example of a reconstruction overlaid on the original scene.

Three tools were utilized: 1) TU Darmstadt’s Multi-View Environment (MVE),

2) Michael Kazhdan et al.’s Screened Poisson Surface Reconstruction tool, and 3)

TU Darmstadt’s MVS-Texturing tool[27][28][7]. The process involves several discrete

steps; each step, and the software used to complete it, is listed in Table 1.

The default MVE settings were used for sparse and dense reconstruction. For

the mesh/surface generation step, a point weight of 0 and depth of 10 were given

to the PoissonRecon tool in order to disable surface screening, resulting in smoother

surfaces. The screened variant of Poisson reconstruction was developed in response to
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Table 1. SfM steps and software utilized for each step

SfM Step Software

Imagery Collection AfterBurner engine
Sparse Reconstruction MVE
Dense Reconstruction MVE
Mesh/Surface Generation PoissonRecon
Mesh/Surface Texturing MVS-Texturing

observations that Poisson reconstruction tends to oversmooth data[36][37]. However,

because the scene in this work consisted primarily of buildings with flat planes, the

unscreened setting produced better results than the screened alternative, which would

produce jagged surfaces more useful in reconstructing, for example, sculptures with

fine details. The default MVS-texturing settings were used for the texturing step.

UAV Flight Paths.

Each experiment consisted of a UAV with a virtual camera which took pictures

at predefined positions along a flight path which varied by experiment. The positions

were determined based on the number of pictures to be taken and the path of the

UAV. The UAV paths were determined by potential real-world scenarios and previous

work by Ekholm, who experimentally determined an optimal downward camera angle

of around 45 degrees in a similar scenario[18].

The main path consisted of three ascending, spiraled orbits around the set of

buildings with a particular radial distance ρ, initial height z0, and height between

orbits zb. Figure 13 shows the flight path variables.

Each flight path was specified in the virtual world as a parametric function f(t),

0 ≤ t < 1. With this construction, any value of t between 0 and 1 will correspond to

a three-dimensional point (x, y, z) in the virtual world:
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Figure 13. Flight path variables, front view
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f(t) = (x, y, z) (1)

The x and y positions are defined by first determining the current azimuth φ in

radians:

φ = 2π((t mod
1

3
) ∗ 3) (2)

The modulus serves to segment t into three orbits, ensuring each value of φ will be

reached three times. The value of φ is then used to determine the x and y coordinates:

x = ρ sinφ (3)

y = ρ cosφ (4)

The value of t also determines the z value as follows:

z = z0 + 3t ∗ zb (5)

Each flight captured 90 evenly-spaced images, which offered a subjectively favor-

able tradeoff between reconstruction fidelity and computation time required. The

camera viewpoint was always fixed on the center of the scene (as opposed to the

center of the tall building, on which the error metric was evaluated; see Section 3.1

below). This approach led to increased distortion on the top of the large building

when viewed from the front but enabled less distortion in the overall scene, making

the manual alignment process less error-prone.

An example of the flight path, along with camera frusta depicting each of the 90

positions and orientations of images captured, is shown in Figure 14.
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Figure 14. Spiral flight path example with 90 images

37



Virtual Camera Intrinsic Parameters.

Utilizing a virtual world for imagery collection enables simple camera creation with

user-defined properties. Furthermore, the parameters of the camera are guaranteed,

provided the code is correct, to be free of manufacturing defects seen in real-world

cameras. It also becomes unnecessary to utilize a camera lens as required in the real

world, because a virtual sensor can capture 100% of the light that reaches it without

any loss by an analog image sensor. This enables creation of a perfect pinhole camera

and removes the possibility of lens distortion.

This leaves two main parameters still configurable: image dimensions (width and

height) and field of view. In the experiments, image dimensions were held constant

at width 1920 pixels and height 1080 pixels, and the horizontal field of view varied

based on each dataset.

Alignment.

Prior to evaluation, it was necessary to align the ground plane of the truth data

with the ground plane of each reconstruction, because the SfM process cannot com-

pute an absolute scale, translation and rotation without some other information, e.g.

GPS or inertial measurements. Even with this information available, the reconstruc-

tion may not benefit from it due to noise inherent in the SfM process[9]. Therefore,

the alignment was performed manually by ensuring the road planes and smaller build-

ing sides, especially at the bases, were aligned as closely as possible. This resulted in

a scene where the truth and reconstruction models were overlaid, making distortions

and inaccuracies readily apparent. Figure 15 shows an example original scene. Figure

16 shows the reconstruction of this scene, from the same perspective, after alignment

with the original. Figure 17 shows the reconstruction overlaid on the original, reveal-

ing significant warping in the Z dimension.
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To counteract the warping effect, a second scale was applied in the Z dimension

only. This Z-scale was optimized for each dataset by iteratively attempting scale

factors in increments of .01, starting at 1.00, until the minimum XYZ error was

achieved. Figure 18 shows the reconstruction overlaid on the original with the optimal

Z-scale factor applied.

Evaluation Criteria.

Two evaluation criteria were chosen and assessed: spatial accuracy and model

storage size. For each criterion, a truth value was compared to the reconstruction

value. The criteria of time and power were not studied explicitly due to the constantly-

improving nature of embedded platforms with graphical processing units; any results

would be relevant only until a newer, faster embedded platform was released. This

study instead focuses on performance of the algorithms and software under different

conditions.

Spatial accuracy was assessed by using a virtual version of georeference points

utilized in other work[11][15]. The georeference points chosen for this set consisted

of the lower-left window corners of the tallest building in the set; see Figure 19 for

exact positioning of georeference point placement in this scene. The process of iden-

tifying corners was manually performed for the truth set and for each reconstruction,

resulting in a one-to-one mapping of 84 XYZ truth points to reconstruction points.

With this information, a sum-of-squared-differences approaches was utilized to find

an error metric, where a lower number represents a better reconstruction in terms of

spatial accuracy. Two spatial error metrics were utilized: one for Z error only and

one for XYZ error. For a set T of truth points and R of reconstruction points, each

of length n and containing x, y, and z components, the Z-only error is the arithmetic

mean of absolute Z distances between corresponding points:
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Figure 15. Original scene
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Figure 16. Reconstruction from same perspective as Figure 15, after manual alignment
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Figure 17. Reconstruction overlaid on original, showing significant warping in Z di-
mension
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Figure 18. Reconstruction overlaid on original, with optimal Z-scale applied; compare
with the inferior accuracy of Figure 17, where the optimal z-scale is not applied.
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Figure 19. Visualization of geopoints; green dots represent truth data, and yellow dots
represent reconstruction data. The spatial difference between each corresponding pair
quantifies the distortion of the reconstruction.
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∑
|Rz − Tz|
n

(6)

The XYZ error is the arithmetic mean of three-dimensional distances between

corresponding points:

∑√
(Rx − Tx)2 + (Ry − Ty)2 + (Rz − Tz)2

n
(7)

For this study, n = 84, which corresponds to the number of windows on the large

building. The ground floor of windows was not included due to inconsistencies in the

SfM process; in some cases, particularly those with higher-altitude flight paths, the

ground floor was not reconstructed clearly enough to distinguish windows from the

ground.

Storage size was assessed by comparing the total reconstruction size, including

model and texture images, to the total size of the original images used in the SfM

process. This comparison allows assessment of potential bandwidth savings via com-

pression for the purpose of reconnaissance, i.e. whether transmitting the reconstruc-

tion requires more or less bandwidth than transmitting the source images. Because

the output of the SfM pipeline includes a model file in the uncompressed Wavefront

OBJ format, Igor Pavlov’s 7-Zip utility was utilized to simulate compression prior

to transmission on a bandwidth-constrained link. The default settings of 7-Zip were

applied; these settings are listed in Table 2.

45



Table 2. 7-Zip settings utilized in compression study

Setting Name Value

Archive format 7z
Compression level Normal
Compression method LZMA2
Dictionary size 16 MB
Word size 32
Solid Block size 2 GB
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IV. Results and Discussion

4.1 Results

Hardware/Software Environment.

The experiments were conducted on a Thinkpad P50 laptop with an Intel Xeon E3-

1505M v5 processor clocked at 2.80 GHz, which provided 8 threads to the operating

system, and 16 GB RAM. The MutliView Environment (MVE) does not support

GPU processing at the time of writing, so all SfM reconstruction was performed on

the CPU. MVE was compiled and run within Ubuntu 16.04 with the default Linux

kernel.

Though the time required to process each dataset was not rigorously measured,

each set required around 15-25 minutes to complete the entire SfM process. Sets

which took longer generally produced more subjectively pleasing results with fewer

artifacts and more accurate texturing, though the geoaccuracy was not necessarily

better.

Datasets.

Several datasets were created to quantify SfM process accuracy under varying

conditions. The dataset parameters are listed in Table 3. A graphical depiction of

the parameters is shown in Figure 13. The final, optimized error values for each

dataset are summarized in Table 4. The uncorrected mean XYZ error is given. Next,

the optimal Z-scale, determined by incremental search, is shown. This optimal Z-scale

is applied, and the new XYZ error is listed. Finally, the percentage improvement from

application of the Z-scale is listed.

The datasets mainly varied based on field of view, ground radius, and starting

height. For datasets with greater ground radius ρ, the distance between orbits zb was
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increased to compensate for the overall increased distance from the scene; without

this change, the images from each ring of the spiral would not have differed much

and would have failed to provide additional features to assist the SfM process. For

datasets with greater ground radius, the field of view was decreased to compensate

for the increased distance. This resulted in a narrower view of the scene and enabled

capture of more fine textural details rather than a wider view of mostly empty space.

Dataset 7 produced both the best improvement from Z-scaling and the best over-

all corrected results; it also had the longest ground radius and narrowest field of

view settings. Figure 20 shows an overview of the scene prior to reconstruction, and

Figure 21 shows the initial reconstruction. Figures 22 and 23 show drift from truth

position to reconstruction position of each geopoint for the uncorrected and corrected

reconstruction, respectively, from the perspective of building front. Figure 24 shows

the error values at various levels of Z-scaling, from 1.00 to 1.70 in increments of .01.

Finally, Figure 25 shows the reconstruction with its Z-scale set to minimize XYZ er-

ror, and Figure 26 gives another perspective of the final result. The application of a

corrective Z-scale decreased the mean XYZ error from 7.416 meters to 1.347 meters,

or by 81.8%.

Dataset 7 was based on Dataset 4, which used similar parameters but a shorter

ground radius and resulted in a slightly worse final XYZ error of 1.960. However,

Table 3. Dataset parameters

Dataset # H-FOV (deg) ρ (m) z0 (m) zb (m)
1 80 90 73 20
2 80 90 33 20
3 100 90 33 20
4 65 140 33 35
5 65 140 133 40
6 65 140 3 35
7 40 250 33 60
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Table 4. Dataset geoaccuracy results

# Old XYZ Best Z- New XYZ Improvement
Error (m) Scale Error (m)

1 10.488 1.47 4.464 57.4%
2 6.866 1.20 4.625 32.6%
3 8.616 1.33 4.071 52.8%
4 5.441 1.22 1.960 64.0%
5 11.646 1.62 2.581 77.8%
6 7.967 1.34 2.078 73.9%
7 7.416 1.33 1.347 81.8%

Figure 20. Overview of Dataset 7
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Figure 21. Uncorrected reconstruction of Dataset 7
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Figure 22. Uncorrected geopoint drift of Dataset 7 (error values given in meters)

Figure 23. Corrected geopoint drift of Dataset 7 (error values given in meters)
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Figure 24. Error values at various Z-scale adjustments for Dataset 7 (error values given
in meters)

Dataset 4 required less Z-scaling—1.22, compared with Dataset 7’s optimal value of

1.33—to correct the original reconstruction. Figure 27 shows an uncorrected view of

Dataset 4, while Figure 28 shows a corrected view with the optimal Z-scale.

Both Datasets 7 and 4 yielded superior final accuracy results to the others. This

may support a determination that flight paths with longer distances, narrower fields

of view, and initial starting positions at half the height of the scene are superior

in SfM applications involving large building reconstruction, provided an appropriate

Z-scale factor can be determined. In a real-world application, where truth geopoints

may not be known, determination of a scale factor may be aided by GPS altitude

data and cheap, lightweight range-finding equipment such as ultrasonic sensors. The

UAV would fly over the highest point of the scene, which is determined by the highest

point in the initial reconstruction after ground alignment, find the true height of the

scene, and scale up the reconstruction to match.
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Figure 25. Corrected reconstruction of Dataset 7

Table 5. Dataset storage size comparison

#
Image Set Size
(Compressed)

Reconstr. Model
Size (Compressed)

Size Reduction

1 96.1MB 39.3MB 59.1%
2 89.7MB 36.6MB 59.1%
3 72.1MB 33.7MB 53.3%
4 81.5MB 41.3MB 49.3%
5 96.4MB 38.8MB 59.8%
6 73.0MB 29.6MB 59.5%
7 83.3MB 37.4MB 55.1%
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Figure 26. Corrected reconstruction of Dataset 7 (another viewpoint)
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Figure 27. Uncorrected reconstruction of Dataset 4
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Figure 28. Corrected reconstruction of Dataset 4
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Table 5 compares the compressed storage size of each dataset’s set of 90 images

with the size of its corresponding compressed reconstruction. All models were 49-60%

smaller than the set of images from which they were created. All compression was

performed with Igor Pavlov’s 7-Zip utility. This reduction in size is very favorable

for any application which requires imagery to be transmitted through a bandwidth-

constrained link, and it may be especially beneficial to intelligence applications which

require not only imagery but also geospatial awareness of targets of interest. A

reconstructed 3D model, with proper alignment and low geospatial error, can precisely

determine the latitude, longitude, and altitude of a specific feature, such as a window

or door; this information is far more difficult to determine from only 2D images.

4.2 Discussion

Main Findings.

The warped Z-scale effect discussed in [9] was confirmed, with some differences

and expansions upon the work. In the previous work, the warped Z-scale was at-

tributed to imagery taken from nadir angle; however, in this work, a similar effect

was also observed in reconstructions obtained from non-nadir images and a different

SfM software suite. It was also shown that this warping effect can be compensated by

applying a Z-scale typically between 1.2 and 1.6 to obtain greater geoaccuracy. With

the cityscape dataset, the best results were obtained from images taken at further

distances with narrower fields of view, especially when flight paths started at half the

height of the target of interest.

It was also shown that models from SfM can be compressed to require less space

than the images from which they were created, with the added benefit of geospatial

information. This provides a compelling case for use of SfM in intelligence applications

or any similar application which relies on low-bandwidth data connections.
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Additionally, the work was performed in a virtual world[35], allowing for fine-

tuned control, deterministic repetition of results, and cost and schedule savings; this

approach demonstrated a low-risk method to inform and guide future investment and

research.

Shortcomings.

The use of a virtual world, along with manual intervention in the alignment pro-

cess, created some necessary inaccuracies and intentional lack of realism in the final

results. The alignment process for each reconstruction was performed manually, lead-

ing to potential inconsistencies between datasets. This process could be automated by

methods discussed in other work [9][17], but the resulting alignment may be less ac-

curate with respect to the ground plane than manual alignment, causing even greater

error. This issue must be addressed to fully automate and obtain acceptable results

from, e.g., a UAV-based intelligence gathering process where human intervention is

not possible.

The virtual world setting also introduced some unrealistic artifacts. The scene in-

cluded many repeating textures, potentially confusing the feature matching steps and

degrading the final result. Weather and lighting conditions were theoretically perfect,

and the virtual UAV camera had no radial distortion or flaws naturally occurring in

manufacturing processes; these perfections yielded clarity in the feature detection

steps which is not possible in real-world scenarios. These issues with the virtual

world could be mitigated by utilizing a scene with less textural repetition, including

photorealistic weather and lighting conditions, and adding simulated inaccuracies in

the camera construction.
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V. Conclusions and Future Work

5.1 Conclusions

This research utilized a virtual world to quantify Structure from Motion (SfM)

software performance for potential use in military intelligence applications. The vir-

tual world approach enabled assessment of ideas in a perfect, controllable environment

with rapid reconfiguration for different datasets. The properties of the flight path and

camera were modifiable between test runs with simple tweaks to a small configuration

file, enabling quick collection of varying types of synthetic imagery. The virtual world

also enabled low-cost testing by preventing the need to purchase quadrotor aircraft,

cameras, and other accessories which would be necessary for a real-world flight test.

The virtual experiment also reduced necessary training by eliminating the need to

register an aircraft and earn the license to fly, and real-world weather conditions did

not impact test scheduling when they otherwise would during a real-world test.

A concept was presented to transmit reduced-size 3D models, rather than image

or video streams, over bandwidth-constrained links, with the added benefit of geospa-

tial information in the models. The virtual aircraft collected images in a precisely-

defined spiral flight path, and the images were input to a Structure from Motion (SfM)

pipeline. The SfM pipeline returned a 3D model for each dataset, enabling analysis

and comparison to their corresponding input sets. The 3D models contained geospa-

tial information not originally included in the 2D images, which may be beneficial to

intelligence entities.

The accuracy of the geospatial information was assessed by comparing geopoint

locations on the original scene to their corresponding geopoint locations in the recon-

structed scene after manual ground alignment. Most datasets showed 3D accuracy to

within 10 meters before correction, with higher error values in the Z dimension than
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in the X and Y dimensions. This bias toward Z error confirms similar findings in [9].

Mitigating factors were proposed to compensate for distortion in the Z dimension.

The reconstructed model was scaled upward in the Z dimension at discrete scale

values, and at each scale value, the overall error was calculated. For each dataset, the

Z scale value which corresponded to the lowest overall error was considered optimal.

The optimal Z scale values ranged from 1.20 to 1.62, and the corrected models had

error values from 1 to 5 meters.

The 3D models and their corresponding image sets were also compressed through

the free 7-Zip compression utility, and the size of each compressed model was com-

pared with the size of its corresponding compressed image set. A reduction of 49.3%

to 59.8% of required space was shown. If employed on a large scale, the SfM method of

imagery transmission may reduce the overall amount of satellite bandwidth required

to support remote intelligence collection and reduce the need for expensive new space

assets.

With further work to automate the process and improve its accuracy, timeliness,

and energy consumption, the SfM-based approach may prove superior to traditional

video- and image-based approaches to unmanned aircraft-based intelligence collection.

5.2 Future Work

This work is only a small portion of research necessary to enable SfM-based intel-

ligence collection. Further work is required to determine accuracy of reconstruction

under realistic, less-than-ideal conditions.

An SfM pipeline must be assessed on relevant hardware, as it may not be realistic

to assume that a high-powered desktop or server processor will be available in a real-

world scenario. A starting place for this assessment is the Nvidia Jetson series of

embedded processors. The Jetson boards feature Nvidia Tegra graphics processing
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units (GPU), allowing for energy-efficient GPU operations to take place. To make this

approach work, a suitable software solution must be found and adapted to the ARM

processor architecture present in Jetson boards, and the solution must support GPU

acceleration to take full advantage of the Jetson’s processing capabilities. The Multi-

View Environment, Poisson Reconstruction, and Multi-View Stereo-Texturing tools

utilized in the initial research effort do not support GPU acceleration at the time of

writing, but open-source tools are rapidly being developed which may support GPU

acceleration throughout all stages of the SfM pipeline.

A more rigorous quantification of time and energy cost is also required. The SfM

approach in the initial research was performed without close monitoring of required

time and without any monitoring of required energy. These factors are of critical

importance in a real-world scenario, where there is a direct correlation between en-

ergy required and fuel spent, and intelligence analysts need real-time data without

excessive waiting for SfM processing to complete. An initial assessment of required

time and energy would require a representative system to work with. A measurement

of time would be most useful if both CPU time and wall clock time were measured,

to allow comparison and possible identification and removal of unneeded processes

on the platform. An energy quantification could start with usage of a simple power

usage tracker such as the Kill-a-Watt, and further analysis could then convert the

used energy into actual fuel requirements based on the intended real-world platform.

Some important factors in the initial research were abstracted away for simplic-

ity, such as the background scenery. The sky and landscape were removed from the

virtual world, but this is not an option for real-world research. Work has been con-

ducted to remove the background for outdoor SfM work, but more research is needed

to understand how such an approach may work with aerial imagery [16]. Image seg-

mentation algorithms may help with this effort, but the algorithm parameters would
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require robust values to ensure as much background is removed as possible without

removing the important parts of the scene.

A simple spiral flight path may be realistic for small, quadrotor-style aircraft, but

such a path is not as likely to be utilized for larger, fixed-wing aircraft. A useful

extension to the spiral work would include other types of flight paths. Some research

in this area was conducted by Ekholm, but revalidation and definition of further flight

path styles may reveal ideal paths to use for SfM imagery capture [18].

Additionally, it may be useful to research the performance of SfM with many dif-

ferent sources of imagery, as shown in [38] for crowd-sourced images of the Colosseum

in Rome. There are many different intelligence platforms, and image sensor specifica-

tions may vary greatly among them; research to determine how different images may

be and still work acceptably well with SfM pipelines may help to determine which

sources of imagery can work well together for this purpose.

In addition to further flight path research, more study is needed to determine

the feasibility of using long-range imagery for SfM applications. In this case, long

range may refer to high-altitude aircraft or even satellite imagery. In a real-world

intelligence scenario, it may be unlikely to obtain close-range imagery of a target,

necessitating a greater effort to work with longer-range imagery to accurately re-

construct 3D structures. Some work has been done in a synthetic environment to

determine performance of near-nadir imagery in SfM applications and may serve as a

starting point to evaluate longer-distance, lower-resolution pictures for their potential

usefulness [9].

Future work may also replace the manual alignment process described in this paper

with an automated approach. The automated approach would utilize positioning

data from the original images, e.g. in the form of embedded geotags with latitude,

longitude, and altitude information, and position the reconstructed model in the
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virtual world based on this information. This would also enable a proof of concept for

real-time model transfer to an accurate location and scale in a second instance of the

virtual world, which may represent an intelligence operator’s view. The OpenMVG

library provides rudimentary support for geotagged source images and may be a useful

starting point to replace the manual alignment process with an automatic process.

In the initial research effort, the reconstructed models showed a significant short-

ening of height. This shortening was corrected with the use of geopoints on the

original scene’s model and the reconstruction. However, in a real-world intelligence

scenario, the geopoints on the original scene would not be available for reference. An

automated alternative to the geopoint-based approach may be to perform the recon-

struction, determine the highest point on the reconstruction, fly to the corresponding

point in the original scene, utilize a range-finding sensor to determine the height of

the scene at that point, and scale the reconstruction to match the newly-found height.

Further research could simulate and validate or invalidate this approach, providing a

more realistic method to account for Z-scaling error in the reconstruction.

The shortening of height may also be corrected at the algorithmic level. A detailed

analysis of state-of-the-art algorithms may reveal opportunities for optimization for

the case of downward-facing imagery. A compensation or correction for Z-scale er-

ror, perhaps based on downward tilt of the camera, may be inserted directly into

algorithms for sparse and dense reconstruction. This would eliminate the need to

consider Z-scale error after the model is created and would increase accuracy earlier

in the SfM pipeline, reducing cascading errors in the subsequent steps.

Finally, real-world flight tests must be conducted to determine the performance of

SfM pipelines under non-ideal conditions. A sufficiently refined SfM implementation

should be able to handle compounding factors such as glare and shadows, which may

appear on any sunny day. With sufficient preparation and planning, real-world flight

63



tests would further assist leaders in determining the feasibility of the SfM imagery

solution and make decisions about continued research and acquisition.
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