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Abstract

In flight refueling of Unmanned Aerial Vehicles (UAVs) is critical to the United State’s

Air Force (USAF). However, the large communication latency between a ground-based

operator and his/her remote UAV makes docking with a refueling tanker unsafe. This

latency may be mitigated by leveraging a tanker-centric stereo vision system. The

vision system observes and computes an approaching receiver’s relative position and

orientation offering a low-latency, high frequency docking solution. Unfortunately, the

boom – an articulated refueling arm responsible for physically pumping fuel into the

receiver – occludes large portions of the receiver especially as the receiver approaches

and docks with the tanker. The vision system must be able to compensate for the

boom’s occlusion of the receiver aircraft. We present a novel algorithm for mitigat-

ing the negative effects of boom occlusion in stereo-based aerial environments. Our

algorithm dynamically compensates for occluded receiver geometry by transforming

the occluded areas into shadow volumes. These shadow volumes are then used to cull

hidden geometry that is traditionally consumed, in error, by the vision processing and

point registration pipeline. Our algorithm improves computer-vision pose estimates

by an average of 74% over a näıve approach without shadow volume culling.
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MITIGATING THE EFFECTS OF BOOM OCCLUSION ON AUTOMATED

AERIAL REFUELING THROUGH SHADOW VOLUMES

I. Introduction

1.1 Overview

The United States Air Force must be able to secure and maintain global reach,

superiority, and power to achieve its Core Missions. The Air Force’s dependence on

Unmanned Aerial Vehicles (UAVs) to achieve global reach has rapidly increased and

UAVs have become a critical system for conducting reconnaissance. In the past, the

Air Force was able to maintain global reach through aerial refueling, allowing our

fleet of aircraft to maintain a global presence. However, there is currently no capa-

bility for UAVs to be refueled mid-flight severely degrading the Air Forces ability to

achieve these core missions. The latency between an UAV operator and the UAV is

too significant to allow for such an operation. To overcome this limitation the United

States Air Force has been working on the development of a capability called automate

aerial refueling (AAR) that will guide the UAV into the refueling threshold through

relative positioning. Research has been conducted to show that the use of Global Po-

sitions Systems (GPS) can successfully perform relative positioning between aircraft,

however, in a combat environment GPS is not a reliable resource as it can be denied

by opposing forces or lost. Our solution proposes an automated system using a stereo

computer vision pipeline to calculate the required 6 degrees of freedom (6DoF) mea-

surements for the receiver aircraft relative to the tanker. Testing a proposed system

often requires multiple flight tests which can only be performed after meeting strin-

1



gent safety requirements. To overcome such obstacles our research employes a 3D

Virtual World (3DVW) simulation. This simulation models a hypothetical tanker-

mounted stereo vision system able to observe an approaching receiver. The tanker

and receiver aircraft are represented via geometrically realistic aircraft models and

follow realistic flight paths representative of common refueling approaches. Geomet-

rically realistic aircraft models are of an adequate fidelity to be representative of real

world experiments. Previous research has shown that stereo computer vision can

produce centimeter level accuracy. While highly useful, these simulations did not in-

clude a model of the tanker’s refueling boom. The tanker’s refueling boom obstructs

the system’s view of the receiver presenting problems in the stereo computer vision

pipeline.

1.2 Problem Statement

Mitigate the effects of boom occlusion on the stereo computer vision system to

produce realistic and effective automated aerial refueling capability in GPS denied

environments with minimal aircraft modification.

1.3 Research Goals and Hypothesis

• Establish baseline of stereo computer vision relative 6DoF estimations with no

boom mitigation techniques

• Improve stereo computer vision relative 6DoF estimation accuracy through the

use of a dynamically created reference model

• Produce simulation results to compare with flight test data superimposed with

a model of the tanker’s boom

2



1.4 Approach

Experiments to quantify reference model performance are executed in the 3DVW.

A tanker-centric stereo vision system captures synthetic imagery of an approaching

receiver. The receiver follows a flight path within the operational limits of a C12.

This flight path provides the truth data to compare against the 6DoF estimation

produced by the computer vision pipeline. Three sets of deterministic experiments

are executed to provide comparisons between no boom mitigation techniques, a more

accurate static reference model consisting of just the wings and nose, and a dynamic

reference model generated through the use of shadow volumes.

1.5 Assumptions/Limitations

The 3DVW presented in this research has been compared with measured data

validating that the model is an accurate reflection of the real world [4]. This research

does account for the partial occlusion of the receiver resulting from the tanker’s

refueling boom. This research assumes a completely static boom with knowledge of

its location and orientation. The propellers of the C-12 receiver are not modeled for

simplification. The flight path used in all of the experiments was generated using

BlueMax flight software however, the virtual world does not use a flight dynamics

engine to simulate turbulence or other aerodynamic effects on either the receiver or

the tanker and it’s respective refueling boom. Virtual sensors in the 3DVW follow

the pinhole camera model such that lens distortion was not present.

1.6 Research Contributions

• 3DVW for simulating AAR computer vision applications

• The use of collision detection to eliminate boom generated points in the sensed

3



point cloud

• 74% average improvement on 6DoF estimation versus no mitigation techniques

1.7 Thesis Overview

Chapter 2 provides fundamental concepts necessary to understand the AAR prob-

lem. It defines terminology associated with aerial refueling and discusses fundamental

concepts for computer vision and shadow volumes. Chapter 2 also provides a review of

previous work conducted on the AAR problem. Chapter 3 provides the methodology

for this research including the computer vision pipeline, ray-plan collision detection,

face adjacency information, silhouette detection, shadow volume generation and point

inclusion. Chapter 4 discusses the results from the experiments comparing the various

mitigation techniques. In chapter 5 we conclude by giving an overview of the current

state of AAR while also recommending steps to further improve the results of this

research.
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II. Background

2.1 Automated Aerial Refueling

In flight refueling of aircraft is critical to the United State’s Air Force (USAF). It

allows the USAF to maintain global reach and air superiority. The Air Forces depen-

dence on Unmanned Aerial Vehicles (UAVs) to achieve missions has rapidly increased.

UAVs are primarily used for surveillance and reconnaissance but their role is expand-

ing into combat areas. Thus, it is critical that we develop the capability to refuel

UAVs mid-flight. However, the large communication latency between a ground-based

operator and his/her remote UAV makes docking with a refueling tanker unsafe. This

multi-second latency even prevents stateside UAV operators from controlling take off

and landing of remotely located UAVs [5]. This latency may be mitigated by leverag-

ing a tanker-centric stereo vision system. The vision system observes and computes

an approaching receiver’s relative position and orientation offering a low-latency, high

frequency docking solution. This vision system provides the pose estimation as six

degrees of freedom with three components for position and three for orientation. An

AAR solution could eventually eliminate the need for boom operators and would push

the USAF towards completely autonomous refueling tankers.

Automated Aerial Refueling while not a current capability is being planned for

in the future. Thus, an approved flight path has already been defined [6]. The

NATO standard states that a receiver aircraft’s flight path will vary based on aircraft

type and environmental conditions. However, the flight path states that the receiver

should follow an approach that limits occlusion of the receiver aircraft [6]. This

guideline maximizes the capability of a computer vision solution to estimate position

and orientation. Unfortunately, the boom – an articulated refueling arm responsible

for physically pumping fuel into the receiver – occludes large portions of the receiver
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especially as the receiver approaches and docks with the tanker. An example of the

boom refueling method can be seen in Figure 1. This occlusion can not be overcome

by modifying the flight path or the NATO standard. Thus, the vision system must

be able to compensate for the boom’s occlusion of the receiver aircraft.

2.2 Computer Vision

Computer vision is the process of acquiring images of the external world, pro-

cessing them and then analyzing them to produce data or information [7]. Humans

can quickly analyze imagery to make inferences and comparisons. While research

in artificial intelligence is making strides towards creating systems with human-like

perception the capability is not yet achieved [8]. Thus, computer systems rely on

recognition through corners, or colors, or other specific features. Humans also have

the capability to perceive depth, while computer vision systems with a singular cam-

era can calculate depth in certain circumstances [9, 10] it is much less straight forward

than using a stereo vision system. A stereo vision system is able to estimate depths

of object with much greater precision.

Stereo vision systems are designed to mimic human depth perception. These

systems utilize epipolar geometry to compute the depth of objects contained within

each camera’s viewing frustum [11]. A stereo vision system with its corresponding

epipolar geometry components can be seen in Figure 2. The optical centers of both

cameras are represented by O1 and O2. They are separated by a baseline that must

be measured. The epipoles, e1 and e2, of the left and right cameras respectively. An

epipole is defined as the intersection point between the baseline and the image plane

of the camera. The epipole is the optical center of the other camera. The object of

concern is represented by q and the projections of that object onto each image plane is

represented by p1 and p2. The epipolar lines, l1 and l2, is the line that represents the

6



Figure 1. Boom Refueling Method [1]

intersection of the epipolar plane with each image plane respectively. The essential

matrix contains the epipolar information necessary to relate corresponding image

points. The epipolar constraint is the idea that q generates p1 for the left camera and

the corresponding point p2 in the right camera must lie somewhere on the epipolar line.

This greatly reduces the search for corresponding image points. Epipolar geometry

thus allows for the 3D coordinates of q to be calculated with respect to optical center

of the predetermined primary camera.

2.3 Pinhole Camera Model

The pinhole camera model is the ideal model of a camera. In the pinhole model the

camera’s aperture is a singular point; thus all rays pass through the same center point

of the camera. Our research assumes a pinhole camera model. However, real world
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Figure 2. Epipolar Geometry [2]

applications would need to account for parameters such as camera focal length and

principal point. Accurate measurement of these intrinsic parameters are necessary

for precise position estimation.

2.4 Registration

Registration of point sets, or point matching, refers to the process of aligning

two point sets [12]. The sensed point cloud is generated by the stereo vision system.

The reference point cloud is generated by a geometrically accurate reference model

of the object. The reference model is used as the truth data. Through the process of

registration we can estimate the position and orientation of the object.

The iterative closest point (ICP) algorithm is the most common solution for rigid

3D registration problems [13]. ICP works by iterating over the sensed points and

searching for a corresponding closest point in the reference model. ICP then calculates
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the translation and rotation between the point sets. The sensed point cloud receives

this transformation and then ICP restarts beginning at the updated position and

orientation. ICP will iterate until a predetermined mean squared error is achieved

or until it has reached a maximum number of iterations. A resulting mean squared

error close to zero does not guarantee correct registration. ICP must be seeded

with the reference model at a starting position and orientation. This seeding can

have significant effects on the results of ICP. A bad initial orientation can cause

ICP to converge to a local minimum preventing it from finding the global minimum

that would produce the optimal registration. There are ways to overcome these

local minima such as Go-ICP [14]. The best solution to this problem however is

the provide a good initial position and orientation for the reference point cloud.

A naive implementation of ICP can be relatively inefficient and for our system we

need real time capabilities. Other research has further developed ICP through the

implementation of K-D trees to increase efficiency [15]. ICP has been modified and

further developed for different purposes focusing on efficiency and accuracy [16, 17,

18, 19, 20]. Our research utilizes a point to point ICP algorithm implemented with

K-D trees to improve efficiency necessary for our problem.

2.5 Non-Vision Based Approaches

Global positioning system (GPS) approaches have proven effective for relative

navigation with applications in the automated aerial refueling domain. A differential

GPS approach was shown to be effective for aerial refueling using the probe and drogue

method [21]. Other research has shown that GPS based systems provide centimeter

and degree level accuracy for relative navigation formation flight [22, 23, 24]. Thereby

providing the relative navigation accuracy necessary for automated aerial refueling.

These approaches however, rely on the availability of GPS in contested environments
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where GPS accuracy can be degraded or completely denied. Other studies have

focused on hardening this approach by combining the capabilities of both GPS and

inertial navigation systems (INS) [25]. This research demonstrates that a combined

system provides more reliability in the event of one system failure. However, without

GPS the ability to accurately estimate position is still degraded and diverges over

time. Other research has combined GPS with machine vision through an Extended

Kalman Filter (EKF) to produce more robust relative navigation systems [26, 27].

They utilize a monocular vision system installed on the receiver which would require

significant aircraft modification.

Another non-vision based approach relies on the use of Light Detection and Rang-

ing (LIDAR) to determine relative positioning between tanker and receiver [28]. This

approach is effective but it utilizes an active scanning LIDAR system, potentially de-

grading the stealth capabilities of military aircraft. The use of LIDAR also requires

significant modification to each potential receiver. Such a solution does not scale.

GPS and LIDAR relative navigation systems provide the accuracy needed for

automated aerial refueling but concerns over their capabilities in a contested environ-

ment persist. The combination of two or more systems have shown to produce more

reliable results in the event that one fails but we must harden the system further to

appease safety concerns.

2.6 Vision Based Approaches

Computer vision algorithms find use in a wide array of fields. In this section, we

discuss a few applications of computer vision, particularly those which are intended

to solve the automated aerial refueling problem. We are specifically interested in the

application of a stand alone stereo vision system to reduce 6DoF estimation error.

Below we describe previous vision-based approaches.
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Fravolini’s study quantifies the difference in feature matching when using geomet-

rically placed markers and corners with monocular vision. This study also quantified

the accuracy and efficiency of several different matching algorithms. Both markers

and corner detection produce a relatively high level of accuracy however the maximal

clique heuristic presented performed significantly better when combined with corner

detection compared to the greedy algorithm [29].

Another one of fravolini’s studies quantified the effectiveness of different feature

matching methods. Several methods including a Hungarian method, a greedy method

and a combined method were compared. All methods were compared based on simula-

tion conducted within a 3D virtual world. Each simulation placed a monocular vision

system on the approach receiver and light sources on the underside of the tanker. At

close ranges the markers placed on the tanker could be occluded or blocked intro-

ducing error spikes into the data. Mitigating the effect of occlusion on features or

markers is the basis for Fravolini’s research. However, the robust method proposed

within this study produced the most stable results never spiking above one meter

error even in the event of marker occlusion [30].

Mammarella et al. continued the effort to quanitfy the effectivesness of different

point matching algorithms for the UAV refueling problem. They utilized Harris corner

detection and Lu, Hager, and Mjolsness pose estimation combined with different point

matching algorithms within a 3D virtual world to conduct simulations. Their work

compared the mutual nearest point algorithm with the maximum clique detection

algorithm. Results show that maximum clique detection provides similar position

estimation to mutual nearest point but superior orientation estimation [31].

The use of a monocular vision system placed on the receiver is cost prohibitive

and requires significant aircraft modification. Other research has focused on the

use of a binocular vision system positioned on the tanker angled down towards the
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receiver. Duan, et. al. conducted a hardware-in-the-loop simulation to determine

optimal strategies for pose estimation of UAVs in the AAR domain [32]. This study

determined that the optimal strategy is to combine LED detection and Gaussian

least-squares differential-correction. This combination produces sub-quarter meter

error along all axis.

The use of stereo vision for relative pose estimation is not exclusive to the auto-

mated aerial refueling problem. Research has shown that the use of stereo vision is an

effective solution for autonomous rendezvous and docking for satelites. Simulations

conducted using a 1/24 scale Magellan satellite model produced orientation errors of

less than 3 degrees and position errors of less than 2% [33].

Previous research at the Air Force Institute of Technology has shown the ability

to produce centimeter level and sub-degree 6DoF measurements. All approaches used

a stereo vision system installed on the tanker looking down at the receiver. Initial

work was simulated in non-real time but proved the ability to conduct an aerial

refueling simulation using the stereo vision process [34]. Subsequently, Denby’s work

focused on the optimization of the stereo vision pipeline to bring it closer to real

time. While efficiency was increased the accuracy was degraded to the point where

automated aerial refueling would not be safe [35]. Most recently, Parson’s research

focused on calibration of virtual senors within the 3D virtual world combined with

the use of a shelled reference model to imrpove 6DoF measurements and increase real

time capabilities. Parson’s work presented a real time solution capable of centimeter

and degree level accuracy for relative navigation [36].

2.7 Collision Detection

Collision detection is the process of determining if two objects intersect. Our

particular application is concerned with ray-plane collision detection or intersection.
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Ray-plane collision detection can be utilized to determine if a ray cast through space

collides with an object. A naive approach is to iterate over the object’s triangles and

determine if the ray intersects any of them. This approach can be relatively inefficient

if the object consists of a large number of triangles. Another more efficient approach

is to utilize an octree for the object of concern. This approach represents the object

in a hierarchical 8-ary tree structure [37]. This increases collision detection efficiency

as it only iterates down the tree if conditions for the parent nodes are met.

2.8 Shadow Volumes

In computer graphics shadow volumes can be utilized to add shadows to a scene.

A shadow volume is defined as the volume of space occluded from a particular light

source by an object [38]. In other words any object within this volume will reside in

a shadow. An example of a shadow volume can be seen in Figure 3. The light source

is a point light source that casts rays equally in all directions. The shadow volume

outline or silhouette edge is defined as the edges of the objects that creates the planes

of the shadow volume. Silhouette edge detection requires knowledge of the shadow

casting object. To determine the edge of the object that creates the silhouette edge

we need to know the adjacency information for the triangles that make up the object.

We also need to know the normals of these triangles and the position of the light

source. With this information a dot product can determine which triangles face, or

point toward, the light source. The edge between triangles facing the light source and

ones facing away are part of the silhouette edge [39, 40]. We also define the inverse of

the shadow volume or the volume of space between the light source and the silhouette

edge as the light volume. Initial research on shadow volumes restricted the geometric

complexity of the shadow generating object. Aldridge and Woods expanded this work

to allow for more complex geometric shape [41].
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Figure 3. Shadow Volume [3]

Our research is not directly interested in shadows but occlusion can be transformed

into a shadow volume problem. When the eyepoint, or pinhole camera, are coincident

with the point light source the shadow volume is the volume of space that is occluded

or blocked from viewing by the object.

2.9 Point Inclusion

Point inclusion is the process of determining if a point is contained within a volume

of space. There are several methods for determining if a point lies within a volume

of space. The first is the winding number method [42]. The winding number method

has the capability to determine if a point is contained within a concave volume. It

accomplishes this by counting the number of times the volume curves around the

point of interest, adding one if it wraps counterclockwise and subtracting one if it

wraps clockwise. In 2-dimensions this is equivalent to drawing an infinite ray from

the point across the object. If the summation is zero then the point is not contained
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within the volume of space. The winding number method can be seen in Figure 4.

Another approach exists for simpler convex shapes. This approach calculates the

displacement of the triangles that compose the shape or volume. The displacement of

each triangle is then compared with the point’s displacement. If the point’s displace-

ment is less than the triangle’s displacement it lies on the inside of the triangle and

is within that portion of the shape. Thus, the algorithm iterates over all triangles

within an object and if the point lies within all of them the point is in the volume.
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Figure 4. Winding Number Method
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III. Methodology

To conduct this research we needed the ability to produce imagery of a flight

approach representative of aerial refueling operations. A virtual environment was

used to create the simulations allowing us to meet financial and safety limitations.

The virtual world also allows for deterministic research that can be conducted in

a repeatable manner. To conduct this research in a virtual environment we must

create realistic simulations to produce high-fidelity synthetic imagery representative

of aerial refueling operations. The Open Computer Vision (OpenCV) libraries contain

verified and tested algorithms necessary for our research. We utilize OpenCV’s Stereo

Block Matching to calculate a point cloud from a stereo pair of images. Our system

then uses the iterative closest point (ICP) algorithm to complete point registration

of the sensed model onto a reference the model. The 6DoF information necessary for

relative navigation is provided by the reference model’s position and orientation after

registration is complete. ICP performs best when the sensed model and the reference

model closely align. Thus, we have two options: we can use a static reference model

across the entire flight approach or we can use a dynamic reference model. The

dynamic approach is achieved by transforming occluded regions into shadow volumes

to dynamically remove occluded points from the reference model. In this way the

reference model more closely aligns with sensed points.

3.1 Simulations

All simulations and visualizations for this research use the AFTR Burner engine,

an OpenGL based renderer [43]. The AFTR Burner Engine uses models to cre-

ate realistic synthetic imagery representative of the real world. This work expands

the capabilities of the AFTR Burner Engine by introducing adjacency information,
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silhouette detection and shadow volumes. Each simulation uses a high-fidelity, ge-

ometrically accurate C12 model as the receiver. The C12 was chosen to match the

real-world flight tests conducted in September of 2017. The boom model is taken

from the KC-10 refueling tanker. The flight path is held constant across all simula-

tions. The flight path is representative of a common approach within the operational

limits of the C12 [44]. This flight profile is imported into the virtual world allowing

for accurate comparison between sensed and truth data. The virtual sensors used to

collect the synthetic imagery maintain a constant baseline of 0.5 meters and mimic

specifications of potential real world cameras used for such an operation. The virtual

sensors were intrinsically calibrated as described in [36]. All 6DoF results are pre-

sented in the coordinate frame system shown in 6. The x component is defined as the

red line running from the tail of the receiver to the nose. The y component is defined

as the green line running from the right wing of the receiver to the left wing. The

z component is defined as the blue line running perpendicular to the xy plane. The

orientation components are defined following basic aircraft motion in roll, pitch, and

yaw components. Roll is defined as rotation about the axis running from nose to tail.

Pitch is defined as rotation about an axis running from wing to wing. Y aw is defined

as rotation about the axis running from top of the aircraft to underside. These axes

update as the aircraft moves meaning the Euler angles are defined as rotation about

successive coordinate frames. All orientation components follow the right-hand rule.

3.2 Computer Vision Pipeline

A high-level overview of the entire computer vision pipeline can be seen in Figure

7. Pre-processing is required for both camera calibration and the use of shadow

volumes. Camera calibration follows the method laid forth by previous research [36].

The shadow volume of the boom is also computed during pre-processing because we
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Figure 5. Aerieal Refueling Scene, Rendered in AftrBurner

Figure 6. Virtual World Axis

19



assume a static boom. With adequate knowledge of position and orientation this

could be computed in real time during an operation however we are assuming a boom

with static position and orientation for this research. The computer vision pipeline

outputs a 6DoF estimation for the approaching receiver. The results of the computer

vision pipeline with timing metrics allow us to compare performance against other

solutions.

3.3 Disparity Map Generation

Once the receiver is traversing along the predetermined flight path log file. The

virtual cameras capture the imagery from the perspective of both the left and right

camera. These images are passed to OpenCV’s Stereo Block Matching function to

produce a disparity map. The disparity of a feature is produced by calculating the

difference in image coordinates for that specific feature. First the images are rectified,

aligning the horizontal line of pixels. This allows the algorithm to calculate the image

coordinate difference more efficiently. This is done for all features within the images

resulting in the disparity map. OpenCV’s Stereo Block Matching function requires

two parameters, block size and number of disparities. Block size defines the size

of the pixel block that will be treated as a feature. A small block size can result

in a significant number of mismatches while a larger block size can result in less

granularity. The number of disparities defines the range that OpenCV can assign to

pixels. We utilized a block size of 9 and 48 total disparities. These values produced

the best results and are consistent with [36] and [45]. The disparity map is then

passed through OpenCV’s speckle filter to remove outliers. The final disparity map

is used in conjunction with the calibration data to create a three dimensional point

cloud that is used for point registration. Figure 8 displays a disparity map of the C12

receiver in the refueling envelope with the tanker’s boom also in place.

20



Initial Computations
Computer Vision

Pipeline

Stereo Cam-
era Parameters

Reprojection Matrix

Silhouette Detection

Shadow Volume

Update Receiver Pose

Render Virtual Scene

Capture Stereo Imagery

Generate Disparity Map

Generate Point Cloud

Remove Boom Points

ICP Registration

Output Pose Estimation

Update Reference Model

Figure 7. High Level Outline of 3DVW Simulation

21



Figure 8. Filtered Receiver Disparity Map
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3.4 Point Cloud Generation

These 3D points returned from the disparity map generate a point cloud of sensed

points. The reprojection function requires a perspective transformation matrix Q and

the pixel coordinates px and py according to Equation 1.

[x y z w]> = Q ∗ [px py disparity(px, py) 1]> (1)

The function generates a matrix of 3D points representing both the receiver and

the boom. Points greater than 750 meters behind the tanker are filtered out. The

system does not accurately sense the receiver at that distance. Thus, removing these

points ensures we are only utilizing receiver or tanker generated points and not back-

ground. The function generates over 60,000 points at the refueling contact point

thus we utilize a uniform decimation removing every eighth point. This decimation

is implemented to speed up computation of both ray-collision detection and ICP and

was shown in [36] to not have a significant effect on registration accuracy. The points

are then transformed into the 3DVW frame and subsequently to the camera’s frame

through Equation 2 and Equation 3. Where DCMtanker is the tanker direction cosine

matrix, DCMcamera is the left camera direction cosine matrix and [xc yc zc] is the left

camera position. The resulting point cloud can be seen in Figure 9.

[xv yv zv] = [z (−x) (−y)] (2)

[x′ y′ z′]> = (DCMtanker ∗
[
(DCMcamera)

> ∗ [xv yv zv]
>
]
) + [xc yc zc]

> (3)
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Figure 9. Sensed Point Cloud

3.5 Point Registration

With the sensed point cloud correctly placed in the tanker’s left camera’s reference

frame we can utilize an ICP algorithm to register the reference model of the receiver

to the sensed point cloud. The AftrBurner Engine implements a point-to-point ICP

algorithm with a modified KD-Tree approach [46]. ICP iterates a maximum of 30

times or until the RMS error is below the previous iterations RMS error. Once

completed the position and orientation of the reference model provides our 6DoF

estimation corresponding to a single pair of images.

3.6 Static Reference Models

Previous research has shown that the use of a more accurate reference/registration

model can not only improve 6DoF estimation accuracy but also improve the perfor-

mance of ICP. In this previous effort a full reference model of the receiver was taken

and modified to create a “shelled model”. To produce the shelled model the viewing

angle of the reference model was set to match the perspective of the tanker’s stereo

cameras. The subset containing the visible points of the full reference model were

used to create the shelled model. This is helpful because the stereo vision system

will never be able to see the underside of the receiver aircraft thus point registration
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will encounter errors from these extra points. Using a shelled model gives a more

accurate model to match against thereby improving accuracy [36]. The comparison

between the full model and the shelled reference model can be seen in Figure 10.

Our initial efforts took a similar approach and shelled the model statically before

the approach was conducted removing all points not visible due to boom occlusion.

The question arose at what point in the approach do we shell the model? This de-

termines which portions of the receiver are occluded. This led us to decide on two

specific positions and thus two specific reference models. We classified these models

as Wings Only and Wings and Nose, we decided upon these two models as they are

the most common occlusions when the receiver is near to the tanker. The Wings

And Nose reference model can be seen in Figure 11.Using a more accurate reference

model will only improve ICP registration if the sensed point cloud we are matching

against closely approximates our reference model. This introduces the next problem

of removing boom generated points from our point cloud.

3.7 Ray-Plane Collision Detection

Another obstacle that the boom introduces into the automated aerial refueling

problem, besides blocking parts of the receiver, is that stereo block matching generates

points that lay on the boom’s surface. Without removing these points our ICP

algorithm will match the reference model against parts of the boom thus producing

incorrect matching and incorrect 6DoF estimation. Thus we needed a way to remove

these points given the position and orientation of the boom. One approach is to cast

a ray through each sensed point and determine if that ray collides with the tanker’s

boom. This approach can be seen in Figure 12. Using this approach on the accurate

model of the boom does not eliminate all of the points because many of these points

lie on the boom’s surface, potentially a millimeter or centimeter above the geometric
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Figure 10. Full (Left) and Shelled (Right) Reference Model

(a) Wings and Nose Top View (b) Wings and Nose Side View

Figure 11. Wings and Nose Reference Model
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surface as a result of corner detection within stereo block matching. The eliminated

points are represented as the green points in Figure 13 while the rays casted through

the yellow points do not intersect the boom. However, these yellow points clearly lay

on the boom; thus we still want to remove them.

We decided to extrude the boom by the least amount possible that allowed us to

eliminate 99% of the boom generated points through ray collision detection. Thus

we extruded the boom equally in all directions by 10 centimeters. Collision detection

against the extruded boom resulted in the elimination of approximately 99% of boom

generated points. The resulting collision detection against the extruded boom can

be seen in Figure 14. The problem with having a single outlier point resulting from

Stereo Block Matching analyzing the boom is that the point will erroneously pull the

reference model towards the boom during registration. To improve point registration

ICP must have an appropriate seed for both position and orientation. We decided to

seed the position of ICP at the average position of all sensed points, thus centering

the seed closer to the large mass of points. The orientation of the tanker is used as

the orientation portion of ICP’s seed. In previous research ICP used the center of the

bounding-box for all sensed points as the seed. However, in our work this approach

produces a significant increase in error.

There are several problems with ray-collision detection. The O(n) collision detec-

tion for approximately 8,000 sensed points against over the 1,600+ faces that create

the extruded boom is understandably slow. One common approach for speeding up

such an operation is the use of an octree for the object we are doing collision detection

against. However, in our instance many of the rays will not collide until late in the

octree because of the orientation and position of the boom. Thus, the use of octrees

resulted in a minimal speed up for our collision detection algorithm.
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Figure 12. Casted Rays for Collision Detection

Figure 13. Ray-Collision with Accurate Boom Model
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Figure 14. Ray-Collision with Extruded Boom Model

3.8 Shadow Volumes

The other approach is to dynamically create shelled reference models throughout

the aircraft’s approach. Ideally we would have a reference model exactly mirroring the

receiver from the view of the camera. Thus, our reference model would not include

any of the pieces of the receiver occluded by the refueling boom. We transform this

occlusion problem into a shadow volume problem. A shadow volume is defined as the

volume of space occluded from a particular light source by an object [38]. Shadows are

not of particular interest in this research however when the light source is coincident

with the eyepoint the shadow volume is equivalent to the volume of space not visible

to the eyepoint. Our research takes advantage of this fact by utilizing the camera

as both the light source and the eyepoint allowing us to determine the exact volume

of space not visible by each camera. We utilize this volume of space to dynamically

create a shelled reference model that will enhance ICP by more accurately resembling

the sensed point cloud.
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The dynamic model will be updated every iteration of the pipeline. The model is

solely made up of points or vertices and not faces. To update the model we perform

point inclusion within the shadow volume of the refeuling boom. To perform point

inclusion we need to ensure that our volume is completely convex. The refueling boom

of a tanker is not naturally convex and neither was the provided 3D model. Dividing

the boom model into twelve convex shapes allowed us to maintain the boom model’s

high-fidelity geometry while also creating volumes viable for fast point inclusion.

To create an accurate shadow volume we must first determine the silhouette of

our object, the tanker’s refueling boom. This model is composed of triangles thus

our silhouette will be composed of triangle edges. Before we determine what triangle

edges are part of the silhouette ring w e must have a model with adjacency information

and no duplicate vertices.

Each piece of the boom model is composed of a vertex and index list that define

the triangles which create the model. The vertex list is stored as if the model is

centered about the world origin. Thus, we will be conducting all of our operations

as if the object is centered about the origin as opposed to in world space attached to

the tanker. To eliminate duplicate vertices, we perform a simple O(n) operation by

iterating over all of the vertices and combine any vertices within a certain epsilon of

each other into a new a list. This epsilon is defined as .0001 meters in each x, y, z

component.

With an accurate vertex and index list we can compute the triangle adjacency

information necessary for silhouette detection. We are able to determine if two tri-

angles are adjacent by comparing their vertices, if they share two vertices then they

are adjacent. Our adjacency data follows a modified version of the winged-triangle

based approach laid out in [47]. Each triangle points at each of its neighbors while

also pointing at the three vertices that produce itself.
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Once we have the triangle adjacency data for each one of our convex models we

can calculate the silhouette ring. To calculate the silhouette ring we must transform

the camera’s current pose into each convex model’s frame (each of the boom’s 12

convex models). To position the camera appropriately we perform the transforms in

Equation 4 and Equation 5. Where DCMboom is the direction cosine matrix of the

boom, [xc yc zc] is the camera position in world space, [xb yb zb] is the boom position

in world space, DCMjoint is the transformation matrix connecting the boom to the

tanker in the tanker’s frame and DCMcamera is the direction cosine matrix of the

camera in the world frame.

[x′ y′ z′] = (DCMboom)> ∗ ([xc yc zc] − [xb yb zb]) (4)

DCMcamera
′ = (DCMjoint)

> ∗DCMcamera (5)

With the camera positioned appropriately, in the convex model’s frame, we per-

form a dot product between the vector from the camera to the center of each triangle

and the respective triangle’s normal. If the triangle is perpendicular to the camera

the result of the dot product will be zero and facing away from the camera would be

negative while a positive result would mean that the triangle faces towards the cam-

era. We store the result of this dot product alongside the triangle. A triangle edge

is part of the silhouette edge if for adjacent triangles one faces towards the camera,

a positive dot product, and the other faces away, a negative or zero dot product. We

accomplish this by iterating over the adjacency information and checking each adja-

cent triangle for an opposite signed dot-product. This produces a complete silhouette

ring for each boom component.

With the silhouette defined accurately we can produce both the light and shadow
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volume of the boom. To create the light volume, which is the inverse of the shadow

volume, we create a set of triangles. Each triangle shares the camera’s position as

a point. The other two vertices of the triangle will be the vertices which make up

the sihouette edge. Iterating over all of the edges in the silhoette ring to create these

triangles will produce the light volume. To create the shadow volume we take a

silhouette edge and extend both vertices along the vector from the camera through

each silhouette vertex. These 4 vertices create a plane that will encompass one side

of the shadow volume. The dividing surface between the light volume and shadow

volume is defined as the triangles on the boom that face the camera. This division is

used to cap the shadow volume allowing us to accurately determine what can not be

seen from the viewpoint of the camera.

Once the shadow volume is calculated and capped we can divide each plane into

two triangles so we can store the three necessary elements for point inclusion. The

three elements we need are the normal of each triangle, a point on the surface of each

triangle and the displacement of the triangle from the origin. To get this information

we use the three points that make up the triangle to calculate the normal of that

surface, we then store one of those points. Because we calculated each shadow volume

as if the object was centered at the origin if we were to do point inclusion on an

object it would require 12 transforms, one for each object. Thus, we decided to

transform the normal and point of each plane into world space such that we do not

need any additional transformations for point inclusion. Once we have transformed

the information we can calculate the displacement shown in Equation 6. Where

[xp yp zp] is a point on the plane and n is the normal of that plane, both of which are

in world space. Both the transformed normals and the points on each plane can be

seen in Figure 16.
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Figure 15. Shadow Volume For Left Camera

d = [xp yp zp] · n (6)

To perform point inclusion we simply compare the displacement of any point,

calculated by the dot-product between that point and the normal of the plane. If the

resulting displacement of the point is less than or equal to the plane’s displacement

then we know the point lies on the inside of that plane. Thus, we iterate over all

of the given planes for a given shadow volume and if the point is within every plane

then we know it is within the volume. Doing this from the perspective of both the

left and right camera allows us to determine what can be seen by only one camera,

by neither camera or by both. In Figure 17 we see point inclusion on the reference

model. Red represents the points seen from both cameras, cyan represents what is

only seen by the left camera, green represents what is seen by neither camera, and

blue represents what is only seen by the right camera. Figure 18 shows the receiver

from the perspective of the left camera and we can no longer see the green or blue
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Figure 16. Transformed Normals and Points Required for Displacement

points within the reference model.

With the shadow volumes and point inclusion working correctly we are able to

dynamically update the reference model each iteration through the pipeline. This

results in a reference model more accurately resembling the sensed 3D point cloud.

This can be seen at four different stages of an approach in Figure 19.

3.9 Experimental Design

The stereo computer vision pipeline outlined above produces the data for each

experiment. The following subsections outlines each of the three experiments used to

produce our results. All experimental results use root-mean-square (RMS) error to

compare the accuracy of 6DoF measurements. RMS error is calculated according to

equation 7 where i is the position, vi is the observed estimation. v̂i is the expected or

truth data, and n is the number of samples or iterations through the vision pipeline.

RMS Error =

√∑n
i=1(v̂i − vi)2

n
(7)
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Figure 17. Point Inclusion on Reference Model

Figure 18. Point Inclusion on Reference Model
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(a) Dynamic Reference Model 1

(b) Dynamic Reference Model 2

(c) Dynamic Reference Model 3

(d) Dynamic Reference Model 4

Figure 19. Dynamic Reference Model at 4 Stages

36



Previous research divided the flight path into three regions [36]. The results were

divided into these categories because of emphasis on certain estimations at different

ranges. The three regions are defined by there distance from the tanker. Region A is

defined as 70m to 175m, region B is defined as 38m to 70m, and region C is defined

as 32m to 38m. To allow for accurate comparison between solutions we will define our

regions in the same fashion. All experiments are conducted with the tanker’s boom

in view of the vision system.

Experiment 1: Previous Solution With Boom.

Previous research established a baseline of results utilizing the 3DVW however

these experiments were conducted with a completely unobstructed view of the re-

ceiver. Since, the boom occludes large and varying portions of the receiver on ap-

proach another baseline must be established. To establish this baseline we took

the previous solution in its best state and conducted the same experiment with the

tanker’s boom in place. This also allows us to compare the previous solution’s results

with and without the boom. This naive approach provides no mitigation techniques

to handle boom occlusion. To compare the results we calculate the percent difference

of the average error magnitude and RMS error for each component of the 6DoF within

each region.

Experiment 2: Static Reference Model.

Experiment 2 quantifies the difference in 6DoF estimation between the naive ap-

proach and the wings and nose static reference model. In this experiment the boom

generated points are eliminated through the ray-collision detection outlined above. To

compare the results we calculate the percent difference of the average error magnitude

and RMS error for each component of the 6DoF within each region.
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Experiment 3: Dynamic Reference Model Through Shadow Volumes.

Experiment 3 quantifies the difference in 6DoF estimation between the naive ap-

proach and the dynamic reference model generated through shadow volumes. To

compare the results we calculate the percent difference of the average error magni-

tude and RMS error for each component of the 6DoF within each region.
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IV. Results

All experiments were conducted on a Thinkpad P50 laptop with an Intel Xeon

E3-1505M v5 processor providing 8 threads to the operating system. The operating

system utilized is Windows 10 with 16GB RAM.

4.1 Previous Solution With Boom

The estimations that we will be comparing our work against is the implementation

laid out in [36] but with a model of the tanker’s boom in the simulation. The results

from the previous work, without the boom, can be seen in Figures 20 and 21. Figures

22 and 23 present the error in position and orientation estimation with the boom.

These results are compared in Table 1. The results are significantly worse for elements

of the 6DoF at every distance from the tanker. The simulations with the boom were

also slower with ICP often operating a full 30 iterations before halting.

Figure 20. Position Estimation Error for ICP of the Shelled Reference Model with No
Boom
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Figure 21. Orientation Estimation Error for ICP of the Shelled Reference Model with
No Boom

Figure 22. Position Estimation Error for ICP of the Shelled Reference Model with No
Boom Mitigation Techniques

It is expected that the results would be worse. The boom generates 1800 points

through stereo block matching while at the closest point the receiver generates 6000

points. This means that the tanker’s boom is generating at least 23% of the sensed

points used in ICP throughout the entire approach. This would result in a signifi-
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Figure 23. Orientation Estimation Error for ICP of the Shelled Reference Model with
No Boom Mitigation Techniques

Table 1. Comparison of Average 6DOF Estimation Error For Approved Flight Path
Between Boom and No Boom

X (m) Y (m) Z (m) R (deg) P (deg) Y (deg)
Boom Average Error Magnitude 8.198 1.725 3.846 69.302 39.404 62.501

Region A (175-70m) No Boom Average Error Magnitude 1.125 0.236 0.685 6.428 6.966 4.671
% Difference -628.91 -630.19 -461.77 -978.07 -465.67 -1238.07

Boom Average Error Magnitude 0.825 0.880 0.328 6.018 3.463 9.112

Region B (70-38m) No Boom Average Error Magnitude 0.182 0.030 0.040 0.499 0.614 0.658
% Difference -352.80 -2829.18 -724.46 -1105.46 -464.34 -1283.97

Boom Average Error Magnitude 0.288 0.293 0.032 1.756 0.571 3.556
Region C (38-32m) No Boom Average Error Magnitude 0.087 0.010 0.010 0.124 0.106 0.183

% Difference -230.90 -2931.09 -221.46 -1316.13 -437.37 -1844.74

cant decrease in accuracy. Within 38 meters the least affected component is the z

component which still doubles in error.

4.2 Static Reference Model

The combination of a more accurate reference model, consisting of both the wings

and nose combined with ray-collision detection to eliminate the boom generated points

resulted in significantly better results. The position and orientation estimation error

can be seen in Figure 24 and Figure 25 These results are compared with the results
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from no boom mitigation techniques in Table 2.

Figure 24. Position Estimation Error for ICP of the Wings and Nose Reference Model
with Collision Detection

Figure 25. Orientation Estimation Error for ICP of the Wings and Nose Reference
Model with Collision Detection

The large error spike seen in orientation when the receiver is approximately 40

meters from the camera can be attributed to the flight approach used in these simu-

lations. The approach follows a NATO certified flight approach however at 40 meters

42



Table 2. Comparison of Average 6DOF Estimation Error For Approved Flight Path
Between Wings And Nose Reference Model and Naive Approach

X (m) Y (m) Z (m) R (deg) P (deg) Y (deg)
Collision And Wings And Nose Average Error Magnitude 7.975 2.041 3.608 65.199 28.481 53.806

Region A (175-70m) No Mitigation Techniques Average Error Magnitude 8.198 1.725 3.846 69.302 39.404 62.501
% Difference 2.72 -18.32 6.19 5.92 27.72 13.91

Collision And Wings And Nose Average Error Magnitude 0.638 0.264 0.278 3.069 3.697 5.012
Region B (70-38m) No Mitigation Techniques Average Error Magnitude 0.825 0.880 0.328 6.018 3.463 9.112

% Difference 22.72 69.98 15.39 49.00 -6.76 45.00

Collision And Wings And Nose Average Error Magnitude 0.128 0.011 0.007 0.182 0.193 0.314
Region C (38-32m) No Mitigation Techniques Average Error Magnitude 0.288 0.293 0.032 1.756 0.571 3.556

% Difference 55.79 96.24 77.17 89.64 66.13 91.17

the receiver’s rear wings/horizontal stabilizer go out of the top of the camera’s view-

ing frustum. This error spike while less exaggerated can also bee seen in the results

presented in [36] and also in our no mitigation technique results. Overall, the results

are significantly improved with the largest increase in accuracy seen for orientation.

Reducing our error to less than half a degree within the refueling envelope. The

problem with this approach is that at long distances our model does not accurately

reflect what the vision system can see. The static model only accurately reflects the

model once it is within the refueling envelope.

4.3 Dynamic Reference Model Through Shadow Volumes

Given the performance of the static wings and nose reference model we would

expect that a dynamic reference model mirroring the approaching receiver would

produce better results. The dynamic reference model is used as input for ICP in the

vision pipeline. The position and orientation estimation error of the naive approach

can be seen in Figures 22 and 23.The position and orientation estimation error of the

dynamic reference model through shadow volumes can be seen in Figures 26 and 27.

The dynamic reference model with collision detection to eliminate boom generated

points shows improvement in position and orientation estimation error at all ranges.

The largest improvements occur in orientation in Region A and Region C. At close
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Figure 26. Position Estimation Error for ICP of the Dynamic Reference Model with
Collision Detection

Figure 27. Orientation Estimation Error for ICP of the Dynamic Reference Model with
Collision Detection

ranges dynamic model registration reduces error by at least 44%. In Region A the

orientation estimation error improves by at least 93% in all components and in Region

C the orientation estimation error improves by at least 80% in all components. In

Region C the average magnitude of error is approximately 16 centimeters in the X
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Table 3. Comparison of Average 6DOF Estimation Error For Approved Flight Path
Between Dynamic Reference Model and Naive Approach

X (m) Y (m) Z (m) R (deg) P (deg) Y (deg)
Dynamic Reference Model Average Error Magnitude 2.943 0.409 1.589 4.205 2.541 3.251

Region A (175-70m) No Mitigation Techniques Average Error Magnitude 8.198 1.725 3.846 69.302 39.404 62.501
% Difference 64.10 76.27 58.68 93.93 93.55 94.80

Dynamic Reference Model Average Error Magnitude 0.551 0.185 0.204 0.894 3.015 1.643
Region B (70-38m) No Mitigation Techniques Average Error Magnitude 0.825 0.880 0.328 6.018 3.463 9.112

% Difference 33.26 79.00 37.72 85.14 12.93 81.97

Dynamic Reference Model Average Error Magnitude 0.160 0.022 0.017 0.195 0.113 0.442
Region C (38-32m) No Mitigation Techniques Average Error Magnitude 0.288 0.293 0.032 1.756 0.571 3.556

% Difference 44.64 92.65 47.75 88.90 80.15 87.57

component and 2 centimeters in the Y and Z components.

4.4 RMS Error

RMS error provides expanded insight into the accuracy of our dynamic approach.

The RMS errors for ICP across each region are provided in Table 4. At each range,

except for Region B’s Pitch, our dynamic approach has lower RMS error for 6DoF

receiver pose estimation. This further solidifies the performance of our dynamic ref-

erence model approach with respect to position and orientation estimation accuracy.

Table 4. RMS Error of 6DoF Estimation For Approved Flight Path Between Dynamic
Reference Model and Naive Approach

X (m) Y (m) Z (m) R (deg) P (deg) Y (deg)

Region A (175-70m)
No Mitigation Techniques 10.146 2.403 5.831 92.625 54.040 90.326
Dynamic Reference Model 3.930 0.510 2.330 6.747 3.669 4.886

Region B (70-38m)
No Mitigation Techniques 0.976 0.999 0.464 14.904 5.686 14.315
Dynamic Reference Model 0.698 0.298 0.373 1.587 5.894 2.809

Region C (38-32m)
No Mitigation Techniques 0.295 0.356 0.059 1.928 0.697 3.845
Dynamic Reference Model 0.165 0.042 0.023 0.254 0.150 0.595

4.5 Summary of Contribution

Accurate pose estimation is especially important at close ranges (Region C).

Zoomed in plots of both position and orientation estimation error can be seen for

the naive approach in Figures 28 and 29. Zoomed in plots of pose estimation error for
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the dynamic approach can be seen in Figures 30 and 31. Our approach decreases the

estimation error by an average of 73.6% across all 6DoF components within Region

C.

Figure 28. Position Estimation Error for ICP of the Shelled Reference Model with No
Boom Mitigation Techniques (Region C)

Figure 29. Position Estimation Error for ICP of the Shelled Reference Model with No
Boom Mitigation Techniques (Region C)
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Figure 30. Position Estimation Error for ICP of the Dynamic Reference Model with
Collision Detection (Region C)

Figure 31. Orientation Estimation Error for ICP of the Dynamic Reference Model with
Collision Detection (Region C)

While close ranges are of particular interest, the dynamic reference model produces

results that are better throughout the entire approach. The average estimation error

for both position and orientation can be seen in Table 5. Pose estimation error

decreases by an average of 74.1% across all 6DoF components.
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Table 5. Comparison of Average 6DOF Estimation Error For Approved Flight Path
Between Dynamic Reference Model and Naive Approach No Regions

X (m) Y (m) Z (m) R (deg) P (deg) Y (deg)
Dynamic Reference Model Average Error Magnitude 0.659 0.133 0.286 0.967 1.541 1.258

Whole Approach (175-32m) No Mitigation Techniques Average Error Magnitude 1.443 0.685 0.602 11.491 6.332 12.737
% Difference 54.31 80.55 52.53 91.585 75.672 90.121
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V. Conclusion

5.1 State of AAR

The tanker’s boom presents many problems for the automated aerial refueling

problem. The effect that occlusion has on relative navigation in [30] was confirmed.

This research replaced the monocular system placed on the receiver with the binocular

vision placed on the tanker. This research also does not utilize any markers for feature

detection but instead relies solely on corner detection in OpenCV’s implementation

of stereo block matching. It was shown that these negative effects can be mitigated

through a more accurate reference model and ray-plane collision detection to eliminate

boom generated points. Real-time capabilities of the computer vision pipeline were

lost due to the time required for collision detection and the increased time required

by our ICP algorithm. The use of a wing and nose reference model combined with

collision detection produced the best results for a static model at close ranges.

It was shown that shadow volumes can be utilized to dynamically update the

reference model. The use of shadow volumes can determine which parts of the receiver

can and can not be seen by either camera. The implementation also operates at a

relatively high speed not significantly deterring the potential real time capabilities

of our system. Current work is focused on replacing ray-plane collision detection

with point inclusion to eliminate boom generated points. This work will utilize point

inclusion within the light volumes of each camera to determine which points are

generated by the boom. The use of point inclusion will result in a significant speed

up, pushing our solution closer to real-time.

This work also contributed to the capabilities of the AftrBurner Engine through

the introduction of a triangle/face adjacency information system, silhouette detection

and both shadow and light volume creation. Furthermore, the use of a 3D virtual
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world to conduct simulations present a deterministic, safe, and efficient way to con-

duct realistic automated aerial refueling research.

5.2 Future Work

This research makes many assumptions to scope the AAR problem. The tanker’s

boom is assumed to be static allowing us to calculate the shadow volumes for both

the left and right camera before the simulations are executed. With knowledge of

the boom’s position and orientation the shadow volumes can be updated but would

further reduce the efficiency of this pipeline. Aerodynamic forces, such as turbulence,

are not present in current simulations and would have effects on both the receiver and

the boom. At high rates of speed the aerodynamic forces can cause the boom to flex.

This should be approximated and modeled to produce a more realistic simulation.

Propellers found on many UAVs are not present in this research for simplification

purposes. Static propellers would occlude portions of both the wings and engines

which are the primary matching surfaces for ICP since the boom occludes much

of the body. Thus, dynamic propellers with motion blurring techniques must be

implemented in the 3DVW to produce more realistic simulations.

This research assumes a pinhole camera model thus geometric lens distortion

and blurring of unfocused objects is not present. Introducing camera distortion into

the 3DVW would improve the realism of these simulations and allow us to produce

imagery more representative of imagery from physical sensors. Camera distortion will

also have an effect on the pipeline resulting in less accurate pose estimations. The

introduction of camera distortion and the implementation of rectifying it must be

completed before the solution can be moved to hardware.
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