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Abstract

This research explores the viability of using a navigation system that relies on

measurements of the magnetic anomaly �eld as an alternative to GPS navigation.

Previous research has been conducted on developing a navigation system using the

intensity of the Earth's magnetic anomaly �eld as an alternative signal. This research

focuses on using vector and tensor measurements, as opposed to scalar measurements

of the anomaly �eld, as a means of obtaining accurate position and orientation solu-

tions.

This paper presents two navigation systems. The �rst uses an Extended Kalman

Filter (EKF) with vector measurements of the magnetic anomaly �eld to aid an

inertial navigation system (INS), while the second uses tensor measurements.

Simulations examine the performance of both navigation systems in sixteen sce-

narios. The parameters evaluated in the simulations include the position and velocity

of the trajectory, whether vector or tensor measurements are used, the quality of the

INS paired with the �lter, and the map resolution. Simulations demonstrate that

the tensor measurement �lter paired with a navigation-grade INS performed best out

of the sixteen test cases. For a one-hour ship trajectory, the navigation system was

able to demonstrate 35.94 m DRMS error when paired with a navigation-grade INS.

The same navigation system was able to obtain navigation accuracies of 38.10 m

DRMS when paired with a 10X-grade INS for a 25 hour ship trajectory with a lower

resolution magnetic �eld map due to the depth of the ocean.
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NAVIGATION USING VECTOR AND TENSOR MEASUREMENTS OF THE

EARTH'S MAGNETIC ANOMALY FIELD

I. Introduction

This thesis focuses on using a simulation trade study to determine the viability

of using vector or tensor measurements of the Earth's magnetic anomaly �eld to

navigate. Two navigation systems are presented and their ability to obtain an accurate

estimate of vehicle position and attitude throughout a trajectory is evaluated.

1.1 Problem Statement

The Global Positioning System (GPS) has become a staple in civilian and military

navigation systems. The United States has become highly reliant upon the GPS signal

given its high accuracy. However, GPS is not without disadvantages. GPS is not

always available in environments that have features that obstruct the signal, such as

in heavily wooded areas, or in cities where the user is surrounded by large structures.

The GPS signal is also susceptible to jamming or spoo�ng. In these cases, especially

during military operations, the need for high-accuracy navigation still exists, and

alternative signals need to be used to achieve this.

Similar to the GPS signal, the magnetic anomaly �eld of the Earth is a globally

available signal. The Earth's magnetic �eld is always available and is not as sus-

ceptible to jamming or spoo�ng as GPS. Maps of the anomaly �eld signal are also

available in varying resolutions over the entire globe [31]. Additionally, the Earth's

magnetic anomaly �eld is a vector �eld that provides more than one signal to use

for navigation. This research explores the navigation accuracy that is possible when
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using the directional components of the magnetic anomaly vector �eld as well as its

spatial gradients (tensor) to navigate.

1.2 Research Objectives

Two navigation systems are presented in this research. One system aids an In-

ertial Navigation System (INS) by matching measurements of the three directional

components of the magnetic anomaly �eld to existing maps of the directional compo-

nents of the �eld. The second aids the INS by matching measurements of the spatial

gradients, or tensor, of the magnetic anomaly �eld to existing anomaly �eld tensor

component maps.

Both navigation systems are tested in this research through simulation, using

actual ship and airplane trajectories. Trade-space analysis was done to determine

how changing di�erent variables a�ects the accuracy of the navigation systems. The

variables explored include the position and velocity of the truth trajectory, the types

of measurements used in map-matching, the quality of INS that was used, and the

map resolution. The results of this analysis will shed light on the viability of the

proposed navigation systems as alternatives to GPS navigation.

1.3 Overview

This thesis is organized as follows. Chapter II provides a basic introduction to

concepts used throughout the document, such as modeling and mapping the Earth's

geomagnetic �eld, geomagnetic measurements and the instruments used to collect

them and a brief background on the prevalent navigation �lters used for magnetic

navigation. Chapter II also provides an overview of previous and related work done

in the �eld of magnetic navigation.

Chapter III outlines the two speci�c navigation systems used in this research.
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It begins by de�ning the full dynamics and measurement models of the navigation

system that uses vector measurements of the Earth's magnetic �eld. It then de�nes

the full dynamics and measuremnet models of the navigation system that uses ten-

sor measurements. Chapter III also presents details on the simulation framework

developed, such as the speci�c trajectories used, the magnetic maps used, and the

measurements and INS data that was simulated.

Chapter IV presents the results of the simulation trade study. The navigation

accuracies of the two di�erent navigation systems were compared for each trajectory

and notable results were highlighted.

Chapter V concludes the thesis by giving an overview of the simulation trade

study results. Chapter V outlines how navigation system performance was a�ected

by changing the simulation parameters. Chapter V also includes possible areas for

future work to improve navigation accuracies of the �lters presented in this document

and to determine their viability in real-world testing.
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II. Background and Literature Review

2.1 Background Introduction

This purpose of this chapter is to provide a basic background to the reader on

geomagnetic mapping and modeling, geomagnetic measurements, and the �lters pre-

dominantly used in geomagnetic �eld navigation. Topics covered include the Interna-

tional Geomagnetic Reference Field (IGRF) model of the Earth's core �eld, external

sources of the Earth's magnetic �eld, and the magnetic anomaly �eld caused by the

geology of the Earth's crust. Scalar, vector and gradient measurements of the Earth's

magnetic �eld will be introduced as well as the instruments used to take these mea-

surements. The Kalman �lter (KF) and extended Kalman �lter (EKF) algorithms

will be presented. Finally, a method for evaluating �lter performance is described.

2.2 Geomagnetic Mapping and Modeling

The Earth's magnetic �eld, or the geomagnetic �eld, is comprised of the sum-

mation of several individual magnetic �elds. The source that accounts for about

98% of the Earth's total geomagnetic �eld is the core �eld which is generated by

electro-magnetic currents in the outer core of the Earth [12].

International Geomagnetic Reference Field.

The IGRF is a spherical harmonic model of the Earth's core �eld. It is published

every �ve years by the International Association of Geomagnetism and Aeronomy

(IAGA) [31]. Measurements of the geomagnetic �eld collected from observatories,

low-altitude aerial surveys, and satellite surveys provide the basic data for �tting

the IGRF model [12]. This type of model approximately �ts a periodic model onto

a sphere with a set of coe�cients [7]. The degree of the harmonics correspond to
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a spatial wavelength [7]. Higher degree harmonics correspond to higher frequency

signals and vice-versa. The IAGA is able to approximately isolate the magnetic �eld

due to the core �eld of the Earth, because harmonics of the geomagnetic �eld of up

to degree 13 (3,100 km wavelength and longer) are dominated by the core �eld [12]

as shown in Figure 1. The IGRF models the core �eld by only including harmonics

up to degree 13 [12]. The IGRF also includes approximations for secular variations,

or long-term variations in both magnitude and direction of the core �eld, based on

the actual rate of change from previous years [12].

Figure 1. Power Spectral Density of Earth's Total Magnetic Field Spherical Harmonics
[25]

Temporal Variations.

Variations in the total magnetic �eld that stem from sources external to the Earth

are considered temporal variations. The strength of the magnetic �eld due to these

external sources is weak compared to the magnetic �eld due to the Earth's core. Also,

temporal variations are often on a much shorter time scale than secular variations,

5



so they can be approximately separated from the core �eld [25]. Because temporal

variations occur in such rapid cycles, they are not captured by the IGRF.

Temporal variations can be identi�ed for navigation purposes by their frequency.

Low-frequency variations tend to look like constant biases for short-term navigation,

while the higher-frequency variations look like white noise [7]. The variations that

occur at a similar frequency as data used for magnetic navigation are more di�cult,

if not impossible, to separate from the anomaly �eld [7].

The Earth's ionosphere is a shell of ionized gas that reaches from about 50 km to

beyond 1000 km above the Earth's surface. Movement of ions in the ionosphere result

in electrical currents, which induce magnetic �elds. One cause of the movement of

these ions is solar heating [12]. Solar heating leads to current loops during the daytime

hours, which causes a distortion in the Earth's magnetic �eld as the Earth completes

its daily rotation [31]. This cycle, as well as the gravitational pull of the moon, creates

atmospheric tidal waves, which generally result in a variation of the total geomagnetic

�eld of less than approximately 50 nanoTeslas (nT) over the course of a day, except

during periods of increased solar wind [31].

Solar wind is radiation from the sun that causes a distortion in the Earth's core

�eld into a comet-like shape that is known as the Earth's magnetosphere as shown in

Figure 2 [12]. Currents within the magnetosphere caused by the interaction of solar

wind with the magnetic �eld are also a contributor to temporal variations.

Solar storms are characterized as a period in time where the Earth is subjected to

an unusually high amount of solar wind. The timing of solar storms is unpredictable

and may lead to disturbances in the magnetic �eld of hundreds of nT or greater when

the particles interact with the Earth's magnetic �eld [12].
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Figure 2. Earth's Magnetosphere [12]

Crustal Sources.

The �nal source of interest that contributes to the Earth's total magnetic �eld is

the Earth's crust, which accounts for a small portion of the total �eld. The crustal

�eld is made up of the superposition of all induced and remnant magnetization in the

rocks and sediments that make up the Earth's crust. Magnetization of a material in

the Earth's crust, a rock for example, consists of both induced and remnant compo-

nents. The induced component of the magnetic �eld exists only in the presence of

an external magnetic �eld, when the magnetic moment of the atoms that make up

the material align under an external �eld, and adds to the total magnetization of the

material [12]. Induced magnetization within a material is dependent upon the mag-

netic susceptibility of that material. Magnetic susceptibility is the ease with which

the material is magnetized by an external �eld [12].

Remnant magnetization is the component of a material's total magnetization that

is retained from a previous magnetic environment. The remnant component of the

material's magnetization is present without an external magnetic �eld and adds to the
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induced component to give the total magnetization of the material [12]. The direction

of remnant magnetization is generally not in the same direction as the external �eld,

as is the case with induced magnetization; However, the magnitude of a materials

remnant magnetization versus its induced magnetization is generally much smaller

[12].

The spatial variation of the crustal �eld varies at a high frequency relative to

the core �eld. When �ying over the crustal �eld, the frequency of the crustal �eld

overlaps with the frequency of the temporal variations as described above, making it

di�cult to distinguish the two signals [7].

Magnetic Anomaly Mapping.

A magnetic anomaly is a vector deviation from a reference �eld. For the purposes

of magnetic navigation, the reference �eld used is the Earth's core �eld, and the

vector deviations, or magnetic anomaly vectors, come from the Earth's crustal �eld.

The crustal �eld is relatively static and has a high spatial frequency, which makes

it a good signal to use for magnetic navigation [7]. Maps have been created to

capture a representation of the Earth's magnetic anomaly vectors, but a distinction

must be made between the true anomaly vector at each observation point, and the

scalar representation present in the magnetic anomaly maps at each corresponding

observation point.

The Earth's total magnetic �eld vector Bt is approximately the vector sum of the

Earth's core �eld (BIGRF) and the Earth's crustal �eld (Ba) as shown in Equation 1.

During magnetic surveys, care is taken to remove the e�ects of the temporal variations

from the measurements, so the total �eld vector is an approximation of the sum of the

Earth's core �eld and crustal �eld. Some of the e�ects from the temporal variations
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remain and are included in the total anomaly �eld vector [7].

Bt = BIGRF + Ba (1)

Figure 3 shows a visual representation of this vector summation. Ba is exaggerated

in the �gure for clarity and its intensity is more on the order of 2% of the intensity

of BIGRF .

Figure 3. Earth's Total Field as a Vector Sum of Earth's Core and Crustal Field
Components

Given current instrumentation limitations, only the intensity of the total �eld

vector Bt is usually collected during magnetic surveys as opposed to the intensity and

direction of the vector. However, the intensity and direction of the core �eld vector

(BIGRF) is available from the IGRF model. Because we do not have the direction of

the total �eld vector, we can not do a direct vector subtraction between the core �eld

and the total �eld measurement to obtain the full anomaly vector shown in Figure 3.

Instead, knowing that the intensity of the core �eld vector is much greater than the

intensity of the anomaly �eld vector allows for the assumption that the anomaly �eld

vector can not perturb the direction of the Earth's core �eld. Because of this, it can

be assumed that subtracting the intensity of the core �eld vector from the intensity

measurement of the total �eld vector gives a good approximation of the projection

of the anomaly �eld vector in the direction of the core �eld. It is this approximate

projection in the direction of the core �eld, or the amount that the anomaly vector

"stretches" or "shrinks" the core �eld vector that is represented in the magnetic

anomaly maps [7]. Figure 4 gives a visual representation of this assumption.
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Figure 4. Approximated Projection Presented in Magnetic Anomaly Maps

Because |BIGRF| � |Ba|, we assume the following:

|Bapprox| = |Bt| − |BIGRF| (2)

2.3 Geomagnetic Measurements

As described above, the Earth's magnetic �eld is a vector �eld, so at any given

point the direction of the magnetic �eld corresponds to the orientation of the vector,

and the strength of the magnetic �eld corresponds to the length of the vector.

Scalar Measurements.

Scalar measurements of the magnetic �eld only capture the magnitude, or inten-

sity, of the magnetic �eld. In Figure 5, the length of the vector B shown corresponds

to the intensity of the magnetic �eld at that point. With an ideal scalar intensity

sensor oriented in any direction at a given point, the scalar intensity measurement

will be constant.

Scalar intensity measurements include the magnitude of the Earth's total magnetic

�eld, so care must be taken to eliminate the e�ects of external �elds and the core

�eld to get the magnetic anomaly value.

Vector Measurements.

Vector measurements fully capture the intensity and direction of the magnetic

�eld. The vector B shown in Figure 5 can be separated into its individual components

Bx, By and Bz. The magnitude of B is a scalar quantity and can be calculated with
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Figure 5. Magnetic Field Vector Seperated Into Vector Components

the following formula:

B =
√
B2
x +B2

y +B2
z (3)

When the length of Bx, By and Bz are measured separately, we are able to calcu-

late the intensity of the magnetic �eld vector as shown above as well as its direction.

As with scalar intensity measurements, the vector B represents the Earth's total

magnetic �eld including the magnetic �eld due to the Earth's core, the Earth's crust,

and external �elds. The magnitude of each directional component of the magnetic

�eld vector is di�erent depending on the orientation of the sensor at any given point,

even if the total intensity stays constant. When using a vector sensor as opposed to

a scalar sensor, more care needs to be taken to accurately track the sensor's attitude,

because even the slightest error in attitude could lead to high errors when solving for

the separate vector components. For example, if the green vector in Figure 6 is the

true magnetic �eld vector, and we have 0.01 degrees of attitude error (resulting in the

orange vector), we end up with 8.73 nT of error in the y-component of the magnetic

�eld vector.
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Figure 6. Vector Components with and without Attitude Error

With vector measurements, a coordinate frame transformation is required to trans-

form the measurements from the body frame to the local or navigation (nav) frame.

The body frame is aligned with the roll, pitch and yaw axes of the vehicle [39]. The

x-axis points out the front of the vehicle, the y-axis points out the right side of the

vehicle, and the z-axis points down. The nav frame is a local geographic frame that

has its origin at the location of the vehicle. Its axes are aligned with the geographic

north, east and down directions [39].

The magnetic �eld measurement from the sensor is in the body frame and is

denoted as Bb and is rotated to the nav frame using Equation 4 [27].

Bn = Cn
bBb (4)

Bn is the vector measurement expressed in the nav frame and Cn
b is the direction

cosine matrix required to transform the measurement from the body frame to the

nav frame. The roll, pitch, and yaw angles (γ, θ and ψ) of the vehicle may be used to

calculate the transformation matrix, Cn
b. These calculations are shown in Equation
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5 [13].

Cn
b =


cos γ cosψ + sin γ sinψ sin θ − cos γ sinψ + sin γ cosψ sin θ − sin γ cos θ

sinψ cos θ cosψ cos θ sin θ

sin γ cosψ − cos γ sinψ sin θ − sin γ sinψ − cos γ cosψ sin θ cos γ cos θ


(5)

Gradient Tensor.

Magnetic gradient measurements provide the di�erence between two magnetome-

ter readings, either scalar or vector, taken simultaneously with a constant distance

between them, or the spatial derivative of the magnetic �eld with respect to the

distance between them. For our purposes, we will focuse on vector gradients. The

partial derivative of the x-component of the magnetic �eld vector (Bx) with respect

to the x-direction is denoted as ∂xBx or Bxx. If four sensors were con�gured on an

axes as in Figure 7, Bxx = Bx1 −Bx3 , or the di�erence in the x-component of the

magnetic �eld vector as the distance along the x-direction changes. Similarly, the

partial derivative of the y-component of the magnetic �eld vector (By) with respect

to the x-direction is denoted as ∂xBy or Byx. This would correspond to the di�erence

between By1 and By3 in Figure 7. Gathering these partial derivatives into a 3× 3

matrix produces the full nine-component magnetic gradient tensor, G.

G =
∂B

∂R
=


∂xBx ∂yBx ∂zBx

∂xBy ∂yBy ∂zBy

∂xBz ∂yBz ∂zBz

 =


Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

 (6)
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Figure 7. Con�guration of Four Vector Sensors

where

B =


Bx

By

Bz



R =


x

y

z


G is a symmetric and traceless matrix, meaning GT = G and Bxx +Byy +Bzz = 0

[19]. Because the matrix is symmetric, we know that Byx = Bxy , Bzx = Bxz and

Bzy = Byz . Because the matrix is traceless, we know that Bzz = −(Bxx +Byy) .

These properties of the tensor leave us with �ve unique components out of the nine

elements of the tensor: Bxx, Bxy, Bxz, Byy, and Byz.

As with vector measurements, the tensor measurements also require a transfor-
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mation to put the local sensor frame measurements into the navigation frame. The

equation for this transformation is below [27]:

Gn = Cn
b Gb Cn

b
T (7)

where Gn is the tensor measurement rotated into the nav frame and Gb is the body-

frame measurement.

Scalar Magnetometers.

Di�erent instruments are used to collect magnetic �eld data depending on which

type of measurement is desired. For scalar measurements, nuclear resonance mag-

netometers have sensors containing �uids or gases with properties that are sensitive

to changes in the magnetic �eld. These are strictly scalar sensors that measure the

absolute intensity of the magnetic �eld, but give no direction information [12]. The

Geometrics airborne Cesium Resonance Magnetometer (G-823A) speci�es a sensitiv-

ity of 0.004 nT/
√
Hz and absolute accuracy of less than 3 nT [11]. This high sensitivity

and accuracy makes the Cesium Magnetometer a good example of an instrument that

is used to collect absolute intensity measurements during magnetic surveys.

Vector Magnetometers.

Fluxgate magnetometers are one type of sensor used to measure the vector compo-

nents of the relative magnetic �elds [7]. The �uxgate within the sensor is a transducer

that converts the magnetic �eld in one direction into a voltage. These sensors are

small, durable, reliable and do not require much power to operate [23]. A Bartington

Mag-03 Fluxgate magnetometer has similar sensitivity values to that of the Cesium

Magnetometer (0.006 - 0.01 nT/
√
Hz), but is much less accurate. With the Mag-03,

if we are in an operating range of ±70, 000 nT, we can get up to 350 nT of error given
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the 0.5% scaling error listed in the data sheet [3]. Additional error is added when we

take into account orthogonality errors in the mechanical sensor con�guration.

Magnetic Gradiometers.

Using a vector gradiometer, as opposed to vector or scalar sensors as discussed

above, virtually eliminates regional and temporal e�ects on the measurements [31].

This is due to the fact that the spatial gradient for temporal variations is nearly

zero [7]. The Bartington Grad-13 consists of two Mag-03 Fluxgate Magnetometers

separated by a distance of 1 m. This instrument is able to measure Bxx, Byx, and Bzx

and may be visualized as sensor 1 and 3 from Figure 7. The Grad-13 has sensitivities

similar to the scalar and vector sensors (0.02 nT/
√
Hz/m), but with a higher accuracy

than the vector sensor (±70 nT with the 0.1% scaling error listed in the data sheet)

[2]. While the accuracy is far less than the scalar sensor, the gradiometer gives us

much more information about the magnetic �eld at each location, to include Bx, By,

and Bz of the magnetic �eld at the reference sensor as well as Bxx, Byx, and Bzx.

Figure 8. Bartington Grad-13 Three-Axis Gradiometer [2]

Using a Grad-13 gradiometer eliminates the need to perform the vector magne-

tometer calibration as described above, because the Bartington gradiometer outputs

corrected three-axis data from the vector-magnetometers [2].
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A magnetic tensor con�guration would allow us to record the same information as

the magnetic gradiometer with the addition of the two unique gradient measurements

required to calculate the full tensor matrix. The required con�guration is similar to

that displayed in Figure 7. Figure 9 shows �ve Honeywell HMR2300 Vector Magne-

tometers arranged into a tensor con�guration that was assembled at the Air Force

Institute of Technology.

Figure 9. AFIT Tensor Measurement Assembly

2.4 Kalman Filter

Kalman �ltering is one method used to process noisy measurements such as magne-

tometer measurements into optimal estimates of system random processes over time.

In basic Kalman Filtering, the dynamics of a set of random variables can be mod-

eled with Equation 8 for continuous-time processes or Equation 9 for discrete-time
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processes.

ẋk = Fkxk + Bkuk + wk (8)

xk+1 = Φkxk + wk (9)

The measurement function is shown in Equation 10.

zk = Hkxk + vk (10)

where

xk is the (n× 1) process state vector at time k

Φk is the (n× n) state transition matrix that relates the matrix xk to xk+1

Bk is the (n× n) control input model matrix

uk is the (n× 1) input matrix

wk is the (n× 1) vector that includes the additive white Gaussian noise (AWGN)

contribution to the state vector for the time interval (k + 1, k)

Fk is the (n× n) dynamics matrix

zk is the (m× 1) measurement vector at time k

Hk is the (m× n) matrix that relates xk to zk

vk is the (m× 1) vector that includes the AWGN measurement error

The covariance matrices for wk and vk are

E[wkw
T
k ] = Qk (11)

E[vkv
T
k ] = Rk (12)
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The error in the state estimate is de�ned as

e−k = xk − x̂−k (13)

where x̂−k is the estimate of the state at time k. This estimate is based on all prior

knowledge about the process prior to k. This is the estimate of the state before the

measurement update has been applied at time k.

P−k = E[e−k (e−k )T ] (14)

The prior estimate x̂−k is improved by implementing a measurement update as

shown below:

x̂k = x̂−k + Kk(zk −Hkx̂
−
k ) (15)

where x̂k is the updated estimate at time k and Kk is the Kalman gain, which is the

optimal gain that minimizes the mean-square estimation error and is computed by

the following equation:

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (16)

The error covariance matrix for the updated estimate is computed using the following

formula:

Pk = (I−KkHk)P
−
k (17)

The updated estimate and the error covariance matrix are then propagated for-

19



ward in time using the formulas:

x̂−k+1 = Φkx̂k (18)

P−k+1 = ΦkPkΦ
T
k + Qd (19)

where Qd is the discretized covariance matrix for wk approximated by multiplying Q

by the time di�erence between successive time steps.

This process, which is considered the Kalman �lter, continues recursively until

estimates have been made for the entire trajectory. A complete derivation of the

Kalman �lter equations can be found in [6].

2.5 Extended Kalman Filter

The Kalman �lter algorithm is only optimal in systems that have linear dynamics

and measurement models. When either the dynamics or measurement model are non-

linear, the EKF may be used. The EKF assumes that the state transition function

and measurement function are governed by nonlinear functions f and h respectively.

The dynamics are modeled by the following equation:

ẋk = f [xk,uk] + wk (20)

The measurement function follows the equation below:

zk = h[xk] + vk (21)

Unlike in the Kalman �lter, the matrix Hk must be recalculated at each time

step. Hk is the Jacobian of the measurement function h from equation 21 evaluated
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at each time step. The measurement Jacobian is de�ned below:

Hk ,
∂h(x, k)

∂x

∣∣∣
x=x̂−

k

(22)

The prior estimate at time k, x̂−k is updated using equation 23 below, while the

error covariance matrix is updated using Equation 24.

x̂k = x̂−k + Kk[zk − h(x̂−k , k)] (23)

Pk = (I−KkHk)P
−
k (24)

The Kalman gain is computed using Equation 25.

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (25)

Once the updated state estimate and error covariance matrix are calculated, they

may be propagated forward using the following formulas:

x̂−k+1 = f [x̂k,uk] (26)

P−k+1 = ΦkPkΦ
T
k + Qd (27)

where Φk is the matrix exponential of Fk, which is the Jacobian of the function f

from equation 20. Equation 28 de�nes the dynamics function Jacobian required to

propagate the states and error covariance from time tk to time tk+1.

Fk ,
∂f(x, k)

∂x

∣∣∣
x=x̂k

(28)

The state estimates and covariance are updated and propagated recursively until

estimates have been made for the entire trajectory. A detailed derivation of the EKF

21



algorithm may be found in [24].

2.6 Marginalized Particle Filter

A specialized �lter may be required to handle magnetic �eld navigation given the

non-linearity of the map-matching problem. With inaccurate initial state estimates

and no processing power limitations, the particle �lter would be the �lter of choice.

The drawback of using the particle �lter is its computational intensity.

A particle �lter is a simulation-based estimation technique used in �ltering prob-

lems to estimate the latent states of a complex dynamic statistical model, where after

each observation, the state that gave rise to that observation is estimated [37].

The bene�t of using a particle �lter is its ability to handle highly non-linear

dynamics and measurement models. As the number of particles approaches in�nity,

all possible values of each state can be estimated and the �lter can determine the

most likely state estimate.

To estimate each state accurately, a large number of particles must be used. For

a system model with nearly 20 states, the processing power required to perform

the particle �lter computations for all states is not viable [34]. To get around this

limitation, an extension of the particle �lter, the marginalized particle �lter (MPF),

may be used that separates the states that have linear dynamics from the states that

have non-linear dynamics by partitioning the state vector. The linear states are then

handled by a standard KF or EKF, while the non-linear states are handled by the

standard particle �lter. For a navigation �lter, a majority of the states are linear, so

the required processing power is reasonable when the MPF is employed. The MPF

algorithm may be found in [34].
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2.7 Cramer-Rao Lower Bound

The Cramer-Rao Lower Bound (CRLB) is the lowest possible state covariance of

an estimator, such as the �lter types described above [4]. [4] derived the CRLB for

a terrain-aided navigation problem and concluded that the CRLB is equivalent to

the error covariance in the EKF, with the measurement function h from Equation

21 replaced with its gradient evaluated at the true state values at time k as opposed

to the estimate of the state vector. This allows a comparison to be made between

the CRLB and the actual �lter error covariance to evaluate �lter performance. A

high-performing �lter should have error covariances close to, but not less than, the

CRLB for all states. Additionally, the CRLB sets a lower limit on the DRMS of the

�lter and can be used to calculate how far from optimal the �lter performs [4].

2.8 Background Conclusion

In this chapter, an overview of the sources of the Earth's total magnetic �eld have

been presented: the Earth's core �eld modeled in the IGRF, temporal variations due

to external sources, and the Earth's crustal �eld. The magnetic anomaly �eld has

been described as well as the distinction between the true anomaly �eld and the

anomaly �eld value given in magnetic anomaly �eld maps. The di�erence between

scalar, vector, and gradient measurements has been described and the instruments

used to collect these measurements have been introduced. The Kalman �lter and

Extended Kalman �lter algorithms were presented as well as a brief overview of the

marginalized particle �lter and an explanation of its bene�ts and limitations. The

CRLB was presented to describe its merit in evaluating �lter performance.
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2.9 Literature Review

Abundant research has been done on the �eld of non-GPS navigation, some of

which pertains to magnetic �eld navigation. Navigation using the earth's magnetic

anomaly �eld has been investigated on several di�erent platforms (aerial, sea-level,

sub-sea-level, ground, and indoor). A majority of previous work for all platforms

explored magnetic navigation using a scalar signal as opposed to the full magnetic

�eld vector or tensor. However, other research has been done using the vector and

tensor measurements of the magnetic �eld for UXO detection [17]. Each of these

cases will be described in the paragraphs that follow.

Research by A. Canciani [7] explored improving aerial navigation using the inten-

sity of the magnetic anomaly �eld. Using this scalar measurement of the anomaly

�eld, Canciani was able to demonstrate navigation accuracy of 13 meters distance

root mean square (DRMS) in real �ight tests. A limitation of Canciani's research

includes the use of one scalar measurement that is only able to capture the mag-

nitude of the magnetic anomaly �eld. Additionally, high-accuracy results require a

relatively high-velocity platform. The research may be expanded and improved upon

using three measurements that capture all vector components of the anomaly �eld to

increase navigation accuracy overall and at lower velocities (e.g. sea platforms).

Research done by J. Wilson and R. Kline-Schoder [41] provides an aerial navi-

gation solution using a magnetically-aided dead-reckoning system. This system uses

air speed to provide a dead-reckoned navigation solution, with position updates pro-

vided by the magnitude of the magnetic anomaly �eld. A tri-axial magnetometer

was used, however, given the limitations of the magnetic anomaly map, these vector

measurements were only used to calculate the scalar magnetic �eld strength. With

this dead-reckoning system, position errors of 600 to 1200 m were achieved for �ights

after one hour with only moderate attempts to calibrate the magnetometers. Much
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of this error could be due to aircraft noise, because the sensors were housed in the

fuselage during �ight.

Three-axis magnetometer measurements and magnetic �eld maps were used in the

dissertation by J. Shockley [36] to demonstrate self-contained ground-vehicle magnetic

navigation. However, Shockley did not use inertial navigation system (INS) aiding

to get high-precision results. Shockley was able to demonstrate navigation accuracy

of 25-34 meters using a single magnetometer in a sedan and comparing it to a map

he generated by sampling the magnetic �eld along the roadway at known positions.

All measurements are taken in the vehicle's body frame and not converted to an

absolute reference frame. Because of this, the mapping platform and the measure-

ment platform are assumed to have the same attitude at each sample point and be

traveling in the same direction between sample points. This sample point technique

would not su�ce for aerial applications where the measurements require a coordinate

frame transformation. The results may be improved upon by pairing the three-axis

magnetometer with an INS for higher-accuracy results that provide both a position

and heading solution.

W. Storms [38] used a three-axis magnetometer and a magnetic �eld intensity

map for his research on indoor magnetic navigation. The heading angle was assumed

to be known. The indoor navigation explored here required an INS and a previously

generated map of the same indoor trajectory to be traversed by the user (taken at

the same heading as the assumed user heading) for position updates. W. Storms was

able to achieve position errors less than 0.2 m at all times with this method, but

the solution only provided observability of the x- and y- position. This same method

could be extended to estimate the heading as well.

Similarly, research has been done in an indoor environment using four orthogonally

mounted three-axis magnetometers to provide observability of the velocity of a person
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traversing an indoor environment. The approach presented does not require the use

of a magnetic map, because the trihedron gives a direct measurement of the magnetic

�eld spatial partial derivatives [40].

D. Jeon fused odometer data with magnetic sensor data for indoor localization

of an autonomous vehicle. An unscented Kalman �lter (UKF) was used for the

localization system that is based on magnetic markers in an indoor environment [14].

A magnetic map was created by storing the location of magnetic markers. A sensor

was used to detect a magnet and match its reading to magnetic �eld data on the map

to obtain an estimated position. The results show that the localization system was

able to attenuate the cumulative position and heading errors of the vehicle that were

present when only odometer measurements were used [14].

Sub-sea-level navigation presents its own unique challenges. Underwater platform

navigation solutions frequently require INS aiding by surfacing to obtain a GPS �x.

This is impractical and leaves vehicles such as military submarines vulnerable to de-

tection. Previous research has been done by T. Karlsson [15] on terrain aided under-

water navigation using a narrow-beam altimeter to aid the INS with a measurement

of the depth directly below the vehicle. N. Kato [16] studied underwater naviga-

tion of autonomous underwater vehicles using both geomagnetic measurements and

bathymetric measurements. N. Kato concluded that underwater trajectories with a

higher variation of bathymetric data gave higher accuracy navigation solutions. This

is similar to aerial navigation solutions having higher accuracy when using a magnetic

�eld map with a rich signal or traversing the magnetic �eld quickly leading to higher

variation in magnetic �eld measurements [7]. Y. Huang presents a method to fully

determine the attitude of an underwater vehicle to be used in underwater navigation

problems [13]. The method is based on the use of full magnetic �eld tensor measure-

ments. The algorithm worked successfully only when the initial angle error was less
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than 20 deg and the sensor noise was less than 10 nT [13].

Minimal research has been done using magnetic underwater navigation given the

challenges presented by the low velocity of a moving submarine, however the use of

magnetic tensor gradiometers has been researched for underwater unexploded ord-

nance (UXO) detection [17].
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III. Methodology

Chapter III focuses on the detailed design of the navigation systems presented in

this research. First, the reasoning for using the EKF in both navigation systems is

presented. Then the detailed �lter design for the navigation system that uses vector

measurements is presented. This is followed by the �lter design of the navigation

system that uses tensor measurements. After the �lter designs are laid out, the

features of the simulation framework are outlined.

Filter Type.

The EKF was chosen for magnetic anomaly �eld navigation using vector mea-

surements. In scalar magnetic navigation, the �lter estimates a vehicle's location by

matching a magnetometer measurement to a location on the magnetic anomaly map

that corresponds to the measurement. It is highly likely that there is more than one

location with a map value closely matching the measurement. If a distribution of

the possible map locations of the vehicle was generated after the �lter received one

measurement, this distribution of the latitude and longitude states would look highly

non-Gaussian and would not �t a linearized model well. This is why the MPF was

used for previous research into scalar magnetic anomaly �eld navigation [7].

Figure 10 shows the multi-variate distribution of the latitude and longitude states

after a measurement update when a scalar measurement (B) was brought into the

�lter. When overlayed onto the magnetic �eld map, the shape of this multi-variate

distribution is dependent on the shape of the contour line with a magnetic anomaly

�eld value that matches the single measurement brought into the �lter.

The bene�t of bringing three measurements into the �lter as opposed to one is

that the shape of the distribution is no longer conforming to the shape of a contour

line, but of the intersection of three contour lines, one for each separate component of
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the vector �eld. Figure 11 shows the distribution after a measurement update when

three measurements (Bx, By and Bz) are brought into the �lter. The distribution is

overlayed onto the magnetic �eld maps of Bx, By and Bz. This distribution looks

more Gaussian than in Figure 10. An MPF is no longer required, because the EKF

can, in theory, handle the Gaussian distribution that is created. This highly reduces

the amount of processing power required.

Figure 10. Probability Distribution of the Horizontal Position States Overlaid on the
Scalar Magnetic Anomaly Contour Map

One drawback of the EKF in magnetic �eld navigation is its inability to handle

multi-modal distributions. If the initial position uncertainty is large, the distribution

of the latitude and longitude states after a measurement update could be multi-modal,

leading to several possible position solutions. In order for the distribution to remain

Gaussian and the EKF to perform well, it must be provided with accurate initial

conditions. With an accurate estimate of the starting location, the distribution is not

likely to be multi-modal. For this research, we operate under the assumption that the

INS will be initialized using a true position from GPS, thus giving the �lter accurate

initial conditions.
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Figure 11. Probability Distribution of the Horizontal Position States Overlaid on Com-
ponent Magnetic Anomaly Contour Maps

3.1 Navigation Filter Using Vector Measurements

The �rst navigation system will use vector measurements of the anomaly �eld as

well as inputs from an INS to aid the INS and constrain the position and angular

drift within its sensors. In this section, the �lter states will be introduced as well as

the dynamics model and measurement function.

Filter States.

The �lter estimates twenty states. The �rst seventeen states estimate INS errors

and the last three states estimate the strength of temporal variations in each axis of

the magnetic vector �eld. The state vector is following:

xk = [latε lonε altε vNε vEε vDε εx εy εz haε

aε accxε accyε acczε gxε gyε gzε TV x
ε TV y

ε TV z
ε

]T

where
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latε, lonε and altε are the INS position errors

vNε , v
E
ε , and v

D
ε are the INS velocity errors in the north, east and down directions

respectively

εx, εy and εz are the INS tilt errors about the x, y and z directions respectively

haε is the aiding altitude error

aε is the vertical acceleration error

accxε , acc
y
ε and acczε are the INS accelerometer bias errors in the x, y and z axis

respectively

gxε , g
y
ε and g

z
ε are the INS gyroscope bias errors in the x, y and z axis respectively

TV x
ε , TV

y
ε and TV z

ε are the �lter estimated temporal variations in the x, y and z

components of the geomagnetic �eld respectively

System Dynamics.

The dynamics equation for the model used is a linearized function of the states.

Because of the linearized dynamics in this system, the non-linear EKF dynamics

function as shown in Equation 20 may be simpli�ed to the linear dynamics function

as de�ned in Equation 8. The dynamics matrix (Fk) represents a linearized 15-state

Pinson Error model augmented with three states to model the temporal variations in

each axis of the magnetic �eld vector, and two states to model the barometer errors.

Variables that will appear in the dynamics matrix are following:

lat is the INS solution for latitude in radians

fN , fE, and fD are the north, east, and down speci�c forces from the INS

vn, ve, and vd are the north, east, and down velocities from the INS

τb is the barometer error time constant

k1, k2, and k3 are barometer aiding constants used in the altitude aiding feedback

loop
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τa is the accelerometer bias error time constant

τg is the gyroscope bias error time constant

τTV is the temporal variation error time constant

re is the Earth's radius (6378135 m)

ω is the Earth's angular rate (7.2921151467× 10−5 rad/sec)

The dynamics matrix is shown below and the full derivation of the Pinson error

model used may be found in [39].

F =

 FP FC

09×11 Fs

 (29)

FP is the 11× 11 Pinson model block. FC is the block containing INS rotation

matrices and Fs represents the sensor and temporal variation bias error states.
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FC =



03×3 03×3 03×3

Cb
n 03×3 03×3

03×3 Cb
n 03×3

03×3 03×3 03×3


09×9

(30)

Fs =



−1
τa

0 0 0 0 0 0 0 0

0 −1
τa

0 0 0 0 0 0 0

0 0 −1
τa

0 0 0 0 0 0

0 0 0 −1
τg

0 0 0 0 0

0 0 0 0 −1
τg

0 0 0 0

0 0 0 0 0 −1
τg

0 0 0

0 0 0 0 0 0 −1
τTV

0 0

0 0 0 0 0 0 0 −1
τTV

0

0 0 0 0 0 0 0 0 −1
τTV



(31)

FP =

[
FP1 FP2

]
011×11

(32)
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The INS sensor errors and temporal variations are modeled as First Order Gauss

Markov (FOGM) processes. A FOGM process X(t) has an exponential autocorrela-

tion function that is de�ned in Equation 35[6].

RX(τ) = σ2e−β|τ | (35)

where σ and τ are the standard deviation and time constant of the process respec-

tively.

The dynamics noise for this model is de�ned as

E[wwT ] = Q

Q = diag([01×3 VRW1×3 ARW1×3 B 0 A1×3 G1×3 T1×3])20×20 (36)

B =
2σ2

b

τb
(37)

A =
2σ2

a

τa
(38)

G =
2σ2

g

τg
(39)

T =
2σ2

TV

τTV
(40)

where

VRW is the noise strength of the velocity random walk in the INS

ARW is the noise strength of the angular random walk in the INS

σb is the standard deviation of the barometer error

σa is the standard deviation of the accelerometer error

σg is the standard deviation of the gyroscope error

σTV is the standard deviation of the temporal variations
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B, A, G, and T are the driving noise strengths of the barometer, accelerometer,

gyroscope, and temporal variation error states respectively

For simplicity, the VRW, the ARW, the accelerometer, the gyroscope, and the

temporal variations are assumed to have the same driving noise strength in each axis.

This is why each of these appears three times in Q.

Measurement Function.

The measurement function is a non-linear function of the states as well as inputs

from the INS. The measurement function used is the standard EKF measurement

function as shown in Equation 41. Using an EKF allows for the linearization of the

measurement function about the propagated estimate of each state's trajectory.

Equation 41 shows the measurement model for the body-frame measurements.

zk = h[xk] + vk (41)

zk =


Bx,k

By,k

Bz,k


Body Frame

(42)

The measurement function, h, de�nes how the states relate to the magnetic anomaly

�eld vector measurements and performs two main functions: map-matching and co-

ordinate frame transformation. The coordinate-frame transformation is de�ned as a

rotation from the nav frame to the body frame.

The measurement function matches the INS reading of latitude and longitude

(latINS and lonINS) combined with the states latε and lonε at time tk to the map of

each vector component of the magnetic anomaly �eld. This is done using the mapping

functions gx, gy, and gz. The mapping functions return the full vector measurement

that we expect to see at the �lter estimated location. We also expect to see the
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e�ects of the temporal variations in the measurement, so the three TVε states are

added to their respective vector components. This expected measurement is in the

world frame, because the �lter matches the location to nav-frame anomaly �eld vector

maps. The nav-frame expected measurement must be rotated to the same frame as

the actual vector sensor measurement. The expected measurement is rotated using

the rotation matrix Cb
n, which is the rotation matrix from the INS (Cb

n,INS) corrected

using the tilt error states εx, εy, and εz.

h[xk] =


hx,k

hy,k

hz,k

 = Cb
n,k


gx(latINS,k + latε,k, lonINS,k + lonε,k) + TV x

ε,k

gy(latINS,k + latε,k, lonINS,k + lonε,k) + TV y
ε,k

gz(latINS,k + latε,k, lonINS,k + lonε,k) + TV z
ε,k

 (43)

Cb
n is the corrected rotation matrix calculated by applying a small angle correction

to the rotation matrix from the INS (Cb
n,INS). The angle matrix ε is used to solve for

the rotation matrix, A, that satis�es Cb
n = Cb

n,INSA.

The components of ε at time k are the estimated tilt error angles, εx, εy, and εz.

The magnitude of ε is given by

ε =
√
ε2x + ε2y + ε2z (44)

and

[ε]× =


0 −εz εy

εz 0 −εx

−εy εx 0

 (45)

A is expressed in terms of the angle vector ε in Equation 46 and a full derivation

of this process may be found in [39].

A = I3×3 −
sin(ε)

ε
[ε]× +

1− cos ε

ε2
[ε]×

2 (46)
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Equation 47 applies the correction to the INS' rotation matrix.

Cb
n = Cb

n,INSA (47)

The measurement Jacobian is de�ned as:

Hk ,
∂h(x, k)

∂x

∣∣∣
x=x̂−

k

(48)

The partial derivative of each measurement with respect to every state must be

calculated. The only states that show up in the measurement function are the hori-

zontal position states (latε,k, and lonε,k) within the mapping function, the tilt error

states (εx, εy, and εz) within the small angle correction equation, and the tempo-

ral variation states (TV x
ε,k, TV

y
ε,k, and TV

z
ε,k). The partial derivatives in the columns

corresponding to the states that are not listed are zeros.

Hk =


∂hx,k
∂latε,k

∂hx,k
∂lonε,k

. . .
∂hx,k
∂TV zε,k

∂hy,k
∂latε,k

∂hy,k
∂lonε,k

. . .
∂hx,k
∂TV zε,k

∂hz,k
∂latε,k

∂hz,k
∂lonε,k

. . .
∂hz,k
∂TV zε,k


3×20

(49)

=

[
Hlatε Hlonε 03×4 Hεx Hεy Hεz 03×8 HTV

]
3×20

(50)

Equation 51 and 52 show how the �rst and second column of the measurement

Jacobian were calculated. These columns contain the partial derivatives of h with

respect to latε,k and lonε,k respectively. There is no closed form solution for the

spatial derivative of the maps within the f function, so they are obtained by �nite
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di�erencing.

Hlatε =


∂hx,k
∂latε,k

∂hy,k
∂latε,k

∂hz,k
∂latε,k

 = Cb
n,k


gx(latk + δlat

2
, lonk)− gx(latk − δlat

2
, lonk))

gy(latk + δlat
2
, lonk)− gy(latk − δlat

2
, lonk))

gz(latk + δlat
2
, lonk)− gz(latk − δlat

2
, lonk))

 (51)

Hlonε =


∂hx,k
∂lonε,k

∂hy,k
∂lonε,k

∂hz,k
∂lonε,k

 = Cb
n,k


gx(latk, lonk + δlon

2
)− gx(latk, lonk − δlon

2
))

gy(latk, lonk + δlon
2

)− gy(latk, lonk − δlon
2

))

gz(latk, lonk + δlon
2

)− gz(latk, lonk − δlon
2

))

 (52)

where

latk = latINS,k + latε,k (53)

lonk = lonINS,k + lonε,k (54)

The variables δlat and δlon can be chosen to be any small number. For the results

presented in this research, a δlat and δlon of 0.5 m (converted to degrees latitude and

degrees longitude respectively) is used.

In Equation 50, the columns containing the partial derivatives of h with respect

to the tilt states have a closed form solution. Each column was calculated separately,

so will be presented below one column at a time. The column corresponding to the
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εx state is shown in Equation 55.

Hεx =


∂hx,k
∂εx,k

∂hy,k
∂εx,k

∂hz,k
∂εx,k

 =
∂

∂εx,k

(
Cb

n,INSA(εk)


gx(latk, lonk) + TV x

ε,k

gy(latk, lonk) + TV y
ε,k

gz(latk, lonk)TV
z
ε,k


)

(55)

= Cb
n,INS

(∂A(εk)

∂εx,k

)

gx(latk, lonk) + TV x

ε,k

gy(latk, lonk) + TV y
ε,k

gz(latk, lonk) + TV z
ε,k

 (56)

In order to di�erentiate the measurement function with respect to any of the tilt

error states, the matrix Cb
n in Equation 43 is replaced with Cb

n,INSA as shown in

Equation 47, because A is a function of these states. In order to calculate ∂Ak

∂εx,k
from

Equation 55, A was calculated symbolically in terms of the tilt error states as shown

in Equations 44 through 46. A was then di�erentiated with respect to εx,k using a

symbolic toolbox.

The same process is followed to obtain the columns corresponding to the εy,k and

εz,k states.

Hεy =


∂hx,k
∂εy,k

∂hy,k
∂εy,k

∂hz,k
∂εy,k

 = Cb
n,INS

∂Ak

∂εy,k


gx(latk, lonk) + TV x

ε,k

gy(latk, lonk) + TV y
ε,k

gz(latk, lonk) + TV z
ε,k

 (57)

Hεz =


∂hx,k
∂εz,k

∂hy,k
∂εz,k

∂hz,k
∂εz,k

 = Cb
n,INS

∂Ak

∂εz,k


gx(latk, lonk) + TV x

ε,k

gy(latk, lonk) + TV y
ε,k

gz(latk, lonk) + TV z
ε,k

 (58)

(59)

The columns of the measurement Jacobian corresponding to the three temporal vari-
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ation states are shown in Equation 60.

HTV =


∂hx,k
∂TV xε,k

∂hx,k
∂TV yε,k

∂hx,k
∂TV zε,k

∂hy,k
∂TV xε,k

∂hy,k
∂TV yε,k

∂hy,k
∂ε,kz

∂hz,k
∂TV xε,k

∂hz,k
∂TV yε,k

∂hz,k
∂TV zε,k

 = Cb
n,k I3×3 (60)

All of these columns are combined into the complete measurement Jacobian, Hk,

as in Equation 50 to be evaluated each time step, k, given the current state estimates.

Finally, the covariance of the white noise measurement error, v, is given by:

E[vvT ] = R3×3 (61)

where the measurement noise strength for each measurement in zk is assumed to be

equivalent.

3.2 Navigation Filter Using Tensor Measurements

The second navigation system will use tensor measurements of the anomaly �eld

as well as inputs from an INS to estimate position and attitude of the vehicle. In

this section, the �lter states will be introduced as well as the dynamics model and

measurement function.

Filter States.

Using tensor measurements allows for simpli�cation of the dynamics model. The

temporal variations were not included in the dynamics model because the gradient

sensors used to measure the full tensor nearly eliminate any temporal and regional

a�ects on the measurements.

The tensor magnetic navigation �lter estimates seventeen states as opposed to the
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vector magnetic navigation �lter's twenty states. The states estimate INS errors and

are equivalent to the �rst 17 states of the vector measurement state vector in section

3.1. The state vector is

xk = [latε lonε altε vNε vEε vDε εx εy εz haε

aε accxε accyε acczε gxε gyε gzε ]
T

System Dynamics.

The same dynamics model is used in the tensor measurement �lter with the ex-

ception of the last three rows and columns of F in Equation 29, which correspond

to the temporal variation states. These rows and columns are omitted in the tensor

measurement dynamics matrix.

As with the vector navigation model, the driving noise of the sensors are modeled

as FOGM processes. The dynamics driving noise is the same as in Equation 36 with

the exception of the last three rows and columns, which are omitted because the

tensor measurement �lter does not model the temporal variations.

Measurement Function.

The measurement function when using tensor measurements is of the same form

as the EKF in Equation 21. The measurement vector zk is shown in Equation 62.

zk =



Bxx,k

Byx,k

Bzx,k

Byy,k

Bzy,k


Body Frame

(62)
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The measurement vector contains the �ve unique tensor components needed to

completely describe the tensor. The �lter requires the tensor measurements to be

in full 3× 3 matrix form at some points and 5× 1 vector form at others. To deal

with this transformation, the function M is de�ned in Equation 63. This function

transforms a vector of size (5× 1) to a symmetric, traceless matrix of size (3× 3).

uT = M(uV ) (63)

where

uV =



u11

u12

u13

u22

u23


(64)

uT =


u11 u12 u13

u12 u22 u23

u13 u23 −(u11 + u22)

 (65)

The inverse (M ′) transforms a symmetric, traceless matrix of size (3× 3) to a

vector of size (5× 1) containing its �ve unique components as shown in Equation 66.

uV = M ′(uT ) (66)
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where

uT =


u11 u12 u13

u21 u22 u23

u31 u32 u33

 (67)

uV =



u11

u12

u13

u22

u23


(68)

As with the vector measurement function, the tensor measurement function per-

forms the map-matching and coordinate frame transformation required. The measure-

ment function matches each of the �ve unique tensor measurements to their respective

maps using the mapping functions gxx, gyx, gzx gyy, and gzy. These �ve mapping func-

tions return the full tensor measurement that we expect to see at the �lter estimated

location in the nav frame. Unlike the vector measurements, the e�ect of the tempo-

ral variations in the tensor measurements is negligible because the majority of their

e�ects are canceled out when the spatial gradient is measured. Thus, we do not need

to add the estimated e�ects of temporal variations into our expected measurement.

The expected measurement returned from the mapping function is in the nav frame.

It must be rotated into the same frame as the actual tensor sensor measurement as

shown in Equation 7. The expected measurement is rotated using the rotation matrix

Cb
n which is calculated by using Equations 44 through 47. Equation 73 shows the full
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tensor measurement function.

latk = latINS,k + latε,k (69)

lonk = lonINS,k + lonε,k (70)

gV (latk, lonk) =



gxx(latk, lonk)

gyx(latk, lonk)

gzx(latk, lonk)

gyy(latk, lonk)

gzy(latk, lonk)


(71)

gT (latk, lonk) = M(gV (latk, lonk)) (72)

h[xk] = hk =



hxx,k

hyx,k

hzx,k

hyy,k

hzy,k


= M ′(Cb

n,k gT (latk, lonk) Cb
n,k

T
) (73)

The only states that show up in the measurement function used in this case are

the horizontal position states (latε,k and lonε,k) within the mapping functions and the

tilt error states (εx, εy, and εz) within the small angle correction equation. The partial
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derivatives in the columns corresponding to states that are not listed are zeros.

Hk =



∂hxx,k
∂latε,k

∂hxx,k
∂lonε,k

. . .
∂hxx,k
∂gzε,k

∂hyx,k
∂latε,k

∂hyx,k
∂lonε,k

. . .
∂hyx,k
∂gzε,k

...
...

. . .
...

∂hzy,k
∂latε,k

∂hzy,k
∂lonε,k

. . .
∂hzy,k
∂gzε,k


5×17

(74)

=

[
Hlatε Hlonε 03×4 Hεx Hεy Hεz 03×8

]
5×17

(75)

Hlatε and Hlonε are calculated using �nite di�erencing as with the vector measure-

ment Jacobian shown in Equations 51 and 52.

Hεx , Hεy , and Hεz are calculated using the product rule, which is de�ned in

Equation 76, where q and w are arbitrary di�erentiable functions. Equations 78

through 80 show the substitutions needed to �nd Hεx using the product rule.

∂(q w)

∂εx
=

∂q

∂εx
w + q

∂w

∂εx
(76)

Hεx =
∂h

∂εx
= M ′

(∂(q w)

∂εx

)
(77)

qw = M(hk) = Cb
n,kgT (latk, lonk) Cb

n,k

T
(78)

q = Cb
n,k = Cb

n,INSAk (79)

w = gT (latk, lonk) Cb
n,k

T
= gT (latk, lonk) (Cb

n,INSAk)
T (80)

The functions q and w are then di�erentiated with respect to εx in Equations 81 and

82 respectively and substituted back into Equation 76 to get the �nal Hεx in Equation
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84.

∂q

∂εx
= Cb

n,INS

∂Ak

∂εx
(81)

∂w

∂εx
= gT (latk, lonk)

(
Cb

n,INS

∂Ak

∂εx

)T
(82)

∂(q w)

∂εx
= Cb

n,INS

∂Ak

∂εx
gT (latk, lonk) (Cb

n,INSAk)
T + Cb

n,INSAkgT (latk, lonk)
(
Cb

n,INS

∂Ak

∂εx

)T
(83)

Hεx = M ′
(∂(q w)

∂εx

)
(84)

Hεy and Hεz are calculated using the same process:

∂(q w)

∂εy
= Cb

n,INS

∂Ak

∂εy
gT (latk, lonk) (Cb

n,INSAk)
T + Cb

n,INSAkgT (latk, lonk)
(
Cb

n,INS

∂Ak

∂εy

)T
(85)

Hεy = M ′
(∂(q w)

∂εy

)
(86)

∂(q w)

∂εz
= Cb

n,INS

∂Ak

∂εz
gT (latk, lonk) (Cb

n,INSAk)
T + Cb

n,INSAkgT (latk, lonk)
(
Cb

n,INS

∂Ak

∂εz

)T
(87)

Hεz = M ′
(∂(q w)

∂εz

)
(88)

∂Ak

∂εx
, ∂Ak

∂εy
, and ∂Ak

∂εz
are calculated with a symbolic toolbox.

All of these columns are combined into the the complete measurement Jacobian,

Hk, as in Equation 75, to be evaluated at each time step, k, given the current state

estimates.

The covariance of the white noise measurement error, v, is following:

E[vvT ] = R5×5 (89)
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where the measurement noise strength for each measurement in zk is assumed to be

equivalent.

3.3 Truth Trajectories

Four di�erent truth trajectories were used in the simulations. The di�erent tra-

jectories are used to demonstrate the di�erence in �lter performance with varying

vehicle velocities and positions. The actual boat trajectory used is characterized by

low velocities and the actual aerial trajectory is characterized by high velocities.

Additionally, the geographic location of the trajectory may a�ect �lter perfor-

mance. For example, the frequency content of the magnetic anomaly �eld at sea-level

over deep seas is generally much lower than over shallow seas (e.g. over the continental

shelf o� the western coast of the U.S.) and may lead to degraded �lter performance.

To investigate the e�ect of geographic location on the navigation �lter, the latitude

and longitude of the truth trajectories may be shifted to alternate geographic loca-

tions. This is possible because actual vector and tensor magnetic �eld measurements

were not recorded during the course of the trajectories, so the �ight and ship path

are not tied to the actual geographic location.

The trajectories included in the simulation are following:

1. Actual 1 hour boat trajectory directly o� the western coast of the U.S.

2. Actual 1 hour aerial trajectory directly o� the western coast of the U.S.

3. Actual 1 hour aerial trajectory over the continental United States

4. Actual 25 hour boat trajectory over the deep sea

Figure 12 shows the geographic location of the four trajectories. Trajectory 1 and

Trajectory 4 are both mapped by the orange path as Trajectory 1 is equivalent to the

�rst hour of Trajectory 4.
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Figure 12. Map of Trajectories

The GPS position solution paired with the on-board sensors was used to generate

the truth trajectories. While the truth data is not directly available to the navigation

�lter, it is used to calculate the amount of error present in the navigation �lter solution

and analyze overall �lter performance. It is also used to generate simulated magnetic

vector and tensor measurements as well as simulated INS solutions.

3.4 Generating Vector and Tensor Maps

The maps used for a majority of this research are segments from the North Amer-

ican Magnetic Anomaly Database compiled by the U.S. Geological Survey (USGS).

This is a database of aerial magnetic data collected and pieced together over the con-

tinental United States and extending slightly over both coasts to cover shallow seas.

[1]. Figure 13 shows the scalar anomaly �eld content collected over the entire North

American continent.
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Figure 13. Scalar Magnetic Anomaly Content from NAMAD Data [1]

The following �gure shows a contour map of the scalar magnetic anomaly map

used for the trajectories directly o� the western coast of the United States.

Figure 14. Scalar Magnetic Intensity Contour Map from NAMAD Data
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A Fourier method was used as in [5] to transform the scalar anomaly �eld into

the vector components of the anomaly �eld. The individual directional components

were found using the following equations:

F [Bx] = F [∆T ]F [ψx] (90)

F [By] = F [∆T ]F [ψy] (91)

F [Bz] = F [∆T ]F [ψz] (92)

where

F [ψx] =
i kx

|k|f̂z + i(kxf̂x + kyf̂y)
(93)

F [ψy] =
i ky

|k|f̂z + i(kxf̂x + kyf̂y)
(94)

F [ψz] =
|k|

|k|f̂z + i(kxf̂x + kyf̂y)
(95)

∆T = total �eld anomaly measured in an ambient �eld

(f̂x, f̂y, f̂z) = unit vector in the direction of the ambient �eld

f̂x = cos(I) cos(D) (96)

f̂y = cos(I) sin(D) (97)

f̂z = sin(I) (98)

where F denotes the Fourier transform, k, kx, and ky are the wave numbers and I

and D are the inclination and declination angles from the IGRF.

The inverse Fourier Transform of Equations 90 through 92 gives the individual

vector component maps used in the vector measurement navigation �lter. These maps

contain magnetic data in nT.
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Figure 15. Contour Maps of Magnetic Anomaly Field Vector Components

Calculating the spatial gradient of these vector component maps gives the �ve

unique gradient maps of the full magnetic �eld tensor used in the tensor measure-

ment navigation �lter. These maps contain individual gradient values in nT/km and

examples are shown in Figure 16.

Figure 16. Contour Maps of Unique Magnetic Anomaly Field Tensor Components

Two simulation cases were run using maps generated from a source other than

the NAMAD. For these cases the Enhanced Magnetic Model (EMM) was used to
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evaluate the vector maps. Similar to the IGRF, the EMM is a spherical harmonic

model. However, the EMM captures the magnetic anomaly �eld up to degree 790 as

opposed to the IGRF capturing up to degree 13 as described in Chapter II [29]. The

EMM is compiled from satellite, marine, aeromagnetic and ground magnetic surveys

and resolves magnetic anomalies down to a 51 km wavelength [29]. Only capturing

wavelengths down to 51 km leaves the EMM with a much lower resolution than the

NAMAD. The EMM maps are not able to capture the high frequency content of the

crustal �eld, which is what is primarily captured in the NAMAD maps.

While the maps generated from the EMM are of a lower resolution, they model

the magnetic �eld globally and are not limited to North America as the NAMAD

data is. The EMM maps will be referred to as global maps for this reason. Figure

17 shows the global EMM magnetic �eld data for the z directional component of the

magnetic vector �eld. Vector component maps are directly resolved from the EMM.

Figure 18 shows the contour maps of each vector �eld component generated from the

EMM that were used for the simulation.

Figure 18. Contour Maps of Magnetic Anomaly Field Vector Components Resolved

From the EMM

The spatial gradients of these vector maps give maps of the �ve unique tensor

components used in the simulations. Figure 19 shows contour maps of the �ve unique

tensor components resolved from the EMM data that was used for the simulation.
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Figure 17. Vector Component Magnetic Field Content from EMM Data [29]
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Figure 19. Contour Maps of Unique Magnetic Anomaly Field Tensor Components

3.5 Generating Simulated Measurements

Vector and Tensor measurements were not collected for the actual ship and aerial

trajectories used. For the simulation, these measurements were generated using the

process outlined below:

1. To generate both vector and tensor measurements, uncorrupted magnetic �eld

values are calculated by entering the truth trajectory values for latitude and

longitude into the same mapping functions found in the respective measurement

models.

2. Vector measurements are corrupted with measurement biases that are modeled

as FOGM processes to represent the magnetometer measurement error. A σ

value of 3 nT and a τ value of 600 seconds were chosen for this simulation

framework. If tensor measurements are being generated, measurement biases

are not added.
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3. These corrupted vector or tensor measurements are rotated into the body frame

using the rotation matrix given in the truth trajectory.

4. For both vector and tensor measurements, white Gaussian noise with a covari-

ance of R = σ2 is added.

3.6 Generating Simulated INS Errors

This simulation framework requires the INS solution as opposed to raw INS data.

To create the realistic INS solution, a 17-state Pinson error model was used to gener-

ate realistic INS errors throughout the entire truth trajectory. The truth trajectory

position was then corrupted with the simulated INS position errors to get realistic INS

position solutions. The true rotation matrix was also corrupted with the simulated

INS tilt errors to get realistic INS solutions for rotation matrices. These simulated

INS position and rotation matrix solutions are then used in the measurement func-

tions of both navigation �lters. Simulation parameters used to generate INS errors for

a tactical-grade, navigation-grade, and 10X-grade INS are shown in Tables 1 through

3. The 10X-grade INS model is characterized by having position and angular drift

noise strengths (VRW and ARW) ten times less than the navigation-grade INS model

noise strengths.
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Table 1. Simulation Parameters Chosen for Tactical-Grade INS Cases

Simulation Parameter Chosen Value

V RWσ 0.3m/s2
√
Hz

ARWσ 6.06× 10−7 rad/s
√
Hz

σg 7.27× 10−6 rad/s

τg 3600 s

σa 0.5× 10−3m/s2

τa 3600 s

σb 10m

τb 3600 s

Table 2. Simulation Parameters Chosen for Navigation-Grade INS Cases

Simulation Parameter Chosen Value

V RWσ 0.001m/s2
√
Hz

ARWσ 9.70× 10−9 rad/s
√
Hz

σg 1.45× 10−8 rad/s

τg 3600 s

σa 25× 10−6m/s2

τa 3600 s

σb 10m

τb 3600 s
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Table 3. Simulation Parameters Chosen for 10X-Grade INS Cases

Simulation Parameter Chosen Value

V RWσ 0.0001m/s2
√
Hz

ARWσ 9.70× 10−10 rad/s
√
Hz

σg 1.45× 10−9 rad/s

τg 3600 s

σa 25× 10−7m/s2

τa 3600 s

σb 10m

τb 3600 s

Examples of the simulated position and angular drift for the tactical-grade INS

modeled are shown below in Figures 20 through 23 respectively. These �gures show

the predicted standard deviation for the position and angular drift as well as examples

of the error generated for use in the simulations.

Figure 20. Generated North INS Error Using Tactical-Grade INS Model
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Figure 21. Generated East INS Error Using Tactical-Grade INS Model

Figure 22. Generated North Tilt INS Error Using Tactical-Grade INS Model
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Figure 23. Generated East Tilt INS Error Using Tactical-Grade INS Model

When the simulation parameters are changed to model the navigation-grade INS,

the simulated position and angular drifts are less than when the tactical-grade INS

model was used. The predicted standard deviation of these position and angular

errors are shown in Figures 24 through 27. It is clear that when the navigation-

grade INS was simulated, the estimated standard deviation of position drift grew to

approximately 4.5 km within the hour, while the tactical-grade INS simulated position

drift standard deviation reached almost 200 km. This pattern is consistent with the

position and angular drift speci�cations of an actual tactical and navigation-grade

INS [10].
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Figure 24. Generated North INS Error Using Navigation-Grade INS Model

Figure 25. Generated East INS Error Using Navigation-Grade INS Model
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Figure 26. Generated North Tilt INS Error Using Navigation-Grade INS Model

Figure 27. Generated East Tilt INS Error Using Navigation-Grade INS Model
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IV. Results

The performance of the navigation systems introduced in the previous chapter are

presented in Chapter IV. All simulation cases are listed and the metric used to evalu-

ate �lter performance is introduced. Each trajectory is then analyzed separately and

the navigation accuracies and �lter behavior for each navigation system combination

are compared. Conclusions are drawn regarding the navigation system combination

that gives the best navigation accuracies.

4.1 Simulation Cases

The speci�c cases investigated during this simulation case study are outlined in

Table 4. Each case is characterized by the type of measurement, the truth trajectory,

and the grade of INS used for navigation. Table 4 shows the speci�cs for each case. For

simplicity, each speci�c case will be referred to by an abbreviation of the measurement

type used within the navigation system (e.g. �VEC� for vector measurements and

�TEN� for tensor measurements) combined with an abbreviation of the quality of

INS used in the navigation system (e.g. �TACT� for tactical-grade INS and �NAV�

for navigation-grade INS and �10X� for 10X-grade INS). For example, case 2 in Table

4 below will be referred to as the VEC-NAV case for the coastal boat trajectory and

case 7 will be referred to as the TEN-TACT case for the coastal airplane trajectory.

For all cases, the initial position uncertainty was set to 200 m, the initial velocity

uncertainty to 0.01 m/s and initial attitude uncertainty to 0.02 degrees. For all

cases, a measurement noise covariance of R was used to generate measurements and

a dynamics noise covariance of Q was used to generate INS data. For �lter tuning, in

the vector measurement cases, the �lter's measurement model was given a value of 2R

and for the tensor measurement cases, the measurement model was given a value of
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Table 4. List of Simulation Cases

Case Trajectory Measurement Type INS Quality

1 Coastal Boat Vector Tactical
2 Coastal Boat Vector Navigation
3 Coastal Boat Tensor Tactical
4 Coastal Boat Tensor Navigation
5 Coastal Aerial Vector Tactical
6 Coastal Aerial Vector Navigation
7 Coastal Aerial Tensor Tactical
8 Coastal Aerial Tensor Navigation
9 Continental Aerial Vector Tactical
10 Continental Aerial Vector Navigation
11 Continental Aerial Tensor Tactical
12 Continental Aerial Tensor Navigation
13 Deep-Sea Boat Vector 10X
14 Deep-Sea Boat Tensor 10X
15 Global Model Boat Vector 10X
16 Global Model Boat Tensor 10X

10R. In the vector measurement cases, the �lter's dynamics model was given a value

of 2Q, while the tensor dynamics model was given a value of 10Q. This increased the

stability of the �lters, because the �lter was expecting a noisier measurement than it

was actually receiving. Setting the measurement covariances within the �lter two or

ten times greater than the covariance of the simulated measurements kept the �lter

from becoming over-con�dent in some cases. The tensor measurement �lter required

a greater multiple because bias error states were not modeled and the �lter tended

to become over-con�dent more often than in the vector measurement �lter.

4.2 DRMS Error

The Distance Root Mean Square (DRMS) error is the metric used to measure

�lter performance for each simulation case. Monte Carlo simulations were run to

evaluate the average DRMS error of the navigation �lter in each case. This was used

to compare �lter performance between the di�erent scenarios. The CRLB DRMS
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Error was also calculated to get an idea of how the navigation �lter is performing

compared to its own theoretical optimal performance. Equations 99 and 100 de�ne

the EKF DRMS error and CRLB DRMS error calculations respectively[28].

DRMS Error =

√∑n
k=1(dk)

2

n
(99)

CRLB DRMS Error =

√∑n
k=1(σ

2
N + σ2

E)

n
(100)

where

n = number of time steps in the trajectory

dk = Euclidian distance between horizontal truth position and �lter solution

σN and σE are the CRLB standard deviations for the horizontal position states

4.3 Coastal Boat Trajectory Results

This section outlines the simulation results for the cases 1 through 4 that used

the boat's truth trajectory o� the west coast of the U.S. The trajectory was one hour

long and had an average velocity of approximately 6 m/s.

Figure 28 shows the path of the ship over the three vector component maps of the

magnetic �eld.
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Figure 28. Boat Trajectory Overlayed Onto Vector Field Maps

An example of the corrupted vector and tensor measurements generated for this

trajectory are shown in Figures 29 and 30 respectively. The measurements were

corrupted with zero-mean White Gaussian noise with a covariance of 1 nT2 for the

vector measurements and 0.1 nT
2

km
2 for the tensor measurements.

Table 5. DRMS Results for U.S. Western Coast Boat Trajectory

Case Measurement Type INS Quality DRMS Error CRLB DRMS Error

1 Vector Tact 420.54 m 342.39 m
2 Vector Nav 185.00 m 241.39 m
3 Tensor Tact 755.48 m 136.21 m
4 Tensor Nav 35.94 m 49.36 m

Table 6. Filter Error in North and East Tilt Error States for U.S. Western Coast Boat
Trajectory

Case North Tilt Filter Error East Tilt Filter Error

VEC-TACT 0.07 deg 0.11 deg
VEC-NAV 9 ×10−4 deg 3 ×10−3 deg
TEN-TACT Unstable Unstable
TEN-NAV 1.2 ×10−3 deg 1.9 ×10−3 deg
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Figure 29. Corrupted World-Frame Vector Magnetometer Measurements for the VEC-
TACT and VEC-NAV Cases

Figure 30. Corrupted World-Frame Magnetic Tensor Measurements for the TEN-
TACT and TEN-NAV Cases
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CRLB Trend.

The CRLB DRMS errors shown in Table 5 display the trend that should be

expected from the EKF DRMS Error results. The VEC-NAV case out-performed

the VEC-TACT case with 101 m less position error and the TEN-NAV case out-

performed TEN-TACT with 86.85 m less position error. From this we can expect

to see the navigation �lter paired with a navigation-grade INS to out-perform the

same �lter paired with a tactical-grade INS. Additionally, the TEN-TACT and TEN-

NAV cases, where tensor measurements were used, out-performed the VEC-TACT

and VEC-NAV cases, where vector measurements were used.

Monte Carlo Simulation Results.

Figures 31 through 34 show the results of a 500 run Monte Carlo simulation for the

VEC-TACT and VEC-NAV cases in the horizontal position states. Results from the

Monte Carlo simulations for cases VEC-TACT and VEC-NAV re�ect the expected

trend from the CRLB results. With a DRMS Error of 185.00 m, the �lter paired

with the navigation-grade INS in the VEC-NAV case out-performed the �lter paired

with the tactical-grade INS in the VEC-TACT case by 235.54 m. Both �lters were

stable, with no divergent runs. While the position error in the VEC-TACT case

increases to an average of 1.5 km approximately thirty minutes into the trajectory,

the �lter is able to lock back down on position and does not continue to drift as the

un-aided INS would. In the VEC-NAV case, we do not see the same increase in error

at 30 minutes, and the �lter remains locked on to the true position with steady error

throughout the entire trajectory. Figures 31 through 34 show the standard deviation

of the Monte Carlo error, which tends to be slightly lower than the CRLB. The CRLB

is the theoretical lowest possible state covariance, however, because of the tuning that

was described previously (the �lters being given a multiple of R and Q), it is possible
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for Monte Carlo DRMS error to be slightly lower than the DRMS error of the CRLB.

The CRLB is expecting greater measurement noise than is actually present in the

corrupted measurements. The CRLB and the �lter models are both given the same

tuning parameters, so while the �lter was able to out-perform the CRLB DRMS error

in simulation, the �lter predicted covariance matches, but does not exceed, the CRLB.

Figure 31. EKF Error in North Position State for the VEC-TACT Case
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Figure 32. EKF Error in East Position State for the VEC-TACT Case

Figure 33. EKF Error in North Position State for the VEC-NAV Case
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Figure 34. EKF Error in East Position State for the VEC-NAV Case

The �lter predicted covariance more closely matches the CRLB, as shown in Figure

35 and 36. The DRMS error for the single runs plotted in Figure 35 and 36 were

238.25 m and 152.64 m respectively.

Figure 35. EKF Error in Horizontal Position States for a Single Run - VEC-TACT
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Figure 36. EKF Error in Horizontal Position States for a Single Run - VEC-NAV

While the TEN-TACT and TEN-NAV cases re�ect this same trend of the navigation-

grade INS out-performing the tactical grade INS, the TEN-TACT case, where tensor

measurements were used demonstrated a DRMS error of 755.48 m. This error is

greater than the �lter in the VEC-TACT case, which also uses a tactical grade INS,

but was only using three vector measurements as opposed to �ve tensor measure-

ments. This does not agree with the CRLB DRMS error results. While the �lter in

the TEN-TACT case did not diverge, the position error plots in Figures 37 and 38

display abnormal �lter behavior and may be due to �lter tuning.

This same trend occurred for the TEN-TACT case during the coastal and con-

tinental aerial trajectories as well. The tensor measurement navigation �lter often

diverged in Monte Carlo simulation when paired with a tactical grade INS. This was

not a problem when the navigation-grade INS was paired with the tensor measure-

ment �lter for all TEN-NAV cases. The Monte Carlo position error plots for the

TEN-TACT and TEN-NAV cases during the coastal boat trajectory are shown in

Figures 37 through 40.
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Figure 37. EKF Error in North Position State for TEN-TACT Case

Figure 38. EKF Error in East Position State for TEN-TACT Case
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Figure 39. EKF Error in North Position State for TEN-NAV Case

Figure 40. EKF Error in East Position State for TEN-NAV Case
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The navigation �lter in the VEC-NAV and TEN-NAV cases were able to greatly

improve upon the unaided navigation-grade INS position error drift that we would

expect to be approximately 1 nmi/h (or 1,852 meters per hour) [10]. Additionally,

the VEC-TACT case was able to improve drastically upon the drift expected from an

unaided tactical-grade INS (approximately 10 nmi/h [10]).

Aside from the accuracy of the position solution, the ability of the �lter to accu-

rately estimate the tilt error states is also examined. Their use in the measurement

function to correct the INS rotation matrix makes their accuracy imperative. Accu-

rate estimates of the tilt error states allow for higher accuracy resolution of the roll,

pitch, and yaw of the vehicle throughout the trajectory.

The tilt error states for the TEN-NAV case are shown for a single �lter run in

Figures 41 through 43. The DRMS error for this single run was 40.15 m.

Figure 41. EKF Error in North Tilt Error States for the TEN-NAV Case

76



Figure 42. EKF Error in East Tilt Error States for the TEN-NAV Case

Figure 43. EKF Error in Down Tilt Error States for the TEN-NAV Case
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For the VEC-NAV case, where vector measurements were used, the tilt error states

displayed the same stability as in the TEN-NAV case. The steady state values of �lter

error for the north and east tilt error states are listed in Table 6.

When a tactical grade INS was used, it is clear that the tilt error state estimates are

stable, but are less accurate overall than in the VEC-NAV case. The tilt error states

for the single run of the VEC-TACT case are shown in Figure 44. The tactical-grade

INS did not give as much observability of the tilt error states as the navigation-grade

INS.

Figure 44. EKF Error in Tilt Error States for the VEC-TACT Case

4.4 Coastal Airplane Trajectory Results

The trajectory used for cases 5 through 8 was a one-hour airplane trajectory with

an average velocity of 62.85 m/s. Figure 45 shows the path of the airplane over the

three vector component maps of the magnetic �eld. An example of the vector and

tensor measurements generated for these cases are shown in Figures 46 and 47.
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Figure 45. Airplane Trajectory Overlayed Onto Vector Field Maps

Figure 46. Corrupted World-Frame Vector Magnetometer Measurements for the VEC-

TACT and VEC-NAV Cases
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Figure 47. Corrupted World-Frame Magnetic Tensor Measurements for the TEN-

TACT and TEN-NAV Cases

Table 7. DRMS Results for U.S. West Coast Aerial Trajectory

Case Measurement Type INS Quality DRMS Error CRLB DRMS Error

5 Vector Tact 254.96 m 315.26 m

6 Vector Nav 103.43 m 128.18 m

7 Tensor Tact Filter Diverged 252.46 m

8 Tensor Nav 61.07 m 85.97 m

Table 8. Filter Error in North and East Tilt Error States for U.S. West Coast Aerial
Trajectory

Case North Tilt Filter Error East Tilt Filter Error

VEC-TACT 0.07 deg 0.1 deg
VEC-NAV 1 ×10−3 deg 1 ×10−3 deg
TEN-TACT Unstable Unstable
TEN-NAV 6 ×10−4 deg 1 ×10−3 deg

The CRLB results show that we expect the TEN-TACT case to have improved

�lter performance over the VEC-TACT case. And similarly, we expect to see the

80



TEN-NAV case perform better than the VEC-NAV case. The CRLB DRMS Error

for the �lters paired with a navigation-grade INS is lower than the same �lters paired

with a tactical-grade INS.

As mentioned previously, the tensor measurement �lter was unstable when a

tactical-grade INS was used and the EKF DRMS results for the TEN-TACT case

re�ect this. However, the vector measurement �lter paired with the tactical-grade

INS remained stable for a majority of the runs (0.4% of �lter runs diverged). Figures

48 and 49 show the �lter error in the horizontal position states for a 500-run Monte

Carlo simulation of the VEC-TACT case.

Figure 48. EKF Error in North Position State for the VEC-TACT Case
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Figure 49. EKF Error in East Position State for the VEC-TACT Case

With the instability of the �lter in the TEN-TACT case, the mean error of the

Monte Carlo runs appears to grow without bound, and is considered divergent. As

with the VEC-NAV and TEN-NAV cases during the coastal boat trajectory described

earlier, the VEC-NAV and TEN-NAV cases during the coastal aerial trajectory also

show stable �lter performance. The Monte Carlo simulation results for the VEC-

NAV and TEN-NAV cases during the coastal aerial trajectory are shown in Figures

50 through 53.
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Figure 50. EKF Error in North Position State for the VEC-NAV Case

Figure 51. EKF Error in East Position State for the VEC-NAV Case
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Figure 52. EKF Error in North Position State for the TEN-NAV Case

Figure 53. EKF Error in East Position State for the TEN-NAV Case
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The tilt error states for the TEN-TACT case, where a majority of the Monte

Carlo runs diverged, remained at the CRLB until approximately thirty minutes into

the trajectory, where the �lter error began to grow unbounded.

Changing the grade of INS to navigation (as in the TEN-NAV case) as opposed

to tactical, we were able to achieve �lter stability. The Monte Carlo simulation error

for the north and east tilt error states for the TEN-NAV case are shown below.

Figure 54. EKF Error in North Tilt Error States for the TEN-NAV Case
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Figure 55. EKF Error in East Tilt Error States for the TEN-NAV Case

4.5 Continental Airplane Trajectory Results

The trajectory from cases 5 through 8 was moved over land as shown in Figure 12

for use in cases 9 through 12. Figure 56 shows the path of the airplane over the three

vector component maps of the magnetic �eld. Examples of measurements generated

at this location are shown in Figures 57 and 58. While the vector measurements are a

steadily varying signal over the course of the trajectory, the tensor components show

extreme variations for the �rst ten minutes of the trajectory and settle out for the

remainder. As the airplane moved northwest as shown in Figure 56, it is clear where

the high frequency content of the magnetic �eld drops down to low frequencies.
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Figure 56. Airplane Trajectory Overlayed Onto Vector Field Maps

Figure 57. Corrupted World-Frame Vector Magnetometer Measurements for the VEC-

TACT and VEC-NAV Cases
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Figure 58. Corrupted World-Frame Magnetic Tensor Measurements for the TEN-

TACT and TEN-NAV Cases

Table 9. DRMS Results for U.S. Continental Aerial Trajectory

Case Measurement Type INS Quality DRMS Error CRLB DRMS Error

9 Vector Tact 514.53 m 549.13 m

10 Vector Nav 141.17 m 182.7 m

11 Tensor Tact Filter Diverged 502.85 m

12 Tensor Nav 205.95 m 136.24 m

Table 10. Filter Error in North and East Tilt Error States for U.S. Continental Aerial
Trajectory

Case North Tilt Filter Error East Tilt Filter Error

VEC-TACT 0.12 deg 0.1 deg
VEC-NAV 8 ×10−4 deg 1.4 ×10−3 deg
TEN-TACT Unstable Unstable
TEN-NAV 8 ×10−4 deg 3 ×10−3 deg

The tensor measurement �lter paired with a tactical-grade INS (the TEN-TACT

case) remained as unstable as with previous trajectories. Looking closely at when the
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�lter diverges leads us to believe that the instability of the �lter is compounded by

the fact that the measurements remain fairly constant and unchanging after the ten

minute mark.

Figure 59 shows the �lter error for the horizontal position states during a single

�lter run of the TEN-TACT case as well as the �lter predicted covariance. The �lter

predicted covariance becomes low (over-con�dent) during the time that the tensor

measurements are re�ecting the rich signal at ten minutes. The �lter con�dently locks

onto an incorrect position solution at this point judging by the steadily increasing

error and continuing overly-con�dent covariance.

Figure 59. EKF Error in Horizontal Position States for a Single Run - TEN-TACT

Case

When a navigation-grade INS was used in the TEN-NAV case, the position error

decreased and the �lter was relatively stable during the Monte Carlo simulation. The

Monte Carlo error for the horizontal position states for the TEN-NAV case are shown

in Figures 60 and 61.
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Figure 60. EKF Error in North Position State for the TEN-NAV Case

Figure 61. EKF Error in East Position State for the TEN-NAV Case
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For a single run with a navigation-grade INS, the TEN-NAV �lter had the same

decrease in �lter-predicted covariance right before ten minutes, but became less con�-

dent as the measurements became less rich. The �lter did not lock onto the incorrect

position solution because of its over-con�dence as it did in the TEN-TACT case.

The behavior of the tilt error states in the TEN-TACT and TEN-NAV cases

parallel the behavior of their position states. Figures 62 shows the �lter error in the

tilt error states and �lter predicted covariance for a single run of the TEN-TACT

case while Figures 63 through 65 show the �lter error in the tilt error states for the

TEN-NAV case. In the TEN-TACT case, the �lter incorrectly locked on to a tilt

error solution, whereas in the TEN-NAV case, the �lter was able to clamp down on

the correct north and east tilt error solution. For the down tilt error state, the �lter

estimate shifted while the measurements were rich and the �lter was con�dent. The

estimate stayed locked on to the same incorrect solution for the rest of the trajectory.

Figure 62. EKF Error in Tilt Error States for a Single Run - TEN-TACT Case
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Figure 63. EKF Error in North Tilt Error States for a Single Run - TEN-NAV Case

Figure 64. EKF Error in East Tilt Error States for a Single Run - TEN-NAV Case
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Figure 65. EKF Error in Down Tilt Error States for a Single Run - TEN-NAV Case

The VEC-TACT and VEC-NAV cases behaved similarly during the continental

airplane trajectory as they did during the coastal airplane trajectory. The VEC-

TACT �lter during the continental airplane trajectory was relatively stable with

only 4% of �lter runs diverging, but was improved upon by pairing the �lter with

a navigation-grade INS. When the vector measurement �lter was paired with the

nav-grade INS in the VEC-NAV case, it was able to out-perform the tensor measure-

ment �lter the TEN-NAV case. The VEC-NAV case had a Monte Carlo simulation

DRMS Error of 65.78 m less than the TEN-NAV case. This is most likely a result

of the tensor measurements behavior around ten minutes. The Monte Carlo error for

position states and tilt error states in the VEC-NAV case are shown in Figures 66

through 68.
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Figure 66. EKF Error in North Position State for the VEC-NAV Case

Figure 67. EKF Error in East Position State for the VEC-NAV Case
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Figure 68. EKF Error in Tilt Error States for the VEC-NAV Case

4.6 Deep-Sea Boat Trajectory Results

The trajectory used in cases 13 and 14 was a 25 hour long boat trajectory in the

same location as the coastal boat trajectory used in cases 1 through 4. The trajectory

remained the same, but the maps used to navigate were altered to be more realistic

for a location with an ocean-depth of 6000 m. A Fourier method was used to upward

continue the anomaly map to an altitude of 6000 m. At this height, the frequency

content of the map is much lower [5], and we expect to see a signal that is not as ideal

for magnetic navigation. This high-altitude map was used to generate the vector and

tensor maps via the Fourier method described previously.

For both cases (VEC-10X and TEN-10X), a 10X-grade INS was used. A military

ship navigating for longer trajectories (such as the 25 hour trajectory used here) would

likely have a high-quality INS on board, and we model a higher-quality INS with the

10X-grade INS as described in Table 3. This INS is modeled to have a position error

of approximately 1 nmi after 24 hours [10].

95



Figure 69 shows the path of the ship over the three vector component maps of

the magnetic �eld. An example of the corrupted vector and tensor measurements

generated for this trajectory are shown in Figures 70 and 71 respectively. The mea-

surements were corrupted with zero-mean White Gaussian noise with a covariance of

27 nT2 for the vector case and 0.8 nT
2

km
2 for the tensor case. The noise strengths were

chosen to triple the measurement error of all previous cases. Greater measurement

noise is expected in these cases, given the possible e�ects of the deep ocean on the

Earth's magnetic �eld at sea-level.

Figure 69. Boat Trajectory Overlayed Onto Vector Field Maps
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Figure 70. Corrupted World-Frame Vector Magnetometer Measurements for the VEC-

10X Case

Figure 71. Corrupted World-Frame Magnetic Tensor Measurements for the TEN-10X

Case
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Table 11. DRMS Results for Deep-Sea Boat Trajectory

Case Measurement Type INS Quality DRMS Error CRLB DRMS Error

13 Vector 10X 194.90 m 249.23 m

14 Tensor 10X 185.52 m 169.21 m

Table 12. Filter Error in North and East Tilt Error States for Deep-Sea Boat Trajectory

Case North Tilt Filter Error East Tilt Filter Error

VEC-10X 2.6 ×10−4 deg 3 ×10−4 deg
TEN-10X 3.4 ×10−4 deg 4 ×10−4 deg

From Table 11, it is clear that both navigation systems were able to cut the drift of

the INS down from the expected 1 nmi over the 25 hour trajectory to approximately

200 m. The TEN-10X case only had approximately 10 m less DRMS error than the

VEC-10X case for the 500 run Monte Carlo simulation. The position error states for

a single run of the TEN-10X case are shown below:

Figure 72. EKF Error in North Position State for a Single Run - TEN-10X Case
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Figure 73. EKF Error in East Position State for a Single Run - TEN-10X Case

In both the VEC-10X and TEN-10X cases, the tilt error states remained minimal.

Throughout the entire 25 hour trajectory, using these navigation systems, we would

have an accurate attitude solution in addition to the relatively low DRMS errors.

The error plots for the tilt error states in a single �lter run of the TEN-10X case are

shown in Figure 74 through 76. These plots show that the TEN-10X �lter was able

to retain an accurate orientation solution throughout the entire trajectory.
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Figure 74. EKF Error in North Tilt Error State for the TEN-10X Case

Figure 75. EKF Error in East Tilt Error State for the TEN-10X Case
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Figure 76. EKF Error in Down Tilt Error State for the TEN-10X Case

4.7 Boat Trajectory Results Using a Global Model

The 25-hour boat trajectory was also used for cases 15 and 16. With the deep-

sea boat trajectory above, the navigation systems were paired with simulated lower-

frequency maps and were still able to perform. For the next two cases, the VEC-10X

and TEN-10X navigation systems were paired with maps generated from the global

EMM model. The trajectory used in these cases was shifted over an area of the

continental United States to match the EMM map data available at the time of the

simulation. These cases demonstrated the navigation accuracies possible for both the

VEC-10X and TEN-10X navigation systems paired with low-frequency global model

maps.

Figure 77 shows the path of the ship over the three vector component maps of

the magnetic �eld. Examples of corrupted vector and tensor measurements generated

for the 25-hour boat trajectory using the global model maps are shown in Figures 78
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and 79 respectively. The measurements for these two cases were also corrupted with

white Gaussian noise with a covariance of 27 nT2 for the vector case and 0.8 nT
2

km
2 for

the tensor case.

Figure 77. Boat Trajectory Overlayed Onto Vector Field Maps

Figure 78. Corrupted World-Frame Vector Magnetometer Measurements for the VEC-

10X Case
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Figure 79. Corrupted World-Frame Magnetic Tensor Measurements for the TEN-10X

Case

Table 13. DRMS Results for Boat Trajectory Using a Global Model

Case Measurement Type INS Quality DRMS Error CRLB DRMS Error

15 Vector 10X 219.28 m 275.9 m

16 Tensor 10X 38.10 m 94.98 m

Table 14. Filter Error in North and East Tilt Error States for Boat Trajectory Using
a Global Model

Case North Tilt Filter Error East Tilt Filter Error

VEC-10X 4 ×10−4 deg 5 ×10−4 deg
TEN-10X 8.8 ×10−5 deg 2 ×10−4 deg

From Tables 13 and 14, it is clear that both navigation systems improved upon the

expected unaided drift of the INS. The TEN-10X �lter was able to achieve navigation

accuracies of 38 m using the global map and steady state tilt errors down to 8.8 ×10−5

degrees. Figures 80 and 81 below show the north and east �lter error for a single run

using the TEN-10X navigation system.
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Figure 80. EKF Error in North Position State for the TEN-10X Case

Figure 81. EKF Error in East Position State for the TEN-10X Case

The error in the north and east tilt error states for this same �lter run are shown

below in Figures 82 and 83.
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Figure 82. EKF Error in North Tilt Error State for the TEN-10X Case

Figure 83. EKF Error in East Tilt Error State for the TEN-10X Case

These are promising results given the global availability of the EMM-720 model.

These cases demonstrate that we are able to navigate anywhere around the globe

using the navigation systems presented in this research paired with low-resolution
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global model maps. When the VEC-10X and TEN-10X navigation systems are used

in simulation, we are not limited by the low resolution of the available global model.

4.8 DRMS Error for all Cases

Table 15 lists the Monte Carlo simulation DRMS error for each case. It re�ects

the results presented above, but allows for comparison between the navigation system

results for di�erent trajectories.

Table 15. DRMS Error Results for all Simulation Cases

Case Trajectory Meas Type INS Quality DRMS Error

1 Coastal Boat Vector Tactical 420.54 m
2 Coastal Boat Vector Navigation 185.00 m
3 Coastal Boat Tensor Tactical 755.48 m
4 Coastal Boat Tensor Navigation 35.94 m
5 Coastal Aerial Vector Tactical 254.96 m
6 Coastal Aerial Vector Navigation 103.43 m
7 Coastal Aerial Tensor Tactical Filter Diverged
8 Coastal Aerial Tensor Navigation 61.07 m
9 Continental Aerial Vector Tactical 514.53 m
10 Continental Aerial Vector Navigation 141.17 m
11 Continental Aerial Tensor Tactical Filter Diverged
12 Continental Aerial Tensor Navigation 205.95 m
13 Deep-Sea Boat Vector 10X 194.90 m
14 Deep-Sea Boat Tensor 10X 185.52 m
15 Global Model Boat Vector 10X 219.28 m
16 Global Model Boat Tensor 10X 38.10 m
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V. Conclusion

Through simulation, this research was able to prove the viability of using vector

or tensor measurements of the magnetic anomaly �eld in a navigation system as

an alternative to GPS navigation. Several variables were evaluated in the sixteen

simulation cases and �ndings for these are listed below.

Trajectory Position and Velocity.

The velocity of the trajectory did not have a great a�ect on �lter performance

during simulations. This may be due to the fact that more signals are being brought

into �lter with vector and tensor measurements, so despite the measurements coming

in more slowly, the higher number of signals allows the �lter to accurately resolve a

position and attitude solution. The navigation system was able to obtain navigation

accuracies of 35.94 m over a one hour low-velocity boat trajectory and 61.07 m over

a one hour high-velocity aerial trajectory.

Measurement Types.

The simulations demonstrate that navigation accuracy increases with an increas-

ing number of measurements coming into the �lter. As long as the �lter was paired

with a nav-grade INS, the navigation �lter when using tensor measurements was able

to achieve the lowest DRMS error (speci�cally in the coastal boat TEN-NAV case)

and was able to consistently perform better than when using vector measurements.

These are promising results, because the use of tensor measurements essentially can-

cels out the e�ects of temporal variations in the measurements, which in turn reduces

measurement errors in the navigation system. The ability to minimize measurement

errors in a navigation system is critical to minimizing error in the position and atti-

tude solutions.
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The best case tensor �lter results only occurred in combination with a navigation-

grade INS. The tensor measurement �lter was unstable in combination with a tactical-

grade INS. Removing the temporal variation states from the model may actually have

negatively impacted the �lter. The �lter was not expecting any bias errors because

of the removal of these states; However, there may have been bias errors in the

measurements due to other e�ects. This led to overcon�dence in the �lter estimates

and in turn, �lter divergence.

INS Quality.

The quality of INS used in simulations had a large impact on the overall �lter

performance. Generally, pairing the �lters with a tactical-grade INS resulted in di-

vergent runs. The �lter performed best when paired with a navigation or 10X-grade

INS. When paired with the 10X-grade INS, the navigation system was able to ob-

tain navigation accuracies of 185 m DRMS over a 25 hour trajectory. This speci�c

trajectory was over the deep ocean and used a map with lower frequency content.

The TEN-10X �lter was also able to obtain navigation accuracies of 38.10 m when

paired with EMM global maps, which are of even lower frequency than the deep-sea

NAMAD maps. We would expect the lack of signal in the map as well as lack of signal

due to the low velocity of the ship to cause problems for the �lter. The combination

of the 10X-grade INS and the tensor measurements within the navigation system was

able to overcome this challenge.

Map Resolution.

The simulations demonstrated that both navigation systems were able to perform

with lower-resolution global maps from the EMM. When using either navigation sys-

tem presented in this research, high navigation accuracy was not limited to navigation
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using high resolution maps such as the NAMAD. For military applications, the results

of this research open up the possibility of using magnetic navigation as an alternative

to GPS navigation in any area of operations around the globe to estimate vehicle

position and orientation accurately.

Future Work.

One aspect to consider for future work following this thesis, is running simulations

on the navigation system with an alternate dynamics model. The EKF could possibly

be improved when paired with the tactical grade INS and tensor measurements by

introducing the error bias states back into the dynamics model. While the temporal

variations are nearly canceled out in the tensor measurements, there could be more

error from the e�ects of the vehicle than is modeled. More accurately modeling this

error could improve �lter performance, as the �lter would place a more accurate

amount of con�dence in the measurements as opposed to the over-con�dence that

was displayed.

Another option for dealing with this �lter instability would be to re-design the

�lter to use an MPF as opposed to the EKF to better deal with the non-linearity of

the measurement function. This would require a large amount of processing power

given the computational intensity of dealing with the particles, but also computing

the measurement Jacobian for each particle at each time step. This �lter would be

expected to have the highest accuracy if e�ort is put forth into minimizing processing

requirements.

Another consideration for future work following this thesis would be to move from

simulation to real trials to assess the navigation system performance. While the

trajectories used in the simulations were realistic, the performance of the navigation

system using real measurements, maps, and trajectories could vary greatly depending
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on the true accuracy of the measurements and maps. Vector magnetometers are a

mature technology, however, they have not been widely used to conduct surveys

and gather accurate vector magnetic anomaly maps. As these vector maps are not

readily available, e�ort would go into obtaining accurate vector maps for the area

traversed during real vehicle tests. The same is true for tensor maps however, the

tensor measurement con�guration is not as mature as the vector magnetometer and

would require extensive calibration to ensure accurate tensor measurements. Once

calibration is acceptable, the focus would be on collecting data to generate small

tensor map tiles for real vehicle tests. Running trials with accurate maps and true

measurements is the next step to determining if vector or tensor magnetic anomaly

�eld measurements are a promising option as a GPS signal alternative.
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