
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1-2018

Techniques for Low-latency in Software-defined
Radio-based Networks
Daniel D. Hart

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Electromagnetics and Photonics Commons, and the Power and Energy Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Hart, Daniel D., "Techniques for Low-latency in Software-defined Radio-based Networks" (2018). Theses and Dissertations. 1807.
https://scholar.afit.edu/etd/1807

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=scholar.afit.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholar.afit.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1807?utm_source=scholar.afit.edu%2Fetd%2F1807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

TECHNIQUES FOR LOW-LATENCY IN
SOFTWARE-DEFINED RADIO-BASED

NETWORKS

THESIS

Daniel Hart, Capt, USAF

AFIT-ENG-MS-18-M-032

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-M-032

TECHNIQUES FOR LOW-LATENCY IN SOFTWARE-DEFINED

RADIO-BASED NETWORKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Daniel Hart, B.S.A.E.

Capt, USAF

March 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-18-M-032

TECHNIQUES FOR LOW-LATENCY IN SOFTWARE-DEFINED

RADIO-BASED NETWORKS

THESIS

Daniel Hart, B.S.A.E.
Capt, USAF

Committee Membership:

Dr. Kenneth Hopkinson
Chair

Maj Addison Betances
Member

Maj Daniel Casey
Member

AFIT-ENG-MS-18-M-032

Abstract

In recent years, the role the United States Air Force (USAF) plays in defending

the nation’s security and sovereignty and the missions for which it is responsible have

increased. In addition, decreased budgets and the proliferation of wireless devices

present major challenges the force must confront moving forward. As a result, the

USAF must apply existing systems and capabilities in innovative ways to ensure

mission accomplishment subject to resource limitations. One such new application is

the use of Unmanned Aerial Vehicle (UAV) swarms in missions previously performed

by single, larger UAV platforms. Swarms of smaller UAV platforms offer increased

flexibility and resilience as compared to their larger counterparts.

One problem with the increased utilization of UAV swarms, however, is the conges-

tion of the electromagnetic spectrum through which they communicate. The advent

of the Internet of Things (IoT) could present swarms with unintentional or intentional

interference with which they must contend in future missions. In light of this, a solu-

tion which offers robust and reliable swarm communication in spite of the increased

electromagnetic spectrum congestion is needed. One promising technology that could

form the basis of a potential solution is the Software-Defined Radio (SDR). The core

of an SDR’s functionality is implemented in software, allowing the user to alter its

functionality while it is operating. Further, SDRs enable fully cognitive radios which

have an Artificial Intelligence (AI) back-end to allow them to autonomously react and

adapt to their transmission environment with no user interaction.

The present research aims to develop and test a Genetic Algorithm (GA)-based

Cognitive Engine (CE) to begin looking at real-time CEs that could be used in future

UAV swarms. A real-time engine is one that executes while the network is running

iv

and periodically updates operating parameters to tune the network’s performance

to its current environment. As UAV swarms are the long-term application for this

research, communication latency is the optimization objective of primary importance

in tuning network performance here.

In testing the engine, particular items of interest include the number of solutions it

may evaluate in a given bound and the engine’s reliability in returning solutions which

yield acceptable network performance. Initial experiments indicate that, subject to

design and implementation decisions, the engine can consider significant portions of

the search space within a relatively small bound. These tests also indicate the engine

is efficient at finding highly fit solutions in terms of network latency, throughput and

power consumption fitness. However, additional testing is needed to evaluate how

closely highly fit solutions produced by the engine correlate to reduced latency within

the network.

There are several potential directions in which this research could be taken in the

future. For example, the engine could be updated to take into account additional

network operating parameters. Another possibility is to assign different weights to

the fitness components or test another fitness function to evaluate how these changes

affect the engine’s performance. A third option is test the engine with noise floors

beyond those used here to determine how increased noise affects the engine’s perfor-

mance.

v

Table of Contents

Page

Abstract . iv

List of Figures . ix

List of Tables . xiii

List of Abbreviations . xv

I. Introduction . 1

1.1 Background . 1
1.2 Genetic-Algorithm Based Cognitive Engine

Development and Testing . 3
1.3 Thesis Organization . 4

II. Background and Related Research . 5

2.1 Introduction . 5
2.2 Cognitive Radio Networks . 6
2.3 Software-Defined Radio - The Enabler . 10
2.4 Cognitive Engine - The Brain of a Cognitive Radio 12
2.5 Cognitive Radio Architectures . 16
2.6 Intractable Problems and Approximation Algorithms 19
2.7 Digital Signal Processing Fundamentals . 28
2.8 Network Simulation Frameworks . 31
2.9 Virginia Polytechnic Institute and State Uiversity’s

Cognitive Radio Network . 34

III. Cognitive Engine and Test Network Design and
Implementation . 35

3.1 Development of OMNet++ Network for Cognitive
Engine Testing . 35

3.2 Cognitive Engine for Optimizing Latency . 39
Introduction . 39
Deciding Performance Objectives and Tunable

Parameters . 41
Chromosome Structure . 44
Relating the Tunable Parameters to the Performance

Objectives through a Fitness Function . 45
Cognitive Engine Algorithm . 53

vi

Page

IV. Research Methodology . 56

4.1 Latency Experiments using Virginia Tech’s CORNET 56
Independent and Dependent Variables . 56
Important Assumptions and Limiting Factors . 58
Experimental Procedure . 59
Data Analysis . 62

4.2 OMNeT++ Engine Performance Tests . 66
Independent and Dependent Variables . 67
Important Assumptions and Limiting Factors . 68
Experimental Procedure . 69
Data Analysis . 70

4.3 MATLAB Cognitive Engine Performance Tests . 71
Independent and Dependent Variables . 72
Important Assumptions and Limiting Factors . 75
Experimental Procedure . 76
Data Analysis . 77

V. Results and Analysis . 79

5.1 CORNET Latency Lower-Bound Experimental Results 79
Calculating Latencies by Comparing Timestamp

Differences Between Transmitter and Receiver 79
Calculating Latencies by Comparing Timestamps at

Receiver for Messages with Consecutive
Identification Numbers . 85

Calculating Latencies by Comparing Timestamps at
Receiver for Consecutively-Received Messages 88

5.2 OMNeT++ Engine Experiments . 90
5.3 MATLAB Engine Experiments . 95

Engine Runtime Growth and Fitness Performance 96
Engine Runtime Growth and Fitness Performance -

Small Numbers of Generations . 102
Fitness Variance as Parameters Change from Optimal

Settings . 108
Frequency with which Engine Returns Each Parameter

Value . 119

VI. Conclusions and Recommendations . 123

Implementing FEC Encoding in OMNeT++ Network 123
Evaluating Distribution of Fitness Values Assigned by

Fitness Function . 123
Testing the Engine with Additional Noise Floors 124
Allowing Engine to Alter Bitrate with Bandwidth 124

vii

Page

Recommendations regarding the use of CORNET for
Cognitive Network Tests . 125

FEC Encoding and Number of Generations Trade-off
Analysis . 125

Increasing the Engine’s Search Space to take Greater
Advantage of the Genetic Algorithm . 126

Investigating the Effect of Latency Weight . 127
Repeating Runtime Experiments with Representative

Hardware . 127
Effect of Retaining Population Between Engine Runs 127

Bibliography . 129

Appendix A. Static Parameters for CORNET Experiments 134

Appendix B. Code Listings for OMNeT++ Cognitive Engine 137

Appendix C. Code Listings for MATLAB Engine Implementation 166

Appendix D. Frequency Bar Charts for Engine Parameters 181

viii

List of Figures

Figure Page

1 Initial conditions in cognitive radio network before
nodes perform any information exchange, parameter
adjustments or algorithm space exploration . 9

2 Cognitive radio network after parameter adjustment 9

3 Cognition cycle used by cognitive nodes in decision
making, adapted from [22] . 15

4 The Distributed Resource Map Architecture [37],
c©[2012] IEEE . 20

5 Example graph showing flights between several
American cities with their associated costs . 21

6 Example graph showing flights between several
American cities with flights (edges) assigned a
designated number . 25

7 Example chromosomes for the Traveling Salesman
Problem . 25

8 New population member after recombination from
parent chromosomes, split and recombined after bit 11 27

9 New population member after mutation, bit 14 mutated 28

10 Example PSK modulation scheme constellation using a
modulation order of 8 with each symbol representing 3
bits . 32

11 Example QAM scheme constellation. With a
modulation order of 16, each symbol represents 4 bits 32

12 The OMNeT++ network used to test the cognitive engine 36

13 Internal structure of the “Adhoc Host” module type 36

14 Internal structure of the “Wireless Network Interface
Card” module type . 39

ix

Figure Page

15 Internal structure of the new radio type, extended from
the “APSK Scalar Radio” module type, to allow the
engine to update the radio’s operating parameters 40

16 Example of parameter encoding in chromosome . 45

17 Plot showing latency fitness values against bit error rate 73

18 Example plot of CORNET results showing latencies
versus message number . 80

19 Example histogram of CORNET results showing
probability of latency values in each bin occurring 80

20 Results obtained by comparing transmitter and receiver
timestamp vectors . 82

21 Results obtained by comparing transmitter and receiver
timestamp vectors . 83

22 Results obtained by only using messages received with
consecutive numbers . 87

23 Results obtained by only using messages received with
consecutive numbers . 87

24 Results showing the same case as in Figure 22 when the
data is processed by averaging the difference in
timestamps . 89

25 Results showing the same case as in Figure 23 when the
data is processed by averaging the difference in
timestamps . 90

26 OMNeT++ engine runtime performance with respect to
umber of generations used to evolve solutions . 91

27 Plot of network delay against simulation time,
demonstrating how OMNeT++ stops recording data
part way through simulation . 94

28 Growth of engine runtime and fitness of returned
solutions with respect to number of generations when
no FEC is used . 98

x

Figure Page

29 Growth of engine runtime and fitness of returned
solutions with respect to number of generations when
FEC is used . 99

30 Growth of engine runtime and fitness of returned
solutions with respect to number of generations when
no FEC is used . 104

31 Growth of engine runtime and fitness of returned
solutions with respect to number of generations when
FEC is used . 105

32 Sensitivity of solution fitness value as modulation
scheme deviates from optimum value . 111

33 Sensitivity of solution fitness value as bits per second
deviates from optimum value . 114

34 Sensitivity of solution fitness value as power deviates
from optimum value . 116

35 Sensitivity of solution fitness value as bandwidth
deviates from optimum value . 118

36 Probability engine returns each possible bandwidth
value for each noise floor when FEC in use . 182

37 Probability engine returns each possible bandwidth
value for each noise floor when FEC not in use . 182

38 Probability engine returns each modulation scheme for
each noise floor when FEC in use . 183

39 Probability engine returns each modulation scheme for
each noise floor when FEC not in use . 183

40 Probability engine returns each possible bits per symbol
value for each noise floor when FEC in use . 184

41 Probability engine returns each possible bits per symbol
value for each noise floor when FEC not in use . 184

42 Probability engine returns each possible power value for
each noise floor when FEC in use . 185

xi

Figure Page

43 Probability engine returns each possible power value for
each noise floor when FEC not in use . 185

xii

List of Tables

Table Page

1 Parameters available to genetic algorithm for use in
tuning network performance, along with minimum and
maximum values and step size . 44

2 Meaning of symbols in the equations for BER for PSK
and QAM modulation schemes . 50

3 Independent variables for the CORNET experiments 58

4 Node configurations to be tested in CORNET
experiments . 61

5 Example calculation using the message identification
number and timestamp vectors provided by CORNET
for the transmitter and receiver . 64

6 Example calculation using timestamps for messages
received with consecutive message identification . 66

7 Example calculation using timestamps for messages
received regardless of the difference in the associated
message identification numbers . 67

8 Independent variables, including minimum and
maximum values and step size, for the OMNeT++
experiments . 68

9 Independent variables, including minimum and
maximum values and step size, for the MATLAB engine
reimplementation experiments . 75

10 Test cases for determining effect of FEC encoding,
number of generations and noise floor on engine
performance . 76

11 Two cases in the CORNET results exhibit initial
growth that is approximately linear, though over short
time intervals the growth rate varies widely . 81

12 Coefficient and p-value for OMNeT++ engine runtime
growth linear model . 92

xiii

Table Page

13 Coefficient and p-value for linear models for fitness of
returned solutions and runtime growth of MATLAB
engine using large numbers of generations and no FEC 101

14 Coefficient and p-value for linear models for fitness of
returned solutions and runtime growth of MATLAB
engine using large numbers of generations and FEC 101

15 Coefficients and p-values for fitness and runtime linear
model with FEC encoding as categorical variable, large
numbers of generations . 103

16 Coefficient and p-value for linear models for fitness of
returned solutions and runtime growth of MATLAB
engine using small numbers of generations and no FEC 107

17 Coefficient and p-value for linear models for fitness of
returned solutions and runtime growth of MATLAB
engine using small numbers of generations and FEC 107

18 Coefficients and p-values for fitness and runtime linear
model with FEC encoding as categorical variable, small
numbers of generations . 109

19 Results for exhaustive search for most-fit solutions
depending on noise floor and FEC encoding . 109

20 General CORNET experiment parameters, not
associated with either node individually and constant
across all experimental runs . 134

21 Node 1 parameters which remain constant across all test
cases for CORNET experiments . 135

22 Node 2 parameters which remain constant across all test
cases for CORNET experiments . 136

xiv

List of Abbreviations

Abbreviation Page

USAF United States Air Force . iv

UAV Unmanned Aerial Vehicle . iv

IoT Internet of Things . iv

SDR Software-Defined Radio . iv

AI Artificial Intelligence . iv

GA Genetic Algorithm . iv

CE Cognitive Engine . iv

DoD Department of Defense . 1

USAF United States Air Force . 1

UAVs Unmanned Aerial Vehicles . 1

SDRs Software-Defined Radios . 1

ISR Intelligence, Surveillance and Reconnaissance 2

GA Genetic Algorithm . 3

CE Cognitive Engine . 3

IoT Internet of Things . 5

PU Primary User . 5

SU Secondary Users . 5

UAV Unmanned Aerial Vehicle . 5

USAF United States Air Force . 6

SDRs Software-Define Radios . 6

CRs Cognitive Radios . 6

AI Artificial Intelligence . 7

xv

Abbreviation Page

CEs Cognitive Engines . 10

FPGAs Field-Programmable Gate Arrays . 11

GPUs Graphics Processing Units . 11

MIMO Multiple-Input Multiple-Output . 11

FEC Forward Error Correction . 11

GPP General-Purpose Processor . 12

GA Genetic Algorithms . 14

AP Access Point . 14

CBR Case-Based Reasoning . 15

DTs Decision Trees . 15

CBR-QGA Case-Based Reasoning-Quantum Genetic
Algorithm . 16

QGA Quantum Genetic Algorithm . 16

CRM Cognitive Resource Manager . 17

CellBE Cell Broadband Engine . 17

DRM Distributed Resource Map . 18

P Polynomial-time . 19

NP Nondeterministic Polynomial . 19

SNR signal-to-noise ratio . 29

PSK Phase-Shift Keying . 30

QAM Quadrature-Amplitude Modulation . 30

NS-2 Network Simulator 2 . 33

NS-3 Network Simulator 3 . 33

OMNeT++ Object Modular Network Testbed in C++ . 33

xvi

Abbreviation Page

CORNET COgnitive Radio NETwork . 34

SSH Secure SHell . 34

CRTS Cognitive Radio Test System . 34

MATLAB MATrix LABratory . 34

CE Cognitive Engine . 35

UAVs Unmanned Aerial Vehicles . 35

IP Internet Protocol . 37

MAC Medium Access Control . 37

TCP Transmission Control Protocol . 37

UDP User Datagram Protocol . 37

SCTP Stream Control Transmission Protocol . 37

NICs network interface cards . 38

QoS quality-of-service . 38

CSMA-CA Carrier-Sense Multiple Access with Collision
Avoidance . 38

AI Artificial Intelligence . 39

BER bit error rate . 42

QAM Quadrature Amplitude Modulation . 43

PSK Phase Shift Keying . 43

FEC Forward Error Correction . 52

CRTS Cognitive Radio Test System . 56

FEC Forward Error Correction . 56

CE Cognitive Engine . 56

QAM Quadrature Amplitude Modulation . 57

xvii

Abbreviation Page

ASK Ampitude Shift Keying . 57

PSK Phase Shift Keying . 57

NTP Network Time Protocol . 59

BERs Bit Error Rates . 67

PNG pseudo-random number generator . 69

AWGN Additive White Gaussian Noise . 71

SNR Signal-to-Noise Ratio . 73

UAV Unmanned Aerial Vehicle . 74

ASK Amplitude Shift Keying . 81

UAV Unmanned Aerial Vehicle . 92

FEC Forward Error Correction . 92

SNR Signal-to-Noise Ratio . 95

BER Bit Error Rate . 95

BCH Bose-Chaudhuri-Hocquenghem . 96

PSK Phase Shifft Keying . 110

QAM Quadrature Amplitude Modulatio . 110

CE Cognitive Engine . 123

FEC Forward Error Correction . 123

BERs Bit Error Rates . 124

QoS Quality of Service . 125

SNR Signal-to-Noise Ratio . 125

UAV Unmanned Aerial Vehicle . 127

xviii

TECHNIQUES FOR LOW-LATENCY IN SOFTWARE-DEFINED

RADIO-BASED NETWORKS

I. Introduction

1.1 Background

Due to ongoing fiscal realities within the Department of Defense (DoD), the United

States Air Force (USAF) must continually innovate ways to do more with less. Force

readiness and modernization are key issues and the USAF must ensure every dollar

is spent with maximum effectiveness [1]. In 2014, the USAF recognized the force’s

ability to quickly adapt to an operational environment that itself undergoes rapid

change as vital to maintaining the nation’s strategic advantage in the future. The

USAF has further identified the continued development of unmanned and autonomous

systems as crucial to the increased agility demanded by the future fight [2]. Two ways

in which the USAF is seeking to optimize its spending while maximizing agility is

employing its existing systems in new ways and adapting commercial solutions to its

needs. By using existing systems in new roles, operators have greater flexibility in

ensuring mission accomplishment. Further, effectively adapting existing commercial

solutions to its needs allows the USAF to save on development costs while more

rapidly fielding required capabilities, allowing the force to quickly respond to emerging

threats.

Representative examples of these trends include the use of swarms of smaller Un-

manned Aerial Vehicles (UAVs) in missions previously performed by a single, larger

platform and the proposal to use Software-Defined Radios (SDRs) to provide intra-

1

swarm communications in future missions [3, 4, 5]. The use of UAV swarms offers

potential cost savings to the USAF. The vehicles that typically comprise a swarm are

smaller and cheaper to build, maintain, operate and replace than their larger coun-

terparts. By extension, this reduces operational risk; losing even a handful of smaller

UAV platforms is not as costly as the destruction of a larger platform. Further, a

UAV swarm can execute new mission types or existing mission types in new ways

not possible with a single, larger platform. For example, a UAV swarm could fly in

formation to the boundary of an adversary’s air defense system, scatter in such a

manner as to avoid detection by or overwhelm air defense radar systems and then

reassemble itself once the air defense sector has been penetrated. As another ex-

ample, each platform in a swarm could be outfitted with a sensor suite to ensure

continual Intelligence, Surveillance and Reconnaissance (ISR) coverage in a contested

environment. If one or more platforms in the swarm is destroyed, the other vehicles

ensure continual coverage, a robust mission capability not offered by a single platform

performing ISR missions [6].

A UAV swarm that relies on SDRs for intra-swarm communications could provide

the basis for a “cognitive” UAV swarm. Such a swarm could adapt its operating

parameters to its environment to optimize intra-swarm communication in much the

same way nodes in a cognitive network alter their parameters to optimize performance.

Before an SDR-based or fully cognitive UAV and UAV swarm may be realized and

fielded, however, there exist significant technical challenges that must be overcome.

These challenges include the development of a new, or adaptation of an existing, SDR

system to a UAV platform. While there are numerous SDR systems available off-the-

shelf, the UAV platforms proposed for use in a swarm are typically small platforms. It

may be difficult or impossible to retrofit existing SDR systems on board these UAV

platforms due to size or weight constraints, especially when the necessary power

2

supplies are taken into account. Perhaps more importantly, a considerable amount of

research remains to be done to determine the most efficient and effective algorithms

for use in adapting a swarm to its environment. Numerous performance parameters,

the dependent optimization objectives and the large number of paradigms available

for use in developing such algorithms yield a vast number of possible solutions. Only

a small subset of this search space has thus far been explored. It remains to be seen

which algorithms will ultimately provide the optimal performance within a cognitive

swarm.

1.2 Genetic-Algorithm Based Cognitive Engine Development and Testing

In the present research, a cognitive network simulated using the OMNet++ Net-

work Simulator is used as a substitute for a real-world cognitive UAV swarm. While

throughput is often the optimization objective of interest, latency is the performance

metric under consideration here. Within a cognitive UAV swarm, low-latency is likely

to be a critical requirement in intra-swarm communication. In order for the platforms

to accomplish the mission, messages sent between them will likely need to be deliv-

ered with an upper bound on their delay. For example, if one of the platforms in

the swarm is to strike a target, rules of engagement may require the firing platform

confirm its location with another swarm member before employing ordinance. If no

guarantee can be given on the time frame in which the first platform may expect a

response, the opportunity to strike the designated target may be missed. Here, a

Genetic Algorithm (GA)-based Cognitive Engine (CE) which alters the modulation

scheme and order, transmitter power and bandwidth in an attempt to counter in-

tentional and unintentional interference is developed and tested. The evaluation of

the CE will focus on determining whether or not latency may serve as an acceptable

performance parameter in tuning the network parameters to optimize performance.

3

In particular,

• How may network latency information be incorporated into the CE in such a

manner that all necessary information is available to the engine when it executes

its decision algorithm?

• What is the extent to which tuning modulation scheme and order, transmitter

power and bandwidth may affect network latency and is this effect large enough

that these parameters may serve as a viable basis for future UAV swarm CEs?

• Is the time required by a genetic algorithm-based CE so large as to render it

ineffective in tuning network performance and thus unacceptable as a basis for

a UAV swarm CE?

• How does the fitness of solutions returned by the engine vary as a function of

the engine’s runtime? Does allowing the engine to run longer before returning

a solution reliably yield more fit responses?

1.3 Thesis Organization

The next chapter explores several of the terms and concepts necessary for under-

standing the discussion of the network and CE development as well as the experiments

performed to test the engine. Chapter 3 briefly discusses the architecture of the sim-

ulated network in which the CE is tested and details the development of the engine

itself. Then, Chapter 4 outlines the experiments conducted using the network to test

the CE’s performance. Finally, Chapter 5 presents the analysis of the data obtained

from the experiments and Chapter 6 concludes with final recommendations drawn

from the experimental results.

4

II. Background and Related Research

2.1 Introduction

With the rise of the Internet of Things (IoT) and the proliferation of wireless

networking technologies, the electromagnetic frequency bands used to carry commu-

nications between devices have become overcrowded [7]. This overcrowding is due

in large part to the inefficient use of available spectrum resources. Historically, fre-

quencies have been leased to a Primary User (PU) and no transmitters have been

permitted to operate within bands leased to another user. While such an approach

ensures PUs may always communicate when necessary, unless they transmit for a

considerable percentage of the time, their spectrum band goes largely unused, lead-

ing to inefficient use of available spectrum resources [8]. As a result, as the available

frequency bands on which to transmit dwindle, without solutions that better utilize

spectrum resources, new PUs may not be able to obtain a spectrum allocation. For-

tunately, cognitive radios have been proposed as one solution that may help mitigate

the inefficient use of spectrum resources. In this new approach, a Secondary Users

(SU) is a user to whom a frequency band has not been officially licensed but is al-

lowed to opportunistically use it as long as they do not interfere with the PU. SUs use

cognitive radio-based nodes to transmit and periodically listen for the PU to vacate

the channel if the PU begins to transmit [9]. This acts to increase the percentage of

time frequency bands are used and thus spectral efficiency.

The ability to exchange information between platforms in an Unmanned Aerial

Vehicle (UAV) swarm is crucial to the continued and future success of UAV swarm

missions. For example, operators may want more than one platform to confirm the

swarm is in the correct location before employing munitions or engaging in surveil-

lance and/or reconnaissance activities. Platforms may also need to be able to compare

5

sensor readings as part of the swarm’s mission or to confirm swarm health or oper-

ational parameters (e.g., temperature). Often, this information has hard limits on

the time in which it must be exchanged. In light of these needs, reliable and low-

latency communication will be vital to the continued employment of UAV swarms to

accomplish United States Air Force (USAF) missions. However, with electromagnetic

spectrum quickly filling up, the increasing contention for limited available spectrum

could threaten intra-swarm communication in the future. Flexible UAVs that can

adapt their transmission protocols and parameters to their local operating environ-

ment could help ensure reliable communication channels.

While communications within future swarms could be based on existing wireless

technologies, interference on the frequency or small number of frequencies used by

those technologies could lead to critical communications failures. Conversely, commu-

nications based on Software-Define Radios (SDRs) or Cognitive Radios (CRs) could

help mitigate this risk by allowing the swarm to dynamically adapt its operating

parameters to effectively counter interference and safeguard communications. While

this is an important capability for future missions, there are further benefits of using

SDR- or CR-based communications. The ability to adapt operating parameters to

environmental conditions or transmission needs allows the swarm to more efficiently

use other resources. For example, if a low data rate, short-range link is needed, us-

ing transmission parameters that support such a link rather than a high-bandwidth,

high-power link conserves power.

2.2 Cognitive Radio Networks

Although the term “cognitive radio networks” is often used to refer to networks

in which SUs opportunistically use frequency bands licensed to other PUs, this con-

ception of a cognitive radio network actually falls far short of cognitive networking

6

as originally proposed. The term “cognitive radio” was first coined by Joseph Mitola

in his 2000 dissertation [10]. He envisioned future networks in which mobile nodes

exchange information about network conditions and their own computational needs

to better utilize available resources (e.g., spectrum bandwidth). Using an Artificial

Intelligence (AI) component (the “cognitive” in “cognitive network”), these nodes

ingest and interpret environmental information far beyond the local transmission en-

vironment to estimate and provide for their future resource needs. Additionally, the

nodes in the network cooperate to evolve their operating parameters and protocols

to improve network efficiency and user experience over time [11]. While the network

administrators set parameter values and algorithms with which the nodes initially op-

erate, the nodes themselves work together to alter these parameters and algorithms

in an effort to find better ways to provide network services.

To help illustrate cognitive networking as originally envisioned, suppose a smart-

phone owner, whose device was designed for cognitive networking, uses their phone

to purchase tickets for a movie that is showing in two hours at a theater across town.

The smartphone would be able to predict that in approximately an hour and half,

the user will transit from their current location to the theater. It may also be able

to predict the routes the user may take with different probabilities. The device may

then communicate this information to surrounding nodes and the supporting network

infrastructure. In a fully cognitive network where all nodes are predicting the amount

and location of their future resource needs, the network may use this information to

optimize the distribution of resources. Interestingly, the environmental awareness

necessary to enable these services is already appearing on smart devices. For exam-

ple, a smartphone running Google’s Calendar application will notify the user when

they have an upcoming appointment and will give them a prediction of how it will

take them to reach their destination.

7

As a simple example of how a cognitive network may evolve over time, consider the

wireless network shown in Figures 1 and 2 where Nodes A and B are much closer to the

base station than Nodes C and D. As a result, Nodes A and B do not need to transmit

with as much power as Nodes C and D to be received at the base station. However,

suppose the network administrators initially configure all four nodes to transmit at

the same power. As a result, the base station may miss transmissions from Nodes

C and D because one or both of Nodes A and B is simultaneously transmitting

and the base station cannot hear Nodes C and D over Nodes A and B. If the radio

nodes and base station were cognitive nodes, they would be able to communicate

about their transmission parameters and their realized performance. Over time, they

may discover that decreasing the transmission power of Nodes A and B increases

the throughput by allowing Nodes C and D to still be heard when Node A or B is

transmitting and thus allow the nodes to transmit simultaneously. (Admittedly, such

a scenario would require the nodes to be on different frequencies and the base station

to have more than one receiver channel.)

As a result, the network may make the decision to permanently alter the trans-

mission power of Nodes A and B. This has the added benefit of making the network

more energy efficient; with Nodes A and B using less power to transmit, the network

does not require as much energy to run as before. This could be especially important

if the power sources on which the nodes run have a finite amount of energy (e.g.,

batteries) before they must be replaced or recharged. In this hypothetical scenario,

neither the increased throughput nor the energy savings would be possible without

cognitive networking.

As stated previously, cognitive radios and networks as designed and implemented

to this point have fallen considerably short of Mitola’s original vision. Most of the net-

works realized to date have focused on conditions in the local operating environment

8

Figure 1. Initial conditions in cognitive radio network before nodes perform any infor-
mation exchange, parameter adjustments or algorithm space exploration

Figure 2. Cognitive radio network after parameter adjustment

9

to inform decisions as to how to alter operating parameters to optimize performance

metrics of interest. The scope of information potentially pertinent to the network in

these research efforts is thus reduced in comparison to a fully cognitive network as

proposed by Mitola. Cognitive networking as originally envisioned is ambitious and a

full realization of such a network from the start would be an impossible undertaking.

The ongoing research involving cognitive radios and networks is laying the founda-

tion for the full realization of cognitive networking. Two vital components that have

emerged from these research efforts are SDRs and Cognitive Engines (CEs).

2.3 Software-Defined Radio - The Enabler

Historically, much of a radio’s functionality has been implemented in hardware.

In such radios, the transmitter chain consists of a series of steps necessary to encode a

message onto a carrier signal to be transmitted. Likewise, the receiver chain consists

of a series of steps necessary to extract this message from the carrier signal. In a

traditional radio, most steps in the transmitter and receiver chain correspond to a

separate hardware component that is optimized to efficiently perform the associated

signal processing function. As a result, while the efficiency with which the processing

required to transmit and receive occurs is fairly high, the radio itself is relatively

inflexible in terms of being able to adapt its transmission and processing parameters

to its environment. In a traditional radio, such changes would require the radio to be

taken offline, dismantled and internal hardware components changed.

In contrast, and as their name implies, SDRs implement much of the traditional

radio hardware functionality in software [9]. The line between software and hardware

varies from one SDR to another, but on the whole they are much more flexible in

terms of varying their transmission parameters and protocols while operating than

traditional radios. Rather than having to take the radio offline, the operating pa-

10

rameters used by the software may be updated to alter the radio’s functionality in

real-time. As a result, while software-based processing is not quite as efficient as a

hardware-based implementation, the increased flexibility offsets the decrease in ef-

ficiency. The ability to alter its operation in real-time allows the radio to adapt

to its transmission environment on-the-fly. As a result, the SDR is a key enabling

technology providing the foundation for fully cognitive networks.

While SDRs are not quite as efficient as traditional hardware-based radios, the

literature includes numerous efforts to combine the flexibility of software-based pro-

cessing and the efficiency of hardware-based computation by moving certain process-

ing tasks back into hardware components such as Field-Programmable Gate Arrays

(FPGAs) and Graphics Processing Units (GPUs). One proposed radio receiver ar-

chitecture uses time-division multiplexing to allow multiple signals to be received

and processed using a single receiver chain. The feasibility of the architecture is

demonstrated via an FPGA-based implementation. [12] In [13], the authors present

a new parallel search-based algorithm for Multiple-Input Multiple-Output (MIMO)

detection and demonstrate the algorithm’s performance using a GPU. The authors

evaluate GPU suitability to serve as a baseband processor for an SDR by exploiting

parallelism in the necessary signal processing in [14]. In addition, extensive work

to parallelize encoding and decoding for Forward Error Correction (FEC) has been

done. A GPU-based Hamming Code decoder is presented in [15]. Further, [16, 17]

present work to parallelize the Viterbi decoding algorithm by subdividing computa-

tions and recombining the results at the end. Finally, [18, 19] implement linear block

decoding on a GPU while [20] uses a GPU for both linear block and convolutional

code decoding.

These research efforts may appear counterproductive, moving functionality back

into hardware when software-based processing is central to SDRs. That being said,

11

both FPGA- and GPU-based solutions offer the flexibility of software-defined process-

ing with the speed of hardware-based computation. Neither approach, however, is

without its faults. FPGAs can be difficult to learn to use and the development tools

available are not as robust as for other applications. Conversely, the development

tools available for GPUs are fairly well-developed but they are limited in functional-

ity. Mitola’s cognitive networking as originally proposed relied on General-Purpose

Processor (GPP)-based SDRs [21]. At least for the time being, however, as GPPs

cannot offer the performance necessary to base a fully cognitive node upon them,

hybrid solutions combining software- and hardware-based processing are necessary

to achieve the performance required for cognitive networking. Increasing the ease of

development with FPGAs or reducing the complexity of altering GPU behavior will

help improve the suitability of these solutions to the SDR paradigm.

2.4 Cognitive Engine - The Brain of a Cognitive Radio

Arguably, the most important component of a cognitive network is the CE. The

engine has come to represent the AI component in Mitola’s original vision and pro-

vides the vehicle by which the network nodes intelligently alter their parameters to

optimize network performance [9]. Depending on the architecture in use, the engine

could be centrally located or distributed within the network. Importantly, Mitola did

not restrict cognitive engines to optimizing network performance by only altering pa-

rameters in network nodes that wirelessly transmit. Instead, the engine could control

other network components the optimization of which has a positive impact on net-

work performance [9]. It is simply the case that much of the cognitive engine research

performed to this point has focused on optimizing the transmission parameters of

wirelessly-communicating nodes.

Figure 3, adapted from [21], shows a form of the cognitive cycle normally proposed

12

for use in cognitive radio nodes. This is the process by which nodes move from sensing

their environment and exchanging information to reasoning about changes that can

or need to be made and finally to enacting a plan to improve performance. This

cycle, the basis for which was laid by John Boyd decades ago, is used to aid decision

making in many organizations, including the USAF [22].

In the Observe phase, cognitive nodes sense their environment and form a picture

of all relevant operating conditions. Next, in the Orient phase, nodes gather other

pertinent information, such as tasks to be performed and the necessary resources.

Nodes may also exchange this information with each other or the network infrastruc-

ture. In the Plan phase, nodes individually and jointly propose plans to distribute

resources (e.g., spectrum) or alter operating parameters to ensure all nodes are able

to complete their assigned tasks. Using a pre-defined voting scheme, the nodes then

choose a plan to execute in the Decide phase. In the Act phase, the network enacts

the chosen plan. In the final phase, arguably the most important, the network gauges

the plan’s impact on performance.

Depending on the cognitive engine deployed in the network, information about

the plan’s impact on the network may be stored for later reference. For example, if

performance improved, this result and the changes made may be stored in a database.

Then, when the network is later trying to form or choose between courses of action,

this information may provide insight into what changes may be beneficial. Conversely,

if performance degrades, this result and the changes may be stored to prevent the

network from trying similar plans in the future. While the Observe and Learn phases

are often discussed as the beginning and end of the cycle, respectively, it is important

to note there is no real beginning or end to the cycle. Each phase leads to the

next, with the Learn phase leading back to the Observe phase. Additionally, not all

information exchanges between phases are depicted in Figure 3; most phases have

13

several outputs that are passed to multiple other phases, not just the one that follows

it.

Many CEs using different algorithmic paradigms and parameter sets to optimize

various network performance objectives have been proposed in the literature. A two-

dimensional chromosome structure for use with different Genetic Algorithms (GA) in

tuning multi-carrier network transmission error, power consumption and interference

is presented in [23]. In [24], the authors propose a distributed GA for use in optimizing

network performance. Importantly, the proposed engine incorporates information

from multiple networking layers, referred to as cross-layer analysis or cognition, in

its decision-making. As research begins to focus on the improvement in network

performance made possible by tuning parameters across multiple layers, the analysis

presented in [25] will be important to help inform these investigations. A GA is

applied to spectrum allocation amongst cognitive radios, dynamically altering the

spectrum allocated to each radio to meet its changing demands while also ensuring

secondary transmitters do not interfere with primary transmitter in [26].

Neural networks have also become a popular AI technique on which to base CEs

that optimize different aspects of the network in which they are deployed. A neural

network-based CE for Access Point (AP) selection in mobile nodes is presented in

[27]. The engine is trained on observed transmission conditions and the performance

resulting from various AP selections and then helps select which AP should be used as

the node moves around. Just as GAs have been used to handle spectrum allocation

amongst network users, researchers have also evaluated using neural networks for

this purpose. A fuzzy neural network for use in managing spectrum allocation in

cognitive networks is presented in [28]. In order to increase the efficiency with which

the spectrum must be used, frequency bands that are not in use, referred to as

spectrum holes, must first be detected. To this end, [29] presents a neural network

14

Figure 3. Cognition cycle used by cognitive nodes in decision making, adapted from
[22]

that, once trained on channel characteristics, may be used to determine whether or

not a given band is in use based on currently-observed operating conditions.

There are also numerous proposed CEs that combine techniques or algorithms to

create hybrid engines wherein the performance using a combination of approaches is

better than what any individual approach offers. A hybrid CE for achieving efficient

spectrum management in cognitive networks is detailed in [29]. Determining priority

amongst competing SUs is handled by a new queuing scheme and SUs share infor-

mation with each other as they are added to the network rather than each evolving

its behavior in isolation. In [30], a hybrid engine based on Case-Based Reasoning

(CBR) and Decision Trees (DTs) is presented. The CBR path in the engine is used

when environmental conditions are within a pre-defined bound to a case previously

encountered, defined and stored in the engine’s database while the engine’s DT path

is used when operating conditions not previously encountered are observed. In this

15

case, a new case is defined and stored in the engine’s database. A CE based on a

hybrid Case-Based Reasoning-Quantum Genetic Algorithm (CBR-QGA) is proposed

in [31]. Rather than random population initialization as if often done in GAs, the

engine uses case-based reasoning to initialize the population with solutions that are

expected to perform well based on previously encountered conditions and the solu-

tions that worked well in those situations. Then, the Quantum Genetic Algorithm

(QGA) GA evolves new solutions from the population initialized via CBR. Tests dis-

cussed in the paper indicate the new engine outperforms existing CBR-, GA- and

QGA-based engines in terms of converge speed and quality of optimization.

Several other AI approaches that have been or could be used as a basis for CEs are

explored in [32]. The paper discusses factors that may affect the selection of a given

technique for a CE depending on the application and the ramifications the selected

AI approach will have on the engine itself.

2.5 Cognitive Radio Architectures

Just as many different kinds of CEs have been explored, several architectures have

been proposed in the literature for use in organizing cognitive radio nodes and the

networks that use them. Some proposals focus more on the theoretical aspects of

cognitive node and network architecture. As a result, while useful to a certain extent

in the design of real networks, they face several shortcomings that must be addressed

in an actual implementation. Other architectures place a greater emphasis on practi-

cality and implementation, arguably providing a more useful foundation on which to

build a real radio or network. Regardless for the intended purposes of the two kinds

of proposals, both provide important insight and ideas. Perhaps the most important

insight is the modularity inherent in the majority of these architectures. The nodes

and network are broken down into well-defined components with set interfaces. In

16

that way, single modules may be changed or updated to alter performance without

affecting the rest of the network, as long as the new module conforms to the same

interface.

The architecture presented in [33] manages resources using a Cognitive Resource

Manager (CRM) to coordinate network reconfiguration actions. The CRM, which

is built from several subcomponents, collects pertinent information, makes tuning

decisions and maintains a database of current optimization priorities. The CRM’s

responsibilities closely align with those proposed for the theoretical CE. In [34], an

architecture for logically dividing the control plane from the data plane in a cognitive

radio network is presented. Nodes interact via the control plane to exchange rout-

ing information and constantly maintain optimal routes. Then, when data is to be

exchanged, nodes need not first find an optimal route as they are guaranteed by the

function of the control plane.

The Iris architecture, developed in [35], is intended for use in organizing the com-

ponents of a cognitive radio network. While the architecture targets real networks,

it is still useful in informing many decisions in designing a simulated network. Sim-

ilar to the previous architecture, Iris breaks the network and its constituent nodes

down into individual components. Different network devices are composed of one

or more such subcomponents and the network functionality is implemented through

interactions amongst the different devices. Three systems designed and implemented

using the Iris architecture, detailed in [36], demonstrate how a wide range of systems

may be quickly developed and deployed with the architecture. The first system uses

multi-core GPPs to implement a new physical-layer signaling protocol for network

coordination. The second system uses the Cell Broadband Engine (CellBE) from the

PlayStation 3 to perform cylcostationary signature detection while the third system

uses an FPGA to perform energy detection at the receiver to ensure optimal signal

17

reception. The emphasis on componentization allows existing modules to be reused

to simplify and streamline development and deployment.

Two components of interest from this architecture are execution engines and

switches. Execution engines (not to be confused with a cognitive engine) define

different pathways for data processing within nodes and are composed of multiple

subcomponents. For example, execution engines may be used to define the transmit

and receive chains within radio nodes. Closely related to the execution engines, switch

components are used to choose which data path should be used for processing when

multiple paths are available. Thus, the two architectural components may be used

to design and organize multi-radio network nodes, with the engines defining transmit

and receive chain(s) and the switch choosing which should be used. Another impor-

tant suggestion set forth by this architecture is to ensure a common interface to all

execution engines. In doing so, nodes with arbitrary engines may be built and the

engines swapped in and out without affecting the rest of the node. Not only could

this paradigm be used to implement devices that operate at the physical layer, it

could be used to define submodules that operate at different network layers within a

single device.

The Distributed Resource Map (DRM) architecture presented in [37], which tar-

gets ad hoc networks with no centralized infrastructure, utilizes a distributed rather

than centralized database for storing information. Each node is responsible for sens-

ing the transmission environment and neighbors periodically exchange environmental

condition information. The nodes then integrate all of this information together to

form a more accurate picture of current operating conditions. In addition to the

abstraction components responsible for these tasks, each node has a data acquisi-

tion component, a database and a DRM Manager, as shown in Figure 4. Similar

to the other architectures, the DRM architecture breaks the network and its nodes

18

into individual modules that represent discrete units of functionality. By doing so,

system capabilities may change or expand by simply changing modules. For example,

additional sources of information may be readily utilized by updating the data acqui-

sition component to query the new data source. This modularization allows system

capabilities to rapidly change or expand by eliminating the need to update multiple

components to implement new functionality.

2.6 Intractable Problems and Approximation Algorithms

In order to understand a what a GA is and the need for one in a cognitive engine,

two major classes of problems from fundamental computer science theory must first

be introduced. At risk of oversimplification, problems for which computer algorithms

may be written to find solutions fall into one of two categories. The first, so-called

Polynomial-time (P) solvable, are problems for which a computer algorithm may be

written to produce provably optimal solutions to instances of the problem and the

algorithm’s runtime increases according to a polynomial function of the input size.

The second major category is the Nondeterministic Polynomial (NP) time set of

problems. For these problems, a polynomial-time “certifier,” which takes a problem

instance and a proposed solution and determines whether or not the proposed solution

actually solves the problem instance, may be constructed. However, no algorithm

which finds provably-optimal solutions for instances of the problem with a runtime

that grows according to a poylnomial of the input’s size may be constructed [38].

In general, problems that belong to the class NP are referred to as “intractable”

because finding solutions for instances of them becomes computationally infeasible as

the input grows beyond a trivially small size. Both the P and NP classes are further

broken down into subclasses based on different characteristics, but these distinctions

are not germane here.

19

Figure 4. The Distributed Resource Map Architecture [37], c©[2012] IEEE

Two different problems from graph theory are used here to illustrate these two

types of problems as well as introduce GAs. In general, a graph is a set of nodes

N and a set of edges E, where each edge e ∈ E originates at a node n1 ∈ N

and terminates at another node n2 ∈ N . Further, a weight wn may be assigned

to each edge en ∈ E, where n ≤ |E|. Graphs are often used to describe some

sort of relationship between nodes, with the edges connecting the nodes providing

information about the relationship between the nodes it connects. For example, a

graph showing American cities with direct flights between them and the cost of each

flight is shown in Figure 5. This graph may be used to find the shortest distances

between two cities, where “distance” is defined according to the weight assigned to

each edge. Thus, as the weights assigned here are flight costs, the graph may be used

to find the cheapest flight(s) between two cities. Polynomial-time algorithms, such

as Dijkstra’s Algorithm, are known that provide provably optimal solutions for this

problem [39].

Another fundamental graph theory problem, arguably more interesting because it

belongs to the NP class, is the infamous Traveling-Salesman Problem. Put simply,

20

SEA

ORD

DCA

ATL

HOU

LAX

PWM

MCO

$200

$150

$75

$50

$60
$25

$100

$70

$200

$20
$80

$90

$110

$125

$160

$200

$40

$75

$30

Figure 5. Example graph showing flights between several American cities with their
associated costs

21

given a graph, the Traveling Salesman Problem seeks to find the optimal (usually,

“shortest” by some metric) route such that the salesman visits all nodes, normally

conceptualized as cities, exactly once and returns to the node (city) from which they

started [40]. For example, given the graph in Figure 5, the Traveling Salesman may

wish to find the least-costly route, starting and ending in Chicago, such that all other

cities are visited exactly once.

This may seem trivial at first glance and certainly for a small graph such as the one

in Figure 5, finding the optimal solution is relatively easy. However, as the number

of edges and nodes in the graph increases, finding the optimal solution becomes

more difficult. For example, if the graph included all flights for all airlines between

all cities in the United States, finding the optimal solution the Traveling Salesman

Problem would be much more difficult. Finding the solution to this problem involves

considering all possible paths of length |N | that originate and terminate at a selected

node in the graph and visit all other nodes. Then, for each such path, it must be

determined whether the path provides a route from the desired starting city to all

other cities and then back to the originating city and does so more cheaply than all

other routes. In general, there are

(|N | − 1)!

2
(1)

such paths. To see this, consider that from the first node there are |N | − 1 that

could be visited next. From the node that is visited first, there are |N |−2 nodes that

could be visited next. When the last node has been visited, the only node that may

be moved to next and still result in a valid solution is the starting node. Thus, there

are

(|N | − 1) (|N | − 2) (|N | − 3) . . . 1 = (|N | − 1)!. (2)

22

To obtain the correct number of possible paths and avoid double-counting paths,

(2) must be divided by two to obtain the correct number of possible paths [39].

Therefore, in the graph in Figure 5, as the number of flights (edges) grows, the number

of possible solutions grows exponentially. As a result, with even a relatively small

number of possible flights, the Traveling Salesman Problem becomes intractable.

Rather than simply giving up on NP problems, computer scientists have designed

numerous algorithmic paradigms to attempt to solve such problems. Rather than

looking to optimally solve instances of these problems, so-called approximation ap-

proaches seek to find “good enough” solutions, with some algorithms developed from

these techniques being able to guarantee a solution within some bound of the optimal

solution. One class of approximation algorithms, to which GAs belong, are referred

to bio-inspired because they are modeled after natural phenomena.

As their name implies, the inspiration for GAs comes from cellular mechanisms

for heredity and diversity. Within the GA paradigm, a method by which to encode

solutions to the problem within a data structure referred to as a chromosome is first

developed. In running the algorithm, an initial population is formed according to

a pre-defined scheme. Then, across multiple iterations referred to as generations,

members from the existing population are selected and a new population member is

formed through a process referred to as “crossover” or “recombination” involving the

two members selected from the existing population. Before the new member encoding

is finalized, it undergoes the “mutation” process in which parts of its encoding are

probabilistically altered. Finally, a fitness function is used to assign a value to the

new population member in accordance with how well it solves the problem of interest.

The fitness function is arguably one of the most important components of a GA.

Members are usually maintained within the population in accordance with their fit-

ness values, and some types of GAs selectively prefer more-fit population members

23

over less fit members. Thus, the fitness function can have a great effect over which

solutions are considered in the search for a “good” solution. A related concept is that

of the search space. In general, the search space may be thought of as all possible

solutions along with their fitness values, or how well they solve the problem. For

problems with only two or three variables, these spaces may be directly visualized

by plotting the fitness function. However, as the number of variables begins to grow,

visualizing the search space becomes increasingly difficult. However, the search space

may still be thought of as having possibly one, but likely more, “good” solutions with

high fitness values surrounded by many other less-fit solutions. A GA’s recombina-

tion mechanism aims to search around known “good” solutions to see if even better

solutions may be found in the vicinity (local search) whereas the mutation mechanism

seeks to break out of local search to see if better solutions may be found in previously

unexplored regions of the search space.

The Traveling Salesman Problem will be used to illustrate the GA paradigm.

The first step is to determine how solutions to the problem may be encoded. As

solutions consist of different combinations of edges from the edge set, they may be

specified as bit strings of length |E|. Then, after sequentially numbering the edges

as in Figure 6, a 1 in the bit position corresponding to a given edge indicates the

edge’s inclusion in a proposed solution whereas a 0 indicates the edge is not included

in the proposed solution. Given this encoding, the chromosome in Figure 7 encodes a

possible solution consisting of edges 1, 2, 4, 10, 11, 16, 17 and 18. That is, the route

goes from Portland to Chicago, then to Los Angeles, Seattle, Houston, Washington

D.C., Orlando, Atlanta and finally back to Portland at a total cost of $815.

Now that an encoding scheme is established, the next most important part of

the algorithm, the fitness function, must be developed. While here the problem

itself suggests a fitness function, it may become quite complex depending on the

24

SEA

ORD

DCA

ATL

HOU

LAX

PWM

MCO

1

2

3

4

5
6

7

8

9

10
11

12

13

14

15

16

17

18

19

Figure 6. Example graph showing flights between several American cities with flights
(edges) assigned a designated number

Figure 7. Example chromosomes for the Traveling Salesman Problem

25

application. For the Traveling Salesman Problem, the fitness function must assess

two things. First, it must total the cost of all flights in the proposed solution. Valid

solutions may then be compared based on this value to determine which is better.

The fitness function must also ensure the proposed solution is valid. That is, it must

ensure the route visits all cities exactly once and returns to the starting city. Once

the fitness function determines a given solution’s value, it assigns that value to the

encoded solution.

By comparison, the remaining parts of the GA are relatively straight-forward.

The population size (number of visited solutions to track) must be determined as

it will affect the portion of the search space that has been explored and is used to

generate new solutions. The number of generations to use in developing solutions,

which dictates how intensive is the local search around known “good” solutions, must

also be determined. Finally, the mutation mechanism, which affects the algorithm’s

ability to break out of local search and explore other regions of the search space, must

be determined. General recommendations as to the population size and number of

generations to use are available and several different mutation mechanisms have been

proposed [41]. In general, the number of existing solutions selected for recombination,

the recombination mechanism itself and the number of new population members thus

produced are arbitrary and may be specified by the algorithm’s designer, though two

solutions are often selected for recombination into a single new solution [42].

Two solutions to the Traveling Salesman Problem given in Figure 6 are used to

illustrate the GA’s execution. The two solutions used here are shown in Figure 7.

The first solution is the same as given previously while the second is another valid

solution to the problem. (A randomly-initialized population is assumed here and not

included in full; it is further assumed these two solutions were selected at random from

this population.) Once the algorithm chooses these two solutions, it must recombine

26

them in some way to form a new solution. Here, single-point crossover in which the

chromosomes are split into two halves and opposite halves recombined to form a new

solution, is used. The two solutions are split after the eleventh bit and then the first

half of the first chromosome and the second half of the second chromosome are used

to form the new population member, given in Figure 8. After the new chromosome is

formed via recombination, the new population member must be selectively mutated.

Here, each bit is subject to the same probability of mutation of 1
19
∼= .053. Thus, on

average, one bit in each chromosome is flipped. Here, the fourteenth bit is randomly

flipped and the resulting chromosome is given in Figure 9. After mutation, the

fitness function is evaluated on the new population member and, if the new member’s

fitness value is high enough, it is added to the population. After the new member

is selectively added to the population, the entire process begins again with two new

members of the population being selected for recombination. This process repeats

for however many generations the algorithm is programmed to use in finding “good”

solutions. When this number of generations is reached, the algorithm returns the best

solution it has found.

Sample pseudocode for a GA is listed in Algorithm 1. As stated previously, several

factors such as the population size and number of generations the algorithm is set to

use in finding solutions affect its performance. Chapter 3 details the development of

the algorithm used in the cognitive engine for the current research.

Figure 8. New population member after recombination from parent chromosomes, split
and recombined after bit 11

27

Figure 9. New population member after mutation, bit 14 mutated

Algorithm 1: Pseudocode for Generic Genetic Algorithm[42]

Data: Number of generations
Result: Solution with highest fitness of those considered
Initialize population Evaluate fitness of each individual in initial population
while Number of generations not reached do

Select λ population members for recombination;
Recombine λ members into µ new population members;
Mutate µ new population members;
Evaluate fitness for each of the µ new population members;
Replace the population with the most-fit members from the combined set
of original and new members;

end

2.7 Digital Signal Processing Fundamentals

The concepts of modulation scheme and order, bandwidth and signal power (re-

ferred to hereafter as simply “power”) are important to the discussion that follows

and thus each warrants a brief introduction here. Power is perhaps the easiest of the

three to understand and corresponds to the amount of energy with which a signal

is transmitted. The power with which a signal is transmitted affects how far it may

propagate and still be correctly received. As the signal propagates through the atmo-

sphere, it is attenuated (loses energy) by interactions with molecules in the air. Thus,

as the transmitter and receiver move farther apart, all other things being equal, the

signal must be transmitted with more power in order to be received.

Power is often reported in units of dBm. This is simply the ratio of the power as

given in Watts to 1 milliwatt and may be calculated as

28

PdBm = 10 ∗ log10

(
Pw

1W

)
+ 30 (3)

Another important measure related to signal power is signal-to-noise ratio (SNR).

As its name implies, this is the average signal to average noise power and is often

reported in dB. Similar to dBm, dB is a ratio between two signals, except with dB, the

signal to which a signal is compared is arbitrary, not 1 milliwatt [43]. Therefore, as

SNR increases, the signal power becomes increasingly stronger than the noise power.

Bandwidth refers to the frequency range across which a given signal is transmitted

and relates to the amount of information the signal may carry at a specific point in

time. In general, a signal with a wider bandwidth may carry more information.

Increasing the bandwidth without similarly adjusting the symbol rate simply leads to

more samples for the same symbol rather than additional symbols (information) [43].

FEC may be thought of as adding information to the transmitted signal to combat

signal degradation and data loss. With FEC, the transmitter pre-processes the bits

to be sent before modulation and adds additional bits to the data. On the receiving

end, the receiver uses this additional information to detect and correct bit errors that

occurred during transmission. The manner in which the transmitter and receiver pro-

cess the signal depends on the encoding scheme used and how robust the transmission

is against bit errors varies between FEC techniques. Additionally, no FEC scheme

can allow for all bit errors regardless of interference level in the transmission medium

to be corrected.

Modulation scheme and order refer to the manner in which data to be transmitted

is encoded on a carrier signal. In general, carrier signal properties (e.g., frequency,

amplitude, phase, etc.) must be altered, or modulated, in such a way that their val-

ues, or the difference in their values in successive signal samples, may be interpreted

in accordance with an agreed upon scheme and the data extracted. To help illustrate

29

this, consider a simplistic example in which a signal is modulated between two fre-

quencies. Let the higher frequency stand for a ‘1’ bit and the lower frequency stand

for a ‘0’ bit. Given this information, the transmitter may encode the information

to be sent and any receivers which know the frequencies (carrier signal properties)

to monitor and which frequency corresponds to which bit (modulation scheme) may

recover the data. Real-world modulation schemes are much more complex than this

simplistic example but it helps illustrate the main idea. Carrier signal properties are

altered in a controlled way to encode data and the receivers know the scheme by

which the data is encoded and can thus recover the data.

While the modulation scheme in use determines the signal properties that are

used to encode data, the modulation order determines the rate at which data may

be transmitted [43]. To understand the relationship between constellation size and

bits per symbol, the concept of a communications symbol must first be introduced.

Rather than transmitting bits, real-world digital transmissions actually transmit these

communications symbols. To do this, a constellation that maps the symbols to bit

strings must first be constructed. Figure 10 shows a possible constellation for a Phase-

Shift Keying (PSK) modulation scheme with a constellation size of 8. Similarly,

Figure 11 shows a possible constellation for a Quadrature-Amplitude Modulation

(QAM) scheme with a constellation size of 16.

To use these constellations, the bit string each symbol represents must first be

determined. Further, to determine how many symbols are needed to transmit k bits

in a single symbol, consider the case when k = 1. To transmit a single bit at a time,

two symbols are needed. One symbol corresponds to ‘1’ and the other symbol to ‘0‘.

(In this case, symbols and bits may be thought of synonymously but this does not

hold in general.) When k = 2, four symbols are needed as there are now four bit

strings that could be transmitted (namely, ‘00’, ‘01’, ‘10’, and ‘11’). For k = 3, eight

30

symbols are needed (the bit strings may be formed by adding a ‘0’ and ‘1’ to the end

of the bit strings previously given). Thus, the number of symbols needed to transmit

k bits at a time is 2k.

While theoretically any size constellation may be used, there is a practical limit in

real transmissions. Given the modulation scheme and constellation, the receiver’s job

is to map the received signal to one of the modulation symbols in order to determine

the transmitted bit string. Due to electromagnetic interference (i.e., noise), there

is always some uncertainty in the signal. The uncertainty introduced in the signal

may be visualized using Figures 10 and 11. In a perfect world, the received symbols

would always match the constellation perfectly. In the real-world, however, noise

causes the received symbols to be distributed around the constellation point. As a

result, the constellation size is constrained by the amount of noise present in the

transmission medium and the receiver’s sensitivity. If the receiver is not sensitive

enough to distinguish between two constellation points, the received signal may be

misinterpreted. Similarly, if the interference is high enough, it could cause the receiver

to map the signal to the wrong constellation point. In the face of increased noise,

then, the constellation size (and thus amount of information that may be sent in one

symbol, i.e., data rate) must decrease.

It should be noted the constellation is arbitrary. While the size of constellations

used in real-world transmissions are usually a power of two, which symbol corresponds

to which bit string and where the symbols are placed on the quadrature and in-phase

axes may be adjusted according to application.

2.8 Network Simulation Frameworks

There is no shortage of open-source network simulators readily available for use

in research by performing high-fidelity simulations of target networks. The upside to

31

Figure 10. Example PSK modulation scheme constellation using a modulation order
of 8 with each symbol representing 3 bits

Figure 11. Example QAM scheme constellation. With a modulation order of 16, each
symbol represents 4 bits

32

this variety of simulators is it is likely one or more will offer the features necessary for

a given simulation. However, the drawback to having several simulation frameworks

from which to choose is it can make it more difficult to make a final determination of

which framework should be used in a given research effort. There are many factors

to consider when choosing a simulation package, including

• Previous experience with one or more simulation frameworks

• The features offered by each framework and those required by the target network

simulation

• The languages used in the different frameworks and prior experience with these

languages

• Simulation libraries available for the framework and the extent to which neces-

sary functionality is provided in these libraries

• The extent to which the open-source community has embraced the framework.

This will affect the quality and quantity of the available supporting libraries as

well as the amount of troubleshooting information that may be found on the

internet.

Studies that compare different frameworks to each other are available in the liter-

ature. Some of the more well-known simulators include Network Simulator 2 (NS-2),

Network Simulator 3 (NS-3), the Object Modular Network Testbed in C++ (OM-

NeT++), SymPy (Python-based simulation framework) and the Java in Simulation

Time package [44, 45, 46]. The consensus amongst these studies is that no one sim-

ulation framework is the best choice in all situations. As a result, the framework

used in a given research effort must be chosen based on a combination of the afore-

mentioned factors. The current research uses OMNeT++ for building and running

33

the target cognitive network. The reasons for this include prior experience with the

simulation package and extensive libraries in OMNeT’s INET Framework that may

be used or extended to create cognitive networks [47]. Additionally, many in the

research community have embraced OMNeT++ as a viable simulation platform for

cognitive radios and networks, as evidence by previous research efforts [48, 49, 50].

2.9 Virginia Polytechnic Institute and State Uiversity’s Cognitive Radio

Network

The first framework used to conduct experiments to determine a lower bound

on the latency between nodes in a wireless cognitive network is Virginia Polytechnic

Institute and State University’s (hereafter, Virginia Tech) COgnitive Radio NETwork

(CORNET). CORNET is a network of 48-nodes deployed in Kelly Hall on Virginia

Tech’s campus. CORNET is specifically designed to aid in the development of SDR

network protocols by handling the deployment and configuration of the network,

freeing CORNET users to focus on protocol development [51]. In order to interact

with the network, users first obtain a CORNET account and then remotely connect

to the nodes they wish to use in their experiments via Secure SHell (SSH). In order

to run experiments, users must define a master scenario controller and a network

topology for each scenario. Then, using CORNET’s Cognitive Radio Test System

(CRTS) software, the user instructs one CORNET node to act as the experiment

controller and run the experiment. That node reads the master scenario controller

and scenario topology files, initializes the required number of additional CORNET

nodes and runs the experiment. The results of the experiment are written to log files

in the user’s directory, ready to be ingested into MATrix LABratory (MATLAB) and

analyzed.

34

III. Cognitive Engine and Test Network Design and
Implementation

3.1 Development of OMNet++ Network for Cognitive Engine Testing

In order to test the engine developed in the next section, a simulated network in

which to place the engine is needed. As discussed in Chapter II, OMNeT++ and

the INET Framework provide extensive module libraries which implement much of

the functionality necessary to build a simulated cognitive network. The network de-

veloped here, shown in Figure 12, mainly uses these modules off-the-shelf and only

extends a select few in order to integrate the engine into the network. The “net-

workVisualizer” module visible in Figure 12, is used off-the-shelf and is responsible

for helping provide support in visualizing the simulation. (The simulation could be

run without visualization, however this could complicate troubleshooting should issues

arise.) Simiarly, the “networkConfigurator” and “networkRadioMedium” modules are

used unaltered and provide support in configuring the network (for example, setting

IP and MAC addresses) and maintaining channel quality information, respectively.

The network nodes visible in Figure 12 are of the “AdhocHost” type, a node type

provided by the INET framework. While complete details of the node modules and

their submodules are not provided here, a sufficiently detailed discussion in order

to illuminate the node components with which the Cognitive Engine (CE) interacts

and which therefore need to be altered to allow for this interaction is warranted.

(Additional information about components and their properties not discussed here

may be found in [47].)

The energy modules, which track the node’s energy production, storage and usage,

are useful if the simulation should take these factors into account. These subcompo-

nents are not used here but, as Unmanned Aerial Vehicles (UAVs) run on batteries

35

Figure 12. The OMNeT++ network used to test the cognitive engine

Figure 13. Internal structure of the “Adhoc Host” module type

36

and energy consumption is a concern, could be included in future work to explore

how the CE affects battery life. The “mobility” module allows nodes to move in the

virtual environment. This component is likewise not used here but could be included

in future work to see how the CE performs as the UAVs get closer to and farther away

from stationary jammers. The “interfaceTable” and “routingTable” components con-

tain Internet Protocol (IP) and Medium Access Control (MAC) addresses and their

associated interfaces, respectively. These components may be manually configured

but here, automatic configuration by the network configurator is used. The “pcapRe-

corder” component may be used if packet captures of messages exchanged between

nodes is desired but is not used here.

The Transmission Control Protocol (TCP), User Datagram Protocol (UDP) and

Stream Control Transmission Protocol (SCTP) applications (“tcpApp”, “udpApp”

and “sctpApp”, respectively) represent other modules which implement one of several

different TCP-, UDP- or SCTP-based applications. Custom applications may be

implemented by extending one of the existing base applications. As the present

experiments are concerned with message latencies rather than their contents, here the

“UDPBasicApp” and “UDPSink” modules provided by the INET library are used.

The “tcp”, “udp” and “sctp” components provide an interface between the node’s

applications and its network layer (“networkLayer”). The node may optionally also

have a ping application (“pingApp”), which talks directly to the network layer, and/or

a TUN application (“tunApp”), but these components are not used here.

The last set of node subcomponents (“wlan”, “eth”, “ext”, “ppp” and “tun”)

provide the external interfaces for messages to leave the node bound for another

node. Each component provides an array of the interface type it implements to allow

the node to have multiple outbound paths of each interface type. For example, the

Ethernet component (“eth” in Figure 13) could be used to provide multiple ports on

37

a simulated router, analogous to the physical ports on a real router. Here, only the

“wlan” component is used to provide a wireless interface between the node and its

transmission environment.

The “wlan” node component provides an array of wireless network interface cards

(NICs). The INET framework provides several working NICs and additional types,

which extend the functionality of the existing types, may be implemented. Here, the

“WiressNIC” module provided by the INET framework is used. Figure 14 shows the

internal structure of this module type. The ”classifier” component provides quality-

of-service (QoS) classification for incoming messages. The “mac” component provides

the implementation of the MAC protocol that is to be used for incoming and outgoing

messages. Here, the standard Carrier-Sense Multiple Access with Collision Avoidance

(CSMA-CA) protocol, provided by the INET framework, is used. Additional MAC

protocols may be implemented and used by substituting them in for this component.

Finally, the “radio” component provides the implementation of the radio used for

transmitting and receiving radio signals. Here, the “APSKScalarRadio” module type

provided by the INET framework is used. The INET framework includes additional

radio types and new radios may be implemented by extending the existing types.

Figure 15 shows the internal structure of the “CRCENNetworkRadio”, a new

radio type, implemented by extending the provided “APSKScalarRadio” module type

in order to allow the radio to process incoming messages from the CE and update

its operating parameters. When the radio receives a message, it first checks the

message kind to determine if the message originated at the CE. If so, the radio

further processes the message to extract the encoded parameters and updates its

operating characteristics accordingly. If the message did not come from the CE, the

radio processes it in the same manner as the base “APSKScalarRadio” module type.

The code for the “CRCENetworkRadio” is given in Appendix B.

38

Figure 14. Internal structure of the “Wireless Network Interface Card” module type

In Figure 15, the “energyConsumer” component has a similar function as in the

“AdhocHost” module; it aids in tracking the radio’s energy usage and is not used here.

The “transmitter” and “receiver” implement the radio’s transmit and receive signal

processing chains, respectively. Finally, the “antenna” component implements the

radio’s antenna and interacts with the network’s radio medium to determine trans-

mission range and which other nodes will receive a given transmission. The INET

framework provides several transmitter and receiver chains as well as several antenna

types. Here, the “IsotropicAntenna”, “APSKScalarTransmitter” and “APSKScalar-

Receiver” module types, provided by the INET framework, are used.

3.2 Cognitive Engine for Optimizing Latency

Introduction.

As discussed when Chapter 2 introduced the concept of a cognitive radio, the CE

is the radio’s brain. In developing a CE, the main characteristics that distinguish

one engine from another is the Artificial Intelligence (AI) technique upon which the

39

Figure 15. Internal structure of the new radio type, extended from the “APSK Scalar
Radio” module type, to allow the engine to update the radio’s operating parameters

engine is based and the manner in which the engine relates the tunable parameters

to the performance objectives. In light of [24], which provides several reasons why

heuristic-based CEs may be preferable to other AI approaches such as expert sys-

tems or neural networks, the CE developed here is based on a genetic algorithm. In

comparison to genetic algorithms and other heuristic AI techniques, expert systems,

neural networks and similar AI approaches are relatively inflexible in the face of previ-

ously unencountered situations and may fail to find acceptable solutions in such cases.

In heuristic-based approaches, such as the genetic algorithm-based engine developed

here, a fitness function relates the tunable parameters to the performance objectives.

This function accepts information regarding the transmission environment and a spe-

cific assignment of values to each of the tunable parameters and outputs a fitness

value based on this information. This value measures how suitable is a given solution

and is used to compare one solution to another. Importantly, just as the CE forms

the core of a cognitive radio, the fitness function forms the core of heuristic-based

CEs. Two different engines could use the same tunable parameter and performance

objective sets but use different fitness functions and, as a result, output different

solutions.

40

Deciding Performance Objectives and Tunable Parameters.

Closely related to the fitness function is the choice of tunable parameters and op-

timization objectives. Determining the performance characteristics the engine should

optimize is relatively straight-forward. As stated previously, latency is the main per-

formance objective of interest here. The CE should operate to minimize the delay

between when a transmitter sends a message and the intended receiver receives the

messages. While there is no requirement a fitness function or CE take more than

one objective into account, care should be taken to try and anticipate whether a

single-objective function could lead to solutions that optimize the fitness function’s

value but are clearly undesirable. As a simplistic example, one way to optimize la-

tency would be to prevent any nodes from sending messages, resulting in zero latency.

While this would optimize a fitness function that only takes latency into account, such

a solution is clearly undesirable; the network is useless if nodes cannot communicate.

Without additional objectives in the fitness function, however, the CE has no way of

knowing the optimal solution it has decided upon is not acceptable. As a result, the

CE developed here will also take throughput into account in optimizing the network’s

performance. In attempting to reduce latency, the goal of simultaneously maximizing

throughput should drive the CE away from solutions that reduce latency by simply

reducing traffic. Finally, as the goal of this research is to explore the feasibility of

incorporating a real-time cognitive engine into a UAV swarm, power consumption is

also a performance metric of interest. While power is not included in the simulation

itself, incorporating power considerations into the fitness fuction will drive the CE

away from solutions that solve latency issues by simply increasing the power output

of transmitters. Therefore, the fitness function developed for the CE will be a multi-

objective function, though it will give greater weight to the latency objective than to

the throughput or power objectives.

41

Compared with deciding upon the set of performance objectives, determining

which parameters to allow the CE to use in tuning the network’s performance is more

challenging. Based on their use in the preliminary latency experiments detailed in

Section 4.1, the tunable parameter set here includes both modulation scheme and

order. While a fitness function could be based solely on these two parameters, this

would result in a trivial search space and negates the power of a genetic algorithm.

The advantage of biologically-inspired algorithms such as a genetic algorithm is their

ability to efficiently explore large search spaces and find good (though not guaranteed

optimal) solutions. As a result, the tunable parameter set should include additional

variables to allow for a larger number of possible solutions.

The challenge, then, is to determine which additional parameters to include in

the tunable parameter set to allow for a greater number of possible solutions. Pa-

rameters that have a greater impact on system performance are clearly preferable

to parameters that have a smaller performance impact. [52] surveys several perfor-

mance parameters and categorizes their impact on system performance with respect

to a combination of five different goals. Consistently, of the parameters considered

and not already in the tunable parameter set here, power and bandwidth showed the

greatest impact on performance. The survey emphasized minimizing bit error rate

(BER) while also considering throughput. While these are not the same objectives

being sought here, it is reasonable to expect that parameters that have a consider-

able effect on BER or throughput will have a similar effect on latency. For example,

as used here, latency measures the time between when a message is sent from the

network layer at the sender and when the network layer in the receiver receives the

message. This potentially requires the sender to prepare multiple messages at the

link and physical layers and then transmit these messages to the receiver. A delay

in any of these messages will increase the latency in receiving the message at the

42

network layer in the receiver. As a result, increasing BER, which could potentially

cause a greater number of retransmissions at the link layer, would increase latency.

Therefore, the tunable parameter set also includes power and bandwidth.

The final step in determining the set of tunable parameters is deciding on valid

values for each variable. While a large search space is desirable, it is possible for the

search space to grow too large. In such cases, a genetic algorithm would either need

an inordinate amount of time to search a reasonably-sized portion of the search space

to increase confidence it finds a good solution or it would search a portion of the

search space that is too small and which yields low confidence it finds a reasonably

good solution. Constraining the modulation schemes under consideration is relatively

easy. The INET modules in use here only support Quadrature Amplitude Modulation

(QAM) and Phase Shift Keying (PSK) modulation. For constellation size, the INET

modules in use allow for powers of two up to and including 256. Such a large con-

stellation size is virtually impossible to achieve with PSK modulation and difficult to

achieve with QAM except in scenarios with extremely low noise levels. The allowed

values for power and bandwidth are adapted from [53], with the minimum and max-

imum values and ranges slightly altered to result in a number of possible values that

is a power of two. This is to ensure all possible bit strings for the genes encoding each

parameter are valid. The chromosome structure for the genetic algorithm is presented

in the next section. Table 1 summarizes the tunable parameters, their maximum and

minimum values and their step size.

43

Table 1. Parameters available to genetic algorithm for use in tuning network perfor-
mance, along with minimum and maximum values and step size

Parameter Minimum Value Maximum Value Step Size

Modulation Scheme* NA NA NA

Modulation Order 2 256 Powers of two

Power (dBm) 4 35 1 dBm

Bandwidth (mHz) 1 32 1 mHz

* - Allowable values are PSK and QAM

Chromosome Structure.

Before developing the fitness function, Table 1 may be used to determine an

appropriate chromosome structure to encode the parameter settings. First, as there

are only two possible values for the modulation scheme, a single bit may be used

to encode this value, where “0” corresponds to PSK modulation and “1” encodes

QAM. Next, there are 8 possible values for the modulation order, requiring 4 bits

for encoding. Care must be taken during the genetic algorithm’s execution to ensure

no invalid encodings are generated either through random population initialization

or mutation. For example, “0000”, denoting a modulation order of zero is invalid, as

is anything greater than “1000”. (Theoretically, constellation sizes larger than 256

are possible, but are rarely seen in practice and thus are not considered here.) For

power, there are 32 possible values, requiring 5 bits to encode each value. Due to

the range of values considered, “00000” corresponds to a power setting of 4 dBm and

“11111” corresponds to a value of 35 dBm. Therefore, 4 must be subtracted from the

desired power setting before encoding and added to the decoded value to obtain the

correct power setting. Similar to power, there are 32 possible values for bandwidth,

also requiring 5 bits to encode each value. Due to the range of values considered,

“00000” corresponds to a bandwidth of 1 MHz while “11111” denotes a value of 32

44

MHz. Therefore, 1 must be subtracted from the desired bandwidth setting before

encoding and added to the decoded value to obtain the correct bandwidth setting.

Figure 16 shows an example chromosome containing a set of parameter values. Ap-

plying the encoding outlined above, this chromosome encodes a modulation scheme

setting of QAM. Further, the bits per symbol setting contained within the chromo-

some is two while the power setting is 11 (from chromosome) +4 (required offset)

= 15 dBm. Finally, the bandwidth setting is 13 (from chromosome) +1 (required

offset) = 14 MHz.

Relating the Tunable Parameters to the Performance Objectives through

a Fitness Function.

Now that the performance objectives of interest and parameters the engine may

use to tune network performance are established, the function that will be used to

produce a fitness value for each solution considered must be developed. Rather than

developing a single function to capture all performance objectives in a multi-objective

problem, it is usually easier to develop separate fitness functions for each objective and

then combine them together. This approach will be used here. In order to accomplish

this, care must be taken to ensure the possible range of values output by each of the

individual fitness functions is the same. This is often accomplished by normalizing the

Figure 16. Example of parameter encoding in chromosome

45

functions to output a value between 0 and 1. Finally, it is also easier if all objectives

have the same goal (i.e., minimization or maximization). Due to the manner in

which the individual objectives are normalized here, discussed below, latency and

throughput fitness value close to 1 are preferable while power fitness values close to

0 are preferable. Before the power fitness may be added to the fitness value for the

other two objectives, it must be transformed into a maximization problem. Otherwise,

tradeoffs in latency or throughput and power consumption may mask which of two

solutions is preferable. Thankfully, as the possible values that may be returned by

each of the fitness functions is normalized to the range of 0 to 1, this transformation

may be easily accomplished by simply subtracting the fitness value returned for the

power objective from 1. In that way, the goal of minimizing power consumption is

the same as maximizing the resulting value when the normalized power fitness value

is subtracted from 1. With the fitness function structure as described, solutions with

larger fitness values are preferable and different performance objectives may be given

different levels of importance by incorporating weights into the fitness function.

Latency Fitness Function.

The latency fitness function is developed in a similar manner as the throughput

fitness function in [53], by taking into account the probability of a bit error based

upon the transmission parameters in use and the channel quality. An expression for

the latency in terms of the physical layers frames required to transmit the network

layer packet, the probability a given frame is received in error and the latency for

a single frame is first developed. This expression is then normalized to produce a

result between 0 and 1, the associated latency fitness. Let PS denote the packet size

of a network level packet and let PSH denote the size of the header associated with

the packet. Further, let DG denote the length of a link layer datagram and DGH

46

denote the datagram header size. Finally, let FS denote the length of a physical layer

frame and let FSH denote the frame header size. To determine the total number of

frames that must be transmitted, the total number of bits that must be transmitted

must first be calculated. This may be determined by adding the required number of

datagram header bits to the packet data and header bits and dividing by the frame

size. Therefore, the number of frames that must be transmitted to send a single

network level packet is

Frames =

⌈
PS + PSH + PS+PSH

DG
∗DGH

FS

⌉
. (4)

Now consider a single physical layer frame and let Pbe be the probability a single

bit is received in error at the receiver. In order for a single frame to be received

successfully, all of the (FS+FSH)∗8 bits that compose the frame must be successfully

received. The probability of the receiver receiving a single bit correctly is

PBit successfully received = 1− Pbe. (5)

Therefore, for the frame to be successfully received, this event must occur (FS +

FSH) ∗ 8 times in a row. The probability of a frame being successfully received is

PFrame successfully received = (1− Pbe)
(FS+FSH)∗8. (6)

Conversely, the probability of a frame not being received successfully may be given

as

PFrame not successfully received = 1− PFrame successfully received

= 1−
(

(1− Pbe)
(FS+FSH)∗8

)
.

(7)

Latency for a single network layer packet may be thought of as the time it takes

47

to transmit a single frame from the sender to the receiver multiplied by the expected

number of frames required to transmit the packet from the sender to the receiver,

when bit errors are taken into consideration. In order to determine an expected

number of frames that must be transmitted to successfully send the network packet,

a Geometric distribution [54] using the probability of a frame not being successfully

received as the probability of failure may be set up as

f(x) = (PFrame not successfully received)x−1 ∗ (1− PFrame not successfully received), (8)

where x is a geometrically distributed random variable denoting the expected number

of times a single frame must be sent before it is successfully received. Therefore, the

number of frames that must be sent to transmit a given network layer packet from

the sender to the receiver is

E[Frames] = E[x] ∗ (# Frames), (9)

where E[x], the expected number of times a given frame must be sent before it is re-

ceived correctly, may be calculated from general results for the Geometric distribution

[54] as

E[x] =
1

1− PFrame not successfully received

. (10)

Finally, to calculate latency, the expected number of frame transmissions is multiplied

by the per-frame latency, denoted LatencyF . Thus

48

Latency = E[Frames] ∗ LatencyF

= E[x] ∗ (# Frames) ∗ LatencyF

=
1

1− PFrame not successfully received

∗

⌈
PS + PSH + PS+PSH

DG
∗DGH

FS

⌉
∗ LatencyF

=
1

1−
(

1−
(

(1− Pbe)
(FS+FSH)∗8

)) ∗ ⌈PS + PSH + PS+PSH

DG
∗DGH

FS

⌉
∗ LatencyF .

(11)

While (11) gives an expression for the latency, as discussed previously, this value

must be normalized to a value within the range of zero to one so it may be combined

with the other fitness function values to yield an overall fitness value for a given

parameter set. To do this, the expression given in (11) may be compared to the

latency that would result if there were no bit errors. In this case, (11) reduces to

LatencyNo bit errors =
1

1−
(

1−
(

(1− 0)(FS+FSH)∗8
)) ∗ ⌈PS + PSH + PS+PSH

DG
∗DGH

FS

⌉
∗ LatencyF

=
1

1−
(

1−
(

(1)(FS+FSH)∗8
)) ∗ ⌈PS + PSH + PS+PSH

DG
∗DGH

FS

⌉
∗ LatencyF

=
1

1− (1− 1)
∗

⌈
PS + PSH + PS+PSH

DG
∗DGH

FS

⌉
∗ LatencyF

=

⌈
PS + PSH + PS+PSH

DG
∗DGH

FS

⌉
∗ LatencyF .

(12)

Therefore, to normalize the latency value, the result of (12) may be divided by the

result of (11), yielding

49

LatencyNormalized =

⌈
PS+PSH+

PS+PSH
DG

∗DGH

FS

⌉
∗ LatencyF

1

1−(1−((1−Pbe)(FS+FSH)∗8))
∗
⌈

PS+PSH+
PS+PSH

DG
∗DGH

FS

⌉
∗ LatencyF

=
1
1

1−(1−((1−Pbe)(FS+FSH)∗8))

= 1−
(

1−
(

(1− Pbe)
(FS+FSH)∗8

))
.

(13)

In order to evaluate the latency fitness function (13), an expression for bit error

probability is needed. Such an expression is given in theoretical results for different

modulation schemes, reproduced below [55].

PPSK,BER =
2

log2M
∗Q

[√
T0B sin

(π
M

)√
r

2C

N

]
(14)

Similarly, the result for QAM is

PQAM,BER =
4

log2M
∗
√
M − 1√
M

∗Q

[√
3rT0BC

(M − 1)N

]
. (15)

Table 2 details the meaning of each symbol in the above equations.

Table 2. Meaning of symbols in the equations for BER for PSK and QAM modulation
schemes

Symbol Meaning

T0 Symbol Period

B Bandwidth

C Carrier Power

N Noise Power

M Modulation Order

r Coding Rate Factor

50

Further, the Q that appears in (14) and (15) is a reference to the Q function, which

is defined as

Q(x) =
1√
2π

∫ ∞
x

e−
x2

2 dx. (16)

The bandwidth, carrier power and modulation order are three of the variables

the CE has at its disposal to optimize network performance so their values will be

known when trying to evaluate the fitness function. Similarly, the noise power may be

obtained from the radio medium module within the simulation. The symbol period

is a function of the bitrate, which is set at the beginning of the simulation and is not

allowed to vary, and the modulation order. In particular, dividing the bitrate by the

modulation order gives the symbol rate. Then, taking the inverse of this value yields

the symbol period. Thus, all the necessary values are known when trying to evaluate

the fitness function.

The more difficult step in determining the bit error rate when trying to calculate

fitness values is the evaluation of the Q function. The integral in Equation 16 has no

closed-formed solution. While it could be numerically evaluated, the usual approach

is to use a pre-compiled table, similar to [56], to look up the approximate value. This

is the approach used here.

Throughput and Power Consumption Fitness Functions.

Unlike latency, fitness functions that relate throughput and power consumption to

network operating parameters are widely available. Here, fitness functions originally

given in [53] for these objectives, reproduced below, will be used.

51

ThroughputNormalized =
FS

FS + FSH +DGH + PSH

∗ (1− Pbe)
FS+FSH ∗Rc ∗ TDD,

(17)

where FS, FSH , DGH , PSH and Pbe are as previously defined, Rc is the bitrate when

coding is taken into account and TDD takes time-division duplexing into account.

The network simulated here does not use Forward Error Correction (FEC) coding

nor does it implement time-division duplexing. Thus, Rc and TDD are both set to

1. The fitness function for power consumption is

Power ConsumptionNormalized = α ∗ (Pmax +Bmax)− (P +B)

Pmax +Bmax

+ β ∗ log2 (mmax)− log2 (m)

log2 (mmax)

+ λ ∗ Rsmax −Rs

Rsmax

,

(18)

where Pmax and Bmax are the maximum transmit power and bandwidth, respectively,

P and B are the actual transmit power and bandwidth being used, mmax is the

maximum possible modulation order and m is the modulation order in use, Rsmax is

the maximum symbol rate and Rs is the symbol rate in use. The first component

takes into account the transmit power and bandwidth. The second two terms take into

account increased processing, and thus increased power consumption, required when

using progressively larger modulation orders and a larger sample rate. α, β and λ are

weighting parameters used to give the three components of the power consumption

fitness function different levels of importance.

Complete Fitness Function.

Taking the preceding into account, the complete fitness function is given as

52

F (Modulation,M,C,B) = W1 ∗
[
1−

(
1−

(
(1− Pbe)

(FS+FSH)∗8
))]

+W2 ∗
[

DG

DG+DGH + FH

∗ (1− Pbe)
DG+DGH ∗Rc ∗ TDD

]
+W3 ∗

[
α ∗ (Pmax +Bmax)− (P +B)

Pmax +Bmax

+ β ∗ log2 (mmax)− log2 (m)

log2 (mmax)

+ λ ∗ Rsmax −Rs

Rsmax

]
.

(19)

From Equation 19, it may be seen that for the latency and throughput objectives,

lower BERs correspond to more perfect reception that closely matches the theoreti-

cal performance achieved in the absence of bit errors. As this is the value by which

the realized latency and throughput are normalized, fitness values close to 1 indicate

performance that more closely matches this limit while fitness values close to 0 in-

dicate performance that is considerably below this upper bound. Thus, latency and

throughput fitness values close to 1 are preferable. Similarly, for power fitness, before

subtraction from 1, values close to 1 indicate power consumption that is approaching

the maximum possible power consumption while values close to 0 indicate little power

consumption. Thus, maximizing the value that is obtained when the power fitness

value is subtracted from 1 is the same as minimizing the power fitness value and, by

extension, the power consumption.

Cognitive Engine Algorithm.

Before concluding the chapter, the engine’s algorithm, pseudocode for which is

given in Algorithm 2, is briefly introduced. (The full code for the engine is given in

Appendix B.) As mentioned when they were introduced in Chapter II, a genetic al-

gorithm’s performance is largely dependent upon the population size and the number

53

of generations used. Here, a baseline population size of 50 and number of generations

of 200 is used. However, as detailed in Chapter IV, the effect of both the population

size and number of generations the engine uses in generating new solutions on the

fitness of found solutions and the engine’s runtime are explored.

From Algorithm 2, the required inputs for the engine’s genetic algorithm include

the current population and the number of generations the engine should use in pro-

ducing new solutions. Once the engine produces the number of specified generations,

it returns the most-fit solution it has found. In generating a new population mem-

ber, the engine randomly selects two existing population members. The engine then

splits these members into their constituent genes. For each of the new population

member’s genes, the engine randomly selects one of the two genes contributed by the

parent population members and assigns it to the new population member. Once the

engine forms the new population member, it mutates the newly formed chromosome.

For modulation scheme, power and bandwidth, this mutation is done randomly such

that, on average, one bit in each chromosome is mutated. Due to restrictions on the

modulation order, mutating this gene is not handled in the same fashion. First, if the

mutated modulation scheme is QAM, the mutated modulation order must be even.

Further, regardless of the mutated modulation scheme, the mutated order cannot

exceed 8 (a binary string consisting of a 1 followed by three 0s). Therefore, if the

mutated first bit is a 1, it sets all other bits. Thus, the mutation is handled such that,

on average, the bit only mutates one out of every eight times. The remaining bits are

mutated in a similar fashion as the bits for the other genes. Once the engine mutates

the modulation order, a final check to ensure QAM and an odd modulation order are

not combined in the new population member. If the engine detects this situation, it

sets the final bit of the modulation order gene to 0 and randomly selects one of the

other 3 bits to set to 1.

54

Algorithm 2: Pseudocode for Cognitive Engine Algorithm

Data: Current Population, number of generations
Result: Most-fit population member
while Number of generations not reached do

Randomly select two population members;
Split members into component genes;
for Each gene in new population member do

Randomly select gene from one of the two parents
end
Mutate new population member Calculate fitness for new population
member;

Add new member to population;

end

55

IV. Research Methodology

4.1 Latency Experiments using Virginia Tech’s CORNET

In exploring a cognitive network’s performance with a genetic algorithm-based en-

gine that targets latency for optimization, a lower bound on the latency of exchanged

messages in a wireless network to which the cognitive network’s performance may

be measured is needed. These initial tests will be conducted using Virginia Tech’s

CORNET which was briefly described in Chapter II. Though these tests could be run

with a set configuration (e.g., a single modulation scheme, constellation size and data

rate), the results may only be valid for that particular configuration. It is expected

latency will be largely independent of such factors as the major contributors to la-

tency are processing steps that must occur in all transmitters and receivers. However,

to ensure no unanticipated factors cause the latency lower bound determined through

this experiment to fluctuate significantly across configurations, several combinations

of modulation scheme, constellation size and data rate will be tested.

Independent and Dependent Variables.

One of the most powerful aspects of the CORNET framework is the considerable

number of transmission parameters it allows users to vary during the course of their

experiments. The Cognitive Radio Test System (CRTS) allows the user to specify over

50 different transmission parameters in a given scenario, including transmitter and

receiver modulation scheme, constellation size, data rate, frequency, gain, subcarriers

and Forward Error Correction (FEC). Additionally, a user-provided Cognitive Engine

(CE) may alter any of these parameters as deemed necessary during the scenario. As

the number of parameters that may be altered, as well as the number of values each

parameter may take on, lead to a number of test cases that exhibits exponential

56

growth, the first step in the design of the CORNET experiments is to identify a

subset of the parameters to be investigated (independent variables) and the resulting

system response indicators (dependent variables) of interest. As previously identified,

the network performance metric (dependent variable) of interest here is the latency

with which network-level packets are sent and received between nodes.

The independent variables under investigation are modulation scheme, constella-

tion size and data rate. Within CRTS, the modulation scheme and bits per symbol

are controlled by the same parameter. The modulation scheme affects the efficiency

with which data is encoded and thus the rate at which data is transmitted from sender

to receiver. It is expected latency with Quadrature Amplitude Modulation (QAM)

will be less than with Ampitude Shift Keying (ASK), which is expected to be less

than the latency with Phase Shift Keying (PSK) due to a decrease in the encoding

efficiencies across the three modulation schemes. Further, it is expected that as the

constellation size used in conjunction with a given modulation scheme increases, the

latency will decrease. As discussed in Chapter 2, as the constellation size increases,

the number of bits that may be sent simultaneously also increases. Therefore, with

a larger constellation size, information may be sent at a faster rate and the time

required for the sender to transmit a given packet to the receiver is less than the time

required with a smaller constellation size. Finally, it is expected the data rate will

likely increase latency. As the data rate increases, the radios are exchanging messages

at a faster rate, resulting in a greater number of collisions. This will likely require

packets to be retransmitted, resulting in greater latency. Table 3 shows the indepen-

dent variables of interest, the values for each variable to be investigated during the

course of the experiments and the CRTS parameter that controls each variable.

57

Table 3. Independent variables for the CORNET experiments

Independent Variable CRTS Parameter Selected Values

Bits per Symbol
tx modulation

rx modulation

2

4

8

16

32

Modulation Scheme
tx modulation

rx modulation

PSK

ASK

QAM

Data Rate
tx rate

rx rate

1 Mbps

2 Mbps

5.5 Mbps

10 Mbps

Tables 20 through 22 in Appendix A give the variables whose values will remain

static throughout the experiments and their associated values. Many of these param-

eter values are taken from the default CORNET node configuration.

Important Assumptions and Limiting Factors.

There are a number of important assumptions made in establishing the experi-

mental design, including:

1. To decrease unintentional interference, the same two adjacent CORNET nodes

are used throughout the experiments. While this may not entirely eliminate

interference, it is assumed this design choice reduces the strength and duration

of any electromagnetic interference with respect to the transmission power and

length of exchanged messages such that any residual noise the transmissions do

encounter will not appreciably increase latency.

58

2. CORNET only supports a limited number of modulation schemes by default.

While other, more advanced schemes may offer slightly better performance, it is

assumed the latency bound determined with the modulation schemes available

by default will not differ significantly from that found using a more advanced

scheme. Additionally, the schemes investigated here are standard schemes, used

in a wide range of applications whereas more advanced schemes may only be

applicable to a small number of more advanced scenarios.

3. Messages will be automatically generated by the CORNET nodes. It is assumed

they will exhibit sufficient randomness as to approximate normal network traffic

such that the latencies observed during the CORNET experiments will not differ

significantly from real-world network traffic.

4. Latency measurements will be performed using native CORNET network layer

performance metric reporting capabilities and it is assumed these capabilities

are of sufficient granularity as to support meaningful latency measurements.

5. Node synchronization will be handled automatically by CORNET via the Net-

work Time Protocol (NTP) and it is assumed the synchronization is of sufficient

accuracy as to not invalidate latency measurements.

Experimental Procedure.

The CORNET experiments will test the performance of each possible combination

of modulation scheme, constellation size and data rate, as shown in Table 4. Before

executing any test cases, the necessary CRTS configuration files will be created and

pre-staged in the CORNET file system. In order to obtain a sufficient number of

samples such that the Central Limit Theorem [54] holds, each test case will run for 200

seconds, in accordance with Table 20. The latencies of all packets sent from one node

59

and received at the other node during each test case run will be averaged together to

determine the latency figure for that case. Additionally, to obtain a single per-packet

latency value against which the network’s performance with a cognitive engine may be

compared, the latency values determined for each test case will be averaged together.

The variance for each test case as well as for the latency figure determined by averaging

all cases together will be evaluated to determine if the latency values so determined

are valid. If not, multiple latency values, representative of different network and node

configurations, will be needed and the cognitive network’s performance with each of

these configurations will have to be compared against the associated latency value

individually.

The CORNET nodes used in the experiments must be carefully chosen so as

to not introduce additional, unnecessary sources of latency. The selection of the

two communicating nodes must ensure they are adjacent to minimize the amount of

latency caused by propagation. (If necessary, this could be removed from the data

by calculating how long message propagation takes and subtracting this value from

all observed data points.) Further, the same two nodes should be used for each test

case. Conversely, the selection of the master node, which coordinates each test, is not

subject to any constraints. As the master node does not directly take part in the test

(i.e., does not create or exchange any messages whose latency will be measured), its

location in the network with respect to the other nodes is of no consequence to the

latencies observed.

To run the tests, the CRTS software is invoked on the master node and supplied

with a master configuration file specifying which scenarios to run. The node then

initializes the two communicating nodes with the operating parameters specified in

the supplied configuration file for the first scenario. The two communicating nodes

then exchange messages and record their timestamps for 200 seconds. At the con-

60

Table 4. Node configurations to be tested in CORNET experiments

Test Number
Data Rate

(Mbps)
Modulation Scheme Constellation Size

1 1 ASK-PAM 2
2 1 ASK-PAM 4
3 1 ASK-PAM 8
4 1 ASK-PAM 16
5 1 ASK-PAM 32
6 2 ASK-PAM 2
7 2 ASK-PAM 4
8 2 ASK-PAM 8
9 2 ASK-PAM 16
10 2 ASK-PAM 32
11 5.5 ASK-PAM 2
12 5.5 ASK-PAM 4
13 5.5 ASK-PAM 8
14 5.5 ASK-PAM 16
15 5.5 ASK-PAM 32
16 10 ASK-PAM 2
17 10 ASK-PAM 4
18 10 ASK-PAM 8
19 10 ASK-PAM 16
20 10 ASK-PAM 32
21 1 PSK 2
22 1 PSK 4
23 1 PSK 8
24 1 PSK 16
25 1 PSK 32
26 2 PSK 2
27 2 PSK 4
28 2 PSK 8
29 2 PSK 16
30 2 PSK 32
31 5.5 PSK 2
32 5.5 PSK 4
33 5.5 PSK 8
34 5.5 PSK 16
35 5.5 PSK 32
36 10 PSK 2
37 10 PSK 4
38 10 PSK 8
39 10 PSK 16
40 10 PSK 32
41 1 QAM 4
42 1 QAM 8
43 1 QAM 16
44 1 QAM 32
45 2 QAM 4
46 2 QAM 8
47 2 QAM 16
48 2 QAM 32
49 5.5 QAM 4
50 5.5 QAM 8
51 5.5 QAM 16
52 5.5 QAM 32
53 10 QAM 4
54 10 QAM 8
55 10 QAM 16
56 10 QAM 32

61

clusion of each test, results are automatically written into log files and converted to

Octave scripts for MATLAB ingest. Once the first test concludes, the master node

reinitializes the communicating nodes with the operating parameters for the second

scenario. The nodes then again exchange messages and record results for 200 seconds,

writing the data to a log file when the test concludes. This process repeats for all

scenarios specified in the master configuration file.

Data Analysis.

Calculating Latencies by Comparing Timestamp Differences Between

Transmitter and Receiver.

CORNET automatically provides a vector of message identification numbers and

the timestamps at which the transmitter sends those messages and analogous vectors

for the receiver which contain the message identification numbers and the timestamps

at which those messages were received. Thus, to measure the latency of a given re-

ceived message, the timestamp at which it was sent from the transmitter will be

subtracted from the timestamp at which it was received at the receiver to obtain a

latency measurement for that message. Care must be taken to ensure the timestamps

extracted from the two vectors for use in this calculation are for the same message.

It is expected that not all messages sent will be received so simply subtracting the

two vectors will likely over-estimate many messages’ latency by comparing unrelated

timestamps. Instead, the indices at which the same message identifier is found in the

two message identification number vectors will be used to index into the timestamp

vectors and extract the timestamps at which each message was sent and received.

Repeating this calculation for all messages exchanged during the course of the exper-

iment and averaging the results will yield a latency figure for the given test case.

Table 5 shows an example of these calculations. The data shown are sample

62

numbers, not taken from any experimental runs. As messages 4, 6 and 7 were not

successfully received, no latency measure for them may be calculated and they are

not used in calculating the overall average latency value. For each of the remaining

messages, the timestamps at which the message was sent and received are subtracted

to yield the latency measure for that message. For example, the transmitter sent

message 1 at .01 seconds and the receiver received it at .018 seconds, yielding a

latency measure of .008 seconds.

As stated previously, care must be taken to ensure the correct timestamps are

extracted and compared. The vectors as given by CORNET do not have a blank entry

in the timestamp vector for missed messages; the blanks shown in Table 5 are simply

to keep the table aligned. Without using the indices at which the message identifiers

are found in the message number vector to index into the timestamp vector, the wrong

timestamps may be extracted and compared, yielding erroneously high results. For

example, the timestamp for message 5 is found at index 4 (using 0-based indexing)

in the transmitter’s timestamp vector but it is at index 3 in the receiver’s vector.

Therefore, only by determining the index at which the message identifier appears in

each node’s identification number vector and using the timestamp at the same index

in the nodes’ timestamp vector may the appropriate timestamps be compared.

Calculating Latencies by Comparing Timestamps at Receiver for

Messages with Consecutive Identification Numbers.

To compare different methods for calculating latency from the CORNET results,

the data will also be analyzed a second way. In this approach, the message identifica-

tion numbers and timestamp vectors for the transmitter will neglected. Instead, the

timestamps for packets received with consecutive message numbers will be extracted

from the receiver’s vector and subtracted to yield a latency measure. That is, if two

63

Table 5. Example calculation using the message identification number and timestamp
vectors provided by CORNET for the transmitter and receiver

Transmitter Receiver
Message
Number

Timestamp
Message
Number

Timestamp Message reception status Difference (s)

1 .01 1 .018
Message received

Timestamps may be compared
.008

2 .015 2 .024
Message received

Timestamps may be compared
.009

3 .021 3 .03
Message received

Timestamps may be compared
.009

4 .24 – –
Message not successfully received
Timestamps may not be compared

–

5 .028 5 .035
Message received

Timestamps may be compared
.007

6 .034 – –
Message not successfully received
Timestamps may not be compared

–

7 .039 – –
Message not successfully received
Timestamps may not be compared

–

8 .043 8 .052
Message received

Timestamps may be compared
.009

9 .049 9 .058
Message received

Timestamps may be compared
.009

10 .054 10 .061
Message received

Timestamps may be compared
.007

Average: ∼.00829

messages appear in the message number vector and the difference between their iden-

tifiers is 1, their associated timestamps will be extracted from the timestamp vector

and subtracted to yield a latency measure. Conversely, if the message numbers differ

by more than one, their associated timestamps will not be compared. This method

will not directly measure the latency of any given message but instead will use the

time lapse between successfully received consecutive messages as a surrogate. This

calculation will be repeated for all packets received with consecutive message iden-

tification numbers and the results averaged together to obtain the latency figure for

that test case.

Table 6 shows an example of this data analysis method. It should be noted

that, as with the previous example, the data shown are sample numbers, not actual

results. Due to the receiver missing several messages, only 5 latency measures may

be calculated from the data. These measures come from message pairs consisting of

messages 1 and 2, 4 and 5, 5 and 6, 9 and 10, and 14 and 15. As shown in the table, the

receiver missed at least one message in all other possible pairs of consecutive messages.

To determine the latency measures for each of these message pairs, the timestamp

at which the messages with the smaller identifier was received is subtracted from the

64

timestamp at which the message with the larger identifier was received. The resulting

latency measures are then averaged together to yield a latency figure for the test case.

Calculating Latencies by Comparing Timestamps at Receiver for

Consecutively-Received Messages.

The CORNET data sets will also be analyzed using a third analysis method in an

attempt to include some of the data neglected by the previous data analysis method.

Here again, only the message identification number and timestamp vectors for the

receiver will be used. However, rather than requiring message identification numbers

be consecutive (i.e., have a difference of 1) in order to use their associated timestamps

to obtain a latency measure, all pairs of messages received in order at the receiver

will be used to calculate latency measures. Each timestamp will be subtracted from

the one immediately preceding it to yield a time difference. Then, the two message

identification numbers associated with the two timestamps will be subtracted from

each other and the time delta divided by this number. The result will be used as the

latency measure and all measures thus determined will be averaged together for that

test case.

As with the preceding two analysis methods, Table 7 shows an example of this

technique. In comparison to Table 6, from Table 7 it may immediately be seen that

anytime there is a gap in the identification numbers of the messages received, the

first message received after the gap still has a latency measure associated with it. For

example, in Table 6, message 9 does not have a latency measure associated with it

because it was the first message received after the gap in which the receiver missed

messages 6, 7 and 8. In Table 7, however, message 9 still has a latency measure

associated with it. The difference between the time at which the receiver received

message 9 and the preceding message (6) is simply divided by one more than the

65

Table 6. Example calculation using timestamps for messages received with consecutive
message identification

Receiver
Message Number Timestamp Message reception status Difference (s)

1 .02
First message received

No previous message to which to compare
–

2 .025
Message number consecutive

Timestamps may be compared
.005

– –
Message not received

Timestamps may not be compared
–

4 .036
Preceding message missed

No preceding message to which to compare
–

5 .04
Message number consecutive

Timestamps may be compared
.004

6 .046
Message number consecutive

Timestamps may be compared
.006

– –
Message not received

Timestamps may not be compared
–

– –
Message not received

Timestamps may not be compared
–

– –
Message not received

Timestamps may not be compared
–

9 .063
Preceding message missed

No preceding message to which to compare
–

10 .068
Message number consecutive

Timestamps may be compared
.005

– –
Message not successfully received
Timestamps may not be compared

–

– –
Message not successfully received
Timestamps may not be compared

–

– –
Message not successfully received
Timestamps may not be compared

–

14 .092
Preceding message missed

No preceding message to which to compare
–

15 .098
Message number consecutive

Timestamps may be compared
.006

Average: .0052

number of messages missed. For message 9, the difference between the time at which

the receiver received it and the preceding message is .017 seconds (.063 - .046 seconds).

Further, the receiver missed 2 messages in between messages 6 and 9. The difference

between the times at which the receiver recieved them (.017 seconds) is therefore

divided by 3. This calculation is repeated for all pairs of consecutively received

messages. The resulting latency measures are then averaged together to obtain the

latency measure for the test case.

4.2 OMNeT++ Engine Performance Tests

The main set of experiments that will be conducted as part of this research involve

assessing the performance of the cognitive engine developed in the preceding chapter

with respect to network latency. The effect the engine has on the network’s latency

as the noise floor increases is of interest. In particular, the experiments that will be

66

Table 7. Example calculation using timestamps for messages received regardless of the
difference in the associated message identification numbers

Receiver

Message Number Timestamp
Number by which timestamp difference is to be divided

(Number of missed messages plus 1)
Difference (s)

1 .02
First message received

No previous message to which to compare
–

2 .025 1 .005
– – – –
4 .036 2 .0055
5 .04 1 .004
6 .046 1 .006

– –
Message not received

Timestamps may not be compared
–

– –
Message not received

Timestamps may not be compared
–

– –
Message not received

Timestamps may not be compared
–

9 .063 3 ∼.00567
10 .068 1 .005

– –
Message not successfully received
Timestamps may not be compared

–

– –
Message not successfully received
Timestamps may not be compared

–

– –
Message not successfully received
Timestamps may not be compared

–

14 .092 4 .006
15 .098 1 .006

Average: ∼.00540

conducted seek to determine if the engine can tune the network in such a manner as

to achieve lower latencies as the noise floor increases compared to a network without

a cognitive engine.

Independent and Dependent Variables.

For these experiments, the independent variables of interest are latency weight,

noise floor and number of generations. The latency weight indicates the priority

given to the latency component in the fitness function. As it increases, solutions

that emphasize lower Bit Error Rates (BERs) to improve latency performance are

assigned higher fitness values than solutions that trade some latency (and throughput)

performance to reduce power consumption. Therefore, as the latency weight changes,

it is expected the solutions returned by the engine will change and the latencies

realized in the network will decrease. As a result, it is expected the cognitive network

will have increasingly improved latency performance as compared to its non-cognitive

counterpart as the latency weight increases.

As the number of generations the engine uses to develop solutions increases, it

67

potentially allows the engine to search previously unexplored regions of the search

space (through global search) or find better solutions in the vicinity of previously

found “good” solutions (through local search). It is expected, then, that the fitness

of solutions returned by engine as the number of generations it uses to evolve solutions

increases will, in general, improve. Thus, as the number of generations the engine

uses grows, it is expected the network’s latency performance will continually increase

as compared to the non-cognitive, baseline network.

Additionally, it is also expected that as the number of generations increases, the

engine’s runtime will also increase. The rate at which this increase occurs is of interest.

Here, the engine has arbitrarily been set to run every 5 seconds. However, depending

on how fast conditions in the radio medium are expected to change, this parameter

could be set to a wide range of values. Therefore, how many generations may be

developed, and thus the portion of the search space that may be explored in a given

amount of time, is of interest.

Table 8 gives the minimum and maximum values as well as the step size for the

independent variables of interest.

Table 8. Independent variables, including minimum and maximum values and step size,
for the OMNeT++ experiments

Independent Variable Minimum Value Maximum Value Step Size

Latency Weight .5 .9 .1

Number of Generations 200 1000 200

Noise Floor (dBm) -90 0 10

Important Assumptions and Limiting Factors.

As with the CORNET experiments, there are a number of assumptions and other

factors that must be taken into account, including

1. Newtork traffic generation will be handled by the OMNeT++ framework. How-

68

ever, the pseudo-random number generator (PNG) the software uses in gener-

ating the traffic will be initialized to a different value for each experimental run

to ensure the same exact sequence of packets is not produced for each test case.

Beyond this, it is assumed the traffic characteristics (e.g., inter-packet delays,

etc.) are sufficiently random as to approximate real-world network traffic.

2. Rather than having a node in the network to produce interference, the back-

ground noise level is incremented throughout the test runs to simulate the effect

of a broadband jammer. It is assumed varying the background noise level in this

manner has a similar effect on the network nodes and their ability to commu-

nicate as a broadband jammer periodically increasing its output power would

have.

3. As with CORNET, OMNeT++ only supports a limited number of modulation

schemes by default. Here, only PSK and QAM are considered. While other,

more advanced schemes may offer slightly better performance, it is assumed the

trends noted in the network’s latency performance with and without the engine

will not differ significantly from that found using a more advanced scheme.

4. Latency measurements will be taken as the end-to-end delay metric reported

by OMNeT++’s “UDPSink” module. It is assumed this metric, which reports

the latency for network-layer packets exchanged between nodes, is of sufficient

granularity as to support meaningful latency measurements.

Experimental Procedure.

To investigate each of the independent variables outlined previously and their

effect on the network’s latency performance, the network is first run without the

cognitive engine to collect baseline latency statistics. The engine is then added to

69

the network and the simulation run ten times, once for each value of latency weight

and number of generations used to develop solutions, as outlined in Table 8. Each

simulation is run for 2,000 seconds, with the noise floor starting at -90 dBm and

incrementing by 10 dBm every 200 seconds. As the engine runs every 5 seconds,

this ensures it runs 40 times for each combination of latency weight or number of

generations and noise floor to provide adequate data.

In order to evaluate how the number of generations used to develop solutions

affects the engine’s runtime, additional tests wherein the engine is removed from the

network and run in isolation are also performed. A simple test program that invokes

the engine and times its execution is written. The program executes the engine 40

times for each number of generations value given in Table 8 and records the engine’s

runtime for each execution.

Data Analysis.

In investigating how the number of generations affects network performance, the

latency data resulting from the five number of generations runs must first be split into

ten sets based on the noise floor. For each noise floor, then, there are five data sets,

one for each setting of the number of generations parameter, giving network latencies

against simulation time. A simple t-test is performed to compare the average latency

without the CE in the network to that achieved with the engine in the network for

each investigated value for the number of generations. A p-value less than or equal

to .05 from this test indicates the engine has an appreciable effect on the network’s

performance.

The effect latency weight has on network performance is evaluated in a similar

manner. The data resulting from the five simulations across which latency weight

was altered is first split into ten data sets based on noise floor. t-tests comparing the

70

average latency without an engine in the network to the network’s performance with

each of the investigated latency weights are performed. As before, a p-value less than

or equal to .05 from these tests indicate the engine with the associated latency weight

has an appreciable effect on the network’s performance.

By comparison, the data analysis performed on the engine’s runtime data is

straightforward. As it is expected the runtime will increase in proportion to the

number of generations, a linear model is fit to the runtime vice number of genera-

tions data. Then, the p-value associated with the number of generations variable is

assessed to determine if it statistically significant within the model (i.e., if its value is

less than or equal to .05). If it is statistically significant, this indicates the number of

generations the engine uses to develop solutions has a direct and substantial impact

on its runtime. Additionally, the resulting linear model may be used to determine,

given a desired runtime, approximately how many generations may be developed by

the engine in that time.

4.3 MATLAB Cognitive Engine Performance Tests

Due to issues with the OMNeT++ tests detailed in Chapter V, the CE is reim-

plemented and tested in MATLAB. All of the engine’s functionality, save for the

manner in which the BER is calculated, remains unchanged from the development

given in Chapter III. (The code for the engine’s MATLAB reimplementation is given

in Appendix C.) In the reimplementation, rather than evaluating functions to es-

timate BER, the engine simulates the transmission of bits and directly calculates

the number of bits received in error. To do this, the engine uses built-in MATLAB

functionality. In particular, MATLAB randomly generates a string of bits to “trans-

mit”. The bits are then passed through a modulator, Additive White Gaussian Noise

(AWGN) channel and a demodulator, provided by MATLAB as system objects. Fur-

71

ther, as MATLAB provides built-in functionality for performing FEC encoding and

decoding unlike the network as built in OMNeT++, in some of the tests, the bits are

also FEC encoded before modulation and FEC decoded after demodulation. In this

way, the engine’s performance with and without FEC encoding may be investigated.

The number of bit errors that results from the bit transmission divided by the total

number of transmitted bits is used as the BER.

Figure 17 shows a plot of the latency fitness values returned by the latency fitness

function against BER. From the plot, BERs close to 0 result in high latency fitness

but as the BER increases by orders of magnitude to ∼ 10−4, the latency fitness

quickly drops to 0. Therefore, in order to detect BERs that result in reasonably

high (but not perfect) latency fitness, the number of bits for which transmission is

simulated must be on the order of one million bits. As the inputs to the (possible)

FEC encoder, modulator, AWGN channel, demodulator and (possible) FEC decoder

change for each generation the engine produces, the simulated bit transmissions must

be performed each time the engine forms a new solution in order to assign a fitness

value to it. Unfortunately, the time required to perform the simulated bit transmission

so often causes the MATLAB runtime to greatly exceed that of the OMNeT++

simulations. Additionally, the OMNeT++ network yielded actual latency information

whereas the engine reimplementation in MATLAB only yields latency and total fitness

information. As a result, the experiments performed and data gathered from the

MATLAB engine reimplementation have a slightly different focus than those planned

for the OMNeT++ simulations.

Independent and Dependent Variables.

For the MATLAB engine reimplementation, there are several major independent

variables under test. Two of these variables, FEC encoding and number of genera-

72

Figure 17. Plot showing latency fitness values against bit error rate

tions, will be evaluated through running multiple stochastic experiments while the

effect of the remaining variables, modulation scheme and order, power and bandwidth,

will be evaluated through comparing the resulting fitness values as these parameters

change from their optimum values.

The first variable to be assessed through experimentation is FEC encoding. In

particular, rather than evaluating multiple schemes to determine the one with which

the engine performs best, here the item of interest is whether or not the engine

performs better with or without FEC encoding. It is expected FEC encoding will

cause an increase in the engine’s performance, evidenced by the engine returning

solutions with lower BERs and higher latency fitness than those returned for the same

non-FEC encoded case. However, it is also expected FEC encoding will increase the

runtime as compared to the non-FEC encoded case. Further, this effect is expected

to be more pronounced as the noise floor becomes closer to the transmit power (i.e.,

as the Signal-to-Noise Ratio (SNR) drops). If this trend is indeed exhibited by the

data, future work will need to be conducted to determine at what point FEC encoding

offers enough of a performance improvement that the penalty to runtime is worth the

73

improved fitness values.

Similar to the OMNeT++ simulations, another independent variable of interest

here is the number of generations used by the engine and its effect on the quality of

the solutions the engine returns. As discussed above, due to the manner in which

the MATLAB engine reimplementation estimates BER, the number of generations is

expected to have a significant impact on the engine’s runtime. If this is indeed the

case, as with the previous experiments, determining the point at which the increase

in runtime does not yield enough improvement in the fitness of returned solutions

to warrant using additional generations in finding them becomes an important part

of future work. Additionally, the runtime of the MATLAB engine implementation

may be compared to the C++ engine implementation included in the OMNeT++

network to comment on the importance of careful engine design due to the effect

implementation decisions (e.g., coding language, data structures, variable declara-

tions and calculation approaches, etc.) may have on the runtime of an actual engine

included in a real-world Unmanned Aerial Vehicle (UAV) swarm.

The next four independent variables of interest are the four tuning knobs made

available to the engine: modulation scheme, modulation order, power and bandwidth.

Due to the small size of the search space used in the engine developed here, it may be

exhaustively searched to find the optimum solution. (Recommendations for increasing

the size of the search space in order to take greater advantage of the power of the

genetic algorithm on which the engine is based are included in Chapter VI.) As each

variable deviates from its optimum setting, the fitness of the resulting solution will

decrease. However, the rate at which this deviation from optimum fitness occurs is of

interest. To explore this, the resulting fitness values as each parameter varies through

its entire range of settings while the other values remain constant at their optimum

settings will be considered.

74

The last independent variable of interest is the noise floor. The effect of the inde-

pendent variables previously outlined will be assessed at three different noise floors.

The independent variables for the MATLAB engine implementation experiments are

summarized in Table 9.

Table 9. Independent variables, including minimum and maximum values and step size,
for the MATLAB engine reimplementation experiments

Independent Variable Minimum Value Maximum Value Step Size

FEC Encoding NA NA

Number of Generations 200 1000 400

Noise Floor (dBm) -50 10 30

Modulation Scheme NA NA NA

Bits Per Symbol 1 8 1

Power (dB) 4 35 1

Bandwidth (MHz) 1 32 1

Important Assumptions and Limiting Factors.

There is one major assumption associated with the engine reimplementation under

test here:

1. The MATLAB calculations performed to estimate BER are the result of math-

ematical manipulations of a randomly-generated bit string, not the result of

any actual transmissions. However, the MATLAB functionality used in these

calculations is based on sound signal processing theory and has been shown

to approximate real-world performance with enough fidelity that it is assumed

their use here does not invalidate the data collected nor the conclusions derived

from that data.

75

Experimental Procedure.

To determine the effect FEC encoding, the number of generations and the noise

floor has on engine performance, the engine is run with each possible combination of

the independent variables of interest. Table 10 outlines each of these combinations.

Each case is run 30 times. The resulting data is then processed in multiple ways to

illuminate the effect each of the variables has on the quality of solutions and engine

runtime, as discussed below.

Table 10. Test cases for determining effect of FEC encoding, number of generations
and noise floor on engine performance

FEC Encoded? Number of Generations Noise Floor (dBm)

No 200 -50

Yes 200 -50

No 600 -50

Yes 600 -50

No 1000 -50

Yes 1000 -50

No 200 -30

Yes 200 -30

No 600 -30

Yes 600 -30

No 1000 -30

Yes 1000 -30

No 200 10

Yes 200 10

No 600 10

Yes 600 10

No 1000 10

Yes 1000 10

The engine’s ability to find good solutions, not just the actual fitness of the re-

76

turned solutions, is assessed by comparing the optimal setting for each parameter to

how often the engine returns that value for the parameter. To do this, an exhaustive

search is performed at each noise floor level with and without FEC encoding to find

the optimal solution for that noise floor and FEC encoding setting combination. (As

this is an exhaustive search, a setting for the number of generations is not applicable

here; all possible solutions will be considered.) Once the optimum solution for each

combination of noise floor and FEC encoding setting is known, the solutions returned

by the 270 runs previously outlined are evaluated to determine how often the opti-

mum value for each parameter is returned. Additionally, the effect each parameter

has on the solution’s fitness is investigated by varying each in turn through their

entire range of possible values while holding the others constant at their optimum

value and plotting the resulting fitness values.

Data Analysis.

To assess the effect FEC encoding has on the quality of solutions and the en-

gine’s runtime, a single data table containing all fitness and runtime vice number of

generations data is compiled. Then, a cateogrical variable that encodes whether or

not a given test case included FEC is added to the table. Next, a model is fit to the

data, taking into account both the number of generations and the categorical variable

encoding whether or not FEC was used. The p-values associated with the coefficients

for these two variables in the resulting model are assessed to determine whether or not

the variables are significant. In particular, a p-value less than or equal to .05 for the

categorical variable coefficient indicates FEC encoding has a statistically significant

impact on fitness and/or runtime (depending on the model for which the p-value was

significant). It is not expected FEC encoding causes a significant difference in the

rate at which solution fitness grows but that it does have an appreciable impact on

77

runtime growth.

To determine the effect the number of generations has on the quality of returned

solutions and the engine runtime, the solution fitness and engine runtime vice number

of generations data will be plotted for each noise floor both with and without FEC,

resulting in two plots. Linear models relating the fitness and runtime to the number of

generations will then be fit to the data. How the number of generations affects solution

fitness and engine runtime will be assessed by evaluating the p-values associated with

the linear term coefficient in the models. A significant p-value (less than or equal

to .05) indicates the number of generations has a statistically significant impact on

solution fitness and/or runtime (depending on the model for which the p-values are

significant). It is expected solution fitness will increase with the number of generations

but that engine runtime will also increase.

The number of times the engine returns each of the possible values for each pa-

rameter at each noise floor with and without FEC encoding is plotted on a bar graph,

resulting in eight plots total. These are then compared to the optimum solution as

determined by exhaustive search to determine the percentage of time the engine re-

turns the optimum setting for each parameter, given the noise floor and FEC encoding

setting. Graphs of how the fitness values vary as each parameter takes on each of

its possible values while all other parameters are held at their optimum value are

then produced to gain insight into how great an effect the engine not returning the

optimum value for a given parameter has on the fitness of the returned solution.

78

V. Results and Analysis

5.1 CORNET Latency Lower-Bound Experimental Results

Before discussing the results obtained from the CORNET experiments, it is use-

ful to state what the data were expected to show. It was expected the calculated

latencies would be randomly scattered about some average value according to an

approximately normal distribution. An example of what the plot of latencies vice

message number was expected to look like is shown in Figure 18. Further, Figure 19

shows the histogram of the data shown in the scatter plot, from which it is easier to

see the data follow an approximately normal distribution.

Calculating Latencies by Comparing Timestamp Differences Between

Transmitter and Receiver.

In comparison with Figure 18, Figures 20 and 21 show the two major data trends

that result from processing the CORNET output by comparing the timestamp vectors

from the transmitter and receiver. (As there are 56 total tests cases, only two plots

are shown here. However, all but one of the remaining plots have a shape similar to

Figure 20 while the last plot has a shape similar to Figure 21.) While it is unclear

precisely why the data exhibits such unexpected behavior, the most likely explanation,

one suggested by the shape of the data itself, is there is unexpected and undesirable

queueing occurring within the system that is masking the true latency values.

For example, in explaining the initial linear growth in Figure 20, it is possible the

transmitter is preparing packets for transmission, adding a timestamp to them and

then placing them in a queue for transmission. If this is indeed how the transmitter

operates, it is likely the processing required to prepare a packet for transmission can

occur at a faster rate than the actual transmission. As a result, the packet queue

79

Figure 18. Example plot of CORNET results showing latencies versus message number

Figure 19. Example histogram of CORNET results showing probability of latency
values in each bin occurring

80

awaiting transmission would grow according to the difference between the rate at

which packets are prepared for transmission and placed in the queue and the rate at

which the packets are removed from the queue and transmitted. This would explain

the linear growth in the latencies; each packet in the queue must wait for all packets

preceding it to be transmitted before it is transmitted. Thus, as the queue grows, the

packets waiting in it must wait for progressively longer periods of time.

If this is the case, it still does not explain why two of the test cases, shown in Table

11, should exhibit the trend noted in Figure 21. The varying growth rate indicates

that either the rate at which the transmitter prepared packets for transmission, the

transmission rate or both varied widely over the course of the experiment. Why either

or both of these rates should have varied at all over the course of the experiment is

unclear. Further, this trend only appears in two of the Amplitude Shift Keying

(ASK) cases using a constellation size of 32. It is unlikely the modulation scheme,

constellation size or data rate provide an adequate explanation for the data. The

constellation size affects the amount of information included in a given transmitted

symbol, not the rate at which the symbols may be transmitted (dictated by the

transmission rate). Further, other test cases using ASK, a constellation size of 32

and/or a data rate of 2 and 10 Mbps exist that do not exhibit the varying growth

rate seen in Figure 21.

Table 11. Two cases in the CORNET results exhibit initial growth that is approximately
linear, though over short time intervals the growth rate varies widely

Modulation Scheme Data Rate (Mbps) Constellation Size

ASK 2 32

ASK 10 32

The shift from linear growth to a constant latency part way through the test run is

more difficult to explain. The change suggests the transmitter altered either the rate

81

Figure 20. Results obtained by comparing transmitter and receiver timestamp vectors

82

Figure 21. Results obtained by comparing transmitter and receiver timestamp vectors

83

at which it prepared packets for transmission, its transmission rate, or both, to match

part way through the test run. It is somewhat unlikely the transmission rate changed;

it is set by the user in the scenario configuration file and none of the CORNET

documentation indicates the nodes may change any of their operational parameters

of their own volition. Further, these experiments did not include a cognitive engine

that was trying to optimize the nodes’ performance so it does not appear an external

entity commanded the transmitter to alter its transmission rate. As for the rate at

which the transmitter prepared packets for transmission, if the transmitter did change

that rate, it appears to have done so of its own accord. If the transmitter did make

the decision to change its operating parameters on its own, it would make measuring

latency more difficult.

Analogous queueing within the receiver could also explain the initial linear growth

in the latencies. If the receiver has a queue in which it places incoming messages

awaiting processing and the rate at which it receives messages is faster than the rate

at which it can process them, the amount of time messages wait in the queue to

be processed would grow linearly according to the difference in the rate at which

they arrive and are processed. This is at least possible; the computation required for

processing the received signal to extract the message is considerably more than that

required to prepare the message for transmission. As a result, while the transmitter

can likely prepare messages faster than it can transmit them, the receiver likely cannot

process the incoming signal to recover the communicated information as fast as it

arrives. This, however, does not explain the varying growth rate in the two cases

in Table 11. Additionally, the same problem arises here as with the transmitter in

explaining the shift to a constant latency. If processing with the receiver explains the

data trends, it is unclear why the receiver should have altered its message processing

rates or why the message arrival rate should have changed.

84

Other explanations of the data are possible. A combination of the above factors

could be the culprit behind the unexpected data. Unanticipated interference in the

transmission could be partly to blame. Unknown and unanticipated processing within

CORNET (e.g., nodes varying the operational parameters in an unexpected way)

could also have skewed the results. Unfortunately, without direct access to the system

and/or additional insight into its operation, further explanation of these data trends

and use of CORNET for latency measurements is problematic at best.

Calculating Latencies by Comparing Timestamps at Receiver for Mes-

sages with Consecutive Identification Numbers.

Similar to processing the CORNET results by comparing the timestamp vectors

for the transmitter and receiver, generating latency measures by only considering

messages received by the receiver with consecutive identification numbers yields un-

expected results. These results again follow one of two general trends. As for the

previous data analysis technique, only two representative plots are used to demon-

strate the trends the data exhibits. Figure 22 shows the first of the two trends. At

first glance, the plot looks similar to that in Figure 18, indicating this method of

data analysis might yield useful and plausible results. However, the plot does not

tell the whole story. By comparing the data included in the plot to the full data

set (Figure 24), it becomes apparent about 80 percent of the data is neglected when

ignoring messages that are not received with consecutive identification numbers. Af-

ter an initial period in which the receiver does not miss any messages, it misses at

least one messages between every two messages it successfully receives. The mostly

likely reason the receiver missed these messages is due to unanticipated interference

between the two nodes. However, why the receiver didn’t miss any messages initially

and then missed at least one message between every two successfully received is more

85

difficult to explain. One possibility is another transmitter started broadcasting part

way through the experiment, though the relatively low power levels used in CORNET

and the close proximity of the nodes involved in the experiments make this unlikely.

Another possibility is that the transmitter changed its operating parameters, most

notably power and gain, part way through the experiment. However, as the trans-

mitter is not able to change operating parameters on its own and the experiment did

not utilize any cognitive engine to optimize node performance, this is also unlikely.

The second trend exhibited by the data when processed by only considering mes-

sages received with consecutive identification numbers is a banding effect in which

small portions of the latencies are clustered around .01 seconds while the remaining

data is on the order of 10−4 to 10−6. Figure 23 shows a test case that exhibits this

behavior. Why the latencies between successive messages should jump back and forth

between two relatively constant values for discrete periods of time is not immediately

clear. The most likely explanation is that control information is periodically sent over

the network and transmitting, receiving, processing and acting on this information

requires additional computation (thus higher latencies) beyond normal traffic.

Other explanations of the data are again possible. A combination of the above

factors could be the culprit. Unknown and unanticipated processing within CORNET

(e.g., nodes varying the operational parameters in an unexpected way) could again

have skewed the results. Unfortunately, as with the previous data analysis technique,

without direct access to the system and/or additional insight into its operation, fur-

ther explanation of these data trends and use of CORNET for latency measurements

is problematic at best.

86

Figure 22. Results obtained by only using messages received with consecutive numbers

Figure 23. Results obtained by only using messages received with consecutive numbers

87

Calculating Latencies by Comparing Timestamps at Receiver for Consecutively-

Received Messages.

As with the preceding two data processing techniques, generating latency mea-

sures by considering the timestamps of all pairs of messages received consecutively

at the receiver yields unexpected results. These results again follow one of two gen-

eral trends. The first trend, shown in Figure 24, includes the data excluded by the

preceding data analysis technique. Importantly, Figure 24 shows the same test case

as Figure 22. By comparing these two figures, it is clear how large the portion of the

data set excluded by the previous data analysis technique is. This demonstrates why

the results from the previous processing technique are questionable; it is difficult to

draw conclusions about average values demonstrated by data when the majority of

the data is not used in calculating the average values.

The second trend, given in Figure 25 for the same test case as in Figure 23, shows

a different banding behavior as seen in the previous processing technique. The data

processed by considering all pairs of consecutively received messages still show small

sets of latency values clustered around .01 seconds and larger sets of latency values

clustered aroud 10−4 to 10−6. Here, however, the data also show several distinct bands

of latency values clustered around .002 seconds. This indicates there are distinct sets

of messages with consecutive identification numbers with latencies around .01, a much

larger portion of the messages with consecutive identification numbers with latencies

between 10−4 to 10−6, but also a considerable number of messages consecutively

received, but not with consecutive identification numbers, with latencies around .002

seconds. While the exchange of control information may again explain the messages

received with consecutive identification numbers and the distinct difference between

the two average values, it does not also explain the bands clustered around .002

seconds. If this data were control information, it would be expected to be clustered

88

Figure 24. Results showing the same case as in Figure 22 when the data is processed
by averaging the difference in timestamps

around .01 seconds. Conversely, if the data were normal network traffic taken from

some normal distribution with an average value, it would be expected that, after

calculating the difference in timestamps and dividing by one more than the number

of missed messages, this data would be relatively indistinguishable from the rest of

the normal traffic data. As the bands are still distinguishable, this indicates there

is a difference between this data and the normal traffic data. In particular, as the

number of missed messages increases, the latency does not grow by the same amount

for each additional message missed. Instead, the latency grows by a multiplier that is

either larger or smaller than one. (Determining if this multiplier is greater than or less

than one would require extracting these bands from the data and then determining

the timestamps and number of missed messages associated with each data point. As

the data is already questionable at this point in the processing, this step is not done

here.) However, why these data should be different and what they indicate in terms

of how the nodes behaved during the experiment remains unclear at this point.

As with the preceding two processing techniques, other explanations of the data

are again possible. A combination of the above factors could explain the data trends

89

Figure 25. Results showing the same case as in Figure 23 when the data is processed
by averaging the difference in timestamps

noted. Unknown and unanticipated behavior within CORNET (e.g., nodes varying

their operational parameters in an unexpected way) could have led to unexpected

results. Unfortunately, without direct access to the system and/or additional insight

into its operation, further explanation of these data trends and use of CORNET for

latency measurements is problematic at best.

5.2 OMNeT++ Engine Experiments

The OMNeT++ experiments aimed to assess the cognitive engine’s performance

in terms of runtime and its effect on the network’s latency. Figure 26 shows the

engine’s runtime growth with respect to the number of generations it used to evolve

solutions. Table 12 shows the model’s linear term coefficient and its associated p-

value. From the table, because the p-value is less than .05, it may be concluded the

coefficient is statistically significant and that the number of generations positively

affects the engine’s runtime, as expected.

90

Figure 26. OMNeT++ engine runtime performance with respect to umber of generations used to evolve solutions

91

Table 12. Coefficient and p-value for OMNeT++ engine runtime growth linear model

Term Value p-value

Linear Term Coefficient 1.345 ∗ 10−4 .0157

Intercept 2.598 ∗ 10−6 5.705 ∗ 10−55

Specifically, the engine can evaluate approximately 385, 000 solutions in a second,

using the hardware used in these tests. Given this information and the size of the

search space, the amount of time needed to explore a desired percentage of the space

could be determined. Conversely, if an interval at which the engine should run is

known, the percentage of the search space it could evaluate on each run in looking

for good solutions could be determined. In making this determination, it must be

decided if transmission medium conditions could change such that previously unfa-

vorable solutions become favorable. This will help inform if a record of the solutions

already considered should be retained between engine runs. Additionally, the 385, 000

solutions visited in a second only applies to the hardware used in these experiments.

A real-world Unmanned Aerial Vehicle (UAV) swarm is unlikely to have the process-

ing capabilities available during these experiments. As a result, additional tests to

evaluate the engine’s runtime growth on more representative hardware is warranted.

Ideally, the engine’s runtime growth could be contrasted to the improvement in

the fitness of its returned solutions by analyzing the effect on the network’s latency.

The question to be answered is at what point the runtime grows so large or the further

improvement in the fitness of solutions found becomes so small as to be prohibitive in

using additional generations in evolving good solutions. Unfortunately, the network

did not produce the data necessary to perform this analysis due to an issue with

its implementation. The fundamental problem is the network detects and discards

any transmissions that have bit errors without recording any statistics for them but

does not perform any Forward Error Correction (FEC). During the simulation, then,

92

when the noise floor reaches -10 dBm, at least one bit error is introduced into every

transmission, which results in OMNeT++ no longer recording latency statistics for

any transmissions. Figure 27 shows a plot of network latency against simulation

time that demonstrates the lack of latency information at a simulation time of 1, 200

seconds (corresponding to the noise floor incrementing to −10 dBm).

93

Figure 27. Plot of network delay against simulation time, demonstrating how OMNeT++ stops recording data part way
through simulation

94

To combat this, the simulation could be performed with a lower noise floor. How-

ever, this does not reflect conditions encountered in the real world and, from (19),

leads to both latency and throughput fitnesses of 1. With the low noise floor re-

quired to obtain latency data from OMNeT++, the Signal-to-Noise Ratio (SNR) is

so high that evaluating Equations 14 and 15 for Bit Error Rate (BER) always re-

turns 0. This corresponds to the ideal performance against which the latency and

throughput fitness scores are normalized, leading to a fitness of 1 for both objectives.

While higher fitness scores are desirable, reducing the noise floor simply to obtain

latency information leads to conditions that are unrealistic and, as a result, relatively

uninteresting.

The competing needs to reduce the noise floor to obtain latency information from

OMNeT++ and to raise the noise floor to explore interesting and realistic conditions

intersect in such a way as to render the OMNeT++ network largely unhelpful in its

current state. The addition of FEC encoding and decoding functionality could help

combat the bit errors introduced at realistic noise floor levels, allowing the network

to record latency statistics under these conditions. Thankfully, even without the

FEC functionality, the OMNeT++ tests are not entirely useless. The runtime tests

indicate an engine using the same or a similar design and implementation as the one

presented here could evaluate a significant portion of the search space in evolving

good solutions. This effect becomes even greater if the engine is given more than five

seconds to run, as was the case here.

5.3 MATLAB Engine Experiments

Due to the issues with obtaining useful information from OMNeT++, the de-

cision was made to re-implement the engine in MATLAB and perform additional

tests of both the engine’s runtime and performance in terms of the solutions it re-

95

turned. MATLAB provides a robust signal processing toolbox that includes func-

tionality to perform FEC according to several different algorithms. The MATLAB

re-implementation used Bose-Chaudhuri-Hocquenghem (BCH) codes when it used

FEC in calculating the BER.

Engine Runtime Growth and Fitness Performance.

The experiments again explored the engine’s runtime growth, but evaluated this

growth with respect to both the number of generations the engine used to evolve

solutions and whether or not it used FEC in calculating BER. Further, the MATLAB

experiments were also able to contrast the runtime growth with the accompanying

change in the fitness of returned solutions. Figures 28 and 29 plot the engine’s runtime

and returned solution fitness against the number of generations it used in exploring

the search space, for non-FEC encoded and FEC encoded transmissions, respectively.

Tables 13 and 14 contain the terms for the linear models fit to both the fitness and

runtime data as well as their associated p-values. From the tables, the number of

generations used beyond 200 did nothing to improve the fitness of the solutions the

engine returned, as evidence by the p-value of the linear term coefficients for all fitness

models being larger than .05. This is, perhaps, unsurprising. By the time the engine

has generated 200 generations, especially given the relatively small search space, it

has likely found solutions fairly close to the optimum solution. As a result, generating

additional solutions beyond this is not likely to appreciably improve the fitness of the

returned solution. Moving forward, 200 generations could be regarded as a maximum

on the number of generations used to evolve solutions.

It is also not surprising that once again, increasing the number of generations

used to evolve solutions has a positive impact on the engine’s runtime, as evidence

by the p-values associated with the linear terms for the runtime models in Tables 13

96

and 14 being much smaller than .05. What is surprising, however, is how much more

quickly the runtime grows with the number of generations in the MATLAB imple-

mentation as compared to the OMNeT++ implementation. With no FEC encoding,

the OMNeT++ implementation could evaluate ∼ 385, 000 more solutions for every

additional second of engine runtime. For the MATLAB implementation, however,

the runtime grows approximately in direct proportion to the number of generations

used to evolve solutions. That is, for every additional generation (i.e., every addi-

tional solution considered), the runtime increases by one second, regardless of the

noise floor.

97

Figure 28. Growth of engine runtime and fitness of returned solutions with respect to number of generations when no FEC is
used

98

Figure 29. Growth of engine runtime and fitness of returned solutions with respect to number of generations when FEC is
used

99

The situation is even worse when the transmissions are FEC encoded. In that

case, for noise floors of −50 and −30 dBm, the runtime grows approximately six and

a half times as fast as the number of generations used to find solutions. That is,

for every additional generation, the runtime increases by ∼ 6.5. The performance is

worse still for a noise floor of 10 dBm. At that point, the runtime growth with the

number of generations is a ratio of approximately 10 − 12 to 1. That is, for each

additional generation, the runtime increases by more than 10 seconds.

While some of the difference in the rate at which the runtimes grow may be

explained by differences in how the underlying languages store variables, perform cal-

culations, manage memory, etc., the majority of the difference is due to the manner

in which the two implementations compute BER. The OMNeT++ engine computes

BER by simply evaluating a function while MATLAB actually simulates bit trans-

missions, possibly with FEC encoding and decoding. The difference in the runtime

growth between the two implementations is an example of the importance of careful

planning and decision making in developing a real-world engine for a cognitive UAV

swarm. Failure to take the necessary time to plan and design could result in an ineffi-

cient engine that can only evaluate a fraction of the solutions a more-efficient engine

can consider in the same amount of time. This could result in the engine returning

a less-fit solution than it would have found if it were more efficient. In a worst-case

scenario, it could fail to return a solution at all within a given time limit. The end

result could be a swarm that either cannot adapt to its transmission environment in

a timely manner or that exhibits poor latency performance.

One additional item that may be evaluated using this data is whether or not FEC

encoding has an appreciable effect on the fitness values of the solutions returned by

the engine and the engine’s runtime. To do this, a categorical variable encoding

whether or not transmissions within that test case were FEC encoded is added to

100

Table 13. Coefficient and p-value for linear models for fitness of returned solutions and
runtime growth of MATLAB engine using large numbers of generations and no FEC

Fitness Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 8.979 ∗ 10−8 ∼ .896

Intercept ∼ .967 ∼ 6.393 ∗ 10−208

−30
Linear Term Coefficient ∼ 4.267 ∗ 10−7 ∼ .541

Intercept ∼ .966 ∼ 2.252 ∗ 10−207

10
Linear Term Coefficient ∼ −3.853 ∗ 10−7 ∼ .731

Intercept ∼ .955 ∼ 8.194 ∗ 10−189

Runtime Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 1.002 ∼ 8.204 ∗ 10−120

Intercept ∼ 12.365 ∼ .000359

−30
Linear Term Coefficient ∼ 1.011 ∼ 1.212 ∗ 10−133

Intercept ∼ .0891 ∼ .970

10
Linear Term Coefficient ∼ 1.026 ∼ 1.749 ∗ 10−126

Intercept ∼ −1.648 ∼ .566

Table 14. Coefficient and p-value for linear models for fitness of returned solutions and
runtime growth of MATLAB engine using large numbers of generations and FEC

Fitness Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 8.072 ∗ 10−8 ∼ .907

Intercept ∼ .967 ∼ 1.114 ∗ 10−207

−30
Linear Term Coefficient ∼ 4.631 ∗ 10−7 ∼ .505

Intercept ∼ .966 ∼ 1.457 ∗ 10−207

10
Linear Term Coefficient ∼ 7.896 ∗ 10−7 ∼ .391

Intercept ∼ .954 ∼ 2.656 ∗ 10−196

Runtime Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 5.160 ∼ 1.076 ∗ 10−57

Intercept ∼ 25.075 ∼ .780

−30
Linear Term Coefficient ∼ 5.229 ∼ 3.817 ∗ 10−57

Intercept ∼ .479 ∼ .996

10
Linear Term Coefficient ∼ 10.194 ∼ 6.036 ∗ 10−58

Intercept ∼ −2.615 ∼ .988

101

the data table used to produce the linear models previously presented relating fitness

and runtime to numbers of generations. A new linear model that takes both number

of generations and the new categorical variable into account is fit to the data. The

coefficients from this linear model are given in Table 15. From the table, as expected,

FEC encoding has a statistically significant impact on runtime but not on the fitness

of solutions returned by the engine.

Engine Runtime Growth and Fitness Performance - Small Numbers of

Generations.

In light of the engine’s fitness and runtime performance with numbers of gen-

erations larger than 200, specifically the fact that more generations only increased

runtime and not fitness, additional experimentation to evaluate its performance with

smaller numbers of generations is warranted. In particular, determining the threshold

at which the further increase in fitness becomes too small to warrant the additional

increase in runtime is of interest. In order to explore this, the engine ran with a

number of generations ranging from 5 to 50 in increments of 5. The engine executed

30 times for each number of generations value and its runtime and the fitness value of

the returned solution was recorded. A model was then fit to this data to determine

how both the fitness and runtime are affected by the number of generations.

It is expected the runtime will again grow linearly as each additional generation

requires a constant increase in the required processing. However, it is expected the

fitness will increase according to a logarithmic model. This is because very small

numbers of generations will not give the engine sufficient time to evolve reasonably

fit solutions before being forced to return the most-fit one it has found. However,

as the number of generations grows, the fitness will initially increase rapidly as the

engine is able to quickly develop better solutions. Then, the improvement will begin

102

Table 15. Coefficients and p-values for fitness and runtime linear model with FEC
encoding as categorical variable, large numbers of generations

Fitness
Term Value p-value

Number of Generations ∼ −2.441 ∗ 10−7 ∼ .769
FEC Encoding ∼ −7.288 ∗ 10−5 .893

Intercept ∼ .962 0

Runtime
Term Value p-value

Number of Generations ∼ 3.937 ∼ 5.530 ∗ 10−64

FEC Encoding ∼ 3512.797 ∼ 1.197 ∗ 10−99

Intercept ∼ −1750.774 ∼ 4.153 ∗ 10−27

to taper off as the engine finds solutions that are close to the optimum such that

additional generations will not offer much in the way of fitness improvement.

Figures 30 and 31 show the engine’s fitness and runtime performance with respect

to the number of generations the engine uses to find solutions for small numbers of

generations, without and with FEC encoding, respectively. Additionally, Tables 16

and 17 show the coefficients for the models fit to the data along with their associated

p-values. (The figures and tables are analogous to those previously presented for the

engine’s performance using larger numbers of generations.)

103

Figure 30. Growth of engine runtime and fitness of returned solutions with respect to number of generations when no FEC is
used

104

Figure 31. Growth of engine runtime and fitness of returned solutions with respect to number of generations when FEC is
used

105

Several things are immediately noticeable from the data. First, as expected, the

runtime again increases linearly with the number of generations. Comparing Table

13 with Table 16 and Table 14 with Table 17, the rates at which the engine’s runtime

increases with respect to the number of generations, taking into account whether or

not the data is FEC encoded, are similar.

The second immediately noticeable item is that the engine’s fitness performance

does not increase according to a logarithmic model as expected. In fact, as previously,

the linear models fit to the data indicate the number of generations does not have a

statistically significant impact on the fitness value of the solutions returned by the

engine. While unexpected, there are several reasons why this may be the case. The

first possibility is the engine always finds a reasonably good solution as it initializes the

population. As a result, even if no solutions that are relatively close to the optimum

are considered as the engine runs, it has this good solution in the population it can

return. Given the relatively small size of the search space, this is not outside the

realm of possibility. Another possibility is the engine always generates one solution

that is relatively close to optimum as it runs. While again not outside the realm of

possibility, due to the small numbers of generations involved, this is harder to accept.

The more likely scenario is that the fitness function does not adequately distribute

the fitness values of the possible solutions in the search space between 0 and 1. That

is, the fitness function may be assigning relatively high values (> .9) to a dispropor-

tionately large number of possible solutions and smaller fitness values to a relatively

few number of solutions. The issue with this possibility is that it could be mask-

ing solutions that would actually produce poor latency performance in a real-world

network as a solution that would produce acceptable performance. As MATLAB

produces no actual latency information, the fitness values of returned solutions must

be taken as an analog of the latency itself. However, the realized performance will

106

Table 16. Coefficient and p-value for linear models for fitness of returned solutions and
runtime growth of MATLAB engine using small numbers of generations and no FEC

Fitness Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 2.095 ∗ 10−6 ∼ .807

Intercept ∼ .967 0

−30
Linear Term Coefficient ∼ −5.812 ∗ 10−6 ∼ .482

Intercept ∼ .967 0

10
Linear Term Coefficient ∼ −1.423 ∗ 10−5 ∼ .312

Intercept ∼ .955 0

Runtime Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 1.012 0

Intercept ∼ −.727 ∼ .1.612 ∗ 10−6

−30
Linear Term Coefficient ∼ .998 0

Intercept ∼ −.497 ∼ .000670

10
Linear Term Coefficient ∼ 1.018 0

Intercept ∼ −.894 ∼ 4.096 ∗ 10−10

Table 17. Coefficient and p-value for linear models for fitness of returned solutions and
runtime growth of MATLAB engine using small numbers of generations and FEC

Fitness Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 2.095 ∗ 10−6 ∼ .807

Intercept ∼ .967 0

−30
Linear Term Coefficient ∼ 3.901 ∗ 10−6 ∼ .644

Intercept ∼ .967 0

10
Linear Term Coefficient ∼ −7.749 ∗ 10−6 ∼ .548

Intercept ∼ .954 0

Runtime Linear Model
Noise Floor (dBm) Term Value p-value

−50
Linear Term Coefficient ∼ 6.549 0

Intercept ∼ .229 ∼ .586

−30
Linear Term Coefficient ∼ 6.556 0

Intercept ∼ −.386 ∼ .346

10
Linear Term Coefficient ∼ 12.891 0

Intercept ∼ −.859 ∼ .638

107

only be as good as the fitness function on which the engine is built. As a result, if

the fitness function exhibits poor performance (e.g., assigns high fitness values to a

disproportionately large number of solutions such that solutions that produce poor

performance are given high values), the network’s performance will likely be poor as

well. Unfortunately, with no approach to gleaning latency information from MAT-

LAB, there is no way to directly test the fitness function’s quality. In order to do this,

the best approach would likely be to implement FEC in the OMNeT++ network and

test various solutions given both high and low fitness values by the fitness function.

From these tests, whether or not the fitness function assigns high fitness values only

to those solutions that produce acceptable latency fitness could be determined.

As with the fitness of solutions the engine returns and its runtime with large

numbers of generations, the effect of FEC encoding on these performance metrics

may be evaluated. To do this, a categorical variable is again added to the data used

to produce the linear models relating fitness and runtime to numbers of generations.

The coefficients for the new linear models relating fitness and runtime to number of

generations and FEC encoding are given in Table 18. From the table, as expected,

FEC encoding has a statistically significant impact on runtime but not on the fitness

of solutions returned by the engine.

Fitness Variance as Parameters Change from Optimal Settings.

To start evaluating how well the fitness function distributes fitness scores, how

they change as each parameter deviates from its optimum setting may be considered.

To start this investigation, the ideal setting for each parameter for each noise floor

(−50, −30 and 10 dBm) and when the transmissions are and are not FEC encoded

are needed. (In general, these values cannot be found as the search space is too large

to exhaustively search for the best result. The search space under consideration here

108

Table 18. Coefficients and p-values for fitness and runtime linear model with FEC
encoding as categorical variable, small numbers of generations

Fitness
Term Value p-value

Number of Generations ∼ −3.757 ∗ 10−6 ∼ .723
FEC Encoding ∼ .− .000166 .586

Intercept ∼ .963 0

Runtime
Term Value p-value

Number of Generations ∼ 4.837 ∼ 1.131 ∗ 10−199

FEC Encoding ∼ 210.918 0
Intercept ∼ −105.982 ∼ 1.593 ∗ 10−95

is a special case, small enough that each possible solution may be considered. In order

to take better advantage of the power of genetic algorithms, the search space should

be larger. Recommendations for increasing the number of possible solutions are given

in Chapter VI.) These values are given in Table 19. Once the optimum value for each

parameter is known, how the fitness values change as each deviates from this setting

may be evaluated by fixing three of the four parameters and allowing the fourth to

take on each of its possible values. The fitness of each resulting parameter set may be

evaluated and the results plotted to graphically depict the effect on solution fitness.

These plots are given below.

Table 19. Results for exhaustive search for most-fit solutions depending on noise floor
and FEC encoding

Noise Floor
(dBm)

FEC Encoded?
Modulation

Scheme
Modulation

Order
Power
(dBm)

Bandwidth
(MHz)

Fitness
Value

-50 No PSK 3 4 1 .9715
-50 Yes PSK 3 4 1 .9715
-30 No PSK 3 4 1 .9715
-30 Yes PSK 3 4 1 .9715
10 No PSK 2 25 1 .9598
10 Yes PSK 2 19 1 .9627

109

Modulation Scheme.

From Table 19, the optimum modulation scheme for all noise floors both with

and without FEC encoding is Phase Shifft Keying (PSK). However, Figure 32 shows

that using Quadrature Amplitude Modulatio (QAM) rather than PSK, assuming all

other parameters are at their optimum setting, does not appreciably decrease solution

fitness. This is not overly surprising considering the processing that occurs with QAM

and PSK modulation. As its name implies, PSK involves modulating the phase of

the carrier signal to encode the data. QAM derives its name from the fact it involves

modulating the amplitudes of two signals that are at the same frequency but 90

degrees out-of-phase (in quadrature) with respect to each other. Mathematically, this

is equivalent to modulating both the phase and amplitude of a single carrier signal.

As a result, when using a relatively small constellation size as discussed in the next

section, both modulation schemes are robust against the interference encountered at

the noise levels considered here. Thus, the solution fitness value remains relatively

high regardless of the modulation scheme used.

110

Figure 32. Sensitivity of solution fitness value as modulation scheme deviates from optimum value

111

Modulation Order.

From Table 19, the optimum constellation size for a noise floor of −50 and −30

dBm is 8 while for a noise floor of 10 dBm it is 4 constellation points. In general,

then, as the noise floor increases, the ideal constellation size decreases, as expected.

It may perhaps be surprising the optimum constellation size for the −50 and −30

dBm noise floors is not lower; the interference caused by such low noise levels is

certainly not high enough to render a larger constellation size unusable. The reason

the optimum size is 8 for these noise floors is likely due to the increased processing

and thus increased power consumption involved in using a higher modulation order.

The fact the fitness function takes power consumption into account is the likely reason

the optimum constellation size is lower than what it might otherwise have been.

Figure 33 shows how solution fitness values deviate from their optimum as the

constellation size varies. Unlike modulation scheme, modulation order has a signifi-

cant impact on solution fitness. For a noise floor of −50 dBm, the interference is low

enough a constellation with 256 points could be used and still maintain high fitness.

However, as the noise floor rises to even −30 dBm, the maximum size the constella-

tion may have and still facilitate reliable communication becomes constrained. Using

FEC encoding with this noise floor allows a constellation with 128 symbols to be used

whereas without FEC encoding, the constellation size is constrained to 64 symbols.

As expected, then, FEC encoding allows the receiver to detect and correct bit errors,

allowing for a larger constellation size and thus greater throughput. However, this

comes at the cost of additional processing and thus greater power consumption. The

situation is even more pronounced for a noise floor of 10 dBm. In that case, the

interference is so large that a constellation size greater than 4 symbols, even with

FEC encoding, results in the receiver not being able to correctly interpret the trans-

mitted data. (It should be noted a higher transmission power could allow for a larger

112

constellation size to be used and could show a difference in maximum constellation

size between FEC and non-FEC encoded data. However, as part of these tests, the

transmission power was held at its optimum value of 19 and 25 dBm for a noise floor

of 10 dBm with and without FEC encoding, respectively.)

113

Figure 33. Sensitivity of solution fitness value as bits per second deviates from optimum value

114

Power Setting.

The optimum power setting for both the −50 and −30 dBm cases, from Table

19, is 4 dBm. For a noise floor of 10 dBm, it is 19 and 25 dBm with and without

FEC encoding, respectively. These trends are as expected. In the first two cases, the

noise floors are low enough they do not cause a significant amount of interference,

even when the transmitters use a low transmit power. As a result, the engine reduces

power consumption a much as it can in accordance with its fitness function while still

maintaining a reliable communication channel. The situation is different for a noise

floor of 10 dBm. In that case, the interference has rise enough the engine decides the

transmit power must increase to allow for communication. Here again, the effect of

FEC encoding may be observed. Whereas it did not impact the modulation order

with which transmissions could be sent with a noise floor of 10 dBm, it does affect

the transmission power required. From Figure 34 which shows how solution fitness

values change with transmission power, FEC encoding allows the transmit power to be

reduced for a noise floor of 10 dBm from what was required for reliable communication

without FEC encoding.

115

Figure 34. Sensitivity of solution fitness value as power deviates from optimum value

116

Bandwidth.

Table 19 shows the optimum bandwidth for each noise floor with and without

FEC encoding is 1 megahertz while Figure 35 shows how solution fitness varies with

bandwidth. From the figure, the fitness approximately linearly decreases in all cases

as bandwidth increases. This is likely because the power consumption component of

the fitness function penalizes higher bandwidth settings due to the additional pro-

cessing required. Further, increasing the bandwidth does not affect the throughput

or latency fitness because, in order for this to happen, the bitrate must change with

the bandwidth. However, the engine developed and presented here does not do this.

As a result, increasing the bandwidth linearly decreases fitness due to the increased

power consumption with no change in the throughput or latency fitness.

117

Figure 35. Sensitivity of solution fitness value as bandwidth deviates from optimum value

118

Frequency with which Engine Returns Each Parameter Value.

The final item of interest is to investigate the probability with which the engine

returns each possible value for each parameter. To do so, the engine was run 90 times

at each noise floor both with and without FEC encoding and the solution the engine

returns each time was recorded. The number of times each value for each parameter

occured in these 90 solutions was counted and frequency plots for each parameter

were constructed. (These plots are included in Appendix D.) This information may

be evaluated in light of the optimum solutions and how solution fitness changes as the

parameters deviate from these optimum values as explored in the previous section to

gain insight into how likely the engine is to return a solution with low fitness.

Modulation Scheme.

Figures 38 and 39 indicate a fairly even split between how often the engine returned

a solution using PSK vice QAM across all noise floors, both with and without FEC

encoding. From the preceding section, however, using QAM as opposed to PSK did

not appreciably diminish solution fitness. As a result, although the engine may be

expected to return a solution using the non-optimum modulation scheme almost half

of the time, it is not expected the negative impact on the engine’s fitness performance

is significant.

Constellation Size.

Figures 40 and 41 give the plots for the frequency with which the engine returns

each possible value for constellation size. For a noise floor of −50 dBm, the engine

returns a constellation size of 4 with the greatest frequency, a constellation size of 8

and 16 with slightly smaller frequency and a larger constellation size a small fraction

of the time. However, as solution fitness is relatively unaffected by constellation size

119

for this noise floor, the variance in the constellation size the engine returns is not a

cause for concern as it will not appreciably diminish the fitness performance.

For a noise floor of −30, the engine returns constellation sizes of 4, 8 or 16 with

similar frequencies. It also returns a larger constellation size a small portion of the

time. With FEC encoding, this is not an issue; the constellation size must be 256

before solution fitness is negatively affected and these results do not indicate the

engine ever returns such a large constellation. However, without FEC encoding,

fitness is severely impacted with a constellation size of 64 and these results indicate

the engine returns this constellation size for a noise floor of −30 dBm without FEC

Encoding a small percentage of the time. In the real world, this would likely translate

into communication within the network being temporarily interrupted until the engine

runs again and updates the parameters to new values. While link interruption due

to unforeseen circumstances is always a risk, having known engine behavior that

could result in such an interruption is unacceptable. Therefore, additional work to

ensure the engine never returns an untenable solution needs to be performed. This

work could possibly look to revise the fitness function or explore using additional

generations to ensure the engine always finds at least one tenable solution so it does

cause link interruption.

The situation is even worse for a noise floor of 10 dBm. Without FEC encoding,

the engine returns a constellation size that results in link interruption almost 30% of

the time. With FEC encoding, this still happens almost 20% of the time. As with

the −30 dBm case, especially considering a noise floor of 10 dBm is much closer to

what real-world networks will experience, this behavior is unacceptable. This further

underscores the need for future work in refining the engine to ensure its operation

does not lead to link interruption.

120

Power.

Figures 42 and 43 give the engine’s frequency plots for power. As the results in

the previous section indicate solution fitness is relatively unaffected by power setting

for the −50 and −30 dBm noise floors, there is no concern the engine will cause

link interruption in these cases. However, it is interesting to note the frequency

with which the engine returns a power setting higher than the optimum value of 1

dBm. This translates into the network consuming more power than necessary and is

likely due to the relatively low weight the power component of the fitness function

was given. Additional work looking at assigning different weight to the three fitness

function components could be performed to see if this behavior could be diminished

by adjusting the weights. However, care would need to be taken that altering the

weights does not either lead to the engine failing to return an acceptable solution

when one exists or returning unacceptable solutions. Both with and without FEC

encoding, the engine always returns a power setting of 24 dBm or higher for a noise

floor of 10 dBm. While this does not lead to issues with link interruption, similar to

the −50 ad −30 dBm cases, this could lead to unnecessarily high power consumption.

This further underscores the need for additional work to tune the engine to ensure it

always returns an acceptable solution while minimizing resource use.

Bandwidth.

As the previous section discussed, solution fitness is largely unaffected by band-

width changes. Thus, the frequencies with which the engine returns different band-

width values as shown in Figures 36 and 37 are not a cause for concern in term of

link interruption or poor fitness performance. However, one direction in which the

engine could be taken is to allow it to alter the bitrate in the network when it adjusts

the nodes’ bandwidth. If this is implemented in the network, it is expected changing

121

the bandwidth (and bitrate) would have a greater effect on solution fitness. In that

case, the frequencies with which the engine returns each bandwidth value could take

on greater importance.

122

VI. Conclusions and Recommendations

Based on the results presented in the previous chapter, there are several possible

directions in which this Cognitive Engine (CE) research could move in the future.

Implementing FEC Encoding in OMNeT++ Network.

The most important future effort is arguably to implement Forward Error Cor-

rection (FEC) in the OMNeT++ network, or otherwise develop a test network from

which latency performance data may be obtained for realistic operating scenarios.

This will be important in investigating the quality of the fitness function in terms

of the latency performance realized using solutions to which it assigns high fitness

values. The INET framework provides the “APSK Layered Transmitter” and anal-

ogous receiver module types which provide a skeleton into which submodules that

implement the desired functionality may be placed. Further, these transmitter and

receiver types could be placed into existing radio types. However, a solution using

another network simulation framework is also possible.

Evaluating Distribution of Fitness Values Assigned by Fitness Function.

As discussed in Chapter V, the fitness performance exhibited by the engine may

be an indication of its efficiency in finding highly fit solutions. However, a more

likely scenario is that the fitness function assigns a disproportionately large number

of solutions high fitness values. As a result, work needs to be done to assess the

distribution of fitness scores across the search space. Additionally, the likelihood with

which the fitness function assigns a high fitness value to a solution that leads to poor

network latency performance needs to be assessed. It may be a slight increase in this

likelihood is acceptable if it leads to a greater increase in the likelihood of the engine

finding a highly fit solution that yields low network latencies. Conversely, it may be

123

that the possibility of the engine returning a solution that leads to poor performance

is unacceptable and thus this probability must be minimized. An OMNeT++ network

that implements FEC or another network from which actual latency information may

be obtain, as discussed in the previous section, will enable this work.

Testing the Engine with Additional Noise Floors.

Another possible explanation for the consistently high engine performance is that

the low noise levels used in the experiments conducted here allow for relatively error-

free communication (leading to low Bit Error Rates (BERs) and high fitness values in

the MATLAB simulation), regardless of the parameter settings. As a result, another

possible direction for future work would be to repeat these experiments, or varia-

tions thereof, using additional, high noise floors. These experiments should focus on

determining whether or not the high probability of the engine finding a highly fit

solution as with the experiments presented here carries over to high noise floors. If

not, increased interference may the engine to begin discerning between truly fit so-

lutions and those that would likely not lead to acceptable performance in real-world

networks.

Allowing Engine to Alter Bitrate with Bandwidth.

As discussed in Chapter V, altering the network’s bandwidth without also allowing

the engine to alter the bitrate negates the effect of changing the bandwidth. This

resulted in variations in the bandwidth having little effect on solution fitness. As

a result, future work should be conducted to allow the engine to alter both the

network bandwidth and bitrate. Then, additional tests to evaluate how changes in

the network’s bandwidth and bitrate affect the realized latency performance should

be conducted.

124

Recommendations regarding the use of CORNET for Cognitive Net-

work Tests.

While it would be irresponsible to suggest not using CORNET in any future test-

ing efforts, care is warranted in its use. In particular, a thorough understanding

of CORNET’s construction, what it has been optimized to measure in term of per-

formance and what it not adept at measuring is needed. For example, CORNET’s

original design focused on facilitating throughput measurements and using these in

cognitive engine designs. The reason for this is straightforward; in most cases, when

talking about network performance, throughput is the metric of interest. Indeed,

latency has only recently begun to gain attention as a Quality of Service (QoS) met-

ric. As a result, while CORNET inherently supports latency measurements through

the timestamp and message number vectors it produces, a different, more reliable

method for measuring latency is needed if CORNET is to be used in future research

where latency is the QoS metric of interest. Perhaps the most efficient path towards

developing such a method is through a dialog with the CORNET administrators to

gain additional insight into the system’s strengths, weaknesses, capabilities and the

best way to go about measuring latency.

FEC Encoding and Number of Generations Trade-off Analysis.

As discussed in Chapter V, the experimental data indicated that, if the Signal-to-

Noise Ratio (SNR) is low enough, FEC encoding the data may result in an increased

engine runtime without a similar increase in the fitness of returned solutions of suffi-

cient magnitude to warrant the runtime penalty. Similarly, the data also indicated for

even a relatively small number of generations, the increase in the fitness of resulting

solutions may not be sufficiently greater than those returned by the engine using a

smaller number of generations as to warrant the increased runtime. Additional work

125

is needed to study the trade-off between FEC encoding, the number of generations

the engine uses in developing solutions and their affect on runtime in order to deter-

mine when FEC encoding should and should not be used and how to determine the

number of generations that should be used. This work should include what data is

necessary to making these decision and how to code them into the engine itself.

Increasing the Engine’s Search Space to take Greater Advantage of the

Genetic Algorithm.

As discussed in previous chapters, the true power of genetic algorithms lies in

their ability to quickly find “good” solutions in a large search space. Admittedly,

the search space used here is small enough that it cannot truly take advantage of the

genetic algorithm paradigm. However, the search space used may be readily extended

such that the resulting search space is large enough to take advantage of the genetic

algorithmic paradigm. For example, the search space used here has

Search Space Size = 2 ∗ 8 ∗ 32 ∗ 32 = 16, 384 solutions (20)

To determine this, the number of possible values for each of the parameters made

available to the engine are multiplied together. By adding just three additional vari-

ables with 32 possible values each, the search space grows to

New Search Space Size = 2 ∗ 8 ∗ 32 ∗ 32 ∗ 32 ∗ 32 ∗ 32 = 536, 870, 912 solutions (21)

It should be noted this growth in the search space could come from a greater num-

ber of additional parameters with a smaller number of possible values each. It doesn’t

have to be just three parameters or parameters with 32 possible values. However, by

126

increasing the size of the search space, additional, possibly more-fit solutions become

available and the engine may more readily take advantage of the power offered by the

genetic algorithm.

Investigating the Effect of Latency Weight.

Beyond placing additional parameters in the CE, how the weight given to the

latency component of the fitness function affects the network’s performance could be

explored. Further, how the weight left to be assigned after assigning a certain value

to the latency is divided amongst the throughput and power fitness objectives could

also be explored.

Repeating Runtime Experiments with Representative Hardware.

As discussed in Chapter 5, while general conclusions may be drawn from the

runtime data presented, the actual values are only valid for the hardware on which

the tests were run. In particular, while it may be expected a reasonable amount of

the search space may still be explored by a real-world CE on an Unmanned Aerial

Vehicle (UAV), hardware difference may constrain the portion of the search space

that may be explored in a given amount of time or may increase the time required

to investigate a set portion of the search space. As a result, runtime tests need to be

repeated using representative hardware to what would be found on an actual UAV to

determine how the limitations imposed by the hardware affect the CE’s performance.

Effect of Retaining Population Between Engine Runs.

For the tests conducted here, the CE reinitialized its population every time it ran.

This prevented previously found “good” solutions that were no longer acceptable due

to changes in the transmission environment from adversely affecting the solutions the

127

engine considered in subsequent runs. However, this increases the engine’s runtime.

Additionally, for transmission mediums that do not change quickly, as would likely

be encountered by operational UAV swarms, maintaining knowledge of previously

found “good” solutions would likely help improve the engine’s fitness performance.

In light of this, future work needs to be performed to implement some form of “genetic

memory” between CE runs.

128

Bibliography

1. A. C. Gibson. “SecAF: The first interview”. [Online]. Available: http:
//www.af.mil/News/Article-Display/Article/1199661/secaf-the-first-interview/.

2. D. L. James and M. A. W. III, “America’s Air Force: A Call to the Future,”
Office of the Secretary of the Air Force, Report, 2014.

3. “DARPA Software Defined Radio (SDR) Hackfest Selects Teams to Explore
Cyber-Physical Intersection of SDR and Drone Technology”. [Online]. Available:
https://www.darpa.mil/news-events/2017-10-16.

4. M. R. Endsley, “Autonomous Horizons: System Autonomy in the Air Force - A
Path to the Future,” Office of the Chief Scientist, Report, 2015.

5. C. W. Bostian and A. R. Young, “The Application of Cognitive Radio to Coordi-
nated Unmanned Aerial Vehicle (UAV) Missions,” Virginia Polytechnic Institute
and State University, Report, 2011.

6. K. Osborn. “Swarming Mini-Drones: Inside the Pen-
tagon’s Plan to Overwhelm Russian and Chinese Air De-
fenses”. [Online]. Available: http://nationalinterest.org/blog/the-buzz/
swarming-mini-drones-inside-the-pentagons-plan-overwhelm-16135.

7. A. A. Khan, M. H. Rehmani, and M. Reisslein, “Cognitive radio for smart grids:
Survey of architectures, spectrum sensing mechanisms, and networking proto-
cols,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 860–898, 2016.

8. F. Ge, Q. Chen, Y. Wang, C. W. Bostian, T. W. Rondeau, and B. Le, “Cognitive
radio: From spectrum sharing to adaptive learning and reconfiguration,” in IEEE
Aerospace Conference, March 2008, pp. 1–10.

9. J. Mitola, “Cognitive radio architecture evolution,” Proceedings of the IEEE,
vol. 97, no. 4, pp. 626–641, April 2009.

10. I. Mitola, Joseph, “Cognitive radio. an integrated agent architecture for soft-
ware defined radio,” Ph.D. dissertation, Virginia Polytechnic Institute and State
University, 2000.

11. J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more
personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, Aug 1999.

12. V. B. Alluri, J. R. Heath, and M. Lhamon, “A new multichannel, coherent ampli-
tude modulated, time-division multiplexed, software-defined radio receiver archi-
tecture, and field-programmable-gate-array technology implementation,” IEEE
Transactions on Signal Processing, vol. 58, no. 10, pp. 5369–5384, Oct 2010.

129

http://www.af.mil/News/Article-Display/Article/1199661/secaf-the-first-interview/
http://www.af.mil/News/Article-Display/Article/1199661/secaf-the-first-interview/
https://www.darpa.mil/news-events/2017-10-16
http://nationalinterest.org/blog/the-buzz/swarming-mini-drones-inside-the-pentagons-plan-overwhelm-16135
http://nationalinterest.org/blog/the-buzz/swarming-mini-drones-inside-the-pentagons-plan-overwhelm-16135

13. M. Wu, Y. Sun, S. Gupta, and J. R. Cavallaro, “Implementation of a
high throughput soft mimo detector on gpu”,” Journal of Signal Processing
Systems, vol. 64, no. 1, pp. 123–136, Jul 2011. [Online]. Available:
https://doi.org/10.1007/s11265-010-0523-4.

14. K. Li, M. Wu, G. Wang, and J. R. Cavallaro, “A high performance gpu-based
software-defined basestation,” in 48th Asilomar Conference on Signals, Systems
and Computers, Nov 2014, pp. 2060–2064.

15. M. S. Islam, C. H. Kim, and J. M. Kim, “Computationally efficient implemen-
tation of a hamming code decoder using graphics processing unit,” Journal of
Communications and Networks, vol. 17, no. 2, pp. 198–202, April 2015.

16. R. Li, Y. Dou, Y. Li, and S. Wang, “A fully parallel truncated viterbi decoder
for software defined radio on gpus,” in IEEE Wireless Communications and Net-
working Conference (WCNC), April 2013, pp. 4305–4310.

17. C. S. Lin, W. L. Liu, W. T. Yeh, L. W. Chang, W. M. W. Hwu, S. J. Chen,
and P. A. Hsiung, “A tiling-scheme viterbi decoder in software defined radio for
gpus,” in 7th International Conference on Wireless Communications, Networking
and Mobile Computing, Sept 2011, pp. 1–4.

18. F. J. Mart́ınez-Zaldvar, A. M. Vidal-Maciá, A. Gonzalez, and V. Almenar,
“Tridimensional block multiword ldpc decoding on gpus,” The Journal of
Supercomputing, vol. 58, no. 3, pp. 314–322, Dec 2011. [Online]. Available:
https://doi.org/10.1007/s11227-011-0587-3.

19. R. Li, J. Zhou, Y. Dou, S. Guo, D. Zou, and S. Wang, “A multi-standard efficient
column-layered ldpc decoder for software defined radio on gpus,” in IEEE 14th
Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
June 2013, pp. 724–728.

20. Y. Zhao and F. C. M. Lau, “Implementation of decoders for ldpc block codes
and ldpc convolutional codes based on gpus,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 3, pp. 663–672, March 2014.

21. J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in
IEEE International Workshop on Mobile Multimedia Communications, 1999, pp.
3–10.

22. B. McKay and K. McKay. “The Tao of Boyd: How to Master the OODA Loop”.
[Online]. Available: http://www.artofmanliness.com/2014/09/15/ooda-loop/.

23. C. K. Huynh and W. C. Lee, “Two-dimensional genetic algorithm for ofdm-based
cognitive radio systems,” in IEEE 3rd International Conference on Communica-
tion Software and Networks, May 2011, pp. 100–105.

130

https://doi.org/10.1007/s11265-010-0523-4
https://doi.org/10.1007/s11227-011-0587-3
http://www.artofmanliness.com/2014/09/15/ooda-loop/

24. C. J. Rieser, T. W. Rondeau, C. W. Bostian, and T. M. Gallagher, “Cognitive
radio testbed: further details and testing of a distributed genetic algorithm based
cognitive engine for programmable radios,” in IEEE MILCOM, vol. 3, Oct 2004,
pp. 1437–1443 Vol. 3.

25. A. Kliks, D. Triantafyllopoulou, L. D. Nardis, O. Holland, L. Gavrilovska, and
A. Bantouna, “Cross-layer analysis in cognitive radio - context identification and
decision making aspects,” IEEE Transactions on Cognitive Communications and
Networking, vol. 1, no. 4, pp. 450–463, Dec 2015.

26. Y. E. Morabit, F. Mrabti, and E. H. Abarkan, “Spectrum allocation using genetic
algorithm in cognitive radio networks,” in Third International Workshop on RFID
And Adaptive Wireless Sensor Networks (RAWSN), May 2015, pp. 90–93.

27. B. Bojovic, N. Baldo, and P. Dini, “A neural network based cognitive engine for
ieee 802.11 wlan access point selection,” in IEEE Consumer Communications and
Networking Conference (CCNC), Jan 2012, pp. 864–868.

28. S. Pattanayak, M. Ojha, P. Venkateswaran, and R. Nandi, “Spectrum hole de-
tection in tv band using ann model for opportunistic radio communication,” in
IEEE INDICON, Dec 2014, pp. 1–6.

29. Y. Wu, F. Hu, Y. Zhu, and S. Kumar, “Optimal spectrum handoff control for crn
based on hybrid priority queuing and multi-teacher apprentice learning,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 3, pp. 2630–2642, March 2017.

30. I. AlQerm and B. Shihada, “Hybrid cognitive engine for radio systems adapta-
tion,” in 14th IEEE Annual Consumer Communications Networking Conference
(CCNC), Jan 2017, pp. 778–783.

31. Z. j. Zhao and H. chao Lai, “A cognitive engine based on case-based reasoning
quantum genetic algorithm,” in IEEE 14th International Conference on Commu-
nication Technology, Nov 2012, pp. 224–228.

32. A. He, K. K. Bae, T. R. Newman, J. Gaeddert, K. Kim, R. Menon, L. Morales-
Tirado, J. . Neel, Y. Zhao, J. H. Reed, and W. H. Tranter, “A survey of artificial
intelligence for cognitive radios,” IEEE Transactions on Vehicular Technology,
vol. 59, no. 4, pp. 1578–1592, May 2010.

33. M. Ahmed, S. Hailes, V. Kolar, M. Petrova, and P. Mahonen, “A component-
based architecture for cognitive radio resource management,” in 4th International
Conference on Cognitive Radio Oriented Wireless Networks and Communications,
June 2009, pp. 1–6.

34. X. Jing and D. Raychaudhuri, “Global control plane architecture for cognitive
radio networks,” in IEEE International Conference on Communications, June
2007, pp. 6466–6470.

131

35. P. D. Sutton, J. Lotze, H. Lahlou, S. A. Fahmy, K. E. Nolan, B. Ozgul, T. W.
Rondeau, J. Noguera, and L. E. Doyle, “Iris: an architecture for cognitive radio
networking testbeds,” IEEE Communications Magazine, vol. 48, no. 9, pp. 114–
122, Sept 2010.

36. P. D. Sutton, J. Lotze, H. Lahlou, B. zgl, S. A. Fahmy, K. E. Nolan, J. Noguera,
and L. E. Doyle, “Multi-platform demonstrations using the iris architecture for
cognitive radio network testbeds,” in Proceedings of the Fifth International Con-
ference on Cognitive Radio Oriented Wireless Networks and Communications,
June 2010, pp. 1–5.

37. S. N. Khan, M. A. Kalil, and A. Mitschele-Thiel, “Distributed resource map:
A database-driven network support architecture for cognitive radio ad hoc net-
works,” in IV International Congress on Ultra Modern Telecommunications and
Control Systems, Oct 2012, pp. 188–194.

38. J. Kleinberg and É. Tardos, Algorithm Design. Boston, MA: Addison-Wesley,
2006.

39. K. H. Rosen, Discrete Mathematics and Its Applications. New York, NY:
McGraw-Hill, 2012.

40. D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems. Boston,
MA: PWS Publishing Company, 1997.

41. K. A. De Jong and W. M. Spears, “An analysis of the interacting roles of popu-
lation size and crossover in genetic algorithms,” in Parallel Problem Solving from
Nature, H.-P. Schwefel and R. Männer, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1991, pp. 38–47.

42. E.-G. Talbi, Metaheuristics: From Design to Implementation. Hoboken, NJ:
John Wiley and Sons, 2009.

43. B. Sklar, Digital Communications Fundamentals and Applications. Upper Saddle
River, NJ: Prentice-Hall, 2001.

44. Z. Haider, R. Hussain, I. L. Khan, A. Shakeel, B. Ijaz, and S. A. Malik, “Eval-
uation of capabilities of open source cognitive radio network simulators,” in
13th International Wireless Communications and Mobile Computing Conference
(IWCMC), June 2017, pp. 1814–1817.

45. V. L. Nir and B. Scheers, “Evaluation of open-source software frameworks for
high fidelity simulation of cognitive radio networks,” in International Conference
on Military Communications and Information Systems (ICMCIS), May 2015, pp.
1–6.

132

46. E. Weingartner, H. vom Lehn, and K. Wehrle, “A performance comparison of re-
cent network simulators,” in IEEE International Conference on Communications,
June 2009, pp. 1–5.

47. INET Framework for OMNeT++/OMNEST. [Online]. Available: https:
//omnetpp.org/doc/inet/api-current/neddoc/index.html.

48. O. Helgason and S. T. Kouyoumdjieva, “Enabling multiple controllable radios
in omnet++ nodes,” in Proceedings of the 4th International ICST Conference
on Simulation Tools and Techniques, ser. SIMUTools ’11. ICST, Brussels,
Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2011, pp. 398–401. [Online]. Available:
http://dl.acm.org.afit.idm.oclc.org/citation.cfm?id=2151054.2151124.

49. S. N. Khan, M. A. Kalil, and A. Mitschele-Thiel, “crsimulator: A discrete simu-
lation model for cognitive radio ad hoc networks in omnet++,” in 6th Joint IFIP
Wireless and Mobile Networking Conference (WMNC), April 2013, pp. 1–7.

50. N. M. Noor, N. M. Din, E. Ahmed, and A. N. A. Kadir, “Omnet++ based
cognitive radio simulation network,” in 7th IEEE Control and System Graduate
Research Colloquium (ICSGRC), Aug 2016, pp. 28–33.

51. Cornet Home. [Online]. Available: https://cornet.wireless.vt.edu/.

52. T. R. Newman and J. B. Evans, “Parameter sensitivity in cognitive radio adap-
tation engines,” in 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum
Access Networks, Oct 2008, pp. 1–5.

53. T. R. Newman, “Multiple Objective Fitness Functions for Cognitive Radio Adap-
tation,” Ph.D. dissertation, University of Kansas, 2008.

54. J. S. Milton and J. C. Arnold, Introduction to Probability and Statistics. Boston,
MA: McGraw-Hill, 2003.

55. B. Le, “Building a Cognitive Radio: From Architecture Definition to Prototype
Implementation,” Ph.D. dissertation, Virginia Polytechnic Institute and State
University, 2007.

56. B. C. Levy. “Table of Q Function”. [Online]. Available: www.ece.ucdavis.edu/
∼levy/eec161/qfunc.pdf.

133

https://omnetpp.org/doc/inet/api-current/neddoc/index.html
https://omnetpp.org/doc/inet/api-current/neddoc/index.html
http://dl.acm.org.afit.idm.oclc.org/citation.cfm?id=2151054.2151124
https://cornet.wireless.vt.edu/
www.ece.ucdavis.edu/~levy/eec161/qfunc.pdf
www.ece.ucdavis.edu/~levy/eec161/qfunc.pdf

Appendix A. Static Parameters for CORNET Experiments

Table 20. General CORNET experiment parameters, not associated with either node
individually and constant across all experimental runs

Static Variable Value Description
num nodes 2 Number of nodes in scenario
run time 60 How long scenario should be run (in seconds)

134

Table 21. Node 1 parameters which remain constant across all test cases for CORNET
experiments

Node 1 Parameters

General

type ”CR Node type (cognitive radio or interferer)

cr type ”ecr” Cognitive radio type (ECR or external)

CORNET IP ”192.168.1.38” IP address within CORNET

Network

CRTS IP ”10.0.0.2”

TARGET IP ”10.0.0.3” IP address of node with which this node will initially communicate

net traffic type ”poisson” Network traffic type (stream, burst or Poisson)

net mean throughput 2.00E+06 Network traffic rate

Cognitive engine

CE ”CE Template” Name of cognitive engine to be used in the scenario

ce timeout ms 200 How long cognitive engine should wait if node becomes unresponsive

Log/report

print metrics 1 Print metrics while scenario running

log phy rx 1 Log physical receiver metrics

log phy tx 1 Log physical transmitter metrics

log net rx 1 Log network receiver metrics

log net tx 1 Log network transmitter metrics

generate octave logs 1 Generate Octave logs for MATLAB ingest

USRP

rx freq 8.63E+08 Receiver frequency (Hz)

rx rate 2.00E+06 Receiver rate

rx gain 10 Receiver gain

tx freq 8.58E+08 Transmitter frequency (Hz)

tx rate 2.00E+06 Transmitter rate

tx gain 10 Transmitter gain

Liquid OFDM

duplex ”FDD”

tx gain soft -12 Transmitter gain

tx crc ”crc32” Transmitter cyclic redundancy check

tx fec0 ”v27” Transmitter forward error correction scheme

tx fec1 ”none” Transmitter forward error correction scheme

tx cp len 16

rx cp len 16

tx subcarriers 32 Number of transmitter subcarriers

tx subcarrier alloc method ”standard” Transmitter subcarrier allocation method

tx guard subcarriers 4 Number of transmitter guard subcarriers

tx central nulls 6 Number of transmitter central nulls

tx pilot freq 4 Transmitter pilot frequency

rx subcarriers 32 Number of receiver subcarriers

rx subcarrier alloc method ”standard” Receiver subcarrier allocation method

rx guard subcarriers 4 Number of receiver guard subcarriers

rx central nulls 6 Number of receiver central nulls

rx pilot freq 4 Receiver pilot frequency

135

Table 22. Node 2 parameters which remain constant across all test cases for CORNET
experiments

Node 1 Parameters

General

type ”CR Node type (cognitive radio or interferer)

cr type ”ecr” Cognitive radio type (ECR or external)

CORNET IP ”192.168.1.37” IP address within CORNET

Network

CRTS IP ”10.0.0.3”

TARGET IP ”10.0.0.2” IP address of node with which this node will initially communicate

net traffic type ”poisson” Network traffic type (stream, burst or Poisson)

net mean throughput 2.00E+06 Network traffic rate

Cognitive engine

CE ”CE Template” Name of cognitive engine to be used in the scenario

ce timeout ms 200 How long cognitive engine should wait if node becomes unresponsive

Log/report

print metrics 1 Print metrics while scenario running

log phy rx 1 Log physical receiver metrics

log phy tx 1 Log physical transmitter metrics

log net rx 1 Log network receiver metrics

log net tx 1 Log network transmitter metrics

generate octave logs 1 Generate Octave logs for MATLAB ingest

USRP

rx freq 8.63E+08 Receiver frequency (Hz)

rx rate 2.00E+06 Receiver rate

rx gain 10 Receiver gain

tx freq 8.58E+08 Transmitter frequency (Hz)

tx rate 2.00E+06 Transmitter rate

tx gain 10 Transmitter gain

Liquid OFDM

duplex ”FDD”

tx gain soft -12 Transmitter gain

tx crc ”crc32” Transmitter cyclic redundancy check

tx fec0 ”v27” Transmitter forward error correction scheme

tx fec1 ”none” Transmitter forward error correction scheme

tx cp len 16

rx cp len 16

tx subcarriers 32 Number of transmitter subcarriers

tx subcarrier alloc method ”standard” Transmitter subcarrier allocation method

tx guard subcarriers 4 Number of transmitter guard subcarriers

tx central nulls 6 Number of transmitter central nulls

tx pilot freq 4 Transmitter pilot frequency

rx subcarriers 32 Number of receiver subcarriers

rx subcarrier alloc method ”standard” Receiver subcarrier allocation method

rx guard subcarriers 4 Number of receiver guard subcarriers

rx central nulls 6 Number of receiver central nulls

rx pilot freq 4 Receiver pilot frequency

136

Appendix B. Code Listings for OMNeT++ Cognitive
Engine

Listing B.1. Listing for OMNeT++ cognitive engine implementation.

/∗
∗ CRCENetworkEngine . cpp
∗
∗ Created on : Jan 13 , 2018
∗ Author : Dan Hart
∗/

#include ”CRCENetworkEngine . h”

Define Module (CRCENetworkEngine) ;

CRCENetworkEngine : : CRCENetworkEngine (){
}

CRCENetworkEngine : : ˜ CRCENetworkEngine () {
}

double CRCENetworkEngine : : calculatePSKBER (double modulationOrder , double b i t r a t e ,
double bandwidth , double power , double noise , double r) {

/∗
∗ Evaluate the argument to the Q func t ion and then look up the appropr ia t e
∗ va lue in the Q func t ion t a b l e
∗/

double powerWatts = pow(10 , (power − 30) / 1 0) ;
double noiseWatts = pow(10 , (no i s e − 30) / 1 0) ;
double qFunctionArgument ;
i f (no i s e == 0) {

qFunctionArgument = 9 ;
}
else {

qFunctionArgument = s q r t ((1 / double (b i t r a t e / modulationOrder)) ∗
bandwidth) ∗ s i n (M PI / pow(2 , modulationOrder)) ∗ s q r t ((r ∗ 2 ∗
powerWatts) / noiseWatts) ;

}
double qFunct ionResult = this−>evaluateQFunction (qFunctionArgument) ;

// Ca l cu la t e the BER using in termed ia te r e s u l t s and return
return (2 / modulationOrder) ∗ qFunctionResult ;

}

double CRCENetworkEngine : : calculateQAMBER (double modulationOrder , double b i t r a t e ,
double bandwidth , double power , double noise , double r) {
/∗
∗ Evaluate the argument to the Q func t ion and then look up the appropr ia t e
∗ va lue in the Q func t ion t a b l e
∗/

double powerWatts = pow(10 , (power − 30) / 1 0) ;
double noiseWatts = pow(10 , (no i s e − 30) / 1 0) ;
double qFunctionArgument ;
i f (no i s e == 0) {

qFunctionArgument = 9 ;
}
else {

qFunctionArgument = s q r t ((3 ∗ r ∗ (1 / double (b i t r a t e /
modulationOrder)) ∗ bandwidth ∗ powerWatts) /
((modulationOrder − 1) ∗ noiseWatts)) ;

}
double qFunct ionResult = this−>evaluateQFunction (qFunctionArgument) ;

137

// Ca l cu la t e the BER using in termed ia te r e s u l t s and return
return (4 / modulationOrder) ∗ ((s q r t (pow(2 , modulationOrder)) − 1) /
s q r t (pow(2 , modulationOrder))) ∗ qFunctionResult ;

}

//Method to compute f i t n e s s score ; uses o ther he l p e r methods
double CRCENetworkEngine : : computeFitnessScore (std : : s t r i n g parameterEncoding) {

/∗
∗ Radio parameter encoding :
∗ Fi r s t b i t : modulation scheme
∗ Next 4 b i t s encode modulation order
∗ Next 5 b i t s encode power
∗ Final 5 b i t s encode bandwidth
∗/

//Extrac t the encoded modulation scheme from the s t r i n g
std : : s t r i n g modulationScheme = parameterEncoding . subs t r (0 , 1) ;

//Extrac t the encoded modulation order from the s t r i n g
std : : s t r i n g modulat ionOrderStr ing = parameterEncoding . subs t r (1 , 4) ;

//Extrac t the encoded power s e t t i n g from the s t r i n g
std : : s t r i n g powerStr ing = parameterEncoding . subs t r (5 , 5) ;

//Extrac t the encoded bandwidth s e t t i n g from the s t r i n g
std : : s t r i n g bandwidthString = parameterEncoding . subs t r (10 , 5) ;

//Convert the encoded parameter va lue s

/∗
∗ Convert modulation order , power and bandwidth ;
∗ ADJUST POWER AND BANDWIDTH IN ACCORDANCE WITH REQUIRED OFFSETS TO
∗ ENSURE THEY FALL WITHIN THE SPECIFIED RANGE! !
∗/

double modulationOrder = convertStr ingToDouble (modulat ionOrderStr ing) ;
double power = convertStr ingToDouble (powerStr ing) + 4 ;
double bandwidth = this−>convertStr ingToDouble (bandwidthString) + 1 ;

double r = 1 ;

double bitErrorRate ;

i f (modulationScheme . compare (”0”) == 0) {
//Using PSK modulation
//Convert bandwidth from MHz (current) to Hz (requ i red)
bitErrorRate = this−>calculatePSKBER (modulationOrder , this−>b i t r a t e ,
bandwidth ∗ 1000000 , power , this−>r e c e i v e rNo i s eLeve l , r) ;

}
else {

//Using QAM
//Convert bandwidth from MHz (current) to Hz (requ i red)
bitErrorRate = this−>calculateQAMBER (modulationOrder , this−>b i t r a t e ,
bandwidth ∗ 1000000 , power , this−>r e c e i v e rNo i s eLeve l , r) ;

}

double l a t e n c y F i t n e s s = this−>computeLatencyFitness (b i tErrorRate) ;

double powerFitness = this−>computePowerFitness (modulationOrder , power ,
bandwidth) ;

double throughputFitness = this−>computeThroughputFitness (b i tErrorRate) ;

return this−>latencyWeight ∗ l a t e n c y F i t n e s s + this−>powerWeight ∗
powerFitness + this−>throughputWeight ∗ throughputFitness ;

}

138

double CRCENetworkEngine : : computeLatencyFitness (double bitErrorRate) {
double e r r o r l e s s L a t e n c y = c e i l ((this−>packetS i z e + this−>packetHeaderSize +
(((this−>packetS i z e + this−>packetHeaderSize) / this−>datagramSize) ∗
this−>datagramHeaderSize)) / this−>f rameSize) ∗ this−>frameLatency ;

double e r ro rPena l ty = 1 / (1 − (1 − (pow((1 − bitErrorRate) ,
(this−>f rameSize + this−>f rameHeaderSize) ∗ 8)))) ;

return e r r o r l e s s L a t e n c y / (e r ro rPena l ty ∗ e r r o r l e s s L a t e n c y) ;
}

double CRCENetworkEngine : : computePowerFitness (double modulationOrder , double power ,
double bandwidth) {

/∗
∗ Ca lcu la t e the three components i n d i v i d u a l l y to t r y and keep t h in g s a
∗ l i t t l e more readab l e /manageable
∗/

double componentOne = 1 − (this−>alpha ∗ (((this−>maxPower +
this−>maxBandwidth) − (power + bandwidth)) / (this−>maxPower +
this−>maxBandwidth))) ;

double componentTwo = this−>beta ∗ ((l og2 (this−>maxModulationOrder) −
l og2 (modulationOrder)) / log2 (this−>maxModulationOrder)) ;

double componentThree = this−>lambda ∗ (((this−>b i t r a t e /
this−>maxModulationOrder) − (this−>b i t r a t e / modulationOrder)) /
(this−>b i t r a t e / this−>maxModulationOrder)) ;

//Return the sum of the th ree components
return componentOne + componentTwo + componentThree ;

}

double CRCENetworkEngine : : computeThroughputFitness (double bitErrorRate) {
return (this−>f rameSize / (this−>f rameSize + this−>f rameHeaderSize +
this−>packetHeaderSize + this−>datagramHeaderSize)) ∗ pow((1 − bitErrorRate) ,
this−>f rameSize + this−>f rameHeaderSize) ∗ this−>codingRate ∗ this−>TDD;

}

double CRCENetworkEngine : : convertStr ingToDouble (std : : s t r i n g binaryValue) {
double doubleValue = 0 ;
for (int index = binaryValue . s i z e () − 1 ; index >= 0 ; index−−) {

i f (! (binaryValue . subs t r (index , 1) . compare (”1”))) {
doubleValue += pow(2 , binaryValue . s i z e () − index − 1) ;

}
}
return doubleValue ;

}

//Method to eva l ua t e Q func t ion v ia t a b l e lookup
double CRCENetworkEngine : : evaluateQFunction (double qFunctionArgument) {

int index = 0 ;

// E x p l i c i t l y handle case where argument i s 0 ; breaks code o therwi se
i f (qFunctionArgument == 0) {

return . 0 5 ;
}

//Find the second row to be used in i n t e r p o l a t i n g the co r r e c t Q func t ion va lue
while (this−>qFunctionTable [index] [0] < qFunctionArgument && index < 180) {

index++;
}

i f (index == 0) {
//The Q func t ion argument passed in i s l e s s than 0 , an error ; break
std : : e x i t (1) ;

139

}
// In t e r p o l a t e the Q func t ion va lue and return
double index1 = this−>qFunctionTable [index − 1] [0] ;
double index2 = this−>qFunctionTable [index] [0] ;
double value1 = this−>qFunctionTable [index − 1] [1] ;
double value2 = this−>qFunctionTable [index] [1] ;

double qFunctionValue = (value1 + ((value2 − value1) / (index2 − index1)) ∗
(qFunctionArgument − index1)) ;

/∗
∗ Code to t e s t evaluateQFunction method
∗ s t d : : cout << qFunctionValue << ”\n”;
∗/

return qFunctionValue ;
}

/∗
∗ Method to generate a random bandwidth encoding ; w i l l be used in i n i t i a l i z i n g
∗ the popu la t ion
∗/

std : : s t r i n g CRCENetworkEngine : : generateBandwidthStr ing () {
//5 t o t a l b i t s

//Bandwidth gene which w i l l be i t e r a t i v e l y b u i l t
std : : s t r i n g bandwidthGene = ”” ;

/∗
∗ For each b i t pos i t i on , generate a random number ; i f i t i s even , add a 0 ,
∗ o therwi se add a 1
∗/

for (int index = 0 ; index < 5 ; index++) {
//For each b i t , generate a random number and t e s t to as s i gn b i t
i f (rand () % 2 == 0) {

bandwidthGene += ”0” ;
}

else {
bandwidthGene += ”1” ;

}
}
return bandwidthGene ;

}

/∗
∗ Method to generate a random modulation scheme encoding ; w i l l be used in
∗ i n i t i a l i z i n g the popu la t ion
∗/

std : : s t r i n g CRCENetworkEngine : : generateModulationScheme () {
i f (rand () % 2 == 0) {

return ”0” ;
}
else {

return ”1” ;
}

}

/∗
∗ Method to generate a random modulation order encoding ; w i l l be used in
∗ i n i t i a l i z i n g the popu la t ion
∗/

std : : s t r i n g CRCENetworkEngine : : generateModulat ionOrder (bool usingQAM) {
/∗
∗ Boolean va lue s to t rack i f f i r s t b i t i s a one (a l l o the r s must be 0)
∗ and i f , when we ge t to the l a s t b i t , a l l b i t s are 0 (l a s t b i t must be a 1)
∗/

140

bool f i r s t O n e = fa l se ;
bool a l l Z e r o s = true ;

s td : : s t r i n g modulat ionOrderStr ing ;

for (int index = 0 ; index < 4 ; index++) {
i f (index == 0) {

i f (rand () % 8 == 0) {
/∗
∗ Using 8 here to cut down one the number o f t imes
∗ the f i r s t b i t i s s e t to one as t ha t s e t s a l l
∗ other b i t s
∗/

modulat ionOrderStr ing += ”1” ;
f i r s t O n e = true ;
a l l Z e r o s = fa l se ;

}
else {

modulat ionOrderStr ing += ”0” ;
}

}
else i f (index > 0 && f i r s t O n e) {

//The f i r s t b i t i s a 1 , a s s i gn a 0
modulat ionOrderStr ing += ”0” ;

}
else i f (index == 3 && (a l l Z e r o s | | usingQAM)) {

i f (usingQAM) {
i f (a l l Z e r o s) {

/∗
∗ Need to s e t preced ing b i t (at p o s i t i on 2)
∗ to 1 and s e t t h i s b i t to 0
∗/

modulat ionOrderStr ing . r e p l a c e (2 , 1 , ”1”) ;
}
modulat ionOrderStr ing += ”0” ;

}
else {

i f (a l l Z e r o s) {
/∗
∗ Looking at the l a s t b i t and a l l preced ing b i t s
∗ are 0 , must as s i gn a 1
∗/

modulat ionOrderStr ing += ”1” ;
}

}
}
else {

/∗
∗ Generate random number ; i f i t i s even , as s i gn a 0 ,
∗ o therwi se as s i gn a 1
∗/

i f (rand () % 2 == 0) {
modulat ionOrderStr ing += ”0” ;

}
else {

modulat ionOrderStr ing += ”1” ;
a l l Z e r o s = fa l se ;

}
}

}
return modulat ionOrderStr ing ;

}

/∗
∗ Method to generate a random modulation power encoding ;
∗ w i l l be used in i n i t i a l i z i n g the popu la t ion

141

∗/
std : : s t r i n g CRCENetworkEngine : : generatePowerStr ing () {

//5 t o t a l b i t s

//Bandwidth gene which w i l l be i t e r a t i v e l y b u i l t
std : : s t r i n g powerGene = ”” ;

/∗
∗ For each b i t pos i t i on , generate a random number ;
∗ i f i t i s even , add a 0 , o therwi se add a 1
∗/

for (int index = 0 ; index < 5 ; index++) {
//For each b i t , generate a random number and t e s t to as s i gn b i t
i f (rand () % 2 == 0) {

powerGene += ”0” ;
}

else {
powerGene += ”1” ;

}
}
return powerGene ;

}

//Simple g e t t e r method to re turn the popu la t ion s i z e
double CRCENetworkEngine : : g e tPopu la t i onS i z e () {

return this−>popu la t i onS i z e ;
}

/∗
∗ Method to handle s e l f−message , run the g ene t i c a lgor i thm and re−schedu l e
∗ a new message f o r 5 seconds in the fu tu r e
∗/

void CRCENetworkEngine : : handleMessage (omnetpp : : cMessage∗ incomingMessage) {
i f (incomingMessage−>getKind () == this−>r u n g e n e t i c a l g o r i t h m) {

//Run the g ene t i c a lgor i thm
std : : s t r i n g newParameterEncoding = this−>runGeneticAlgorithm () ;

/∗
∗ Cal l each radio ’ s parameter update method
∗ to update opera t ing parameters
∗/

for (int index = 0 ; index < par (”numRadioNodes”) . longValue () ; index++) {
//Form radio node ’ s name
std : : s t r i n g radioName = ” cr node ” + std : : t o s t r i n g (index) ;

//Get re f e r ence to node
CRCENetworkRadio∗ rad io =
(CRCENetworkRadio∗) this−>getParentModule()−>
getSubmodule (radioName . c s t r ())−>
getModuleByPath (” . wlan [0] ”)−>getSubmodule (” rad io ”) ;

//Ca l l the radio ’ s parameter update func t i on
radio−>updateParameters (newParameterEncoding) ;

}
}

//Save chromosome to f i l e
std : : f s t ream chromosomesFile ;
chromosomesFile . open (”Chromosomes . txt ” , s td : : f s t ream : : app) ;

chromosomesFile << this−>geneticAlgorithmRunNumber << ”\ t \ t ” <<
this−>genet icAlgor i thmPopulat ion−>getPopulationMember (0) << ”\ t \ t ” <<
SIMTIME DBL(simTime ()) << std : : endl ;

chromosomesFile . c l o s e () ;

142

this−>geneticAlgorithmRunNumber = this−>geneticAlgorithmRunNumber + 1 ;

i f (this−>geneticAlgorithmRunNumber % 40 == 0) {
//Run the a lgor i thm 40 times at each power l e v e l
this−>geneticAlgorithmRunNumber = 0 ;

//Update background noise l e v e l
I so t rop i cSca la rBackgroundNoi se ∗ backgroundNoise =
(I sot rop i cSca la rBackgroundNoi se ∗) this−>getParentModule()−>
getSubmodule (”networkRadioMedium”)−>getSubmodule (” backgroundNoise ”) ;

double noiseInWatts = backgroundNoise−>getPower () . get () ;

double noiseInDBm = 10 ∗ l og10 (1000 ∗ noiseInWatts) + 10 ;
backgroundNoise−>setBackgroundNoisePower (noiseInDBm) ;

this−>r e c e i v e r N o i s e L e v e l = noiseInDBm ;
}

// Schedule a new message to run gene t i c a lgor i thm 5 seconds in the f u tu r e
omnetpp : : cMessage∗ runAlgorithmMessage = new omnetpp : : cMessage () ;
runAlgorithmMessage−>setKind (this−>r u n g e n e t i c a l g o r i t h m) ;
this−>scheduleAt (omnetpp : : simTime () + 5 , runAlgorithmMessage) ;

}

/∗
∗ Method to i n i t i a l i z e engine ; c r ea t e s the engine ,
∗ s e t s parameters app rop r i a t e l y and schedu l e s f i r s t event
∗/

void CRCENetworkEngine : : i n i t i a l i z e (int i n i t i a l i z a t i o n S t a g e) {
/∗
∗ I n i t i a l i z e the popu la t ion s i z e , weights ,
∗ maximum parameter s e t t i n g s and the popu la t ion i t s e l f
∗/

this−>alpha = par (” alpha ”) ;
this−>beta = par (” beta ”) ;
this−>b i t r a t e = par (” b i t r a t e ”) ;
this−>chromosomeLength = par (”chromosomeLength”) ;
this−>codingRate = par (” codingRate ”) ;
this−>datagramHeaderSize = par (” datagramHeaderSize ”) ;
this−>datagramSize = par (” datagramSize ”) ;
this−>f rameHeaderSize = par (” frameHeaderSize ”) ;
this−>frameLatency = par (” frameLatency ”) ;
this−>f rameSize = par (” f rameSize ”) ;
this−>geneticAlgorithmRunNumber = 1 ;
this−>lambda = par (”lambda”) ;
this−>latencyWeight = par (” latencyWeight ”) ;
this−>maxBandwidth = par (”maxBandwidth”) ;
this−>maxModulationOrder = par (”maxModulationOrder”) ;
this−>maxPower = par (”maxPower”) ;
this−>numberOfGenerations = par (”numberOfGenerations”) ;
this−>packetHeaderSize = par (” packetHeaderSize ”) ;
this−>packetS i z e = par (” packetS i z e ”) ;
this−>popu la t i onS i z e = par (” popu la t i onS i z e ”) ;
this−>powerWeight = par (”powerWeight”) ;
this−>r e c e i v e r N o i s e L e v e l = −20;
this−>throughputWeight = par (” throughputWeight”) ;
this−>TDD = par (”TDD”) ;

// Store the message kind tha t w i l l be used to t e l l the engine to run
this−>r u n g e n e t i c a l g o r i t h m = 253 ;

//Create the engine ’ s popu la t ion
this−>genet i cAlgor i thmPopulat ion = new CRCEPopulation (this−>popu la t i onS i z e) ;

143

//Add header to chromosomes f i l e
std : : remove (”Chromosomes . txt ”) ;
s td : : o f s tream chromosomesFile (”Chromosomes . txt ”) ;

chromosomesFile << ”Run Number” << ”\ t ” << ”Chromosome” << ”\ t \ t ” <<
” Simulat ion Time” << std : : endl ;

chromosomesFile . c l o s e () ;

// I n i t i a l i z e the Q func t ion t a b l e
//Read in the va lue s f o r the Q func t ion t a b l e
std : : i f s t r e a m qFunctionTableText (”QFunctionTable . txt ”) ;
s td : : s t r i n g nextLine ;
int index = 0 ;
double value1 = 0 ;
double value2 = 0 ;

while (std : : g e t l i n e (qFunctionTableText , nextLine , ’ \n ’)) {
std : : i s t r i n g s t r e a m qFunctionTableTextStream (nextLine) ;
qFunctionTableTextStream >> value1 ;
qFunctionTableTextStream >> value2 ;

this−>qFunctionTable [index] [0] = value1 ;
this−>qFunctionTable [index] [1] = value2 ;

index++;
}

// I i t i a l i z e the popu la t ion
this−>i n i t i a l i z e P o p u l a t i o n () ;

/∗
∗ Create a new message ,
∗ s e t i t s kind to ” run gene t i c a l g o r i t hm ”
∗ and schedu l e i t f o r 5 seconds in the fu tu r e
∗/

EV << ” Schedul ing f i r s t message to t e l l eng ine to run” ;
omnetpp : : cMessage∗ runAlgorithmMessage = new omnetpp : : cMessage () ;
runAlgorithmMessage−>setKind (this−>r u n g e n e t i c a l g o r i t h m) ;
this−>scheduleAt (omnetpp : : simTime () + 5 , runAlgorithmMessage) ;

}

// I n i t i a l i z e s the popu la t ion with randomly generated chromosomes
void CRCENetworkEngine : : i n i t i a l i z e P o p u l a t i o n () {

// I n i t i a l i z e random number generator to random va lue
srand (time (NULL)) ;

int index ;

for (index = 0 ; index < this−>popu la t i onS i z e ; index++) {
/∗
∗ Randomly generate a new parameter encoding ,
∗ eva lua t e i t s f i t n e s s and add to popu la t ion
∗/

std : : s t r i n g modulationSchemeString =
this−>generateModulationScheme () ;

s td : : s t r i n g modulat ionOrderStr ing =
this−>generateModulat ionOrder (
modulationSchemeString . compare (”1”) == 0) ;

std : : s t r i n g powerStr ing = this−>generatePowerStr ing () ;

s td : : s t r i n g bandwidthString = this−>generateBandwidthStr ing () ;

i f (modulationSchemeString . compare (”1”) == 0 &&

144

modulat ionOrderStr ing . subs t r (3 , 1) . compare (”1”) == 0) {
std : : cout << ”ERROR! ” << std : : endl ;

}

std : : s t r i n g chromosome = modulationSchemeString +
modulat ionOrderStr ing + powerStr ing + bandwidthString ;

double f i t n e s s V a l u e = this−>computeFitnessScore (chromosome) ;

this−>genet icAlgor i thmPopulat ion−>
addMemberToPopulation (chromosome , f i t n e s sVa lue , true) ;

}
}

std : : s t r i n g CRCENetworkEngine : : mutateChromosome (std : : s t r i n g recombinedChromosome) {
/∗
∗ Extrac t the four par t s o f the chromosome ;
∗ the modulation order w i l l be mutated d i f f e r e n t l y than the other par t s
∗ Radio parameter encoding :
∗ Fi r s t b i t : modulation scheme
∗ Next 4 b i t s encode modulation order
∗ Next 5 b i t s encode power
∗ Final 5 b i t s encode bandwidth
∗/

//Extrac t the encoded modulation scheme from the s t r i n g
std : : s t r i n g modulationScheme = recombinedChromosome . subs t r (0 , 1) ;

//Extrac t the encoded modulation order from the s t r i n g
std : : s t r i n g modulat ionOrderStr ing = recombinedChromosome . subs t r (1 , 4) ;

//Extrac t the encoded power s e t t i n g from the s t r i n g
std : : s t r i n g powerStr ing = recombinedChromosome . subs t r (5 , 5) ;

//Extrac t the encoded bandwidth s e t t i n g from the s t r i n g
std : : s t r i n g bandwidthString = recombinedChromosome . subs t r (10 , 5) ;

s td : : s t r i n g mutatedChromosome ;

//Mutate modulation scheme
i f (rand () % (int) this−>chromosomeLength == 0) {

i f (modulationScheme . compare (”0”) == 0) {
mutatedChromosome += ”1” ;

}
else {

mutatedChromosome += ”0” ;
}

}
else {

mutatedChromosome += modulationScheme ;
}

/∗
∗ Mutate modulation order
∗ I f f i r s t b i t i s made a 1 , make a l l o ther b i t s 0
∗ When mutating l a s t b i t ,
∗ i f i t i s changed to a zero , must make sure at l e a s t one other b i t i s a 1
∗/

//Boolean to determine i f f i r s t b i t i s a 1
bool f i r s t B i t O n e = fa l se ;
//Boolean to determine i f a l l b i t s but the l a s t are zeros
bool a l l B i t s Z e r o = true ;

//Boolean to determine i f we are us ing QAM
bool usingQAM = (mutatedChromosome . subs t r (0 , 1) . compare (”1”) == 0) ;

145

// I t e r a t e through each b i t
for (int index = 0 ; index < modulat ionOrderStr ing . s i z e () ; index++) {

/∗
∗ For the f i r s t b i t , i f we shou ld mutate and i t i s a 1 ,
∗ make i t a zero ; i f i t i s a 0 , make i t a one
∗ I f we make the f i r s t b i t a 1 , s e t f i r s tB i tOne to t rue
∗ to make sure a l l o ther b i t s are s e t to 0
∗ (requ i red f o r a v a l i d encoding)
∗/

i f (index == 0) {
i f (rand () % (int) this−>chromosomeLength == 0) {

i f (modulat ionOrderStr ing . subs t r (0 , 1) .
compare (”0”) == 0) {

//Had a zero , make i t a 1
mutatedChromosome += ”1” ;
f i r s t B i t O n e = true ;
a l l B i t s Z e r o = fa l se ;

}
else {

//Had a 1 , make i t a zero
mutatedChromosome += ”0” ;

}
}
else {

mutatedChromosome +=
modulat ionOrderStr ing . subs t r (index , 1) ;

i f (modulat ionOrderStr ing . subs t r (index , 1) .
compare (”1”) == 0) {

f i r s t B i t O n e = true ;
a l l B i t s Z e r o = fa l se ;

}
}

}

// I f the f i r s t b i t i s a one , s e t a l l o ther b i t s to zero
else i f (f i r s t B i t O n e && index != 0) {

mutatedChromosome += ”0” ;
}

//Looking at the l a s t b i t
else i f (index == 3) {

// I f a l l preced ing b i t s are zero , must s e t t h i s b i t to 1
i f (usingQAM) {

i f (a l l B i t s Z e r o) {
//Replace preced ing b i t wi th a 1 and s e t t h i s one to 0
mutatedChromosome . r e p l a c e (3 , 1 , ”1”) ;

}
mutatedChromosome += ”0” ;

}
else i f (a l l B i t s Z e r o) {

mutatedChromosome += ”1” ;
}
//At l e a s t two other b i t s are 1 , mutate t h i s b i t
else {

//Mutate b i t
i f (rand () % (int) this−>chromosomeLength == 0) {

//Had a zero , make i t a one
i f (modulat ionOrderStr ing . subs t r (index , 1) .
compare (”0”) == 0) {

mutatedChromosome += ”1” ;

146

}

//Had a one , make i t a zero
else {

mutatedChromosome += ”0” ;
}

}
//Don ’ t mutate b i t , j u s t add o r i g i n a l b i t
else {

mutatedChromosome +=
modulat ionOrderStr ing . subs t r (index , 1) ;

}
}

}

/∗
∗ For the second 2 b i t s , i f the f i r s t b i t i s not a one ,
∗ p r o b a b i l i s t i c a l l y mutate the b i t s
∗/

else {
i f (rand () % (int) this−>chromosomeLength == 0) {

//Mutate b i t
i f (modulat ionOrderStr ing . subs t r (index , 1) .
compare (”0”) == 0) {

/∗
∗ I f b i t was zero ,
∗ make i t one , s e t a l lB i t sZ e r o f a l s e
∗/

mutatedChromosome += ”1” ;
a l l B i t s Z e r o = fa l se ;

}
else {

//Otherwise , b i t was a one so add a zero
mutatedChromosome += ”0” ;

}
}
else {

/∗
∗ Do not mutate b i t ; add o r i g i n a l b i t ,
∗ s e t t i n g a l lB i t sZ e r o to f a l s e i f we add a one
∗/

mutatedChromosome += modulat ionOrderStr ing .
subs t r (index , 1) ;

i f (modulat ionOrderStr ing . subs t r (index , 1) .
compare (”1”) == 0) {

a l l B i t s Z e r o = fa l se ;
}

}
}

}

//Need to h a l t i f us ing QAM and odd modulation order
bool ifUsingQAM = mutatedChromosome . subs t r (0 , 1) . compare (”1”) == 0 ;
bool oddModulationOrder = mutatedChromosome . subs t r (4 , 1) . compare (”1”) == 0 ;

/∗
∗ Mutate power and bandwidth
∗ Here , don ’ t need compl icated v a l i d a t i o n as with the modulation order
∗ Simply p r o b a b i l i s t i c a l l y f l i p b i t s
∗/

//Mutate power
for (int index = 0 ; index < powerStr ing . s i z e () ; index++) {

147

i f (rand () % (int) this−>chromosomeLength == 0) {
//Mutate b i t
i f (powerStr ing . subs t r (index , 1) . compare (”0”) == 0) {

//Had a zero , add a one
mutatedChromosome += ”1” ;

}
else {

//Had a one , add a zero
mutatedChromosome += ”0” ;

}
}
else {

//Don ’ t mutate b i t
mutatedChromosome += powerStr ing . subs t r (index , 1) ;

}
}

//Mutate bandwidth
for (int index = 0 ; index < bandwidthString . s i z e () ; index++) {

i f (rand () % (int) this−>chromosomeLength == 0) {
//Mutate b i t
i f (bandwidthString . subs t r (index , 1) . compare (”0”) == 0) {

//Had a zero , add a one
mutatedChromosome += ”1” ;

}
else {

//Had a one , add a zero
mutatedChromosome += ”0” ;

}
}
else {

//Don ’ t mutate b i t
mutatedChromosome += bandwidthString . subs t r (index , 1) ;

}
}

//Return mutated chromosome
return mutatedChromosome ;

}

/∗
∗ Recombines chromosomes ;
∗ s p l i t s chromosomes in to genes and p r o b a b i l i s t i c a l l y p i c k s one o f the two genes
∗/

std : : s t r i n g CRCENetworkEngine : : recombineChromosomes (std : : s t r i n g firstChromosome ,
std : : s t r i n g secondChromosome) {

//Extrac t the four par t s o f the two chromosomes

/∗
∗ Radio parameter encoding :
∗ Fi r s t b i t : modulation scheme
∗ Next 4 b i t s encode modulation order
∗ Next 5 b i t s encode power
∗ Final 5 b i t s encode bandwidth
∗/

//Extrac t the encoded modulation scheme from the s t r i n g
std : : s t r i n g f i r s tModulat ionScheme = firstChromosome . subs t r (0 , 1) ;
s td : : s t r i n g secondModulationScheme = secondChromosome . subs t r (0 , 1) ;

//Extrac t the encoded modulation order from the s t r i n g
std : : s t r i n g f i r s tModu la t i onOrde rS t r ing = firstChromosome . subs t r (1 , 4) ;
s td : : s t r i n g secondModulat ionOrderStr ing = secondChromosome . subs t r (1 , 4) ;

//Extrac t the encoded power s e t t i n g from the s t r i n g

148

std : : s t r i n g f i r s t P o w e r S t r i n g = firstChromosome . subs t r (5 , 5) ;
s td : : s t r i n g secondPowerStr ing = secondChromosome . subs t r (5 , 5) ;

//Extrac t the encoded bandwidth s e t t i n g from the s t r i n g
std : : s t r i n g f i r s tBandwidthSt r ing = firstChromosome . subs t r (10 , 5) ;
s td : : s t r i n g secondBandwidthString = secondChromosome . subs t r (10 , 5) ;

s td : : s t r i n g recombinedChromosome ;

/∗
∗ Generate a random number 4 times
∗ I f the number i s even , use the gene from the f i r s t chromosome
∗ Otherwise use the gene from the second chromosome
∗/

//Modulation scheme
i f (rand () % 2 == 0) {

recombinedChromosome += firstModulat ionScheme ;
}
else {

recombinedChromosome += secondModulationScheme ;
}

//Modulation order
i f (rand () % 2 == 0) {

recombinedChromosome += f i r s tModu la t i onOrde rSt r ing ;
}
else {

recombinedChromosome += secondModulat ionOrderStr ing ;
}

/∗
∗ Need to check i f QAM paired with odd modulation order
∗ i f so , make the t h i r d b i t a 1 and zero out the f our th b i t
∗/

bool ifUsingQAM = recombinedChromosome . subs t r (0 , 1) . compare (”1”) == 0 ;
bool oddModulationOrder = recombinedChromosome . subs t r (4 , 1) . compare (”1”) == 0 ;
i f (ifUsingQAM && oddModulationOrder) {

i f (! (recombinedChromosome . subs t r (1 , 1) . compare (”1”) == 0 | |
recombinedChromosome . subs t r (2 , 1) . compare (”1”) == 0 | |
recombinedChromosome . subs t r (3 , 1) . compare (”1”) == 0)) {

int indexToReplace = (rand () % 3) + 1 ;
recombinedChromosome . r e p l a c e (indexToReplace , 1 , ”1”) ;

}
recombinedChromosome . r e p l a c e (4 , 1 , ”0”) ;

}

ifUsingQAM = recombinedChromosome . subs t r (0 , 1) . compare (”1”) == 0 ;
oddModulationOrder = recombinedChromosome . subs t r (4 , 1) . compare (”1”) == 0 ;

//Power
i f (rand () % 2 == 0) {

recombinedChromosome += f i r s t P o w e r S t r i n g ;
}
else {

recombinedChromosome += secondPowerStr ing ;
}

//Bandwidth
i f (rand () % 2 == 0) {

recombinedChromosome += f i r s tBandwidthSt r ing ;
}
else {

recombinedChromosome += secondBandwidthString ;
}

149

//Return the recombined chromosome
return recombinedChromosome ;

}

//Runs the g ene t i c a lgor i thm
std : : s t r i n g CRCENetworkEngine : : runGeneticAlgorithm () {

for (int index = 0 ; index < this−>numberOfGenerations ; index++) {
//Randomly choose two chromosomes from popu la t ion fo r recombination
std : : s t r i n g firstChromosome = this−>genet icAlgor i thmPopulat ion−>
getPopulationMember (rand () % ((int) this−>popu la t i onS i z e)) ;

s td : : s t r i n g secondChromosome = this−>genet icAlgor i thmPopulat ion−>
getPopulationMember (rand () % (int) this−>popu la t i onS i z e) ;

s td : : s t r i n g recombinedChromosome =
this−>recombineChromosomes (firstChromosome , secondChromosome) ;

std : : s t r i n g mutatedChromosome =
this−>mutateChromosome (recombinedChromosome) ;

double newFitnessValue =
this−>computeFitnessScore (mutatedChromosome) ;

this−>genet icAlgor i thmPopulat ion−>
addMemberToPopulation (mutatedChromosome , newFitnessValue , fa l se) ;

}

return this−>genet icAlgor i thmPopulat ion−>getPopulationMember (1) ;
}

// Sets the popu la t ion ’ s s i z e , i f needed
void CRCENetworkEngine : : s e tPopu l a t i onS i z e (double newPopulat ionSize) {

// Set the popu la t ion s i z e to the va lue prov ided
this−>popu la t i onS i z e = newPopulat ionSize ;

}

150

Listing B.2. Header file for OMNeT++ cognitive engine implementation.

/∗
∗ CRCENetworkEngine . h
∗
∗ Created on : Jan 13 , 2018
∗ Author : Dan Hart
∗/

#ifndef CRCENETWORKENGINE H
#define CRCENETWORKENGINE H

#include <s t r i ng>
#include <math . h>
#include <fstream>
#include <iostream>
#include <fstream>
#include <c s t d l i b >
#include <ctime>

#include ”omnetpp . h”
#include ”CRCEPopulation . h”
#include ”CRCENetworkRadio . h”
#include ” i n e t / p h y s i c a l l a y e r / apskrad io / p a c k e t l e v e l /APSKScalarTransmitter . h”
#include ” i n e t / p h y s i c a l l a y e r / backgroundnoise / I so t rop i cSca la rBackgroundNoi se . h”

class CRCENetworkEngine : public omnetpp : : cSimpleModule{
public :
//DATA MEMBERS

//Power we igh t ing f a c t o r
double alpha ;
//Power we igh t ing f a c t o r
double beta ;
// Bi t ra t e ; ASSUMED IN BPS BY PROGRAM! !
double b i t r a t e ;
//Chromosome l eng t h
double chromosomeLength ;
//Coding ra t e
double codingRate ;
//Datagram header s i z e , in by t e s
double datagramHeaderSize ;
//Datagram s i z e
double datagramSize ;
//Frame header s i z e , in by t e s
double f rameHeaderSize ;
//Latency f o r an i n d i v i d u a l frame
double frameLatency ;
//Frame s i z e , in by t e s
double f rameSize ;
//Populat ion the engine w i l l use in genera t ing fu tu r e genera t ions
CRCEPopulation∗ genet i cAlgor i thmPopulat ion ;
//Variab le to t rack how many times the g ene t i c a lgor i thm has been run
int geneticAlgorithmRunNumber ;
//Power we igh t ing f a c t o r
double lambda ;
//Latency we igh t ing f a c t o r
double latencyWeight ;
//Maximum a l l owab l e bandwidth
double maxBandwidth ;
//Maximum a l l owab l e modulation order
double maxModulationOrder ;
//Maximum a l l owab l e power
double maxPower ;
//Number o f genera t ions to generate when the g ene t i c a lgor i thm runs
double numberOfGenerations ;

151

//Packet header s i z e , in by t e s
double packetHeaderSize ;
//Packet s i z e , in by t e s
double packetS i z e ;
// S i ze o f the popu la t ion
double popu la t i onS i z e ;
//Power we igh t ing f a c t o r
double powerWeight ;
//Two−dimensional array to ho ld the Q func t ion t a b l e
double qFunctionTable [1 8 1] [2] ;
//Message kind fo r which to check to see i f g ene t i c a lgor i thm shou ld be run
short r u n g e n e t i c a l g o r i t h m ;
//Time−Div i s ion dup l ex ing f a c t o r
double TDD;
//Throughput we igh t ing f a c t o r
double throughputWeight ;

//Var iab l e s to keep t rack o f the noise power at each r e c e i v e r
double r e c e i v e r N o i s e L e v e l ;

//METHODS

//Method to c a l c u l a t e the BER when using PSK modulation
double calculatePSKBER (double modulationOrder , double b i t r a t e ,
double bandwidth , double power , double noise , double r) ;

//Method to c a l c u l a t e the BER when using QAM
double calculateQAMBER (double modulationOrder , double b i t r a t e ,
double bandwidth , double power , double noise , double r) ;

//Method to c a l c u l a t e the t o t a l f i t n e s s score va lue
double computeFitnessScore (std : : s t r i n g parameterEncoding) ;
//Method to compute the l a t ency f i t n e s s va lue
double computeLatencyFitness (double bitErrorRate) ;
//Method to compute the power f i t n e s s va lue
double computePowerFitness (double modulationOrder , double power ,
double bandwidth) ;

//Method to compute the throughput f i t n e s s va lue
double computeThroughputFitness (double bitErrorRate) ;
//Method to conver t gene encodings to t h e i r i n t e g e r va lue s
double convertStr ingToDouble (std : : s t r i n g binaryValue) ;
//Method to look up/ i n t e r p o l a t e the Q func t ion va lue from the t a b l e
double evaluateQFunction (double qFunctionArgument) ;
//Method to generate a random bandwidth encoding
std : : s t r i n g generateBandwidthStr ing () ;
//Method to generate a random modulation scheme encoding
std : : s t r i n g generateModulationScheme () ;
//Method to generate a random modulation order encoding
std : : s t r i n g generateModulat ionOrder (bool usingQAM) ;
//Method to generate a random modulation power encoding
std : : s t r i n g generatePowerStr ing () ;
//Getter method to re turn the popu la t ion ’ s s i z e
double ge tPopu la t i onS i z e () ;
//Used to handle the s e l f−message and run gene t i c a lgor i thm
void handleMessage (omnetpp : : cMessage∗ incomingMessage) ;
/∗
∗ Method to i n i t i a l i z e the engine ;
∗ used to crea t e the engine ,
∗ s e t parameters app rop r i a t e l y and schedu l e f i r s t event
∗/

void i n i t i a l i z e (int i n i t i a l i z a t i o n S t a g e) ;
//Method to i n i t i a l i z e the popu la t ion
void i n i t i a l i z e P o p u l a t i o n () ;

152

//Method to mutate recombined chromosome
std : : s t r i n g mutateChromosome (std : : s t r i n g recombinedChromosome) ;
//Method to perform recombination (crossover) o f two chromosomes
std : : s t r i n g recombineChromosomes (std : : s t r i n g firstChromosome ,
std : : s t r i n g secondChromosome) ;

//Method to run the engine ’ s g ene t i c a lgor i thm
std : : s t r i n g runGeneticAlgorithm () ;
// Se t t e r method to s e t the popu la t ion ’ s s i z e
void s e tPopu la t i onS i z e (double newPopulat ionSize) ;

//Constructor
CRCENetworkEngine () ;
//Destructor
virtual ˜CRCENetworkEngine () ;

} ;

#endif /∗ CRCENETWORKENGINEH ∗/

153

Listing B.3. Code listing for new radio type, extended from existing “APSKScalarRa-
dio” module. All functionality is the same as provided in “APSKScalarRadio” except
a new function to update operating parameters.

/∗
∗ CRCENetworkRadio . cpp
∗
∗ Created on : Jan 12 , 2018
∗ Author : Dan Hart
∗/

//
// This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or modify
// i t under the terms o f the GNU Lesser General Pub l i c License as pub l i s h ed by
// the Free Software Foundation , e i t h e r ver s ion 3 o f the License , or
// (at your opt ion) any l a t e r ver s ion .
//
// This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,
// but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Pub l i c License f o r more d e t a i l s .
//
// You shou ld have rece i v ed a copy o f the GNU Lesser General Pub l i c License
// along with t h i s program . I f not , see h t t p ://www. gnu . org/ l i c e n s e s / .
//

#include ”CRCENetworkRadio . h”

//Define Module (CRCENetworkRadio) ;

CRCENetworkRadio : : CRCENetworkRadio () {
// TODO Auto−generated cons t ruc tor s tub

}

CRCENetworkRadio : : ˜ CRCENetworkRadio () {
// TODO Auto−generated de s t ru c t o r s tub

}

int CRCENetworkRadio : : convertStr ingToInt (std : : s t r i n g binaryValue) {
int i n t ege rVa lue = 0 ;
for (int index = binaryValue . s i z e () − 1 ; index >= 0 ; index−−) {

i f (! (binaryValue . subs t r (index , 1) . compare (”1”))) {
i n t ege rVa lue += pow(2 , binaryValue . s i z e () − index − 1) ;

}
}
return i n t ege rVa lue ;

}

void CRCENetworkRadio : : updateParameters (std : : s t r i n g radioParameters) {
/∗
∗ Radio parameter encoding :
∗ Fi r s t b i t : modulation scheme
∗ Next 4 b i t s encode modulation order
∗ Next 5 b i t s encode power
∗ Final 5 b i t s encode bandwidth
∗/

//Extrac t the encoded modulation scheme from the s t r i n g
std : : s t r i n g modulationScheme = radioParameters . subs t r (0 , 1) ;

//Extrac t the encoded modulation order from the s t r i n g
std : : s t r i n g modulat ionOrderStr ing = radioParameters . subs t r (1 , 4) ;

//Extrac t the encoded power s e t t i n g from the s t r i n g
std : : s t r i n g powerStr ing = radioParameters . subs t r (5 , 5) ;

154

//Extrac t the encoded bandwidth s e t t i n g from the s t r i n g
std : : s t r i n g bandwidthString = radioParameters . subs t r (10 , 5) ;

//Convert the encoded parameter va lue s

//Convert modulation scheme and order (0 i s PSK, 1 i s QAM)
int modulationOrder = convertSt r ingToInt (modulat ionOrderStr ing) ;

// boo l usingQAM = modulationScheme . compare (”1”) == 0;
// boo l oddModulationOrder = (modulationOrder % 2 != 0) ;

// Ca l cu la t e c o n s t e l l a t i o n s i z e
// i n t c o n s t e l l a t i o n S i z e = pow(2 , modulationOrder) ;

std : : s t r i n g findModulationArgument ;
i f (modulationScheme . compare (”0”) == 0) {

//Using PSK modulation
f indModulationArgument = ”MPSK−” + this−>t oS t r i ng (modulationOrder) ;
this−>setModulat ion (APSKModulationBase : :
f indModulat ion (findModulationArgument . c s t r ())) ;

}
else {

//Using QAM modulation
f indModulationArgument = ”MQAM−” + this−>t oS t r i ng (modulationOrder) ;
this−>setModulat ion (APSKModulationBase : :
f indModulat ion (findModulationArgument . c s t r ())) ;

}

/∗
∗ Convert and s e t power ;
∗ be sure to add requ i red o f f s e t to ensure power i s wi th in the de s i r ed range
∗/

int power = conver tSt r ingToInt (powerStr ing) + 4 ;
this−>setPower (W (1000 ∗ pow(10 , (power / 1 0)))) ;

/∗
∗ Convert and s e t bandwidth ;
∗ be sure to add requ i red o f f s e t to ensure power i s wi th in the de s i r ed range
∗/

int bandwidth = this−>conver tStr ingToInt (bandwidthString) + 1 ;
this−>setBandwidth (Hz (bandwidth ∗ 1000000)) ;

}

std : : s t r i n g CRCENetworkRadio : : t oS t r i ng (int numberToConvert) {
std : : s t r i ng s t r eam numberConverter ;
numberConverter << numberToConvert ;
return numberConverter . s t r () ;

}

155

Listing B.4. Header file for new radio type.

/∗
∗ CRCENetworkRadio . h
∗
∗ Created on : Jan 12 , 2018
∗ Author : Dan Hart
∗/

#ifndef CRCENETWORKRADIO H
#define CRCENETWORKRADIO H

#include <math . h>
#include <sstream>
#include <s t r i ng>

#include ”omnetpp . h”
#include ” i n e t / p h y s i c a l l a y e r / base / p a c k e t l e v e l /APSKModulationBase . h”
#include ” i n e t / p h y s i c a l l a y e r / apskrad io / p a c k e t l e v e l /APSKRadio . h”

#define CE UPDATE PARAMETERS 255

using namespace i n e t : : p h y s i c a l l a y e r ;

class CRCENetworkRadio : public APSKRadio {
public :

CRCENetworkRadio () ;
virtual ˜CRCENetworkRadio () ;

int conver tStr ingToInt (std : : s t r i n g binaryValue) ;

s td : : s t r i n g toS t r i ng (int numberToConvert) ;

void updateParameters (std : : s t r i n g newParameters) ;
} ;

#endif /∗ CRCENETWORKRADIOH ∗/

156

Listing B.5. Auxiliary class for use with cognitive engine; stores all current population
members, inserts new members in accordance with their fitness values and deletes
members once the population is full.

/∗
∗ CRCEPopulation . cpp
∗
∗ Created on : Jan 11 , 2018
∗ Author : Dan Hart
∗/

//
// This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or modify
// i t under the terms o f the GNU Lesser General Pub l i c License as pub l i s h ed by
// the Free Software Foundation , e i t h e r ver s ion 3 o f the License , or
// (at your opt ion) any l a t e r ver s ion .
//
// This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,
// but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Pub l i c License f o r more d e t a i l s .
//
// You shou ld have rece i v ed a copy o f the GNU Lesser General Pub l i c License
// along with t h i s program . I f not , see h t t p ://www. gnu . org/ l i c e n s e s / .
//

#include ”CRCEPopulation . h”

CRCEPopulation : : CRCEPopulation (int popu la t i onS i z e) {
// Set popu la t ion s i z e
this−>popu la t i onS i z e = popu la t i onS i z e ;

// Set po in t e r s to f i r s t and l a s t popu la t ion members to nu l l
f i r stPopulat ionMember = NULL;
lastPopulationMember = NULL;

}

CRCEPopulation : : ˜ CRCEPopulation () {
// TODO Auto−generated de s t ru c t o r s tub

}

//Method to add new member to the popu la t ion
void CRCEPopulation : : addMemberToPopulation (std : : s t r i n g newMemberEncoding ,
double newMemberFitnessScore , bool i n i t i a l i z i n g) {

//Create a new popu la t ion member with the encoding and f i t n e s s score prov ided
CRCEPopulationMember∗ newMember =
new CRCEPopulationMember (newMemberFitnessScore , newMemberEncoding) ;

// in t score = newMember−>ge tF i tne s sScore () ;
// s td : : s t r i n g = newMember−>getParameterEncoding () ;

i f (this−>f i r stPopulat ionMember == NULL) {
/∗
∗ Add f i r s t member to the popu la t ion
∗ Set both po in t e r s to t h i s member
∗/

f i r stPopulat ionMember = newMember ;
lastPopulationMember = newMember ;

}
else {

/∗
∗ I t e r a t e through popu la t ion l i s t u n t i l the member with the next
∗ l a r g e s t score as compared to the new member i s found
∗ Add the member in to the l i s t , ensur ing to co r r ec t po in t e r s

157

∗ Only update the f i r s t and l a s t popu la t ion member po in t e r s i f
∗ p l ac ing new member at the f r on t or back o f the popu la t ion l i s t
∗/

CRCEPopulationMember∗ p o p u l a t i o n L i s t I t e r a t o r =
this−>f i r stPopulat ionMember ;

i f (p o p u l a t i o n L i s t I t e r a t o r−>getNext () == NULL &&
p o p u l a t i o n L i s t I t e r a t o r−>getPrev ious () == NULL) {

/∗
∗ Only one member in the popu la t ion
∗ need to e x p l i c i t l y check to see where new member be longs
∗/

i f (p o p u l a t i o n L i s t I t e r a t o r−>g e t F i tn e s sS c o r e () <
newMember−>g e t F i tn e s sS c o r e ()) {

//Add new member to the end o f the l i s t
p o p u l a t i o n L i s t I t e r a t o r−>setNext (newMember) ;
newMember−>s e tPrev i ous (p o p u l a t i o n L i s t I t e r a t o r) ;
this−>lastPopulationMember = newMember ;

}
else {

//Add new member to the beg inning o f the l i s t
newMember−>setNext (p o p u l a t i o n L i s t I t e r a t o r) ;
p o p u l a t i o n L i s t I t e r a t o r−>s e tPrev i ous (newMember) ;
this−>f i r stPopulat ionMember = newMember ;

}
}
else {

/∗
∗ I f more than one entry in l i s t , i t e r a t e u n t i l po in t e r
∗ i s po in t ing at member be fo r e which new member
∗ shou ld be p laced
∗ Second cond i t ion used to ensure we do not f a l l
∗ o f f the end o f the l i s t
∗/

while ((p o p u l a t i o n L i s t I t e r a t o r−>g e t F i tn e s sS c o r e () >
newMember−>g e t F i tn e s sS c o r e ()) &&
! (p o p u l a t i o n L i s t I t e r a t o r−>getNext () == NULL)) {

p o p u l a t i o n L i s t I t e r a t o r =
p o p u l a t i o n L i s t I t e r a t o r−>getNext () ;

}

/∗
∗ Check to see i f adding new member to f r on t o f l i s t ;
∗ update f r on t o f l i s t po in t e r i f so
∗/

i f (p o p u l a t i o n L i s t I t e r a t o r−>getPrev ious () == NULL) {
/∗
∗ Adding the new member to the f r on t
∗ o f the popu la t ion l i s t ;
∗ update the po in t e r to the f r on t o f the l i s t
∗/

this−>f i r stPopulat ionMember = newMember ;
p o p u l a t i o n L i s t I t e r a t o r−>s e tPrev i ous (newMember) ;
newMember−>setNext (p o p u l a t i o n L i s t I t e r a t o r) ;

}

/∗
∗ While loop stopped at l a s t entry in l i s t
∗ Must check to see i f new member be longs at the end
∗ o f the l i s t or as the second−to− l a s t entry
∗ by comparing f i t n e s s va lue s
∗/

else i f (p o p u l a t i o n L i s t I t e r a t o r−>getNext () == NULL) {

158

i f (p o p u l a t i o n L i s t I t e r a t o r−>g e t F i tn e s sS c o r e () >
newMember−>g e t F i tn e s sS c o r e ()) {

p o p u l a t i o n L i s t I t e r a t o r−>setNext (newMember) ;
newMember−>s e tPrev i ous (p o p u l a t i o n L i s t I t e r a t o r) ;
this−>lastPopulationMember = newMember ;

}
else {

/∗
∗ Add new member as
∗ second to l a s t entry in the l i s t
∗/

newMember−>
s e tPrev i ous (p o p u l a t i o n L i s t I t e r a t o r−>
getPrev ious ()) ;

newMember−>setNext (p o p u l a t i o n L i s t I t e r a t o r) ;

p o p u l a t i o n L i s t I t e r a t o r−>
getPrev ious ()−>setNext (newMember) ;

p o p u l a t i o n L i s t I t e r a t o r−>
s e tPrev i ous (newMember) ;

}
}

else {
/∗
∗ Adding new member to middle o f the l i s t ;
∗ do not need to update po in t e r s to f r on t
∗ or back o f the l i s t
∗/

newMember−>
s e tPrev i ous (p o p u l a t i o n L i s t I t e r a t o r−>getPrev ious ()) ;

newMember−>setNext (p o p u l a t i o n L i s t I t e r a t o r) ;

p o p u l a t i o n L i s t I t e r a t o r−>
getPrev ious ()−>setNext (newMember) ;

p o p u l a t i o n L i s t I t e r a t o r−>s e tPrev i ous (newMember) ;
}

}
}

// I f not i n i t i a l i z i n g , keep popu la t ion cons t ra ined by e l im ina t ing l a s t member
i f (! i n i t i a l i z i n g) {

this−>lastPopulationMember =
this−>lastPopulationMember−>getPrev ious () ;

this−>lastPopulationMember−>setNext (NULL) ;
}

}

//Method to re turn chromosome from s p e c i f i e d popu la t ion member
std : : s t r i n g CRCEPopulation : : getPopulationMember (int populationMember) {

//Get po in t e r to f i r s t member in the popu la t ion
CRCEPopulationMember∗ nextPopulationMember = this−>f i r stPopulat ionMember ;

/∗
∗ I t e r a t e through popu la t ion members
∗ re turn ing the chromosome fo r the s p e c i f i e d member
∗/

for (int index = 1 ; index < populationMember ; index++) {
nextPopulationMember = nextPopulationMember−>getNext () ;

}

159

return nextPopulationMember−>getParameterEncoding () ;
}

160

Listing B.6. Header file for population class.

/∗
∗ CRCEPopulation . h
∗
∗ Created on : Jan 11 , 2018
∗ Author : Dan Hart
∗/

//
// This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or modify
// i t under the terms o f the GNU Lesser General Pub l i c License as pub l i s h ed by
// the Free Software Foundation , e i t h e r ver s ion 3 o f the License , or
// (at your opt ion) any l a t e r ver s ion .
//
// This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,
// but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Pub l i c License f o r more d e t a i l s .
//
// You shou ld have rece i v ed a copy o f the GNU Lesser General Pub l i c License
// along with t h i s program . I f not , see h t t p ://www. gnu . org/ l i c e n s e s / .
//

#ifndef CRCEPOPULATION H
#define CRCEPOPULATION H

#include ”CRCEPopulationMember . h”
#include <iostream>
#include <s t r i ng>

class CRCEPopulation {
public :

CRCEPopulation (int popu la t i onS i z e) ;
virtual ˜CRCEPopulation () ;

//VARIABLES

//Reference to f i r s t member in popu la t ion
CRCEPopulationMember∗ f i r stPopulat ionMember ;

//Tracks l a s t member in the popu la t ion
CRCEPopulationMember∗ lastPopulationMember ;

//Dic ta t e s popu la t ion s i z e
int popu la t i onS i z e ;

//METHODS

//Used to add a member to the popu la t ion
void addMemberToPopulation (std : : s t r i n g newMemberEncoding ,
double newMemberFitnessScore , bool i n i t i a l i z i n g) ;

//Returns re f e r ence to s p e c i f i e d popu la t ion member
std : : s t r i n g getPopulationMember (int populationMember) ;

} ;

#endif /∗ CRCEPOPULATION H ∗/

161

Listing B.7. Auxiliary class for use with Cognitive Engine and population; represents
a single population member and stores the member’s fitness value and parameter en-
coding.

/∗
∗ CRCEPopulationMember . cpp
∗
∗ Created on : Jan 11 , 2018
∗ Author : Dan Hart
∗/

//
// This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or modify
// i t under the terms o f the GNU Lesser General Pub l i c License as pub l i s h ed by
// the Free Software Foundation , e i t h e r ver s ion 3 o f the License , or
// (at your opt ion) any l a t e r ver s ion .
//
// This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,
// but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Pub l i c License f o r more d e t a i l s .
//
// You shou ld have rece i v ed a copy o f the GNU Lesser General Pub l i c License
// along with t h i s program . I f not , see h t t p ://www. gnu . org/ l i c e n s e s / .
//

#include ”CRCEPopulationMember . h”

CRCEPopulationMember : : CRCEPopulationMember (double newFitnessScore ,
s td : : s t r i n g newParameterEncoding) {

//Don ’ t ye t have prev ious /next popu la t ion members , make po in t e r s nu l l
this−>nextPopulationMember = NULL;
this−>previousPopulationMember = NULL;

// Set popu la t ion member ’ s encoding/ f i t n e s s score to va lue s prov ided
this−>f i t n e s s S c o r e = newFitnessScore ;
this−>parameterEncoding = newParameterEncoding ;

}

CRCEPopulationMember : : ˜ CRCEPopulationMember () {
// TODO Auto−generated de s t ru c t o r s tub

}

//Method to compare two popu la t ion members
bool CRCEPopulationMember : :
compareConf igurat ions (CRCEPopulationMember cand idateConf i gura t ion) {

i f (this−>f i t n e s s S c o r e < cand idateConf i gurat i on . g e t F i t n e s s Sc o r e ()) {
return true ;

}
return fa l se ;

}

double CRCEPopulationMember : : g e tF i t n e s s Sc o r e () {
return this−>f i t n e s s S c o r e ;

}

//Getter method to re turn next popu la t ion member
CRCEPopulationMember∗ CRCEPopulationMember : : getNext () {

return this−>nextPopulationMember ;
}

//Getter method to re turn the member ’ s parameter encoding
std : : s t r i n g CRCEPopulationMember : : getParameterEncoding () {

return this−>parameterEncoding ;

162

}

//Getter method to re turn prev ious popu la t ion member
CRCEPopulationMember∗ CRCEPopulationMember : : ge tPrev ious () {

return this−>previousPopulationMember ;
}

// Se t t e r method to s e t next popu la t ion member
void CRCEPopulationMember : : setNext (CRCEPopulationMember∗ nextMember) {

this−>nextPopulationMember = nextMember ;
}

// Se t t e r method to s e t prev ious popu la t ion member
void CRCEPopulationMember : : s e tPrev i ous (CRCEPopulationMember∗ previousMember) {

this−>previousPopulationMember = previousMember ;
}

163

Listing B.8. Header file for population member class.

/∗
∗ CRCEPopulationMember . h
∗
∗ Created on : Jan 11 , 2018
∗ Author : Dan Hart
∗/

//
// This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or modify
// i t under the terms o f the GNU Lesser General Pub l i c License as pub l i s h ed by
// the Free Software Foundation , e i t h e r ver s ion 3 o f the License , or
// (at your opt ion) any l a t e r ver s ion .
//
// This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,
// but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Pub l i c License f o r more d e t a i l s .
//
// You shou ld have rece i v ed a copy o f the GNU Lesser General Pub l i c License
// along with t h i s program . I f not , see h t t p ://www. gnu . org/ l i c e n s e s / .
//

#ifndef CRCEPOPULATIONMEMBER H
#define CRCEPOPULATIONMEMBER H

#include <s t r i ng>

class CRCEPopulationMember {
public :

//Class cons t ruc to r s and de s t ru c t o r
CRCEPopulationMember (double f i t n e s s S c o r e , s td : : s t r i n g newParameterEncoding) ;
virtual ˜CRCEPopulationMember () ;

//VARIABLES

//Variab le to ho ld popu la t ion member ’ s f i t n e s s score
double f i t n e s s S c o r e ;

//Pointer r e f e r enc ing the next member in the popu la t ion
CRCEPopulationMember∗ nextPopulationMember ;

// S t r ing to ho ld the popu la t ion member ’ s parameter encoding
std : : s t r i n g parameterEncoding ;

//Pointer r e f e r enc ing the prev ious member in the popu la t ion
CRCEPopulationMember∗ previousPopulationMember ;

//METHODS

//Method to compare two popu la t ion members
bool compareConf igurat ions (CRCEPopulationMember cand idateConf i gura t ion) ;

//Getter method to re turn a g iven popu la t ion member ’ s f i t n e s s score
double g e tF i tn e s sS c o r e () ;

//Getter method to re turn next popu la t ion member
CRCEPopulationMember∗ getNext () ;

//Getter method to re turn the member ’ s parameter encoding
std : : s t r i n g getParameterEncoding () ;

//Getter method to re turn prev ious popu la t ion member

164

CRCEPopulationMember∗ getPrev ious () ;

// Se t t e r method to s e t next popu la t ion member
void setNext (CRCEPopulationMember∗ nextMember) ;

// Se t t e r method to s e t prev ious popu la t ion member
void s e tPrev i ous (CRCEPopulationMember∗ previousMember) ;

} ;

#endif /∗ CRCEPOPULATIONMEMBERH ∗/

165

Appendix C. Code Listings for MATLAB Engine
Implementation

Listing C.1. MATLAB code listing for main program run to evaluate fitness function;
evaluation of the 30 runs for a given test case occur in parallel.

%%Clean up
clear a l l ;
close a l l ;
clc ;

%% Engine s e t t i n g s

alpha = . 3 3 ;
beta = . 3 3 ;
b i t r a t e = 500000; %bps
chromosomeLength = 15 ; %b i t s
codeNumber = 0 ;
codingRate = 1 ;
datagramHeaderSize = 34 ; %by t e s
f rameHeaderSize = 30 ; %by t e s
f rameSize = 4905 ; %by t e s
lambda = . 3 3 ;
latencyWeight = . 8 ;
maxBandwidth = 32 ; %MHz
maxOrder = 8 ;
maxPower = 35 ; %dBm
minBandwidth = 1 ; %MHz
minOrder = 1 ;
minPower = 4 ; %dBm
packetHeaderSize = 20 ;
packetS izeBytes = 1050000;
popu la t i onS i z e = 50 ;
powerWeight = (1 − latencyWeight) / 2 ;
TDD = 1 ;
throughputWeight = (1 − latencyWeight) / 2 ;

%% Run gene t i c a lgor i thm
%Run a lgor i thm 30 times at each s e t t i n g f o r the noise f l o o r and number o f
%genera t ions
%Save the returned f i t n e s s member , t h e i r f i t n e s s va lue and the runtime

encodingSchemeSize = 270 ;
n o i s e F l o o r S i z e = 90 ;
numberGenerationsSize = 30 ;

%Create arrays in which to s t o r e r e s u l t s
numberOfGenerationsResults = zeros (270 , 6) ;

%Create f o r loop fo r −50 dBm noise f l o o r and number o f genera t ions o f 200
no i s eF l oo r = −50;
numberOfGenerations = 200 ;
o f f s e t = 0 ;
for index =1:30

r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .
chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;

166

numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Create f o r loop fo r −50 dBm noise f l o o r and number o f genera t ions o f 600
no i s eF l oo r = −50;
numberOfGenerations = 600 ;
o f f s e t = 30 ;
for index =1:30

r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .
chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Create f o r loop fo r −50 dBm noise f l o o r and number o f genera t ions o f 1000
no i s eF l oo r = −50;
numberOfGenerations = 1000 ;
o f f s e t = 60 ;
for index =1:30
r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .

chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Create f o r loop fo r −30 dBm noise f l o o r and number o f genera t ions o f 200
no i s eF l oo r = −30;
numberOfGenerations = 200 ;
o f f s e t = 90 ;
for index =1:30
r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .

167

chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Create f o r loop fo r −30 dBm noise f l o o r and number o f genera t ions o f 600
no i s eF l oo r = −30;
numberOfGenerations = 600 ;
o f f s e t = 120 ;
for index =1:30
r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .

chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Create f o r loop fo r −30 dBm noise f l o o r and number o f genera t ions o f 1000
no i s eF l oo r = −30;
numberOfGenerations = 1000 ;
o f f s e t = 150 ;
for index =1:30
r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .

chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

168

%Create f o r loop fo r 10 dBm noise f l o o r and number o f genera t ions o f 200
no i s eF l oo r = 10 ;
numberOfGenerations = 200 ;
o f f s e t = 180 ;
for index =1:30
r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .

chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ; end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Create f o r loop fo r 10 dBm noise f l o o r and number o f genera t ions o f 600
no i s eF l oo r = 10 ;
numberOfGenerations = 600 ;
o f f s e t = 210 ;
for index =1:30
r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .

chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetSizeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Create f o r loop fo r 10 dBm noise f l o o r and number o f genera t ions o f 1000
no i s eF l oo r = 10 ;
numberOfGenerations = 1000 ;
o f f s e t = 240 ;
for index =1:30
r e s u l t s I t e r a t o r (index) = p a r f e v a l (@cognit iveEngine , 6 , alpha , beta , b i t r a t e , . . .

chromosomeLength , codeNumber , codingRate , datagramHeaderSize , frameHeaderSize , . . .
f rameSize , lambda , latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , . . .
minOrder , minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , . . .
packetS izeBytes , popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

end

for index2 = 1:30
[runNum , r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .

169

resultBandwidth , runtime] = fetchNext (r e s u l t s I t e r a t o r) ;
numberOfGenerationsResults (runNum + o f f s e t , 1) = r e s u l t F i t n e s s ;
numberOfGenerationsResults (runNum + o f f s e t , 2) = resultModScheme ;
numberOfGenerationsResults (runNum + o f f s e t , 3) = resultModOrder ;
numberOfGenerationsResults (runNum + o f f s e t , 4) = resu l tPower ;
numberOfGenerationsResults (runNum + o f f s e t , 5) = resultBandwidth ;
numberOfGenerationsResults (runNum + o f f s e t , 6) = runtime ;

end

%Update .mat f i l e name to match cases be ing run (e . g . , FEC encoded or not)
save EngineResultsUpdatedSNRNoFECEncodingParallelRun numberOfGenerationsResults . . .

encodingSchemeSize n o i s e F l o o r S i z e g e n e r a t i o n S i z e ;

170

Listing C.2. MATLAB code listing for CE function written in order to parallelize
execution; main file calls this function in parallel and saves results.

function [r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , . . .
resultBandwidth , runtime] = . . .
cogn i t iveEng ine (alpha , beta , b i t r a t e , chromosomeLength , codeNumber , . . .
codingRate , datagramHeaderSize , frameHeaderSize , f rameSize , lambda , . . .
latencyWeight , maxBandwidth , maxOrder , maxPower , minBandwidth , minOrder , . . .
minPower , no i s eF loor , numberOfGenerations , packetHeaderSize , packetSizeBytes , . . .
popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

%Create and i n i t i a l i z e popu la t ion
populat ion = zeros (popu lat ionS ize , 5) ;
popu lat ionArrayS ize = s ize (populat ion) ;
populat ion (2 : popu lat ionArrayS ize (1) , 1 : 1) = −1;

%Due to the way in which the i n s e r t in to func t i on works , must keep the
%f i r s t row as a p l a c eho l d e r
populat ion (1 , 1) = 1 ;

for index = 1 : popu la t i onS i z e
[f i t n e s s S c o r e , modulationScheme , modulationOrder , power , bandwidth] = . . .

generateRandomPopulationMember (alpha , beta , b i t r a t e , codingRate , . . .
datagramHeaderSize , frameHeaderSize , f rameSize , lambda , latencyWeight , . . .
maxBandwidth , maxOrder , maxPower , minBandwidth , minOrder , minPower , . . .
no i s eF loor , packetHeaderSize , packetSizeBytes , powerWeight , TDD, . . .
throughputWeight) ;

newMember = [f i t n e s s S c o r e , modulationScheme , modulationOrder , power , bandwidth] ;
populat ion = insertMemberIntoPopulat ion (newMember , populat ion , popu la t i onS i z e) ;

end

t ic
[r e s u l t F i t n e s s , resultModScheme , resultModOrder , resultPower , resultBandwidth] = . . .

runGeneticAlgorithm (alpha , beta , b i t r a t e , chromosomeLength , codeNumber , . . .
codingRate , datagramHeaderSize , frameHeaderSize , f rameSize , lambda , . . .
latencyWeight , maxBandwidth , maxOrder , maxPower , minOrder , no i s eF loor , . . .
numberOfGenerations , packetHeaderSize , packetSizeBytes , populat ion , . . .
popu lat ionS ize , powerWeight , TDD, throughputWeight) ;

runtime = toc ;

171

Listing C.3. MATLAB code listing for generating a random population member.

%Function to generate a random popu la t ion member
%Wil l be c a l l e d by popu la t ion i n i t i a l i z a t i o n func t i on
function [f i t n e s s S c o r e , modulationScheme , modulationOrder , power , bandwidth] = . . .

generateRandomPopulationMember (alpha , beta , b i t r a t e , codingRate , . . .
datagramHeaderSize , frameHeaderSize , f rameSize , lambda , latencyWeight , . . .
maxBandwidth , maxOrder , maxPower , minBandwidth , minOrder , minPower , . . .
no i s eF loor , packetHeaderSize , packetSizeBytes , powerWeight , TDD, throughputWeight)

modulationScheme = generateModulationScheme () ;

modulationOrder = 2 ˆ generateModulat ionOrder (minOrder , maxOrder , modulationScheme == 1) ;

power = generatePower (minPower , maxPower) ;

bandwidth = generateBandwidth (minBandwidth , maxBandwidth) ;

f i t n e s s S c o r e = . . .
computeFitnessScore (alpha , bandwidth , beta , b i t r a t e , 0 , codingRate , . . .
datagramHeaderSize , frameHeaderSize , f rameSize , lambda , latencyWeight , . . .
maxBandwidth , maxOrder , maxPower , minOrder , modulationOrder , no i s eF loor , . . .
packetHeaderSize , packetSizeBytes , power , powerWeight , TDD, . . .
throughputWeight , modulationScheme == 1) ;

end

%Method to generate a random bandwidth ; used in i n i t i a l i z i n g the popu la t ion
function bandwidth = generateBandwidth (minBandwidth , maxBandwidth)

poss ib leBandwidths = minBandwidth : 1 : maxBandwidth ;
poss ib l eBandwidthsS i ze = s ize (poss ib leBandwidths) ;
chosenBandwidth = randi ([1 poss ib l eBandwidthsS i ze (2)] , 1 , 1) ;
bandwidth = poss ib leBandwidths (chosenBandwidth (1)) ;

end

%Method to generate a random modulation scheme encoding ;
%used in i n i t i a l i z i n g the popu la t ion
function modulationScheme = generateModulationScheme ()

chosenScheme = randi ([0 1] , 1 , 1) ;
modulationScheme = chosenScheme (1) ;

end

%Method to generate a random modulation order encoding ;
%w i l l be used in i n i t i a l i z i n g the popu la t ion
function modulationOrder = generateModulat ionOrder (minOrder , maxOrder , usingQAM)

%I f us ing QAM, return random , even modulation order
i f usingQAM

evenModulationOrders = 2 : 2 : maxOrder ;
evenModulat ionOrdersSize = s ize (evenModulationOrders) ;
chosenOrder = randi ([1 evenModulat ionOrdersSize (2)] , 1 , 1) ;
modulationOrder = evenModulationOrders (chosenOrder (1)) ;

else
modulationOrders = minOrder : 1 : maxOrder ;
modulat ionOrdersSize = s ize (modulationOrders) ;
chosenOrder = randi ([1 modulat ionOrdersSize (2)] , 1 , 1) ;
modulationOrder = modulationOrders (chosenOrder (1)) ;

end
end

%Method to generate a random modulation power encoding ;
%used in i n i t i a l i z i n g the popu la t ion
function power = generatePower (minPower , maxPower)

poss ib l ePowers = minPower : 1 : maxPower ;
po s s ib l ePower sS i z e = s ize (poss ib l ePowers) ;
chosenPower = randi ([1 po s s ib l ePower sS i z e (2)] , 1 , 1) ;
power = poss ib l ePowers (chosenPower (1)) ;

end

172

Listing C.4. MATLAB code listing for evaluating fitness function.

%%Function to compute f i t n e s s score ; uses o ther he l p e r methods
function f i t n e s s S c o r e = . . .

computeFitnessScore (alpha , bandwidth , beta , b i t r a t e , codeNumber , codingRate , . . .
datagramHeaderSize , frameHeaderSize , f rameSize , lambda , latencyWeight , . . .
maxBandwidth , maxOrder , maxPower , minOrder , modulationOrder , no i s eF loor , . . .
packetHeaderSize , packetSizeBytes , power , powerWeight , TDD, . . .
throughputWeight , usingQAM)

%Parameter s e t t i n g s in OMNet program subsumed in BER
%func t ion
SNR = power − no i s eF l oo r ;
b i tErrorRate = computeBER(packetSizeBytes , modulationOrder , SNR, usingQAM , . . .

codeNumber) ;

%Calcu la t e the i n d i v i d u a l f i t n e s s score components
l a t e n c y F i t n e s s = computeLatencyFitness (bitErrorRate , frameHeaderSize , . . .

f rameSize) ;
powerFitness = . . .

computePowerFitness (alpha , bandwidth , beta , b i t r a t e , lambda , maxBandwidth , . . .
maxOrder , maxPower , minOrder , modulationOrder , power) ;

throughputFitness = . . .
computeThroughputFitness (bitErrorRate , codingRate , datagramHeaderSize , . . .
frameHeaderSize , f rameSize , packetHeaderSize , TDD) ;

%Mul t i p l y each component by i t s a s soc i a t ed weight and s e t r e s u l t
f i t n e s s S c o r e = latencyWeight ∗ l a t e n c y F i t n e s s + powerWeight ∗ powerFitness + . . .

throughputWeight ∗ throughputFitness ;
end

%%Function to compute the l a t ency component o f the f i t n e s s score
function l a t e n c y F i t n e s s = computeLatencyFitness (bitErrorRate , frameHeaderSize , f rameSize)

l a t e n c y F i t n e s s = 1 − (1 − ((1 − bitErrorRate) ˆ ((f rameSize + frameHeaderSize) ∗ 8))) ;
end

%%Function to compute
function powerFitness = . . .

computePowerFitness (alpha , bandwidth , beta , b i t r a t e , lambda , maxBandwidth , . . .
maxOrder , maxPower , minOrder , modulationOrder , power)

%Calcu la t e the three components i n d i v i d u a l l y to t r y and
%keep t h in g s a l i t t l e more readab l e /manageable

componentOne = alpha ∗ (((maxPower + maxBandwidth) − (power + bandwidth)) / . . .
(maxPower + maxBandwidth)) ;
componentTwo = beta ∗ ((maxOrder − log2 (modulationOrder)) / maxOrder) ;
componentThree = lambda ∗ (((b i t r a t e / minOrder) − (b i t r a t e / . . .
log2 (modulationOrder))) / (b i t r a t e / minOrder)) ;

%Return the sum of the three components
powerFitness = componentOne + componentTwo + componentThree ;

end

%Function to compute the throughput component o f the f i t n e s s score
function throughputFitness = . . .

computeThroughputFitness (bitErrorRate , codingRate , datagramHeaderSize , . . .
frameHeaderSize , f rameSize , packetHeaderSize , TDD)

throughputFitness = . . .
(f rameSize / (f rameSize + frameHeaderSize + packetHeaderSize + . . .
datagramHeaderSize)) ∗ (1 − bitErrorRate) ˆ (f rameSize + frameHeaderSize) . . .
∗ codingRate ∗ TDD;

end

173

Listing C.5. MATLAB code listing for computing bit error rate.

%Function to generate and then FEC encode , modulate , add noise to ,
%transmit , decode and demodulate the s i g n a l and return error informat ion
%about the rece i v ed s i g n a l
function [BER, numberErroredBits , t o t a l B i t s] = . . .

computeBER(packetSizeBytes , modulationOrder , SNR, usingQAM , codeNumber)
%Use p e r s i s t e n t t xB i t s v a r i a b l e (w i l l ” transmit ” the same b i t s each time
p e r s i s t e n t txBi t s ;

%Create b i t s to be t ransmi t t ed
txB i t s = randi ([0 1] , packetS izeBytes ∗ 8 , 1) ;

%Se l e c t i v e l y FEC Encode and then modulate s i g n a l
i f (codeNumber > 0)

codedBits = fecEncode (txBits , modulationOrder , codeNumber) ;
t xS i gna l = generateTXSignal (codedBits , modulationOrder , usingQAM) ;

else
txS i gna l = generateTXSignal (txBits , modulationOrder , usingQAM) ;

end

%Add noise to the s i g n a l (” transmit ” s i g n a l)
n o i s y S i g n a l = simulateChannel (SNR, txS i gna l) ;

%Demodulate ” rece i v ed ” s i g n a l
rxB i t s = demodulateSignal (no i syS igna l , modulationOrder , usingQAM) ;

%FEC Decode s i g n a l
i f (codeNumber > 0)

rxB i t s = fecDecode (rxBits , modulationOrder , codeNumber) ;
end

%Co l l e c t error s t a t i s t i c s on rece i v ed s i g n a l
i f (codeNumber > 0)

hErrorRate = comm. ErrorRate (’ ComputationDelay ’ , 3) ;
else

hErrorRate = comm. ErrorRate ;
end

e r r o r S t a t s = hErrorRate (txBits , rxB i t s) ;
BER = e r r o r S t a t s (1) ;
numberErroredBits = e r r o r S t a t s (2) ;
t o t a l B i t s = e r r o r S t a t s (3) ;

end

%Function to encode b i t s according to s e l e c t e d encoder
function txBitsEncoded = fecEncode (txBits , modulationOrder , c o d e S e l e c t o r)

switch c o d e S e l e c t o r
case 1

encoder = comm. BCHEncoder ;
txBitsEncoded = encoder (txB i t s) ;

% case 2
% %Cyc l i c b l o c k encoding
% txBitsEncoded = encode (t xBi t s , n , k , ’ c y c l i c / binary ’) ;
% case 3
% %Linear b l o c k encoding
% txBitsEncoded = encode (t xBi t s , n , k , ’ l i n e a r / binary ’) ;
% case 4
% %Convo lu t iona l coding
% t r e l l i s = s t r u c t (’ numInputSymbols ’ , modulationOrder , ’ numOutputSymbols ’ , . . .
% 2 ∗ modulationOrder , ’ nex tS ta te s ’ , [0 2 ; 0 2 ; 1 3 ; 1 3] , . . .
% ’ outputs ’ , [0 3 ; 1 2 ; 3 0 ; 2 1]) ;
% txBitsEncoded = convenc (txBi t s , t r e l l i s) ;

end
end

174

%Function to modulate b i t s to be t ransmi t t ed according to modulator type
%and order
function txS i gna l = generateTXSignal (txBits , modulationOrder , usingQAM)

%Check to ensure the appropr ia te modulator i s used
i f usingQAM

hQAMModulator = comm. RectangularQAMModulator (’ NormalizationMethod ’ , . . .
’ Average power ’ , ’ AveragePower ’ , 1 , ’ ModulationOrder ’ , . . .
modulationOrder , ’ Bit Input ’ , t rue) ;

t xS i gna l = (hQAMModulator(txB i t s)) ;
else

hPSKModulator = comm. PSKModulator (’ ModulationOrder ’ , modulationOrder , . . .
’ BitInput ’ , t rue) ;

t xS i gna l = (hPSKModulator (txB i t s)) ;
end

end

%Function to add noise to the s i gna l , s imu la t ing s i g n a l t ransmiss ion
function [n o i s y S i g n a l] = simulateChannel (SNR, txS i gna l)

%Create channel
hAWGN = comm.AWGNChannel(’ NoiseMethod ’ , ’ S i gna l to no i s e r a t i o (SNR) ’ , . . .

’SNR ’ , SNR) ;
%Add noise to s i g n a l (” transmit ” s i g n a l)
n o i s y S i g n a l = hAWGN(txS igna l) ;

end

%Function to demodulate r ece i v ed s i g n a l
function [r xB i t s] = demodulateSignal (no i syS igna l , modulationOrder , usingQAM)

%Use g l o b a l PSK and QAM demodulator o b j e c t s
%Check to ensure appropr ia te demodulator i s used
i f usingQAM

hQAMDemodulator = comm. RectangularQAMDemodulator (’ NormalizationMethod ’ , . . .
’ Average power ’ , ’ AveragePower ’ , 1 , ’ ModulationOrder ’ , modulationOrder , . . .
’ BitOutput ’ , t rue) ;

rxB i t s = hQAMDemodulator (n o i s y S i g n a l) ;
else

hPSKDemodulator = comm. PSKDemodulator (’ ModulationOrder ’ , modulationOrder , . . .
’ BitOutput ’ , t rue) ;

rxB i t s = hPSKDemodulator (n o i s y S i g n a l) ;
end

end

%Function to decode b i t s according to s e l e c t e d encoder
function rxB i t s = fecDecode (rxBitsEncoded , modulationOrder , codeNumber)

switch codeNumber
case 1

decoder = comm. BCHDecoder ;
rxB i t s = decoder (rxBitsEncoded) ;

% case 2
% %Cyc l i c b l o c k encoding
% rxBi t s = decode (rxBitsEncoded , n , k , ’ c y c l i c / binary ’) ;
% case 3
% %Linear b l o c k encoding
% rxBi t s = decode (rxBitsEncoded , n , k , ’ l i n e a r / binary ’) ;
% case 4
% %Convo lu t iona l coding
% t r e l l i s = s t r u c t (’ numInputSymbols ’ , modulationOrder , ’ numOutputSymbols ’ , . . .
% 2 ∗ modulationOrder , ’ nex tS ta te s ’ , [0 2 ; 0 2 ; 1 3 ; 1 3] , . . .
% ’ outputs ’ , [0 3 ; 1 2 ; 3 0 ; 2 1]) ;
% rxBi t s = v i t d e c (rxBitsEncoded , t r e l l i s , 64 , ’ trunc ’ , ’ hard ’) ;

end
end

175

Listing C.6. MATLAB code listing for inserting new member into the population.

function populat ion = . . .
insertMemberIntoPopulat ion (newMember , populat ion , popu la t i onS i z e)

%Add new member to the popu la t ion

index = 1 ;
%Find the appropr ia te p lace f o r the new member to be i n s e r t e d
while (populat ion (index , 1) > newMember (1) && index <= popu la t i onS i z e)

index = index + 1 ;
end

%I f not at the end o f the populat ion , i n s e r t new member at index2
%I f at end o f popu lat ion , check to see i f new member shou ld be
%added as l a s t popu la t ion member , o therwi se don ’ t add (not f i t
%enough)
i f ((index < popu la t i onS i z e) | | (index == popu la t i onS i z e && newMember (1) . . .

>= populat ion (index , 1)))
%inser t rows func t i on came from MATLAB community forum ; webs i t e :

%” h t t p s ://www. mathworks . com/mat labcen t ra l / f i l e e x c hang e /9984−
%inser trows−a−b−ind−”

populat ion = i n s e r t r o w s (populat ion , newMember , index − 1) ;
end

end

176

Listing C.7. MATLAB code listing for genetic algorithm.

%Runs the g ene t i c a lgor i thm
function [newFitnessValue , modulationScheme , modulationOrder , power , bandwidth] = . . .

runGeneticAlgorithm (alpha , beta , b i t r a t e , chromosomeLength , codeNumber , . . .
codingRate , datagramHeaderSize , frameHeaderSize , f rameSize , lambda , latencyWeight , . . .
maxBandwidth , maxOrder , maxPower , minOrder , no i s eF loor , numberOfGenerations , . . .
packetHeaderSize , packetSizeBytes , populat ion , popu lat ionS ize , powerWeight , . . .
TDD, throughputWeight)

g ene ra t i on s = 1 : 1 : numberOfGenerations ;

for index = gene ra t i on s
%Randomly choose two chromosomes from popu la t ion fo r recombination

randomNumbers = randi ([1 popu la t i onS i z e] , 1 , 2) ;
f irstChromosome = randomNumbers (1) ;
secondChromosome = randomNumbers (2) ;

%Recombine and mutate popu la t ion members
%Extrac t popu la t ion members from popu la t ion
f irstModScheme = populat ion (firstChromosome , 2) ;
f i rstModOrder = populat ion (firstChromosome , 3) ;
f i r s tPower = populat ion (firstChromosome , 4) ;
f i r s tBandwidth = populat ion (firstChromosome , 5) ;

secondModScheme = populat ion (secondChromosome , 2) ;
secondModOrder = populat ion (secondChromosome , 3) ;
secondPower = populat ion (secondChromosome , 4) ;
secondBandwidth = populat ion (secondChromosome , 5) ;

f i rstMember = [firstModScheme f irstModOrder f i r s tPower f i r s tBandwidth] ;
secondMember = [secondModScheme secondModOrder secondPower secondBandwidth] ;

[recombinedModScheme , recombinedModOrder , recombinedPower , recombinedBandwidth] = . . .
recombineChromosomes (firstMember , secondMember) ;

recombinedChromosome = . . .
[recombinedModScheme recombinedModOrder recombinedPower recombinedBandwidth] ;

[mutatedModScheme , mutatedModOrder , mutatedPower , mutatedBandwidth] = . . .
mutateChromosome (recombinedChromosome , chromosomeLength) ;

mutatedChromosome = [mutatedModScheme mutatedModOrder mutatedPower mutatedBandwidth] ;

modulationScheme = mutatedChromosome (1) ;
modulationOrder = 2 ˆ mutatedChromosome (2) ;
power = mutatedChromosome (3) + 4 ;
bandwidth = mutatedChromosome (4) + 1 ;

%Compute the new member ’ s f i t n e s s va lue
newFitnessValue = . . .

computeFitnessScore (alpha , bandwidth , beta , b i t r a t e , codeNumber , . . .
codingRate , datagramHeaderSize , frameHeaderSize , f rameSize , lambda , . . .
latencyWeight , maxBandwidth , maxOrder , maxPower , minOrder , modulationOrder , . . .
no i s eF loor , packetHeaderSize , packetSizeBytes , power , powerWeight , TDD, . . .
throughputWeight , modulationScheme == 1) ;

%Create a new member and add to the popu la t ion
newMember = [newFitnessValue modulationScheme modulationOrder power bandwidth] ;
insertMemberIntoPopulat ion (newMember , populat ion , popu la t i onS i z e) ;

end

%Return the new , most− f i t popu la t ion member
newFitnessValue = populat ion (2 , 1) ;
modulationScheme = populat ion (2 , 2) ;
modulationOrder = populat ion (2 , 3) ;

177

power = populat ion (2 , 4) ;
bandwidth = populat ion (2 , 5) ;

end

function [mutatedModScheme , mutatedModOrder , mutatedPower , mutatedBandwidth] = . . .
mutateChromosome (recombinedChromosome , chromosomeLength)
%Generate random number to determine i f each b i t shou ld be f l i p p e d
randomNumbers = randi ([0 chromosomeLength] , 1 , chromosomeLength) ;

%Mutate modulation scheme
i f (recombinedChromosome (1) == 0)

%Used PSK
i f (randomNumbers (1) == chromosomeLength)

%Fl ip b i t
mutatedModScheme = 1 ;

else
%Don’ t f l i p b i t
mutatedModScheme = 0 ;

end
else

%Used QAM
i f (randomNumbers (1) == chromosomeLength)

%Fl ip b i t
mutatedModScheme = 0 ;

else
%Don’ t f l i p b i t
mutatedModScheme = 1 ;

end
end

%Mutate modulation order
modSchemeOffset = 1 ;
b i t s = 1 : 1 : 4 ;
mutatedModOrder = 0 ;
for index = b i t s

%Determine i f b i t i s a one or zero
maxPowerOfTwo = 3 ;
index2 = 1 ;
r e s u l t = recombinedChromosome (2) ;
while index2 < index

i f r e s u l t >= 2 ˆ (maxPowerOfTwo − (index2 − 1))
r e s u l t = r e s u l t − 2 ˆ (maxPowerOfTwo − (index2 − 1)) ;

end
index2 = index2 + 1 ;

end

%I f r e s u l t i s g r ea t e r than or equa l to 2 ra i s ed to index power , had
%a 1
i f r e s u l t >= 2 ˆ (maxPowerOfTwo − (index − 1))

i f randomNumbers (index + modSchemeOffset) == chromosomeLength
else

%Add 2 to index power to modulation order
mutatedModOrder = mutatedModOrder + 2 ˆ (maxPowerOfTwo − (index − 1)) ;

end
else

%Had a zero
i f randomNumbers (index + modSchemeOffset) == chromosomeLength

mutatedModOrder = mutatedModOrder + 2 ˆ (maxPowerOfTwo − (index − 1)) ;
end

end
end

%Veri fy modulation order i s a c c ep tab l e
%I f i t i s g r ea t e r than 8 , r e s e t to 8
%For QAM modulation , i f order i s odd , r ep l ace with randomly chosen even
%order

178

i f mutatedModOrder > 8
mutatedModOrder = 8 ;

e l s e i f mutatedModOrder == 0
modulationOrders = 1 : 1 : 8 ;
newOrder = randi ([1 8] , 1 , 1) ;
mutatedModOrder = modulationOrders (newOrder (1)) ;

e l s e i f (mutatedModScheme == 1) && (mod(mutatedModOrder , 2) ˜= 0)
evenModulationOrders = [2 , 4 , 6 , 8] ;
newOrder = randi ([1 4] , 1 , 1) ;
mutatedModOrder = evenModulationOrders (newOrder (1)) ;

end

%Mutate power and bandwidth

%Mutate power
mutatedPower = 4 ;
modSchemeOrderOffset = 5 ;
powerBits = 1 : 1 : 5 ;
for index = powerBits

%Determine i f b i t i s a one or zero
maxPowerOfTwo = 4 ;
index2 = 1 ;
r e s u l t = recombinedChromosome (3) − 4 ;
while index2 < index

i f r e s u l t >= 2 ˆ (maxPowerOfTwo − (index2 − 1))
r e s u l t = r e s u l t − 2 ˆ (maxPowerOfTwo − (index2 − 1)) ;

end
index2 = index2 + 1 ;

end

%I f r e s u l t i s g r ea t e r than or equa l to 2 ra i s ed to index power , had
%a 1
i f r e s u l t >= 2 ˆ (maxPowerOfTwo − (index − 1))

i f randomNumbers (index + modSchemeOrderOffset) == chromosomeLength
else

%Add 2 to index power to modulation order
mutatedPower = mutatedPower + 2 ˆ (maxPowerOfTwo − (index − 1)) ;

end
else

%Had a zero
i f randomNumbers (index + modSchemeOrderOffset) == chromosomeLength

mutatedPower = mutatedPower + 2 ˆ (maxPowerOfTwo − (index − 1)) ;
end

end
end

%Mutate bandwidth
mutatedBandwidth = 1 ;
modSchemeOrderPowerOffset = 10 ;
bandwidthBits = 1 : 1 : 5 ;
for index = bandwidthBits

%Determine i f b i t i s a one or zero
maxPowerOfTwo = 4 ;
index2 = 1 ;
r e s u l t = recombinedChromosome (4) − 1 ;
while index2 < index

i f r e s u l t >= 2 ˆ (maxPowerOfTwo − (index2 − 1))
r e s u l t = r e s u l t − 2 ˆ (maxPowerOfTwo − (index2 − 1)) ;

end
index2 = index2 + 1 ;

end

%I f r e s u l t i s g r ea t e r than or equa l to 2 ra i s ed to index power , had
%a 1
i f r e s u l t >= 2 ˆ (maxPowerOfTwo − (index − 1))

i f randomNumbers (index + modSchemeOrderPowerOffset) == chromosomeLength

179

else
%Add 2 to index power to modulation order
mutatedBandwidth = mutatedBandwidth + 2 ˆ (maxPowerOfTwo − (index − 1)) ;

end
else

%Had a zero
i f randomNumbers (index + modSchemeOrderPowerOffset) == chromosomeLength

mutatedBandwidth = mutatedBandwidth + 2 ˆ (maxPowerOfTwo − (index − 1)) ;
end

end
end

end

%Recombines chromosomes ; p r o b a b i l i s t i c a l l y p i c k s one o f the two genes from
%each chromosome fo r gene fo r new chromosome and re turns
function [recombinedModScheme , recombinedModOrder , recombinedPower , recombinedBandwidth] = . . .

recombineChromosomes (firstChromosome , secondChromosome)
%Generate four random 0s or 1s
%I f the r e s u l t f o r a g iven gene i s a 0 , take the gene from the f i r s t
%popu la t ion member
%Otherwise , take the gene from the second popu la t ion member
randomNumbers = randi ([0 1] , 1 , 4) ;

%Modulation scheme
i f randomNumbers (1) == 0

recombinedModScheme = firstChromosome (1) ;
else

recombinedModScheme = secondChromosome (1) ;
end

%Modulation order
i f randomNumbers (2) == 0

recombinedModOrder = firstChromosome (2) ;
else

recombinedModOrder = secondChromosome (2) ;
end

%Modulation scheme
i f randomNumbers (3) == 0

recombinedPower = firstChromosome (3) ;
else

recombinedPower = secondChromosome (3) ;
end

%Modulation scheme
i f randomNumbers (4) == 0

recombinedBandwidth = firstChromosome (4) ;
else

recombinedBandwidth = secondChromosome (4) ;
end

%Check to ensure we are not combining QAM with an odd modulation order
%I f so , r ep l a ce with even order
evenModulationOrders = [2 , 4 , 6 , 8] ;

i f (recombinedModScheme == 1 && mod(recombinedModOrder , 2) ˜= 0)
newOrder = randi ([1 4] , 1 , 1) ;
recombinedModOrder = evenModulationOrders (newOrder (1)) ;

end
end

180

Appendix D. Frequency Bar Charts for Engine Parameters

181

Figure 36. Probability engine returns each possible bandwidth value for each noise
floor when FEC in use

Figure 37. Probability engine returns each possible bandwidth value for each noise
floor when FEC not in use

182

Figure 38. Probability engine returns each modulation scheme for each noise floor
when FEC in use

Figure 39. Probability engine returns each modulation scheme for each noise floor
when FEC not in use

183

Figure 40. Probability engine returns each possible bits per symbol value for each noise
floor when FEC in use

Figure 41. Probability engine returns each possible bits per symbol value for each noise
floor when FEC not in use

184

Figure 42. Probability engine returns each possible power value for each noise floor
when FEC in use

Figure 43. Probability engine returns each possible power value for each noise floor
when FEC not in use

185

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2018 Master’s Thesis Sept 2016 — Mar 2018

Techniques for Low-Latency in Software-Defined Radio-Based Networks

18G334G

Hart, Daniel D., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-032

Air Force Research Laboratory - Space Vehicles Directorate
3550 Aberdeen SE
Kirtland AFB, NM 87117-5776
DSN 246-5812, COMM 505-846-5812
Email: james.lyke.2@us.af.mil

AFRL/RVS

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States

Decreased budgets have pushed the United States Air Force towards using existing systems in new ways. The use of
unmanned aerial vehicle swarms is one example of reuse of existing systems. One problem with the increased utilization
of these swarms is the congestion of the electromagnetic spectrum. Software-defined or cognitive radios have been
proposed as a basis for a potential robust communications solution. The present research aims to develop and test a
genetic algorithm-based cognitive engine to begin looking at real-time engines that could be used in future swarms. Here,
latency is the optimization objective of primary importance. In testing the engine, particular items of interest include the
number of solutions evaluated in a given bound and the engine’s reliability in yielding acceptable network performance.
Initial experiments indicate the engine can consider significant portions of the search space within a relatively small
bound and that the engine is efficient at finding highly fit solutions. Future work for this research includes evaluating
how well high fitness correlates to acceptable performance and testing the engine with additional noise floors.

Bandwidth, Cognitive Engine, Cognitive Networking, Cognitive Radio, Genetic Algorithm, Latency, Phase Shift Keying,
Quadrature Amplitude Modulation, Software-Defined Radio, Throughput, Transmission Power

U U U U 205

Dr. Kenneth M. Hopkinson, AFIT/ENG

(937)255-3636 x4579; Kenneth.Hopkinson@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-1-2018

	Techniques for Low-latency in Software-defined Radio-based Networks
	Daniel D. Hart
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Genetic-Algorithm Based Cognitive Engine Development and Testing
	Thesis Organization

	Background and Related Research
	Introduction
	Cognitive Radio Networks
	Software-Defined Radio - The Enabler
	Cognitive Engine - The Brain of a Cognitive Radio
	Cognitive Radio Architectures
	Intractable Problems and Approximation Algorithms
	Digital Signal Processing Fundamentals
	Network Simulation Frameworks
	Virginia Polytechnic Institute and State Uiversity's Cognitive Radio Network

	Cognitive Engine and Test Network Design and Implementation
	Development of OMNet++ Network for Cognitive Engine Testing
	Cognitive Engine for Optimizing Latency
	Introduction
	Deciding Performance Objectives and Tunable Parameters
	Chromosome Structure
	Relating the Tunable Parameters to the Performance Objectives through a Fitness Function
	Cognitive Engine Algorithm

	Research Methodology
	Latency Experiments using Virginia Tech's CORNET
	Independent and Dependent Variables
	Important Assumptions and Limiting Factors
	Experimental Procedure
	Data Analysis

	OMNeT++ Engine Performance Tests
	Independent and Dependent Variables
	Important Assumptions and Limiting Factors
	Experimental Procedure
	Data Analysis

	MATLAB Cognitive Engine Performance Tests
	Independent and Dependent Variables
	Important Assumptions and Limiting Factors
	Experimental Procedure
	Data Analysis

	Results and Analysis
	CORNET Latency Lower-Bound Experimental Results
	Calculating Latencies by Comparing Timestamp Differences Between Transmitter and Receiver
	Calculating Latencies by Comparing Timestamps at Receiver for Messages with Consecutive Identification Numbers
	Calculating Latencies by Comparing Timestamps at Receiver for Consecutively-Received Messages

	OMNeT++ Engine Experiments
	MATLAB Engine Experiments
	Engine Runtime Growth and Fitness Performance
	Engine Runtime Growth and Fitness Performance - Small Numbers of Generations
	Fitness Variance as Parameters Change from Optimal Settings
	Frequency with which Engine Returns Each Parameter Value

	Conclusions and Recommendations
	Implementing FEC Encoding in OMNeT++ Network
	Evaluating Distribution of Fitness Values Assigned by Fitness Function
	Testing the Engine with Additional Noise Floors
	Allowing Engine to Alter Bitrate with Bandwidth
	Recommendations regarding the use of CORNET for Cognitive Network Tests
	FEC Encoding and Number of Generations Trade-off Analysis
	Increasing the Engine's Search Space to take Greater Advantage of the Genetic Algorithm
	Investigating the Effect of Latency Weight
	Repeating Runtime Experiments with Representative Hardware
	Effect of Retaining Population Between Engine Runs

	Bibliography
	Static Parameters for CORNET Experiments
	Code Listings for OMNeT++ Cognitive Engine
	Code Listings for MATLAB Engine Implementation
	Frequency Bar Charts for Engine Parameters

