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Abstract

Current cybersecurity best practices, techniques, tactics and procedures are insuffi-

cient to ensure the protection of Android systems. Software tools leveraging formal

methods use mathematical means to assure both a design and implementation for a

system and these methods can be used to provide security assurances. The goal of

this research is to determine methods of assuring isolation when executing Android

software in a contained environment. Specifically, this research demonstrates security

properties relevant to Android software containers can be formally captured and vali-

dated, and that an implementation can be formally verified to satisfy a corresponding

specification.

A three-stage methodology called “The Formal Verification Cycle” is presented.

This cycle focuses on the iteration over a set of security properties to validate each

within a specification and their verification within a software implementation. A secu-

rity property can be validated when its functional language prototype (e.g. a Haskell

coded version of the property) is converted and processed by a formal method (e.g.

a theorem proof assistant). This validation of the property enables the definition

of the property in a software specification, which can be implemented separately in

an imperative programming language (e.g. the Go programming language). Once

the implementation is complete another formal method can be used (e.g. symbolic

execution) to verify the imperative implementation satisfies the validated specifica-

tion. Successful completion of this cycle shows a given implementation is equivalent

to a functional language prototype, and this cycle assures a specification for the o-

riginal desired security properties was properly implemented. This research shows an

application of this cycle to develop Assured Android Execution Environments.

iv
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ASSURED ANDROID EXECUTION ENVIRONMENTS

I. Introduction

I.1 Current Issues with Android Security

In 2017 it was reported that Android comprises two thirds of the smart phone

market. In the same year the operating system (OS) hit a new milestone: two bil-

lion monthly active users [1] [2]. The market saturation and active number of users

indicates that approximately one in four people in the world use an Android device.

Unfortunately, many of the types of threats to desktops and servers also apply to

mobile devices. A way to quantify these threats on Android is to consider MITRE

Corporation’s Common Vulnerabilities and Exposures (CVEs). Each CVE describes

a vulnerability, usually in significant detail, as well as its vector of attack and the

impact on a software product. One source, CVEDetails.com, has analyzed and con-

solidated CVE information into 13 categories of vulnerabilities [3]. These categories

have seven major classes of threats to Android. The data from the website from 2009

through 2017 shows there are 1533 CVEs, and the breakout is the threats are seen in

Figure 1. This information is independently verifiable with analysis from the National

Vulnerabilities Database (NVD) using scripts found in Appendix A.2.

Malicious actors generally seek new methods and resources for their attacks, and

those targeting the Android operating system are no exception. All categories of

CVEs are growing, and some threat categories (e.g., code execution, overflow, gain

information, gain privileges) have seen over 300% growth within the past few years.

Evaluation of the CVEs indicates that 83% of the vulnerabilities on Android

1



Figure 1. Android CVEs by Vulnerability 2009-2017

impact the proper execution and protection of information (i.e., the vulnerabilities

described by the CVEs, except for Denial of Services, affect applications and their

data). The top three CVE classes in Figure 1 can be interpreted as mechanisms used

to execute code or gain information without OS permission.

One way to manage such threats and vectors is virtualize and isolate application-

s, because a contained environment prevents undesired access as well as unintended

access (e.g., overflow access). Although not the primary goal one goal of the Android

Security Sandbox is application virtualization and isolation. However, a concern with

the sandbox is that its design and implementation is open to the vulnerabilities de-

scribed by the CVEs. At this time there is no public documentation that shows

validation of the sandbox’s specification or verification of its implementation. There-

fore, a new containment solution is needed to assure a sandbox-like design fulfills

security claims.

I.2 Problem Definition Development

The current and future threats to Android are such that new and enhanced securi-

ty measures are needed. One technique to reduce cyberattack surfaces, by validating

a specification and verifying an implementation, relies on formal methods. The cur-

2



rent literature does not claim the use of formal method tools and techniques in the

development of Android or its applications. Android lacks formally verified solutions

specifically that has assured containment of (1) malicious application execution on a

trusted device, and (2) a trusted app on a malicious device. Therefore, this research

explores the application of formal methods to assure Android containment. With a

primary focus on malicious software applications.

I.3 Research Questions and Hypothesis

As it stands there is no established or de facto standard set of methods for the

formal assurance of software containment. Also, there is no standard set of security

properties for software containment. Hence, this research seeks to determine what

security properties are required for Android containment that can be assured through

formal methods, and to establish representative methods that can be used to validate

security properties within a specification and verify the subsequent implementation

of a software product. In particular, this research is seeking answers to the questions:

• “Can an assured software container system be developed for Android?”

• “What would be the methods to accomplish this task?”

To answer these questions several tasks need to occur including:

• Determine if any formally verified products can be ported to Android

• Develop formal methods to support a verified execution environment on Android

• Prototype an implementation of an validated specification

By completing these tasks, this research demonstrates that containment security

properties can be identified, validated, and captured in a specification and implement-

3



ed in a verified Android software container. The following sections detail the planned

approach, outline research contributions, and provide an overview to the thesis.

I.4 Approach

For an assured Android containment product to be realized a set of security prop-

erties must be identified. Additionally, these security properties must be assurable

with formal methods. Specifically once the properties are defined, a specification of

each property must be validated and its implementation in a programming language

must be verified. Thus, three stages of research are presented to illustrate the pro-

posed formal approach. The first stage consolidates a set of security properties that

can be validated with formal methods. The second and third stages demonstrate

formal processes for the validation of a given property in a specification and its verifi-

cation in an implementation. Specifics of these stages are detailed in Chapter 3, and

related findings are presented in Chapter 4.

I.5 Research Contributions

This research provides three specific contributions:

• A formalized set of security properties for Android containment specifications

• A proposed Android Framework for formal assurance

• Proposed techniques of formally Android specifications and implementations

I.6 Thesis Overview

The second chapter discusses the technical background and related research per-

taining to both formal methods and Android containment. Chapter 3 presents As-

sured Android Execution Environments, which is a framework that encapsulates the
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proposed security properties and the Formal Verification Cycle. Details relating to

the three stage approach used in this research are outlined emphasizing the tools used

to test the proposed framework. Chapter 4 details the results and findings, and the

final chapter presents the research conclusions and recommendations for future work.
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II. Background and Related Research & Technology

This chapter examines the four primary technology areas needed for this thesis

(i.e., formal methods, containerization, Android, and existing security models and

frameworks), and concludes with a discussion on related research. Due to the com-

plexity of some of the topics, both introductory discussions and specific technology

implementations are provided. This information is intended to serve as both an in-

troduction and reference guide for readers and future researchers alike. Additionally,

some of this documentation familiarizes key technologies, because of their use for

modeling the approach, design, and implementation methods for Android container

assurance.

II.1 Formal Methods

General Background

Before showing examples of what formal methods, or how they are used in this

research, some definitions are needed. According to Schmeelk, formal methods “are

a set of mathematical representations of a system which can be verified,” and formal

assurance “is the attempt to use formal methods to validate design requirements or

specifications” [4]. Additional terms needing definition are validation and verifica-

tion, and with respect to this research these two terms will adhere to the definitions

provided by Tran via the IEEE Standard Glossary [5]. Validation is an evaluation to

determine if a system satisfies specified requirements, and it can happen during or

at the end of a development process. Verification is a process to evaluate developed

products of a system satisfying the conditions imposed at the start of that design

phase. A final topic to consider is Software Engineering, which is defined by Press-

man as the establishment and use of sound engineering principles to obtain software
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that is reliable and efficient [6].

This research presents a working definition for formal assurance as: the use of

formal methods to (1) validate the original requirements of a specification and/or

(2) verify developed products satisfying a (validated) specification. Formal assurance

shows the correctness of a design when leveraging both validation and verification,

and the specific formal methods techniques used can vary for either validation or

verification. Also, shorthand terms for formal assurance (e.g., assurance, assured and

assurable) are based on the working definition in this thesis.

Schmeelk states that correctness of a program can be shown by forms of ap-

proximation, and the three most common forms are abstract interpretation, theorem

proving, and model checking [4]. Hence, if these forms of approximation are used suc-

cessfully with proper validation and verification, then certain assurances are proven

for a given specification and its implementation.

This showcases how formal methods, and the assurances thereof, differ from clas-

sically used approach of tests. In general, formal method proofs differ from unit and

regression testing. Testing does not demonstrate full, proper operations of a system

other than for the specific cases under test [7]. In particular, testing shows the result

for a specific input, while a formal proof shows a general result for an entire class

of inputs [8]. These general results are possible for formal methods because they

model a system’s operations with a rigorous mathematical representation [4]. Thus,

in attempts to secure a system or ensure security property design, then the benefits

of formal methods greatly exceed those of simple unit tests.
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An Example Approach in Formal Validation: Functional Program-

ming Language Prototypes

To assure security properties via validation, a proof engineer needs to take care

in their claims with respect to the semantics of a program. A common practice for

software design is the construction of a prototype. If an imperative programming

language is used, then the specification will a state-based implementation. Such an

implementation has inputs that modify its state, and the implementation may have

non-deterministic execution (i.e., the behavior of such a program depends on both

the current inputs and the state resulting from execution on past inputs). As such,

to ensure that mathematical analysis and program determinism is as practical as

possible, a functional programming language should be considered over an imperative

programing language implementation.

Functional programming languages process inputs to produce an output. There

are two major implementations of functional programming languages: pure and im-

pure languages. Pure languages are seemingly the ideal case of computer execution

of an algorithm (i.e., a step-wise and defined set of logic or math is applied to inputs

that result in outputs). However, actual software programs typically have “effects,”

which can be actions such as: a global state, exception handling, non-deterministic

type outputs, assignments, and continuations [9]. This is where impure functional

programming languages have been created, since these languages allow for effects to

be implemented on top of the functional programming language features [9]. Typ-

ically, impure functional programming languages are realized with the addition of

“monads” (i.e., monads allow functional languages to include and account for pro-

gram effects) [10]. For example, a program that reaches a halting state (e.g., an

exception handling of a calculation that was produced from a division by zero or the

resulted as “not a number”) would result from monad exception handling. Monads
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can also give a uniform framework for program development [10].

In order to leverage monads for larger claims, and for prototyping with function-

al languages, a team from the National ICT Australia (NICTA) Limited showed a

method to validate their monadic design with a proof script that was validated by a

larger proof assistant tool [11]. The team leveraged a set of mathematical techniques

known as Hoare Logic. Applied Hoare Logic is used to evaluate and validate Hoare

Triples, which are comprised of an assertion of the state of the code before execution

(i.e., the precondition), the code fragment (i.e., the algorithm to manipulate data),

and an assertion of the state after execution of the code fragment (i.e., the post-

condition) [12]. The Hoare Triple enables a method to define code that is modeled

and bounded to assure the code fragment’s execution. They are the foundation for

the calculus and rules of operation for specific actions or code assignments that are

proven valid or invalid [12]. The features of the seL4 team’s monad, were validated

with Hoare Logic, to validate the team’s claims regarding the security of their system

under test [11]. Formal methods usually try to prove a base case and build upon

proof of work. The NICTA team showed that their monad was correct and then used

it for functional language prototypes to enable security properties [11].

Survey of Formal Verification Tools & Projects

Formal Verification Projects and Tools

The literature described a significant number of formal verification projects. Chong,

et al., provided a detailed list and examples reviewing numerous projects, and the

most relevant of these projects and tools are shown in Table 1 [13].

Table 2 lists a representative range of tools used in formal verification such as

proof assistants and model checkers. Many tools were found based off the work by

Chong, et al., but the work of Armstrong, et al., greatly expanded the total identified
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Table 1. A Selected List of Formal Verification Projects and Applications

Project Name Features
seL4 A formally verified L4 microkernel that runs on ARMv6/v7 and x86 processors

CertiKOS Certified concurrent, general purpose operating kernels
ExpressOS A mobile OS enabling high assurance applications with formal methods proven security invariants
MinVisor A Type-I x86 hypervisor with proven protection properties at the assembly level using ACL2
Rocksalt Software-based fault isolation, as used in Google Chrome’s Native Client

Jitk In-kernel interpreters; native instruction execution of compiled user-space policies
FSCQ First file system with a machine-checkable proof which its proven specification includes crashes
XMHF A modular, high performance hypervisor framework with automated verification
Verve An Operating system verified with typed assembly language and Hoare logic

formal verification tools [14]. The tools included cover hardware, software, and general

system modeling.

Two specific tools have been foundational in this research: Isabelle and KLEE.

Isabelle

The NICTA effort, to leveraging Hoare Logic to prove and validate monad design,

was implemented with Isar. Isar is a modeling and “proving” language that allows for

creation of theorems understandable by both humans and computers (i.e., the theorem

that is created can be read directly from Isar source files and be understood) [15].

Such a language allows the creation of lemmas and theorems for a system as a set

of theory files (i.e., mathematical representations can be made of designed logic and

assumptions). Constructed theories can then be mathematically proven to be true

or false by the proof-assistant environment Isabelle/HOL, commonly referred to as

Isabelle. Describing these theories in Isar allows for higher-order logic to be used as

a logical calculus for validation efforts [15]. The NICTA team used Isar to capture

and represent their monads under test, saved their theory files in an Isar format, and

used Isabelle to validate their designs. This technique is representative of the theorem

proving form approximation referred to by Schmeelk.
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Table 2. A Selected List of Formal Verification Tools and Methods

Application Name Platform Features
Alloy Java A language and tool that evaluates structures by reduction to SAT

BLAST Linux A Model Checking Tool for C Programs
CacheAudit OCaml on Linux and Mac Static analysis tool for cache side-channels

Caisson VHDL/Hardware Design Its a provably secure HDL that is converted to Verilog
CMBC Windows, Linux, Mac A C/C++ Bounded Model Checker

CertiCrypt The Coq Proof Assistant A cryptographic proof assistant
CertiPriv The Coq Proof Assistant A reasoning framework for differential privacy

Code-Pointer Integrity LLVM It assures program code pointer integrity
Cryptol Windows, Linux, Mac A programming language for cryptographic algorithms

CryptoVerif OCaml Automated security protocol assurance
DJoin N/A Differential reasoning to process distributed database queries
DFuzz OCaml A differential privacy type checker

EasyCrypt OCaml A cryptographic proof assistant
Facebook Infer Linux and Mac A Static analysis tool for C, C++, Java and Android

FDR/FDR2 Windows, Linux, Mac A model checker based on communicating sequential processes
Frama-C Windows, Linux, Mac, FreeBSD Program analyzers for C
GUPT N/A A tool for guarantying differentially private systems
GLIFT N/A Tools for analysis, statically verification, and controlling information-flows
Incisive N/A Hardware, at a gate level, safety policy simulator

Isabelle/HOL Windows, Linux, Mac A generic proof assistant using Isar proof script
JasperGold Incisive Functional checker and debugger for register-transfer level hardware

Java Pathfinder Java An execution environment for bytecode verification
KCoFI N/A A system to ensure control-flow integrity protections
KCoFI N/A A system to ensure control-flow integrity protections
KLEE N/A Analysis framework for LLVM-IR to symbolically execute C/C++ Code

NuSMV (and SMV) Windows, Linux, Mac An open architecture for model checking
Pinq Windows Reasoning tools for differential privacy properties

Questa Formal Verification N/A Hardware simulator to determine behaviors and error states
rF* F* A cryptographic security proof verification system based on refinement types

Sapper N/A A hardware description language for security-critical designs
SC-Sniffer N/A A side-channel leak analysis tool
SecVerilog Linux A hardware description for information flow reasoning

Simulink Design Verifier Simulink Dynamic and static analysis for model error detection
SPARk Ada An Ada based language and set of tools to ensure software integrity

Spin Promela A promela interpreter that generates C code for model checking
SVA LLVM A virtual operating system for analysis and modeling of software

UPPAAL Windows, Linux, Mac A real-time system modeler via timed automata
VDM N/A Vienna Development Method: a set of methods and tools for formal reasoning

KLEE

According to Schmeelk, common methods of abstract interpretation include: de-

cision tables, symbolic execution, static and dynamic code analysis, and border-line

informal methods [4]. The method most relevant to this research is symbolic execu-

tion. According to King, symbolic execution focuses on supplying symbols instead of

the normal inputs for a program, and the execution proceeds normally with symbolic

formulas over the input symbols [16]. The advantage of symbolic execution for a pro-

gram is a set of inputs is symbolically executed, and these inputs may be equivalent

to a large number of normal test cases [16]. Furthermore, the results of symbolic

execution can be checked for correctness either formally or informally [16]. One such
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approach is to use a language independent intermediate code representation. This

provides a means to determine the states and pathways of execution independent of

the original source code.

One intermediate representation is LLVM Intermediate Representation (LLVM-

IR), which is widely used for formal analysis [17]. One tool based on LLVM-IR

is KLEE, which uses symbolic execution to generate test inputs. KLEE includes a

symbolic library into a C program under test, and then compiles the result to an

LLVM-IR format. KLEE then uses built-in heuristics to test the symbolic space and

determine program semantics. Tools such as KLEE allow proof engineers to test

implementations of their validated theories, thereby providing a holistic approach to

testing.

Using seL4 as a Model System and Approach

The seL4 microkernel, created by the Software Systems Research Group at NIC-

TA, now Trustworthy Systems at Data61, has a validated design and verified imple-

mentation [18][19]. The group has since released tools and published techniques to

allow continued development of seL4 and its applications. The development process

is focused on the use of automated tools in the formal analysis and kernel prototyp-

ing of an L4 microkernel. The design, proposed by Jochen Liedtke, embodies the

functional design of microkernels: the kernel provides a set of general mechanisms

while user-mode servers implement the actual OS services [20]. A new framework

was created on top of the verified kernel to enable assured application development.

This framework extends the secure base of the kernel to allow developers to build

upon the proven work and designs of seL4. Such a capability can drastically reduce

the effort needed to assure new features and designs.
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An Observation of a Formal Methods Process

Klein, et al., showed that assurance is achievable with formal machine-checked

verification, such that mathematical proof and implementation is consistent with its

specification and free from programmer-induced implementation defects [19]. The

seL4 team used a refinement proof to establish a correspondence between high-

level/abstract and a low-level/concrete representation of a system. The correspon-

dence proof ensures logic (specifically Hoare logic) properties of the abstract model

also hold for the low-level representation [19]. This implies that if a security proper-

ty is proved (in Hoare logic) about the abstract model, then refinement guarantees

the same property holds for the implementation source code [19]. As the seL4 team

pointed out the source code would still need to be validated to ensure it meets the

code representation [19]. Hence, a given design for an abstract theory could be input

to an automated tool to prove its properties are valid, which allows for guarantees

regarding the source code representation/implementation. It is observed that de-

sired theoretical properties can have their design validated leading to verification of

an implemented specification. Modeling these techniques allows for a standardized

approach to formal methods.

Leveraging Automated Tools in Design Validation

One may assume that in order to solve proofs the only method is to directly

solve and leverage a proof assistant’s primary language/scripting language. When

delving into the methodology of the seL4 project it was discovered that the team

did not directly, and solely, leverage Isabelle, via Isar proof script, to design

the microkernel. Instead the team leveraged the functional language of Haskell for

prototyping. The team showed how Haskell can be generated to Isar script, which

allows verification by Isabelle [21]. As the team once discussed: “Given the precise
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semantics of the Haskell language, and the lack of side-effects of functional languages

in general, it is a much simpler task to extract a formal model of the kernel compared

to typical low-level systems languages like C” [21].

Subsequently, the Haskell implementation allowed for the automated generation of

into Isar, documentation with LaTeX, and a compiled Kernel Prototype via the GHC

(Haskell) compiler. The combination and relative ease of simultaneous development

likely drove the usage of this process for the seL4 teams. Additionally, the ability

to “code” and design in Haskell, with the code converting to Isar for Isabelle

processing was likely a huge motivation due to the complexity of proof design and

verification. The process allowed kernel properties to be achieved through functional

programming implementation, and gave both the means to verify its model with

Isabelle while additionally providing a prototype of the theory in a generated,

binary form. Figure 2 shows the overall approach of the seL4 design process.

Figure 2. The Design Process for the seL4 Microkernel

The investigation into such tools and methods does not preclude the identification

and application of other non-Isabelle tools. The intention of modeling a formal pro-

cess after seL4 is to follow a known format or approach as to gain familiarity with the

topics, which ultimately can help inform and decide on an appropriate approach for

Android. Currently, no automated Haskell to Isar tools allow a Haskell implementa-

tion to be converted for analysis verification. As previously discussed, the seL4 team
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used Haskell to Isar theory files, and both are included in the GitHub.com hosted

repository. It was not determined if the Haskell conversion scripts were included in

the repository. Yet, if they were it is likely they are too specific, with respect to

the seL4 source implementation, to use generically for other cases. (i.e., no clear

documentation was found that showed the generation of Haskell to Isar theory files).

A seL4 Proving Environment with Docker

In May 2017 the seL4 follow-on team at Data61 released a new process to enable

rapid deployment of a seL4S development environment. The process focused on a

step-by-step tutorial on Linux that enables and executes Docker-based repositories.

These repositories, once started, self deploy and setup the remainder of the tools and

environment configurations for seL4 development. Additionally, this environment

grabs the seL4 source files, and these are then used to execute and run the proof

scripts and tools. These tests allow developers to directly access and examine the

methods and sources for both projects, which then can be validated or extended to

create new seL4-based applications.

Ultimately, the goal of this build-environment was to abstract the tool and isolate

the programs from the host machine (i.e., OS updates and changes do not impact

the development environment), and to allow the direct control and restriction of

dependencies for the build environment [22]. A side-effect from the change in the

seL4 development environment was the ability to rapidly and consistently deploy a

development environment that was shared to the community. Instructions provided

by Mondy can be easily followed to create a new Docker container with all needed

development tools for seL4 [22].

15



The Use of Haskell Prototypes and Haskabelle in seL4

The seL4 team leveraged Haskell as a method to implement their theory into

an executable format. Klein stated that Haskell was leveraged in part to translate a

prototype of the kernel into Isabelle and to prove a large number of invariants and

theorems [23]. In this method a specific and desired security feature or even prototype

was implemented, converted, and subsequently proven in Isabelle. This implies

that for such a method to be leveraged for A2E2, then each individual property

needs to follow a similar methodology. This could be achieved, but a great need for

familiarly with both Haskell and Isabelle are a requirement for the individual or

team attempting to prove the A2E2 security properties. Evidence for such a tedious

process was documented by Haftmann, one of the seL4 team engineers/developers,

since it was stated that there is a constant need in developing ad-hoc conversion scripts

that fit to a very specific setting [24]. However, this main approach of leveraging

Haskell, converting into Isar, and proving the design with Isabelle was the main

approach taken by the seL4 team.

However, Haftmann describes that Isabelle could generate Haskell, but it may

be desired for Haskell to be generated into Isabelle-readable content instead, and one

of methods in which to achieve this is with Haskabelle [24]. As the amalgamation

of the name implies, the Haskabelle tool works by converting Haskell source code

into Isar proof script (as stored in .thy files). As of 2010 the seL4 team had not been

using Haskabelle, since they had constructed their own tool(s) to translate their

Haskell implementation into an Isabelle readable format [23]. Around this time

the seL4 team had seen promising experiments to indicate Haskabelle might be

useful to Isabelle users, and had proposed two types of approaches: 1) program

in Haskell, import into Isar theories for Isabelle, and prove the desired properties,

and 2) a one-time import of an existing Haskell project into Isar, develop in Isar,
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and as needed produce Haskell using the built in Isabelle code generator [24]. In

effect the seL4 team had identified or used two types of approaches: a direct Haskell

to Isabelle procedure, and recommended Haskell to Haskabelle to Isabelle

method. Therefore, to potentially leverage the proven security properties of the seL4

Kernel, while following an accepted security design with formal methods, the usage of

Haskabelle in conjunction with Isabelle is reviewed when approaching theory

design and verification. Each approach was deemed as a having potential interest as

to applicability to this research and shall be expanded upon in Chapter 3.

II.2 Software Containment

Isolation and containment of software is not a new idea, and has been proposed in a

variety of mediums over the past sixty years [25][26][27][28]. Examples of containment

also include: the tool change root or chroot, virtual machines with type 1 (runs in

an operation system) and type 2 (runs directly on hardware) hypervisors, and Linux

Containers (LXC) including Docker [29]. Typically an operating system acts as the

host, and software applications run identically (as they would on the host operating

system) within a container.

Another example of containment is with a software container, since it is a complete

runtime environment that supports runtime execution (i.e., the applications, depen-

dencies, and other required binaries and configuration files are collected in a single

execution space) [30]. A container has no knowledge of any processes or applications

out side of its runtime, and everything the application(s) within the container need

are also housed inside the container [31]. Containers that allow a direct virtualization

of applications are referred to as operating system virtualization, and these types of

isolation software are commonly referred to as containers [29]. Containers typically

do not fully virtualize a full operating system, and will be a clone or instantiation
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of a portion of the host machine; this is one factor that separates a container from

a virtual machine, since virtual machines are fully contained operating systems that

are controlled with a hypervisor.

Many containment solutions have software that runs on top of the host operating

system with varying levels of isolation. This isolation could be accomplished for

numerous reasons, but commonly include allowing scalability of applications (e.g.,

cloud computing), protecting both running applications from one another and keeping

the operating system away from harmful applications (e.g., crashes, exceptions, and

even malicious applications). Advantages of ensuring safe and reliable execution

has been documented by Amazon Web Services engineers the importance of formal

specification and model checking [32]. Yet, it appears that there is no major or

commercial product for containment that has been developed with formal methods.

Containers vs. Sandboxes

There are varying levels of isolation of software from its host, and a related form

of software isolation is an application sandbox. The isolation techniques for many

containerization solutions are based on: access controls, logical separation of the root

directory with a chroot-like mechanism, Docker, and virtualization (e.g., VirtualBox,

Amazon Web Services) [33].

Sandboxes, like containers, attempt to control the flow and impact of its controlled

software on a host machine; for instance a sandbox would be used to control the safe

crashing of its software or reduce the ability of its software from deadlocking the host

machine like a container. Yet, sandboxes differ from containers, since a container seeks

to have all needed runtime files in the same location of the isolated software, and a

sandbox usually allows access to files directly on the host machine. Also, the software

within the sandbox could still have unrestricted access to the rest of the system
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similar to a standard, host machine program (i.e., sandboxed applications can still

access other locations and data on the host machine). Commonly, sandboxed software

does not include or copy all files required files for its run time in an isolated space. In

effect, a container is a more restrictive and isolating sandbox, since containers want

to prevent most dependencies from and access to the host machine.

Current Containment Solutions

Various approaches have been presented to solve the problem of containing and

securing software execution [34][35][36][37][38][39]. Over this period of research many

solutions have been found, so a list of current containment solutions was collected

relating to operating system level containment. Table 3 details containers and features

of their containment.

Table 3. A Selected List of Containment Technologies

Application Name Features
ARMlock ARM processors use of memory domain support to create sandboxes
ARMor Dynamically translation of code to execute on hardware implementing different memory modes
Boxify Non-modifying Android App Encapsulation

Capsicum A lightweight OS capability and sandbox framework for FreeBSD
Docker OS-level application containment and virtualization on Windows/Linux/OSX
Inktag Hypervisor; access controls, system crash recoverability

Linux-VServer Virtual private server that securely partition resources on a Linux
LXC Operating System-level virtualization that enabled multiple, concurrent Linux systems

MBOX A sandbox mechanism to control host file system access and system call invocations
MiniBox An x86 sandbox that protects the OS and sandboxed application
OpenVZ A Linux-only virtualization system running a specific kernel
PREC Android system call isolation to protect root exploitation
TxBox Parallelized, speculative execution of untrusted applications
Vx32 Application-level virtual machine to run applications at a user-mode level

Current Containment Solutions Lack Assurance

Modern programs and applications have been created with good design processes

and practices, which enforce desired boundaries of execution. Based on review of

current literature no current containerization solutions have formally proven security

properties, so there is no formal assurance of their specification or designs. At this
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time none of the solutions in Table 3 use of formal methods for either the design or

their implementation. The lack of formal methods implies there is no proof that all

discrete,possible states (or even the majority of states) of desired code execution are

enforced or bounded (i.e., only specific unit and regression tests have been applied

as opposed to general classes of solution). Additionally, the lack of formal methods

implies the true assurance of security for the application cannot be determined, since

the program is not mathematically proven and validated for a specification. This is an

important fact to acknowledge, because if claims are made for the security of software

they also must be paired with heavy caveats to the conditions and environment in

which the program executes. Interestingly, this common lack of assurance was pointed

out by researchers twenty years ago, because they were seeking to understand how

software became as reliable as it is without having formally proven designs [40].

Using Docker as a Model System and Approach

Docker is container product that is mainly used on Desktop and Server personal

computers, and is created by Docker Incorporated. It is open source software hosted

on GitHub, which allows for the tool to be analyzed, reviewed, and even modified.

There is no direct port of Docker that runs on Android, and this is likely due to the

fact that most applied uses of Docker are command-line-based applications. At this

time the software product is not formally assured, so there are not direct assurance

capabilities for the present research to leverage. However, this research considers

how Docker provides isolation as a model to support the requirements definition of

an assured container, since the containment and isolation that Docker leverages are

potentially useful on Android.

A close comparison of how Docker implements a containers is the tool Chroot.

Docker and Chroot are implemented in different programming languages, but both
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appear to leverage the Linux Kernel to implement permissions. Docker appears to

provide many features to support isolation, but the company also states that these

features are at a high-level and specifics are not documented [41].

When looking into some of Docker isolation techniques it was discovered that the

tool uses a combination of LXC (Linux Container) or runC (a command line tool based

on the OpenContainer specifications), and the Advanced Multi-layered Unification

Filesystem (AuFS) tools to achieve its containerization goals [42]. The specifics to

how each of the tools are leveraged is not covered in this research; a simpler goal

of general isolation methods is being sought as opposed to implementation specific

designs for containers. Docker features many low-level activities specific to the OS

(e.g., permission enforcement with the Linux Kernel), since many of the higher-level

capabilities focus on user interaction with Docker and configuration management of

Docker containers (e.g., container provisioning and records management). It can be

argued that the primary tool to enable low-level activities in Docker was LXC (i.e.,

Docker was eventually migrated from LXC to runC due to architectural and open

standard issues versus capability concerns [42]). LXC technologies and features were

found to be the utilized as an interface and collection of applications for containment

with the Linux Kernel. The use of LXC and the Linux Kernel was described by

Moser, which included Linux features of: kernel namespaces, Apparmor & SELinux

profiles, kernel functionality (e.g, sys boot, sys chroot, sys module, net bind service,

and sys mknod), control groups / cgroups, Chroot jails, and seccomp policies [43].

These features are of the utmost interest, since they appear to parallel the focus of

Android security concerns.
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The Go Programming Language

Docker is implemented in the Go programming language, and there are develop-

ment tools that allow the creation of Go programs for Android. The Go Programming

Language (Golang) is considered a new programming language since it was created

in 2007 with an open source version being released in 2009 [44]. Version 1.0.0 was re-

leased in 2012 and many new versions and updates are being consistently released [45].

Yet, the primary focus of this programming language is for application development

on desktop and server environments.

Thus, if a Go container would need root level accesses, then it is probable the

container would prevented from executing on Android due to the standard security

model (i.e., all non-Google and non-OEM applications are prevented from root-level

execution). Conceivably, if a container application were to be developed in Go, that

works on Linux, then access levels could be permitted for the container (e.g., if an

OEM were to include it with its packaging, or if a “rooted” device were to execute the

software). Specific runtime issues were not examined in this research, since a focus is

how to assure the specification of security properties and their implementation into

programs as a whole.

An Assured, Docker-like Linux Container Implemented in Golang

There are several examples on-line of creating Linux kernel enforced (i.e., names-

pace) containers, and examples can be found that implement a container in a mini-

mum amount of code and even as in as little as 500 lines of C code [46]. Developers

are claiming to have achieved Linux containers in 100 lines of Go code (i.e., Go as a

higher level language should take less C code to implement). One such example of

a Go container is by Friedman, which was covered by Rice during a 2016 conference

for Container Camp UK [47]. Both versions of the source code can be found on-line,
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and show two slightly different approaches in the implementation of Go for a Linux,

chroot-like container [48][49]. These source files show different settings and config-

urations (e.g., base directories, permissions, etc.), but at the core of both programs

is the use of Linux Kernel features for containment. The simple design is beneficial

since it may reduce any potential issues if such code could be ported to Android.

Additionally, having these example Go implementations of containers as a starting

point may simplify assurance of implementation verification. As previously discussed,

KLEE is a symbolic execution tool, but it focuses on C and C++. Thus, an open

research question forms with the ability of a Go language container to invocate C

and C++ functions, which may allow KLEE to be used for symbolic execution in a

Go container. The successful implementation of KLEE into the development of a Go

container would allow for formal methods to be applied to the implementation of this

software. More details on this approach will be discussed in Chapter 3.

Migrating Go Linux Applications to Android

In July 2014 the first usable “Go Mobile” example (based on a C/Java Native

Interface and logcat) was committed into the main mobile repository for Go. This

suite of tools allows for cross compilation of Go source code to both iOS and Android

devices. The Android versions of the code for Go is compiled to native (usually

Arm-base) machine binaries, which can be executed by the Linux Kernel in Android.

“Go Mobile” offers a means to allow Go development that can easily be ported to

Android, thus if a container was designed with Go it may have the capability to be

ported to the mobile operating system. At this time, however, it is unknown the level

of features and accesses on Android that Go code may execute. On most Android

implementations there are restrictions for the root user and root-level API function

calls. Go has no root-based Linux kernel function restrictions, since an application
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on workstations and servers application would authenticate an application prior to

execution.

The Go Mobile suite of tools allow for Go development in the Android Studio

IDE. With respect to a Go-based coded application for Linux the tool suite “Mobile”

from the experimental go tool chains can be leveraged to allow for cross compilation

of go source code for Android. Due to the complexity of this research only the base

examples included in the Go Mobile code based were tried. The tools allow for code to

be complied into into an Android Package Kit (APK), which can be transferred and

installed on Android. These applications execute similarly to Native Development

Kit that is used to build C-language binaries. Meaning that a user’s Go code can be

built and innovated directly, with message or data passing, as ARM binary file (i.e.,

Go code is built and can be called like a method from a Java-based application), and

the Go code could also be invocated and started without having access to the primary

Android OS features (e.g., intents).

It should be noted that the Go Mobile tools require the NDK to be installed for

Android. This can be done directly from the archived package binaries, or by the

method of the Android SDK Manager. For ease of installation the NDK was installed

with Android Studio, and a path modification for BASH was added for both the bina-

ry folders of Android Studio and the sub-folder for the NDK. Once the development

kits are properly installed and configured the installation of the Go Mobile tools can

be accomplished with the commands of: go getgolang.org/x/mobile/cmd/gomobile

and then gomobile init. At this point a command line environment is established and

configured for Android APK generation. The Go Mobile project includes two main

examples that display simple OpenGL and bind() elements for Android, which can be

modified for use in Go programming implementations. While the core Go library is

functional on Linux there are many instances of API/function calls requiring root for
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proper execution; this is not usually permissible on Android due to the locked-down

nature and permission model. Hence, at this time it is unknown the supportability of

the extended Go library on Android. Additionally, there were attempts at launching

the Go Mobile examples on an unlocked and installed Cyanogenmod ROM of An-

droid, which grants full root-level permissions of an Android device. However, the

Go-based system calls, the Android monkey tool, and the development tool “am”

could not successfully launch function calls at a root level. These attempts included

an integrated version of Rice’s Go container code targeting an SD Card storage de-

vice, but all system calls failed. It is presumed that this was due to the Go containers

needing root permissions, but it the attempts were also unable to print or log any

errors relating to the failed attempts. These attempts are additionally presumed to

fail in due part to the unfamiliarity of leveraging Android permissions along with

the unknown nature of Go code executing within the Android environment. Howev-

er, it should be noted that simple Go applications would execute as expected (e.g.,

computational or database type input/output operations), so to have issues resulting

from low-level permission required activities is not surprising. Thus, if a new means

of userspace containment could be found, or enabled in the Linux kernel, then it is

presumed that a Go container like Rice and Friedman could be implemented.

II.3 Android

Mobile devices (e.g., cellular phones and tablets) are typically not considered to

be a personal computer (i.e., a desktop or laptop) by an average consumer. This is

likely due to the devices having a considerable amount of differing hardware than a

personal computer to miniaturize the devices to allow for portable computing and

cellular phone service. However, a common factor between personal computers and

mobile devices is both types of computers run an operating system. An operating
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system is software that controls and directs the operation of a computer and its

programs [50]. New operating systems have developed over the past few decades to

enable mobile devices as portable computers.

The increasing capability of hardware and batteries gave rise, in 2003, to Android,

Incorporated [51], which sought to develop smarter mobile devices to be more aware of

the owner’s location and preferences [51]. Then in 2005 Google, Inc. bought Android,

Inc., created The Open Handset Alliance in 2007 (focusing on open standards for

mobile phones), and released the first Android Software Development Kit (SDK)

in 2007 as well. Release of the official Android operating system, simply 1.0 [52],

occurred in October 2008 with the near simultaneous release of the operating system’s

source code [53] and the HTC Dream (G1) phone [51]. A continuing theme of Google’s

acquisition and release of Android has been open source code and design, which is

pivotal in the analysis and development of software for devices running the operating

system. In the ten years after the release of the Android SDK the operating system

now has over 2 Billion monthly active devices [2], and in 2017 trends show that

Android, based of web traffic trackers, has taken over the lead from Windows as the

most popular operating system [2].

The Android Security Model

An interesting fact of Android is the central design around the Linux Kernel.

Kernels can be thought of as the brain for an operating system, since kernels direct

the flow and control of internal and external devices and programs. Many security

features on Android relate, or are enabled due, to the Linux kernel. The kernel acts

as a base upon which Android developers have expanded upon to ensure operating

system and subsequently application security. A model of the Android OS can be

seen in Figure 3 showcases the documentation, and most of security is focused at the
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lowest two layers.

Figure 3. The Android Software Stack

This software stack model has not changed much over the duration of Android’s

development, but the implemented security features have been ever evolving over

the past ten years. As new Linux Kernel features are added they are potentially

integrated into Android. Features beyond the Linux kernel appear to come from

the community and core developers of Android that are expanding best practices of

security features. A summary of security features, per major Android Release, can

be found in Appendix B.1.

Android Sandboxing

At the time of this writing there are major shifts planned for Android 8.0 and

beyond. However, the major trend across all of the previously added or planned

improved security features is a continued focus of Kernel-based protections in con-

junction with sandbox containment of application [54]. Android’s main security goal

appears to be to protect the central capabilities of Android’s Linux kernel [55], while

ensuring the applications cannot forcibly interact with other applications nor the

hardware to gain access to the Linux kernel [54]. The configurations and protections
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in place with the kernel allow a focus on making applications run within sandboxed

portions of Android, which prevent the rogue application from harming other applica-

tions, the Android system, or the device itself [55]. Android’s approach to sandboxing,

of both data and code execution, is known as the Android Application Sandbox [56].

A unique feature of Android is the fact it assigns a unique User IDentification (UID)

number to each Android application and runs it as that user in a separate process,

which in turn enables the sandbox to enforce security between applications and the

system at the process level [55]. Again, via Linux kernel features (e.g., user and

group IDs) applications are enforced to a security model extends to native code and

to operating system applications [55]. An interesting note regarding the sandbox

technologies is they provide applications with an expectation of isolation from other

processes on the system which includes root processes and debuggers [57]. Further-

more additional Android best practices include: non-access to data within individual

application data folders (unless via debugging), non-access to memory of applications

(unless via debugging), and devices must not include any application that accesses

data or memory of other applications or processes.

II.4 Existing Security Models and Frameworks

A selection of existing security models and frameworks are leveraged in this re-

search to identify a common set of security properties needed for assurable specifica-

tions. Specifically, the models of the Confidentiality, Integrity, and Availability (CIA)

Triad, The Open Group’s Open Information Security Management Maturity Model

(O-ISM3), the Department of Defense (DoD) Security Requirements as derived from

the National Institute of Standards and Technology Special Publication (NIST SP)

800-53, and an analysis of the Android Application Sandbox’s security features are

leveraged for this research. The combination of these four models have been select-
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ed specifically due to: the general information security practices, commercial usage,

United States security direction, and use on Android. There are many models for

security, but the four selected models appear to have appropriate coverage needed for

general and specific properties needed for a comprehensive security design.

The Confidentiality, Integrity, and Availability Triad

A cornerstone in security design has been the CIA Triad, which is comprised of the

cornerstone information security topics of Confidentiality, Integrity, and Availability.

These three categories are used to describe general requirements of security design,

and also show the interaction of the synergistic and competing areas. For example if a

system was designed to be confidential then there likely are tradeoffs for availability to

a user; such a tradeoff may have a user needing to login and verify access to a system,

but if the user was unable to verify with the system then the availability of system

access is reduced. These three types of categories are used as a general rule, since there

are no specific metrics or measurable means to verify the impact of a system’s design

choices. Many first order CIA solutions act more as labels for security categories

as opposed to implementable security features, but these solutions still drive first

order design choices for a system’s security design. Also, it should be noted that the

category of availability by itself offers no explicit security features, since availability

is normally a measure or a capability of system up time or accessibility. Therefore

the two main topics of the triad under review are confidentiality and integrity.

There are many classes of security features that could be categorized or applied to

the CIA triad. Security features of interest can derived from the the two main triad

topics; for instance, the security features of data protection (confidentiality), data

transmission (confidentiality) and data assurance (integrity) are usually important to

a secure design. Cryptographic means are leveraged to implement these three security
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features (e.g., cryptographic one-way hashes are used to validate data integrity, and

encryption is used to ensure data protection at rest and when transmitted). Yet, it

should be noted that cryptographic solutions are not the only means to implement

confidentiality and integrity. Access controls, for instance, are very common in the

separation of user spaces and data (e.g., separated user name spaces, file system par-

titioning, and user based permission systems), and these could be used to implement

confidentiality and integrity.

Furthermore, the three existing categories can be extended from the triad to ad-

d more security categories. Two security properties that can be extended into the

CIA Triad are Authenticity and Non-repudiation. Respectively, these two properties

typically focus on adding 1) communications and access verifiability, and 2) system

logging and traceability capabilities. Similar to the previously discussed topics, of

confidentiality and integrity, authenticity and non-repudiation are commonly imple-

mented by cryptological means (e.g., users can be validated with passwords and shared

secrets, and when system resources are accessed a data record could be kept to ensure

the proper access is being maintained). These extended categories offer additional

approaches to ensuring a system’s security properties, but again are more applicable

as labeling mechanisms versus true security properties that are implementable.

The high-level abstraction of CIA Triad lacks explicit security features, and focuses

more on the interplay of the categories. Thus, the CIA Triad lends itself to derive

security properties in prototyping or generating specific security features. However,

to generate security requirements and properties for a design more specific models

are needed for concrete examples and definitions of security properties and features.
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The Open Group’s Open Information Security Management Maturity

Model

The Open Group sets information technology standards across 500 member orga-

nizations in order to help standardize emerging requirements, establish policies, share

best practices while integrating and facilitating open source technologies [58]. As such

The Open Group has created a technology neutral, and business requirement driven,

set of standards to help address security for information technology. This standard is

the O-ISM3 and it aims to ensure implemented security processes are consistent with

an organization’s business requirements through the identification of relevant security

controls and processes.

O-ISM3 encourages the formal measurement of effectiveness of each security man-

agement process with the identification of four separate process levels. These levels

are 1) Strategic (broad goals, coordination, and provision of resources), 2) Tactical

(design and implementation of the “Information Security Management Systems” spe-

cific goals, and management of resources), 3) Operational (the means to achieve via

technical processes), and 4) Generic (for general management relating to tracking,

implementation, status, etc.); note: these process levels appear to echo military defi-

nitions, but they are not, in fact, the same. The first three process levels seek to take

a large security concept and hone it down to a specific method that is implementable

for an organization. For example the issue of “privacy” at a Strategic level, could

be separated into data privacy for customers and also data privacy for employees at

a Tactical level. Subsequently, the different approaches to privacy for users and em-

ployees would have different implementations at an Operational level (e.g., encrypted

storage for users, and access controls with separate work spaces for the employees).

A way to think about the O-ISM3 is not in terms of raw properties of security and

the means in which to enable the features, but the way to think about the model is
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how to apply something like the CIA Triad to an organization through the method

that is O-ISM3. The Open Group states that the objectives of the standard are to:

provide an approach for creating Information Security Management Systems (ISMSs)

(for the business’s mission and compliance needs), provide an approach for any size

organization, enable a way to optimize investments into information security, enable

continuous improvement of ISMSs using metrics, and enable metric-driven, verifiable

outsourcing of security processes.

As such, the O-ISM3 has real contributions to information security and security

property design, since it emphasizes that any implemented feature can be measured.

Specifically, the model states that a metric is a measurement that can be interpreted

and investigated by comparing it with a series of previous or equipment measurements,

and by improving such a metric the total process has value added [58]. Furthermore,

the model states that when the metrics are used to improve the consistency of the

process, and if variations occur in the metric, and are identified, then the process

metric improves as well. Such metrics include activity (the ISMS’s inputs and out-

puts), scope (how many of the input types are being used), effectiveness/availability

(comparison of fraction of inputs that produce an output), quality (comparison of the

ISMS to an ideal output), load (the budgeted vs. actual consumption of resources),

and efficiency (the load over time) [58]. The specifics of the metrics are left to the

implementer, but it is recommended that SANS, NIST SP 800-55, and ISO/IEC

27004:2009 should be used to design metrics to support security governance [58].

The main contribution of O-ISM3 is the highly detailed list of 45 Processes that

should be considered in the design and implementation of an ISMS. The breakout

for the respective process categories are: 3 Generic Processes, 4 Strategic Manage-

ment Processes, 12 Tactical Management Processes, and 26 Operational Management

Processes. Table 4 is the list of all main, available O-ISM3 Processes.
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Table 4. O-ISM3 Processes

Process Type Process Subcategory Process Name
Generic Knowledge Management
Generic ISMS and Business Audit
Generic ISM Design and Evolution
Strategic Report to Stakeholders
Strategic Coordination
Strategic Define Division of Duties Rules
Strategic Allocate Resources for Information Security
Tactical Report to Strategic Management
Tactical Manage Allocated Resources
Tactical Define Security Targets & Security Objectives
Tactical Service Level Management
Tactical Security Architecture
Tactical Insurance Management
Tactical Personnel Security Background Checks
Tactical Personnel Security Personnel Security existing employees
Tactical Personnel Security Security Personnel Training
Tactical Personnel Security Disciplinary Process
Tactical Personnel Security Security Awareness
Tactical Information Operations

Operational Report to Tactical Management
Operational Security Procurement
Operational Life Cycle Control Inventory Management
Operational Life Cycle Control IT Managed Domain Change Control
Operational Life Cycle Control IT Managed Domain Patching
Operational Life Cycle Control IT Managed Domain Clearing
Operational Life Cycle Control IT Managed Domain Hardening
Operational Life Cycle Control Software Development Life Cycle Control
Operational Life Cycle Control Security Measures Change Control
Operational Life Cycle Control Segmentation and Filtering Management
Operational Life Cycle Control Malware Protection Management
Operational Access and Environmental Control Access Control
Operational Access and Environmental Control User Registration
Operational Access and Environmental Control Physical Environment Protection Management
Operational Access and Environmental Control Physical Environment Protection Program
Operational Availability Control Back-up Management
Operational Availability Control Operations Continuity Management
Operational Availability Control Enhanced Reliability and Availability Management
Operational Availability Control Archiving Management
Operational Testing and Auditing Internal Technical Audit
Operational Testing and Auditing Incident Emulation
Operational Testing and Auditing Information Quality and Compliance Assessment
Operational Monitoring Alerts Monitoring
Operational Monitoring Internal Events Detection and Analysis
Operational Monitoring External Events Detection and Analysis
Operational Incident Handling Handling of Incidents and Near-incidents
Operational Incident Handling Forensics
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The O-ISM3 states that of 16 fundamental processes should be considered essential

to any initial in a top-down implementation [58], which means only some 35% of

the total primary processes are needed for a minimum security perspective. These

processes can be found in Table 5.

Table 5. Down-selected, Essential O-ISM3 Processes

Process Type Process Subcategory Process Name
Generic Knowledge Management
Generic ISM Design and Evolution
Strategic Report to Stakeholders
Strategic Coordination
Strategic Allocate Resources for Information Security
Tactical Report to Strategic Management
Tactical Manage Allocated Resources
Tactical Define Security Targets & Security Objectives
Tactical Service Level Management

Operational Report to Tactical Management
Operational Life Cycle Control IT Managed Domain Patching
Operational Life Cycle Control Segmentation and Filtering Management
Operational Life Cycle Control Malware Protection Management
Operational Access and Environmental Control Access Control
Operational Availability Control Backup Management
Operational Testing and Auditing Information Quality and Compliance Assessment

Department of Defense Security Requirements as Derived from the

NIST SP 800-53

A different approach to security, from commercial enterprises and entities, is be-

ing led by the United States’ Department of Defense with respect for security system

design and implementation. Classically, the Department of Defense places a great

emphasis on Systems Engineering, which has also had a major focus on protection

and security of the system being designed. Analysis of Department of Defense security

requirements is being considered due to the specific environment of security products

from the outset. Additionally, a majority of the documentation and security design

is openly available due to the extremely documented approach of their acquisitions

processes for contracting purposes. Such documentation provides specific, contractu-
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ally motivated, design and development considerations are leveraged in this body of

research.

Before looking at the specific DoD security requirements, a quick review of the

catalysts and origins of Department of Defense processes are discussed. The first rule

setting body for acquisitions in the United States starts with the Code of Federal Reg-

ulations (CFR), which is an annual codification of the general and permanent rules in

the Federal Register from the executive departments and its respective agencies [59].

Within this code there are 50 titles containing a broad range of activities relating to

regulatable activities, and specifically Title 48 is the Federal Acquisition Regulations

System [60]. The basis for all United States Federal acquisitions and contracting

begins with the Federal Acquisition Regulations Systems (FARS) being Chapter 1 in

Title 48. Subsequently modeled after the FARS is Chapter 2 being the Defense Fed-

eral Acquisition Regulation Supplement (DFARS), which are regulations specific to

military acquisitions for the Department of Defense. Additionally, Chapter 2 is com-

prised of nine sub-chapters (having parts 200-299) and nine appendices, and a specific

sub-chapter of interest to system security properties is subpart 239.71 entitled “Secu-

rity and Privacy for Computer Systems”; the section states it focuses on information

assurance and Privacy Act considerations. Furthermore, the section states that in-

formation security are the measures that protect and defend data entered, processed,

transmitted, stored, retrieved, displayed, or destroyed [61]. According to this portion

of the DFARS, assurance occurs on information systems through ensuring availability,

integrity, authentication, confidentiality, and non-repudiation via protection, detec-

tion, and reaction capabilities [61]. Additionally, compliance with the approach is

directed to the sub-organizations of the Department of Defense through the docu-

ments in Table 6, and it should be noted that in 2013 and 2014 a shift of terminology

occurred in the DoD that moved from Information Assurance to Cybersecurity.
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Table 6. DFARS: Required Implementation Documents for Information Assurance

Document Title
The National Security Act

The Clinger-Cohen Act
National Security Telecommunications and Information Systems Security Policy No. 11

Federal Information Processing Standards
DoD Directive 8500.1, Information Assurance

DoD Instruction 8500.2, Information Assurance Implementation
DoD Directive 8140.01, Cyberspace Workforce Management

DoD Manual 8570.01-M

At first glance the sum total of the regulation aligns the Department of Defense to

leverage the CIA Triad as the base security model for all systems. However, over the

last several years many of the directive documents have be updated or modified from

the focus on “Information Assurance” to that of “Cybersecurity.” This shift is explic-

itly covered in the Department of Defense Instruction 8500.01, which its purpose is to

provide guidance on how to protect and defend Department of Defense information

and information technology. Yet, the most important detail is that a majority of

the 8500.01 is modeled from National Institute of Standards and Technology Special

Publication 800-39 and Committee on National Security Systems Policy 22.

Upon review of both the NIST SP 800-39 and the CNSS Policy 22 it was discovered

that there are yet more driving documents when defining security properties for a

system. The NIST SP 800-39 has listed the publications of 800-37, 800-53, 800-53A,

and 800-30 are the definite series of security standards and guidelines necessary for

managing information security risk [62]. Within this final set of NIST regulating

documents it was discovered that Special Publication 800-53, titled “Recommended

Security Controls for Federal Information Systems and Organizations,” has included

concrete security properties and implementable means for security. Also, the CNSS

Policy 22 led to the discovery of a synergistic document to the 800-53, which is

the CNSS Report 1253 entitled: “Security Categorization and Control Selection for
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National Security Systems and it states it is modeled after the NIST 800-53. The

intensive trail of regulation investigation resulted in two concrete security property

sources for the Department of Defense: the Security Control Baselines in the CNSS

Report 1253 and the Appendices D through F in the NIST SP 800-53. However, only

the NIST SP 800-53 is considered in evaluating security properties, since the CNSS

report states that it is an extension/implementation based upon the NIST SP 800-53.

Yet, as a side note: if a researcher was curious as to see the mapping or overlay of

NIST security Controls to CIA the Appendix D in CNSS Report 1253 includes tables

indicating this information. Ultimately, The Department of Defense is trying to seek

adequate security for its systems, and security is defined as: protective measures

that are commensurate with the consequences and probability of loss, misuse, or

unauthorized access to, or modification of information [63]. The NIST SP 800-53

protective measures have been placed into 18 major categories with a total of 256

controls, which varying across the main categories [64]. A summary of the categories

and their tallied amounts of controls can be seen in Table 7.

As seen with the O-ISM3, not all of the above categories are implementable into

a direct system, since some of the controls are procedural or information-based only

(e.g, Awareness and Training deal with persons using a system, and Program Man-

agement and Risk Assessment deal with the administration of a system). Also, not

all systems need every single security control, and in-fact the minimum/low-impact

baseline recommended by NIST only covers about 45% of the 256 total controls (see

Table 8).

The specifics on how to categorize a system are not included in this research,

but if desired the information can be found in the FIPS Publication 199. Hence, a

generalization of how to categorize a system could be from extending and applying

the definitions of FIPS 199 system loss: 1) a system is low if loss of CIA could
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Table 7. NIST SP 800-53 Control Categories and Tallied Controls

ID Code Category Amount of Controls
AC Access Control 25
AU Audit and Accountability 16
AT Awareness and Training 5
CM Configuration Management 11
CP Contingency Planning 13
IA Identification and Authentication 11
IR Incident Response 10

MA Maintenance 6
MP Media Protection 8
PS Personnel Security 8
PE Physical and Environmental Protection 20
PL Planning 9
PM Program Management 16
RA Risk Assessment 6
CA Security Assessment and Authorization 9
SC System and Communications Protection 44
SI System and Information Integrity 17
SA System and Services Acquisition 22

Table 8. NIST SP 800-53 Minimum Recommended Security Controls

Desired Security Control Level Recommended Controls Coverage Percent
High-Impact Baseline 170 66.41%

Moderate-Impact Baseline 159 62.11%
Low-Impact Baseline 115 44.92%

be expected to have a limited adverse effect on the organization (the organization

is able to perform its primary functions, but the effectiveness of the functions is

noticeably reduced), 2) a system is moderate if loss of CIA could be expected to

have a serious adverse effect on the organization (a significant degradation in mission

capability to an extent and duration that the organization is able to perform its

primary functions, but the effectiveness of the functions is significantly reduced), or

3) system is high if loss of CIA could be expected to have a severe or catastrophic

adverse effect on the organization (a severe degradation in or loss of mission capability
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to an extent and duration that the organization is not able to perform one or more

of its primary functions) [65]. Therefore, with the application of applying minimum

security properties to a container environment, with the absence of administrative

type-controls, can be seen as the of controls in Table 9.

Android Application Sandbox’s Security Features

Finalizing the review of security system properties is a quick overview of Android

Application Sandbox features. This sandbox is applicable to the implementation of

Assured Android Execution Environments, since it appears to provide many desirable

features for a container. Table 10 shows the security properties and features the

Android sandbox currently supports.

Unfortunately, the primary documentation for Android developers, on the Android

source web page, only lists the security features in the previous table. There was no

discovered, detailed analysis for the motivation and designs of the features, nor were

there any formal analysis found on the topic. The specifics for these properties per

major Android release can be seen in Appendix B.1, but the major finding was a

majority of the security features of Android are enabled or enforced by the Linux

Kernel. This information is still useful even with the absence of implementation

specifics, because they still provide the general outline and feature set for Android

security. Thus, with these features rounding out the information the investigation into

potential security properties a final consolidation and mapping of these properties can

occur to help define general security properties.

II.5 Related Research

This section focuses on select research that relates to the overall design and mo-

tivation of this thesis. This previous work helped set the stage of understanding and
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future direction needed for provable security on Android. It should be noted that not

all work is directly referenced or used, but the inclusion of the following research may

be helpful for future researchers with respect to this topic.

Formal Modeling and Reasoning about the Android Security Frame-

work

In 2012 a paper by Armando, et al., was released that reviewed and recommended

a formal model for the Android security framework [66]. The researchers detail the

Android Security Framework, present a formal representation of the framework, and

present a type and effect system [66]. From research relating to formal descriptions

of the Android’s security the paper shows the most detailed modeling and reasoning

for the operating system. This high-level approach strives to describe the features of

Android formally at its different layers across applications and system features [66].

The proposed model was stated to guarantee any possible behavior a platform was to

have at runtime with history expressions (the security-relevant side effects produced

by computations conforming to explicit permissions) [66]. Ultimately, the results were

proposed to be statically analyzable from the model, and the researchers had planned

to verify the security properties in future work [66]. However, as of this writing the

researchers have not released any follow-on work or applications to the Android code

base.

Boxify: Stock Android Application Sandboxing

An extremely relevant paper was published in 2015 by Backes, et al., and it

discusses the means to enable application virtualization and process-based privilege

separation on Android to securely encapsulate untrusted apps in an isolated environ-

ment [67]. The researchers have shown they are avoiding a then common practice of
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application modification, which was used in tools such as Aurasium, I-ARM-Droid,

RetroSkeleton, AppGuard, and DroidForce [67]. The two major motivations for their

approach are the fact that to enable such containment on Android usually involves ex-

tensive modifications to Android and its application framework, and even if the tasks

are accomplished the proposed solutions are rarely adopted by Google or the device

vendors [67]. Thus, to avoid custom Android ROMS (e.g., formerly CyanogenMod

and now Lineage OS) the developers have decided to implement their application

directly on top of the Android Application Framework. The source code is said to

be available by request for academic purposes, and there is a mention of the source

becoming open once a licensing issue was resolved. However, the main page for Boxify

was scraped by Archive.org’s Wayback Machine in December of 2016, and as of a year

later the website still has a forthcoming release of the source code. While seemingly

an ideal candidate and fit for this research there is no concrete support of an open

source license, therefore further research was not completed.

Java-based Implementation Assurance Tools

Going over a single tool, in a single application, is obviously non-inclusive of

all appropriate methods for implementation verification. So far a single tool, and

process, has been showcased for this research, but there were a couple of other tools

that were discovered over this period of research. One of the biggest areas that were

not discussed were the potential usage of Java-based tools and methods. Additionally,

there were other discovered abstract interpreters that were found specific to Android.

Java Abstract Interpreters

It again should be reiterated that Android-based Java, it its resulting bytecode,

are not the same as Oracle Corporation’s Java and bytecode. This implies that
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the application and usage of the same source code results in different outcomes and

likely different means of execution. Nonetheless, giving Java abstract interpreters

a mention lends at least an identification of similar efforts ongoing in the world of

implementation assurance.

Some of the first discovered efforts for assurance in Java execution were seen

in the early 2000s with tools such as Java-MaC [68]. Sadly, over this period there

are few cases of continuous development, and the tools seem to ebb and flow for

popularity and usage. Even with this sporadic development there are at least two

modern approaches to formal assurance on Java with the tools of KeY and Soot.

KeY, or the KeY System, is a formal software tool that has was started in the late

1990s used for the design, implementation, and formal verification for Java [69]. A

main feature of interest is KeY’s Symbolic Execution Debugger, which is an integrated

Eclipse IDE plug-in. This debugger constructs a proof and extracts the symbolic

execution tree from the source code in a fully automatic way [70]. This allows a

Java developer to leverage and utilize a form of abstract interpretation to assure their

design meets the original specification, and if KeY is provided with proof specifications

it can incorporate and validate such logic [70]. At this time there is no indication

that KeY supports Android-based java, but if core features of A2E2 were designed in

non-specific Java code (i.e., only methods and objects that are usable in both Android

and standard Java) then it may be possible to leverage the tool as-is.

Another tool, Soot, may be the most promising candidate for the use of Java-

based implementation analysis. Soot was created as a Java optimization framework,

but overtime the tool has extended to support the analysis, instrumentation, opti-

mization, and visualization of Java (source and bytecode) and Android (bytecode)

applications [71]. The tool has been used for examining permissions, analyzing Dalvik

bytecode, examining call graphs, and even symbolic execution for Android applica-
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tions [72][73][74][75]. This tool seems to be more promising than KeY, since there

is an active community with respect to Android. Time will tell to determine if such

formal methods as abstract interpretation will continue with Soot, but hopefully this

information will help future researchers in this area.

Current Android Interpreters

While there have been attempts at porting Java based capabilities to Android

there also have been efforts to directly develop tools for the Operating System direct-

ly. In 2012 Symdroid is a product of the University of Maryland that was developed

around 2012, and it was designed to be a symbolic executor for Android [76][77]. Un-

fortunately, not much beyond its development and usage for symbolic execution were

discovered since there are no known source code repositories for the tool. However,

it is included to show that such capabilities are in development and by extension of

interest to the formal methods community.

A more promising Android set of tools in development are Android Extension-

s to the Java PathFinder (JPF) tool. Java PathFinder is a NASA tool that

creates a new Java Virtual Machine in which java applications are executed to dis-

cover defects [78]. In recent years there have been efforts to add Android extensions

into JPF, and the most notable extensions are JPF-Android and PathDroid.

JPF-Android is a non-GUI based extension that looks at an application’s logic

with the detection of errors and unwanted behavior [79]. The tool appears to be in

active development, but the specifics of how and what portion of the JPF it leverages

were not determined. Also, the tool PathDroid is another extension of JPF, imple-

ments and emulates the Dalvik bytecode instruction set and virtual machine while

re-using the JPF infrastructure [80]. This tool, based upon the last commits to the

open repository of the code, appears to have stopped development in 2015.
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A survey of Applied Formal Methods with Isabelle

An extremely interesting find was a survey completed by Blanchette and Popes-

cu entitled “Isabelle and Security.” The paper is very short at five pages in length, but

had some forty-one references that detail security proof related work for Isabelle [81].

It was decided to include this work, since its extremely applicable for researchers if

they are looking to potentially use Isabelle as a theorem prover. One of the first

topics and work to be recommended is that of Nipkow and Popescu including a uni-

fied set of security concepts and type systems, which Blanchette and Popescu state

as a simplified set of proofs of correctness [81]. It was discovered by Blanchette and

Popescu that several cryptographic protocols were proven in Isabelle by Paulson

and both shared and public key cryptography means were also proven (by Otway-

REss and Needham-Schroeder respectively) [81]. An already discussed project that

details integrity and data flow enforcement is the work by the seL4 team [81]. Ad-

ditionally, the seL4 team contributed efforts toward access control proofs that can

be found in their l4v verification efforts, and Brucker, et al., worked on the Unified

Policy Framework toward access control [81]. With respect to concurrency assurance

efforts Mantel looked at formal proofs for language-based security, and the efforts of

Nipkow, et al., worked toward applications of multithreading [81]. Unfortunately, no

explicit work was detailed for non-repudiated accounting and journaling, but work

relating to noninterference may be applicable within the works detailed by Blanchette

and Popescu. Blanchette and Popescu provide a source of network security with the

work of Dickmann on network policy verification [81]; also, a non-survey item to be

recommend is that of the Netfilter Iptables Firewall. Finally, with respect to data

and execution flows, as to include information-flows, Mantel created a security driven

input/output framework (i.e., the Modular Assembly Kit for Security) and the tool of

Reliably Secure Software Systems that were formalized with Isabelle. Obviously,
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this select list of tools and features are not totally encompassing of the survey nor of

that of the Isabelle body of work, but these programs may shed insights into the

methods used with Isabelle to assure formal designs.
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Table 9. DFARS: Minimum Security Controls for Safeguarding

Control Type Identifier
Account Management Access Control AC-2
Access Enforcement Access Control AC-3(4)

Information Flow Enforcement Access Control AC-4
Least Privilege Access Control AC-6

Unsuccessful Logon Attempts Access Control AC-7
Session Lock Access Control AC-11(1)

Remote Access Access Control AC-17(2)
Wireless Access Access Control AC-18(1)

Access Control for Mobile Devices Access Control AC-19
Use of External Information Systems Access Control AC-20(1)
Use of External Information Systems Access Control AC-20(2)

Publicly Accessible Content Access Control AC-22
Security Awareness Training Awareness and Training AT-2

Audit Events Audit and Accountability AU-2
Content of Audit Records Audit and Accountability AU-3

Audit Review, Analysis and Reporting Audit and Accountability AU-6(1)
Audit Reduction and Report Generation Audit and Accountability AU-7

Timestamps Audit and Accountability AU-8
Protection of Audit Information Audit and Accountability AU-9

Baseline Configuration Configuration Management CM-2
Configuration Settings Configuration Management CM-6

Least Functionality Configuration Management CM-7
Information System Component Inventory Configuration Management CM-8

Information System Backup Contingency Planning Acquisition CP-9
Identification and Authentication (Organizational Users) Identification and Authentication IA-2

Identifier Management Identification and Authentication IA-4
Authenticator Management Identification and Authentication IA-5(1)
Incident Response Training Incident Response Integrity IR-2

Incident Handling Incident Response Integrity IR-4
Incident Monitoring Incident Response Integrity IR-5
Incident Reporting Incident Response Integrity IR-6

Non-local Maintenance Maintenance MA-4(6)
Maintenance Personnel Maintenance MA-5

Timely Maintenance Media Protection Maintenance MA-6
Media Storage Media Protection MP-5

Media Sanitization & Maintenance Media Protection MP-6
Physical Access Authorizations Physical & Environmental PE-2

Physical Access Control Physical & Environmental PE-3
Access Control for Output Devices Physical & Environmental PE-5

Security Authorization Process Program Management PM-10
Vulnerability Scanning Risk Assessment RA-5

Application Partitioning System and Communication Protection SC-2
Information in Shared Resources System and Communication Protection SC-4

Boundary Protection System and Communication Protection SC-7
Transmission Confidentiality System and Communication Protection SC-8(1)

Cryptographic Protection System and Communication Protection SC-13
Collaborative Computing Devices System and Communication Protection SC-15
Protection of Information at Rest System and Communication Protection SC-28

Flaw Remediation System & Information SI-2
Malicious Code Protection System & Information SI-3

Information System Monitoring System & Information SI-4
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Table 10. A List of Current Features of the Android Application Sandbox

Feature or Security Property
Application isolation of data and code execution from other apps

Robust implementations of security functionality (e.g., cryptography, permissions, and secure IPC)
Compiler-level Memory Management security technologies

An enablable encrypted file system
User-granted permissions for access to system features and user data

Application-defined permissions to control application data on a per-app basis
Secure credential authorizations (e.g., authorization tokens over user names/passwords)
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III. Approach and Methodology

Modern threats and the lack of formally assured applications motivate the devel-

opment of a new and assured container for Android. Isolation techniques can be used

to protect host systems against potential threats. The two scenarios needing isola-

tion were previously discussed in Chapter 2, and are the cases of malicious software

on a trusted device and trusted software on a malicious device. The examination

of Android development documentation indicates a form of malicious software iso-

lation is targeted with the Android Application Sandbox, but the openly available

documentation of its isolation mechanisms does not indicate that they are formally

assured. This chapter discusses the planned methodology to design and implement a

formally assured isolation tool on Android, which is referred to as Assured Android

Execution Environments (A2E2). To propose a methodology for the development of

an A2E2 container, this thesis describes and evaluates a method for selecting security

properties, validating a set of properties defined in a specification, and evaluating

existing technologies as verification avenues of a specification implementation.

III.1 Assured Android Execution Environments: Definition and Goals

The phrase “Assured Android Execution Environments” refers to a notional suite

of security tools and applications that have been assured with validation and verifica-

tion with formal methods to provide an Android execution space exhibiting specific

security properties proposed herein. No specific tool or product is uniquely defined as

A2E2. Rather A2E2 it is an umbrella term that covers any product having a validat-

ed specification and verified implementation for Android containment. This research

results as a case study involving the development of a single container product to

inform the general process and tools needed for A2E2.
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One goal for A2E2 is the identification and adoption of an appropriate formal

methods approach given the lack of a de facto standard. This method allows future

A2E2 efforts to proceed in a standardized manner similar to a standard life cycle mod-

el for software (e.g., waterfall, agile, and/or spiral software development). Following

a life cycle process identifies two additional goals for this research: (1) security prop-

erties used for A2E2 requirement definition that can be assured with formal methods,

and (2) identification of applicable formal methods tools for specification validation

and implementation verification. Furthermore, A2E2 efforts are not aimed at devel-

oping new formal method tools. Rather they leverage existing automated tools to

enable rapid specification validation and implementation verification. These goals

provide the starting vector in the approach to create realizable A2E2 products and

methods.

III.2 Determining Methods to Achieve A2E2

Two main areas of research were initially identified when determining distinctive

and practical for an A2E2 container. As previously stated there are no known list of

proven security properties, so A2E2 needed to identify a set of security properties that

could be leveraged in requirement definitions used in a specification (i.e., properties

that can be validated in a specification and verified in an implementation). Once the

set of security properties are established then a specification could be created which

would be implemented in programming language.

However, a standardized approach in the application of using formal methods with

traditional software development techniques was not identified in initial research for

this topic. It was also identified that each security property within the specification

would need individual assurance (i.e., if access control of encrypted data was a require-

ment, then both the access control and encryption would need specification validation
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and implementation verification). This process of assurance led to the identification

of a new formal approach: the Formal Verification Cycle. The Formal Verification

Cycle allows for assurance to be broken into two main stages: (1) validation of a

specification that incorporates desired security properties and (2) verification of an

implementation of the validated specification. The following sections detail an ap-

proach to identifying security properties, discussion of the two main steps for realizing

a software specification and implementation (i.e., leveraging the Formal Verification

Cycle), and the proposed three-stage approach used in this research.

Identifying Security Properties

The first step in achieving a software specification is evaluating, identifying, and

defining system requirements. This is also true when seeking an Android container

with desired set of security properties. A broad set of security properties will need to

be found to begin a process of determining specific and applicable security properties.

Those properties that can be assured, through formal methods, would be then form

a set of general A2E2 security properties. Having an established and assured set

of properties allows for future designs and the current design of a container to be

a subset of properties needed to achieve the larger design security goals. However,

there is not a widely accepted standard for defining what is or isn’t an acceptable set

of security properties in general terms or in specific terms for a software container.

Thus, this research will need to determine a set of acceptable security properties and

time permitting assure each property.

Standardizing A Formal Approach: the Formal Verification Cycle

As shown in Chapter 2 various methods and products fall within the class of formal

method approaches. This previous work has inspired a way to standardize the method

50



of approaching formal assurance, which is needed due to the lack of a widely accepted

formal method approach/standard. Most individuals and organizations leveraging

formal methods employ a single set of tools and an approach for assurance, but these

approaches are commonly too specific for general development reuse.

Although some approaches to formal assurance can be replicated or duplicated

for new designs, many instances of the techniques are specific to a particular imple-

mentation. This research demonstrates a new formal process based on work by the

seL4 team be developed that aimed at leveraging existing tools. The team’s process

is modeled as the subprocesses of:

• Individual security property selection

• Security property theory validation to be captured in a specification

• Implementation of the design as source code and verification of the original

specification

This process can be viewed as a three element cycle:

• Validation of the theoretical property (i.e., proving the theory)

• A validated system specification

• Use of the design specification to implement and verify a final software imple-

mentation (i.e., proving the implementation)

This three element approach is referred to hereafter as the “Formal Verification

Cycle.”

The first element of the cycle is broken out as the Theory wedge in Figure 4, and

it consists of the steps of defining system properties that are later used with theorem

proving tools to verify the design. The successful application of a formal method
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Figure 4. The Formal Verification Cycle

(e.g., a proof assistant) results in validation of a selected security property. There is

no product that is generated when successfully completing this process of validation

(i.e., using a formal method like a proof assistant will show the theory as being true or

false), but the validated property is now considered to be captured in a specification.

Hence, the Design wedge in Figure 4 is a breakpoint for applied methods an tools in

the Formal Verification Cycle, since a specification must have successful validation of

a property being correct before an implementation is attempted.

Once the property has been validated, then second half of the Formal Verification

Cycle would continue from the Usage wedge. The use of the validated specification

allows for its implementation in a programming language of choice. Ideally a pro-

gramming language should be selected that has a wide range of formal methods tool

support.

Some programming languages have little to no support, which should drive imple-

mentation language decisions if ignoring other design or motivating factors. However,
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there might be external factors that drive a language selection (e.g., some languages

might be chosen for existing work, targeted device supportability, supported tool

chains, etc. that supersede the lack of formal verification tools), and if such the case

were to occur new tools must be developed or modified to achieve implementation

verification.

After language selection and an implementing of the specification are completed,

then the resulting source code (or in some cases a form of the binary construction) can

be verified with a formal method (e.g., models or abstract interpreters) to show the

original security properties hold. Once a property has been successfully implemented,

then all other properties could follow this cycle until all system requirements and

security properties are implemented. Ultimately, this cycle illustrates how to verify

an implementation of security properties built from the validated specification of

the system. Many different tools and programming languages can be used, and this

research does not propose the specific tools. However, future research may recommend

tools based on best practices and ease of use.

The Formal Verification Cycle Identifies Three Distinct Issues

A specific approach is needed to define the methods, establish validity, and deter-

mine both applicable and non-applicable tools for use of A2E2 products. As previous-

ly mentioned the approach will start with the identification and selection of security

properties that can meet the requirements of desired security features. Yet, an im-

portant discovery from using the Formal Verification Cycle is the establishment of

two stages: security property theory validation with theorem proving, and implemen-

tation verification with model checking or abstract interpretation. This showed that

A2E2 could be approached in three main stages to support the end task of imple-

menting a container. The following section looks at each of these stages, and defines
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the approach in validation and implementation of an A2E2 container specification.

III.3 A2E2’s Three-Stage Approach

As previously discussed, the approach of an A2E2 container design is in three ma-

jor stages. The first stage identifies appropriate security property requirements, from

an analysis of existing security frameworks and models, to propose a set of A2E2

security properties. The second stage focuses on a methods of validating security

properties, with a theorem proving tool, to allow the creation of a validated specifica-

tion. Lastly, the third stage evaluates a method of verifying software implementation

with a symbolic execution tool (i.e., an abstract interpretation tool that leverages

symbolic execution). The following sections detail the approaches for each of the

three stages, and the resulting findings for each approach is detailed in Chapter 5.

Defining System Security Properties

To design and assure proper security properties for an A2E2 container a set of

larger security features must be defined. The surveyed models represent best practices

produced by subject matter expert committees and groups over time and are assumed

here to have real world significance. Specifically, four models were surveyed, having

various levels of implementation (i.e., conceptual design versus practical software

implementation), and these were analyzed to create a final set of security properties.

The four models were not developed using with formal methods, but will act as

the baseline for assurable security properties (i.e., properties that can be validated

with a formal method). A consolidation will occur of the properties identified in the

models to obtain a subset consisting of the properties potentially relevant to A2E2.

After assurance of the properties then these are assumed to be valid for all subsequent

A2E2 designs.
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The security properties consolidated from the four models facilitate the definition

of A2E2 System Security Properties. This process starts with the models discussed

in Chapter 2, and mapping of the models’ security properties to a single set for

A2E2 (i.e., a non-duplicated set of properties will be defined if the four models show

overlapping properties). This mapping starts at a general class of security prop-

erties , and applicable properties are selected based on the ability of the property

to be implemented as source code (i.e., invalid and non-included security properties

are commonly processes, activities, or in-person actions). Upon completion of the

mapping activities a final set of security properties, for use across the class of A2E2

products, are recommended as a final of container security properties.

Security Property Validation

Once the selected set of security properties are chosen, then security property

validation can be performed. It was decided that theorem proving would be leveraged

to achieve property validation. As discussed in Chapter 2, the seL4 team leveraged

Haskell (and proposed the tool of Haskabelle) to prototype and assure security

properties. The tool of Haskabelle was selected to achieve the goal of tool reuse.

The research aims to identify the method to setup, use, implement, and validate a

Haskell-coded prototype. After the creation of a development environment, a simple

use case of using Haskabelle showed a conversion of Haskell to Isar proof script.

Proving the Isar script was accomplished with the Isabelle theorem proving tool. The

tool and the process was selected since it includes a version of Haskabelle and the

theorem proving tools needed for theory assurance of Isar script.
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Implementation Verification

The final stage in this research is the verification of a programing language im-

plementation. At this stage the proverbial rubber means the road, since the focus is

real-world source code development that generates a usable software product. At the

outset of the research it was unknown if any security property would be determined to

be assured with theorem proving or with Haskabelle. The complexity of container

development, lack of a final assured design, and unknown state of verification of the

design theory prohibits a real-world solution for this research.

However, an approach was created that was independent of the theorem proving

approach to showcase methods that are integrated into the workflow of a future

A2E2 solution. It was determined that the Go language would be used based on the

modeling of Docker, existing Go language developments (e.g., example containers, go

mobile, and gollvm), and the symbolic execution tool KLEE.

Over the period of this research there was no identification of any formal method

tools for the Go language. However, new advances in the generation of Golang source

code and the tool “gollvm” showed that LLVM-IR could be generated from Go code.

Thus, the intention of the research focused on method or modifications needed to show

how KLEE could be integrated to evaluate Go-based LLVM-IR. If such a process was

created, then it allows for the verification of a Go implemented container based on

the existing example.

This research focused on first getting the Linux-based Go containers to compile

(i.e., it was assumed if the container work on Linux then the gomobile tool could

have a modified version built for Android). The second part focused on creating a

KLEE development environment and showing an example implementation could be

symbolically executed. Lastly, the final design of implementation verification focused

on using KLEE to symbolic the Linux-based Go container implementation.
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III.4 Assumptions and Limitations

When applying a mathematical model to a set of semantic actions there is a

set of caveats and assumptions that are made. Due to the nature of logic proving,

and mathematical representations thereof, there are issues that relate to how refined

a representation can be. Additionally, when trying to prove security-related topics

there needs to be a “build-up” approach (i.e., the smallest, most refined, unit is

proven to be valid, and is proven up to less refined abstractions, which ultimately

shows the whole approach is valid). This may not always be possible, and likely it is

the case that a design is only be partially or specifically proven. This section seeks

to highlight some of the relating issues for caveats and assumption of Android with

respect to planned approach for A2E2.

Assumptions in A2E2

There are practical limits in the computation and verifiability for software prod-

ucts. Since A2E2 products are constructed as software, then they too inherit these

limitations of computability. Therefore, all A2E2 proofs and approaches are bound-

ed by the best practices or limitations of the respective tools used in design and

implementation. Specific issues, if they arise, are annotated with respect to their

identification within the results and conclusions portions of this research.

Additionally, a step toward realizable A2E2 instances is avoiding the re-validation

or re-proving of results found in existing research. For example: if a tool or model

exists, such as formal verification of the construction and execution of source code,

then this research accepts the current issues and limitations for the defined tools and

methods. It has been deemed out of scope to re-work efforts of existing products and

tools, because this research shall assume existing approaches are valid to help ensure

new forms of assurance. Additionally, existing tools integration or modification shall
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be considered valid if using such a tool as a module or if the tool is invoked to perform

an analysis (i.e., the proof to assure and validate new tools or integrations thereof

exceeds available resources of time and effort). If there are questionable issues in the

quality or capabilities for chosen tools or methods, then these also are indicated in

the results and conclusions section of this thesis.

Limitations in A2E2

One concern with formal verification is as it relates to “a formal supply chain.”

Ideally, total product assurance can only be realized when all portions of the system

are formally assured with validation and verification via formal methods. This is

not possible on Android, currently, since the hardware, operating system, nor its

development tools are publicly formally assured. Knowing these facts, a truly formal

solution cannot be presented in this research, since only a portion of the “formal

supply chain” is being investigated. However, this research is looking to advance

the general direction and topic of formal methods/formal assurance to enhance the

security posture on Android.

Another major consideration for the research is the fact that assurance on An-

droid is being approached as a high-level topic as opposed to specific implementation

details with respect to the Android API and Framework. Given the complexity, im-

matureness, and magnitude of this work, the focus of the research is looking at broad

classes of issues for assurance on Android. Thus, any proposed solutions are unable

to delve into Android implementation specifics (e.g., coding API or compiler levels

of issues). For instance: there are specific implementations in Android for encryp-

tion, but this research is not currently looking at the validity or assurance of this

encryption as valid or not. At this point in A2E2 research, the focus is to enable and

validate encryption as a security property, which is different than arguing the merits
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of Android’s implementation of one standard versus another.

III.5 Expected Outcomes

At the outset of this research it was idealized that a singular and usable Assured

Android container be developed or prototyped. Yet, with cursory research it was

shown that this idealized state is impossible to be met for various reasons (e.g., ex-

tensive work for a single researcher, untested tools, lack of knowledge for functional

programming verification, ). The first and most important outcome for this research

is a list of general security properties for the design and implementation of a secure

design. Due to the lack of standards and accepted practices there is a need for a set of

discovered or consensus-based security properties. This set of properties may be used

in down-selections to pick specific and applicable A2E2 security properties. The find-

ings from the security properties identification would then allow for the determination

of tools and techniques of relating to both the proving of the formal specification and

implementation. It is noted that there is no predicable amount of tools, techniques,

or methods that are applicable to A2E2 work, so only the results to the analyzed and

leveraged tool will be included.
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IV. Results and Findings

The results and conclusions of the research herein directly relate to the outlined

approach in Chapter 3. This three stage approach deals with: A2E2 security prop-

erties identification, validating security properties in a specification, and verifying a

software implementation. The specific reference materials and stage-related content

can be found in Chapters 2 and 3 respectively.

IV.1 Identified A2E2 Security Properties

A standardized set of security properties can be created from an evaluation of

existing models and frameworks as discussed in Chapter 2. A key action is the

consolidation of similar and overlapping properties that exist between the models

and standards. These consolidated properties are proposed as the standard for A2E2

security properties.

Mapping Security Properties to a Single Model or Framework

Native and validated security properties are being identified for A2E2 to help sim-

plify future assurance in software products. Each of the four models discussed in

Chapter 2 are evaluated to support a consolidated list of native properties for A2E2,

and the final identified set will be the result of consolidating the properties that may

be validated. Validation of the properties is not executed at this stage, but a focus

is given to the possibility of each property being implementable or not; for instance,

it is important to have confidentiality from the CIA Triad, but confidentiality is not

implementable where as cryptography is implementable and would achieve such a

goal as confidentiality. Each framework will be reviewed for non-captured properties

that will be appended to extend and create a final mapping of the four framework-
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s to a single set of security properties for A2E2. References for the contents and

background of each framework were discussed in Chapter 2, thus only the minimal

security requirements for each framework shall be considered for evaluation, and the

analysis will start from the most general to most specific frameworks.

Selection and Incorporation of CIA Triad Properties

Generic security properties and themes are presented with the CIA Triad even

with the extra features of authenticity and non-repudiation. On closer inspection the

most enabling technology for CIA capabilities is cryptography, and it allows for the

themes of Confidentiality and Integrity to be implemented. Nearly all security features

could have a form of General Cryptography, thus it is the first security property to

be considered for A2E2. No explicit details within CIA detail this general need for

base mathematical capabilities, but it becomes apparent the impact cryptography

has when looking at the technologies of one-way hash generation, one-time-pads, and

cryptographic keys (both asymmetric and symmetric) and their use with ciphers.

As such, core functions of cryptography enable larger security applications to be

generated (e.g., key generation, encryption, decryption), and general cryptography

stands as the base for many security functions and technologies.

Given the baseline of cryptography, the next focus in CIA examination looks to

more specifics of the confidentiality of system data. It was observed that two main

mechanisms that allow confidentiality to be achieved are data protection and access

control. Very few security specification or designs could be proposed if they did not

include mechanisms for data protection Elements and activities relating to protecting

data are considered to be those that cannot be subverted or understood when the

data is accessed (e.g., encryption protects data with mathematical operations that

greatly increase the complexity and computation needed to interpret the protected
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data). Yet, encryption can also be thought of as a form of access control, since

the only means of accessing encrypted information is with secret knowledge (e.g.,

a key) from a knowledgeable party (i.e., a person is granted permission and access

to encrypted data only by being informed of the protected secret/means). Other,

non-encryption, based mechanism exist for both data protection and access controls.

Use of “whitelisted” security mechanisms provide authorized agents, or users, that

are allowed access to non-encrypted data once validated. User namespaces and file

system partitioning enable authorization of data access as other examples of access

controls. Protection of data can be considered as a subset to access control properties,

but both are considered as individual A2E2 security properties given the wide range

of capabilities, methods, and protection mechanisms that exist for each category.

Integrity was the third property examined for security property identification for

this research. Data integrity usually means that a specific set of data can be validated

against a previous context (e.g., a one-way hash provides a fingerprint of sorts), and

integrity implies that a given set of data is not changed while in rest or when trans-

mitted. Like data protection the techniques of data integrity usually are implemented

with general or base cryptographic methods. Yet, unlike data protection and access

controls there are not guarantees regarding the privacy or access of other parties to

the contents (i.e., integrity shows that data is not manipulated, and does not ensure

access or protection mechanisms are circumvented).

The final included property for A2E2 inclusion was non-repudiated accounting.

Specific capabilities of interest are for system logging and tracing capabilities (e.g.,

system logs). In modern computing it is critical to maintain and keep records of activ-

ities that occur on computing systems. More importantly is the ability to validate and

ensure that records cannot be modified or falsified after occurring. Interesting devel-

opments in cryptocurrencies and block-chains show that such a ledger and journaling
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system can be applied in a wide range of applications, and as such their applicability

to security are being explored to this day. An extension of such non-repudiation tech-

nologies could be a record and journaling of system resources and data as to support

access control, data protection, and even data integrity applications.

There were two categories of the triad model that were not included for consid-

eration of A2E2 security properties. The two properties that were not included were

availability and authenticity. Availability was excluded for security properties, be-

cause the topic deals with the access to data and if at a given time such data can

be accessed or not. There are no new security related concerns, since activities could

be controlled or managed with access control mechanisms. It should be noted that

if new security features are enabled with availability, then future iterations of A2E2

should re-evaluate its inclusion.

The second, non-included category of authenticity appears to largely focus on

verification when used in higher level protocols or security applications. It is be-

ing argued that measures of authenticity are a mix between General Cryptography

and Data Integrity implementations. For instance the act of authentication is some

combination of validating a secret piece of information (e.g., a password that is then

hashed) or ensuring that a set of data meets an original parameter (e.g., a signed

message can be authenticated as a set of data that was configured or created with

a mix of data integrity and data protection means). It is likely that a security im-

plementation achieves authenticity goals via security properties previously discussed

(i.e., access control, data protection, or data integrity), thus the explicit property of

authentication is not used for A2E2.

At this point the initial A2E2 security properties from the CIA Triad categories

can be seen in Table 11.
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Table 11. The Initial Set of A2E2 Security Properties

CIA Triad-based Security Properties
General Cryptography

Access Control
Data Protection through Cryptographic Means
Data Integrity through Cryptographic Means

Non-repudiated Accounting

Selection and Incorporation of O-ISM3 Security Properties

O-ISM3 has core and recommended security processes that are collected in Table 5,

but not all of these processes are realizable to be implemented in software. Effectively,

8 of the 16 essential processes can be removed since they are activities of organizational

operations as opposed to implementable software capabilities (i.e., the operational

processes that deal with the management of business activities cannot not be realized

in a coded implementation). With the absence of administrative type-controls, the

nine applicable set of security processes are available in Table 12.

Table 12. The Nine Essential O-ISM3 Processes

Process Type Process Subcategory Process Name
Generic ISM Design and Evolution
Tactical Define Security Targets & Security Objectives
Tactical Service Level Management

Operational Life Cycle Control IT Managed Domain Patching
Operational Life Cycle Control Segmentation and Filtering Management
Operational Life Cycle Control Malware Protection Management
Operational Access and Environmental Control Access Control
Operational Availability Control Backup Management
Operational Testing and Auditing Information Quality and Compliance Assessment

The O-ISM3 provides no specific consensus of what is or isn’t a secure system de-

sign, since the document mainly deals with the general ideas, concepts, and execution

of security management. The model itself states there is “No One Solution Fits All”

and every organization has a unique context and constraints. This implies that the

O-ISM3 is used mainly for decision-making processes relating to security postures.

Yet, this model prevails over the CIA Triad since it provides concrete security-related
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topics, and the O-ISM3 provides examples that have an emphasis on measurability

of success via metrics. A set of themes of security features for the O-ISM3 was ob-

served: access control and journaling of a system can be used to ensure the integrity

of a specified design.

The first stage in identifying new security features focused on removal of duplica-

tion of topics. For instance the topic of access control was previously discussed with

the CIA Triad.

Upon closer examination the processes of Segmentation and Filtering Management

can be considered to as a topic of data integrity, since the description of the process

details similar goals that are achieved in the property of data integrity. The four

processes of (1) Define Security Targets & Security Objectives, (2) ISM Design and

Evolution, (3) Service Level Management, and (4) Backup Management were also

determined to fit within the existing A2E2 security properties. Specifically, the four

process are looking at data integrity, since they are trying to ensure that a given choice

of a process implementation meets an original target or design for a system/company.

The removal of the overlapping process provides three remaining processes: (1)

IT Managed Domain Patching, (2) Malware Protection Management, and (3) Infor-

mation Quality and Compliance Assessment. These bring a slight paradigm shift to

the properties for A2E2, since these three processes attempt to accurately record and

track known states with varying levels of information. The examination of each of

these processes brings a slight modification of non-repudiated accounting is proposed:

an addition of journaling. The terminology of accounting and journaling are very sim-

ilar, but one main difference can be interpreted as active versus passive activities. In

the case of journaling it should be considered as a passive, or background activity

(e.g., logging), since it could be greatly desirable to have information of previous

states or conditions to be recorded. However, the active components of accounting
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are the checks or analysis that would occur whether initiated automatically or man-

ually. Therefore, the three processes show that there could be the case of passive

tracking for a security system that may switch to an active accounting, but in both

cases it is critical to ensure that both versions of record keeping ensure the property

of non-repudiation. This analysis of the O-ISM3 now provides A2E2 Table 13 with

the new set of proposed security.

Table 13. The O-ISM3 Amended Set of A2E2 Security Properties

CIA Triad-based Security Properties
General Cryptography

Access Control
Data Protection through Cryptographic Means
Data Integrity through Cryptographic Means

Non-repudiated Accounting & Journaling

Selection and Incorporation of DoD-based Properties

Not all of the minimum DoD-based controls are applicable to A2E2 security prop-

erties in a similar manner seen in the analysis of O-ISM3 processes. However, given

the extensive and detailed list of controls in Table 9 an essay type analysis, as was

completed with the O-ISM3, was not be accomplished. In place of an essay-style

analysis the final set of the controls applicable to A2E2, with non-implementable

controls removed from consideration, were generated by mapping the DFARS con-

trols to an A2E2 security property. All mapped properties, mapped to A2E2 or

non-implementable properties, can be seen Tables 14 and 15. The remaining, non-

mapped controls are discussed for their merits of potential inclusion into A2E2’s

security properties in the following sections.

Four controls were found not to fit any of the existing categories based on the

analysis of the CIA Triad and the O-ISM3.

The controls can be seen in Table 14 and are: (1) Information Flow Enforcement,
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Table 14. Mapping DFARS Controls to Current A2E2 Properties

Control Assigned Property
Account Management Access Control
Access Enforcement Access Control

Information Flow Enforcement NONE
Least Privilege Access Control

Unsuccessful Logon Attempts Accounting & Journaling
Session Lock Access Control

Remote Access Access Control
Wireless Access Access Control

Access Control for Mobile Devices Access Control
Use of External Information Systems - AC-20(1) NONE
Use of External Information Systems - AC-20(2) NONE

Publicly Accessible Content NONE
Security Awareness Training Non-implementable

Audit Events Accounting & Journaling
Content of Audit Records Non-implementable

Audit Review, Analysis and Reporting Non-implementable
Audit Reduction and Report Generation Non-implementable

Timestamps Accounting & Journaling
Protection of Audit Information Data Integrity

Baseline Configuration Accounting & Journaling
Configuration Settings Accounting & Journaling

Least Functionality Access Control
Information System Component Inventory Non-implementable

Information System Backup Data Integrity
Identification and Authentication (Organizational Users) Access Control

Identifier Management Access Control

(2) Use of External Information Systems - AC-20(1), (3) Use of External Informa-

tion Systems - AC-20(2), and (4) Publicly Accessible Content. These controls can

be divided up into two new A2E2 security properties, and the analysis is currently

presented.

The first DFARS-based control of Information Flow Enforcement brings awareness

of the ideas of data and execution flows at a program and system level, since there

could be concerns with how data is being moved and how a process is executing

within a system. For instance a Trojan obfuscates its malicious operations as benign
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Table 15. Mapping DFARS Controls to Current A2E2 Properties (cont.)

Control Assigned Property
Authenticator Management Access Control
Incident Response Training Non-implementable

Incident Handling Non-implementable
Incident Monitoring Accounting & Journaling
Incident Reporting Non-implementable

Non-local Maintenance Non-implementable
Maintenance Personnel Non-implementable

Timely Maintenance Media Protection Non-implementable
Media Storage Non-implementable

Media Sanitization & Maintenance Data Protection
Physical Access Authorizations Access Control

Physical Access Control Access Control
Access Control for Output Devices Access Control

Security Authorization Process Access Control
Vulnerability Scanning Accounting & Journaling

Application Partitioning Access Control
Information in Shared Resources Access Control

Boundary Protection Access Control
Transmission Confidentiality General Cryptography

Cryptographic Protection General Cryptography
Collaborative Computing Devices Non-implementable
Protection of Information at Rest Data Protection

Flaw Remediation Data Integrity
Malicious Code Protection Access Control

Information System Monitoring Accounting & Journaling

activities, but an execution flow control could possible prohibit or prevent such actions

to occur. Additionally, if data is being moved, located, or even being transmitted in a

certain fashion this could lead to data leakage or spillage that would not normally be

covered by access controls. Therefore a new security property of Data and Execution

Flows is proposed as to help mitigate malicious activities and enforce a means of

controlling and enforcing both activities.

The next security property being proposed deals with the conditions of external

versus internal security conditions. Effectively, the controls of Use of External In-
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formation Systems and Publicly Accessible Content showcase a special case of access

controls that deal with issues external to a system. In essence, a security concern may

stem from interactions external to the designed system and such input and output

would need to be developed and designed in a different manner than fully realizable,

and internal, solutions. An example external communications could that of Appli-

cation Programming Interfaces, networking protocols and communications, and even

concurrent or shared memory for a design. In these cases special care may need to be

given that extend beyond capabilities of data protection, data integrity, or access con-

trols (e.g., a web server or web service is usually designed to be open and accessible,

which seems the opposite of security). Likely the use of current A2E2 properties are

leveraged to implement and build up to a specific design, but given the complexity

and special nature of external impacts (i.e., effects that are out of control of a current

design) a new category is proposed.

The consolidated set of proposed A2E2 security properties are seen in Table 16.

Table 16. The DoD Amended Set of A2E2 Security Properties

DoD-based Security Properties
General Cryptography

Access Control
Data Protection through Cryptographic Means
Data Integrity through Cryptographic Means

Non-repudiated Accounting & Journaling
Data and Execution Flows

External Communications Security

Selection and Incorporation of Android Properties

The easiest selections of properties to evaluate for A2E2 are those that already ex-

ist in Android. To reiterate from Chapter 2, the Android Application Sandbox has the

following features: data management (internal, external, or content providers), per-

mission configuration for device assets (e.g., the camera), permissions for networking,
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input validation, cryptography, inter-process communication (network sockets, shared

files, intents, binders, or messenger), dynamically code loading, and Dalvik virtual

machine settings. However, at this point the security of the Android Sandbox does

not provide any new category of A2E2 security properties, because each of the securi-

ty features could map to at least one existing category. This does not imply that the

current list of A2E2 properties are fully encompassing or completed, but it perhaps

showcases how the analysis of several models can help identify core properties that

can be leveraged across multiple designs.

The Proposed Security Properties for A2E2

Given the research into security properties from the previous models and system,

and seeking the establishment of system design requirements, this research proposes

the following categories of security properties for system design: General Cryptogra-

phy, Access Control, Data Protection through Cryptographic Means, Data Integrity

through Cryptographic Means, Non-repudiated Accounting & Journaling, Data and

Execution Flows, and External Communications Security. These are in fact the final

properties as proposed in Table 16. As oft mentioned, this list does not preclude

the addition of new properties, so perhaps a most accurate description is this set of

security properties being the version of a continually updated and analyzed frame-

work. The intention for this design is to combine and consolidated like properties as

to enable full system security, since it should be noted that these properties could

be extended and be applied beyond the usage of assured application isolation. This

can be important when approaching a design problem from the perspective of a the

Formal Verification Cycle. Having examined several different approaches to secu-

rity properties and controls, this final and consolidated distillation forms the basis

for A2E2 security. Hopefully, this encourages and enable resource of proven security
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properties; such a practice could be thought of as Proof Designs Once, Implement

Everywhere (...which also needs assurance via proof).

Recommended Security Properties for an A2E2 Container

The final consideration for security property design and requirements is given to

the implementation of an A2E2 container with the newly defined security proper-

ties. At this time the properties are a recommended best practice, since no explicit

property was defined and formally verified (i.e., these properties would need explicit

implementations and verification to become a known and assured security method).

An issue discovered by this research is the “chicken and egg” type problem, since

the desired security properties must be defined and proven but at the outset of the

research no known tools or techniques were known to verify such security properties.

Assuming that the development of an A2E2 container were to be completed, then the

proposed security properties would also become validated and assured. As it stands

not all properties proposed for A2E2 are needed to implement a Android contain-

er, but the point is conceded that each property could be applicable to a container.

Thus, in terms of this research an A2E2 container is being sought that isolates the

partitioned file directory and execution of processes in a single environment, so to

help drive and define the research for the methods identification for theory and im-

plementation assurance. In this case the security properties of A2E2 that would likely

need implementation are: General Cryptography, Access Control, and Data Integrity.

Simply: the first generation container should be able to isolate its process execution

in a container, which is able to be saved in a state that is able to be paused, stopped,

or resumed. This first generation container is similar to Chroot, since applications

would run within their own space on an Android device, and any enhanced features

(e.g., communication control with Android and other containers, activity monitor-
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ing and logging, encrypted containers and asymmetric key infrastructures) is left for

future research.

IV.2 Specification Assurance Findings

This section describes an applied approach to formal validation of security proper-

ty when prototyped with a functional programming language. The goal of validation

was attempted with Haskabelle and Isabelle. This section highlights establish-

ing a validation environment, prototyping an example Haskell program, conversion

to Isar for Isabelle with the Haskabelle tool, and an execution of the proof

assistant to show the validity of the converted prototype.

Establishing a Validation Environment

Using the seL4 Development Environment with Docker

The first step in specification validation focused on the creation of a stable valida-

tion environment. The seL4 team published and made freely available a Docker-based

assurance and proving environment, which was discussed in Chapter 2. Instructions

provided on the team’s development blog were leveraged on a new installation of

Ubuntu 17.04. The directions were straight forward, and it was verified that the stat-

ed system requirements (e.g., RAM and storage space) were the minimum required

requirements that allow successful configuration and execution of the environment

(i.e., provided system resources under the recommended amount crashed when exe-

cuting Isabelle proofs). No further instructions or use of this environment was ana-

lyzed once the main seL4 Isabelle proofs successfully executed (i.e., the environment

is offered to re-validate or extend the work of seL4, but this line of research and

usage was not needed for A2E2). This provisioning effort was captured in a BASH

script called “cl4c” (or “CLACK”), which automates the blog instructions to setup
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the Docker-based environment.

Having the environment installed, and the cl4c provisioning script available, it was

determined that this environment will be used for Haskell to Isabelle validation effort-

s. However, this development environment was deemed to be too over-featured (i.e.,

the environment includes all needed tools for seL4 development from source code),

and did not directly support deployment on Android. Specifically, the environment

lacks needed tools for Android implementations (e.g., Java or Bionic-C based imple-

mentations). Thus, a simpler means to provision and deploy an Isabelle environment

for A2E2) was identified.

Isabelle 2017 and Docker

It was decided to discover a solitary environment for Isabelle given the complex

system requirements and non-needed features in the seL4 environment. A proving and

validation environment featuring Isabelle within a Docker container was found. A

Dockerfile (i.e., a Docker provisioning and configuration script) was found on Docker

Hub, which is a freely hosted website with a collection of Docker scripts and containers

by Docker Inc. The Dockerfile runs on a computer with Docker installed, but it was

identified that this Dockerfile needs a pre-downloaded copy of the 2017 edition of

Isabelle. This copy of the tool is located on the main Isabelle website as a

single archive. Once the Dockerfile and the Isabelle archive are contained in the

same directory, then the Docker container can be built and automatically provisioned

with following command: ‘docker build .’.

After the Docker container is built the created images can be seen with the com-

mand: ‘docker images − a’. To establish a baseline and restorable image for the

container a tag can be used. This tag can be set when using the identification code

with the following command: ‘docker tag (ImageID) (Repository : Tag)’ (e.g.,
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‘docker tag 123412341234 Haskabelle2015 : initial’). With the Docker container

built and the tag established, which allows the environment to be restored to this

initial state, then container can be invoked in an interactive mode via the command:

‘docker run − it Haskabelle2015 : initial /bin/bash’.

This simplified Docker container exists and enables Isabelle use with having

the latest 2017 edition. This container holders the proving and validation tools similar

to the seL4 team environment, but this new container does not have any undesired or

unneeded files (e.g., the seL4 source files). This environment allows for validation of

Isar script files once the files are moved into the container. However, this variant of

an Isabelle environment does not achieve an easier method of converting Haskell into

proof script automatically, since it was discovered that Haskabelle is not included

in the 2017 edition.

Isabelle 2015 with Haskabelle and Docker

Haskabelle is a tool that automates the process of converting Haskell source

code to Isar proof script. This tool was seen as useful for A2E2 since it aims to

reduce the workload, time, and tools needed to generate proof script from a Haskell

prototype. Given the advantages of Haskabelle a final environment was sought to

provide the tool with Isabelle to provide a development and validation environ-

ment for A2E2.

Haskabelle does not have a sole website that acts as the central repository for

information or executable versions. Two resources found were on the main Isabelle

website and a GitHub.com mirror of the source code [82][83][84][84]. It was deter-

mined the main distribution method for Haskabelle was its inclusion into the main

Isabelle distribution/archive. However, the tool was not present in the 2017 edi-

tion, which as confirmed with the previous Docker container setup. This absence
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of Haskabelle is also true in the 2016 edition, and the last updated version that

includes Haskabelle is the 2015 edition of Isabelle.

Hence, a Dockerfile was extended from the Dockerfile for Isabelle 2017 to

instead install and provision the 2015 version. The Dockerfile for the Isabelle 2015

edition was ensured to have the proper dependencies and auto-downloads the needed

archives to automate the configuration and provisioning of a Docker image. This

new container installation includes both Isabelle and Haskabelle in a single

container. An additional feature was the creation of a work space, to store developed

and validation files for Isabelle, and this folder is located in the root directory

with the name Isabelle Workspace/. The final action for this environment was to

execute the Docker commands to set image tags, which were followed as detailed in

the previous section.

Applied Tools and Methods for Security Property Validation

Using Haskabelle with Isabelle

The final environment created allowed the use of both Isabelle or Haskabelle

and Isabelle is used. It should be noted that this environment is configured for

running command line-based invocations. If the graphical version of Isabelle is

required then it should be installed outside of the Docker container (e.g., another

Virtual Machine or directly on the Host Machine). When using the container, a

common issue arises with the import and export of development files can be a problem.

As a recommendation: an external Git repository works well to push and pull data

in or out of the container. Yet, another solution, with Docker, focuses on mounting

a portion of the host machine space into the container, but this method was not

leveraged in this research. Once the Haskell source has been moved into the container,

then Isabelle can the Haskabelle generated Isar files.
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At this time no specific security properties for A2E2 were modeled or implemented

as a Haskell prototype. However, a simple Haskell program was used to explore

and evaluate Haskabelle with the prototype of a Binary Tree via the Haskell

BTree module. A tutorial by Seipp was found and it shows a methodology of using

Haskabelle to generate the the Isar theory files. Additionally, the tutorial shows

how to place in the desired steps and constraints for proving the prototyped code into

the generated Isar source.

Specifically, the tutorial takes the actions of (1) creates a base Binary Tree in

Haskell (e.g., a BTree.hs source file), (2) leverages Haskabelle to generate the Isar

theory files (e.g., BTree.thy and the source file Prelude.thy for Haskell definitions in

Isabelle), (3) by-hand addition of lemmas into the generated Binary Tree the-

ory file (e.g., BTree.thy), and (4) Isabelle execution of the files to validate the

Haskell prototype in its Isar represented form. Completing these actions and exe-

cuting the resulting theory files with the command line version of Isabelle can

be non-intuitive for analysis. Another method used for evaluating the execution of

Isabelle is the visual inspection of the Isar files via the GUI version of the tool.

Figure 5 through Figure 12 show screenshots of the final versions of the tutorials code

with the respective output of line-by-line processing.

Figure 5. Added Lemma 1 Initialization in Isabelle

The output of Isabelle is not immediately apparent for the tool’s results. There

is no explicit pass or fail indication on screen when processing a theory file. There
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Figure 6. Added Lemma 1 Induction Strategy Applied in Isabelle

Figure 7. Added Lemma 1 Induction Strategy Finished in Isabelle

are certain means to identify successful execution for a given source file. Specifically,

the documentation for Isabelle states than if the output shows ?x =?x then the

tool is able to instantiate the provided lemmas arbitrarily which means the lemmas

are valid [85]. The final Isabelle output in Figure 8 and Figure 12 shows the

case that ?t =?t when applying a flatten inductive strategy to the Binary Tree. This

means the the tutorial Haskabelle output (e.g., BTree.thy) with the inserted proof

logic for the lemmas were successfully executed in Isabelle. This process could

be extended for other cases of prototyped Haskell code. This example shows a single

implementation, but it is conceivable that A2E2 security properties could be proven

Figure 8. Added Lemma 1 Work Finished in Isabelle
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Figure 9. Added Lemma 2 Initialization in Isabelle

Figure 10. Added Lemma 2 Induction Strategy Applied in Isabelle

or disproven when following this outlined validation methodology.

Current Issues in Leveraging Haskabelle for Automated Theorem

Proving

The tutorial provided a process to validate Haskell prototypes with the steps of:

(1) generating a prototyped feature in Haskell, (2) converting the code to Isar with

Haskabelle, (3) adding the appropriate logic and theory lemmas into the Isar,

and (4) leveraging Isabelle for validation of the source code. These methodology

proves and validates a Haskell prototype can be accurately modeled in a functional

programming language. The process of leveraging Haskabelle will generate an

Isar representation. Yet, this method is only a partial automation, since it cannot

Figure 11. Added Lemma 2 Induction Strategy Finished in Isabelle
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Figure 12. Added Lemma 2 Work Finished in Isabelle

generate the semantics needed for automated theorem and lemma implementation,

which was seen with a non-trivial process of adding the appropriate logic for ensuring

a correct design. The tool stops short of fully automating a solution, since it has no

means of including or generating the needed Isar proof logic.

IV.3 Implementation Verification Findings

A Model System and Approach: Docker

Once the first two stages of the Formal Verification Life Cycle are completed (i.e.,

security properties are identified and each are validated) then a specification can be

developed and implemented in a programming language. The research assumed a

specification for a container was valid, because it allowed the discovery and iden-

tification of formal methods for implementation verification. Hence, this research

looked at imperative programming languages, implementation verification tools, and

operating systems that would support Android container development.

Similar capabilities exist within Linux android operating systems, since these sys-

tems are based off of the Linux kernel. It was determined that containerization on one

OS would be equivalent to the other for a real world implementation. The Docker tool

was modeled to support the realization a Android-based containment implementation,

since Docker executes on Linux kernel as a container environment/tool. Docker has

used the Go programming language to implement container mechanics (i.e., Docker

was programmed in Golang and leverages Linux kernel features and function calls to

achieve namespace-based isolation), and the programming language has applicable
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Android application tool-chains for development. Therefore this research sought a

method of containment with Golang, since an implementation could be theoretically

ported to Android.

Determination of Tools and Approaches for an A2E2 Container Imple-

mentation

It was assumed for this research if a Linux software container could be constructed,

then a conversion of the container to an Android version of the container is possible.

Software development tools exist for both Linux android, so the only undetermined

tool(s) relate to formal methods supporting implementation verification. The driving

factor for formal method selection is based upon the implementation programming

language, which was determined with the modeling of Docker. Techniques and tools

were reviewed to determine which of the three main approaches of formal methods

could be applied to Go-based code. The selected the formal method technique to be

leveraged was abstract interpretation, and it was determined that symbolic execution

offers a new verification method for Go. The following sections discuss the selected

methods and tools needed to generate and verify a Golang-based software container.

A Go Implementation of a Linux Container

As discussed in Chapter 2 there are multiple examples of Go containers online.

It was determined that Rice’s container implementation was going to be used in this

research after reviewing several different implementations of Go-based containers.

The code offered a simple container that was under one hundred lines of Go code, and

there are several sources documenting its implementation and development. Rice’s

code was tested and confirmed to execute on Ubuntu Linux 16.04 based on the GitHub

hosted source file. This Linux container built in Go was not validated to be an A2E2
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specification, but the container shows how an implementation could be created and

subsequently verified. Given the simplicity of the design it was determined that

security property validation could be extended or reuse Rice’s implementation in

capturing a valid A2E2 specification.

Verifying Program Correctness with Symbolic Execution

In order to assure an implementation, via verification, abstract interpretation

of Go executables was researched. There are various formal methods that satisfy

abstract interpretation, but it was decided to leverage symbolic execution for a Go

implementation. As discussed in Chapter 2 there are many benefits to leveraging

symbolic execution, but the driving factor for this decision was the discovered tool

KLEE.

KLEE presented a challenging approach, since it does not have a presence with

native, C-based, Android applications nor does it have an implementation for Go-

based code. However, a recent tool, gollvm, had been introduced into the Go

development pantheon, and it is based on the LLVM compiler infrastructure that

KLEE uses. It was decided to that a Go implementation could be verified by using

KLEE’s symbolic execution if it were able to process the outputs provided by gollvm.

Findings in Applied Implementation Verification Methods

KLEE Analysis and Evaluation

The final effort for the research focused on developing the techniques needed to

leverage KLEE with the Go container implementation. This attempt is the known

attempt of creating a Go abstract interpreters with a symbolic execution tool/frame-

work. The selection of KLEE was motivated by the tool’s use with C/C++ source

code, since the source code and libraries are can be invoked by Go program. Another
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motivating factor is leveraging KLEE was based on the large amount of documentation

and tutorials for using the tool.

Before analysis and use of the tool started a final action of selecting and building

a development environment was completed. The KLEE can be built from the source

code for a respective environment (e.g., bare metal host machine, development envi-

ronment virtual machine, etc.), or the tool can be leveraged with a provided Docker

environment. The Docker development environment was selected, since issues relat-

ing to non-resolved dependencies were discovered when building the tool from source

code. Specifically, the source code building failed due to a dependency upon the

LLVM project’s code base (that is considerably large), and the specific issue causing

compilation errors was not discovered. Hence, the work and source code were simply

executed within the KLEE-provided Docker container, and the development files were

moved into the container for analysis.

The main method to ensuring the proper setup for the KLEE environment was

accomplished by following the tutorials provided on the main klee.github.io web-

site. The base example, or the “Hello World” for KLEE, is programmed in C/C++

and was executed to validate proper setup and configuration of Docker develop-

ment environment. This example leverages the primary KLEE function call (i.e.,

klee make symbolic()) in a simple program comprised of a series of if-else statements,

which test an integer to be positive, negative, or zero. Several resulting analysis and

runtime files were created with the source code when it is compiled and executed.

Most importantly there are methods to generate the LLVM Intermediate Represen-

tation of the source code via the LLVM Clang compiler. The LLVM-IR can be

generated from the source code when it is compiled with Clang. The compilation

options of “-I” flag and the setting of “-emit-llvm” result in the generation of bitcode

as a “.bc” file. The bitcode file was directly executed by KLEE, and the output of the
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tool is seen in Figure 13.

Figure 13. Example KLEE Execution of LLVM-IR bitcode

The symbolic execution of the source code is automatically generated, and the

used test cases and outputs were evaluated. Figure 14 shows the simple test cases

and the results from KLEE (i.e, the results of the test for positive, zero, or a negative

number).

Figure 14. Example Evaluation of KLEE Execution Output

At this point it was determined that KLEE was able to be leveraged as an abstract

Interpreter with the used of symbolic execution.

Attempted Integration of KLEE via gollvm

The remaining task in applying KLEE to the Go-based container was two folded:

(1) discover a means of generating Go-based LLVM-IR, and (2) integrate the KLEE

tests into the base Go code. In the attempt to generate LLVM-IR, two discovered

Go/LLVM tools were found. The tools llgo and gollvm were evaluated. The llgo

tool was one of the first attempts seeking to integrate LLVM and Go, since it sought

to generate Go executables with the LLVM framework. The tool and its sources are
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available on both GitHub.com and are included in the main LLVM project. However,

the tool did not successfully compile or run per the provided instructions during this

research.

The gollvm tool was found under active development, and is integrated into the

official Go language experimental source file repository. This tool was successfully

used alongside the full LLVM framework, and compiled an example Go program’s

source code to the LLVM-IR bitcode. However, a difficulty identified in this approach

and tool was the fact that there is no easily development environment provisioning

script. There were many issues building the tool from source with respect to the

LLVM source. However, two stable git commits were discovered for both LLVM and

gollvm that created a stable gollvm development environment. A set of a BASH

provisioning and installation scripts were generated to replicate this development

environment, and the scripts can be found in in Appendix C.1 and C.2.

At this point LLVM and gollvm were executed, but only in a manner that is

currently independent of KLEE. It was successfully determined that the gollvm tool

provides a sub-tool called llvm-goparse. This new tool was leveraged to generate

the LLVM-IR with the same Clang command line flag of −dump− ir. An example

program, provided by the gollvm team, was used and its use with KLEE can be found

in Appendix C.3 through Appendix C.5.

The complete integration of KLEE’s C/C++ based calls for gollvm compilable

Go code was not completed. Thus, the use of KLEE to verify a Go-based container is

unknown to being a possible formal method or not. Also, considerable effort remains

to a single, joint KLEE and gollvm development environment. One finding for these

tools was the fact that gollvm is experimental in nature, and its code-base seems to

be unstable with the main LLVM framework. Additionally, The efforts attempting

integrate gollvm into the KLEE-provided Docker image failed,
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V. Conclusions and Recommendations

This chapter summarizes the state of A2E2 research and presents both lessons

learned and recommended future work. A list of security properties relevant to A2E2

was generated (Chapters 3 and 4), and these properties can be used to direct future

efforts with the Formal Verification Cycle. It remains to assure the security properties

and to complete the validation and verification of a specification and implementation

of an A2E2 container.

V.1 Three Stage Approach Overview and Research Contributions

This thesis focuses on a three stage approach to formal assurance on Android.

The first stage identifies and defines security properties, the second identifies and

applies tools for property validation in a specification, and the final evaluates new

implementation verification methods for a Go language-based container. Each of the

stages provided new insights for A2E2 formal assurance, and this section reviews the

general findings for each.

Security Properties for Assured Android Container Specifications

There is not a de facto standard set of security properties for use in a formally

verified specification. The consolidation of security properties led to the discovery of a

“the chicken or the egg” problem: the final properties proposed need to be validated

with a formal tools and methods (e.g., proof assistants, model checkers, abstract

interpreters), but a final set of tools and methods could not be executed without

verifying applicable tools (i.e., feedback from the second and third stages of research

identified some tools and methods and how to apply them to validating and verifying

a specification). Additionally, it was determined the complexity for full validation of
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each property was too extensive to be fully realized in this research. The security

properties should be viewed as best practices, since they have yet to be validated with

formal assurance methods. Once a final tool and approach are selected, the proposed

properties can be validated for an Android specification. When the properties are

assured then the result would be an a la carte menu for core security properties and

features selection.

Lessons Learned with Former Specification Validation Approaches and

Tools

The approaches examined in the first stage of the research illustrate methods

that can be used for reasoning with respect to validation of a theoretical design

of a specification. That being said, there were multiple lessons learned with the

researched methods used by the seL4 to changes over the past eight years. A large

impact to functional prototyping with Haskell has affected the Haskabelle tool

and presumably seL4. The Haskell language, in 2014, had a fundamental change for

their monad implementations as discussed in Chapter 2. Given the extensive use of

monads by the Haskabelle tool it is no longer compatible with modern Isabelle

versions, and until the underlying code and functionality of the tool are updated to

the new monad standard, only the old versions will work. This does not necessarily

prevent assured development, but it brings into question whether these tools can be

used for sustainable or future solutions.

Two main discoveries were with the applied sections of this research. The first

discovery was the identification that Haskabelle was considered deprecated in 2015

by the Isabelle team. The second discovery was that the former methods of the

seL4 team would not be able to be reused for this research (i.e., the tools were not

discovered for Haskell to Isar conversion and are presumed to be too specific for seL4
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for general assurance work). As such, a Docker environment was created to support

older versions of Isabelle and Haskabelle illustrating that former methods are

still useful in specification assurance. This environment was validated with a Haskell

prototype that was processed and verified by Haskabelle and Isabelle. The set

of provisioning scripts used to setup and configure the Docker environment can be

found included in Appendix C.1 and C.2.

Formally Assured Go Language Applications

The final stage of research focused on the identification of new methods of im-

plementation verification for Go language applications. This approach was patterned

on Docker’s implementation, since it provides containment method the Linux kernel.

Applications created with the Go language may offer a new approach for source code

implementation that is portable to Android (e.g., the two main approaches for An-

droid are with Java-based or native code-based programming). It is unclear whether

the Go language container can be directly executed on Android (in particular, issues

remain with OS permissions and Android tool-chain compatibility with the Gomobile

suite). Cross-compiling the Go source code to Android was beyond the scope of this

effort.

Advances in the gollvm tool enable the building of Go code within the LLVM

compiler infrastructure. A compatible gollvm and LLVM versions, was found, and

Docker was used to create a stable development environment. This process allowed

a repeatable and stable build process. The Docker container allows for example Go-

based Linux container to be built with LLVM into the LLVM-IR, which was needed

as input for KLEE’s symbolic engine.

KLEE is based upon the C language, and there are no Go language bindings

for KLEE. A focus of the third stage was attempting the integration of Go with C
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functions and libraries. Ideally the integration would allow Go-based implementations

to invoke KLEE’s C/C++ functionality. It remains to create Go bindings for KLEE.

The Go container was built to LLVM-IR, and the KLEE examples in C/C++ were

successfully executed.

An Initial A2E2 Framework

Each of the three stages of research made progress. These findings provide a formal

framework for the selection of formal assurance properties, which are validated and

verified with theorem proving and by means of symbolic execution. Future work

needs to be assured, and the reusable Haskabelle/Isabelle environment can

be leveraged in future work. Additionally, this research has shown a potential path

forward in the Go programming language if symbolic execution was applied to show

implementation verification. This initial framework shows applied tools and formal

methods used in formal assurance (i.e., validation and verification) of A2E2. Other

tools may exist that are easier to use or more stable and that can sustain ongoing

assured development.

V.2 Other Findings

In this section, the topics of tool reusage, cautions on immature programming

languages, identification of issues with past approaches, and cursory research into

new and upcoming formal method techniques are presented.

Benefits of Formal Method Tool Reusage

There are benefits to using legacy tools even if they are deprecated or abandoned.

Older versions of tools sometimes still work, and some methods presented by past

research are still applicable to modern assurance attempts. Specifically, in appro-
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priate circumstances, legacy tools in container-based development environments are

preferable to tool versions that support host machine-based installations.

However, for a production environment up-to-date tools should be used. In par-

ticular, when leveraging Haskell tools such as Haskabelle are deprecated and not

recommended. The development of new tools can be quite intensive in total man-

hours, but such should be considered, especially for collaborative efforts. Further-

more, tradeoffs exist between formal method tools, so another consideration should

be in matching new efforts to existing work a respective field of study. For exam-

ples, some organizations could focus on model checking for assurance, as opposed to

theorem proving, so new work may be able those efforts instead.

Difficulties in Formal Verification of Immature Language

The Go language was released in 2009 and has gained popularity since the release,

but as of this writing it is an immature language. Many existing and established

languages have many tools that have accumulated since 1976 to support formal as-

surance. Yet, the Go language was created recently, so it has not had the benefit of

formal assurance tools. As of this writing there is no evidence of major efforts toward

formal verification for Go. New tools must be implemented for Go such as a Haskell

to Go tool for prototyping, and completed Go bindings for KLEE. Additionally, no

formally verified Go compiler is currently available. Hence, additional tools are need-

ed to interpret and verify Go compiled binaries, and an effort to build a formally

verified Go compiler must be completed.

New Developments of Formal Method Approaches

Non-supported, deprecated, or abandonware is not uncommon with many open

source and academic research tools. Knowing the current state of Haskabelle,
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stemming from the changes in Haskell, there might be motivation reevaluate tools

choice for formal assurance. The current method of leveraging the Formal Verification

Cycle could be kept as a model, and it could be leveraged and executed with new

tools. A first order examination of current research shows a new formal proof assistant

Coq is being leveraged in the formal methods community. Coq could be a direct

replacement for Isabelle with respect to this research, and the shown method of

Haskell prototyping appears to be achievable is a similar manner with this new tool.

The specifics and methodologies of this tool is not explored, but it is recommended for

evaluation given its current popular and community acceptance. Using the “current

popular tool” may allow for the most up-to-date implementation as to avoid issues

that occurred with Haskabelle.

V.3 Path Forward and Recommended Actions

The last portion of the thesis looks at and proposed new paths forward based on

the research herein. It is assumed that the A2E2 properties are acceptable and use

of the Formal Verification Cycle is followed (i.e., assurance of a specification, which

is followed by verification of an implementation). Assuming these two conditions,

there are multiple issues that were unaddressed or identified at the conclusion of this

research. This set of future work is not all-inclusive, but it aims to provide insights

for any researcher following on this effort.

Security Property Theory Validation

As previously discussed, the security properties presented in Chapter 4 are cur-

rently considered as a “best practice” approach. This research was unable to exercise

the proposed method of design theory assurance to individual cases of the security

properties. However, once a set of tools are decided for design theory assurance,
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then the implementation and verification of the properties can commence. It is rec-

ommended to start with a single property to verify (e.g., Access Control). Upon the

successful validation of the first property, then the remainder of the properties (or the

subset of properties for a specification) could be verified by replicating the assurance

process. This assurance of the security properties validates and proves the theory for

the Formal Verification Life Cycle, and each successfully completion of a property al-

lows subsequent specifications and designs to reuse the assured work. This validation

could allow implicit trust when leveraging A2E2 properties, and potentially allow a

focus on implementation efforts (as opposed to theory and property validation) in the

future.

Determining Methods of Automated Assurance

Another observation has been a trend toward the use and implementation of au-

tomated formal verification. Solutions exist for “by hand” assurance techniques, but

commonly these approaches are extremely rigorous and tedious. These approaches

can take a considerable amount of time to construct and verify. A more preferred way

is for an automation of the assurance methods for chosen security properties. Ideally,

these automated tools allow a security property to be chosen or implemented into a

specification with minimal effort after the first successfully use (i.e., there may need

to be an investment into the first case of assurance by validation, but future work

would reuse past assured property in other specifications).

An example of a tool, striving for such automation, is MIT Programming Lan-

guages & Verification Group’s “Fiat” tool. The tool is stated to allow a declarative

specification to generate a correct-by-construction program while providing a formal

proof trail certifying that the program meets the original specification [86]. This tool

could be thought analogously to the process of what Haskabelle does for Haskell
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and Isabelle, but Fiat leverages the functional programming language of OCaml

and Coq [86]. Fiat’s build process could shorten the time it would take to construct an

implementable program, since the tool appears to automate the whole construction

and process idealized in the Formal Verification Cycle. The tool was only identified

recently, thus more analysis and verification of the tool and its capabilities are needed.

Native Code vs. Java-based Code Market Share Analysis

It is considered that Go language built code is equivalent, or at least in the same

category of software, as native code for Android. This acknowledgment is significant,

since Android typically divides it software into two categories of native code (e.g., C-

based code with the Bionic library) Java-based code. There are issues of using native

code applications since they execute in a different fashion than Java-based applica-

tions. For instance the example A2E2 Go container was a native code application,

and its containment would be for other native code applications (e.g., no Java run-

time environment is native to the Linux Kernel or as ELF executables, thus the only

supported programs would be for native code programs). Additionally, the majority

of Android programs are presumed to not be native code, so the current container

would also not be able to run this majority of applications. This may stem from

facts like Google’s documentation recommends to not build native code applications

citing potential security concerns [56]. Therefore, to ensure the greatest application

coverage, with respect to A2E2 projects, then it should be determined what percent

of applications are either native code or Java based. This information could be gained

by a market share analysis of Google Play Android applications. Once this market

share of applications is determined, then a final decision should be made to determine

which style of Android A2E2 projects implement.
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General Applicability of A2E2

An interesting side effect in the research and identification of A2E2 security prop-

erties was no Android-specific properties were defined. The identified security prop-

erties were abstracted in a manner such that they are not tied to a specific platform

or operating system. Additionally, the implementation attempted in the research was

based on Go and not any Android specifics. The tested materials and procedures

were completed on personal computers, so even though the intended target was An-

droid, the fact remains the development occurred mostly on Linux. This leaves open

research directions of assured specifications and designs for general computing and

on desktop operating systems.

Work Relating to Model Checking and the Formal Verification Cycle

One topic that was not explored during this research is the application of model

checking for either stage of specification validation or implementation verification. It

is not known what types of tools or capabilities are available for model checking, but

this type of system abstraction is another popular approach in the formal methods

community. It may be the case that an equivalent, or easier, approaches exist to

validate A2E2 designs. Models for containment on Android may exist to support

A2E2, but no research was executed thus no recommended methods or tools can

be provided. This discussion seeks to present the topic and make readers aware of

another avenue in assurance.

Determining Android Specific Implementation Concerns

The main effort of this research was accomplished on Linux desktop computers.

Specifically, the Go compiler was leveraged to test out the mock container program,

and the gomobile tool chain verified the ability to generate Android applications.
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However, the mock container implementation was never ported to Android, and any

specific implementation constraints and limitations for Android were never identified.

An example case would be with respect to the Bionic C library. This library does

not permit all native Linux API and function calls to be leveraged or executed on

Android, and many of these restrictions are due to Android’s security and permission

model (e.g., if a phone is not rooted with full permissions and access, then typical

privileged API calls would be denied). It is extremely likely that the issues seen in

C and native code implementations will exist with Go-based solutions. Apiece of

evidence that can support these concerns is the fact that the Go container executable

must be run as root, or with sudo-based permissions, to properly execute on Linux.

This is only one example, but such concerns should be considered and subsequently

identified for Android execution for containment. If such restrictions were found, then

it may be the case that the ability to control and implement a Go based container is

impossible due to Android’s current model
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Appendix A. Chapter 1 Related Documents

The following appendix contains source code and scripts leveraged in the work
present in Chapter 1.

A.1 CVE Analysis - Acquire Archives Script

1 #!/ bin / bash
2
3 webSite=” https : // s t a t i c . nvd . n i s t . gov/ f e e d s / j son / cve /1 .0/ ”
4 ZipFolder=”Raw Zips”
5
6 Zips=(
7 #nvdcve−1.0−modi f ied . j son . z i p
8 #nvdcve−1.0− recen t . j son . z i p
9 nvdcve−1.0−2017. j son . z ip

10 nvdcve−1.0−2016. j son . z ip
11 nvdcve−1.0−2015. j son . z ip
12 nvdcve−1.0−2014. j son . z ip
13 nvdcve−1.0−2013. j son . z ip
14 nvdcve−1.0−2012. j son . z ip
15 nvdcve−1.0−2011. j son . z ip
16 nvdcve−1.0−2010. j son . z ip
17 nvdcve−1.0−2009. j son . z ip
18 #nvdcve −1.0−2008. j son . z i p
19 #nvdcve −1.0−2007. j son . z i p
20 #nvdcve −1.0−2006. j son . z i p
21 #nvdcve −1.0−2005. j son . z i p
22 #nvdcve −1.0−2004. j son . z i p
23 #nvdcve −1.0−2003. j son . z i p
24 #nvdcve −1.0−2002. j son . z i p
25 )
26
27 i f [ [ ! −d ” $ZipFolder ” ] ] ; then
28 mkdir −p $ZipFolder
29 i f [ [ ”$?” == ”0” ] ] ; then
30 echo ” [NOTE] Created new arch ive f o l d e r : $ZipFolder ”
31 else
32 echo ” [ERROR] Couldn ’ t c r e a t e the a r ch ive f o l d e r ! ”
33 exit 1
34 f i
35 f i
36
37 pushd $ZipFolder
38 for z ip in ${Zips [ ∗ ] } ; do
39 i f [ [ ! −f ” $z ip ” ] ] ; then
40 echo ” [NOTE] Downloading : $z ip ”
41 wget $webSite$z ip
42 else
43 echo ” [NOTE] Skipping f i l e ( $z ip ) . I t e x i s t s ! ”
44 f i
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45 done
46 popd

A.2 CVE Analysis - Analysis Script

1 #!/ bin / bash
2 ZipFolder=”Raw Zips”
3 ExtractFolder=” Extracted Z ips ”
4 Ana lys i sFo lder=” Ana lys i s ”
5 runDate=‘ date +”%Y−%m−%dT%H−%M” ‘
6 echo ” [DEBUGGING] Run date : $runDate”
7
8 #bjson==BROKEN JSON
9 Globa lVulnsFi l e=$runDate” Globa lL i s t Vu lns . b json ”

10 echo ” [DEBUGGING] Global save f i l e : $Globa lVulnsFi l e ”
11
12 s ea r c hS t r i n g =’”product name” : ” android ” ’
13
14 z i p s =( ‘ l s $ZipFolder | grep zip ‘ )
15
16 i f [ [ ! −d ” $ZipFolder ” ] ] ; then
17 echo ” [ERROR] Zip f o l d e r DOES NOT EXIST ! ( $ZipFolder ) ”
18 exit
19 f i
20
21 i f [ [ ! −d ” $ExtractFolder ” ] ] ; then
22 mkdir −p $ExtractFolder
23 i f [ [ ”$?” == ”0” ] ] ; then
24 echo ” [NOTE] Created new unzipping f o l d e r : $ExtractFolder ”
25 else
26 echo ” [ERROR] Couldn ’ t c r e a t e the f o l d e r ! ”
27 exit 1
28 f i
29 f i
30
31 i f [ [ ! −d ” $Ana lys i sFo lder ” ] ] ; then
32 mkdir −p $Ana lys i sFo lder
33 i f [ [ ”$?” == ”0” ] ] ; then
34 echo ” [NOTE] Created new a n a l y s i s f o l d e r : $Ana lys i sFo lder ”
35 else
36 echo ” [ERROR] Couldn ’ t c r e a t e the f o l d e r ! ”
37 exit 1
38 f i
39 f i
40
41
42 pushd $ExtractFolder
43 for f i l e in ${ z i p s [ ∗ ] } ; do
44 echo ” [NOTE] Extract ing : $ f i l e ”
45 unzip −o . . / $ZipFolder / $ f i l e
46 done
47
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48 j s o n S r c F i l e s =( ‘ l s ∗ . j s on | grep −v ” z ip ” ‘ )
49 popd
50
51
52 pushd $Ana lys i sFo lder
53 echo ””
54 echo ” [NOTE] SAVING DATA TO: $Globa lVulnsFi l e ”
55 echo ””
56 echo ”###GLOBAL VULNS FILE $run” > $GlobalVulnsFi l e
57
58 for s r c F i l e in ${ j s o n S r c F i l e s [ ∗ ] } ; do
59 echo ” [NOTE] Pars ing ( $ s ea r chSt r ing ) from : $ s r c F i l e ”
60 #cat Ex t rac t ed Z ip s /nvdcve −1.0−2009. j son | t r −d ” [ : b lank : ] ” | t r −

d ”\n” | sed ” s /\” cve \”:{/\n###/g” | grep −i ” android ”
61 cat . . / $ExtractFolder / $ s r c F i l e | t r −d ” [ : blank : ] ” | t r −d ”\n” |

sed ” s /\” cve\” :{/\n###/g” | grep − i ’ ”product name” : ” android ” ’ |
grep − i ’ ”vendor name” : ” goog l e ” ’ >> $GlobalVulnsFi l e

62 done
63 popd
64
65
66 #Get l i s t o f CVEs matching search s t r i n g
67 cat $GlobalVulnsFi l e | grep ID | grep a f f e c t s | t r ”\”” ”\n” | grep ”CVE

” >> $runDate” CVEs . txt ”
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Appendix B. Chapter 2 Related Documents

The following appendix contains documentation leveraged in the work present in
Chapter 2.

B.1 Android Security Features added by Version Release

The following Tables 17 and 18 are based on the documentation by Google [87]
[88] [89] [90] [91] [92] [93] [54].
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Table 17. Highlighted Android Security Features (1.5 to 4.4)

Android Release Feature
1.5 Stack Protection (fstack-protector)
1.5 Integer Overflow Reduction (via safe iop and OpenBSD calloc)
1.5 Chunk Consolidation Attack Prevention (OpenBSD dlmalloc)
1.5 Format string protections (compiler format-security options)
2.3 No eXecute (NX) for code execution on the stack and heap
2.3 Mitigation of null pointer dereference escalation attacks
4.0 Address Space Layout Randomization (ASLR)
4.1 Position Independent Executable (PIE) Support
4.1 Read-only relocation/immediate binding
4.1 Ensure settings avoid leaking kernel addresses
4.2 App verification (via digital signatures)
4.2 Root privilege escalation prevention (installed)
4.2 Symlink attack prevention (0 NOFOLLOW)
4.2 ContentProvider Default Configuration for Apps
4.3 SELinux used to reinforce Android sandbox
4.3 Removed all setuid/setgid programs
4.3 Preventing applications from executing setuid programs
4.3 Capability bounding; drop unnecessary capabilities prior to execution
4.3 AndroidKeyStore Provider (restricted App private keys)
4.3 NO NEW PRIVS: Linux kernel version 3.5 to block new privileges prior to code execution
4.3 Detection of memory corruption vulnerabilities or unterminated string constants.
4.3 Read only relocation allowed (static linked executables); removed all text relocation
4.4 SELinux in enforcing mode for the Android Sandbox
4.4 Implemented FORTIFY SOURCE level 2 protections
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Table 18. Highlighted Android Security Features (5.0 to 8.0)

Android Release Feature
5.0 Full disk encryption by default
5.0 Requirement of all dynamically linked executables to support PIE
5.0 SELinux enforcing mode is required for all domains
5.0 non-PIE linker support removed
5.0 Improvements to FORTIFY SOURCE
6.0 Applications request permissions at run time (vs. install time)
6.0 Hardware-Isolated Security via new HAL to protect Kernel/local access compromise
6.0 SELinux enforced polices to ensure better isolation of users, /proc access, etc.
6.0 File-based encryption (vs. a single storage area)
7.0 SELinux enhancements for application sandbox
7.0 Kernel hardening (read only portions, user space addresses, etc.)
8.0 “Project Treble” - isolation of patching/Android processes from vendor-specific changes
8.0 Migration from ASLR, format string, and fstack-protector
8.0 Kernel protections with seccomp filtering
8.0 Per app approval of “unknown sources” installation
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Appendix C. Chapter 4 Related Documents

The following appendix contains source code and scripts leveraged in the work
present in Chapter 4.

C.1 KLEE: KLEE Docker Install Script

1 #!/ bin / bash
2 #From: h t t p s :// docs . docker . com/ engine / i n s t a l l a t i o n / l i nu x /docker−ce/

ubuntu/#i n s t a l l −docker−ce
3
4 echo ” [KDI ] S ta r t i ng KLEE Docker I n s t a l l e r ”
5 echo ” [KDI ] ==============================”
6
7 echo ” [KDI ] Cleaning up p r i o r Docker I n s t a l l a t i o n . . . ”
8 sudo apt−get update
9

10 sudo apt−get remove −y docker docker−eng ine docker . i o
11
12 #FOR Ubuntu 14 .04 :
13 #sudo apt−ge t i n s t a l l \
14 # linux−image−extra−$ (uname −r ) \
15 # linux−image−extra−v i r t u a l
16
17 echo ” [KDI ] I n s t a l l i n g Deps ( apt−t ransport−https ca−c e r t s c u r l sw−props−

common) . . . ”
18 sudo apt−get i n s t a l l −y\
19 apt−t ransport−https \
20 ca−c e r t i f i c a t e s \
21 c u r l \
22 software−prope r t i e s−common
23
24 echo ” [KDI ] I n s t a l l i n g GPG Key . . . ”
25 Ins ta l l edKey =‘ c u r l −fsSL https : // download . docker . com/ l inux /ubuntu/gpg |

sudo apt−key add − 2>&1 | grep ”OK” | wc −l ‘
26
27 i f [ [ ” $ Ins ta l l edKey ” != ”1” ] ] ; then
28 echo ” [KDI ] [ERROR] The Ubuntu GPG Key DID NOT i n s t a l l ! ”
29 exit
30 f i
31
32 VerifyKey=‘sudo apt−key f i n g e r p r i n t 0EBFCD88 2>&1 | grep ” rsa4096

2017−02−22” | wc −l ‘
33 i f [ [ ” $VerifyKey ” != ”2” ] ] ; then
34 echo ” [KDI ] [ERROR] The Ubuntu GPG Key Has CHANGED! ”
35
36 #Two l i n e s re turn from t h i s expec ted r e s u l t :
37 #pub rsa4096 2017−02−22 [SCEA]
38 # 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88
39 #uid [ unknown ] Docker Release (CE deb ) <docker@docker . com

>
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40 #sub rsa4096 2017−02−22 [ S ]
41 exit
42 f i
43
44 echo ” [KDI ] Se t t i ng up the docker s t a b l e r e l e a s e repo . . . ”
45 sudo add−apt−r e p o s i t o r y \
46 ”deb [ arch=amd64 ] https : // download . docker . com/ l inux /ubuntu \
47 $ ( l s b r e l e a s e −cs ) \
48 s t a b l e ”
49 sudo apt−get update
50
51 echo ” [KDI ] I n s t a l l i n g Docker . . . ”
52 sudo apt−get i n s t a l l −y docker−ce
53
54 echo ” [KDI ] Running Docker He l lo World . . . ”
55 sudo docker run he l l o−world
56
57 #echo ” [KDI] Grabbing KLEE pre−b u i l t ”
58 #The i n s t r u c t i o n s s t a t e t ha t t h e r e i s 3 rd par ty code . . . so I ’m bu i l d i n g

i t f o r now . . .
59 #docker p u l l k l e e / k l e e
60
61 echo ” [KDI ] Grabbing KLEE−needed Docker f i l e s . . . ”
62 g i t c l one https : // github . com/ k l e e / k l e e . g i t
63 cd k l e e
64
65 sudo usermod −aG docker $USER
66
67 docker bu i ld −t k l e e / k l e e .
68 docker run −−rm − t i −−ulimit=’ stack =−1:−1’ k l e e / k l e e
69
70 whoami

C.2 KLEE: KLEE Docker Start Script

1 #!/ bin / bash
2 #This i s NOT p e r s i s t e n t : docker run −−rm − t i −−u l im i t =’ s t a c k=−1:−1’ k l e e

/ k l e e
3
4 containerName=” m y f i r s t k l e e c o n t a i n e r ”
5 containerMade=‘ docker ps −a | grep m y f i r s t k l e e c o n t a i n e r | wc −l ‘
6
7 echo ” [KCL] S ta r t i ng KLEE Container Launcher”
8 echo ” [KCL] ================================”
9

10 echo ” [DEBUGGING] containerMade va l : $containerMade ”
11
12 i f [ [ ” $containerMade ” == ”1” ] ] ; then
13 echo ” [KCL] Container FOUND! Sta r t i ng o ld in s t anc e . . . ”
14 docker s t a r t −a i $containerName
15 else
16 echo ” [KCL] Container NOT FOUND! Creat ing NEW ins tance . . . ”
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17 docker run − t i −−name=$containerName −−ulimit=’ stack =−1:−1’ k l e e / k l e e
18 f i

C.3 GoLLVM Ubuntu Installer Script

1 #!/ bin / bash
2 #// Here ’ workarea ’ w i l l conta in a copy o f the LLVM source t r e e and one

or more b u i l d areas
3
4 echo ” [SGU] S ta r t i ng Setup Gollvm f o r Ubuntu”
5 echo ” [SGU] ================================”
6
7 echo ” [SGU] I n s t a l l i n g Deps (gmp mpfr mpc) ”
8 #sudo apt−ge t i n s t a l l −y g i t cmake m4 bu i l d−e s s e n t i a l l ibgmp−dev l i bmpfr

−dev libmpc−dev l i bxml2−dev ocaml l i b c t y p e s−ocaml
9 sudo apt−get update

10 sudo apt−get i n s t a l l −y g i t cmake m4 bui ld−e s s e n t i a l libgmp−dev l ibmpfr−
dev libmpc−dev gccgo−6

11
12 #Get Ninja
13 #h t t p s :// g i t hu b . com/ninja−b u i l d / n in ja / r e l e a s e s
14 n i n j a I n s t a l l e d =‘which n in j a | wc −l ‘
15 i f [ [ $ n i n j a I n s t a l l e d == ”0” ] ] ; then
16 echo ” [SGU] I n s t a l l i n g Ninja ”
17 wget https : // github . com/ ninja−bu i ld / n in j a / r e l e a s e s /download/v1 . 8 . 2 /

ninja−l i nux . z ip
18 i f [ [ −f n in ja−l i nux . z ip ] ] ; then
19 unzip ninja−l i nux . z ip
20 sudo mv n in j a / usr / bin /
21 f i
22 f i
23
24 n i n j a I n s t a l l e d =‘which n in j a | wc −l ‘
25 i f [ [ $ n i n j a I n s t a l l e d == ”1” ] ] ; then
26 echo ” [SGU] Ninja i n s t a l l e d ”
27 echo ” [SGU] Cloning LLVM”
28 #Sources
29 g i t c l one http :// llvm . org / g i t / l lvm . g i t
30
31 i f [ [ −d llvm ] ] ; then
32 pushd l lvm > /dev/ n u l l
33 g i t r e s e t −−hard 3962 d561a63fb3912c9310838793863ce5818cba #Last

commit from Than McIntosh , pre−LLVM 3 changes ( Sep 27 , 2017)
34 cd t o o l s
35
36 echo ” [SGU] Cloning Clang”
37 g i t c l one http :// llvm . org / g i t / c lang . g i t
38 i f [ [ −d c lang ] ] ; then
39 pushd c lang
40 g i t r e s e t −−hard 29487927 c0f5d8cd6b23978a0216b17041161cc5 #Last

commit on Sep 27 , 2017
41 #OPTIONAL TOOLS:
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42 cd t o o l s
43 g i t c l one http :// llvm . org / g i t / clang−t oo l s−ext ra . g i t ext ra
44 cd ext ra
45 g i t r e s e t −−hard 1 c6297911930ae6ad88a3383eb4c88a27460eb54 #Last

commit on Sep 27 , 2017
46 popd
47 else
48 echo ” [SGU] [ERROR] Clang c lone FAILED! ”
49 f i
50
51 echo ” [SGU] Cloning gollvm ”
52 g i t c l one https : // go . goog l e sour c e . com/ gollvm
53 i f [ [ −d gollvm ] ] ; then
54 cd gollvm /
55 g i t r e s e t −−hard 0 b6e1072828dd59cead801c01d548675bedae644 #Most

recen t o f t h i s s c r i p t c r ea t i on
56 cd llvm−gofrontend
57 g i t c l one https : // go . goog l e sour c e . com/ gofrontend
58 cd gofrontend
59 g i t r e s e t −−hard adc6eb826 f156d0980 f0ad9f9e fc5c919ec4905e #Most

recen t o f t h i s s c r i p t c r ea t i on
60 #cd . . / . . / . . / . .
61 popd > /dev/ n u l l
62
63 #// Create a b u i l d d i r e c t o r y and run cmake
64 echo ” [SGU] Bui ld ing gollvm ”
65 mkdir −p bu i ld . opt
66 cd bu i ld . opt
67 cmake −DCMAKE BUILD TYPE=Debug −G Ninja . . / l lvm #Clang dev

reccomends : −DLLVM BUILD TESTS=ON # Enable t e s t s ; d e f a u l t i s
o f f .

68
69 #// Prebu i l d
70 echo ” [SGU] S ta r t i ng n in j a bu i ld o f gmp/mpfr/mpc”
71 n in j a libgmp l ibmpfr libmpc
72
73 #// Now regu l a r b u i l d
74 #ninja <go l l vm t a r g e t ( s )>
75 echo ” [SGU] S ta r t i ng n in j a bu i ld o f LLVM/Clang/ gollvm ”
76 #JUST FOR gol l vm : n in ja l lvm−goparse
77 #ninja a l l
78 n in j a i n s t a l l
79 echo ” [SGU] DONE! ”
80 else
81 echo ” [SGU] [ERROR] gollvm c lone FAILED! ”
82 f i
83
84 else
85 echo ” [SGU] [ERROR] LLVM clone FAILED! ”
86 f i
87
88 else
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89 echo ” [SGU] [ERROR] Ninja NOT INSTALLED! ”
90 f i

C.4 GoLLVM Example Go Code

1 //A simple example o f Go to test with gollvm : llvm−goparse −dump− i r −o
Example . IR example . go

2 package foo
3
4 func main ( ) i n t {
5 return 1
6 }

C.5 GoLLVM Attempted KLEE Integration Code

1 package foo
2
3 // import (
4 // ” unsa fe ”
5 //)
6
7 func main ( ) i n t {
8 var a i n t
9 // k lee make symbol i c (&a , unsa fe . S i z e o f ( a ) ,1 )

10 return g e t s i g n ( a )
11 }
12
13 func g e t s i g n ( x i n t ) i n t {
14 i f x == 0 {
15 return 0
16 }
17 i f x < 0 {
18 return −1
19 } else {
20 return 1
21 }
22 }
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