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Abstract

Motivated by the possibilities afforded by active target defense, a 3-agent pursuit-

evasion differential game involving an Attacker (Pursuer), a Target (Evader), and a

Defender is considered. The Defender strives to assist the Target by intercepting the

Attacker before the latter reaches the Target. A barrier surface in a reduced state

space separates the winning regions of the Attacker and Target-Defender team. In

this thesis, attention focuses primarily on the Attacker’s region of win where, under

optimal Attacker play, the Defender cannot preclude the Attacker from capturing the

Target. Both optimal and suboptimal strategies are investigated. This thesis uses

several methods to breakdown and analyze the 3-player differential game.

First, a heuristic analysis of the game is performed. This not only illustrates the

game play, but provides insight into what optimal strategies might look like. The

heuristic analysis selects points of interest for each of the players to chase, and then

compares the results to find a global minimum or maximum of the points considered.

The resulting strategies produce very effective chase points for each player to use

against opposing player(s), however these points are not optimal when considering all

possible strategies.

Next, a barrier analysis is performed. Considering the region where the Attacker

is guaranteed to win if he plays optimal, and the region where the Target & Defender

team is guaranteed to in if they play optimally, the barrier surface is the dividing

membrane that separates the two independent regions. The barrier analysis con-

structs strategies for each player using the barrier surface. The strategies are then

tested to see how they perform as the state representing game play moves away from

the barrier. The results of the analysis are used to find a Game of Kind solution that

iv



allows the Attacker to win, so long as the game begins in his region of win.

Finally, the game is considered when using time as the performance functional.

This not only satisfies the Game of Kind differential game, but does so in minimum

time for the Attacker, and maximum time for the Target & Defender team. Although

a complete solution when using time as the performance functional is not obtained, a

partial solution is presented with an analysis on pursuit curves. The Attacker’s region

of win is also split into two subregions that determine the strategies each player should

employ. One region guarantees capture of the Target in minimum time by employing

Pure Pursuit, and the other region opens a possibility for the Target to escape should

the Attacker persist with Pure Pursuit.

This research compliments on-going research being performed by the Air Force Re-

search Laboratory (AFRL) in conjunction with the Air Force Institute of Technology

(AFIT). The game has been coined by this team as the Active Target Defense Differ-

ential Game (ATDDG) and seeks understanding of optimal strategies for a specific

air-to-air engagement scenario described in Chapter I. Originally, the research being

performed by AFRL focused primarily on the region where the Target & Defender

team will win if they play optimally, however, recently their focused has changed to

the region where the Attacker is guaranteed to win if he plays optimally. Where the

work done by AFRL has used terminal distances between the players as the perfor-

mance functional, this work expands upon the ATDDG by considering heuristics, the

barrier surface, and temporal based strategies. Doing so strengthens the findings of

AFRL, lends insight into how the barrier surface affects the players, and produces

results that not only lead to a Game of Kind win, but do so while simultaneously

minimizing/maximizing time.
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DEFENDER-ASSISTED EVASION AND PURSUIT MANEUVERS

I. Introduction

1.1 Game Theory and Differential Games

In [13], Nobel Prize winner Roger Myerson defines Game Theory as ”the study of

mathematical models of conflict and cooperation between intelligent rational decision-

makers.” This simple expression sums up what mathematicians, engineers, and sci-

entists are striving for within this field of research. Common applications of game

theory are found in economics and military applications. Although military conflicts

may produce scenarios where all intelligent actors are working for a common goal,

the nature of war itself lends the military towards games of conflict, also known as

zero sum games. The study of differential games focuses on these games of conflict.

The idea of differential games grew from the field of control theory and was intro-

duced by Rufus Isaacs in 1951. The compilation of Isaac’s work [10] was published

in 1965 and built the foundation of which countless journal articles and hours of

research have been dedicated. This book introduced strategies to analyze dynamic

games of conflict using differential equations typically in the form of state dynamics.

The strategies presented in Isaac’s work culminated in the development and solution

to the Homicidal Chauffeur Differential Game.

The Homicidal Chauffeur models the scenario of a pedestrian fleeing a car which

is trying to run the pedestrian over. The pedestrian is more mobile and can turn on

a dime, whereas the car is a Dubins car [8]. In other words, the Homicidal Chauffeur

is a simple pursuit-evasion differential game where the car is faster, but is limited
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in its turn radius. This simple game introduced concepts such as Game of Kind,

Game of Degree, Barrier Surfaces, and a plethora of similar surfaces. Isaac’s work

was furthered by J. V. Breakwell [6], T. Merz [12], P. Bernhard [5], and countless

others. [10] is still used today as the baseline reference to Differential Games.

Although Isaacs introduced the Homicidal Chauffeur differential game, he did not

solve it for the entire state space. This was later completed by T. Merz in his Ph.D.

dissertation – see [12], but the dissertation document itself is not readily available to

the academic community at large. Seeing the lack of availability of this important

work, Lt. S. Coates took it upon himself to rework the complete solution to the

Homicidal Chauffeur for the classical parameters under the direction of his research

adviser Meir Pachter. This solution is contained in his M.S. thesis paper [7]. Albeit

the works of Coates and Merz provide a great in-depth analysis of the Homicidal

Chauffeur, Isaac’s work was the predominant reference in the strategies used to obtain

optimal solutions.

The study of optimal controls is closely related and often used within differential

games. Supporting optimal controls documentation used in this research include [11],

[18], and [17].

1.2 The Active Target Defense Differential Game (ATDDG)

The ATDDG is a newer differential game with similarities to the Homicidal Chauf-

feur differential game. The ATDDG is a pursuit-evasion differential game which in-

troduces a third player and removes the turn radius restrictions on the pursuer. This

game was developed by the Air Force Research Laboratory (AFRL) in collaboration

with AFIT, and is used to describe a 3-player engagement. In this game a hostile mis-

sile seeks to intercept a fleeing target aircraft. At the same time a defending missile,

with a goal of protecting the target aircraft, is launched to intercept the hostile missile.
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Recent conference papers from AFRL and AFIT on the subject include [9], [14], [15],

and [16]. The conference articles contained in this paper compliment the previous

work done at AFRL and AFIT.

The work in this thesis revolves around the ATDDG. As this is a current area of

research for AFRL, the worked performed within this thesis compliments the work

being performed without repeating or overlapping with their work. Originally, the

research being performed by AFRL focused primarily on the region where the Target

& Defender team will win if they play optimally, however, recently their focused has

changed to the region where the Attacker is guaranteed to win if he plays optimally.

The work done by AFRL primarily uses terminal distances between the players as the

performance functional. Instead, this work expands upon the ATDDG by consider-

ing heuristics, the barrier surface, and temporal based strategies. Doing so not only

strengthens the findings of AFRL, but also lends insight into how the barrier surface

affects the players. Furthermore, considering such strategies produces results that not

only lead to a Game of Kind win, but do so while simultaneously minimizing/maxi-

mizing time. The research presented herein seeks to add to what AFRL has already

learned, and dives into state-space regions of the ATDDG yet to be considered by

them.

1.3 Methodology

The research extensively used the methods presented in Isaacs in [10]. Strategies

were worked out on paper, and then simulated on a computer. MATLAB was the

primary software used to model the behaviors of the three actors, to build figures that

accurately portray outcomes, and to compare results in search of optimality. MAT-

LAB simulations also verified the predicted players’ behaviors from the developed

theory. Using MATLAB while developing the theory helped prevent false assump-
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tions and interpret complex state behaviors.

1.4 Overview

This thesis contains 3 separate, but related works studying different aspects of the

ATDDG.

Chapter II entails a heuristic analysis of the ATDDG in the region where the

attacking missile is guaranteed to win if he plays optimally – see [1]. This is done by

having players employ sets of strategies against each other in the MATLAB environ-

ment. For each strategy, performance is gauged by how close the target aircraft comes

to escaping. Of the strategies considered, the optimal strategies are discovered and

presented in the chapter. This represents an initial look into this region of play where

the attacking missile wins. When this work was undertaken, AFRL was focused on

the region of play where the target aircraft is guaranteed to escape given the target

and defending missile play optimally.

Chapter III analyzes the barrier surface separating the winning regions of the

attacking missile and the target aircraft and defending missile team – see [2]. The

barrier surface was introduced by Isaacs in [10] and was used to analyze the Homicidal

Chauffeur. This article uses the same idea presented by Isaacs and looks for optimal

strategies based on the barrier surface. In this chapter, both the Game of Kind and

the Game of Degree solutions are considered.

Chapter IV again analyzes the region where the attacking missile will win as long

as he plays optimally – see [3]. Like in the Homicidal Chauffeur differential game,

time is used as the performance functional. When research began on this aspect

of the ATDDG, AFRL and AFIT had just obtained a guaranteed capture strategy

for the attacking missile [16], but teh strategy did not use time as the performance

functional. By instead using time as the performance functional, not only is capture
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of the target aircraft by the attacking missile guaranteed, but it occurs in minimum

time. Therefore, using time as the performance functional satisfies the Game of Kind

win, but with the benefit of capture the target sooner. This paper also analyzes the

pursuit curve of the attacking missile.

This work is the culmination of 18 months spent at the Air Force Institute of

Technology (AFIT) researching differential games within the Autonomy and Naviga-

tion Center. During this time, three papers on the subject of differential games were

composed and submitted the three separate conferences. This thesis represents the

culmination of this work and the material includes three conference paper articles

preceded by an introduction and concluded with an overall summary.
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II. Heuristic Analysis]

2.1 Abstract

In this paper a zero-sum pursuit-evasion differential game involving three players is

considered. How game play changes when a third defending player assists the evader

by intercepting the pursuer is analyzed. Specifically, the game in the state-space

region where capture of the evader by the faster pursuer is nevertheless preordained

is addressed by evaluating the performance of heuristic strategies.

Nomenclature

A Attacker

D Defender

T Target

χ Attacker’s heading

ψ Defender’s heading

φ Target’s heading

xA Attacker’s x-position in reduced state space

xT Target’s x-position in reduced state space

yT Target’s y-position in reduced state space

α Speed ratio ,
Target’s Speed

Attacker’s Speed

xO Apollonius circle center x-coordinate

yO Apollonius circle center y-coordinate
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2.2 Introduction

The Homicidal Chauffeur is a classical differential game laid out in [10]. This game,

invented by Rufus Isaacs, entails a pursuer—modeled as a Dubins Car—who is trying

to minimize the time required to capture an evader—a pedestrian à la Isaacs—while

the evader is trying to maximize said time. It is a zero-sum differential game because

both players have the same performance functional with the only difference being one

seeks to minimize the performance functional while the other seeks to maximize it.

In the case of the Homicidal Chauffeur, the objective (performance functional)

is time. In Isaac’s example this is logical for the evader because he wants to avoid

being captured by the pursuer and if he can cause the performance functional to go

to infinity then he has succeeded. Another rational for maximizing this time may be

that help is on the way, and if he can hold out long enough, then he will survive. This

line of thinking can be extended to assume a nearby building being already present,

and the evader can escape the pursuer by entering the building before the pursuer

reaches him. In other words a third entity, or the concept of a sanctuary/building,

is introduced into the pursuit-evasion game. In this case of a pursuit/evasion game

with three entities, it is likely better for the evader to run to the building instead of

directly away from the pursuer. The evader’s objective here may change to minimize

his final distance from the building, with the hope that this distance will be zero

upon game termination. The pursuer would likewise seek to maximize this distance

to ensure capture. The game is now no longer about the time of capture, but instead

the maximization/minimization of the distance from the sanctuary when capture of

the evader occurs. Figure 1 illustrates the addition of a Safe Haven and the resulting

capture and escape scenarios.

This paper considers such a scenario, albeit instead of a pursuer, an evader, and a

building/static target, it deals with an Attacking missile, a dynamic Target aircraft,
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Figure 1. Pursuit/Evasion with Safe Haven

and a Defending missile, where the three players have simple motion à la Isaacs. This

work expands upon [15], where the Defender is tasked with intercepting the Attacker

before the latter intercepts the Target. Attention here however is given to the state-

space region where under optimal Attacker play the Target’s capture by the Attacker

is guaranteed. Thus, in this region of the state-space the performance functional

entails maximizing the distance between the Attacking and Defending missiles at ter-

mination for the Attacking missile, and minimizing the same for the Target-Defender

team.

2.3 Problem Statement

A hostile missile designated as the “Attacker” seeks to capture a fleeing “Target”

which can be thought of as an aircraft. A third player is introduced as a friendly

missile, or “Defender”, who seeks to intercept the Attacker before the Attacker in-

tercepts its Target. Therefore this is as an active target defense differential game

(ATDDG). This paper expands upon previous research [15] which investigated the

Re region of the state space where T will escape given the T & D team plays op-

timally. Here the situation is considered where the game evolves in the state-space

region Rc where, under optimal play of the Attacker, the capture of the Target is

preordained, irrespective of the Target-Defender team’s actions.
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Assumptions.

1. The Attacker, Target, and Defender have simple motion/are holonomic, à la

Isaacs – think of a Beyond Visual Range (BVR) engagement.

2. The Target’s speed is less than the Attacker’s. If this were not the case then

there would be no need for the Defender in the first place. Thus, the speed

ratio α , vT
vA

< 1 where vA and vT are the Attacker’s and Target’s velocities

respectively.

3. The Defender’s speed is the same as the Attacker’s: vD = vA; the A and D

missiles have similar capabilities.

4. Point capture is considered.

5. It is assumed that all players are aware of each other’s positions; this is a

differential game with complete information in which state feedback strategies

are sought.

Dynamics.

The state-space of the ATDDG can be represented by each of the players x and

y-coordinates in the realistic plane, creating a 6-state system. However the 6-state

system can be reduced to 3 states using a non-inertial, rotating reference frame by

pegging the x-axis to A and D’s instantaneous positions. The y-axis is the orthogonal

bisector of the AD segment. In this rotating reference frame the states are T’s x and

y-positions (xT , yT ) and A’s x-position xA. In this state space A’s y-coordinate will

always be 0 and D’s position will be (−xA, 0). This rotating reference frame is shown

overlaid on the realistic plane in Figure 2 where the A, T, and D players’ respective

headings χ, φ, and ψ are also indicated. Initially the rotating frame (x, y) is aligned

with the inertial frame (X, Y ).
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Figure 2. Rotating Reference Frame
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Using this rotating reference frame the state space is reduced to {(xA, xT , yT )|xA ≥

0, yT ≥ 0} ⊂ IR3 and the system dynamics in the reduced 3-D state space are

ẋA =
1

2
(cosχ− cosψ) , xA(0) = xA0 (1)

ẋT = α cosφ − 1

2
(cosψ + cosχ) − 1

2

yT
xA

(sinψ − sinχ) , xT (0) = xT0 (2)

ẏT = α sinφ− 1

2
(sinψ + sinχ) +

1

2

xT
xA

(sinψ − sinχ) , yT (0) = yT0 , 0 ≤ t ≤ tf (3)

Performance Functional.

The performance functional codifies the goals of A and the T & D team. Ul-

timately it is what they seek to minimize or maximize as the game evolves in the

state-space region Rc where, under optimal play by A, T’s capture is preordained.

Indeed, if A is solely concerned about minimizing the time to capture of T and

uses Pure Pursuit (PP) strategies, he may end up neglecting D’s impact on the

3-player game and forfeit his opportunity to intercept T. A should therefore also

be concerned with avoiding D while still guaranteeing T’s capture. This can be

accomplished by having A strive to intercept T as far away from D as possible, that

is, inhibit T’s possibility of escape.

Like A, the T & D team’s objective is also a function of the final distance of

A and D. Should T seek to instead maximize the time to capture without taking

D’s presence into account, he may very well be captured further away from D than

otherwise possible as shown in Figure 3. More importantly, by blindly running away

from A and not approaching D, he might forfeit the opportunity to escape should A

err. In order to produce an outcome that gives T a better chance of escape should A
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err, both D and T will strive to minimize the A to D distance, or distance from T

to the orthogonal bisector of AD, at termination/capture time.

For the example shown in Figure 3, A employed PP of T and T ran directly away

from A. This illustrates the outcome when T and A are myopically only concerned

with time to capture without regards to D’s presence in the region Rc.

Figure 3. Maximizing the Time to Capture Without Regards to D’s Presence

In view of these objectives we define the performance functional in Mayer form [11]

as

min
φψ

max
χ

J (4)

where J = xa(tf ) and termination at tf is determined by the state satisfying the

condition

[xA(tf )− xT (tf )]
2 + y2T (tf ) = 0
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Geometry.

The Apollonius circle is the locus of all points whose ratio of distances from two

fixed points, in this case A and T, is constant. The ratio of the line segments from T

and A to a point on the circumference of the Apollonius circle is the A-T speed ratio

α. The Apollonius circle is critical to understanding the two regions of play of which

the state space is partitioned: (1) Rc, where T is captured by A under optimal play

by A; (2) Re, where D intercepts A allowing T to escape. Should one of the player’s

err, the dynamic Apollonius circle also helps with understanding when the state, and

consequently play, shifts from A’s winning region Rc to the T & D team’s winning

region Re and vice versa.

Given the state of the game, that is the instantaneous positions of players A

and T, and the speed ratio parameter α, the center of the dynamic Apollonius circle

(xO, yO) is

xO =
1

1− α2
(xT − α2xA), yO =

1

1− α2
yT

with a radius of

ρ =
α

1− α2
d

where d =
√

(xT − xA)2 + y2T is the current distance from A to T.

State-Space Partition.

The state-space region where under optimal play A wins, in which T is captured,

is denoted by Rc and the state-space region where under optimal play the T & D

team wins, in which T escapes, is denoted by Re. As shown in [15], when xT > 0,

there is a minimum speed ratio ᾱ which guarantees escape for T assuming T and

D play optimally. This is attended by the Apollonius circle intersecting the y-axis.
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Given xA, xT , and yT , this critical speed ratio is

ᾱ =

√
(xA + xT )2 + y2T −

√
(xA − xT )2 + y2T

2xA
(5)

whereupon the Apollonius circle is tangent to the y-axis ≡ the orthogonal bisector of

the AD segment.

Thus, when xT is positive, the speed ratio parameter α defines the state-space

region Rc, which is A’s region of win in the reduced state-space,

Rc = {(xA, xT , yT )|xA > 0, xT > 0, yT ≥ 0,

x2A +
y2T

1− α2
− x2T
α2

< 0}

where under optimal play of A, the capture of T is guaranteed.

The T & D team region of win complements the state space and thus is

Re = {(xA, xT , yT )|xA ≥ 0, xT > 0, yT ≥ 0,

x2A +
y2T

1− α2
− x2T
α2
≥ 0}

∪ {(xA, xT , yT )|xA ≥ 0, xT ≤ 0, yT ≥ 0}

∪ {(xA, xT , yT )|xA = 0, xT ≥ 0, yT ≥ 0}

where under optimal play of T and D, T’s escape is guaranteed.

2.4 Analysis

The objective is to synthesize the players’ optimal state feedback strategies, that

is χ∗, ψ∗, and φ∗. Geometrically significant points, or rabbits, will be selected for

each player to chase in the rotating reference frame. Initially all players will pursue

selected rabbits followed by modifying a single player’s rabbit to see if it helps or
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hurts his objective. This process will be repeated until any deviation by any player

results in worse performance in terms of his objective. Rabbits are obviously dynamic

and will be updated at each time step.

The rabbit points considered herein which give rise to different heuristic strategies

of the A, T, and D players are

1. The Attacker’s instantaneous location A.

2. The Defender’s instantaneous location D.

3. The Target’s instantaneous location T.

4. The point on the circumference of the instantaneous Apollonius circle furthest

from A.

5. The instantaneous point of intersection of the line segment DO and the Apol-

lonius circle (where O is the center of the Apollonius circle).

6. The point on the instantaneous Apollonius circle closest to the y-axis (orthog-

onal bisector of AD).

7. The point described in 6, but mirrored across the y-axis: If D chases this rabbit

while A chases 6 then the (x, y) reference frame does not rotate.

8. The center of the instantaneous Apollonius circle.

The non-dimensional time step used to propagate the states forward in the numer-

ical integration of the closed-loop dynamics (1) - (3) is a fixed dt = 0.001. Integration

will cease when T enters A’s capture region of radius l = 1dt—this is considered

point capture—or when the state-space leaves the region Rc due to A deviating from

his optimal capture strategy.
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Figure 4. Dynamic Location of Rabbits

2.5 Experimentation

Two different kind of graphics will be used to illustrate the game play. The first

entails the state’s trajectory in the rotating reference frame according to the dynamics

in equations (1) - (3). The most important part of this figure is the movement of the

Apollonius circle. If at any time this circle contacts or intersects the y-axis during

the game, then at this time T has a guaranteed escape path should the T & D team

play optimally and thus the state exits the region Rc. T and D want to push this

circle as close to the y-axis as they can, in the hope that should A err at some time

during the game, then the Apollonius circle will intersect the y-axis and T will have

a path to escape; obviously T forgoes the maximization of his time to capture hoping

to escape altogether. At the same time A seeks to pull this circle away from the

y-axis to relentlessly make his likelihood of a successful pursuit more favorable.
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The additional figures shown in this paper are the players’ trajectories in the

realistic plane. This uses the control inputs of each player in the linear dynamics

which evolve in IR6. This is more intuitive than the reduced state space model as one

can see the interactions in a fixed reference frame. These figures will be comprised of

several subplots showing the development of the players’ trajectories over time, from

start to finish. Each figure will use the legend

In all scenarios, without loss of generality, A’s initial position is (1, 0) and conse-

quently D’s initial position is (−1, 0). T’s initial position is chosen to be (1.3, 1). So

the initial state is well within Rc, but close enough to Re that T can escape should

A employ a poor strategy.

Benchmark Scenario.

First we will look at the PP strategy where A chases T, T runs towards D, and

D pursues A. In terms of the aim points, A chases rabbit 3, T chases rabbit 2, and

D chases rabbit 1. Although one does not expect these to be the players’ optimal

strategies, this play is still significant as it is how players endowed with Artificial

Intelligence might behave.

As shown in Figure 5 the left hand side of the Apollonius circle is pulled further

into A’s side of the (x, y) plane, showing the possibility of T’s escape diminishing over

time. It is not intuitive what is actually happening from this Figure and therefore,
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Figure 5. PP: Trajectories in the Rotating Reference Frame
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Figure 6. PP: Trajectories in Realistic State Space

19



as previously stated, the results are also shown in the realistic plane. Figure 6 clearly

shows the game played out in this PP scenario. We see A has to curve around as T

moves by him following line of sight/PP; this is in fact endemic to PP. One would

expect A to perform better if he cut T off by predicting the interception point from

T’s trajectory, which can be referred to as Collision Course (CC) guidance. Likewise,

if T had a north component to his trajectory he may have been able to make it

further west than he did here. The results of applying these strategies illustrate the

dynamic nature of the game.

T & D Chase Same Rabbit.

In the pure pursuit scenario T and D chased different rabbits. Here T and D

will chase the same rabbit. Comparisons of the performance of different strategies

are presented in Table 1. This table will help narrow down the search for optimal

strategies. Dashes in the table represent the state exited the region Rc — T can

escape capture.

Table 1. Final Attacker-Defender Distance

HHHH
HHH

HHH
A

T & D
4 5 6 7 8

3 0.997 - - - 1.025

5 1.175 0.566 0.146 0.435 1.169

6 1.101 0.560 0.153 0.409 1.098

8 0.997 - - - 1.025

As is evident in Table 1, A performed poorly when chasing rabbits 3 and 8, which

often resulted in T having an escape chance. Only when T and D also chose bad

rabbits does an escape option fail to develop.
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Attention therefore shifts to strategies based on chasing rabbits 5, 6, and 7. The set

of strategies is sought where any deviation to A’s strategy decreases the terminal A-D

distance and where any deviation to T’s and D’s strategies increases the A-D terminal

separation. In other words any deviation by any player degrades their outcome in

terms of their performance functional, displaying a saddle point in strategic behavior.

We find this to be when all three players chase rabbit 6. Therefore this is the players’

optimal strategies from the pool of strategies considered in Table 1.

Rabbit 6.

As chasing rabbit 6 has been identified as the “optimal” strategy for each player,

the following provides insight on what is occurring when this strategy is adopted by

A, T, and D.

Figure 7 presents the state’s trajectory in the rotating reference frame and shows

the left hand side of the Apollonius circle coming nearly straight down, illustrating

neither side is improving their strategic position over time. Careful analysis of Figure

7, however, shows that the T & D team is able to push this edge a little closer to the

y-axis (orthogonal bisector of AD) in the final moments before capture. Since the

rabbit lies to the right of the AD orthogonal bisector, D must take a less northing

trajectory than A. This causes a slight rotation in the rotating reference frame, which

rotation increases in angular velocity as the A-D separation decreases. As the rotation

becomes noticeable in the final moments of play, rabbit 6 shifts slightly down the

Apollonius circle when viewed in the realistic state space. Thus, in the final moments

of play, D and T turn towards each other (as seen in Figure 8) and move the leftmost

point of the Apollonius circle slightly in their favor.

Although not shown in Figure 7, it is noteworthy that as the initial state ap-

proaches Re, but still is in Rc, this rotation in the endgame diminishes and all 3
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Figure 7. Rabbit 6: Dynamics in the Rotating Reference Frame

players’ trajectories become straight lines in the realistic state space. Should the left-

hand side of the Apollonius circle initially start right on the y-axis (when the state is

on the barrier surface separating Re and Rc), there would be no horizontal movement

for this point on the Apollonius circle and the (x, y) frame will cease to rotate.

Figure 8 shows the players traveling in straight lines until the final moments of

play when the heading of D compared to A begins to noticeably rotate the frame;

so, at long range the dynamics are simple. We see that these results closely resemble

the behaviors predicted in the Benchmark Scenario, that is, A attempts to cut off T

while T takes a northward trajectory in an attempt to avoid a path towards A.
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Figure 8. Rabbit 6: Dynamics in Realistic State Space
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Defender and Target Deviations.

To arrive at the Rabbit 6 strategies, the assumption was made that both T and

D chase the same rabbit. It has not been shown that T and D should both chase

rabbit 6 if allowed to chase separate rabbits. This can now be done by experimenting

with varying D’s rabbit while T follows rabbit 6 and then vice versa. If any rabbit

decreases the terminal AD distance when compared to rabbit 6, then rabbit 6 is not

the optimal strategy.

Table 2. Varying the Defender’s Strategy: Final Attacker-Defender Distance

HH
HHH

HHH
HH

A-T

D
4 5 6 7 8

6 0.236 0.349 0.153 0.249 0.342

Table 3. Varying the Target’s Strategy: Final Attacker-Defender Distance

HHH
HHH

HHHH
A-D

T
4 5 6 7 8

6 1.144 0.484 0.153 0.344 1.144

Both experiments show that the preferred “optimal” solution is the strategy that

chases rabbit 6, which is the leftmost point of the Apollonius circle.

2.6 Conclusion

This paper investigated “optimal” strategies in a 3-player pursuit-evasion differ-

ential game. It was shown that by using a set of plausible rabbits as stipulated in

the Analysis, the optimal strategy for each player is to pursue the leftmost point of
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the Apollonius circle, that is, strategy #6. This does make sense as it is the closet

point to the y-axis that T can reach given A is pursuing the same point. Should

A deviate from optimality then his payoff will decrease and therefore A shares the

same optimal aim point. D also pursues this aim point in a near straight line. In the

final moments D cuts in towards A rotating the frame and causing T to move more

towards D. This terminal maneuver allows T and D to end slightly closer than if the

two continued in a straight line. By comparing this work with [15] we see that the

choice of “optimal” strategies change when the Apollonius circle crosses the y-axis in

the rotating reference frame.

Future Work.

The analysis presented considers heuristic strategies. Finding a global optimal

solution cannot be accomplished using heuristics alone and therefore future work

includes, but is not limited, to the following:

1. Solve for the global optimal strategies using time as the performance functional

of the ATDDG in the Rc region.

2. Merging the optimal strategies in the Rc region with those in the Re region as

presented in [15].

3. Treating the ATDDG as a “Game-of-Kind” by more closely investigating the

barrier surface that separates the Rc and Re regions.
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III. Barrier Surface Analysis

3.1 Abstract

In this paper a zero-sum pursuit-evasion differential game involving three players,

an Attacker/Pursuer, a Target/Evader, and a Defender, is considered. The Defender

strives to assist the Target/Evader by intercepting the Attacker/Pursuer before the

latter reaches the Target. A barrier surface separates the winning regions of the

Attacker and Target-Defender team when employing optimal strategies. The game

in the Attacker’s region of win, where the Attacker captures the Target despite the

Defender’s best efforts, is investigated in this paper. Nested surfaces, one being the

barrier surface boundary, are constructed and behaviors are studied when barrier

surface strategies are employed to develop capture and evasion strategies.

3.2 Introduction

Consider the archetypal pursuit-evasion differential game in the Euclidean plane

where the players have simple motion à la Isaacs [10] and the pursuer is faster than

the evader. The pursuer’s optimal strategy entails pure pursuit (PP) while the evader

runs for his life. However, what if there was a safe haven region close by and the slower

evader could avoid being captured by the faster pursuer upon reaching the safe haven

before the pursuer reaches him? In other words, a third entity, or the concept of a

static sanctuary, is introduced into the pursuit-evasion game. In this case, rather than

striving to maximize the time-to-capture, it might be better for the evader to run to

the sanctuary instead of away from the pursuer. Consequently the evader’s objective

may change from striving to maximize the time-to-capture to minimizing the final

distance from the evader to the sanctuary at the time of capture, so that should the

pursuer err, this distance will be zero upon game termination and the evader will
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escape. The pursuer would likewise seek to maximize this distance to ensure capture.

Now the game of degree is no longer about the time of capture, but instead the

maximization/minimization of the distance from the sanctuary when capture of the

evader occurs. Such a game would be termed a “game of degree” because the goals

are the minimization and maximization of a performance functional. In the end, the

true objective of the pursuer and evader is to solve the “game of kind” in which case

there are only 3 discrete outcomes: (1) the evader is captured; (2) the evader safely

enters the sanctuary; (3) these two occur simultaneously and the outcome is a draw.

The state-space is therefore partitioned in accordance with these outcomes. Figure

9 illustrates outcomes 1 and 2, which are determined by whether the safe haven is

outside or inside the Pursuer(P)-Evader(E) Apollonius circle with center O. The third

outcome would have the safe haven on the Apollonius circle.

Figure 9. Safe Haven Example

This paper considers such a scenario, albeit instead of an evader, a pursuer, and

a static sanctuary set, it deals with an Attacking missile (A), a dynamic Target

aircraft (T), and a Defending missile (D). Therefore, this is an Active Target Defense

Differential Game (ATDDG) where the sanctuary is the Target and the roles of the

Attacker and Defender are assigned to the Evader and Pursuer respectively, which in

this paper are assumed to have equal speeds. This paper compliments the work in [15],

where the game is played in the T & D team’s region of win in which D intercepts A
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before the latter captures T under optimal play - see also [16]. In contrast, within this

work attention is given to the state-space region where under optimal Attacker play,

T’s capture by A is guaranteed despite the best efforts of the T & D team. Should

all parties employ their respective optimal strategies and the game terminate with all

three players co-located, it is a draw. A barrier surface B is thereby generated where

the state trajectories which end in a draw reside. The surface B therefore separates

the winning regions of A and of the T & D team. Since the focus in this paper is

on A’s winning region, this requires us to develop a strategy which guarantees that

A captures T, given the game is initiated within A’s capture region delimited by the

barrier surface B. This solves the game of kind in A’s region of win.

3.3 Problem Statement

The following 3-player pursuit-evasion differential game is considered.

A hostile missile designated as the “Attacker” seeks to capture a fleeing “Target”

which can be thought of as an aircraft. A third player is introduced, a “Defender”

missile, who seeks to intercept the Attacker before the latter intercepts the Target.

Assumptions.

1. The Attacker, Target, and Defender have simple motion/are holonomic, à la

Isaacs – think of a Beyond Visual Range (BVR) engagement.

2. The Target’s speed is less than the Attacker’s. If this were not the case then

there would be no need for the Defender. Thus, the speed ratio α , vT
vA

< 1

where vA and vT are the Attacker’s and Target’s velocities respectively.

3. The Defender’s speed is the same as the Attacker’s: vD = vA; the A and D

missiles have similar capabilities.
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4. Point capture is considered.

5. It is assumed that all players are aware of each other’s positions; this is a

differential game with complete information in which state feedback strategies

are sought.

Dynamics.

The state-space of the ATDDG can be represented by each of the players x and

y-coordinates in the realistic plane, creating a 6-state system. However the 6-state

system can be reduced to 3 states using a non-inertial, rotating reference frame by

pegging the x-axis to A and D’s instantaneous positions. The y-axis is the orthogonal

bisector of the AD segment. In this rotating reference frame the states are T’s x and

y-positions (xT , yT ) and A’s x-position xA. In this state space A’s y-coordinate will

always be 0 and D’s position will be (−xA, 0). This rotating reference frame is shown

overlaid on the realistic plane in Figure 10 where the A, T, and D players’ respective

headings χ, φ, and ψ are also indicated. Initially the rotating frame (x, y) is aligned

with the inertial frame (X, Y ).

Using this rotating reference frame the state space is reduced to {(xA, xT , yT )|xA ≥

0, yT ≥ 0} ⊂ IR3 and the 3-state system dynamics are

ẋA =
1

2
(cosχ− cosψ) , xA(0) = xA0 (6)

ẋT = α cosφ− 1

2
(cosψ + cosχ)− 1

2

yT
xA

(sinψ − sinχ) , xT (0) = xT0 (7)

ẏT = α sinφ− 1

2
(sinψ + sinχ) +

1

2

xT
xA

(sinψ − sinχ) , yT (0) = yT0 , 0 ≤ t ≤ tf (8)
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Figure 10. Rotating Reference Frame
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Geometry.

The Apollonius circle is the locus of all points whose ratio of distances from two

fixed points, say A and T, is constant. The ratio of the line segments from T and A

to a point on the circumference of the Apollonius circle is the A-T speed ratio α. The

Apollonius circle is critical to understanding the 2 regions of play: (1) Rc where T is

captured by A under optimal play by A; (2) Re where D allows T to escape. Should

one of the player’s err, the dynamic Apollonius circle also helps with understanding

when play shifts from A’s winning region Rc to the T & D team’s winning region

Re, and vice versa.

Given the state of the game, that is the instantaneous positions of players A and T

and the speed ratio parameter α, the center of the dynamic Apollonius circle (xO, yO)

is

xO =
1

1− α2
(xT − α2xA), yO =

1

1− α2
yT

with a radius of

ρ =
α

1− α2
d

where d =
√

(xT − xA)2 + y2T is the current distance from A to T.

State-Space Partition.

The state-space region where under optimal play A wins, in which T is captured,

is denoted by Rc and the state-space region where under optimal play the T & D

team wins, in which T escapes, is denoted by Re. As shown in [15], when xT > 0,

there is a minimum speed ratio ᾱ which guarantees escape for T assuming T and

D play optimally. This is attended by the Apollonius circle intersecting the y-axis.
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Given xA, xT , and yT this critical speed ratio is

ᾱ =

√
(xA + xT )2 + y2T −

√
(xA − xT )2 + y2T

2xA
(9)

whereupon the Apollonius circle is tangent to the y-axis ≡ the orthogonal bisector of

the AD segment.

Thus, when xT is positive, the speed ratio parameter α defines the state-space

region Rc, which is A’s region of win in the reduced state-space,

Rc = {(xA, xT , yT )|xA > 0, xT > 0, yT ≥ 0, x2A +
y2T

1− α2
− x2T
α2

< 0}

where under optimal play of A, the capture of T is guaranteed.

The T & D team region of win complements the state space and thus is

Re = {(xA, xT , yT )|xA ≥ 0, xT > 0, yT ≥ 0, x2A +
y2T

1− α2
− x2T
α2
≥ 0}

∪ {(xA, xT , yT )|xA ≥ 0, xT ≤ 0, yT ≥ 0}

∪ {(xA, xT , yT )|xA = 0, xT ≥ 0, yT ≥ 0}

where under optimal play of T and D, T’s escape is guaranteed.

The Barrier Surface.

By treating the three-player differential game as a game of kind, we analyze the

possible discrete outcomes of the game. In contrast, a game of degree focuses on

maximizing or minimizing a cost functional. The possible outcomes for the game of

kind are

1. T is captured by A

2. A is intercepted by D and T escapes

32



3. A, T, and D all meet at the same moment, resulting in a draw

The barrier B is the surface which separates the regions Rc and Re and therefore

is

B = {(xA, xT , yT )|xA ≥ 0, xT ≥ 0, yT ≥ 0, x2A +
y2T

1− α2
− x2T
α2

= 0}

Although the argument may be made that the barrier surface should not include the

origin, treating it as such would also exclude the plane xA = 0 from the region Re

and the line {xa = xT , yt = 0} from the region Rc. Therefore the origin is considered

part of the barrier surface.

Should all players play optimally within the state space, the winner can be deter-

mined by the side of the surface B of which the initial state lies. Nevertheless, if any

of the players fails to play optimally when the initial state lies in his winning region,

then the opposing player(s) can take advantage of this by pulling the state across B

into their winning region. For example, should A fail to play optimally in Rc, the T

& D team could pull the state across the surface B into Rc or to the plane xA = 0

which is conducive to T’s escape. The game of kind thus becomes each player pulling

the state in the direction of his respective winning region. Should the initial state lie

in his winning region, then he would pull deeper into his region, but should the initial

state not be in his winning region, then he would pull towards his winning region.

The deeper any player can pull the state into his winning region the more likely he

will win, for if at some future point in time he does err, then he has established a

buffer within his region. From here, the differential game transitions from a game of

kind to a game of degree as each player tries to maximize/minimize the state’s depth

within the current winning region. The overarching goal for each player, however, is

still to have the final state located in his winning region. The game of degree in Re

has been solved in [15]. The player’s push and pull forces are in equilibrium when

the state is and remains on B, the boundary separating Re and Rc. Should the ini-
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tial state be on B, players will want to align their controls to pull in the direction

normal to B. As is always the case on a barrier surface, the T & D team will pull in

the direction ~n which is normal to the surface B pointing into the region Re and A

will pull in the direction of −~n. This results in each player pulling directly into his

winning region. Employing these strategies will prevent the state from leaving the

surface B and eventually the game will end in a draw. Should a player err he will

lose his advantage and the state will penetrate the barrier surface B and enter the

opposing team’s winning region.

Indeed, the normal to the surface B, ~n, is

~n = (xA,−
xT
α2
,

yT
1− α2

)

With both teams pulling normal to the surface, albeit in opposite directions, and the

state remaining on B, the minimax equation is

max
φ,ψ

min
χ

(
~n · ~f

)∣∣∣∣
B

= 0 (10)

where

~f =


ẋA

ẋT

ẏT


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is the state’s velocity vector. Performing the minimax operation we obtain

sinφ =
α

1−α2yT√
1
α2x2T + α2

(1−α2)2
y2T

, cosφ = −
1
α
xT√

1
α2x2T + α2

(1−α2)2
y2T

sinψ =
sign(xT − α2xA)

(
1

1−α2
yT
xA

)
√

1 + 1
(1−α2)2

y2T
x2A

, cosψ =
sign(xT − α2xA)√

1 + 1
(1−α2)2

y2T
x2A

sinχ =
1

1−α2
yT
xA√

1 + 1
(1−α2)2

y2T
x2A

, cosχ = − 1√
1 + 1

(1−α2)2
y2T
x2A

By focusing on surfaces {(xA, xT , yT )|xA ≥ 0, xT > 0, yT ≥ 0, x2A +
y2T

1−α2 −
x2T
α2 =

c} ⊂ Rc where c ≤ 0, we see that the expression (xT − α2xA) is always non-negative

and we therefore obtain the state feedback strategies

sin φ̃ =
α

1−α2yT√
1
α2x2T + α2

(1−α2)2
y2T

, cos φ̃ = −
1
α
xT√

1
α2x2T + α2

(1−α2)2
y2T

sin ψ̃ =
1

1−α2
yT
xA√

1 + 1
(1−α2)2

y2T
x2A

, cos ψ̃ =
1√

1 + 1
(1−α2)2

y2T
x2A

sin χ̃ =
1

1−α2
yT
xA√

1 + 1
(1−α2)2

y2T
x2A

, cos χ̃ = − 1√
1 + 1

(1−α2)2
y2T
x2A


(11)

which we refer to as barrier strategies ∼. Because on the surface B (where c = 0)

these ∼ strategies allow both the T & D team to prevent A from entering Rc and

A to prevent the T & D team from entering Re, B is a semipermeable surface. By

employing these strategies along B both sides will pull equally along the respective

surface normals and the straight-line trajectory will stay on B, eventually terminating

at the origin and the game resulting in a draw without the state ever leavingB. Should

a player not execute his ∼ strategy, the state will leave B to his disadvantage.

Figure 11 illustrates paths which the state will take in the reduced state space

when the ∼ strategies are employed on B and on the plane yT = 0. All paths on B
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show the differential game ending in a draw as xA = xT = yT = 0 at termination time

tf . Also included are the PP paths that will be taken should the state initially lie on

the yT = 0 plane. This plane becomes more important as we consider the family of

nested surfaces in Rc where A can pull the state to the plane yT = 0 and capture T

using PP.

Figure 11. Flow Field on the Barrier Surface and the Plane yT = 0

Figure 12 illustrates the trajectories of the players on B in the realistic plane when

employing the ∼ strategies. Note how the dynamic Apollonius circle is tangent to

the orthogonal bisector of the AD segment, and that all three players head for the

point of tangency resulting in a draw.
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Figure 12. Barrier Surface Action in the Realistic Plane
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Nested Surfaces in Rc.

Should the initial state not lie on B, a nested surface can be constructed in Rc on

which the state lies. Nested surfaces in Rc, parameterized by c < 0, are of the form

Sc = {(xA, xT , yT )|xA > 0, xT > 0, yT ≥ 0, x2A +
y2T

1− α2
− x2T
α2

= c}

where the parameter c < 0 yields surfaces in the region Rc, and c = 0 is the barrier

surface boundary B. Following the same process used to find the ∼ strategies, where

opposing players are in equilibrium on B, yields the exact same strategies for the

surfaces Sc. Because the R.H.S of equation (10) for B is equal to zero, the state will

adhere to the barrier surface B when both sides pull in opposite directions, exerting

maximal effort. We likewise need to investigate the dynamics on the surface Sc where

c 6= 0 as both sides pull in opposite directions normal to the surface Sc, c < 0. Thus,

by inserting strategies (11) into the L.H.S. of equation (10), that is the state is on a

surface Sc and the ∼ strategies are used, we get

√
α2

(1− α2)2
y2T +

1

α2
x2T −

√
y2T

(1− α2)2
+ x2A (12)

Now if the state is on a surface Sc,

x2T
α2

= x2A +
y2T

1− α2
− c

and by inserting this into eq. (12) we get

√
y2T

(1− α2)2
+ x2A − c−

√
y2T

(1− α2)2
+ x2A (13)

When c = 0, the expression in eq. (13) is 0. Because c = 0 means the state is

38



on B, this implies the state will stay on B for c = 0. Clearly this does not hold true

on the surfaces Sc where c < 0. When c < 0 the expression (13) will be positive and

since the T & D team is maximizing while A is minimizing, the positive result infers

the pull towards Re is larger than the pull into Rc. This occurs despite A’s best

effort when playing the barrier strategy ∼ to not let the states slip any closer to the

region Re. Therefore if play is within the region Rc and the T & D team plays the ∼

strategy, that is, their respective strategies as shown in (11), then there is nothing A

can do to prevent the state from rising off a surface Sc and approaching the barrier

surface B from below. The exact opposite of this is seen in Re where c > 0, in which

case there is nothing the T & D team can do to stop the state from approaching B

from above if A is playing the ∼ strategy.

The family of nested surfaces Sc in Rc and the barrier surface B are illustrated in

Figure 13.

3.4 Analysis

Barrier Surface .

Because B is a semipermeable surface, applying the ∼ strategies (11) from any

initial state on B will result in the state remaining on B. All trajectories are straight

lines and converge at the origin, ultimately resulting in the cost/payoff in the ATDDG

being zero. Figure 14 illustrates this behavior as the trajectory is seen moving down

the barrier surface B until T is captured by A and A is met simultaneously by D at

the origin: xA = 0, xT = 0, yT = 0. This result is further illustrated in Figure 15

where the dynamic Apollonius circle is seen sliding down the y-axis in the reduced

state space. This demonstrates that by having both A and the T & D team play

their barrier strategies on B neither side is able to gain the advantage. Note that the

(x, y) frame of the reduced state space is not rotating.
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Figure 13. Nested Surfaces Sc ⊂ Rc in the Reduced State Space
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Figure 14. Barrier Surface and a Typical Trajectory
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Figure 15. The Players’ Barrier Surface Trajectories in the Reduced State Space
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Figure 16. Players’ Trajectories in the Realistic Plane when Employing ∼ Strategies
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To better visualize the dynamics in the realistic plane, Figure 16 is included. This

shows each player pursuing a fixed aim point in a straight line which is co-located

with the leftmost point of the Apollonius circle and which is the point of tangency

of the circle with the y-axis. This point is the farthest left T can go before being

captured by A, should A play optimally. The paths shown are the optimal paths in

the ATDDG and the minimal cost/maximal payoff is zero.

Nested Surfaces in Rc.

Consider the surfaces Sc where c < 0, for example S−0.38 ⊂ Rc. It was previously

shown that when c < 0, the ∼ strategies (11), cause the state to rise off of Sc

and approach B. Figure 17 shows that despite A’s best effort to pull the state

Figure 17. State’s Trajectory when Employing ∼ Strategies. Initial State is on the
Surface S−0.38 ⊂ Rc.
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under the surface Sc (A plays the ∼ strategy), the state lifts off the surface S−0.38

towards the barrier surface B, and T ultimately escapes by virtue of the fact that

the xA component of the state reaches 0 before yT = 0; had the state reached the

surface yT = 0 while xA > 0, the ∼ strategy would have automatically turned into

PP and T would be captured. Thus the state never reaches the interception line

xA = xT , yT = 0. T escapes because as limxA→0, A actually comes under the control

of D: Because A and D have equal velocity and simple motion, A will not truly be

captured by D. Instead, A will be forced by D to flee directly away from D as any

deviation would cause A to immediately be captured by D. When A is taken over by

D in this manner, the T & D team has won because T can simply sidestep A and

forever afterwards be free from the threat of A, as the latter is controlled by D. In

other words, A has been eliminated from the game.

Figure 18 and Figure 19 illustrate the player’s trajectories in the rotating and

realistic planes respectively and provide further insight into T’s escape. As shown,

this scenario is terminated when D meets A, even though the state never enters the

region Re above the surface B; but then, recall that the plane xA = 0 is in Rc. By

having A employ the ∼ strategy on surfaces where c < 0, A becomes suicidal by

ultimately passing by T only to collide with D on the plane xA = 0, whereupon A

comes under D’s control, and T can escape. An exception in Rc where A is able to

capture T by playing the ∼ strategy is when yT (0) = 0 and xT (0) < xA(0). Here, A

only captures T by playing the ∼ strategy because he collides with T while pursuing

the point (0, 0), which is the collision point of A’s and D’s trajectories.

In summary, when all players employ the ∼ strategy on surfaces Sc ⊂ Rc where

c < 0, yT does not reach zero until tf at which time xA = 0. Should yT reach zero

before tf , then A could guarantee its capture of T by employing PP in an end game.

Had A’s position been shifted ever so slightly rightward then yT would have reached
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Figure 18. Players’ Trajectories and Dynamic Apollonius Circle when Employing ∼
Strategies in the Reduced State Space. Initial State is on the Surface S−0.38.
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Figure 19. Players’ Trajectories when Employing ∼ Strategies in the Realistic State
Space. Initial State is on the Surface S−0.38.
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zero and T’s capture would be guaranteed by A employing PP in the end game after

yT = 0 is reached. But when A plays the ∼ strategy, yT = 0 is not reached before

xA = 0 is reached.

In conclusion, the barrier strategy ∼ is not a capture strategy in Rc; by A playing

the barrier strategy ∼ in Rc, A cannot bring about the capture of T.

Nested Surfaces in Re.

Consider the surfaces Sc where c > 0, for example the surface S1 ⊂ Re. Here we

also see the state departs from the surface S1. However, the difference here is that

now the minimax in eq. (10) is negative and thus the state falls off the surface S1

and approaches the region Rc. We see this happen in Figure 20 where, despite the T

& D team’s best efforts, the state sinks towards the surface S0 thus approaching the

Rc region. Unlike the S−0.38 analysis, T does not appear to be suicidal, but foolish,

since the ∼ strategy makes him approach the orthogonal bisector when he could easily

cross over where xT is negative, thus guaranteeing his survival. This foolish trajectory

is shown in Figures 21 and 22. Obviously T and D should not employ the barrier

strategy ∼ in Re, but should play their optimal * strategies provided by the solution

to the ATDDG in Re – see [15]. T

The barrier strategies are not good strategies in either Rc or Re, except for on the

barrier surface B.

Barrier Strategies against Optimal Strategies.

The players’ optimal strategies * for the region Re have been derived in [15] where

the ATDDG was solved: The T & D team strives to maximize the A-T separation

at the time instant when A is met by D while A strives to minimize said distance.

In light of the discovered ∼ strategies, the question arises of what will happen should
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Figure 20. State’s Trajectory when Employing ∼ Strategies. Initial State is on the
Surface S1 ⊂ Rc.
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Figure 21. Players’ Trajectories and Dynamic Apollonius Circle when Employing ∼
Strategies in the Reduced State Space. Initial State is on the Surface S1.
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Figure 22. Players’ Trajectories when Employing ∼ Strategies in the Realistic State
Space. Initial State is on the Surface S1.
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a ∼ strategy be used against a * strategy. As [15] uses the distance between T and

the point where D intercepts A as the performance functional A, the * strategy is

a guaranteed escape strategy within the region Re. If A plays the ∼ strategy while

T and D play * strategies, then A should be unable to pull the state from Re into

Rc. If this is not always the case, then the * strategies are not guaranteed escape

strategies in the region Re.

With initial conditions {xa(0) = 1, xt(0) = 1, yt(0) = 1 } and speed ratio

α = 1√
2
, the state is in the region Re. Figure 23 shows the comparison of A using

the * strategy vs the ∼ strategy while the T & D team employs their * strategies.

This figure illustrates the separation that occurs from the initial surface S1 as time

progresses. It was previously shown that should A play the ∼ strategy within Re that

the state will fall off the initial surface and approach S0. Therefore the separation seen

in Figure 23 is in the direction of S0, the barrier surface B. For the majority of the

calculations, the ∼ strategy outperforms the * strategy in terms of pulling the state

towards the barrier surface B. However, this advantage is lost in the final moments of

play/end game. In fact, there is a correlation of when the seperation distance changes

from concave up to concave down and when T crosses the orthogonal bisector. From

this analysis it appears A can pull the states even closer to S0 by using the ∼ strategy

while xT > 0, and then switching to the * strategy when xT ≤ 0. Unfortunately, this

gain will approach zero as Sc → S0 as will be shown in Figure 24.

Even though Figure 23 ended with A’s * strategy outperforming the ∼ strategy in

terms of final separation distance from the original surface, the ∼ strategy performed

better for the majority of the scenarios investigated indicating further analysis is

required. Figure 24 shows the separation from Sc when the state is just barely in Re.

Here the two strategies appear to be the same and having A play the ∼ strategy does

not cause the state to enter Rc. This supports the claim that the * strategy obtained

52



Figure 23. A’s * and ∼ Strategies in Region Re. T and D play their * Strategies with
initial conditions {xa(0) = 1, xt(0) = 1, yt(0) = 1}.
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by solving the game of degree is a guaranteed escape strategy within the region Re

as not even the ∼ strategy pulling normal to the surface can bring the state into the

Rc region.

This guaranteed escape strategy so should come as no surprise because the value

function supplied by the solution of the game of degree, by construction, serves the

purpose of a Lyapunov function in the game of kind. In general, embarking on the

solution of the game of degree without first due regard to the game of kind might, as

a byproduct, yield the solution to the game of kind if one was successful in solving

the game of degree. This is a plausible strategy for addressing the game of kind.

Figure 24. A’s * and ∼ Strategies in Region Re. T and D Play * Strategies with initial
conditions {xa(0) = 1, xt(0) = 1.2247, yt(0) = 1}.
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The Game of Kind in Rc: Synthesizing a Capture Strategy for A.

Clearly the players’ ∼ strategies failed to guarantee either capture of T in the

Rc region, or escape of T in the Re region. However, analysis of these strategies

illustrates that within Rc, A was able to interpose himself between D and T, albeit

not until tf when xA(tf ) = 0. Had the strategy also provided A avoidance of D s.t.

xA(tf ) > 0 when yT (tf ) = 0, then he could guarantee the capture of T. Likewise, had

T been slightly more attracted to D, xT would have turned negative because T would

cross the orthogonal bisector and guaranteed his escape instead of just approaching

the yT axis as xA → 0.

Here the first case is addressed, that is, A’s capture of T in the region Rc.

A can modify his strategy to avoid D by establishing a level of avoidance depen-

dent on his distance from D. If D is far away he will not worry about this threat,

but if he is close to D then he will strongly avoid D. This can be accomplished by

using a parameter β = ε
xA

where β determines the degree of avoidance of the plane

xA = 0 and ε determines how close A will actually get to D. The ε value is strongly

dependent on the distance of the leftmost point of the Apollonius circle from the

orthogonal bisector. If this distance is large, then ε can be large and A will strongly

avoid D. If this distance is small, then A will need to keep ε small enough to allow

him to interpose himself between D and T. As the leftmost point of the Apollonius

circle reaches the orthogonal bisector and T is nearly able to escape, ε will become 0

and there will be no D avoidance employed by A; in short, the ∼ strategies will be

used.

Although the inclusion of the parameter β represents a modification to A’s ∼

strategy in order to avoid D, because D would expect A not to be suicidal, he can

assume A would employ an avoidance strategy. Therefore β affects how both A and

D behave. This is modeled into our reduced 3-state system as ‘leaning’ towards xA
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when compared with the normal ~n to a surface Sc, c < 0. This new vector is

~̄n = ~n− β
(

1, 0, 0

)
, β > 0

and we can find our new strategies ∼̄ using the same process as the ∼ strategies,

replacing ~n with ~̄n in eq. (10). These modified state feedback ∼̄ strategies, parame-

terized by β, are

sin φ̃ =
α

1−α2yT√
1
α2x2T + α2

(1−α2)2
y2T

cos φ̃ = −
1
α
xT√

1
α2x2T + α2

(1−α2)2
y2T

sin ψ̃ =
1

1−α2

(
1
α2xT − xA

)
yT
xA√

1
(1−α2)2

(
1
α2xT − xA

)2 y2T
x2A

+
(

1
α2xT − xA + β

)2
cos ψ̃ =

1
α2xT − xA + β√

1
(1−α2)2

(
1
α2xT − xA

)2 y2T
x2A

+
(

1
α2xT − xA + β

)2
sin χ̃ =

1
1−α2

(
1
α2xT + xA

)
yT
xA√(

1
α2xT + xA − β

)2
+ 1

(1−α2)2

(
1
α2xT + xA

)2 y2T
x2A

cos χ̃ = −
1
α2xT + xA − β√(

1
α2xT + xA − β

)2
+ 1

(1−α2)2

(
1
α2xT + xA

)2 y2T
x2A

Note that only the A and D strategies are modified by the (∼̄) strategies; T’s strategy

is left the same as before, ∼, as expected.

In summary, the ∼̄ strategy of A is designed to initially let him interpose himself

between D and T since ∼̄ ≈ ∼. Then as the A-D separation decreases the β effect

kicks in and since A now lies between T and D, the β effect drives A straight for T.

Indeed, if A allows the A-D separation 2xA to become too small, D can rotate the
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orthogonal bisector of the AD segment in the direction of T by heading in a direction

normal to the segment AD. This will allow T to escape.

Exercising the ∼̄ Strategy of A.

These modified strategies are now implemented for cases where ε is set appropri-

ately and where ε is set too large. These cases will be ε = 0.001 and ε = 1.

Figure 25 shows trajectories for the ε = 0.001 case. The final window shows a

zoomed in plot of how A inserts itself between T and D in the end game, where the

Xs represent each player’s position at tf . In fact, for a time A runs towards D, but

once it reaches a certain proximity to D, dependent on β, it turns tail and heads to

intercept T. At this switch point the players are co-linear and A simply uses PP to

capture T. This PP scenario follows the optimal flow diagram of Figure 11 on the

yT = 0 plane. It is crucial that ε is set to allow these points to become co-linear,

otherwise T may still be able to escape.

Figure 26 shows trajectories for the ε = 1 case. Here we see that T is able to

escape and termination occurs as the left-hand side of the Apollonius circle reaches

the orthogonal bisector as shown in Figure 27. We also see in the final window of

Figure 26 that A begins avoiding D too soon and as a result misses his opportunity

to insert himself between T and D. If the state was deeper in the region Rc then

perhaps this ε value would guarantee capture of T; however, for this initial state it

is a poor choice of ε.

From this analysis we see that if A is able to insert himself between T and D so

that the points D, A, and T become co-linear, then he has guaranteed his capture of

T. PP of T happens automatically when A becomes sufficiently close to D as set by

β. Borderline cases should be further analyzed to ensure that unexpected behavior

from the T & D team won’t thwart A’s strategy.
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Figure 25. Player’s Trajectories Using ∼̄ Strategies with ε = 0.001 in the Realistic Plane
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Figure 26. Players’ Trajectories in the Realistic Plane when using ∼̄ Strategies with
ε = 1
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Figure 27. Players’ Trajectories in the Reduced State Space when using ∼̄ Strategies
with ε = 1
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In this paper the focus is on A’s region of win, Rc. Since optimal strategies for the

region Re have already been presented in [15], guaranteed strategies for this region

are not discussed here in detail.

3.5 Conclusion

The capture of a Target by an Attacker in the presence of a Defender in a 3-

player pursuit-evasion differential game was investigated. A barrier surface B was

constructed which separates the regions of win of the Attacker and the T & D team.

It was seen that for initial states on the barrier surface B when all players employ

their respective barrier strategies, the state will follow the barrier surface B down

and ultimately result in a draw. As B separates the regions Rc (where T will be

captured) and Re (where T is able to escape), no player is able to gain an advantage

and we see an equilibrium emerge for this unique case. This is the optimal solution

along B of the ATDDG.

For states on surfaces Sc where c 6= 0 we saw trajectories that certainly are not

optimal solutions in a game of degree, but the attendant ∼ strategies are of interest as

they were derived from the barrier strategies. For both c < 0 and c > 0 we saw that

the barrier strategies positioned the players to have opportunities of win, although

continuing with the barrier strategies to tf , where xA = 0, ultimately led to their

demise. By modifying the ∼ barrier strategies in Rc where c < 0 to derive the ∼̄

strategies, we saw that A was able to maintain a safe distance from D to ensure

capture of T, provided an appropriate ε value was used. Because ε being assigned

larger values can cause A to avoid D too early before interposing himself between T

and D, to synthesize A’s capture strategy in Rc it is best to set ε as small as possible.
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IV. Time Optimization Analysis

4.1 Abstract

A pursuit-evasion differential game involving three players, an Attacker/Pursuer,

a Target/Evader, and a Defender, is considered. The Defender strives to assist the

Target/Evader by intercepting the Attacker/Pursuer before the latter reaches the

Target. A barrier surface separates the winning regions of the Attacker and Target-

Defender team when employing optimal strategies. The game in the Target-Defender

team’s region of win has previously been addressed under the header of active target

defense. In this paper, the game in the Attacker’s region of win where the Defender

cannot preclude the Attacker from capturing the Target, given that the Attacker plays

optimally, is investigated.

4.2 Introduction

Consider the archetypal pursuit-evasion differential game in the Euclidean plane

where the players have simple motion à la Isaacs [10] and the pursuer is faster than the

evader. The pursuer’s optimal strategy entails Pure Pursuit (PP) while the evader

runs for his life. However, what if there was a safe haven region/static sanctuary

close by, and the slower evader could avoid being captured by the faster pursuer upon

reaching the safe haven before the pursuer reaches him? In this case the evader can

run to the safe haven instead of running for his life. Should he arrive at the safe haven

before the pursuer reaches him, then the pursuer has lost and the time to capture

goes to infinity. Whether or not the evader can reach the safe haven depends on the

speed ratio of the pursuer and evader. The state space is therefore partitioned as to

whether or not the evader can reach the safe haven – see Figure 28.

This paper considers such a scenario, albeit instead of an evader, a pursuer, and
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Figure 28. Safe Haven Scenarios

a safe haven/static target set, it deals with an Attacking missile (A), a Defending

missile (D), and a dynamic Target aircraft (T). Therefore, this is an Active Target

Defense Differential Game (ATDDG) where the sanctuary is the Target and the roles

of the Attacker and Defender are assigned to the evader and pursuer respectively.

This paper compliments the work in [15], where the game is played in the T & D

team’s region of win in which D intercepts A before the latter captures T under

optimal play - see also [16]. In contrast, within this paper attention is given to the

state-space region where under optimal Attacker play, T’s capture by A is guaranteed

despite the best efforts of the T & D team. Concurrent work is analyzing this region,

using the final Defender-Target separation distance as the performance functional [9].

This paper will instead develop strategies with time as the performance functional.

It is shown that A’s PP strategy is not globally optimal in his region of win. The

subset of A’s region of win where PP is the optimal strategy is characterized while

escape from PP in the compliment of this region is demonstrated.

4.3 The Active Target Defense Paradigm

The following 3-player pursuit-evasion differential game is considered. A hostile

attacking missile A seeks to capture a fleeing target T which can be thought of as an

aircraft. A third player, a defending missile D, is introduced who seeks to intercept
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A before the latter intercepts T.

Assumptions.

1. A, T, and D have simple motion/are holonomic, à la Isaacs – think of a Beyond

Visual Range (BVR) engagement.

2. T’s speed is less than the A’s. If this were not the case then there would be no

need for D. Thus, the speed ratio α , vT
vA
< 1 where vA and vT are A’s and T’s

velocities respectively.

3. D’s speed is the same as A’s: vD = vA; the A and D missiles have similar

capabilities.

4. It is assumed that all players are aware of each other’s positions; this is a

differential game with complete information where state feedback strategies are

sought.

Dynamics.

The state space of the ATDDG encodes each of the players’ positions in the

realistic plane (X, Y ), creating a 6-state system. However the 6-state system can be

reduced to 3 states using a non-inertial, rotating reference frame by pegging the x-axis

to A’s and D’s instantaneous positions. The y-axis is the orthogonal bisector of the

AD segment. In this rotating reference frame, the states are T’s x and y-positions

(xT , yT ) and A’s x-position xA. A’s y-coordinate will always be 0 in this state space

and D’s position will be (−xA, 0). This rotating reference frame is shown overlaid on

the realistic plane in Figure 29 where the A, T, and D players’ respective headings

χ, φ, and ψ are also indicated. Initially the rotating frame (x, y) is aligned with the

inertial frame (X, Y ).
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Figure 29. Rotating Reference Frame
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Using this rotating reference frame (x, y) the state space is {(xA, xT , yT )|xA ≥

0, yT ≥ 0} ⊂ IR3 and the 3-state system nonlinear dynamics are

ẋA =
1

2
(cosχ− cosψ)

ẋT = α cosφ− 1

2
(cosψ + cosχ)− 1

2

yT
xA

(sinψ − sinχ)

ẏT = α sinφ− 1

2
(sinψ + sinχ) +

1

2

xT
xA

(sinψ − sinχ)

Geometry.

The Apollonius Circle is the locus of all points whose ratio of distances from two

fixed points, say A and T, is constant. The ratio of the line segments from A and T

to a point on the circumference of the Apollonius circle is the A-T speed ratio α. The

Apollonius circle is critical to understanding the 2 regions of play: (1) Rc where T is

captured by A under optimal play by A; (2) Re where D allows T to escape. Should

one of the player’s err, the dynamic Apollonius Circle also helps with understanding

when play shifts from A’s winning region Rc to the T & D team’s winning region

Re, and vice versa.

Given the state of the game, that is the instantaneous positions of players A and

T and the speed ratio parameter α, the center (xO, yO) of the dynamic Apollonius

circle is

xO =
1

1− α2
(xT − α2xA), yO =

1

1− α2
yT (14)

with a radius of

ρ =
α

1− α2
d (15)
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where d =
√

(xT − xA)2 + y2T is the current distance from A to T.

State-Space Partition.

The state-space region where under optimal play A wins is denoted by Rc and the

state-space region where under optimal play the T & D team wins is denoted by Re.

As shown in [15], when xT > 0, there is a minimum speed ratio ᾱ which guarantees

escape for T assuming T and D play optimally. This is attended by the Apollonius

Circle intersecting the y-axis, which was previously defined as the orthogonal bisector

of the AD segment – see Figure 30. Given xA, xT , and yT , this critical speed ratio is

Figure 30. The A-T Apollonius Circle Escape a) and Capture b) Regions

ᾱ =

√
(xA + xT )2 + y2T −

√
(xA − xT )2 + y2T

2xA

whereupon the Apollonius circle is tangent to the y-axis.

Thus, when xT (0) is positive, 0 ≤ α < ᾱ defines the state-space region Rc yielding
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A’s region of win in the reduced state space,

Rc = {(xA, xT , yT )|xA > 0, xT > 0, yT ≥ 0, x2A +
y2T

1− α2
− x2T
α2

< 0}

where under optimal play of A, the capture of T is guaranteed.

The T & D team region of win

Re ={(xA, xT , yT )|xA ≥ 0, xT > 0, yT ≥ 0, x2A +
y2T

1− α2
− x2T
α2
≥ 0}...

... ∪ {(xA, xT , yT )|xA ≥ 0, xT ≤ 0, yT ≥ 0}...

... ∪ {(xA, xT , yT )|xA = 0, xT ≥ 0, yT ≥ 0}

complements the state space where under optimal play of T and D, T’s escape is

guaranteed. This paper focuses the game in on A’s winning region, Rc.

State-Space Partition from a Different Angle.

It is typical to only consider the A and T-based Apollonius circle in the ATDDG.

This provides a clear method to visualize which winning region the state is in: Simply

put, if the Apollonius circle intersects the orthogonal bisector of the AD segment, then

T is able to escape since D intercepts A before the latter captures T, otherwise T will

be captured assuming all players play optimally. By instead shifting the perspective

to T escaping by achieving protection by D, an alternative escape mechanism is

revealed.

Consider a second Apollonius circle created which determines where T and D can

meet when traveling along straight lines. Should T meet D before A reaches the

former, then T would be under the protection of D and in the winning region of T.

Figure 31 illustrates this instance. As seen, T can reach the T-D Apollonius Circle

without contacting the A-T Apollonius Circle. Therefore T escapes because he is
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now protected by D and a safe region develops. This is shown as the shaded region

in Figure 31.

Figure 31. The A-T and T-D Apollonius circles when the state is in Re

The center of the A-T Apollonius circle is given in Eqs. (14). Applying the same

logic to the T-D Apollonius circle yields the coordinates of its center

x̂O =
1

1− α2

(
xT + α2xA

)
, ŷO =

1

1− α2
yT

As seen yO = ŷO, which says that these two circles’ centers share the same y-
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coordinate. Attention thereby shifts to the xO and x̂O relationship, and more specif-

ically to the leftmost point of these circles. According to Eq. (15), the circles’ radii

are

ρ =
α

1− α2
d, ρ̂ =

α

1− α2
d̂

where d̂ is the length of the segment TD. Since play occurs in the region Rc, the

leftmost point of each Apollonius circle will be positive. Because the T-D Apollonius

circle’s leftmost x-coordinate x̂Left = x̂O − ρ̂ must be positive, one can show that the

condition

x2A −
x2T
α2

+
y2T

1− α2
< 0 (16)

must hold. This relationship was previously used to characterize Rc in the ATDDG.

Finally, in order for T to be protected by D in the region Rc, the relationship

xLeft − x̂Left < 0 must hold; otherwise, T will fail to reach the circumference of the

T-D Apollonius circle as it first must cross the A-T Apollonius circle. But this yields

x2A −
x2T
α2

+
y2T

1− α2
> 0

which contradicts Eq. (16). Therefore escape can only occur within the region Re

characterized in [15] where the ATDDG is analyzed. This alternative escape strategy

reinforces the relevance of the previously developed regions Re and Rc, as well as the

barrier surface B which is discussed in the next section.

The Barrier Surface.

Treating the three-player differential game as a Game of Kind allows one to analyze

the possible discrete outcomes of the game. In contrast, a Game of Degree focuses on

maximizing or minimizing a cost functional. The 3 possible outcomes for the ATDDG

Game of Kind are
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Figure 32. The A-T and T-D Apollonius Circles when the state is in Rc
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1. T is captured by A

2. A is intercepted by D, and T escapes

3. A, T, and D all meet at the same moment, resulting in a draw.

The barrier B is the surface which separates the regions Rc and Re and is specified

in the reduced IR3 state space as

B ={(xA, xT , yT )|xA ≥ 0, xT ≥ 0, yT ≥ 0, ...

...x2A +
y2T

1− α2
− x2T
α2

= 0}

Although the argument may be made that the barrier surface should not include the

origin, treating it as such would also exclude the plane xA = 0 from the region Re and

the line {xA = xT , yT = 0} from the region Rc. Therefore the origin is considered

part of the barrier surface. The plane xA = 0 also separates the set Re and Rc and is

included in Re.

Should all players play optimally, the winner can be determined by the side of

the surface B of which the initial state {xA(0), xT (0), yT (0)} lies. Nevertheless, if any

player fails to play optimally when the initial state lies in his winning region, then

the opposing player(s) can take advantage of this by pulling the state across B into

their winning region. For example, should A fail to play optimally in Rc, the T &

D team could pull the state {xA, xT , yT} to the plane xA = 0, which is in Re. The

Game of Kind thus morphs into each player pulling the state in the direction of his

respective winning region. If the initial state lies in his winning region, then he would

pull deeper into his region, but if the initial state is not be in his winning region,

then he would pull towards his winning region. The deeper any player can pull the

state into his winning region the more likely he will win, for if at some future point in

time he does err, then the buffer he has established within his region will allow him
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to recover.

Time as the Performance Functional.

Choosing time in this paper as the measure of performance provides several ben-

efits. Most importantly, because A’s strategy requires him to capture T within his

winning region Rc to satisfy the Game of Kind, the solution yields a guaranteed

capture strategy. At the same time, by solving the Game of Degree with time as

the performance functional, real-world requirements are implicitly taken into con-

sideration. In a real-world engagement, although A may behave in a manner that

guarantees capture of T, there is the risk that A runs out of fuel before reaching T,

as aircraft generally have longer ranges than missiles. By therefore minimizing the

flight time required to capture the target, he is also preserving his fuel. In contrast,

if the T & D team maximizes the time to capture, they may cause A to run out of

fuel and thus prevent A from achieving his objective of capturing T.

Pure Pursuit.

During PP, A heads directly towards T’s instantaneous position. A relies on his

faster speed to catch up to T. Because the game dynamics are simple motion, if A

employs PP in the absence of D, then T’s best strategy would be to run directly away

from A, thus maximizing his time to capture. This simple differential game, with tf

as the performance functional, results in both A and T advancing along straight-line

paths until A ultimately catches up with and captures T. T will be captured by A at

tf = 1
1−αd0 where the initial A-T separation is d0. As PP is such a simply understood

strategy, it is often found employed in nature. Think of a cheetah chasing its prey

or children playing tag. In fact, PP is the pursuer’s optimal solution given simple

motion dynamics, and the evader’s is pure evasion where he flees directly away from
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the pursuer.

Now consider A using PP against T before the launch of D. If both players are

playing optimally, then it is a PP chase. When D is launched, should A and/or T

not react to the presence of the new player D, perhaps because they failed to detect

D’s launch, they will persist with the same strategies already being employed, PP

and pure evasion.

Two Sub-Regions within Rc.

When D is introduced into the game, A will either react by changing his strategy

or will persist with PP. Should A continue with the PP strategy, two new sub-regions

emerge within his purported region of win, Rc: (1) A region Rcc where T’s capture

by A who employs PP is guaranteed despite the T & D team’s best efforts; (2) A

region Rce where T can escape with the help of D. An illustration of these regions in

Figure 33 shows the regions for T, given fixed initial positions of A and D. The Re

region is also shown. Although this figure was obtained through heuristic arguments,

it nonetheless reinforces the fact that such a fragmentation of the state space is

possible, which indeed turns out to be the case. This shows that PP is not a global

capture strategy for A within Rc, courtesy of the presence of D.

The Region Rcc.

In the region Rcc, as long as A plays PP, D will be unable to protect T and

the latter will ultimately be captured. T will run directly away from A and A will

charge in a straight line for T until he is captured. PP guarantees the capture of T,

and does so in minimum time. Even if T attempted other strategies, it would not

open up an escape path, but instead only lead to his premature demise. Likewise, no

matter what D chooses to do, T cannot be be protected. Any strategies D attempts
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Figure 33. State-Space Partition when A plays PP (xa = 1 cross section)
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will ultimately leave the performance functional tf unchanged, and as such D is of no

consequence when the state is in Rcc. The players’ optimal control strategies within

the region Rcc are therefore

χ = tan−1
(

yT
xT − xA

)
, φ = tan−1

(
yT

xT − xA

)

where ψ, D’s control, can assume any heading without changing the outcome.

The Region Rce.

In the subregion Rce, if A chooses to persist with PP, then an opportunity opens

up for T to escape. Here, the T & D team will want to find strategies that maximize

the extent of the region Rce, as Rc = Rce ∪Rcc. Whatever these strategies may be, if

the state enters the region Re, then the T & D team should switch their strategies

to the optimal strategies as developed in [15] for the region Re.

The T & D team will work together to maximize T’s time of capture. Any such

region where T can escape, he will strive to escape, as escape would send the time

to capture to infinity. D will likewise assist T in escaping. Therefore both T and D

need strategies that ultimately maximize the temporal performance functional.

Finding T’s Heading. Consider an initial state in Rce and the action in

the realistic plane (X, Y ). Let T be constrained to travel along a straight line. T

will want this heading to get him as far as possible into the L.H.P. to bring him

closer to D. Using pursuit curve analysis, one can find T’s heading, φ, that will allow

him to maximize his leftward travel before being captured. With θ measured as the

angle from the perpendicular of the initial A-T line segment, one can determine A’s

trajectory – see Figure 34. A’s position along the pursuit curve is provided in [4].
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Figure 34. Pursuit Curve with angle θ 6= 0
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The pursuit trajectory, seen in Figure 34, is given as

Y1(X1)

d0 cos θ
=
α (sec θ + α tan θ)

1− α2
+

1

2

{
1

1 + α
w

(
X1

a cos θ

)1+α

− 1

1− α
1

w

(
X1

a cos θ

)1−α
}

(17)

where

w = sec θ − tan θ

Here T starts at the origin of the (X1, Y1) frame and flees along the positive Y1-axis.

Therefore, at Y1(0), T will be captured by A and the distance lc traveled by T at the

time of capture is

lc =
α

1− α2
(1 + α sin θ)d0 (18)

With this lc known, the focus returns to the objective, that is, get T as far to the left

as possible. The x-coordinate of the point of capture

Xc = XT + lc cosφ

This describes how far left T can go on in the realistic plane while both A and D

start on the X-axis. To translate Eq. (18) to align with the realistic plane, use

θ = π
2
− φ+ χ0, which leads to the optimization in φ

min
φ

{[
1 + α cos

(
φ− tan−1

YT0
XT0 −XA0

)]
cosφ

}
(19)

Given A is playing PP, the optimal course φ allows T to go as far left as possible

before being captured. Currently this path is a straight line, but a better path of

T might be a curved trajectory where T turns into A. This optimal path will be

investigated through simulation.

A simple example of the PP curve, where φ = π
2
, is shown in Figure 35. Here T

78



Figure 35. Pursuit Curve when E runs perpendicular to the P-E line segment
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travels perpendicular to the initial A-T Line of Sight (LoS), and T is captured at

Y = α
1−α2d0.

D’s Strategy. Consider now D’s action to intercept A. As T strives to

minimize Xc, D will work to bring A under his control; in other words make contact

with A. Once this occurs, T has escaped. Using the rotating reference frame (x, y),

one strategy D may employ would be to mirror A’s trajectory across the y-axis.

This would keep the (x, y) frame from rotating while the x-axis slides upward. As

such, should T reach the orthogonal bisector of the original AD segment before being

captured, then D will intercept A on the y-axis.

Although this will guarantee T’s escape if T can reach the orthogonal bisector,

D can reach A sooner if he heads in a straight line to intercept A. Indeed, because

D knows T’s heading and responds to A’s known PP strategy, D can predict where

this intercept point will be. D’s optimal heading can be computed by analyzing the

pursuit curve of A. The pursuit curve is given in Eq. (17), but this form is insufficient

to directly determine when D can intercept A using a straight-line trajectory. This

can be found by first finding the distance traveled by A as a function of his X1-

coordinate in the (X1, Y1) frame, and then finding A’s position in the realistic plane

as a function of X1. Setting the distance from D’s initial position to A’s instantaneous

position (as a function of X1) equal to the the distance traveled by A will find the

interception point. The arc length formula

s(X1) =

∫ X1

d0 cos θ

√
1 +

(
dY1
dX1

)2

dX1

can be used to find the distance traveled by A given X1.
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From eq. 17 calculate

dY1
dX1

=
1

2

[
w

(
X1

d0 cos θ

)α
− 1

w

(
X1

d0 cos θ

)−α]

(
dY1
dX1

)2

=
1

4

[
w2

(
X1

d0 cos θ

)2α

+
1

w2

(
X1

d0 cos θ

)−2α
− 2

]
Inserting this expression into the arc length formula yields

s(X1) =
1

2

∫ X1

d0 cos θ

√√√√[w2

(
X1

d0 cos θ

)2α

+
1

w2

(
X1

d0 cos θ

)−2α
+ 2

]
dX1

and the arc length is found to be

s(X1) =
1

2
d0 cos θ

{
1

1 + α
w

[
1−

(
X1

d0 cos θ

)1+α
]

+
1

1− α
1

w

[
1−

(
X1

d0 cos θ

)1−α
]}
(20)

Now the realistic plane position of A must first be expressed as a function of X1:

XA =XT0 +
√
X2

1 + Y 2
1 sin

(
tan−1

(
Y1
X1

)
− φ
)

YA =YT0 +
√
X2

1 + Y 2
1 cos

(
tan−1

(
Y1
X1

)
− φ
)
 (21)

where φ is the course of T.

Using Eqs. (20) and (21), D can now calculate a straight-line intercept point by

solving for X1 in

[xA′(X1) + xA0 ]
2 + y2A′(X1) = s2(X1) (22)

D could further solve for the critical case X1 = 0 where D intercepts A, just as

the latter is about to intercept T, but this would still be constrained by T’s straight-

line trajectory. If T’s straight-line trajectory were optimal than this would produce

the surface that separates Rcc from Rce. To construct the surface that separates
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Rcc and Rce requires the solution of a quartic equation. However, the constant-course

trajectory for T is not necessarily the optimal path. T can still do better to penetrate

deeper towards Re by not having the straight-line trajectory constraint imposed on

him. So the constructed set Rce is only a subset of the true set Rce.

Consider the rotating reference frame when considering the presented T & D

team’s strategies. Because it is better for D to follow a straight-line path as apposed

to mirroring A’s path, the (x, y) frame will rotate. A (x, y) frame rotation will cause

T’s straight-line optimal path to change if recalculated. φ thereby becomes dynamic

in that T’s straight-line trajectory changes at each time step. By dynamically re-

calculating the “optimal” φ, it is as if the game has reinitialized at each time step.

As such, T’s straight-line trajectory will not be a straight line in the realistic plane

if it is recalculated at each time step with respect to the rotating reference frame

(x, y). This will also cause D’s trajectory to no longer be a straight line because the

predicted path of A changes as T changes his straight-line trajectory. Because D’s

path does curve in this case, it is not an optimal trajectory.

PP when A, T and D are Co-linear.

An interesting phenomenon occurs when considering the scenario where the three

players are initially collinear with A between T and D. Superficial observation leads

one to believe that there is no way for T to escape when A is playing PP. In fact, if the

state is in the region Rcc as shown in Figure 33, then this is true and there is nothing

the T & D team can do for T to escape. In this case T would flee directly away from

A, thus maximizing the time to capture, and A would eventually capture T using

PP. On the other hand, if there is enough distance between T and A, such that the

state is in the region Rce, that is, T is in the Rce designated set in Figure 33, then

T and D can generate trajectories which rotate the (x, y) reference frame’s y-axis,
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the AD orthogonal bisector, towards T. By doing so, this bisector will approach the

dynamically redrawn A-T Apollonius circle and T will escape when the Apollonius

circle contacts the orthogonal bisector. If T and D are playing optimally, then this

will occur unless A abandons the PP strategy, which in this region of the state space

is suboptimal.

4.4 Analysis

Constant T course when D mirrors A:.

Figure 36 illustrates the game in the realistic plane as T holds a constant course φ

and D mirrors A’s path across the y-axis. Although initial state is {xA = 1, xT = 1.3, yT = 1},

which is well within the region Rc, D was able to intercept A before the latter cap-

tured T, thus guaranteeing T’s escape. The existence of the subregion Rce is thereby

illustrated since T was able to escape when A played PP. As seen, D pulls away from

A early in the engagement, however D would have achieved a much better outcome

had he been heading to intercept A from the start. Here T’s final A-T separation is

0.064 dimensionless units.

Constant T course when D takes a straight-line path:.

Figure 37 illustrates the player’s trajectories in the realistic plane when T holds

a constant course φ and D finds the optimal straight-line path to intercept A. Here

time is not wasted going in the wrong direction as seen when D mirrors A’s path,

but instead D is seen taking the optimal path while T holds the optimal constant

course and A employs PP. D intercepts A at the earliest moment possible and the

final A-T separation is 0.120 dimensionless units, or nearly double as the separation

afforded by the previous strategy.
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Figure 36. D Mirrors A’s PP Strategy in the Realistic Plane (X,Y )
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Figure 37. Constant φ Straight-Line Intercept in the Realistic Plane (X,Y )
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Dynamic T course when D takes a straight-line path:.

Figure 38 illustrates the players’ trajectories in the realistic plane when T employs

a dynamic φ strategy and D recalculates the straight-line interception point according

to the current φ heading. Therefore, both T’s and D’s trajectories curve slightly as

these new paths are dynamically determined. One would expect this dynamic φ

strategy to produce better results since it is closed-loop, but because this strategy

causes D to curve, optimality is lost in his strategy and T and D’s performance

deteriorates. Here the final A-T separation is 0.099 dimensionless units, clearly less

than the constant φ case. This strengthens the argument that D’s optimal strategy

is a straight line, as is indeed predicted by the theory of optimal control.

PP when A, T and D are collinear:.

The interesting case where A, T, and D are initially co-linear was also investigated

to show how T can escape should A insist on playing PP. Results are presented in

the realistic plane in Figure 39. Here, T quickly steps out of the initial co-linear

arrangement, and takes a path towards D. Because A persisted with PP, T and D

were able to rotate the (x, y) reference frame in their favor and open up an escape

path. Here T employed a constant course strategy and D took a straight-line intercept

path knowing that A employs PP. True optimal strategies would further improve this

outcome in the T & D team’s favor.

Fixed T course vs dynamically adjusted T course when A plays PP:.

Previously in this paper, the optimal constant course φ of T was found which

moves the capture point of T as far as possible to the right, given A plays PP and

T is committed to a straight-line path. This helps D to intercept A before T’s

capture by A. However, the optimal escape path for T is not necessarily a straight-

86



Figure 38. Dynamic φ Intercept in the Realistic Plane (X,Y )
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Figure 39. Target Escape Path Example when Player’s are Initially Co-linear in the
Realistic Plane
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line. Figure 40 shows a comparison of an engagement where T holds an optimal

course φ and an engagement where φ is dynamically calculated, such that T is not

constrained to a straight-line trajectory. The straight-line path was determined using

MATLAB’s fminbnd function to perform the static minimization in Eq. (19) and

obtain the optimal constant φ. MATLAB’s fmincon was used to find the dynamic φ

path where at each time-step φ can assume a different value. As shown in Figure 40,

the two paths are not the same. Thus, it is shown through MATLAB’s optimization

functions that a constant φ is not necessarily optimal.

4.5 Conclusion

The capture of a Target by an Attacker in the presence of a Defender in a 3-

player pursuit-evasion differential game was investigated. Because of the presence of

the third defending player and A’s persistence in employing PP, the original capture

regionRc is partitioned into 2 subregions: 1)Rcc where T will be captured in minimum

time if A plays PP; 2) Rce where T can escape if A insists on PP. In the subregion

Rcc, A’s optimal strategy is PP and T’s optimal strategy is to flee directly away

from A. Because D is unable to influence the outcome when A plays PP in Rcc, D is

irrelevant. In Rce, A should abandon PP to prevent T’s possible escape. If, however,

A persists with PP, then the methods presented in this paper can be used by the

T & D team to cause T’s escape. T could materialize his escape in Rce by finding

the straight-line path that would get him as far as possible into the left-half plane.

This would place him in a good position to have D intercept A before the latter can

capture T. Ultimately this paper showed that in the presence of a defender, PP is

not a global capture strategy for A in Rc, his winning region.
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Figure 40. Curved and Straight-Line Evasion Strategies
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V. Conclusion

The 3-player differential game, referred to as the ATDDG and originally pre-

sented by AFRL and AFIT, seems like a simple problem on the surface, but like the

Homicidal Chauffeur differential game, the ATDDG quickly develops into a complex

problem. The tools to address the game, as developed by Isaacs, help us unravel

the complexities with the ultimate goal of obtaining a complete analytic solution.

Understanding the discovered strategies helps clear the way to solving more complex

problems that have yet to be addressed analytically. They provide insight into how

one player can gain an advantage and surprise the adversary by pulling the state

into his winning region, and ultimately make us less naive about the intricacies of

differential games.

The work presented herein analyzed game play of the ATDDG. Several strategies

were presented showing maneuvers that both A and the T & D team can perform

to change the system’s state in their favor. As summaries are provided within each

individual chapter, Chapter V aims to highlight some of the main contributions of

the research.

5.1 Optimal Strategies vs Near-Optimal Strategies

Although within this research optimal strategies were found for certain cases,

not all strategies optimized the performance functional. For example, the heuristic

analysis did not find the minimum/maximum for each player when using the final

A-D separation distance as the performance functional. The research did, however,

produce what can be considered near-optimal strategies. By having each player chase

the left-most point of the A-T Apollonius circle, each player employed a strategy that

makes it very difficult for the opposing player to pull the state towards his winning
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region. This provides valuable insight into how player’s in more complex, but similar,

engagements should behave. In such complex scenarios it is beneficial to have an idea

as the region where the optimal solution lies. This gives the user a close initial guess

to employ an optimizer to find the true global minimum.

This was also shown in Chapter IV, which used time as the performance functional.

In the region where T can escape if A employs PP, T and D both now have good

initial guesses as to what the true optimal strategy looks like. Clearly a true optimal

solution is desired if it can be found, however near optimal solutions still provide

valuable insight and aide in research of more complex engagements.

5.2 The Barrier Surface

The analysis of the barrier surface created strategies for each player that prevent

the state from leaving the barrier surface, leading to a draw. To our surprise, however,

if the state is not on the barrier surface, then the barrier surface strategies caused

the players to give up a Game of Kind win, even though the win was clearly possible.

Instead the players took rather foolish actions. If the state were in A’s region of win,

then A became suicidal, even when he had the game in his pocket. If the state was

in the T & D team’s region of win, then T played foolishly, running along the AD

orthogonal bisector, leading to a draw.

Ultimately, analysis of the barrier surface resulted in a Game Of Kind strategy

by A, which guarantees his win so long as the state is initially in his winning region.

A modified barrier surface strategy accomplished this by including a tuning param-

eter, β, that prevented A from getting too close to D. This method, however, is not

foolproof as an improper selection of the parameter β will cause an over avoidance of

D by A, resulting in the latter missing T. Generally it is best to have β as small as

possible.
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5.3 Pure Pursuit and Time Optimization

In a simple Pure Pursuit differential game where A is chasing T and D is not

present, the optimal solution with time as the performance functional is to have

A employ PP, and for T to run directly away from A. Introducing D dramatically

changed the game, where if A employs PP, T may be able to escape. This research not

only showed how this can be done, but presented several strategies the T & D team

can use to facilitate T’s escape. The results in this work do not present the complete

time-optimization solution, but they do provide insight into a partial optimal solution

for certain regions.

5.4 Future Work

This research is only a beginning of what can be learned from the ATDDG. Future

work should focus on obtaining the complete solution to the ATDDG in A’s region

of win using time as the performance functional. Such a solution will improve upon

current solutions in that it not only solves the Game of Kind, but does so in minimum

time. Future work should also look into how the game changes when more hostile

attacking missiles engage the target aircraft, or when more defending missiles are

available. Doing so will make the game dramatically more complicated, but pulling

from the results of this work and related works will be a guide and reference to

obtaining the optimal pursuit and evasion strategies.

Although this game was designed to provide insight into a specific aerial engage-

ment, it’s applications are by no means limited to this single scenario. This research

can be applied to any engagement where a player is trying to protect another from

a threat, whether on land, sea, air, or space. Furthermore, the analysis of pursuit

curves presented in Chapter IV provide a clear method how to optimally intercept a

pursuer.
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Appendix A.

A Solving the Pure Pursuit Case using the Differential Game Method

The non-rotating frame (x, y) is collocated with the Pursuer’s (P) instantaneous

position. P is chasing an Evader (E) and both players have simple motion/are holo-

nomic, à la Isaacs. Also, both player’s have access to E’s position relative to P, that

is, the state (x, y). P seeks to capture E in minimum time and E strives to maximize

the same. χ and φ are P’s and E’s headings respectively, and P has a capture radius

of l as shown in Figure 41. Having P employ Pure Pursuit (PP) against E results in

Figure 41. Simple Pursuit/Evasion Differential Game
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the linear dynamics

ẋ = α sinφ− sinχ, x(0) = x0

ẏ = α sinφ− sinχ, y(0) = y0, 0 ≤ t ≤ tf

which in reality are no dynamics. E is captured when it is enveloped by the terminal

manifold

x2 + y2 = l

The parameter 0 ≤ α < 1 is the speed ratio α = vE
vP

where vP and vE are the respective

speeds of P and E. The terminal manifold can be parameterized as

x = l sinψ, y = l cosψ, 0 ≤ ψ ≤ 2π

As P has simple motion, the whole terminal manifold is usable, and the inward

pointing normal to the terminal manifold as P overtakes E is

~n = −a (sinψ, cosψ)T , a > 0

The Hamiltonian

H = −1 + α (λx sinφ+ λy cosφ)− (λx sinχ+ λy cosχ)

and min
φ

max
χ

H is found using Isaacs Lemma on Circular Vectograms [10] such that

sinφ∗ = − λx√
λ2x + λ2y

, cosφ∗ = − λy√
λ2x + λ2y

sinχ∗ = − λx√
λ2x + λ2y

, cosχ∗ = − λy√
λ2x + λ2y
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The costate equations and the terminal costate (using the transversality condition)

are

λ̇x = −∂H
∂x

= 0, λx (tf ) = −a sinψ

λ̇y = −∂H
∂x

= 0, λy (tf ) = −a cosψ

The costate is therefore constant and is

λx(t) = −a sinψ, λy(t) = −a cosψ, 0 ≤ t ≤ tf

=⇒

sinφ∗ = sinψ, sinχ∗ = sinψ

=⇒

φ∗(t) = ψ

χ∗(t) = ψ, 0 ≤ t ≤ tf

Using the terminal condition

H (tf ) = 0

=⇒

0 = −1− αa+ a

=⇒

a =
1

1− α
> 0
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and the constant costate is

λx(t) = − 1

1− α
sinψ, λy(t) = − 1

1− α
cosψ, 0 ≤ t ≤ tf

Lastly, the optimal flow field is found using retrograde integration

x̊ = sinχ− α sinφ = (1− α) sinψ, x(τ = 0) = l sinψ

ẙ = cosχ− α cosφ = (1− α) cosψ, y(τ = 0) = l cosψ, 0 ≤ τ ≤ tf

=⇒

x(τ) = [l + (1− α) τ ] sinψ

y(τ) = [l + (1− α) τ ] cosψ, 0 ≤ τ ≤ tf , 0 ≤ ψ < 2π

Given x0 and y0, P’s and E’s headings and the time to capture are found as

φ = χ = ψ = tan−1
(
x0
y0

)
tf =

1

1− α

(
x0

sinψ
− l
)

Thus, the solution to the differential game à la Isaacs was easily obtained.

B Solving the Pure Pursuit Case using the Optimal Control Method

Consider P chasing E using a Pure Pursuit strategy. What should E’s strategy

be? Obviously E must solve the optimal control problem of maximizing the time-to-

capture. As before, the whole terminal manifold is usable as P has simple motion.

P’s strategy is

sinφ =
x√

x2 + y2
, cosφ =

y√
x2 + y2
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The nonlinear dynamics are

ẋ = α sinφ− x√
x2 + y2

, x(0) = x0

ẏ = α cosφ− y√
x2 + y2

, y(0) = y0

Because the evader is maximizing the time-to-capture, the terminal-manifold normal

is pointing outward in the one-sided optimal control problem, such that

~n = a (sinψ, cosψ)T

The Hamiltonian is now

H = 1 + α (λx sinφ+ λy cosφ)− λx
x√

x2 + y2
− λy

y√
x2 + y2

(23)

and max
φ

H is again found using Isaacs Lemma on Circular Vectograms, such that

sinφ∗ =
λx√
λ2x + λ2y

, cosφ∗ =
λy√
λ2x + λ2y

The costate equations and the terminal costate (using the transversality condition)

are

λ̇x = −∂H
∂x

=
y

(x2 + y2)
3
2

(λxy − λyx) , λx (tf ) = a sinψ

λ̇y = −∂H
∂x

= − x

(x2 + y2)
3
2

(λxy − λyx) , λy (tf ) = a cosψ
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The state dynamics are updated with the results of the max
φ

H maximization

ẋ = α
λx√
λ2x + λ2y

− x√
x2 + y2

, x(0) = x0

ẏ = α
λy√
λ2x + λ2y

− y√
x2 + y2

, y(0) = y0, 0 ≤ t ≤ tf

Using the terminal condition

H (tf ) = 0

The Hamiltonian from Eq. 23 can be rewritten at the terminal time as

0 = 1 + α
√
λ2x(tf ) + λ2y(tf )−

1

l
[x(tf )λx(tf ) + y(tf )λy(tf )]

=⇒

0 = 1 + αa− a

=⇒

a =
1

1− α
> 1

which leads to the terminal costate

λx(tf ) =
1

1− α
sinψ, λy(tf ) =

1

1− α
cosψ
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Lastly, retrograde integration is performed

x̊ =
x√

x2 + y2
− α λx√

λ2x + λ2y
, x(τ = 0) = l sinψ

x̊ =
y√

x2 + y2
− α λy√

λ2x + λ2y
, y(τ = 0) = l cosψ

λ̊x =
y

(x2 + y2)
3
2

(xλy − yλx) , λx(τ = 0) =
1

1− α
sinψ

λ̊y = − x

(x2 + y2)
3
2

(xλy − yλx) , λx(τ = 0) =
1

1− α
cosψ

From here, this set of four nonlinear differential equations must be solved to find the

optimal E’s heading. It is easier to solve the differential game than it is to solve the

one-sided optimal control problem. The solution to the problem was easily obtained

using Isaac’s differential games method where both P’s and E’s optimal headings were

solved for simultaneously. Paradoxically, solving the optimal control problem for E,

given P is employing PP, is much more difficult. However, having already obtained

the solution to the differential game yields controls that satisfy the optimal control

problem and it can be verified that the solution to the optimal control problem is

x(τ) = [l + (1− α) τ ] sinψ

y(τ) = [l + (1− α) τ ] cosψ

λx(τ) =
1

1− α
sinψ (≡ const.)

λy(τ) =
1

1− α
cosψ sinψ (≡ const.) , 0 ≤ τ ≤ tf , 0 ≤ ψ < 2π

Note that for point capture l → 0, it appears that the costate retrograde integra-

tion equations
{
λ̊x(τ = 0), λ̊y(τ = 0)

}
have a singularity because of a zero in the
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denominator

λ̊x(τ = 0) =
0

(02 + 02)
3
2

(xλy − yλx) , λx(τ = 0) =
0

(02 + 02)
3
2

(xλy − yλx)

However, because

xλy − yλx = l sinψ
1

1− α
cosψ − l cosψ

1

1− α
sinψ = 0

the singularity is eliminated and
{
λ̊x(τ = 0) = 0, λ̊y(τ = 0) = 0

}
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Appendix B.

A Time-to-Capture in the Region Rce

Bringing back D into the game and assuming A continues to play PP in the

region Rce, the question is posed “what should the T & D team’s strategies be?” To

find the answer, one must solve the optimal control problem for the T & D team in

the region Rce. As shown in Appendix A for the simple PP/PE game, the optimal

control problem is not trivial.

Figure 42. The Rotating Reference Frame overlaid on the Realistic Plane

Referring to the rotating reference frame IR3 as described in [14] – see Figure 42

– where χ, ψ and φ are A’s, D’s, and T’s headings respectively when measured from

the positive x-axis, the non-linear system dynamics are

ẋA =
1

2
(cosχ− cosψ) , xA(0) = xA0
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ẋT = α cosφ− 1

2
(cosψ + cosχ)− 1

2

yT
xA

(sinψ − sinχ) , xT (0) = xT0

ẏT = α sinφ− 1

2
(sinψ + sinχ) +

1

2

xT
xA

(sinψ − sinχ) , yT (0) = yT0

Because A’s PP strategy is

sinχ =
yT√

(xA − xT )2 + y2T

, cosχ =
xT − xA√

(xA − xT )2 + y2T

the 3-state dynamics become

ẋA =
1

2

 xT − xA√
(xA − xT )2 + y2T

− cosψ

 , xA(0) = xA0

ẋT = α cosφ+
1

2

1

xA

 x2A + y2T − xAyT√
(xA − xT )2 + y2T

− yT sinψ − xA cosψ

 , xT (0) = xT0

ẏT = α cosφ− 1

2

1

xA

 xA + xT√
(xA − xT )2 + y2T

yT + (xA − xT ) sinψ

 , yT (0) = yT0

In the region Rce where D will intercept A if A plays PP, consider D endowed

with a capture radius of 2l. The terminal manifold is

S = {(xA, xT , yT ) |xA = l}

and the inward pointing normal to the terminal manifold S is

~n = (−1, 0, 0)T

=⇒

λxA (tf ) = −a, λxT (tf ) = 0, λyT (tf ) = 0, a > 0
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The Hamiltonian is

H =− 1 + α (λxT cosφ+ λyT sinφ)− ...

...
1

2

1

xA

{(
λxA+λxT

)
xA cosψ + [λxT yT + λyT (xA − xT )] sinψ

}
Using Isaacs Lemma on circular vectograms

max
φ, ψ

H

=⇒

sinφ =
λyT

λ2xT + λ2yT
, cosφ =

λxT
λ2xT + λ2yT

,

sinψ = − λxT yT + λyT (xA − xT )√
[λxT yt + λyT (xA − xT )]2 + x2A (λxA + λxT )2

cosψ = − xA (λxA + λxT )√
[λxT yt + λyT (xA − xT )]2 + x2A (λxA + λxT )2

and substituting these into the Hamiltonian

H = −1 + α
(
λ2xT + λ2yT

) 1
2 +

1

2

1

xA

(
f +

g

h

)

where

f ,
(
λ2yTx

2
A + λ2yTx

2
T + λ2xT y

2
T − 2λ2yTxAxT − 2λxTλyTxTyT + 2λxTλyTxAyT

) 1
2

g ,(λxT − λxA)(x2A − xAxT ) + λxT y
2
T − λyTxAyT − λyTxTyT

h ,(x2A + x2T + y2T − 2xAxT )
1
2
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This leads to the Euler-Lagrange equations

λ̇xA =
1

2

1

xA

{
a

xA

fh+ g

h
−
λ2yT (xA − xT ) + λxTλyT yT

f
− ...

...

[
(λxT − λxA)(2xA − xT )− λyT yT

]
h2

h3
− g(xA − xT )

h3

}
λ̇xT =− 1

2

1

xA

{
λ2yT (xT − xA)− λxTλyT yT

f
+

[
(λxA − λxT )xA − λyT yT

]
h2

h3
+
g(xA − xT )

h3

}
λ̇yT =− 1

2

1

xA

{
λxTλyT (xA − xT ) + λ2xT yT

f
+

[
2λxT yT − λyT (xA + xT )

]
h2

h3
− gyT

h3

}
ẋA =

1

2

{
xT − xA√

(xA − xT )2 + y2T
+

(λxA + λxT )xA√[
λxT yT + λyT (xA − xT )

]2
+ x2A(λxA + λxT )

}

ẋT =
1

2

{
yT
xA

[
yT√

(xA − xT )2 + y2T
+

λxT yT + λyT (xA − xT )√[
λxT yT + λyT (xA − xT )

]2
+ x2A(λxA + λxT )

]
+ ...

...2α
λxT√

λ2xT + λ2yT

}
ẏT =

1

2

{
2α

yT√
λ2xT + λ2yT

− 1

xA

[
λxT (xA − xT )yT + λyT (xA − xT )2√[

λxT yT + λyT (xA − xT )
]2

+ (λxA + λxT )x2A

− ...

...
(xA + xT )yT√

(xA − xT )2 + y2T

]}

with

λxA(tf ) = − 2

1−
xTf−l√

(xTf−l)
2+y2Tf

xA(tf ) = l

λxT (tf ) = 0 xT (tf ) = xTf

λyT (tf ) = 0 yA(tf ) = yTf

From here one integrates in retrograde fashion to obtain the family of optimal trajec-

tories parameterized by xTf and yTf which fill the state-space region Rce ⊂ IR3
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