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Abstract

The United States Air Force and other national agencies rely on numerous space

assets to project their doctrine. However, space is becoming an increasingly

congested, contested, and competitive environment. A common risk mitigation

strategy for the orbit debris problem is either performing evasive maneuvers, or

placing additional shielding on the satellite before launch. Current risk mitigation

strategies have significant consequences to satellite operators and may not produce

sufficient risk mitigation. This research poses that an orbital debris defender, which

would defend the primary satellite from orbital debris, may be a more effective risk

mitigation strategy. By assuming the worst case scenario, an optimally performing

pursuer, this research can show when and how often the defender can intercept

debris. The results of this research provide the performance trade space for the

orbital debris defender, and additional recommendations to future satellite

designers. Additionally, this researched derived a way to generate a pseudo

cooperation between defender and evader. This cooperation between evader and

defender is a new way to solve differential games, and is not limited to the space

domain considered herein.
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PARAMETER STUDY OF AN ORBITAL DEBRIS

DEFENDER USING TWO TEAM, THREE

PLAYER DIFFERENTIAL GAME THEORY

I. Introduction

1.1 Background

The United States Air Force (USAF), as well as numerous other civil and

private agencies, rely heavily on national assets located in orbit around Earth. The

USAF uses space to project national security policy [1]. However, today’s space

environment is a congested environment, with an ever-increasing chance of

cascading collisions, threatening the USAF’s satellites and further degrading

USAF’s capabilities [6, 7]. For example, in 2009, a Russian Cosmos satellite collided

with an Iridium satellite, generating 1,500 new pieces of orbital debris, many which

remain in orbit around Earth [1]. Figure 1 shows the growth of space debris, and

Figure 2 shows the growth of launches. Figures 1 and 2 suggest that the number of

launches will continue to increase, and the number of debris objects is increasing as

well. Additionally, the main debris events, the Chinese ASAT and

Iridium-COSMOS collisions have occurred recently. The space debris problem is

escalating, especially in geosynchronous orbit (GEO), where numerous key USAF

platforms are located [7, 1].
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Figure 1. Increasing number of objects in space, especially uncontrollable objects such
as debris [1]

Figure 2. Number of space agencies increasing [1]
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The collision risk is currently mitigated to some degree by satellites performing

evasive maneuvers, which decrease the operational lifetime of the satellite, as well as

potential adverse consequences to operations [8]. An example of collision avoidance

occurred when Landsat 7 maneuvered away from the Iridium/Cosmos 2251 debris

cloud [9]. This evasive maneuver impacted the operations of Landsat 7 for two

months, as Landsat’s coverage was reduced due to the maneuver [10]. Maneuvering

may be unacceptable for certain satellite operators as a means to mitigate the

orbital debris problem, as a coverage gap caused by a maneuver could reduce the

satellite’s effectiveness. Another mitigation strategy for the orbital debris problem

in use is shielding, which may be impractical and is expensive and unavailable to

satellites in orbit now [8].

A maneuvering satellite that intercepts and mitigates potential collisions on

behalf of other satellites may be a viable risk mitigation strategy, which this

research will term as an orbital debris defender. The satellite that the orbital debris

defender is protecting will be termed the primary satellite. Some active debris

mitigation strategies exist, such as NASA’s Lightforce project, which would use

photon pressure to nudge debris instead of having the satellites maneuver [11].

Thomson proposed a satellite vehicle for orbital debris protection, similar to this

research, however Thomson’s research was focused on the external shielding

required, as opposed to capabilities and initial state vectors recommended in this

research [12]. The parameters investigated in this research includes the thrust ratios

of the various players, initial positions, and the optimal behaviors of the defender

and the primary satellite.

This research poses the space debris problem as the worst case scenario using

differential game theory, in order to ensure the successful defense of the primary

satellite. If the orbital debris defender can intercept an optimally maneuvering piece
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of debris attempting to impact the primary satellite, then the defender can intercept

debris with the same initial conditions. The following sections in this chapter will

outline the motivation, problem statement, resource and methodology, limitations,

similar research and finally an overview of the thesis.

1.2 Motivation

An orbital debris defender, if designed and implemented optimally, may be an

effective and potentially cost-reducing risk mitigation strategy for the space debris

problem. The defender would intercept the debris, so that it would not collide with

the satellite. This research is focused on the performance trade space of the

proposed orbital debris defender.

Due to the potentially cascading effects of collisions, the USAF’s current risk

mitigation strategy may be unsustainable. While a single collision may not

significantly degrade the USAF’s overall operational capabilities, the debris cloud

generated could cause a cascading series of debris, and eventually renders regions of

space unsuitable for satellites [13].

1.3 Problem Statement

This research seeks to provide an additional risk mitigation strategy for the

orbital debris problem. The hypothesis of this research is that an orbital debris

defender is an effective risk mitigation strategy for other satellites to use. This

hypothesis can be broken into the following three questions:

• Research Question 1: What are the key parameters of an orbital debris

defender enabling the defender to successfully protect the primary satellite?
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• Research Question 2: Can the primary satellite implement any strategies to

aid the orbital debris defender?

• Research Question 3: Can an active orbital debris defender be an effective risk

mitigation strategy for the space debris problem?

This research will answer those research questions by simulating many possible

scenarios, and analyzing the outcome of those scenarios in order to draw any

conclusions.

1.4 Limitations and Assumptions

Using a differential game theory approach to solving this problem necessities

the use of limitations and assumptions, in order to reduce the number of design

variables. Some of these limitations and assumptions are caused by the dynamics

used in the simulation. These limitations include neglecting perturbations to orbits,

such as J2, solar radiation and atmospheric drag. This research also assumes that

all information between players is complete, deterministic and instantaneous.

However, this research also assumes that the pursuer does not alter its behavior in

the presence of the defender. In order to use the Decomposition Method, the evader

must eventually lose to the pursuer, in the absence of the defender. This research

assumes that none of the maneuvering players are at risk of causing a collision with

a non-player satellite. Finally, cost and schedule trade spaces are not investigated in

this research.

1.5 Overview

The application of a two team, three person differential game to a satellite

debris defender is unique to this research. Three person differential games have been
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applied to numerous problems, primarily focused on aircraft survivability [14].

However, very little research has been accomplished on the pseudo-cooperating

defender-evader pair in orbit. This thesis will evaluate previous work, describe the

specific methodology used to generate the trade study of the orbital debris defender,

and provide various examples of trade space and design recommendations. Chapter

II provides a literature review of differential game theory, optimal controls, and the

dynamics used in this research. Afterwards, Chapter III explains the mathematical

models and algorithms used, as well as the various parameters used in the study.

Following Chapter III, Chapter IV shows the results of this study. Chapter V

summarizes the results, and provides recommendations on future work in this field.

This research aims to provide the USAF with a novel and viable tool to design an

orbital debris defender in order to prevent collisions in space.
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II. Literature Review

2.1 Introduction to Problem Background

The orbital debris defender relies on three well-established knowledge areas. The

first areas is system of equations of motion to model the propagation of satellites in

reference to each other. Another area is leveraging classical optimal control thesis.

Optimal control is a subject of applied mathematics that minimizes or maximizes a

scalar value functional by either a direct or indirect method [15]. One of the benefits

of optimal control is the wide array of existing software that can solve these

problems quickly, such as a genetic algorithm [16, 17]. The third area is differential

game theory. Differential game theory captures real-world scenarios and poses them

as math problems to generate optimal solutions to those problems. Using all three

areas, a simulated space debris scenario can be generated and solved using a variety

of parameters, such as initial state vectors of the debris and the defender, as well as

each player’s thrusting capabilities. The following sections provide a literature

review on the information used to generate the simulations used in this research.

2.2 Dynamics

Ever since the start of the space race, many mathematicians desired to simplify

the satellite rendezvous mission through the use of new coordinate frames [18].

Mathematicians in the 1960s, using the work of George William Hill, developed a

new frame that focused on the relative motion between two bodies [19], called the

Local Horizontal Local Vertical (LVLH) frame. The LVLH simplifies the

computations required to solve for the relative orbit of two satellites with respect to

each other [18]. The LVLH frame is a rotating, non-inertial frame centered around a

chief satellite. The x-axis is aligned with the negative radial direction, the z-axis is
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orthogonal to the orbital plane and the y-axis completes the right-handed

orthogonal coordinate system. If the satellites are in a circular orbit, then the y-axis

is aligned with the velocity vector of the satellite. Figure 3 shows the relationship

between the Earth Centered, Earth Inertial (ECI) and LVLH frame [19].

Figure 3. Relationship between ECI and LVLH frame

Using these assumptions, it is possible to derive the equations of motion for

each satellite relative to the chief satellite. The following section derives the

equations of motion.

2.2.1 Clohessy Derivation.

The nonlinear equations of motion used to model the propagation of one

satellite with reference to another satellite were derived in [20]. These equations of
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motion are

ẍ− 2ḟ(ẏ − y
ṙc
rc

) − xḟ 2 − µ

r2c
= − µ

r3d
rc + x

ÿ + 2ḟ(ẋ− x
ṙc
rc

) − yḟ 2 = − µ

r3d
y

z̈ = − µ

r3dz

, (2.1)

where the x, y, and z (and their derivatives and double derivatives) are the

Cartesian coordinates in the LVLH frame. rc is the distance from the satellite at the

origin of the coordinate system to the center of the Earth, and ṙc is its time

derivative. rd is the distance between the satellites, and ṙd is its time derivative. µ

is the Earth standard gravity parameter. f is the true anomaly of the satellite, and

ḟ is its time derivative.

In order to reduce the dynamics to a linear system of equation, the following

simplifications are made. First, the chief is placed in a circular orbit. This implies

ḟ = n, (2.2)

where n is the mean motion of the chief (and is constant). Additionally, this

research assumes the distance between the relative satellites and the chief satellite is

significantly less than the semi-major axis of the chief satellite, or

rc ≈ rd. (2.3)
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The equations of motion are therefore further reduced to

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0

z̈ + zn2 = 0

. (2.4)

Equations of motion can be expressed as a matrix multiplied by the state vectors,

also known as a state space transformation. The following section provides a

background on state space transformations.

2.2.2 State Space Transformation.

Holmes derived a method of describing the behavior of mathematical systems

using differential equations [21]. A way to capture a series of differential equations is

state transition matrix. These relate the states of a system to the systems

derivatives. This is outlined in Equation (2.5), assuming a linear time invariant

system,

~̇x = A~x, (2.5)

where A is a matrix that maps the relationship between the states and the

derivatives. However, for a system with inputs and outputs, the system can be

modeled as

~̇x = A~x+ B~u

~y = C~x+ D~u

, (2.6)

where ~u is an input vector, and B and D maps the input and outputs, respectively,

to the dynamics, and the C matrix maps the states to the output. In a linear

system, only the states are varying, whereas in a nonlinear system, the matrices
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may also vary with respect to time. The state space transformation for the above

system of equations of motion, assuming zero input, is



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 n2 0 0 0





x

y

z

ẋ

ẏ

ż


. (2.7)

In order to further reduce computational complexity, only planar motion is

assumed. To ensure only planar motion, the following constraint,

z = ż = 0, (2.8)

is required. A virtual chief implies that the satellite at the origin is not a real

satellite, but instead an artificial satellite used to simplify the mathematics.

Therefore, all satellites are propagated with respect to a virtual chief. The state

space used in this research, assuming zero input, is



ẋ

ẏ

ẍ

ÿ


=



0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0





x

y

ẋ

ẏ


. (2.9)

2.2.3 Trajectory of Satellite without maneuvers.

The state transition matrix solved for above is a linear, time invariant (LTI)

state transition matrix. A LTI state transition matrix is defined as a system of
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equations that are not dependent on time, and are a combination of linear variables.

A benefit of the LTI is that it has an analytical solution, if the satellites do not

maneuver. Assuming t0 = 0, and the initial state of the satellite, the state vector at

the time t can be found using [22], if the satellite does not maneuver. The states at

time t can be calculated using

x(t) =
ẋ0
n

sin (nt) −
(

3x0 +
2y0
n

)
cos (nt) +

(
4x0 +

2y0
n

)
y(t) =

(
6x0 +

4y0
n

)
sin (nt) +

2ẋ0
n

cos(nt) − (6nx0 + 3ẏ0) t+

(
y0 −

2ẋ0
n

)
ẋ(t) = ẋ0 cos (nt) + (3nx0 + 2ẏ0) sin(nt)

ẏ(t) = (6nx0 + 4ẏ0) cos (nt) − 2ẋ0 sin (nt) − (6nx0 + 3ẏ0)

, (2.10)

where x0, y0, ẋ0, ẏ0 are the initial states (at time t0) of a satellite relative to the

virtual chief satellite. Inputs are discussed in the next section.

2.2.4 Controls for Players.

The pursuit, evasion defender problem posed in this research requires that all

players be able to maneuver. In order to maneuver, the satellites must generate a

thrust, which can be incorporated into the state transition matrix. Satellite inputs

generally require mass loss in order to maneuver [23, 24]. Furthermore, satellites

within this research have no limit on the orientation of the thrust in plane, nor how

quickly the satellite can reorient the thrust vector. In order to account for both

mass loss, the control input (B matrix and ~x input) to the state transition matrix is

~u =



0

0

cos θ

sin θ


T

1 − tT
E

, (2.11)
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where θ is the angle of thrust, as measured from the x axis. T is the thrust at time

t = 0, and E is the exhaust velocity [24].

2.2.5 Full State Space Representation.

The full state space representation used in this simulation is therefore



ẋ

ẏ

ẍ

ÿ


=



0 1 0 0

0 0 0 1

3n2 0 0 2n

0 −2n 0 0





x

y

ẋ

ẏ


+



0

0

cos θ

sin θ


T

1 − tT
E

.

~y =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





x

y

ẋ

ẏ



. (2.12)

The D is a vector of zeros for this research. This research uses the in-plane frame

and linear dynamics (with nonlinear controls) in order to solve these problems.

However, the algorithm developed is not limited to the in plane LVLH frame with

linear dynamics. Future work could use the nonlinear dynamics, as well as allowing

for cross-track motion.

2.3 Optimal Control

Optimal Control is a field within applied mathematics for finding the best

solution to a functional. An example of a problem solved using optimal control is

the minimum time to a final state given a system of equations, initial state and a

thrust capability [5]. The following sections outline the components of a dynamical

optimal control problem, such as the cost functional and the Hamiltonian.
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2.3.1 Cost Functionals.

A cost functional is at the core of every optimization problem. The cost

functional must be a scalar value, but can be the sum of many scalars. The optimal

solution to a problem produces the lowest possible value of the cost. A common

form of a cost equation, is

J =
1

2
xT (tf )Q(tf )x(tf ) +

∫ tf

0

1

2
xT (t)Qx(t) + u(t)TRu(t)dt. (2.13)

The matrix Q(tf ) is the cost imposed on the states at the final time, whereas the

constant matrix Q is the cost imposed on the states before the final time. R is the

constant cost matrix imposed on the control usage. Time varying R(t) and Q(t)

were not considering in this research.

The first half of the equation, before the integral, is known as the terminal cost.

This cost is only dependent on the final state and final time. A common terminal

cost is the final time. The second half of the equation, within the integrand, is

known as the running cost, or the Lagrange cost. A common running cost is the

control of the system. To use classical techniques in order to solve the optimal

control problem, R must be a positive definite matrix, and Q must be a positive

semi-definite matrix [5]. Using Equation (2.13), the optimal control can be solved

by first generating the Hamiltonian[15]. The Hamiltonian applies the principle of

least action in order to amend the state dynamics to the cost equation [25].

2.3.2 Hamiltonian.

The Hamiltonian is a summation of the Lagrange costs, as defined in Section

2.3.1, as well as the state dynamics multiplied by the costates. Costates, also known

as Lagrange multipliers or λ, enforce the dynamics on the optimal control problem.
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The standard form of the Hamiltonian is

H = L(t) + λ(t)T (f(x(t), u(t), t)), (2.14)

where L is any running cost, λ(t) are the costates at time t, and f(x(t), u(t), t) are

the state dynamics. Using the Hamiltonian, it is possible to solve optimal control

problems using the boundary and necessary conditions.

2.3.3 Boundary and Necessary Conditions.

Applying the calculus of variations to the Hamiltonian, the following boundary

conditions are used to find the optimal solution. The necessary conditions to solve

the optimal control problem, presented in [5], are

∂H

∂u
= 0

∂H

∂x
= −λ̇(t)

∂H

∂λ
= ~̇x(t)

. (2.15)

In addition to necessary conditions shown above, there is also a boundary condition

to ensure the optimal solution. The boundary condition, also presented in [5], is

0 =

(
∂φ

∂x
(x∗(tf ), tf ) − λ∗(tf )

)T
δxf

+

(
H(x∗(tf ), u

∗(tf ), λ
∗(tf )) +

∂φ

∂t
(x∗(tf ), tf )

)
δtf

. (2.16)

φ is the terminal cost, xf are the final state and tf is the final time. ∂ is a partial

derivative, and δ is the variational derivative. Using the boundary condition, shown

in Table 1, a two point boundary problem is generated.
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Table 1. Different types of games [5]

End Condition Implications Equation

Fixed Final State

The optimal control

problem terminates at a

fixed state

x(tf ) = x(tf )

Free Final State

The optimal control

problem does not have a

fixed final state

∂ψ
∂x

(x∗(tf ), tf ) − λ∗(tf ) = 0

Fixed Final Time

The optimal control

problem terminates at a

fixed time

tf = tf

Free Final Time

The optimal control

problem does not have a

fixed final time

H(x∗(t∗f (tf ), λ ∗ tf ), tf ) +

∂φ
∂t

(x∗(tf ), tf ) = 0

The two points in the two-point boundary problem are the initial state (defined

by the user) and the end state (generated by the type of game). The two point

boundary problem can be solved using a variety of methods, such as forward,

backwards or multiple shooting methods [26]. A secondary solution method to solve

optimization problems is to employ heuristic optimization software [26].

2.4 Heuristic Optimization Software

Heuristic optimization software attempt to solve optimization problems more

quickly than traditional methods, through a variety of approaches. Heuristic

optimization software also can solve for a local, as opposed to the global, optimal
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solution quickly, which may be sufficient, depending on the application [26]. The two

heuristic optimization software tools used in this research are the Particle Swarm

Optimization (PSO) and the General Purpose Optimization Program (GPOPS).

2.4.1 Partial Swarm Optimization.

Kennedy and Eberhart developed a heuristic optimization program inspired by

the migration of birds in the 1990s, called PSO [16]. The governing equation behind

PSO is

v(i,k+1) = v(i,k) + c1r1(x
(i,k)
p − x(i,k)) + c2r2(x

(k)
g − x(i,k))), (2.17)

where v is the particle velocity. r1 and r2 are random numbers between 0 and 1. xp

is the optimal solution amongst the current iteration of candidate solutions, and the

xg is the optimal solution of all previous iterations. The user defines c1 and c2,

which are the cognitive and social parameters respective. PSO generates candidate

solutions to the optimization problem, and then those candidate solutions are

compared to their peers. These solutions are migrated based on the cognitive and

social parameters. Numerous research utilized a particle swarm approach to solve

an optimal trajectory [24].

2.4.2 GPOPS.

Another optimization software, which is the main optimization software used in

this research, is GPOPS. GPOPS uses a pseudo spectral method, where the controls

and states are approximated using polynomials, and differential-algebraic equations

are enforced at the roots of those polynomials, or a linear combination of the

polynomials and their derivatives. This allows a continuous-time optimal control

problem to be posed as a nonlinear program, which is then solved using a nonlinear

program (NLP) solver [17]. This research used GPOPS as the optimization
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software, unless otherwise noted. A potential drawback of using GPOPS is that

only a local optimal solution may be found, as opposed to a global solution. A local

optimal solution implies that the solution produces the best value of the cost

functional within a small neighborhood of that solution, but is not the best possible

solution [5]. This research can only claim local optimality. Pseudo spectral methods

have been shown to solve optimal trajectories in [27].

2.5 Differential Games

Differential games attempts to find the best outcome when a variety of players

have different objectives. Solving a differential game often means solving for the

Nash Equilibrium. A Nash Equilibrium (in a two player noncooperation game) is

defined as a solution in which, if player one performs optimally, no better solution

exists for player two. This research is modeling a two team, three player game. A

team is defined as a group of players whom have a mutual objective. This research

is a two on one differential game, where the evader and defender are one team

against the pursuer. The pursuer and evader are playing a classical differential

game, called Pursuit Evasion.

2.5.1 Pursuit Evasion.

One of the first differential games is the ’homicidal chauffeur’, popularized by

Isaacs [2]. The homicidal chauffeur has a slow but maneuverable pedestrian, whose

objective is to not be captured by the chauffeur. The chauffeur is a fast but sluggish

car that is attempting to capture the pedestrian. The solution to the homicidal

chauffeur was derived by Isaacs, to show where the pedestrian escapes, and where

the chauffeur captures the pedestrian, shown in Figure 4.
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Figure 4. Solution to homicidal chauffeur [2]

Since the initial work on the homicidal chauffeur, other research has applied the

principles of that homicidal chauffeur to many different environments, such as using

the linearized relative orbit mechanics in the LVLH frame.

2.5.2 Pursuit Evasion in the LVLH Frame.

Pursuit-evasion games in the LVLH frame were solved by both Stupik and

Jagat. Stupik solved the two-point boundary problem using a particle swarm

optimization software in the LVLH frame [24]. Jagat instead used a nonlinear

regulator with heavy control penalty [28]. Stupik was used a comparison for this

research, instead of Jagat’s, because Jagat does not have bounded control which this

research uses and is more realistic. This research also adds a defender satellite,

which was not included in either of Stupik’s or Jagat’s work. For a defender
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satellite, a comparison to the loyal wingman concept in the fighter community is

useful, which can be solved using an Apollonius Circle.

2.5.3 Apollonius Circle.

Three player differential games pose a significant problem to find a Nash

Equilibrium. One solution for a three player game is to use an Apollonius Circles

approach. An Apollonius Circle is defined as the capture region of the evader by the

pursuer. The Apollonius Circle is found by finding the maximum distance the

evader can achieve with any heading before the pursuer intercepts the evader. In

order to apply Apollonius Circles, a simplified coordinate system and dynamics are

required [3]. Figure 5 shows an example of an Apollonius Circle.

Figure 5. Example of the Apollonius Circle [3]
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By generating the Apollonius Circle, it is possible to derive the Nash

Equilibrium between the three players. However, in order to solve for the Apollonius

Circle, numerous simplifies are required, such as a constant velocity and a simplified

coordinate system. This research does not use Apollonius Circles due to those

limitations. Another possible way to solve for the Nash Equilibrium is limiting the

number of maneuvers a player is allowed, such as having only a finite number of

maneuvers.

2.5.4 Finite Maneuvers.

Differential Game problems often attempt to reach a Nash Equilibrium.

However, for the three player game, this can pose difficulty in convexifying the

problem. A solution method for a differential game is to limit the number of

available maneuvers all players are allowed. By limiting the number of available

maneuvers, there exists a finite number of possible games. By solving for the

outcome in each game, it is possible to solve for the Nash Equilibrium. This

approach was solved in space, using a target, attacker and defender differential

game [29]. However, this research allows all players to orient the thrust in any

planar direction. Therefore, this approach is ill-suited for this research, as there are

an infinite number of games possible. This research instead used the Decomposition

Method to solve for its differential game.

2.5.5 Decomposition Method.

A fundamental problem with solving the optimization problem is that the

problem is not generally stable when solve separately. However, Raivio developed a

method to avoid a two-point boundary problem and stabilize the problem, called

the Decomposition Method [30]. The Decomposition Method solves for the Nash
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Equilibrium by solving classical optimal control problems. An example of the Nash

Equilibrium was solved for a one-on-one air combat using medium range air-to-air

missiles. Figure 6 shows the saddle point generate for one player.

Figure 6. Decomposition Method produces a Nash Equilibrium in air to air combat [4]

This method will be expanded upon in the following chapter.

2.6 Summary

This research uses three well-established knowledge areas to pose the differential

game. Those areas are equations of motion that propagate one satellite with

reference to another satellite, classical optimal control problems, and differential

game theory. Chapter III outlines the methodology used in this research.
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III. Methodology

3.1 Introduction

The methodology for this research into the orbital debris defender can be

segmented into various key areas. The first area is to generate relevant initial

conditions and capabilities. Another area is to convert the differential game into a

series of classical optimal control problems. Finally, the third area is to devise a

scoring function in order to evaluate the outcome of the game. The full process is

shown in Figure 7.

Figure 7. Flow chart of research process

This chapter provides a detailed derivation and application for each of those

areas.

3.2 Initial Position and Velocity Vectors of All Players

The goal of this research is an evaluation of various parameters in the two team,

three player game. A variety of initial conditions and capabilities are required, to

ensure a robust sample size. The following sections outline the methodology to find
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the initial state vectors of all players. All players require an assumption in order to

consistently populate their initial state vector at the start of the game.

3.2.1 Pursuer Initial State Vector.

In order to model the worst case scenario (of the orbital space debris problem),

the pursuer will begin on a collision course with the evader. Therefore, a time until

impact is required to generate an initial state vector for the pursuer. This research

recommends the use of β, where β is defined as the amount of orbits until the debris

will impact the evader, if neither the debris nor evader maneuver. β can be found

by solving

tc =
2π

n
β, (3.1)

where tc is the time until impact. The recommended values of β are between 0.1

and 1.

As outlined in the previous chapters, a variety of pursuer initial positions are

used in this research. Therefore, the pursuer’s initial position is known at the start

of the differential game. Given the pursuer’s initial position, as well as β, the

pursuer’s initial state vector is

~xp(0) =



xp(0)

yp(0)

nxp(0)(4−3 cos (nt))+2(1−cos (nt))ẏp(0)

sin (nt)

(6xp(0)(nt−sin (nt))−yp(0))n sin (nt)−2nx0(4−3 cos (nt))(1−cos(nt))

(4 sin (nt)−3nt) sin (nt)+4(1−cos (nt))2


, (3.2)

where xp(0), yp(0) are the initial x and y coordinates of the pursuer in the LVLH

frame, and t = tc. β therefore is analogous to a warning time the evader and

defender have before impact, an operationally important metric.
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3.2.2 Defender Initial Position and Velocity Vector.

The assumption of the orbital debris defender was a system dedicated to defend

a primary satellite [12], and not a system on the primary satellite itself. In order to

reduce fuel consumption protecting the primary satellite, the defenders may operate

in a passive stable relative orbit. The solution to this orbit is a Natural Motion

Circumnavigation (NMC), which is solved by reducing the secular terms within the

initial state vector. The secular term in Equation (2.10) is

(6nx0 + 3ẏ0). (3.3)

To nullify the secular term, Equation (3.3) must equal 0. This generate the

following initial state vector for the defenders initial y velocity,

ẏ0 = −2nx0. (3.4)

Additionally, there is a constant offset term in Equation (2.10), which is the center

of the NMC in the y component. This research assumes that the NMC will be

centered around the virtual chief. For the NMC to be centered around the origin,

y0 −
2ẋ0
n

(3.5)

must equal zero. The following initial condition for the defender’s initial velocity in

the x direction is

ẋ0 =
ny0
2
. (3.6)
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The initial state vector for the defender is

ẋd(0) =



xd(0)

yd(0)

nyd(0)
2

−2nxd(0)


, (3.7)

where xd(0) and yd(0) are the initial x and y coordinates of the defender in the

LVLH frame. Figure 8 shows the initial velocity vector of the pursuer (with β=0.1)

and defender based on their initial position. The initial velocity of the defender is

independent of β, and is only a function of the initial x and y coordinates.
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The evader’s initial state vector is defined as

~xe(0) =



0

0

0

0


, (3.8)
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as the evader and the virtual chief will begin collocated at the start of every game.

3.3 Control for all players

As outlined in Chapter II, the defender’s capabilities will remain constant. This

reduces the number of independent variables. Therefore, the capabilities of the

evader and pursuer are defined compared to the defender, labeled as Te/Td and

Tp/Td respectively. The control for the defender is

~ud =



0

0

cos θd

sin θd


Td

1 − tTd
E

. (3.9)

The control for the pursuer is

~up =



0

0

cos θp

sin θp


Td

Tp
Td

1 − t
Td

Tp
Td

E

. (3.10)

The control for the evader is

~ue =



0

0

cos θe

sin θe


Td

Te
Td

1 − t
Td

Te
Td

E

. (3.11)
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3.4 Decomposition Method with pseudo-cooperating defender evader

This research takes the Decomposition Method and then adds two

contributions. The Decomposition Method is a way of solving the pursuit evasion

problem by separating the pursuer and evader’s control problem and reaching a

Nash Equilibrium through an iterative approach [27]. The first contributions is a

defender, which attempts to intercept the pursuer before the purser captures the

evader. Another component added to the Decomposition Method is evader

strategies. Traditionally, two team, three player games are solved without the

evader and defender cooperating [31], or by using a set amount of strategies [32].

However, by taking advantage of the derivation of the Decomposition Method, a

terminal cost which is a function of the evader’s final position, and the initial

position of the defender and pursuer, can be used to implemented

pseudo-cooperation between the evader and defender.

The first phase of this algorithm is a traditional pursuit-evasion problem.

Following the first phase, the second phase, labeled defense, determines if the

defender can intercept the pursuer at any point. Finally, the third phase, labeled

evaluation, scores the outcome of the game. The following sections provide

additional information on each phase.

3.4.1 Phase One: Pursuit Evasion using the Decomposition Method.

Phase one of this algorithm uses the Decomposition Method to solve for the

Pursuit Evasion differential game. In order to derive the Decomposition Method,

the assumption is the evader eventually loses the differential game. Therefore, the
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final states of the pursuer and evader are defined as

~re = (xe(tf ), ye(tf ))
T

~rp = (xp(tf ), yp(tf ))
T

, (3.12)

where ~re and rp are the final position at capture time, tf . The terminal constraint is

the pursuer captures the evader, or both the pursuer and evader have the same

position but not necessarily the same velocity. This capture condition (ψp),

ψp = (re − rp) = ~0, (3.13)

states the evader loses at the final time, which is an assumption within this

research. The pursuer’s objective is to minimize that capture time, or

Jp = tf . (3.14)

The evader wishes to maximize the time to capture. Instead of directly maximizing

capture time, the evader instead maximizes the capture condition. This is done by

taking a first-order Taylor series around the evader’s previous final position. In

order to simplify the math, the following equation defines the evader’s final position

at the (i-1) iteration,

~e =i−1 re. (3.15)

A Taylor series expansion taken around the evader’s previous final position results is

[27]

Jp(
ire) ≈ Jp(~e, rp) + (

∂Jp
∂~e

)(ire − ~e). (3.16)

In optimization problems, scalar values in the cost functional do not affect the

optimal solutions [5]. The first term in the Taylor Series expansion is a scalar.
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Therefore, Jp(~e, ~rp) can be ignored, because, as a scalar, Jp(~e, ~rp) does not affect the

optimal solution, only the optimal value. The second term is calculated by taking

the gradient of Jp(~e) with respect ~e, or the evader’s previous final position, derived

in [27], is

∂Jp
∂~e

=
∂

∂~e
φ(~e, rp) +i λp

∂

∂~e
ψ(~e, rp). (3.17)

The evader wants to maximize that value. In the traditional Decomposition Method,

the evader has no terminal cost other than maximizing capture time. However, in

order to implement strategies for the evader, a terminal cost can be employed as

long as it is dependent on the evader’s final position, as well as the defender’s and

pursuer’s initial state vectors. The derivative of the other terminal cost is

∂

∂~e
φ(~e, rp) =

[
∂φe
∂ex

∂φe
∂ey

0 0

]T
. (3.18)

Removing the scalar and simplifying, the evader’s objective function is

Je =

[
λxp(tf ) + ∂φ

∂ex
λyp(tf ) + ∂φ

∂ey

]ixe(tf ) − ex

iye(tf ) − ey

 . (3.19)

This generates the iterative optimal control problem between the pursuer and

evader. First, the pursuer solves a fixed final state, free final time problem. The

objective of the pursuer is a minimum time to the evader’s previous final state.

Afterwards, the evader solves a free final state, fixed final time problem to maximize

the capture condition. This process is repeated until the evader’s final position does

not exceed a threshold. This is a local optimal solution, and may not be a global

optimum solution. For the algorithm, phase one is captured in a flow chart, shown

in Figure 9.
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Figure 9. Phase one: Pursuit evasion using Decomposition Method

An additional application of the Decomposition Method, the forced rendezvous

problem, is derived and demonstrated in Appendix A.

3.4.2 Phase two: Defense.

A significant benefit of the Decomposition Method is turning differential game

theory into classic optimal control problems. Adding a defender only requires two

additional optimal control problems. The first optimal control problem is a free final

state, free final time problem. The defender is attempting to capture the pursuer

before the pursuer captures the evader. Therefore, the objective of the defender is

to see the minimum interception distance between pursuer and defender. This

portion of the algorithm is shown in Figure 10.
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Figure 10. Phase two: Defense

3.4.3 Phase three: Evaluation.

The final optimal control problem depends on the output of phase two. Figure

11 shows the two different optimal control problems in phase three.

Figure 11. Phase three: Evaluation

If the defender can capture the pursuer, then there is a minimal time to

capture. This creates a fixed final state, free final time with an objective of
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minimizing final time. The states of the evader and pursuer are truncated at the

time the defender captures the pursuer. The truncation is done for scoring purposes,

to find the margin of victory.

However, if the defender can not capture the pursuer, a fixed final time, free

final state problem to see how close the defender was to intercepting the pursuer

when the pursuer captures the evader. How close the defender was to intercepting

the pursuer is considered the loss margin, and used for scoring purposes. Figure 12

shows the entire algorithm. Appendix B provides a visual aid similar to how it is

coded in MATLAB.
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Figure 12. Flow chart of Decomposition Method with defender
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3.5 Adding Strategies for the Evader

The Decomposition Method requires taking a Taylor series around the evader’s

final position. In the original decomposition paper, the first-order term is only a

function of the costates of the pursuer. However, if the evader’s objective value is

not only maximizing capture time, but also a function of position, then the second

term in the evader’s objective (∂φ
∂e

) is not zero, as used in [27]. This research

purposes using that term to generate strategies for the evader, or

pseudo-cooperation between evader and defender. The evader accepts a worse

capture time for a potential advantage in its trajectory.

Ideally, the evader would have full knowledge of the defender’s states at all

times, however a mathematical solution for a full cooperating defender-evader team

has not been solved within the assumptions of this differential game [31]. However,

in this algorithm, the defender and pursuer’s initial state vectors are known at the

start of the game. Therefore, as long as the terminal cost of the evader is a function

of only the initial state vectors of the pursuer and defender and the final state of the

evader, it can be incorporated into the Taylor series. These strategies require the

evader to know the defender and pursuer’s initial position. This research poses six

different strategies, shown in Tables 2. Table 2 provides a narrative descriptor, and

the terminal cost used. However, these strategies are not exhaustive. α is a

weighting term between capture time and the final position of the evader, and is

defined as

α =
1

2
(1 − cos (θdep)) =

1

2

(
1 − ~rd(0) · ~rp(0)

rd(0)rp(0)

)
. (3.20)

Figure 13 shows α as a function the angle between the defender, evader and

pursuer. Figure 14 shows an example of α. cos(θdep)) is the angle between the

pursuer and defender, from the evader’s perspective.
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Table 2. The evader strategies and their terminal cots

Strategy Terminal Cost φe(tf ) Description

Strategy one 0 Maximizing capture time

Strategy two
(xe(tf ) − xd(0))2 + (ye(tf ) −

yd(0))0.5
Maximizing capture time and

minimizing distance to defender

Strategy three
α(xe(tf ) − xd(0))2 +

(ye(tf ) − yd(0))0.5

Weighting maximizing capture
time and minimizing distance to

defender

Strategy four
−(xe(tf )(xd(0) − xp(0)) +
ye(tf )(yd(0) − yp(0)))

Maximizing capture time and
luring pursuer towards defender

Strategy five
1
2
(xe(tf ) − xd(0))2 +
(ye(tf ) − yd(0))2

Maximizing capture time and
minimizing the square distance to

defender

Strategy six
α
2
(xe(tf ) − xd(0))2 +
(ye(tf ) − yd(0))2

Weighting maximizing capture
time and the square minimizing

distance to defender
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3.6 Scoring

A scoring metric was required to evaluate the outcome of each differential game.

Using a strict binary win/loss did not yield unique results. A significant portion of

the literature for pursuit-evader-defender differential games concerns aerial dog

37



fighters, which have different scoring requirements. Therefore, a new scoring

function was required. The following criteria were used to generate the scoring

function.

1. Values between 0 and 1

2. High values are desirable for the Defender/Evader team

3. Sufficient sensitivity to aid design requirements

4. Incorporate the relative distances between pursuer-evader and

pursuer-defender

A candidate function was the logistic function. The logistic function is defined as

f(x) =
L

1 + exp (−K(x− x0))
, (3.21)

where, exp is the natural logarithm base, x0 is the midpoint value, L is the

maximum value and K is the steepness of the curve. To meet the criteria, the

following values are used in the scoring function,

x0 = 0

L = 1

x = rpe(tf ) − rdp(tf )

. (3.22)

Equation (3.22) is also known as the soft Heaviside function. Additional scoring

functions were not considered. The scoring function used in this research is

Score =
1

1 + e−K(rpe(tf )−rdp(tf ))
, (3.23)
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where rpe(tf ) is the distance between evader and pursuer at the final time, and

rdp(tf ) is the distance between the defender and pursuer at the final time. This

leaves K as an unresolved constant. Figure 15 shows how K influences the score.
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A possible method of determining the K value in the scoring function is to

determine a distance (r) and a score (S) for that distance value. Solving Equation

(3.22) using r and S for K yields

K =
1

r
ln (

S

1 − S
). (3.24)

For example, assigning a score value of 0.9 at a distance of 100 km yields

K = 0.022, (3.25)
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which is the K valued used in this research unless otherwise indicated. In addition

to a scoring function, a scoring metric was required to evaluate the strategies as

compared to each other. Scoring metrics were used in this research to further

investigate the data. Table 3 outlines the scoring metrics used. The best average

score amongst all scenarios may not yield sufficient details, as one strategy might

not perform well under some initial conditions, but for very specific scenarios may

be the optimal strategy. As this is a completely new use of the Decomposition

Method, a more detailed analysis of the data may be warranted.

Table 3. Scoring metrics to compare strategies

Metric Description of criteria

High Scorer
% of times this strategy produced the

best outcome of all strategies

Low Scorer
% of times this strategy produced the

worst outcome of all strategies

Unique Winner
% of times this strategy produced the

only winning outcome of all strategies

Unique Loser
% of times this strategy produced the

only losing outcome of all strategies

Mean Score Mean Score over all games

3.7 Test Matrices

This research requires a large number of differential games, with a variety of

initial state vectors and capabilities of the pursuer, evader, and defender, in order to

investigate the orbital debris defender. This research used different test matrices,
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depending on the parameter investigation. The following sections outline the test

matrices used during this research.

3.7.1 Evader Capability Test Matrix.

One of the initial parameters investigated how Te/Td and Tp/Td influenced the

mean score of a game. A number of games, with a variety of pursuer and defender

initial state vectors and varying values Te/Td and, Tp/Td were solved, and averaged.

Table 4 outlines the parameters used in this investigation.

Table 4. Test matrix for Evader strategies study

Variable Value

Defender initial x and y bounds -70 km to 70 km

Pursuer initial x and y bounds -100 km to 100 km

Number of initial positions for each player 16

Spacing between points equal along x and y axis

εe 10 cm

εd 1 mm

Number of differential games per data point 256

3.7.2 Defender Initial Position Test Matrix.

The initial position of the defender was a parameter investigation. However, in

order to ensure a robust data set, a large amount of differential games were played.

Table 5 outlines the parameters used in this investigation.
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Table 5. Test matrix for defender initial position study

Variable Value

Defender initial x and y bounds -100 km to 100 km

Pursuer initial x and y bounds -105 km to 105 km

Number of positions for each player 100

Spacing between points equal along x and y axis

εe 10 cm

εd 1 mm

Number of differential games per data set 10,000

The parameter study of the evader maintaining its mission also used the same

parameters. The LEO parameter used similar parameters, outlined in Table 6.

Table 6. Test matrix for defender initial position study in at 2000 km altitude

Variable Value

Defender initial x and y bounds -20 km to 20 km

Pursuer initial x and y bounds -21 km to 21 km

Number of positions for each player 100

Spacing between points equal along x and y axis

εe 10 cm

εd 1 mm

Number of differential games per data set 10,000
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3.7.3 Time In Orbit and Optimally Phased Defenders Test Matrix.

As a result of the defender’s initial position study, the next parameter study

was determining the variation in the mean score of the same defender while in the

NMC around the evader. This was measured as the angle between the defender’s

initial position and the negative x axis, demonstrated in Figure 16.
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Figure 16. Variety of defender initial position during NMC as measure by θdep

The following test matrix outlines the parameters used in this research. Table 7

outlines the parameters used in this investigation.
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Table 7. Test matrix for defender time in orbit, optimal phasing, and the performance
of two optimally phased satellites

Variable Value

Defender relative radius 75 km

Defender number of angles 20

Pursuer initial x and y bounds -105 km to 105 km

Number of pursuer positions 100

Spacing between points equal along x and y axis

εe 10 cm

εd 1 mm

Number of differential games per data point 2,000

This data set was also used in the optimal phasing of the two defender system,

as well as the optimally phased defenders.

3.7.4 Evader Strategies Test Matrix.

In order to determine the optimal strategy, a variety of games were played. All

of those games involved the same initial positions (outlined in Table 8), but the

initial capabilities were varied. The capabilities used to generate a large data

sample are shown in Table 9.

44



Table 8. Test matrix for player capabilities study

Variable Value

Defender initial x and y bounds -100 km to 100 km

Pursuer initial x and y bounds -105 km to 105 km

Number of initial positions for each player 36

Spacing between points equal along x and y axis

εe 10 cm

εd 1 mm

Number of differential games per scenario 1296

3.8 Limitations

The research presented here has a variety of limitations, due to the initial

assumptions and the approach used. One of the biggest limitations is during phase

two and phase three if the defender can intercept the pursuer. The pursuer’s control

are passed into GPOPS, but in order to solve the optimal control problem, GPOPS

interpolated the pursuer’s control. This potential causes the defender to chase a

Table 9. Capabilities used in strategies studies

Scenario Te/Td Tp/Td β
1 0.20 0.80 0.50
2 0.20 0.80 0.80
3 0.30 1.20 0.25
4 0.30 0.90 0.15
5 0.30 1.20 0.15
6 0.40 0.80 0.20
7 0.40 1.00 0.20
8 0.50 1.20 0.25
9 0.50 0.90 0.15
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pursuer who is using a control with error caused by the interpolation. Future work

may deal with this limitation by incorporating the true dynamics of the pursuer into

the equations of motion, thus avoiding the interpolation. However, incorporating

the true thrust into the equations of motion may cause a significant increase in

computational time. Another limitation of this research is that there is no

guarantee of the global optimal solution. Future work could use an iterative

approach by passing the previous solution of Stupik and the Decomposition Method

until both agree upon a trajectory and capture time.

3.9 Summary

This research posed the pursuer-evader-defender differential game into a series

of classical optimal control problems, using the Decomposition Method. Two

additional optimal control problems were appended to the traditional Decomposition

Method, to simulate a defender. Additionally, this research argued that it is possible

to generate pseudo-cooperation between the evader and defender using additional

terminal costs within the Decomposition Method. Chapter IV provides the results

of various simulations corresponding to the test matrices defined in this chapter.
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IV. Implementation and Analysis

The goal of this research is to provide performance trade space to satellite

designers and operators. However, this research did not have an initial data set or

recommendations in order to narrow the search parameters. Therefore, a large

amount of differential games were required, in order to generate a data set. This

data set was then analyzed in order to determine the key parameters that increase

the likelihood of success of the orbit debris defender. Those results are presented in

the following sections, however the Decomposition Method is a relatively new

method to solve the pursuer evader problem. Therefore, the solution generated

using the Decomposition Method was compared to the solution solved using

Stupik’s method in order to validate the Decomposition Method.

4.1 Initial Validation

This portion of the research solves the pursuit-evasion problem in space using

the Decomposition Method. In order to validate that approach, a comparison was

required. Stupik solved the same pursuit evasion problem using the necessary

conditions and solving the two-point boundary problem [24]. Both algorithms

attempt to maximize the capture time of the evader, so if the Decomposition

Method produces similar results to Stupik, then it is validated. Figure 17 shows an

example of the trajectories of all players, if all players do not maneuver. Note, in

the absence of the evader maneuvering, the pursuer will collide with the evader.
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Figure 17. Initial velocity vectors

Using the same initial conditions, the pursuit-evasion portion of the differential

game was solved independently of each other using both algorithms. Finally,

Stupik’s solution was used as an initial guess to the Decomposition Method. The

following section outlines the results of the Decomposition Method, and compares

the results to Stupik’s method.
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4.1.1 Decomposition Method.

The Decomposition Method requires iterations, between the evader and

pursuer, to generate the Nash Equilibrium. Delaying the capture time produces the

optimal solution for the evader. The evader is eventually captured by the pursuer,

which is required for both the Decomposition Method and Stupik’s method. Figure

18 shows the change in evader’s final position as the number of iterations increases.
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Figure 18. Evader reaches Nash Equilibrium as iteration number increases

The pursuer’s objective, capture time, also reaches a final value as the iteration

number increases, shown in Figure 19. Figures 18 and 19 show that the

Decomposition Method is stable when applied to the HCW equations of motion.
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The trajectories generated between the two players during the Decomposition

Method are illustrated in Figure 20, with the final trajectory shown in Figure 21.
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Figure 21. Final Pursuit Evasion trajectories using Decomposition Method

The controls for both players after final iteration are shown in Figure 22. These

results agree with the results found in Stupik, that ue = up [24]. This control law is

consistent with the necessary condition ∂H
∂u

= 0, which can be reduced to

λẋ(t) sin (θ) = λẏ(t) cos (θ). (4.1)
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Neither of the velocity costates are constant, nor are their slopes the same. This

boundary condition produces a varying burn angle, which is shown in Figure 22.
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Figure 22. Control of players at end of phase one, meets necessary conditions of the
same burn angle between Evader and Pursuer

The Hamiltonians for both players after the final iteration are shown in Figure

23. The Hamiltonian meets the boundary condition that

Hp(tf , u
∗, ~x∗p, λ

∗
p) = −1. (4.2)

Equation (4.2) was solved from the boundary condition equation

Hp(tf , u
∗, ~x∗p, λ

∗
p) +

∂φ

∂t
= 0, (4.3)

where

∂φ

∂t
= 1. (4.4)
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Figure 23. Hamiltonian of players at end phase one

The costates for both players after the final iteration are shown in Figure 24.

The Decomposition Method meets boundary conditions solved in Stupik [24], where

λ∗p(t) = λ∗e(t), (4.5)

and

λ∗p(tf ) =



v1

v2

0

0


. (4.6)
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Figure 24. Decomposition Method produces solution that meets the necessary and
boundary condition for Pursuit-Evasion problem

Figure 25 shows the resulting thrust of each player after phase one. There is not

as much symmetry between the actual thrust magnitudes due to the difference in

the denominator of both the evader and pursuer’s control equation.
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Figure 25. Thrust of players during Pursuit Evasion, meets necessary conditions

4.1.2 Comparison to Existing Literature.

Under the same initial conditions, the pursuit evasion problem was solved using

Stupik’s approach and the Decomposition Method. Figure 26 shows the resulting

trajectories, which are significantly different. This means that there are potentially

multiple saddle points along that Nash Equilibrium, and therefore there may exist

multiple local optimal solutions. Neither method guarantees the global optimal

solution.
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Figure 26. Decomposition Method and Stupik’s method produce different trajectories,
but both solution satisfy the necessary and boundary condition

As there are at least two saddle points to a Nash Equilibrium between the

evader and pursuer, a third comparison was required to see if any additional

solutions could be found. This third approach was providing GPOPS with Stupik’s

solution as an initial guess in the Decomposition Method. Figure 27 shows the

resulting trajectories of all three approaches. The Decomposition method, even

when primed with Stupik’s solution as an initial guess, produced the same

trajectory as without the Stupik’s solution.
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However, as all three algorithms attempt to maximize capture time of the

evader, a better comparison is capture time. Table 10 outlines the capture time

between all three approaches. All three approaches produced similar capture times.

This validates using the Decomposition Method to solve phase one of the algorithm.

The next validation is to see if phase two produces a result without a large amount

of error. It should be noted that the Decomposition Method did not always solve for

a better final capture time than Stupik’s method, and the Decomposition Method

primed with Stupik’s solution did not always produce the same trajectory as the

Table 10. The Decomposition Method produces a better final capture time than Stupik
using these initial conditions and software

Solution Method Capture Time (s)
GPOPS 3778.32
Stupik 3644.63

GPOPS primed with Stupik 3777.32
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Decomposition Method that is not primed with Stupik’s solution as an initial guess.

This indicates that there may be many local optimal solutions. A method to ensure

the global, as oppose to local, optimal solution is left for future work.

4.1.3 Example: Phase two.

The next optimal control problem is to see if the defender is able to intercept

the pursuer, shown in Figures 28 and 29.
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Figure 28. Defender intercepts pursuer
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Figure 29. Minimal errors caused by interpolation of pursuer’s control

While the control of the pursuer requires interpolation, it does not appear to

induce sufficient error to invalidate this approach. Therefore, phase two is a

reasonable approach. The final validation is for phase three, to see if a minimum

time to intercept is possible.

4.1.4 Example: Phase Three.

Since the defender is able to intercept the pursuer, a minimum time to intercept

is required. Figure 30 shows the final states. Note that even though the defender is

using an interpolated pursuer control, it still intercepts the pursuer’s path, as

desired.
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Figure 30. Trajectories of all players

Figure 31 shows the costates of all players at the end of the algorithm. The

defender meets the necessary condition that the velocity costates are zero at the

final time. The pursuer’s and evader’s velocity costates are not zero due to the

truncation.
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Figure 31. Costates of all players

Figure 32 shows the Hamiltonian at the end of the algorithm. The Hamiltonian

for the defender is expected to be smooth, and this is likely due to numerical errors

within GPOPS.
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Figure 32. Hamiltonian of players at end phase three

Figure 33 shows the control for all players at the end of phase three. A

nonconstant defender’s control angle is expected, and likely the optimal control is a

smooth continuous function. Further refinement of the GPOPS solution is likely to

produce such a result. The defender’s control appears similar to that of the pursuer

and evader, with an offset to the angle but the same shape. This result was not

analyzed further in this research.
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Figure 33. Control of players at end of phase three

Figure 34 shows the thrust for all players at the end of phase three. There does

not appear to be any correlation between the defender’s thrust and the pursuer’s

thrust.
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Figure 34. Thrust of players after end of simulation

The above results validate the three different phases in this algorithm. A

potential improvement to the algorithm solve the first iteration using Stupik’s

method, and then solve the following iterations using the Decomposition Method.

This may produce a better solution. The following sections outline the different

parameter investigation performed using this research’s algorithm.

4.2 Parameter Investigation: Players Capability

This research investigated the ability of player’s capabilities to influence the

mean score of the game. For this, a game of variety of defender and pursuer

positions were played, but different capabilities were assigned to the pursuer and

evader. Figure 35 shows the results of those.
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Figure 36 is a plot of the same results in three dimensions.
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Figure 36. Mean score vs. player capabilities (3D)

In these scenarios, the defender appears to have an advantage over the pursuer,

likely due to lack of interaction in the pursuer-defender pairing. However, in order

to exploit this hypothesized advantage, the defender requires more capability than

the pursuer. For comparison, the same mean score was achieved when Te
Td

= 0.1 and

Tp
Td

= 0.8 when compared to Te
Td

= 0.6 and Tp
Td

= 1.2 The evader needs to add 0.5

defender ability, if the pursuer gains 0.4 defender ability. There is also an evader’s

capabilities in which it does not impact the outcome of the game.

4.3 Parameter Investigation: Initial Position of Defender

This research posited that the orbital debris defender is in NMC around the

evader. Therefore, a design parameter for the orbit debris defender is its initial
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position in a variety of NMCs. Figure 37 shows the mean scores as a function of the

defender’s initial position.

Figure 37. Mean score of defender with Te/Td=0.5, Tp/Td=0.8, and β=0.25

Figure 37 is the mean score of the defender, at that initial position, when

attempting to intercept 100 different pursuer’s initial state vectors. Figure 37 is an

interpolated plot, in order to better compare the solution structure. A consistent

rotated ellipsoid appears to exist. The shape of the ellipsoid may be dependent on

the initial capabilities of all players, and β when operating in a conservative gravity

field. However, a conclusive relationship between those variables and the ellipsoid

shape remains unresolved, and is left for future work. This shape was found

consistently when varying all three parameters (Te/Td, Tp/Td, and β). The diagonal

nature of the solution suggests that the defender may experience a decrease in
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performance as its orbits the evader. Therefore, the next parameter investigation

was the variation in mean score as the defender orbits the evader.

4.4 Parameter Investigation: Time in Orbit of Defender

In order to determine the variation in mean score of the defender in the same

NMC, another series of differential games were played. Figure 38 shows the mean

score as a function of the defender’s time within that NMC, as defined in Chapter

III. A defender experiences large variations of the mean score, with the same

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time in Orbit (orbital period)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
ea

n
 S

co
re

Mean Score Vs Time In Orbit

T
p
/T

d
 = 1.2, β=0.25

T
e
/T

d
= 0.1

T
e
/T

d
= 0.2

T
e
/T

d
= 0.3

T
e
/T

d
= 0.4

T
e
/T

d
= 0.5

T
e
/T

d
= 0.6

T
e
/T

d
= 0.7

Figure 38. Same defender’s interception ability is dependent on its time in orbit

capabilities, during the defender’s relative orbit of the evader. These results are

consistent with the ellipsoid shown in Figure 37. The periods of better performance

are during the perigee and apogee of the debris defender. The variation in

performance posses significant problems from a performance trade space. A

significantly effective defender may perform poorly depending on when the orbital

69



debris defender is detected. A potential solution, although there are significant cost

and schedule concerns, would be two defenders. If two defenders are used, they will

be likely have the same relative orbit, but a time phase between the two satellites.

The next parameter study was the optimal phasing between a two defender

formation.

4.5 Parameter Investigation: Optimal Phasing for Two Defender

Formation

If a satellite designer wants to decrease the variation in defender mean score, a

two defender formation in NMC may be an adequate mitigation strategy. Figure 39

shows the mean score across the entire orbit as a function of the phasing between

the two defenders. The result suggests that the defenders should be separated by
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Figure 39. Optimal phasing around π
2 or 3π

2

1/4 or 3/4 of an orbit, as measured by a reduction of variation of the mean score
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across the defender’s main orbit. Figure 40 shows the resulting performance of the

two defender system when optimally phased. A two defender formation both

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time in Orbit (orbital period)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 S

co
re

Mean Score Vs Time In Orbit

T
e
/T

d
= 0.1 T

p
/T

d
 = 1.2, β=0.25

2 Defenders

1 Defender

Figure 40. Mean score of optimally phased two defender system with Te
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=

1.2, β=0.25

increases by the mean score and decreases the variation in performance. This is due

to one of the two defenders being close to apogee or perigee, which are the most

successful initial positions, throughout the orbit.

A highly capable defender may be less effective than two inferior defenders that

are phased optimally. This is because a single defender experiences significant

variation in the mean score within its orbits, whereas two defenders may have lower

peak performance, but better consistent performance. If a two defender system is

implemented, a phasing of either 1/4 or 3/4 of an orbit produces a decrease in the

variation of the mean score and potentially a better mean score. The determining

factor between either an inferior two defender system or a superior single defender

may require cost and schedule considerations to determine the best system.
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4.6 Parameter Investigation: Evader Strategies

As shown in Chapter III, using terminal constraints can have the evader

exchange capture time for a better trajectory. Figure 41 shows the difference in

possible trajectories based on the strategy used by the evader using the same initial

conditions.
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Figure 41. Different strategies produces different trajectories

These different trajectories are generated by solving the optimal control

problem with a different terminal cost. Figure 42 shows the pursuer’s objective

function (capture time) for all strategies as a function of the iteration number.
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Figure 42. All strategies do not produce a better capture time than strategy one, but
a potentially better trajectory for the defender to intercept the pursuer

As demonstrated in Figure 42, all strategies produce an equal or inferior to

strategy one, but the other strategies might produce better trajectories, as

measured by the final score of the game. Table 11 shows the scores each strategy

produced, with the same initial condition. This use of the terminal cost in the

Decomposition Method is new to this research. Therefore, in order to determine the

best strategy, a large amount of differential games are required to ensure a robust

analysis. Table 12 represents the outcome of the six strategies under a number of

differential games, using the parameters in Table 8. Based on the positions of the

pursuer and defender, each strategy may be the optimal strategy to implement, as

shown by each strategy generating a high score and a unique win. Therefore, more

Table 11. Using different strategies produces different scores

Strategy one two three four five six
Score 0.58 0.32 0.63 0.64 0.32 0.30
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Table 12. Scoring outcomes when Te/Td=0.3, Tp/Td=1.2 and β=0.25

Strategy One Two Three Four Five Six
High scorer (%) 10.03 7.02 4.48 18.67 13.89 15.66
Low scorer (%) 8.26 13.12 19.68 7.02 12.96 8.72

Unique winner (%) 0.46 0.23 0.31 1.16 0.69 1.77
Unique loser (%) 0.23 0.39 2.16 0.39 0.54 0.39

Mean scores 0.38 0.38 0.35 0.39 0.39 0.41

differential games were played, and then the best strategy was determined using the

scoring metrics. Table 13 shows the results of that analysis. Tables 12 and 13

indicate there might not be an optimal strategy for all scenarios. Strategies four and

six are the best overall strategies, but they do not always perform the best. These

strategies did not always converge on a single final position. A brief analysis of

scenarios when the algorithm did not converge indicated that the algorithm was

osculating between two solutions. This research did not devise a robust method of

determining which outcome to implement between the two solutions, and therefore

if any of the strategies did not produce a converging solution, then all data points

with those initial conditions were not analyzed.

4.7 Miscellaneous Studies

This research also explored two additional studies. The first study was the

influence on the outcome of the evader maintaining its mission. The second was

Table 13. Strategy four and six are the best overall strategy, but are not always the
optimal strategy

Strategy One Two Three Four Five Six
Most High Scores 1 0 0 8 0 0
Least Low Scores 0 2 0 4 0 3

Most Unique Wins 1 0 1 3 0 4
Least Unique Loses 3 0 3 1 1 1

Best Mean Score 0 1 0 1 0 7
Total Wins 5 3 4 17 1 15
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whether or not the solutions structures generated in this research were generated in

other orbital regimes. The following sections outlines the results of that analysis.

4.7.1 Parameter Investigation: Maintaining Mission.

Landsat 7 experienced a significant operational impact after performing a

collision avoidance maneuver [9]. Therefore, the satellite’s operators may choose to

accept more risk in order to reduce the operational impact. This can be modeled by

having the evader not performing any maneuvers or Te/Td = 0. Figure 43 shows a

similar structure as if the evader does not maneuver, however the area of successful

defense is decreased.

Figure 43. Mean score of defender with Te/Td=0, Tp/Td=1.2, and β=0.1

The results of maintaining mission produces the innovative result that the mean

score of the defender decreases if the evader does not aid in escaping.
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4.7.2 Parameter Investigation: Defender in LEO.

This research focused on a satellite in GEO. However, many satellites are also

in Low Earth Orbit (LEO). Using the same algorithms, but changing the K value

(K = 0.1099) in order to adjust the initial relative distances, Figure 44 shows a

similar structure as in GEO.

Figure 44. LEO mean score of defender with Te/Td=0.3, Tp/Td=0.8, β=0.25

The existence of the same structure in the LEO region suggests that all the

results of this study may be applied to a LEO satellite defender. However, the LEO

environment poses additional perturbations, such as atmospheric drag and J2 [19].

Future work could add those perturbations into the dynamics and validate the

results presented in this research.
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4.8 Summary

The motivation behind this research is whether or not an orbital debris defender

is an effective risk mitigation strategy. In order to validate whether or not the

orbital debris defender is effective, numerous parameters were investigated. The

following provides a summary of those results.

First, Section 4.1 validated the Decomposition Method as a solution to the

pursuit-evasion problem in the LVLH frame. Second, Section 4.2 showed that in

order to take advantage of the lack of interaction between the pursuer and defender,

the defender needs to be more capable than the pursuer. Additionally, there is an

evader capability in which for any lower value, the evader does not impact the

outcome of the differential game. Third, Section 4.3 showed the mean score as a

function of the defender’s initial position. This result showed a consistent structure,

a rotated ellipsoid. This structure suggests the same defender in NMC will

experience large variations in its ability to the defend based on the start of the

game. Sections 4.4 and 4.5 expanded on this research, recommending that a two

defender system be phased either 1/4 or 3/4 of an orbit. Additionally, two defenders

reduce the variation of mean score. This solution structure was also examined if the

evader does not maneuver, and furthermore explored the results of the algorithm in

the LEO orbit. Finally, Section 4.6 shows the results of the evader studies. No

optimal strategies were apparent, as the best outcome was dependent on the initial

conditions. However, strategies four and six were generally the most successful

strategies overall. Chapter V will provide the final conclusions and

recommendations of this research.

77



V. Conclusions and Recommendations

Space is a congested, contested and competitive environment, with an

increasing amount of space objects that pose significant risk to satellites [1].

Current risk mitigation strategies can have significant consequences to satellite

operators. This research showed that an orbital debris defender may be an effective

risk mitigation strategy. Utilizing differential game theory, the orbital debris

defender can intercept debris prior to the debris impacting the evader. This

researched modified the Decomposition Method to solve the pursuer-evader-defender

problem. This research showed how to design for an effective orbital debris defender

with respect to the performance trade space, and posited metrics scoring functions

and strategies for the pursuer-evader-defender differential game. Additionally,

research also showed a method to generate pseudo-cooperation between the evader

and defender, which is not limited to the dynamics used in this research. The

remainder of this chapter will summarize the methodology and results, and conclude

with recommendations for future work. However, this chapter will first determine

whether the research questions have been answered.

5.1 Research Questions

The following sections will outline the answers to the research questions

proposed in Chapter I.

5.1.1 Research Question 1.

The first research question was: “What are the key parameters of an orbital

debris defender, enabling the defender to successfully protect the primary satellite”?

One of the first results demonstrated in this research was that there are significant
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performance gains in the defender being more capable than the pursuer, even if it

requires reducing the evader’s capabilities. Therefore, there may be an optimal

distribution between performance of the evader defender pair, when including other

acquisition trade space such as schedule and cost, or such as trading total launch

mass between the evader and defender. This research demonstrated that a defender

in NMC, a passively stable relative orbit, will experience significant variations in its

ability to protect the primary satellite. Therefore, two inferior defenders may

produce a better overall outcome than one superior defender, subject to other

acquisition trade space.

5.1.2 Research Question 2.

The second research question was: “Can the primary satellite implement any

strategies to aid the orbital debris defender”? This research presented six strategies

to generate pseudo-cooperation between the evader and defender, using the

derivation of the Decomposition Method. Each of those strategies produced the best

outcome, depending on the initial conditions and capabilities. Additionally, while

the previous results may be limited to the space domain, this method of providing

evader strategies is not. This may allow previous problems that had a fixed target

to allow the target to maneuver and still reach a Nash Equilibrium.

5.1.3 Research Question 3.

The third research question was: “Can an active orbital debris defender be an

effective risk mitigation strategy for the space debris problem”? This research

showed definite proof that the orbital debris defender can be an effective risk

mitigation strategy, with respect to performance trade space. In order to measure

that effectiveness, this research used a mean score approach. A mean score greater
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than 0.5 indicates the defender-evader team wins more often than it loses, or is

effective. This research showed that even if the debris behaved as an optimally

performing piece of debris, the defender can intercept the debris if the defender has

enough capability and warning time. A two defender formation is highly effective

against debris if the defenders are warned before the debris is within the defender’s

NMC. This research does not consider either cost or schedule, however an orbital

debris defender does not need to be unique for each satellite. Therefore, there is a

potential for significant cost savings. Each individual satellite designer team needs

to determine which risk mitigation strategy is the best decision for their teams

specific project. However, for satellites where maneuvers and shielding are

impractical, an orbital debris defender may be the best mitigation strategy.

5.2 Potential Future Research

While numerous insights were found in this research, there is still significant

amount of future work. This research only analyzed games that begin very close, to

stay within the Chlossey-Wiltshire linear dynamics [18]. However, nothing in this

algorithm is limited to linear dynamics. By changing the continuous function in the

optimization software, this algorithm can solve the pursuer, evader and defender

problem using the more accurate nonlinear dynamics. Additionally, these strategies

are not limited to the space domain. A second assumption used in this research was

that all players have complete information, which is not often a realistic scenario.

Carr shows a method to add uncertainty to the pursuer’s motion and states, in the

context of a Receding Horizon control and real-time optimal control problem [27].

This research recommends adding uncertainty to the evader, as this continues the

assumption of the worst-case scenario, and limits the information. This research

posed six strategies, and showed that there are conditions in which each strategy
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produces the optimal result. There may exist certain indicators as to when to use

which strategy. This research was unable to determine what those indicators are.

An example indicator might be if the defender is more capable than the pursuer by

a large margin but the pursuer is significantly closer to the evader, the best option

for the evader is to implement strategy one, or maximize capture time. This

provides the defender the most time to leverage the inherent advantage the defender

has over the pursuer. Finally, providing GPOPS with a better initial guess can

produce a better final result than used in this research. The existence of the

ellipsoid structures should be examined further, as only the initial conditions were

investigated. Validation using a better initial guess, or producing the same plots

using Stupik’s approach is recommended, or finding another coordinate frame, other

than the LVLH frame, may cause the ellipsoids to disappear.

5.3 Conclusion

The space environment has evolved significantly over the last half century,

however satellites in use right now are not designed for the realities of the domain in

which they now are forced to operate. Current risk mitigation strategies for the

orbital debris problem can be impractical for some satellite operators. An orbital

debris defender may be a preferred risk mitigation strategy, as it may be more

effective than existing strategies. Additionally, the use of strategies in the evader

defender team provides for an exciting new opportunity to solve new types of

differential games.
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Appendix A: Forced Rendezvous

The Decomposition Method was derived for a pursuer attempted to capture the

evader. However, it is also possible for the pursuer to rendezvous with the evader

instead. A forced rendezvous is defined as a pursuer desires to to match both the

position and velocity of the evader, where as the evader desires to delay that

outcome for as long as possible. The following requires an additional assumption

that the evader knows the pursuer is trying to rendezvous, and is attempting to

maximize the time to capture. The terminal constraint is

~xp(tf ) = ~xe(tf ), (A.1)

which, when taking the Taylor series around the evader’s final position, changes the

gradient to

iλp
∂

∂e
ψ(e, rp) =

[
iλxp

iλyp
iλẋp

iλẏp

]T
(A.2)

This modification changes the final evader cost function to

Je =



λxp + ∂φ
∂i−1xe

λyp + ∂φ
∂i−1ye

λẋp + ∂φ
∂eẋ

λẏp + ∂φ
∂eẏ



T 

xe(tf ) − ex

ye(tf ) − ey

ẋe(tf ) − eẋ

ẏe(tf ) − eẏ


. (A.3)

This could be a mitigation strategy for the orbit debris defender, in case the debris

is a satellite requiring servicing. As shown in Chapter III, the Decomposition

Method can calculate the optimal forced rendezvous. The Decomposition Method

still requires the evader to lose. For this example, a significantly more capable
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pursuer was used, as outlined in Table 14 to avoid a zero value of the denominator

in the control law.

Table 14. Test matrix for forced rendezvous

Variable Value

Pursuer initial state vector



50

−35

0

0



Evader initial state vector



0

0

0

0


εp 10 seconds

Te/Td 0.8

Tp/Td 1.5

An additional change to the Decomposition Method is suggested. Due to

potential scaling problems, instead of comparing the change in evader’s final

position to determine whether or not to continue the iterative approach, compare

the previous pursuer’s objective function. Figure A.1 shows the change in the final

time of the rendezvous vs iteration number.
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Figure A.1. Pursuer reaches Nash Equilibrium for forced rendezvous

Figure A.2 shows that the decomposition method produces a forced rendezvous

trajectory by the pursuer.
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Figure A.2. Final position and velocity states for forced rendezvous

Figure A.3 shows the Hamiltonian of the players within the forced rendezvous.
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Figure A.3. Hamiltonian for forced rendezvous meets boundary condition

This matches the boundary condition

H(x∗(tf ).u
∗(tf ), λ

∗(tf ), tf ) +
∂φ

∂t
(x∗(tf ), tf ) = 0. (A.4)

The final Hamiltonian is negative one, because

∂φ

∂t
(x∗(tf ), tf ) = 1 (A.5)

Additionally, another necessary conditions are

λp(tf ) = λe(tf )

~xp = ~xe

, (A.6)

and therefore the only difference between the two Hamiltonians is the magnitude of

the thrust, which is significantly smaller than the costates at time tf . Figures A.4
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and A.5 shows the resulting controls of the forced rendezvous problem, with the

thrust and burn angle respectively.
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Figure A.4. Thrusts for forced rendezvous
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The applications of this was not used in this research as the assumption that

the orbital debris defender did not need to rendezvous with the orbital debris, just

needed to intercept the debris before the debris impacts the evader.
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Appendix B:Algorithm

The following is a code outline for the algorithm used in this research.
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