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Abstract

An increasingly congested space environment requires real-time and dynamic space

situational awareness (SSA) on both domestic and foreign space objects in Earth

orbits. Current statistical orbit determination (SOD) techniques are able to esti-

mate and track trajectories for cooperative spacecraft. However, a non-cooperative

spacecraft performing unknown maneuvers at unknown times can lead to unexpected

changes in the underlying dynamics of classical filtering techniques. Adaptive estima-

tion techniques can be utilized to build a bank of recursive estimators with different

hypotheses on a system’s dynamics. The current study assesses the use of a multiple

model adaptive estimation (MMAE) technique for detecting and characterizing non-

cooperative spacecraft maneuvers using space-based sensors for spacecraft in close

proximity. A series of classical and variable state multiple model frameworks are im-

plemented, tested, and analyzed through maneuver detection scenarios using relative

spacecraft orbit dynamics. Variable levels of noise, data availability, and target thrust

profiles are used to demonstrate and quantify the performance of the MMAE algo-

rithm using Monte Carlo methods. The current research demonstrates that adaptive

estimation techniques are able to handle unknown changes in the dynamics while

keeping comparable errors with respect to other classical estimation methods.
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SPACE-BASED MANEUVER DETECTION AND CHARACTERIZATION

USING MULTIPLE MODEL ADAPTIVE ESTIMATION

I. Introduction

1.1 Motivation

Since launching the first satellites into Earth orbit, the United States (U.S.) and

its military have treated the space domain as the ultimate high ground [1]. The

space-based technology requirements of today’s world have created an arena of

contest, congestion, and competition among other space-faring nations [2].

Approximately 60 nations as well as a multitude of commercial and academic

satellite operators currently work with thousands of space assets in Earth orbits [3].

The 1974 United Nations (UN) Convention on Registration requires nations

launching objects into space to register basic orbit parameters and general

spacecraft function [4]. Despite providing a symbolic step forward in international

cooperation with regards to the space domain, the required basic orbit parameters

provide little information necessary for accurate and real-time orbit determination

for the growing list of active spacecraft in Earth orbits. In the years since the UN

convention, the U.S. Air Force (USAF) has conducted its own mission to provide

precise tracking of objects in space for its own assets as well as any other man-made

object large enough to track [2].

The U.S. Department of Defense (DoD) and the USAF emphasize continued

research of space situational awareness (SSA) to protect the US and allied space

capabilities from an increasingly congested space environment [3]. From the Joint

1



Space Operations Center (JSpOC) and the dedicated set of ground radar and

electro-optical (EO) sites around the globe that make up the Space Surveillance

Network (SSN), the DoD actively tracks approximately 22,000 objects in Earth

orbits [2]. Current research throughout the USAF focuses on improving the precise

predictions of man-made spacecraft and debris with the primary objective of

collision avoidance [5], but extended efforts must be taken to perform accurate orbit

determination of additional objects in space due to the high level of uncertainty in

the space environment. JSpOC requires constant improvement in SSA algorithms in

order to support the U.S.’s increasingly important mission of protecting its space

assets [6].

National security concerns limit international cooperation with respect to the

current orbits and future maneuver plans of space assets [7]. Without the open

source sharing of precise orbital information or plans to maneuver space assets, the

U.S. and other space-faring nations face an increased risk for spacecraft collisions.

As seen with the 2009 collision of the commercial communications satellite Iridium

33 and the decommissioned Russian military communications satellite Cosmos 2251,

collisions in space can easily turn two highly capable assets into thousands of pieces

of orbital debris. JSpOC uses a collection of astrodynamic algorithms standardized

by Air Force Space Command (AFSPC) and assessed by the National Research

Council (NRC) to track and estimate the location of objects in space and provide

collision warning to any spacecraft at risk [2].

Much of the SSA effort is used to associate ground-based sensor readings with

specific items in the space catalog [2]. When a spacecraft performs an unannounced

maneuver, the errors in sensor measurements become greater than the required

confidence interval of the cataloged object and its original orbit, creating an

uncorrelated target (UCT) in the JSpOC database [2]. More research is needed to

2



improve tracking, prediction, and estimation of non-cooperative spacecraft that

perform unknown maneuvers at unknown times to increase target correlation and

the overall SSA mission [3].

1.2 Problem

This study assesses the detection and characterization of non-cooperative

spacecraft maneuvers with space-based sensors in rendezvous and proximity

operations (RPO) using adaptive estimation techniques. Previous research by Goff

et al. demonstrated the ability to detect and track unknown maneuvers of

non-cooperative spacecraft using ground-based radars [7]. Although adaptive

estimation techniques have claimed to be more effective at detecting and tracking

unknown maneuvers than traditional orbital estimation techniques [8], Goff admits

that future work is necessary to evaluate scenarios where a spacecraft maneuvers

into an area not covered by ground-based radars. The current research applies an

estimation architecture similar to that in [8] using space-based sensors for spacecraft

in geosynchronous orbit (GEO), filling in the limitations of ground-based sensors.

The motivation of this research identifies three potential interests for the

operational use of adaptive estimation techniques for maneuver detection and

characterization. Serving as the single most up-to-date space object tracking

system, JSpOC needs an accurate and robust orbit determination network.

Consistent detection and tracking of orbital maneuvers will improve JSpOC’s ability

to provide early warning prediction of satellite collisions. Detecting maneuvers of

non-cooperative spacecraft will also provide insight to the commercial space

industry, improving the state-of-the-art in orbital estimation for on-orbit rendezvous

and servicing missions. This research also provides an assessment on applications of

space-based assets to the maneuver detection problem, which will provide valuable

3



information to the USAF space acquisition community when applying adaptive

estimation algorithms to future operational space missions. The overall research

objectives of this study are tailored with these interests in mind to provide a clear

path forward in terms of future operational applications.

The study is divided into three research questions focused on examining current

adaptive estimation techniques and applications to relative satellite motion and

proximity operations as well as assessing the performance of an adaptive estimation

algorithm through a realistic parameter study. The following research questions

shall be answered by the conclusion of this study:

• Can adaptive estimation techniques be applied to detect and characterize

non-cooperative spacecraft maneuvers in satellite close proximity operations?

• How do sensor source and type, data rate, maneuver magnitudes, and relative

trajectory affect the performance of an adaptive estimation algorithm?

• For what types of scenarios does an adaptive estimation algorithm fail to

detect a maneuver or fail to characterize an accurate maneuver magnitude?

1.3 Document Overview

This document consists of five chapters, the first of which is an introduction to

the motivation behind this study and its research objectives. Chapter 2 is a

comprehensive literature review on the background, theory, and methodology

behind this research, to include previous research done on statistical orbit

determination (SOD), adaptive estimation, relative satellite motion, and space-based

sensor analysis. Chapter 3 describes the methodology used in this study, presenting

all of the necessary algorithms and equations discussed in Chapter 2 that will form

the foundation for the variety of maneuver detection and characterization scenarios
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necessary to accurately validate the different adaptive estimation algorithms used in

this study. Chapter 4 contains the results and analysis of each maneuver detection

and characterization scenario along with discussions assessing efficacy, timeliness of

convergence, and comparisons to traditional estimation algorithms. This document

concludes with Chapter 5, which summarizes the study and emphasizes the

significance of the research while providing recommendations for future work.
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II. Literature Review

The task of detecting maneuvers of non-cooperative spacecraft using adaptive

estimation for RPO scenarios requires an extensive research effort in the areas of

orbit determination, estimation theory, and relative satellite motion. This chapter

reviews relevant literature that provides the groundwork for each topic of interest,

including the derivations of notable equations and algorithms where necessary. This

chapter also emphasizes previous research done in the area of spacecraft maneuver

detection, providing realistic applications of current research into the overall topic of

orbital estimation and tracking.

2.1 Statistical Orbit Determination

SOD is the generalized term used to describe the application of estimation

theory and how to account for errors in observation measurements and uncertainties

in the dynamics for orbit determination. SOD utilizes the principles of estimation

theory through minimizing residual errors while predicting a spacecraft’s orbital

trajectory, often referred to as the states of the system. The principle of a minimum

mean square error (MMSE) estimation algorithm is to take a series of dependent

variables or measurements and produce an approximation of the state variables as

well as a mean squared estimate for the error in each state. In satellite dynamics,

the mean square error estimate produced is represented by the covariance matrix,

which Wiesel defines as the correlation of the error estimate between each state

variable [9]. The following sections supply the theory and basic derivations of each

estimation technique used in this study and their current applications to SOD and

the overall USAF SSA mission.
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2.1.1 Applications of Estimation Theory

Originally developed by Carl Friedrich Gauss in the early 1800s, estimation

theory uses statistics to estimate the error in a measured variable and correlate the

estimate to a confidence factor for the measured variable. Gauss revolutionized the

field of orbit determination by focusing on minimizing measurement and calculation

errors instead of attempting to find the perfect dynamical equation to represent

orbital motion [10]. Over a century later, the advancement of technology brought

forth new estimation algorithms that take advantage of increasing computational

speed and accuracy. Today, the USAF utilizes modern estimation theory to

minimize observation errors when tracking space objects [2]. Tapley et al. provides

an in-depth analysis at the estimation theory behind SOD and presents a realistic

approach to building an orbit determination problem through defined orbital

dynamics and initializing error and covariance estimates [11]. Before discussing the

theory behind the estimation techniques used in this study, the estimation problem

is defined in terms of the inherent error in a dynamical system as well as the states

that define the system.

Gauss made the assumption that there is no perfect equation to describe the

motion of a system, establishing the need for deterministic estimation theory.

Modern estimation theory makes a second assumption in that there are no perfect

measurements to determine the states of a system, requiring the need for stochastic

estimation theory [9]. Through his founding of probability theory, Gauss defined

imperfections in dynamical systems as random processes, otherwise known as noise

[10]. For most dynamical systems, the noise in a state estimate can be defined by a

normally distributed probability density function, also known as the Gaussian

distribution as shown in Figure 1. Although noise is defined to be a random process,

the assumption that the noise of the error is normally distributed is not only proven
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by the central limit theorem but is also observed in the real world all the time. A

complete proof of the central limit theorem can be found in [9].

Figure 1. The Gaussian zero-mean probability density function

A state estimate described by Gaussian white noise is fully defined by a mean of

the state, E(x), and a standard deviation of the state, σx. A dataset defined by a

Gaussian distribution implies that approximately 99% of the points in the dataset

are within 3σ of the mean of the set. Using Figure 1 as an example, E(x) = 0 and

σx = 1. Unless otherwise stated, all instances of error in the dynamical and

measurement equations of this study are assumed to be zero-mean, independent,

white Gaussian noise. These assumptions for the current study imply that every

state estimate has a normally distributed error centered about its mean, and each

state error is uncorrelated with any other state error. Noise and errors in the system

are further defined for this study in Chapter 3.

General applications of estimation theory for dynamical systems are built to

estimate states that are related in some way to the variable dynamics of the system,
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represented by the equations of motion. Wiesel defines a general state vector x,

which defines the states of the system [9]. The system is defined in Equation (2.1)

by a series of differential equations that relate the changes of the state vector over

time, denoted by the generalized function f , and the confidence in the dynamical

model, denoted by the random process w(t)

dx

dt
= f (x, t) + w(t). (2.1)

Another way to represent the dynamics is through a state transition matrix.

The state transition matrix relates a previous state vector to a new state vector

separated by some dependent variable, in this case a discrete time step (t2 - t1).

Shown in Equation (2.2), Stengel and other textbooks on estimation theory use the

state transition matrix to define a discrete-time system with process noise [11, 12]

x(t2) = Φ(t2, t1)x(t1) + w(t1) (2.2)

where Φ(t2, t1) is defined as the state transition matrix, which for nonlinear systems

can vary over each update of the state vector. The term for process noise, w(t1), is

considered a disturbance input for the system, and is still assumed to be white

Gaussian noise.

Estimation theory also defines the relationship between the measurements and

the state vector, along with the uncertainties associated with the measurements

[12]. The measurement vector, z(t), is defined in Equation (2.3)

z(t) = y(t) + v(t) = h[x(t)] + v(t). (2.3)

Stengel uses the output vector, y(t), to relate the state vector, x(t), to the

measurement vector, z(t) with the measurement error represented by a noise
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component, v(t) [12]. The output vector can be any combination of the states that

the user has interest in, which is defined by the measurement basis function, h[x(t)]

[13].

In most cases, it is simple and efficient to define the state vector x as the

position and velocity vector when dealing with particle dynamics. However, it can

be useful and at times necessary to include other pieces of information regarding the

dynamics of the system in the state vector such as coordinate transformations or

osculating orbital elements. As long as the equations of motion can be defined with

respect to the state vector, estimation theory can be used to track the changes to

the state vector and the errors in the estimate of each state in the system.

2.1.2 Least Squares Estimation

Least squares estimation can be traced back to the original foundations of

estimation theory [10]. By using the probability assumptions described in section

2.1.1, Gauss invented the least squares method to obtain orbits on objects with a

limited amount of observations [9]. The main principle of deterministic least squares

is to calculate the estimate state, x̂, such that the square of the residuals is

minimized. The calculation of the residuals, r̄, shown in Equation (2.4), is usually

defined as the difference between the observed measurements and the predicted

measurements, described earlier in Section 2.1 as the measurement vector and a

function of the state vector [14]. A full derivation of both the linear and nonlinear

least squares algorithm can be found in Vallado’s text [15].

r̄ = z(t)− ŷ(t) = z(t)− h[x̂(t)] (2.4)

Although the least squares algorithm is effective in minimizing the residual

error of the system, problems arise with SOD applications in terms of both
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computational time and accuracy. Every observation available is incorporated into

the least squares algorithm, and the state vector is sized on the order of the number

of measurements. When these measurements are limited, as in the case of Gauss

estimating the orbit of the asteroid Ceres [9], the least squares solution computed

by hand is precise. Over the course of observing a satellite in low Earth

orbit (LEO), however, an increasing number of measurements over time causes the

memory requirements on a program to become significant.

Since the dynamics of an orbit are inherently nonlinear, the forces affecting the

spacecraft at one observation could differ greatly from the forces at another

observation over the course of many orbits around the Earth. This causes problems

in the least squares solution, as the dynamical state model cannot be easily changed

in real-time [14]. As the external forces on a satellite in orbit, such as aerodrag or

the effects of J2, grow increasingly nonlinear, treating older measurements with the

same confidence as newer observations will cause significant errors in the least

square solution [14].

One of the ways to solve the computational time and accuracy issues with the

least squares algorithm is through batch processing. The main idea behind the

batch least squares (BLS) algorithm is to continuously solve the least squares

problem with available data without having to continuously calculate old data.

Vallado provides the framework for solving the least squares problem through batch

processing [15], while Tapley et al. steps through the derivation and application of

the BLS algorithm [11]. This still produces a linearized solution to the nonlinear

problem, so iterating may not converge on a minimized residual solution [15].

The BLS algorithm is a widely used technique for SOD because it is designed to

handle a small number of observations over a significant period of time while still

minimizing the error between the measurements and the state estimate. Since the
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SSN ground radar system is tasked with tracking tens of thousands of space objects

daily, the JSpOC orbit tracking and SSA missions are a useful application of the

BLS algorithm [2]. Batch processing is used in these instances of SOD, which can

take a series of observations over significant periods of time and fit the data to the

predicted orbit while minimizing the residuals. Although the BLS technique is

useful for a multitude of ground measurements spread out over many orbital

periods, problems arise when system perturbations are not entirely known and are

therefore modeled incompletely [16]. Due to the real-time requirements inherent in

the maneuver detection problem analyzed in the current study, more sequential

estimation methods are required over the BLS algorithm.

2.1.3 Kalman Filtering

A major issue with the least squares estimation technique is that the converged

state and covariance matrix are based on a large batch of data that may have

accumulated error over a prolonged period of time. No matter how accurate the

estimate is, the least squares algorithm is always based on an epoch time and may

not have a precise estimate for any state at a future epoch time. The solution to

these inherent problems is sequential estimation, or computing the best state

estimate of a time-varying process [15]. The Kalman filter (KF) solves the same

least squares problem as BLS, but tries to minimize errors through sequential

estimation [17].

Vallado cites two major differences between the least squares technique and the

KF [15]. First, the KF continuously updates the epoch time, only predicting the

state estimate at a future observation time. Second, the KF keeps all past

information in the current estimate and covariance matrix, eliminating the need to

continuously recalculate any past states or measurements at each time step.
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The dynamical equations of motion as well as the measurement equations for

orbit mechanics are often nonlinear in nature, and the linear KF is not always

applicable. Therefore, the extended Kalman filter (EKF) is sometimes necessary

[15]. Wright explains that the EKF is more dynamic than the BLS and is more ideal

for orbit determination [18]. The EKF has a similar algorithm as the linear KF, but

uses a Taylor series approximation at each time step in the propagation to

temporarily linearize the dynamics and apply the optimal least squares solution.

Derivations of the linear KF and EKF can be found in many astrodynamics and

estimation textbooks [9, 11, 12] as well as other works utilizing sequential

estimation [13, 19]. Both the KF and the EKF start with an initial guess of the

state and covariance matrix

x̂(t0) = x̂0

P(t0) = P0.

(2.5)

Using Equations (2.2) and (2.3) to define the state and measurement equations,

the process and measurement noise are assumed to be independent, zero mean,

normal probability distributions, with covariances shown in Equation (2.6)

p(w) ∼ N(0,Q)

p(v) ∼ N(0,R)

(2.6)

where the process noise covariance , Q, and the measurement noise covariance, R,

are free to change at each time step to represent the confidence in the dynamics or

the data at any time during the propagation of the filter.
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The first step in the KF is to propagate the state vector from xk−1 to xk

depending on the dynamical equation of the system. The covariance matrix is also

propagated from Pk−1 to Pk based on the mean squared error of the predicted

state. The predicted state, xk, is then corrected by a combination of the

measurement basis function, hk[x
−
k ], the predicted state covariance matrix, P−k , and

the measurement covariance matrix, Rk. The correction calculation shown in

equation 2.7 is called the Kalman gain. In both the KF and EKF algorithms, the

Kalman gain is calculated by the same equation

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (2.7)

where the matrix Hk is a linear measurement basis function multiplied by x̂−k to get

the output vector, y. In Equation (2.7), the − superscript represents the previous

predicted estimate in the algorithm, while the updated state and covariance

estimate shown in Equation (2.8) is represented by the + superscript. The state and

covariance estimate are updated using the same equations for the linear and

nonlinear case.

x̂+
k = x̂−k + Kk(zk −Hkx̂

−
k ) (2.8a)

P+
k = (I−Kkhk[x̂

−
k ])P−k (2.8b)

Notice that the last term in Equation (2.8a) is the residual vector defined in

Equation (2.4), only this time it only represents the residual vector at the specific

time step instead of at every measurement for the least squares algorithm.

Looking back at Equations (2.5) to (2.8b), it would seem that the linear KF

and the EKF follow the exact same algorithm, which during the
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prediction-correction stage of the algorithm is completely true. The primary

difference between the KF and the EKF is that the EKF must linearize its

dynamics and measurement basis function in order to propagate in discrete time. If

the dynamics follow the generalized functions shown in Equation (2.1) and (2.3),

then the state estimate is propagated by Equation (2.9), and the linearized

measurement basis function is shown in Equation (2.10).

xk =

∫ tk

tk−1

[ẋk−1]dx+ xk−1 (2.9)

Hk =
∂z

∂x−k
(2.10)

Using a linearized form of the dynamics and the measurements at each time

step, the EKF can easily transform the nonlinear dynamic systems seen in orbit

mechanics into a simplified model that can be propagated through the KF

algorithm. However, no matter how small the time step, any linearized model of

nonlinear dynamics are bound to have inherent errors, which can be unacceptable

for SOD.

2.1.4 The Unscented Kalman Filter

Accuracy concerns arise with the EKF because the algorithm must differentiate

the measurement and dynamic functions with respect to the state vector in order to

linearize the problem at every time step. Julier and Uhlmann developed a nonlinear

Kalman filter called the unscented Kalman filter (UKF) for improved performance

and accuracy [20]. While the EKF simply linearizes the dynamics of the system

through each step in the estimation, the UKF overcomes the difficulties that arise

from linearization by propagating the mean and covariance of the state vector
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through nonlinear transformations [21] . Instead of relying on numerical integration

or linearized propagation, the UKF moves a weighted distribution of critical points

based on the current estimate of the covariance matrix. The weighting methods

used in this study for the nonlinear unscented transformation (UT) are outlined in

Section 3.2.1.

As explained in Teixeira et al., the UKF is similar in computational efficiency

and superior in accuracy to the EKF when implemented properly for orbit

determination [22]. In addition, Teixeira et al. conclude that the UKF is able to

converge uniformly better than the EKF for time-sparse measurements [22]. Pardal

et al. also show that the UKF outperforms other filters when observations are less

frequent, specifically testing this hypothesis with pseudo range observations [23].

2.1.5 Filter Smoothers

At the end of each scenario, a backwards smoother applied to the filter can

further improve the estimated state. Wright and Woodburn explore different

combinations of fixed epoch smoothers (FES) with an EKF to improve state

estimates [24]. The FES is ideal for discrete satellite observations used in orbit

estimation; new measurements processed through the EKF in real-time are also

used to recursively update the estimated state and covariance at some previous

epoch time. Helmick et al. examines a fixed-interval smoothing algorithm using an

adaptive estimation framework, which updates all estimates within an interval from

the current estimate [25]. This approach can be costly for orbit estimation in

real-time because the algorithm requires n2 smoothers working in parallel for every

n models.

Another type of smoother developed for the UKF by Särkkä is the unscented

Rauch-Tung-Striebel smoother [26]. Instead of combining the results of a forward
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running UKF for the backward-working algorithm, a backward smoother is used to

calculate suitable corrections to the forward algorithm. This concept can improve

the state error for scenarios with large nonlinearities and unknown dynamics such as

a maneuver because it can update previously erroneous state estimates with newly

propagated dynamics. However, because these smoothing algorithms require varying

levels of post-processing, they are not ideal for real-time estimation scenarios and

will not be tested in this study.

2.2 Multiple Model Adaptive Estimation

The NRC has expressed the need for considering future research in multiple

model adaptive estimation (MMAE) with regards to the SSA mission and more

specifically maneuver detection [2]. Tracking a non-cooperative spacecraft and

detecting unknown maneuvers requires an adaptive estimation technique because

the noise components of the non-cooperative spacecraft are unknown and must be

estimated. Magill outlines the fundamentals of adaptive estimation and its

applicable derivations [27]. MMAE uses a bank of KFs that all make different

assumptions about the dynamics of the system, specifically in the covariance of the

process noise, Q.

The adaptive framework allows for different ways to account for unexpected

changes in the state or covariance estimates. Each of the filters has a series of

weighting coefficients that can change based on algorithm specific rules regarding

calculations and filter initializations. Li et al. presents an adaptive filter using a

series of UKFs to approximate and adjust the process noise covariance throughout

the propagation of the algorithm [28]. Moose developed an adaptive state estimator

for the general maneuvering target problem and concluded that the adaptive

estimator with a band of KFs is certainly superior to the linear KF [29]. Although
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proven accurate in estimating uncertainties in the dynamics of the target, the

adaptive estimation technique still must make a series initial guesses on the process

noise covariance matrix. Without interaction, the MMAE could still diverge if the

guesses of the process noise covariances are not accurate.

2.2.1 Interacting Multiple Models

The concept of interacting multiple models (IMM) is used to solve the problem

of poor initial guesses in the adaptive estimation algorithm. Li et al. states that the

IMM method is the prevailing approach to modern maneuvering target tracking

[30]. The IMM combines the inputs of several models at each time step and uses the

statistics of the residuals to weigh the impact of each model at each step. Compared

to the general adaptive estimation method, the IMM algorithm creates a probability

density function (PDF) of the model weights, which produces the converged results

as a combination of multiple models that could be the correct covariance estimate.

The specific IMM algorithm and PDF used in this study are outlined in Section

3.2.3.

When applying general MMAE techniques to filter through unknown

maneuvers, covariance inflation must occur to prevent divergence [31]. Covariance

inflation is the process of assuming no confidence in the dynamical model during the

maneuver so that the measurement basis function can dominate the state estimate

[11]. Through covariance inflation, however, a trade off occurs. A large covariance

causes a high probability of convergence, but also a high chance for errors in the

state estimate. The IMM filter prevents the need for determining optimal covariance

sizes that are only valid for specific dynamical systems by providing a method to

mix different covariance estimates and weighting the results based on the likelihood

probability calculated for each model [32]. For this reason, the IMM method is
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considered suboptimal because it may not converge on the exact covariance for the

target orbit during maneuver detection, but as Goff shows in [7], the IMM method

is effective in maneuver detection algorithms when limited information is known

about non-cooperative spacecraft maneuvers.

The IMM framework steps closer towards being able to handle the maneuver

detection problem in that it accounts for the uncertainty in the dynamics of the

non-cooperative spacecraft unknown to the observer through adaptive covariance

analysis. However, large changes in the dynamics, such as an unknown active thrust

maneuver at an unknown time, cannot be accounted for simply through covariance

inflation and adaptive estimation.

2.2.2 Variable State Dimension Filter

The variable state dimension (VSD) filter is a solution to handling major

unknown changes in the dynamics of a maneuvering spacecraft. Bar-Shalom et al.

was the first to apply a variable dimension filter to a general maneuver tracking

scenario [33]. The VSD filter is optimal for dealing with unknown maneuvers

because the filter has the ability to add or subtract states based on the deviation of

the estimated state from the measured state, defined earlier as the residual vector.

High residuals are potentially caused by a fundamental error in the equations of

motion of the system, but a VSD that monitors residuals could account for errors by

adding additional states to the state vector (such as a thrust vector) for a spacecraft

changing its dynamics by maneuvering.

Bar-Shalom et al. expand the algorithm of the VSD filter in their text [34]. The

fundamentals of the VSD filter can be structured as any KF previously discussed in

Section 2.1.3. In this case, two filter models are used: the quiescent model, with

states defined as the position and velocity vector of the target, and the maneuvering
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model, which tracks an acceleration vector as additional states to the system. The

model switching indicator uses a fading memory average of the sequentially

calculated residuals of the filter based on the quiescent model, seen in Equation

(2.11)

Ψk = r̄TS−1
k r̄ (2.11)

where Sk is the covariance matrix of the residual vector, also known as the

measurement covariance. The scalar value defined in Equation (2.11) is known as

the Mahalanobis distance (MD), and is referred to as the maneuver detection

statistic in the current study. Compared to the commonly used Euclidean

distance (ED), the MD takes into account the correlation in the data through the

measurement covariance matrix [35], which allows the estimation algorithm to

converge on a minimized set of residuals without detecting a false maneuver.

The MD value is based on a chi-square distribution, and the maneuver

threshold used to detect the maneuver start and stop times is based on a two-sided

test at a significant level α = 0.0005, which corresponds to a probability of p =

0.999 that the maneuver detection statistic is less than the critical value. Equation

(2.12) shows the chi-square distribution PDF:

PDF(x; k) =
xk/2−1e− x/2

2k/2Γ
(
k
2

) . (2.12)

Here x is the maneuver detection statistic, k is the degrees of freedom for the

system, and Γ denotes the gamma function. Table 1 shows the critical values of a

chi-square distribution based on the degrees of freedom for the system. Based on

the critical values for the 4 and 6 degrees of freedom for the states of the system
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defined in this study, the maneuver threshold is maintained at a constant value of

20 throughout the maneuver detection scenarios.

Table 1. Critical values of a chi-square distribution

DOF Critical Value for p = 0.999

1 10.828

2 13.816

3 16.266

4 18.467

5 20.515

6 22.458

Because the change in the residual vector over the observation time varies

depending on the dynamics of the target, the VSD algorithm assumes that the

maneuver started before the VSD detects the maneuver. Bar-Shalom et al. define

the effective window length of detecting a maneuver as the multiplicative sum of a

weighting value, α, as the discrete time counter, k, approaches infinity [34]. Since

the weighting value is defined between 0 < α < 1, the effective window length, ∆α,

for detecting a maneuver is described in Equation (2.13).

∆α =
1

1− α
(2.13)

Although Bar-Shalom concludes that this metric is an acceptable window to

backtrack through the data and estimate the start of the maneuver, there is no

metric in defining the weighting matrix α besides the intuitive confidence in the

past measurements. A low α constitutes a low confidence in the previous residual

vectors in the filter, and Equation (2.13) therefore assumes the maneuver started

earlier than if there was a higher confidence in the previous estimates. Figure 2
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shows the transition of estimating using the quiescent model to estimating using the

maneuvering model using the detection criteria outlined by Bar-Shalom et al. [33].

Although not explicitly stated, the metric for detecting the end of the maneuver is

also calculated using the same algorithm that detects the start of the maneuver.

Figure 2. VSD filter switching from quiescent model to maneuvering model

Using the extensive review of estimation theory shown in Section 2.1, this study

uses the background shown in Section 2.2 to develop the algorithm necessary to

detect unknown maneuvers of non-cooperative spacecraft using an observer satellite

collecting measurements in close proximity. Specifics regarding the adaptive

estimation techniques used in the current study are presented in Chapter 3. The
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following sections review the necessary background, theory, and equations necessary

to describe the motion of spacecraft flying relative to each other in Earth orbits.

2.3 Relative Satellite Motion

As stated in Section 1.2, this study applies adaptive estimation techniques

discussed in Section 2.2 to RPO scenarios with the objective of non-cooperative

maneuver detection and characterization. The differential equations established in

Equation (2.1) for any estimation algorithm must be able to accurately describe the

dynamics of satellites relative to each other. Relative satellite motion provides a

convenient and efficient method to define the dynamics of RPO spacecraft without

the need for an inertial reference frame.

For every scenario described in this study, consider two satellites in Earth

orbits, one identified as the “chief” and the other identified as the “deputy”. For the

purposes of consistency, the chief in this study is also considered the “observer”, or

the spacecraft taking measurements on the deputy, which will be considered the

“target”. When deriving the equations of motion for RPO scenarios, a new

non-inertial coordinate frame must also be considered to describe the orbit of the

target with respect to the observer.

2.3.1 Local-Vertical Local-Horizontal Reference Frame

As with all dynamical systems, the reference frame used to describe satellite

motion is just as important as the equations of motion themselves. The reference

frame most often used to describe relative satellite motion is the local-vertical

local-horizontal (LVLH) frame, also called the Hill frame for his original derivation

in describing the Moon’s orbit around Earth with respect to the Sun [36]. The

origin of the LVLH frame is centered at the chief, with the x-axis pointing in the
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direction of the chief’s position vector with respect to the Earth, the z-axis pointing

normal to the orbital plane, and the y-axis completing the right handed coordinate

system. The y-axis is generally pointed in the along-track direction, and if the

chief’s orbit is circular then the y-axis is directly aligned with the chief’s velocity

vector. Figure 3 shows the LVLH reference frame centered at the chief spacecraft,

providing a visual relationship between the states [x,y,ẋ,ẏ] and the space-based

sensor measurements range (ρ), range rate (ρ̇), and azimuth (α). Further discussion

regarding space-based measurements can be found in Section 2.4.1.

Figure 3. The LVLH reference frame

2.3.2 The Hill Clohessy Wiltshire Model

The Hill Clohessy Wiltshire (HCW) model is the most widely used set of

equations that accurately describe the relative motion of two spacecraft operating in

close proximity. The equations of motion were originally developed by Clohessy and

Wiltshire in 1960 for satellite rendezvous [37] and are similar to Hill’s equations of
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motion in his lunar theory [36]. Derivations of the HCW equations can be found in

many astrodynamic textbooks [16, 38, 39]. The full nonlinear equations of relative

motion are shown in Equation (2.14)

ẍ− 2nẏ − ṅy − n2x− µ

r2
=
−µ
r3
d

(r + x) + fx (2.14a)

ÿ + 2nẋ+ ṅx− n2y =
−µ
r3
d

y + fy (2.14b)

z̈ =
−µ
r3
d

z + fz (2.14c)

where x, y, and z are the position components; ẋ and ẏ are the velocity components;

and ẍ, ÿ, and z̈ are the acceleration components of the target in the LVLH frame.

The variable r and rd refer to the distance of the chief and deputy with respect to

the Earth, the variables n and ṅ refer to the mean motion of the chief and its first

time derivative, and the variable µ refers to the gravitational constant of the Earth.

The full nonlinear equations of motion are difficult and time consuming to

propagate, and the estimation algorithms presented in Section 2.1 are designed to

handle small unknown errors in the dynamics, which allows for some simplifying

assumptions. The three major assumptions that allow for the full linearized model

of the HCW equations are that the two spacecraft are in Keplerian motion, so the

only force modeled is Earth’s gravitational field as a point mass; the chief is in a

circular orbit, so its mean motion is assumed constant; and the distance between

the satellites is small compared to their orbital radii, so rd ≈ r. For many formation

flying missions in a near-circular orbit and with proper estimation techniques, these

assumptions tend to be valid [13, 40]. The simplified HCW equations are shown in

Equation (2.15):
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ẍ− 2nẏ − 3n2x = fx (2.15a)

ÿ + 2nẋ = fy (2.15b)

z̈ + n2z = fz. (2.15c)

These equations are written in the LVLH reference frame, where x, y, and z are

used to describe the deputy’s position with respect to the chief in the radial,

along-track, and cross-track directions, respectively. The term n in Equation (2.15)

is used to denote the mean motion of the chief, which can be found using the

Earth’s gravitational constant, µ, and the semi-major axis of the chief, ac, as seen in

Equation (2.16)

n =

√
µ

a3
c

. (2.16)

In this study, another simplified nonlinear form of the HCW equations is

explored. The assumptions of Keplerian motion and a circular chief are still valid,

but removing the relative distance assumption allows for scenarios with significant

distances between the chief and the deputy without losing accuracy. The nonlinear

HCW equations without the relative distance assumption are shown in Equation

(2.17).

ẍ− 2nẏ − n2x− µ

r2
=
−µ
r3
d

(r + x) + fx (2.17a)

ÿ + 2nẋ− n2y =
−µ
r3
d

y + fy (2.17b)

z̈ =
−µ
r3
d

z + fz (2.17c)
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The right-hand side of Equations (2.14), (2.15), and (2.17) allow for any

external forces acting on the system to be added to the dynamics as a perceived

relative acceleration on the system, which is used in this study as the acceleration

force vector of the deputy when conducting maneuvers.

Assuming the linearized HCW equations of motion shown in Equation (2.15)

have no external forces acting on the system, the analytical solution to the HCW

equations is shown in Equation (2.18)

x =
ẋ0

n
sin(nt)− (3x0 +

ẏ0

n
) cos(nt) + (4x0 +

2ẏ0

n
) cos(nt) + (4x0 +

2ẏ0

n
) (2.18a)

y =
2ẋ0

n
cos(nt) + (6x0 +

4ẏ0

n
) sin(nt)− (6nx0 + 3ẏ0)t− 2ẋ0

n
+ y0 (2.18b)

z =
ż0

n
sin(nt) + z0 cos(nt) (2.18c)

ẋ = ẋ0 cos(nt) + (3nx0 + 2ẏ0) sin(nt) (2.18d)

ẏ = −2ẋ0 sin(nt) + (6nx0 + 4ẏ0) cos(nt)− (6nx0 + 3ẏ0) (2.18e)

ż = ż0 cos(nt)− nz0 sin(nt) (2.18f)

where x0, y0, etc. are the relative initial conditions of the deputy at some epoch

time, t0. From Equation (2.18e), HCW dynamical system experiences simple

harmonic motion when the following constraint is met:

ẏ0 = −2nx0 (2.19)

Using the constraint from Equation 2.19, the deputy spacecraft follows a

stabilized 2x1 elliptical trajectory relative to the chief, referred to in other RPO

works as natural motion circumnavigation (NMC) [41]. An NMC trajectory is a

27



convenient relative orbit that is used to create initial conditions for the scenarios

presented in this research.

Using the equations of motion outlined in this section, the estimation algorithm

developed in Chapter 3 is able to relate the current states of the system to the

future states of the system in a way that is realistic to the relative satellite motion

aspect of the study. Although there are major assumptions made to simplify the

relative satellite equations of motion, using the process noise covariance analysis

discussed in Section 2.2 can handle errors in the dynamics of the system while still

using the simplifying assumptions in the algorithm. The final equations that are

necessary to the estimation algorithm relate the measurements collected by the

observer on the target to the relative orbital states of the target.

2.4 Space Sensor Analysis

Although the relative satellite motion dynamics defined in Section 2.3 use the

coordinates x, y, and z in the LVLH frame to derive the equations of motion, the

sensor measurements that are fed into the estimation algorithm do not directly

measure position and velocity in LVLH frame coordinates. As mentioned in Section

1.2, this study analyzes an adaptive estimation algorithm against multiple types of

measurements and measurement noise levels to make indications between algorithm

performance and the quality of space-based sensors required. The types of

measurements analyzed in this study are a combination of range-azimuth-elevation

and range-range rate measurements.

2.4.1 Space-based Measurements

Escobal details several techniques for orbit determination using combinations of

available data [42]. A common set of raw measurements obtained from a
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space-based sensor is range, azimuth, and elevation, defined similarly to ground

based measurements but here in the LVLH frame [13]:

z = h[x(t)] =


ρ

α

ε


LV LH

=


√
x2 + y2 + z2

arctan y
x

arcsin z
ρ
.

 (2.20)

Equation (2.20) is used as the nonlinear measurement basis function to relate the

measurements back to the states of the problem. Another type of space-based

sensor capability to be analyzed in this study is collecting measurements of range

and range rate. This allows us to have some insight into not only the position of the

deputy but also its velocity relative to the chief. The range and range-rate nonlinear

measurement basis function is presented in Equation (2.21) [9]:

z = h[x(t)] =

ρ
ρ̇

 =


√
x2 + y2 + z2

xẋ+yẏ+zż√
x2+y2+z2

 . (2.21)

2.4.2 Measurement Collection Techniques

A significant consideration when running estimation algorithms using

space-based measurements outlined in Section 2.4.1 is the frequency of available and

accurate sensor data. Much of this study assumes that sensor data is widely

available on the observer looking at the target, but a space-based environment

breeds a multitude of opportunities for large data errors, especially in

non-cooperative scenarios.

Much of the previous literature on space-based observability analysis focuses on

cooperative measurement collection for formation flying, but many measurement

collection techniques can be applied to a non-cooperative scenario without any

major fundamental technology upgrades. One of the most common approaches to
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space-based SSA is the angles-only approach because it is useful at gathering

measurements using solely vision-based navigation; Gaias discusses this approach in

a non-cooperative setting using only a space-based camera [43]. Gaias enhances the

accuracy of space-based servicing missions by converting angles-only data into

relative orbital elements (ROEs). However, acquiring range data can be crucial

when dealing with a target in close proximity to the observer, which requires more

complex measurement collection techniques.

Junkins discusses vision-based navigation using a position sensing diode for

RPO [44], but this requires targeting beacons to sense certain wavelengths of light,

which is impossible in the non-cooperative scenario. Whittaker shows that

space-based measurements can be acquired using a photometric sensor to correlate

light intensity with range from the target [45]. Although this technique improves

upon an angles-only approach, it requires reflected light from the Sun as well as

sensor calibrations based on the material properties from the target spacecraft,

which may not be available in a non-cooperative scenario. Krutz analyzes a

radiometric sensor in a space-based mission to detect and track spacecraft debris

[46]. Although this is an ideal non-cooperative scenario, Krutz admits that it would

be difficult to categorize debris solely based on captured light intensity because a

large debris far away would reflect the same amount of energy as a small debris

closer to the observer. All of these EO sensors have inherent blind spots when the

target spacecraft is in between the observer and the Sun, often referred to as the

Sun vector. These EO sensors also require some form of cooperation in order to

acquire accurate range data from the target.

The most common technique for collecting accurate range measurements

without the need for cooperation is a light detection and ranging (LIDAR) sensor

[47, 48]. A LIDAR sensor deploys a laser beam aimed at the target, and the sensor
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measures the time it takes the reflected beam to return to the observer. Knowing

that the beam travels at the speed of light, the distance traveled can be calculated

by measuring the time traveled round trip between the target and the observer. The

laser range finder is highly accurate because it does not experience atmospheric

scattering in space, and its sensor bandpass is extremely narrow centered on the

laser’s nearly monochromatic wavelength. The effectiveness of a LIDAR device on a

non-cooperative spacecraft lies in the reflectivity of the target’s material at the

laser’s wavelength. However, with a narrow spectral bandwidth and a high powered

laser, the sensor should still detect the laser light reflected off the target without a

large gap in data caused by the Sun vector [48]. Once a range measurement is

confirmed, the range rate measurement is collected by examining the Doppler effect

of the reflected wavelength of the laser beam compared to the wavelength of the

transmitted laser beam [49].

For the non-cooperative space-based RPO scenarios in this study, a realistic

sensor suite for an observer collecting range, range rate, and angles data effectively

would be a combination of EO and LIDAR sensors. In a realistic scenario, an EO

sensor would sweep over a large area until the reflected light from the target

generates relative angle measurements from the observer. As the angle

measurements increased in accuracy, the LIDAR sensor would be able to effectively

point and follow the target, collecting range and range rate data. This study

assumes full measurement knowledge of the target in terms of range, range rate, and

angles data, which implies the initial orbit determination (IOD) on the target is

complete. Although this assumption is highly sensitive to the ability of the observer

to collect accurate and abundant measurements, an in-depth observability analysis

is not performed in this study and is left as future work.
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2.4.3 Measurement Noise

One of the defining characteristics in assessing algorithm performance is

measurement noise. Applying the current study to the USAF SSA mission requires

accurate estimates in space-based sensor performance. Modern laser range finder

technology developed by Hablani for applications in spacecraft relative navigation

and rendezvous is used as a baseline for realistic assumptions regarding

measurement accuracy and noise [47]. These measurement accuracy values are

compared to previous literature on relative spacecraft estimation [13]. The

measurement noise will be assumed constant throughout each individual scenario,

but the process noise of the algorithm will be estimated by each filter continuously.

Error and noise estimation is outlined in greater detail in Chapter 3.

2.5 Summary

This chapter conducted a review of past and current research efforts in the

areas of orbit determination, estimation theory, adaptive estimation, and relative

satellite motion. Background for the theory necessary to set up the maneuver

detection problem was outlined. Basic derivations of the general equations used in

this study were investigated and presented. Conclusions from the research

completed on the current applications of adaptive estimation algorithms show that

the scenarios developed in this study are unique and will provide a positive

contribution to the areas of study reviewed in this chapter. Further development of

the equations and algorithms used in this study, including specific applications to

maneuver detection scenarios, are discussed in Chapter 3.
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III. Methodology

This study focuses on investigating adaptive estimation techniques to detect

and characterize spacecraft maneuvers given a set of space-based measurements.

Section 1.2 lists the relevant research questions that will be addressed during this

research. The following chapter outlines the specific procedures and algorithms to

be used, how data will be collected through simulated scenarios, and what analysis

criteria will imply success regarding the research questions defined in this study.

3.1 Research Questions Reviewed

The research questions answered by this study transform the complex problem

of detecting non-cooperative maneuvers using adaptive estimation into a scoped and

logical path forward. The research questions encompass all aspects of assessing a

newly implemented algorithm, including efficacy, performance, and limitations. The

first step before research can begin is to analyze the methodology behind how each

research question can and will be answered to the fullest ability of this study.

The first research question addresses the first and foremost problem when

assessing a new algorithm: efficacy. Does each IMM estimation algorithm work as

anticipated, and what are specific requirements placed on each algorithm in order to

guarantee success? For this first problem, realistic parameters in each maneuver

detection scenario, such as availability of measurement data, will be adjusted for the

sake of efficacy. Scenario parameters will continue to have fewer simplifying

assumptions as the research progresses to assess performance and failure modes.

The MMAE algorithm that detects a spacecraft maneuver for the simplest case is

sufficient for completing the first research question, but success in the simplest case

may not provide adequate data with regards to performance.
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The second research question lists specific variables that will be used to assess

the performance of each adaptive estimation algorithm. Sensor source relates to

different types of measurement data available in an RPO scenario as well as realistic

estimates for measurement noise to be implemented based on the current

space-based sensor technology available. Hablani’s patent for a space-based laser

range finder has a convenient table for the expected level of noise in the output of

the sensor [47], which will produce range, azimuth, and range rate data on the

target satellite.

Maneuver magnitudes refers to the different types of space-based propulsion

devices that produce many different levels of thrust. While a large solid rocket has

the capability of inserting a satellite into a completely new orbit regime, other

satellite missions utilize electric, cold gas, or liquid propellants for simple orbit

maintenance or attitude determination. Table 2 lists a set of common propulsion

systems used in orbit along with typical ranges for specific impulse and thrust [50].

Table 2. Common space-based propulsion systems and their applications

Propulsion System Typical Isp Range Nominal Thrust
Common
Applications

Cold Gas 45-73 s 0.05-3.5 N
orbital maintenance
and maneuvering;
attitude control

Solid 290-304 s 25-80 kN orbit insertion

Liquid Monopropellant 200-235 s 1.5-445 N
orbital maintenance
and maneuvering;
attitude control

Liquid Bipropellant 274-467 s 0.1-100 kN

orbit insertion;
orbital maintenance
and maneuvering;
attitude control

Electric 500-3,000 s 20-2,000 mN
orbit maintenance
and maneuvering;
attitude control
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The data presented in Table 2 will provide a realistic set of maneuver

magnitudes to be utilized in developing scenarios to test each adaptive estimation

algorithm. Nominal thrust calculations for space-based propulsion systems are

measured in Newtons, which allows the spacecraft user to calculate an applied force

on the spacecraft. However, the dynamical equations used to propagate the

estimation algorithms, as seen in Equation (2.15), are the second time derivative of

the state vector, which conceptually is the acceleration of the target with respect to

the observer. When estimating the thrust vector throughout each maneuver

detection scenario, it is not in fact the applied force on the target spacecraft but the

perceived acceleration of the target in the LVLH coordinate frame centered on the

observer. Given mass and propulsion information about the target, an applied

thrust could be derived from the maneuver magnitudes characterized in each

scenario.

The third parameter that will be used for assessing algorithm performance is

the relative trajectory of the target satellite. As stated in Section 2.3.2, the HCW

equations of motion assume that the deputy satellite is relatively close to the chief

satellite [37]. Although there is no explicit distance for divergence of the dynamics,

the further away the deputy gets from the target the less accurate the dynamical

model becomes. A large relative trajectory becomes a problem for the estimator

because the process noise continues to grow as the confidence in the dynamics fades,

until the point where the covariance of the process noise no longer accurately

describes the standard deviation of the estimate from the dynamics [9].

Vallado notes that significant errors are presented for maneuver detection when

using traditional least squares or filter techniques on orbital data because of a lack

of dynamical knowledge during and post-maneuver [15]. Goff concludes that the

MMAE algorithm outperforms all other traditional estimation routines by a factor
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of 700 in maneuver detection scenarios over the course of just one orbit [7]. This

study will assess these claims for the application of the adaptive algorithm using

space-based maneuver detection scenarios.

Much of the data that assess the performance of the adaptive estimation

algorithm also answers the third research question: at what point does the

algorithm fail to converge on a solution? Many of these limitations are answered

previously, such as the minimum thrust that is able to be detected accurately or the

maximum distance away from the target where space-based measurements become

unrealistic. Another area of performance considered for the third question is the

availability of data for the observer. Through answering the first research question,

the adaptive estimation algorithm will be proven valid with unlimited measurements

on the target at all times throughout each scenario. This simplifying assumption is

not only unchallenging but also unrealistic. Through answering the third research

question, assessments will be made on the sparsity of the measurement data while

still proving algorithm success.

3.2 Overview of the Approach

In order to sufficiently answer all parts of the research questions detailed in

Section 3.1, an in-depth analysis on how the MMAE algorithm is used in this study

must be conducted. Chapter 2 reviewed the background behind MMAE and the

foundations of the VSD filter, but the specific design of the algorithm used in this

study is presented here.

3.2.1 Kalman Filter Algorithms

As discussed in Sections 2.1.3 and 2.1.4, tracking a target in real-time with

nonlinear measurements shown in Equations (2.20) and (2.21) requires a nonlinear
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recursive estimation algorithm. The two estimation filters explored in this study are

the EKF and the UKF. The systems are set up the same for both filters using

Equations (2.1) and (2.3) to set up the state and output vector, Equations (2.15)

and (2.17) to set up the relative satellite motion dynamics, and Equations (2.20)

and (2.21) to set up the measurement basis function.

These equations discussed in depth in Chapter 2 are sufficient to initialize and

propagate the EKF for the scenarios in this study, but some predefined weights are

required for initializing the UKF algorithm. The UKF uses (2n + 1) critical points

for n number of states in the filter to transform the mean and covariance without

the need to linearize the system. These critical points, often referred to as sigma

points for their natural distribution about the mean state estimate, have certain

weighting methods to ensure the preservation of the first two moments of the

normal distribution [21]. If weighted properly, the sigma points will affect higher

moments of the distribution but keep the mean and covariance of the estimate

intact. For this study, a symmetric weighting method is used, and the sigma points

are weighted using Equation (3.1):

w0
m = w0

c =
κ

n+ κ
(3.1a)

wjm = wjc =
1

2 (n+ κ)
for j = 1, ..., 2n (3.1b)

where κ is a scalar weighting variable and n is the number of states in the system.

As discussed in [7] and [21], the UKF can match up to fourth order terms in the

distribution if the equation κ + n = 3 is satisfied, and the UT will not work for

complex sigma points, so κ > -n is the lower bound for setting the weighting
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variable. Therefore, for all of the orbit estimation scenarios run in this study, we

will set κ = 3 - n for n states.

An extensive step by step algorithm for both the EKF and UKF used in this

study can be found in Appendix A, and many other research in this topic derive

similar algorithms: the EKF in [7] and [11], and the UKF in [7] and [51].

3.2.2 VSD Algorithm

The adaptability of the VSD filter is pivotal in the maneuver detection process.

As stated in Section 2.2.2, the VSD filter accounts for major changes in the

dynamical system by adding or removing states from the equations of motion.

Within the scope of this study, the only states being added in the VSD filter are the

two components of the thrust vector during the maneuver of the target, assuming

in-plane motion. The algorithm also makes the assumption that the thrust vector is

constant throughout each maneuver detection scenario. This causes some inherent

error in the thrust estimate because the acceleration of the target due to a constant

thrust changes slightly over time based on the mass lost by burning propellant. For

the purposes of this study, the thrust states are assumed constant, and for most

scenarios the target is assumed to produce a constant acceleration due to thrust.

Although the fact that the target is maneuvering is tracked by the VSD filter, more

specific parameters such as an estimate for the thrust magnitude and the process

noise of the new dynamics is more accurately estimated through a multiple model

framework.

3.2.3 IMM Algorithm

The IMM algorithm is used in this study to effectively estimate the process

noise of the new dynamics applied during a detected maneuver. A more accurate
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assessment of this process noise allows for a more accurate representation of the

thrust magnitude and the amount of time spent maneuvering. As discussed in

Section 2.2.1, the IMM framework allows a band of VSD filters with different noise

assumptions to estimate the future state of the system simultaneously. The

interacting component of the algorithm compares the estimates from every VSD in

a PDF, finding a combination of the most likely estimate based on the minimization

of the MD shown in Equation (2.11). A multivariate normal PDF is used in this

study to calculate the model likelihood, and the probability update function is

shown in Equation (3.2) [30]:

Λk
i = N

(
νki ; 0,Ski

)
=

1√
|2πSki |

e
−1
2 (νki )

T
(Sk

i )−1νki (3.2a)

µki =
µki−1Λk

i

N∑
j=1

µji−1Λj
i

. (3.2b)

Here Λk
i is the model likelihood and µki is the model weight for each model k at time

ti. After each model weight is calculated, the weighted state, covariance, and MD at

time ti are calculated using Equation (3.3) [30].

xi =
N∑
k=1

µki x̂
k
i Ψi =

N∑
k=1

µki Ψ
k
i (3.3a)

Pi =
N∑
k=1

µki

[
P̂k
i +

(
x̂ki − xi

) (
x̂ki − xi

)T]
(3.3b)

where x̂ki and P̂k
i are the updated state and covariance for each model k at time ti.

This study will look at two different methods for updating the model weights for the

IMM algorithm. For the full interacting method using the VSD in real-time, the
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mixing probabilities will be calculated and a single weighted state and covariance

will be fed into each model at every time step, as seen in Equations (3.2) and (3.3)

and in Figure 4.

Figure 4. Visual diagram of the VSD IMM algorithm

As discussed in Section 2.2.1, covariance inflation is a key requirement for

algorithm convergence whenever the VSD filter is activated pre-maneuver or

deactivated post-maneuver [11]. The VSD IMM algorithm is shown to be more

accurate than a single filter [7], but is highly sensitive to small changes in the

residual vector and the measurement covariance, which can be problematic for large

maneuvers.

Another classical MMAE technique that will be explored in this study involved

post-processing the model weights after each model filters through the scenario

individually. The model weights and update equations do not change, but the

models run separate from each other, only calculating the weighted state and

covariance a posteriori. This can prevent certain model sensitivities compared to a

full interactive method, but cannot be paired with a VSD and applied to real-time

maneuver detection [30]. Instead, this classical IMM algorithm will estimate the

thrust vector throughout the entire scenario. Although there will be some inherent

error as the models are estimating a thrust even when the target is not thrusting, if

the thrust magnitude is large enough we will be able to delineate between the thrust
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vector outputted by the target and the ambient noise of the estimator. The full step

by step IMM algorithm used in this study can be found in Appendix A.

For the purposes of this research and relating to the IMM algorithm analysis in

[30], the classical post-processing IMM algorithm is referred to as the first

generation (1G) IMM algorithm, while the full VSD IMM algorithm is referred to as

the second generation second generation (2G) IMM algorithm. A visual

representation of the 1G IMM algorithm can be seen in Figure 5.

Figure 5. Visual diagram of the 1G IMM algorithm

As shown in both Figure 4 and Figure 5, the IMM framework utilizes five

models with process noise covariance hypotheses varying at orders of magnitude

from the adjacent models in the framework. The number of models and the

distribution of hypotheses is taken from previous research [7], and for each specific

scenario the central process noise covariance is adjusted to ensure improved

interaction of the models and overall convergence of each algorithm. Although this

framework allows for a wider range of estimates regarding the confidence in the

dynamics of the system, there is still the risk of the algorithm diverging if the actual

process noise is outside the range of noise estimates made in the filter models.

Analysis regarding the number of models and the distribution of the hypotheses for

each model in the IMM algorithm is beyond the scope of this study. More analysis
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regarding algorithm convergence based on the assumptions of each scenario is

discussed in Chapter 4.

3.3 Scenario Simulation

The following sections discuss how each of the RPO scenarios examined in this

study will be initialized, validated, and analyzed within the scope of this study. The

scenarios assessed for this research are run using a coding framework written in

MATLAB. For the sake of continuity between the algorithm, code, and post

analysis, unless otherwise stated, all measurements and estimates are presented in

meters, meters per second, or meters per second per second when describing relative

position, velocity, and acceleration, respectively.

3.3.1 Initial Conditions and Noise Factors

Each scenario initializes in the LVLH frame centered on an observer in a

circular GEO orbit with a semi-major axis of a = 4.2164×107 m. This orbit has a

period of T = 86164 sec (24 hrs), and a constant mean motion of n = 7.2921×10−5

rad/sec. For most scenarios, the target spacecraft starts in an NMC around the

chief and is assumed to exhibit no out of plane motion. The initial state vector used

for the estimation algorithm is shown in Equation (3.4a), and the state vector for

the VSD is shown in Equation (3.4b):

x = [x0, y0, ẋ0, ẏ0]T (3.4a)

x = [x, y, ẋ, ẏ, Tx, Ty]
T . (3.4b)
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Here x and y represent the radial and along-track position of the target with respect

to the observer, and Tx and Ty refer to the relative thrust acceleration vector of the

target. The state vector is initialized using the conditions shown in Equation (3.5)

represent an NMC starting in the radial direction:

x0 = x0 y0 = 0

ẋ0 = 0 ẏ0 = −2nx0.

(3.5)

where the initial position in the radial direction, x0, is defined in this study as the

relative trajectory parameter. To ensure convergence of the estimator for each

scenario, a large covariance matrix is initialized. The initial state estimation error is

assumed to be 10% of the nominal values, with the initial covariance matrix shown

in Equation (3.6) [13]:

P0 =



σ2
xx 0 0 0

0 σ2
yy 0 0

0 0 σ2
ẋẋ 0

0 0 0 σ2
ẏẏ


=



(
0.1
n

)2
m2 0 0 0

0
(

0.1
n

)2
m2 0 0

0 0 0.12 m2

sec2
0

0 0 0 0.12 m2

sec2


. (3.6)

Each σ is the standard deviation of each respective state, and n is the mean motion

of the chief spacecraft. Because the covariance matrix is constantly updated

through each time step as seen in Equation (2.8b), the initial covariance is not as

significant as other parameters when analyzing the sensitivity of the estimation

algorithm. This initial covariance is used in all of the scenarios demonstrated in this

study unless otherwise stated that covariance inflation is necessary for convergence.

The last two parameters needed to initialize the estimator are the process noise

and the measurement noise. The measurement noise covariance is initialized based
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on the types of measurements used in each scenario. Equation (3.7) shows the

different measurement basis functions that will be tested in this study as well as

their corresponding measurement noise covariances.

y =

ρ
α

 =

√x2 + y2

arctan y
x

 Ri =

ρ ∗ σ2
ρ 0

0 σ2
α

 (3.7a)

y =

ρ
ρ̇

 =


√
x2 + y2

xẋ+yẏ√
x2+y2

 Ri =

ρ ∗ σ2
ρ 0

0 ρ ∗ σ2
ρ̇

 (3.7b)

y =


ρ

ρ̇

α

 =


√
x2 + y2

xẋ+yẏ√
x2+y2

arctan y
x

 Ri =


ρ ∗ σ2

ρ 0 0

0 ρ ∗ σ2
ρ̇ 0

0 0 σ2
α

 (3.7c)

Each σ corresponds to the standard deviation of the respective measurement. Each

range and range rate covariance is scaled by the range measurement itself, relating

to the assumption that the accuracy of a range sensor is inversely proportional to

the relative distance from the observer to the target [13].

For this study, the process noise covariance is initialized using a single variable,

which simplifies the tuning of this highly sensitive noise factor. The initial process

noise covariance is shown in Equation (3.8):

Q = q0I4X4. (3.8)

Here q0 is a scaling factor that is analyzed and tuned for nearly every scenario to

ensure the convergence of the error residual. For the purposes of this study, the Q

matrix is assumed to be constant once initialized, but the IMM algorithm will
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attempt to characterize changes in the process noise by making multiple hypotheses

for the Q matrix in each model of the IMM algorithm.

3.3.2 Parameter Study for Maneuver Detection

The IMM algorithm is tested and analyzed using a variety of parameters than

constitute different types of orbits and maneuvers that a target could exhibit with

respect to the observer. The parameters that are analyzed in this study are relative

trajectory, maneuver thrust magnitudes, data rate, data type, and measurement

noise. For each of these parameters, three nominal values are presented with the

hypotheses of good, medium, and poor algorithm performance.

As shown in Equation (3.5), the relative trajectory of the target is expressed in

the initial radial position for each scenario. The nominal values for this parameter

used in this study are shown in Equation (3.9):

x0 =


100 m

1000 m

10000 m

 . (3.9)

For the maneuver magnitude parameter, there is no hypothesis relating to the

performance of the IMM algorithm, but rather a small, medium, and large

maneuver. Although this parameter relates to the magnitude of the thrust, the

thrust vector itself may change for each scenario, which should not affect

performance. The maneuver magnitude nominal values are shown in Equation

(3.10):

T =
√
T 2
x + T 2

y =


0.001 m

sec2

0.01 m
sec2

0.1 m
sec2

 . (3.10)
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The data rate parameter constitutes the frequency at which measurements are

collected and read into the estimator. Although Section 2.4.2 discussed instances of

large data gaps in an RPO scenario, for the purposes of this study the data rate is

assumed to be constant. The data rate nominal values are shown in Equation

(3.11), here represented as a time gap between each measurement:

δt = ti − ti−1 =


1 sec

10 sec

120 sec

 . (3.11)

The data types that form the measurement basis function for each scenario are

shown in Equation (3.7), but the measurement noise covariances are defined by

Equation (3.12) in terms of a good, average, and poor sensor. The good sensor is

related to notional values in [13] meant to represent 1 cm of error and 0.1 cm of

error in the range and range rate measurements, respectively. Each worsening

sensor is simply given an order of magnitude of increasing error.

σgood =


1× 10−5 m

1× 10−6 m
sec

0.05o

 σaverage =


1× 10−4 m

1× 10−5 m
sec

0.10o

 σpoor =


1× 10−3 m

1× 10−4 m
sec

0.25o

 (3.12)

Within the scope of this research, these notional error values do not relate in

any way to any operational space-based sensor performances. Each sensor is given a

nominal deviation for range, range rate, and azimuth measurements, but each

scenario will use the proper deviation values depending on what data types are

available.
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3.3.3 Kalman Filter Validation

Before delving into the complex IMM algorithms used in this study, the EKF

and UKF are validated to ensure a baseline relative satellite motion scenario for

error comparison. Desai shows that the EKF has acceptable levels of error for

relative satellite orbit determination [13]. Desai uses two primary metrics to assess

performance that are also used extensively in the current study: root mean squared

error (RMSE), and time-based plots. RMSE calculates an average error over the

course of the entire scenario, which can indicate the overall performance for each

scenario. Time plots are necessary to analyze trends in the state errors over time

that the RMSE cannot capture. Time plots also track estimated thrust values and

model weights for each model in each IMM algorithm. Table 3 shows the initial

parameters used for the baseline validation scenario.

Table 3. Initial parameters for baseline scenario

Parameter Value

Scenario length (sec) 2000

Initial relative trajectory (m) 1000

Data rate (sec−1) 1

Data type [ρ ρ̇ α]

Sensor Quality good

Q0 1×10−9

This baseline scenario as well as every scenario presented in the current study

uses a ×100 Monte Carlo simulation to ensure random noise factors are suppressed

and data trends can be accurately analyzed. As shown in Table 4, Both the UKF

and EKF implemented in the current study have comparable levels of average error

with respect to the literature using similar initial conditions [13].
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Table 4. Simulation results for baseline scenario

RMSE UKF EKF Desai

δx (m) 0.012 0.047 0.112

δy (m) 0.094 0.27 0.109

δẋ (m/s) 5.2×10−5 1.9×10−3 1.01×10−3

δẏ (m/s) 2.9×10−3 0.013 6.33×10−4

The RMSE values shown in Table 4 are utilized throughout Chapter 4 to assess

the performance of adaptive estimation techniques with non-cooperative maneuvers.

3.4 Summary

This chapter covers the methodology used to answer the three research

questions listed in Chapter 1. Outlined in this chapter are the specific parameters

developed from the success criteria for each research question as well as a

descriptive discussion into the procedures and algorithms used for this study. The

results of each maneuver detection scenario as well as an in-depth analysis and

discussion regarding algorithm performance is detailed in the Chapter 4.
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IV. Results and Analysis

The following chapter investigates the adaptive estimation techniques outlined

in Section 3.2 and their applications to maneuver detection and characterization of

a target spacecraft operating in close proximity to an observer spacecraft. The

performance of both a 1G and 2G IMM algorithm is assessed through a variety of

scenario parameters outlined in Section 3.3.2. The results of each scenario are

evaluated based on the research questions defined in Section 1.2.

Throughout the different sections of this chapter, different algorithms are

implemented and different setups are used based on the iterative analysis of the

current research. Table 5 summarizes the specific algorithms used on the scenarios

displayed in each section of this chapter, including what type of filters are studied

and whether the thrust acceleration vector is being estimated or not.

Table 5. The algorithms and filters used for each results section

Section IMM type EKF? UKF? Thrust states

4.1 2G no yes VSD

4.2 1G yes yes off

4.3 1G yes yes on

4.4 1G no yes on

For the purposes of this research, all parameters and scenarios displayed in this

chapter are notional values derived from previous works [7, 13] without any

indication or analysis relating to the mission of either spacecraft. Despite the goals

and motivations of this research, no operational data is applied to this study.
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4.1 Maneuver Detection Analysis

This section applies a 2G IMM algorithm using VSD filters with varying levels

of process noise to detect and characterize a continuous maneuver in relative

spacecraft motion. Because of the highly nonlinear aspects of the VSD IMM

framework, the EKF was unable to converge for these scenarios. Therefore, the

UKF is the only filter presented with the VSD IMM algorithm.

The first scenario shows a comparison between a single VSD filter and a bank of

VSD filters in an IMM framework. Both scenarios run a single UKF before the

detected maneuver start time and after the detected maneuver stop time. The VSD

filter estimates the thrust acceleration in both the radial and along-track directions

with respect to the observer. The parameters for the first scenario are shown in

Table 6.

Table 6. Initial parameters for maneuver detection scenario 1

Parameter Value

Thrust acceleration (mm/s2) 100

Thrust duration (s) 100

Scenario length (s) 1500

Initial relative trajectory (m) 1000

Data rate (sec−1) 1

Data type [ρ α]

Sensor Quality good

Q0 1×10−10

Table 7 shows the RMSE values in the first maneuver detection scenario for a

single VSD filter compared to a bank of VSD filters in an IMM framework. Both

techniques have zero or minimal error in detecting the maneuver start time and
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estimating maneuver duration, which can be attributed to a high immediate change

in the dynamics caused by a large target maneuver. Both techniques also converge

on an accurate thrust acceleration vector for the 100 seconds that the VSD filters

are active.

Table 7. Simulation results for maneuver detection scenario 1

RMSE Single UKF IMM UKF

δx (m) 1.23×103 0.35

δy (m) 4.26×103 0.19

δẋ (m/s) 1.97 0.011

δẏ (m/s) 6.54 0.049

δT (m/s2) 6.01×10−4 5.03×10−4

Man start (s) 0 0

Man duration (s) 1.78 0

The IMM VSD algorithm holds RMSE values comparable to the baseline

scenario, while the single VSD filter has RMSE position values on the order of

kilometers. Figure 6a shows that the position errors using a single VSD filter

increase through the maneuver and continue to increase post maneuver, while

Figure 6b shows that the position errors using the VSD filter with an IMM

framework stabilize or decrease post-maneuver.
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(a)

(b)

Figure 6. Position errors for maneuver detection scenario 1 with (a) a single VSD filter
and (b) IMM VSD filters; dashed lines indicate the target maneuver

Multiple iterations and attempts at understanding the 2G IMM algorithm show

that maneuver detection using adaptive estimation is highly sensitive to changing

scenario parameters. For this scenario, the VSD IMM algorithm fails to converge

with a data rate less than one measurement per second and a data type different

than range and azimuth, and worsening sensors seem to be correlated with higher
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estimated state errors. The 2G algorithm typically diverges when the covariance

matrix of each model becomes too small, breaking the positive definite requirement

for the PDF. Large data gaps equates to a longer propagation of the dynamics, and

with the thrust vector added to the dynamics more unanticipated error could

explain the diverging filters. More scenarios exploring these changing parameters

can be found in Appendix B.

Along with RMSE values and state error trends, some changing parameters

affect how quickly the VSD IMM algorithm detects a maneuver start and stop time.

A decrease in the target maneuver magnitude appears to be correlated with an

increase in the maneuver detection time error, leading to a maneuver magnitude

lower limit for the VSD IMM algorithm to detect a maneuver. Table 8 shows the

initial parameters for a scenario where the VSD IMM algorithm is unable to

effectively detect and track a maneuver.

Table 8. Initial parameters for maneuver detection scenario 2

Parameter Value

Thrust acceleration (mm/s2) 1

Thrust duration (s) 400

Scenario length (s) 2000

Initial relative trajectory (m) 1000

Data rate (sec−1) 1

Data type [ρ α]

Sensor Quality good

Q0 1×10−12
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As shown in Table 9, the RMSE values for each state remain relatively low in

this scenario, and the VSD IMM algorithm is able to detect the maneuver start

within seconds of error.

Table 9. Simulation results for maneuver detection scenario 2

RMSE IMM UKF

δx (m) 0.086

δy (m) 0.24

δẋ (m/s) 2.9×10−3

δẏ (m/s) 0.039

δT (m/s2) 8.22×10−4

Man start (s) 6.36

Man duration (s) 1.29×103

However, the VSD IMM algorithm never detected a maneuver stop time,

estimating a maneuver magnitude long after the target stopped maneuvering. As

shown in Figure 7a, the maneuver detection statistic spikes around both the

maneuver start time and the maneuver stop time but never reaches the maneuver

detection threshold that signals the VSD to stop estimating a thrust vector.

However, continuously estimating the thrust vector post-maneuver does not seem to

affect the RMSE values of the scenario. Time plots show roughly a 10% increase in

error post maneuver but an overall recovery of the state error to baseline levels. As

shown in Figure 7b, the VSD filters continue to estimate a thrust vector

post-maneuver, capturing the small maneuver magnitude and reaching a zero steady

state thrust through the end of the scenario.
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(a)

(b)

Figure 7. For maneuver detection scenario 2 (a) the maneuver detection statistic and
(b) the thrust magnitude estimate vs truth

The second maneuver detection scenario opens a new level of investigation for

testing the performance of an IMM algorithm based on the claim that small target

maneuvers may not need to be detected in order to maintain baseline level state

errors.
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4.2 Small Maneuver Analysis

The results from applying a 2G IMM algorithm to maneuver detection scenarios

show a possibility to handle small target maneuvers using an IMM framework

without the need for maneuver characterization. The following section analyzes a

small maneuver scenario using a 1G IMM algorithm without adding a thrust

acceleration vector to the system dynamics. The 1G IMM algorithm requires a level

of post processing that delays real-time analysis, but with the sensitivity of the VSD

filter and the PDF, a 1G IMM algorithm may be a more stable alternative given

varied scenario parameters. Table 10 shows the initial parameters for the first small

maneuver scenario using a 1G IMM algorithm.

Table 10. Initial parameters for small maneuver scenario 1

Parameter Value

Thrust acceleration (mm/s2) 1

Thrust duration (s) 400

Scenario length (s) 2000

Initial relative trajectory (m) 1000

Data rate (sec−1) 1

Data type [ρ α]

Sensor Quality good

Q0 1×10−8

Along with the UKF, the EKF is applied as a viable filter for these scenarios

because of the added stability of a constant dynamical model in the 1G IMM

algorithm. For the first scenario, an RMSE comparison does not show the difference

between a single filter and a series of IMM filters because the small maneuver does

not drastically change the dynamics from the baseline scenario. However, the
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maneuver detection statistic shows a clear difference between the single filter and

IMM filters, as shown in Figure 8a and 8b.

(a)

(b)

Figure 8. Maneuver detection statistic for small maneuver scenario 1 with (a) a single
filter and (b) IMM filters; dashed lines indicate the target maneuver

Using the 1G IMM framework, the maneuver detection statistic remains below

the maneuver threshold throughout the entire scenario, while the single UKF filter

arcs over the maneuver threshold for a significant amount of scenario time. Recall
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from Equation (2.11) that the MD is used as the maneuver detection statistic in

this research:

Ψk = r̄TS−1
k r̄. (4.1)

The large increases in the MD of each filter shown in Figure 8 could either

mean the residuals are increasing or the residual covariance matrix is decreasing.

Despite the instability during the maneuver in Figure 8b, both a series of UKF and

EKF filters in a 1G IMM framework hold reasonable state errors without ever

detecting a maneuver.

The primary benefit of a 1G IMM algorithm compared to the 2G IMM

algorithm is an increased ability to handle changes in different scenario parameters

due to the level of post-processing present in the 1G IMM algorithm. The next

maneuver scenario analyzes a few changes in these parameters compared to the

previous scenarios, shown in Table 11.

Table 11. Initial parameters for small maneuver scenario 2

Parameter Value

Thrust acceleration (mm/s2) 1

Thrust duration (s) 400

Scenario length (s) 2000

Initial relative trajectory (m) 1000

Data rate (sec−1) 10

Data type [ρ α]

Sensor Quality poor

Q0 1×10−5
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The second small maneuver scenario takes into account a slower data rate as

well as a poor sensor quality, causing a higher initial process noise covariance for

sufficient results. These worsening parameters appear to correlated with higher

RMSE values compared to the baseline scenario, as shown in Table 12. Since the

maneuver magnitude and duration is the same between the first and second small

maneuver scenarios, the worsening state errors do not appear to be correlated with

the small target maneuver.

Table 12. Simulation results for small maneuver scenario 2

RMSE Single UKF Single EKF IMM UKF IMM EKF

δx (m) 0.89 1.56 0.76 1.34

δy (m) 5.40 3.27 2.41 3.39

δẋ (m/s) 4.1×10−3 7.1×10−3 6.5×10−3 9.3×10−3

δẏ (m/s) 0.071 0.23 0.046 0.24

The small maneuver scenarios serve as a validation of an alternative adaptive

estimation technique that does not involve the sensitive process of maneuver

detection. In scenarios where small target maneuvers are expected, adding an

adaptive estimation framework to relative orbit estimation allows an observer to

continue to track a maneuvering target without attempting to detect or characterize

the maneuver. However, the current study claims that maneuvers are well

characterized with improved state errors using adaptive estimation with the thrust

acceleration vector added as states to the system.

4.3 Maneuver Characterization Analysis

The 1G IMM algorithm is primarily utilized in this study as a means of

maneuver characterization. Compared to maneuver detection, maneuver
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characterization focuses on capturing the target thrust acceleration vector and

analyzing the target maneuver in terms of magnitude and duration.

The first maneuver characterization scenario uses the exact same initial scenario

parameters as the first small maneuver scenario, shown in Table 10, but the filters

for this scenario are now permanently estimating a target maneuver as acceleration

states in both the radial and along-track directions. As shown in Table 13, both the

UKF and EKF filters in a 1G IMM framework have improved RMSE values

compared to the single UKF and EKF filters. The results using the 1G IMM

algorithm show that even in instances of small target maneuvers, estimating a thrust

acceleration for the entire scenario can accurately characterize a small maneuver

while maintaining lower state errors compared to not estimating a maneuver at all.

Table 13. Simulation results for maneuver characterization scenario 1

RMSE Single UKF Single EKF IMM UKF IMM EKF

δx (m) 0.89 1.56 0.11 0.41

δy (m) 5.40 3.27 0.24 0.84

δẋ (m/s) 4.1×10−3 7.1×10−3 4.9×10−3 0.011

δẏ (m/s) 0.071 0.23 0.013 0.15

Tx (m/s2) 0.013 1.6e×10−5 1.1×10−4 1.6×10−5

Ty (m/s2) 0.030 3.1e×10−3 4.7×10−4 6.6×10−4

Along with keeping the state RMSE values at baseline levels, the 1G IMM

algorithm is highly efficient at characterizing maneuvers compared to single filter

estimators. As shown in Figure 9a, the small 1 mm/s2 maneuver is below the

inherent noise of the single UKF filter, and the single EKF filter converges quickly

to a steady state maneuver magnitude of zero. When these filters are applied to a

1G IMM framework as shown in Figure 9b, the UKF filters can now capture and
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characterize the target maneuver, but the EKF filters have no way of quickly

adapting to the change in dynamics. Recall that the thrust acceleration vector is

assumed to be constant for both IMM algorithms, which can explain the delay in

tracking the maneuver for the UKF filters and the failure to characterize the

maneuver with EKF filters.

(a)

(b)

Figure 9. Thrust acceleration estimate for maneuver characterization scenario 1 with
(a) a single filter and (b) IMM filters
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The fact that the EKF filter cannot react quickly to a target maneuver causes

problems in maneuver characterization scenarios attempting to capture larger

maneuvers. The thrust magnitude for the second maneuver characterization scenario

is much larger, shown with the rest of the initial scenario parameters in Table 14.

Table 14. Initial parameters for maneuver characterization scenario 2

Parameter Value

Thrust acceleration (mm/s2) 100

Thrust duration (s) 400

Scenario length (s) 2000

Initial relative trajectory (m) 1000

Data rate (sec−1) 10

Data type [ρ ρ̇ α]

Sensor Quality good

Q0 1×10−8

As seen in Table 15, using single UKFs and EKFs cause the state errors to

diverge dramatically, and neither filter can capture an accurate target maneuver

profile. These results drastically change when UKFs are used in an IMM framework,

but the EKFs are slow to adapt and cause the 1G IMM algorithm to diverge due to

a non-positive definite covariance matrix.

Despite the improvement of RMSE values from a single filter to a bank of IMM

filters, the IMM UKFs still do not reach error levels comparable to the baseline

scenario. This could be caused by the fact that the IMM algorithm continuously

estimates the thrust acceleration states long after the maneuver has stopped,

effectively contributing to the noise added to the estimator.
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Table 15. Simulation results for maneuver characterization scenario 2

RMSE Single UKF Single EKF IMM UKF IMM EKF

δx (m) 2.4×102 2.6×103 13.30 N/A

δy (m) 3.6×102 3.4×103 1.05 N/A

δẋ (m/s) 5.09 45.8 0.28 N/A

δẏ (m/s) 4.50 18.9 0.12 N/A

Tx (m/s2) 0.11 0.10 3.4×10−3 N/A

Ty (m/s2) 0.10 0.10 0.013 N/A

The third maneuver characterization scenario relies on the fact that the 1G

IMM algorithm can handle more varied scenario parameters compared to the VSD

filters in the 2G IMM framework. As shown in Table 16, the data rate for this

scenario is lowered to once per every two minutes, which may be indicative of large

gaps where sensors are unable to collect accurate measurements.

Table 16. Initial parameters for maneuver characterization scenario 3

Parameter Value

Thrust acceleration (mm/s2) 30

Thrust duration (s) 400

Scenario length (s) 5000

Initial relative trajectory (m) 1000

Data rate (sec−1) 120

Data type [ρ ρ̇ α]

Sensor Quality good

Q0 1×10−7
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For this scenario, each filter is affected differently by the larger data gaps.

Although the single EKF cannot effectively characterize the maneuver, Table 17

shows that the single EKF has improved performance over a single UKF due to the

fact that the UKF does not have enough data to converge quickly on the maneuver

or down to zero acceleration when the target is not maneuvering. However, as

shown in Figure 10b, the 1G IMM framework allows the UKFs to characterize the

target maneuver with limited measurement data, while the EKFs in a 1G IMM

framework diverge post-maneuver.

Table 17. Simulation results for maneuver characterization scenario 3

RMSE Single UKF Single EKF IMM UKF IMM EKF

δx (m) 3.7×103 41.79 24.35 N/A

δy (m) 3.9×102 8.92 6.04 N/A

δẋ (m/s) 30.88 0.84 0.46 N/A

δẏ (m/s) 42.06 6.69 0.34 N/A

Tx (m/s2) 1.59 2.9×10−4 4.8×10−3 N/A

Ty (m/s2) 2.29 0.010 7.9×10−3 N/A

Despite converging on what seems to be the target maneuver, the UKF IMM

algorithm is still nowhere near the RMSE values exhibited in the baseline scenarios.

Higher RMSE values could be attributed to the lower data rate, but could also still

be the fact that the thrust acceleration state estimates add an extra level of noise to

the estimator when the target is not maneuvering. Further sensitivity analysis is

required with respect to various sized data gaps indicative of a realistic RPO

scenario.
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(a)

(b)

Figure 10. Thrust acceleration estimate for maneuver characterization scenario 3 with
(a) a single filter and (b) IMM filters

The maneuver characterization scenarios show the effectiveness of a band of

UKFs in a 1G IMM framework and their ability to characterize larger maneuvers

with limitations to data rate and sensor type, but the EKFs in an IMM framework

do not have enough inherent adaptability to characterize a maneuver effectively.
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None of the maneuver characterization scenarios can attain RMSE values

comparable to the baseline scenario.

4.4 Dynamic Thrust Analysis

A major assumption used in this research is that the target is exhibiting a

constant thrust acceleration for the duration of the maneuver time. Although most

spacecraft are designed with propulsions systems that output a constant force, the

direction of that force and the subsequent acceleration of the target does not remain

constant. However,non-cooperative maneuvers are nearly impossible to accurately

predict in terms of both direction and magnitude without information about

propulsion capabilities of the target. This section addresses these realistic concerns

and attempts to solve them using the 1G IMM algorithm used in the previous

section.

The scenario presented in this section is an notional maneuver calculated by the

target in an attempt to rendezvous with the observer. The initial scenario

parameters are shown in Table 18.
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Table 18. Initial parameters for dynamic thrust scenario

Parameter Value

Thrust acceleration (mm/s2) 41-43

Thrust duration (s) 3000

Scenario length (s) 3000

Initial relative trajectory (m) 100000

Data rate (sec−1) 1-30*

Data type [ρ α]

Sensor Quality good

Q0 1×10−9

* varying time step based on numerical integration

Because of the inherent limitations to linearizing the system dynamics, the EKF

filters in a 1G IMM framework quickly diverge when the system dynamics can only

assume a constant thrust vector, so only the UKF filters can be applied to the

dynamic thrust scenario. As shown in Table 19, The UKF IMM algorithm has large

state RMSE values compared to the baseline scenario.

Table 19. Simulation results for dynamic thrust scenario

RMSE IMM UKF

δx (m) 37.084

δy (m) 38.30

δẋ (m/s) 0.24

δẏ (m/s) 0.25

Tx (m/s2) 0.0013

Ty (m/s2) 0.0010
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Despite the target exhibiting a variable thrust vector and the estimator

dynamics assuming a constant thrust, the UKF IMM algorithm is able to track the

target maneuver throughout the scenario with approximately 1 mm/s2 worth of

error in each direction. Figure 11 shows the thrust acceleration estimates compared

to truth data in both the radial and along-track directions.

Figure 11. Thrust acceleration estimate for dynamic thrust scenario

The dynamic thrust scenario shows the adaptability of the 1G IMM algorithm

and its ability to handle drastic changes in not only the scenario parameters but

also the system dynamics. The 1G IMM algorithm is able to capture a relatively

accurate thrust acceleration vector for the target at the cost of high state errors

relative to the baseline scenario. Improvements to this algorithm can be made if

more information is known about the maneuver capabilities of the target spacecraft,

which could help estimate the dynamics of the thrust acceleration vector.
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4.5 Parameter Study Conclusions

The current study uses five scenario parameters defined in Section 3.3.2 to

assess the performance of each adaptive estimation technique used to detect and

characterize non-cooperative maneuvers for RPO missions. Overall, the 2G IMM

algorithm has higher parameter requirements for convergence in terms of data rate

and data type, but both IMM algorithms have varying levels of success in terms of

maneuver detection and characterization when experiencing different scenario

parameters.

The most prominent parameter analyzed in this study is the target maneuver

magnitude. Both IMM algorithms are tested with both large and small relative

maneuvers with various results. Overall, the 2G IMM algorithm has more difficulty

detecting lower thrust magnitudes but maintains state errors consistent with the

baseline scenario. Higher thrust magnitudes appear to be correlated with higher

state errors but lower errors in maneuver detection times. The 1G IMM algorithm

can effectively characterize maneuvers of various thrust magnitudes, but at the cost

of higher state errors than the baseline scenario, especially when other scenario

parameters vary.

Decreasing the observer sensor accuracy is most directly correlated with higher

state errors for both IMM algorithms, but does not immediately cause convergence

issues. As seen in Table 11 and other scenarios with poor sensor accuracy in

Appendix B, a worsening sensor accuracy is also correlated with a higher process

noise covariance, which conceptually refers to the fact that the estimator has a lower

confidence in the system dynamics when it is fed less accurate measurements.

The scenario in Section 4.4 first analyzes changes in relative trajectory of the

target. Due to the variable levels of process noise allowed by adaptive estimation,

the relative trajectory assumption used in the HCW dynamical equations becomes
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invalid before the IMM algorithms fail to converge. Initial analysis of the relative

trajectory parameter shows successful scenarios using UKF filters in an IMM

framework and nonlinear relative equations of motion. An EKF IMM algorithm

using similar dynamics runs into significant issues regarding computation time due

to the linearization process necessary in the EKF framework. Further analysis of

the IMM algorithms with nonlinear dynamics is shown in Appendix C.

Changes in the data rate parameter can cause significantly higher state errors as

well as convergence issues for both IMM algorithms. Any collection rate longer than

1 Hz appears to cause the 2G IMM algorithm to diverge. The 1G IMM algorithm

can handle longer gaps between measurements, as seen in Figure 10, but can still

experience significantly higher state errors. Conceptually speaking, higher state

errors could cause a limit in data type as well if a sensor loses its pointing accuracy

on the target.

The data type is the most difficult parameter to change due to significant

convergence issues for both IMM algorithms. In this study, the 2G IMM algorithm

cannot converge on an accurate maneuver estimate without any other data type

besides range and azimuth data. The 1G IMM algorithm can also handle range rate

measurements, but as seen in Table 15 there is no significant benefit to the state

error by adding this extra measurement. Any limited measurement scenario

(range/range rate or angles-only data types) causes a drastic increase in state errors

and is not feasible for the applications of adaptive estimation in the current study.

4.6 IMM Algorithm Analysis

The initial analysis of the current study does not focus on the structure of

adaptive estimation techniques, but there are observed differences in how the 1G

and 2G IMM algorithms calculate the weights for each filter model. As shown in
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Figure 12a, only one model dominates the estimation at a time in the 1G IMM

algorithm, and significant model switching only takes place while the target is

maneuvering. For the 2G IMM algorithm shown in Figure 12b, the model weights

are only calculated when the VSD filters are active, and because of the real-time

nature of the algorithm there is a significant amount of active interaction between

each model.

(a)

(b)

Figure 12. Typical model weights for (a) a 1G IMM algorithm and (b) a 2G IMM
algorithm; dashed lines indicate the target maneuver
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Further analysis of the maneuver detection scenarios imply that increased

model interaction could be correlated with increasing state errors in the models.

Figure 13 shows the model weights for maneuver detection scenarios 3 and 4, results

of which can be found in Appendix B. Maneuver detection scenario 3 has low state

errors and accurate detection times for the VSD filter, which appears to be

correlated with the IMM algorithm converging on a single model, as seen in Figure

13a. Maneuver detection scenario 4 uses poor sensors, which cause higher state

errors and a larger error in maneuver detection times. As seen in Figure 13b, the

target maneuver stops at 700 seconds, and the small amount of time post-maneuver

with the VSD still on sees the most sporadic model interactions. Within the scope

of the scenarios analyzed in this study, large deviations between the predicted and

the truth dynamical models seem to correlate with more dynamic model

interactions to handle the increasing state errors.

Figures 12 and 13 show and initial analysis for the dynamics behind model

interactions, but without a clear pattern across all scenarios there is no clear

method to predict how the model weights will interact or which model will

dominate over the others. Distributing the process noise covariance at an order of

magnitude over 5 separate models is taken from [7] without any further analysis due

to the similar applications of the adaptive estimation algorithms, but further

analysis into the number of models and the distribution of the model hypotheses is

beyond the scope of this research. Future work concerning the extended analysis of

adaptive estimation is outlined in Section 5.3.
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(a)

(b)

Figure 13. Model weights for (a) maneuver detection scenario 3 and (b) maneuver
detection scenario 4

4.7 Summary

The current study investigates two different adaptive estimation frameworks

and their applications to space-based maneuver detection and characterization. The

performance of the different adaptive estimation techniques is analyzed through an
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extensive parameter study focused on the efficacy of maneuver characterization and

state error comparison to non-maneuvering scenarios. The research analysis

concludes that a 2G IMM algorithm with VSD filters is reliant on more stringent

parameter requirements for convergence, while a 1G IMM algorithm experiences a

higher adaptability to changing parameters at the cost of inherently higher state

errors. Further research and analysis is required to make conclusions on the

dynamical aspects of the IMM algorithms, and entirely new algorithms may be

required for optimal performance regarding adaptive estimation.
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V. Conclusions and Recommendations

The goals of this study were to investigate adaptive estimation techniques and

their applications to space-based maneuver detection and characterization for RPO

missions. Overall, the research showed that adaptive estimation algorithms

outperform single KF algorithms at detecting and characterizing non-cooperative

maneuvers while maintaining similar state errors compared to tracking

non-maneuvering targets. The following chapter reviews the research questions

answered in this study, the motivation and scope of this study, and concludes with

recommendations for future work on this topic.

5.1 Research Questions Answered

The current study was divided into three relevant research questions designed to

explore current adaptive estimation techniques and their applications to RPO

through an in-depth parameter study and convergence analysis. The following

research questions were answered in this study:

• Can adaptive estimation techniques be applied to detect and characterize

non-cooperative spacecraft maneuvers in satellite close proximity operations?

– Section 4.1 shows that a 2G IMM algorithm coupled with VSD filters can

detect non-cooperative maneuvers using relative spacecraft dynamics and

measurements. Every successful scenario is able to accurately characterize

the target maneuver within 1 mm/s2 of error, all while maintaining state

errors comparable to a non-maneuvering scenario. However, varying

scenario parameters reveal the sensitivity of the algorithm.

75



• How do sensor source and type, data rate, maneuver magnitudes, and relative

trajectory affect the performance of an adaptive estimation algorithm?

– Section 4.5 outlines how different scenario parameters appear to be

correlated to the performance of both the 1G and 2G IMM algorithms.

Overall, the 1G IMM algorithm is able to handle more parameter changes

than the 2G IMM algorithm due to the sensitivity of the VSD filters with

the PDF, but the 2G IMM algorithm has lower state errors when working

properly.

• For what types of scenarios does an adaptive estimation algorithm fail to

detect a maneuver or fail to characterize an accurate maneuver magnitude?

– In relation to the current study, the adaptive estimation algorithm fails

to converge in instances of large measurement gaps, large target

maneuver magnitudes, and limited types of measurements. The 2G IMM

algorithm is especially sensitive to covariance inflation and initial

conditions for the VSD filters. Further analysis in Section 4.2 of this

research shows that small maneuvers unable to be detected by a 2G IMM

algorithm can still be characterized by a 1G IMM algorithm at the cost

of higher state errors.

5.2 Research Implications

The motivation behind this research is to aid in the assessment of orbital

estimation algorithms with the potential for future use by the USAF to protect

space assets through improved SSA. The algorithms demonstrated in this research

contributed to the state-of-the-art in orbital estimation by applying maneuver

detection and characterization to space-based scenarios. In combination with its
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dedicated set of ground-based sensors, the JSpOC can utilize space-based SSA to

enhance its space object tracking and lower the chances of creating a UCT due to

non-cooperative maneuvers and sensor limitations. Correlating the assessment of

adaptive estimation techniques with space-based sensors also aids the USAF space

acquisition community in designing better space assets focused on the SSA mission.

The scope of this research focused on space-based applications of adaptive

estimation to detect and characterize non-cooperative maneuvers of a target

spacecraft in RPO. The current study assumed that the target spacecraft is

conducting a continuous, low-thrust maneuver designed to maintain its RPO

mission; that initial orbit determination (IOD) of the target has been acquired,

which gives the observer adequate information regarding the initial states of the

target; and that the target is exhibiting in-plane motion around the observer,

further simplifying the problem in order to focus on analyzing the estimation

techniques themselves.

This research makes no conclusions on the reason behind any dynamic

interaction between the models in each maneuvering scenario, and no optimization

scheme was attempted to further improve the adaptive estimation algorithms. The

conclusion can simply be made that dynamic, real-time maneuver detection and

characterization is further improved in both responsiveness and accuracy by using

adaptive estimation. Within the scope of this topic and the assumptions made for

this study, the research shows that adaptive estimation techniques can be a viable

option for future non-cooperative scenarios where full dynamical knowledge of the

target spacecraft is not available.
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5.3 Potential Future Research

There are multiple topics and concepts covered in this study that could benefit

from further application. A more general RPO scenario requires a full application of

three-dimensional nonlinear motion of the target spacecraft relative to the observer.

The nonlinear relative satellite motion dynamics are able to more accurately model

scenarios without proximity requirements as well as an observer in an elliptical

orbit. A full operational application of this research also requires IOD of the target

spacecraft and combining space-based with supplemental ground based sensor data,

further improving SSA on the target.

Although the current study made viable conclusions on the performance of

adaptive estimation techniques for maneuver detection and characterization, the

scope of this research barely skimmed the surface on adaptive estimation theory.

How and why each model interacts with other models before, during, and after a

maneuver requires further investigation which could lead to a better range of

dynamic hypotheses for each model. Each IMM algorithm applied in this study also

had a fixed number of models with preallocated hypotheses on the dynamics of the

system. Further analysis is required to assess how changing the number of models

and the range of hypotheses affects performance and responsiveness. Lastly, the

IMM algorithms in this study made hypotheses solely on the process noise

covariance applied to the system dynamics, but the IMM framework can be

designed to make any number of hypotheses based on the uncertainty of the

maneuvering target. Useful future applications of the IMM algorithm may involve

assessing different ranges of sensor noise or even making guesses at the thrust vector

of the target.

Another area of potential future work involves applying adaptive estimation to

a variety of different target maneuvers that represent more realistic RPO missions.
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Section 4.4 assesses the performance of the 1G IMM algorithm with a dynamic

thrust vector, but the estimator still assumes that the maneuver states remain

constant throughout the scenario. Although most space-based thrusters exhibit a

constant force, the perceived acceleration of the target relative to the observer

changes with respect to the propellant burned by the target. The dynamic thrust

scenarios showed that adaptive estimation techniques may not be sufficient if the

thrust vector is assumed to be constant, so information must be fed into the filter

that allows the estimation technique to predict the maneuver magnitude with

respect to the assumed mass of the target spacecraft.

Along with the assumptions regarding the maneuver magnitude, the adaptive

estimation techniques demonstrated in this research requires further study into

other realistic RPO missions. This study simply applied a constant maneuver for a

predetermined period of time to the target without any mission goals in mind. A

more realistic maneuver detection scenario takes into account a certain mission

objective for both the target and the observer as well as gaps in measurement data

where sensors are blocked by the Sun vector or in eclipse.

5.4 Conclusion

The research demonstrated herein investigates different adaptive estimation

techniques and their applications in non-cooperative maneuver detection and

characterization of target spacecraft operating in close proximity to an observer

spacecraft. Adaptive estimation utilizes a bank of filters with different hypotheses

on a system’s dynamics to account for unexpected changes in the dynamical model.

Combined with a series of VSD filters, the adaptive estimation algorithm is able to

detect and track target maneuvers of reasonable magnitude given a high rate of

measurement data. A more classical adaptive estimation approach is able to
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characterize maneuvers with a wider variety of changing scenario parameters at the

cost of a small increase in estimated state errors. Overall, adaptive estimation is a

vast area of research with a variety of useful applications to the space-based SSA

mission of the USAF.
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Appendix A. Estimation Algorithms

Algorithm 1: Extended Kalman Filter

1 Initialize or define previous state and covariance: x̂0, P̂0 or x̂i−1, P̂i−1

2 Propagate state from ti−1 to ti to determine xi and Φ(ti, ti−1)

Initial condition: x̂i−1 Differential eq: ẋ = f(x, t)

Initial condition: Φ(ti−1, ti−1) = I Differential eq: Φ̇ = ∂f(x,t)
∂x

Φ(ti, ti−1)

3 Update covariance:

Pi = Φ(ti, ti−1)P̂i−1Φ(ti, ti−1)T + Qi

4 Read in observation and sensor noise at ti: yi, Ri

5 Calculate the measurement basis function and residuals:

Hi = ∂G(xi,t)
∂x

νi = yi −G(xi, ti)

6 Calculate the observation covariance and mahalanobis distance:

Si = HiPiH
T
i + Ri Ψi = νTi S−1

i νi

7 Use the Kalman gain to correct the updated state and covariance:

Ki = PiH
T
i S−1

i x̂i = xi + Kiνi P̂i = (I−KiHi) Pi

8 Return to step 1, process observation at ti+1
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Algorithm 2: Unscented Kalman Filter

Given: pre-defined weights κ, wjm, and wjc for j = 1,...,2n

1 Initialize or define previous state and covariance: x̂0, P̂0 or x̂i−1, P̂i−1

2 Perform decomposition P̂i−1 = ATA; denote aj as column j = 1,...,n of A

3 Calculate sigma points:

x̃ji−1 = xi−1 + x̆j for j = 0,...,2n x̆0 = 0

x̆j = aj
√
n+ κ for j = 1,...,n x̆n+j = −aj

√
n+ κ for j = 1,...,n

4 Propagate all sigma points from ti−1 to ti:

Initial condition: x̃ji−1 Differential eq: ẋ = f(x, t)

Propagated results: x̃ji
5 Calculate propagated state and covariance:

xi =
2n∑
j=0

wjmx̃ji Pi =
2n∑
j=0

wjc
(
x̃ji − xi

) (
x̃ji − xi

)T
+ Qi

6 Transform sigma points and calculate predicted observation:

ỹji = G
(
x̃ji , ti

)
ŷi =

2n∑
j=0

wjmỹji

7 Read in measurement and sensor noise at t i: yi, Ri

8 Calculate the observation covariance, residuals, and mahalanobis distance:

Si =
2n∑
j=0

wjc
(
ỹji − ŷi

) (
ỹji − ŷi

)T
+ Ri

νi = yi − ŷi Ψ = νTi S−1
i νi

9 Use the Kalman gain to correct the updated state and covariance:

Vi =
2n∑
j=0

wjc
(
x̃ji − x̂i

) (
ỹji − ŷi

)T
Ki = ViS

−1
i

x̂i = xi + Kivi P̂i = Pi −KiSiK
T
i

10 Return to step 1, process observation at ti+1
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Algorithm 3: Interacting Multiple Model

1 Determine mixing probabilities at time of next observation, t i:

ck =
N∑
j=1

Prj|kw
j
i−1 for each model k up to N models

w
j|k
i−1 = 1

ck
Prj|kw

j
i−1 for all N 2 model combinations

2 Determine the individual state and covariance for each model k :

x̃ki−1 =
N∑
j=1

x̂ji−1w
j|k
i−1

P̃k
i−1 =

N∑
j=1

w
j|k
i−1

[
P̂j
i−1 +

(
x̂ji−1 − x̃ki−1

) (
x̂ji−1 − x̃ki−1

)T]
3 Input x̃ki−1 and P̃k

i−1 into each filter k, propagate and update the estimated
state, covariance, residual, and observation covariance through each
individual model: x̂ki , P̂k

i , ν
k
i , and Ski .

4 Update the likelihood change and updated weight for each model using the
probability density function:

Λk
i = N

(
νki ; 0,Ski

)
= 1√

|2πSk
i |
e

−1
2 (νki )

T
(Sk

i )−1νki wk
i =

Λk
i ck

N∑
j=1

Λj
icj

5 Calculate weighted estimates:

xi =
N∑
k=1

x̂kiw
k
i Ψi =

N∑
k=1

wk
i Ψ

k
i

Pi =
N∑
k=1

wk
i

[
P̂k
i +

(
x̂ki − xi

) (
x̂ki − xi

)T]
6 Return to step 1, process observation at t i+1
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Appendix B. Additional Scenarios and Results

In stochastic estimation, there is a trade off between not having enough data for

statistical relevance and having too much data that distracts from the claims made

by the research. The following results are additional scenarios that emphasize the

claims made in Chapter 4 without inflating the main body of the work.

Maneuver detection scenarios 3 and 4 show successful detections of average

target maneuver magnitudes. Maneuver detection scenario 4 shows that the 2G

IMM algorithm still works given poor sensor measurements with an inflated initial

process noise covariance.

Table 20. Initial parameters for maneuver detection scenario 3

Parameter Value

Thrust acceleration (mm/s2) 10

Thrust duration (s) 100

Scenario length (s) 1500

Initial relative trajectory (m) 1000

Data rate (sec−1) 1

Data type [ρ α]

Sensor Quality good

Q0 1×10−10
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Table 21. Simulation results for maneuver detection scenario 3

RMSE IMM UKF

δx (m) 0.035

δy (m) 0.16

δẋ (m/s) 2.0×10−3

δẏ (m/s) 0.048

δT (m/s2) 2.99×10−3

Man start (s) 2.86

Man duration (s) 0.87

Table 22. Initial parameters for maneuver detection scenario 4

Parameter Value

Thrust acceleration (mm/s2) 50

Thrust duration (s) 400

Scenario length (s) 1500

Initial relative trajectory (m) 1000

Data rate (sec−1) 1

Data type [ρ α]

Sensor Quality poor

Q0 1×10−5
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Table 23. Simulation results for maneuver detection scenario 4

RMSE IMM UKF

δx (m) 1.09

δy (m) 0.44

δẋ (m/s) 0.070

δẏ (m/s) 0.10

δT (m/s2) 8.62×10−4

Man start (s) 13.83

Man duration (s) 3.45

Small maneuver scenario 1 has no significant difference in error between the

single filter and IMM filters.

Table 24. Simulation results for small maneuver scenario 1

RMSE Single UKF Single EKF IMM UKF IMM EKF

δx (m) 0.56 0.36 0.098 0.64

δy (m) 3.45 0.75 0.76 1.42

δẋ (m/s) 8.6×10−3 0.061 2.9×10−3 0.064

δẏ (m/s) 0.056 0.27 0.026 0.28

Maneuver characterization scenario 4 has a harder time characterizing a large

maneuver with poor sensors, but RMSE values are along the same lines as other

scenarios with poor sensors.
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Table 25. Initial parameters for maneuver characterization scenario 4

Parameter Value

Thrust acceleration (mm/s2) 100

Thrust duration (s) 100

Scenario length (s) 1500

Initial relative trajectory (m) 1000

Data rate (sec−1) 10

Data type [ρ α]

Sensor Quality poor

Q0 1×10−7

Table 26. Simulation results for maneuver characterization scenario 4

RMSE Single UKF Single EKF IMM UKF IMM EKF

δx (m) 11.70 25.56 4.03 9.60

δy (m) 21.74 3.47 2.17 6.27

δẋ (m/s) 0.20 0.14 0.087 2.37

δẏ (m/s) 1.08 3.52 0.34 1.68

Tx (m/s2) 2.0×10−3 3.6×10−4 1.6×10−3 6.0×10−3

Ty (m/s2) 0.30 0.028 0.022 0.027

Two more dynamic thrust scenarios show similar RMSE values and maneuver

characterization success.
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Table 27. Simulation results for dynamic thrust scenario 2

RMSE IMM UKF

δx (m) 46.70

δy (m) 45.58

δẋ (m/s) 0.31

δẏ (m/s) 0.32

Tx (m/s2) 0.0016

Ty (m/s2) 0.0024

Table 28. Simulation results for dynamic thrust scenario 3

RMSE IMM UKF

δx (m) 39.14

δy (m) 41.78

δẋ (m/s) 0.25

δẏ (m/s) 0.27

Tx (m/s2) 0.0012

Ty (m/s2) 0.0011
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Appendix C. Nonlinear Dynamical Analysis

Based on preliminary analysis, Section 4.5 claims that the relative trajectory

assumption for the HCW equations of motion becomes invalid before the adaptive

estimation algorithm diverges. The relative trajectory parameter is not a primary

focus in this study because a large distance between the observer and the target

degrades the analysis for this study with respect to RPO scenarios.

The following scenario has the same initial conditions and uses a 2G IMM

algorithm for maneuver detection, but one IMM algorithm propagates the state

vector using the linearized HCW equations of motion (Equation (2.15)), while the

other IMM algorithm propagates the state vector using the nonlinear HCW

equations of motion without the relative trajectory assumption (Equation (2.17)).

Table 29 shows the initial conditions for the scenario, while Table 30 shows the

results for the scenario.

Table 29. Initial parameters for the relative trajectory scenario

Parameter Value

Thrust acceleration (mm/s2) 30

Thrust duration (s) 100

Scenario length (s) 1500

Initial relative trajectory (m) 1.0×105

Data rate (sec−1) 1

Data type [ρ α]

Sensor Quality good

Q0 1×10−12

Based on results in Table 30, the dynamics appear to worsen the estimated

state vector, but the 2G IMM algorithm still detects a maneuver with seconds of
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error. The higher RMSE values could be attributed to the large relative trajectory,

which adds noise to the range measurements themselves, or the degraded dynamics

at large relative trajectories, which seems counter intuitive for this scenario because

the nonlinear dynamics produce higher RMSE values than the linear dynamics.

Table 30. Simulation results for the relative trajectory scenario

RMSE Linear IMM UKF Nonlinear IMM UKF

δx (m) 7.08 44.24

δy (m) 43.89 326.22

δẋ (m/s) 0.039 0.12

δẏ (m/s) 0.57 1.16

Man start (s) 0.99 0.99

Man duration (s) 1.33 4.71

90



Bibliography

[1] B. J. Weichert, “The High Ground: The Case for U.S. Space Dominance,”
Orbis, vol. 61, no. 2, pp. 227–237, 2017.

[2] National Research Council, Continuing Kepler’s Quest Assessing Air Force
Space Command’s Astrodynamics Standards. The National Academies Press,
2012.

[3] Department of Defense & Office of the Director of National Intelligence,
National Security Space Strategy Unclassified Summary. 2011.

[4] United Nations General Assembly, “Report of the Committe on the Peaceful
Uses of Outer Space,” 1975.

[5] M. Wasson, “Space Situational Awareness in the Joint Space Operations
Center,” Advanced Maui Optical and Space Surveillance Conference, vol. 298,
no. 0704, pp. 8–10, 2011.

[6] M. A. Baird, “Maintaining Space Situational Awareness and Taking it to the
Next Level,” Air and Space Power Journal, vol. 27, no. 5, pp. 50–72, 2013.

[7] G. M. Goff, Orbit Estimation of Non-Cooperative Maneuvering Spacecraft. PhD
thesis, Air Force Institute of Technology, 2015.

[8] G. M. Goff, J. T. Black, and J. A. Beck, “Orbit Estimation of a Continuously
Thrusting Spacecraft Using Variable Dimension Filters,” Journal of Guidance,
Control, and Dynamics, vol. 38, no. 12, pp. 2407–2420, 2015.

[9] W. E. Wiesel, Modern Orbit Determination. Beavercreek, Ohio: Aphelion
Press, 2nd ed., 2010.

[10] C. F. Gauss, Theory of the Motion of the Heavenly Bodies Moving about the
Sun in Conic Sections. Mieola, NY: Dover Publications, 1857.

[11] B. D. Tapley, B. E. Schutz, and G. H. G. H. Born, Statistical Orbit
Determination. Burlington, MA: Elsevier Academic Press, 1st ed., 2004.

[12] R. F. Stengel, Optimal Control and Estimation. New York, NY: Dover
Publications, 1994.

[13] U. P. Desai, A Comparative Study of Estimation Models for Satellite Relative
Motion. PhD thesis, Texas A&M University, 2013.

[14] H. W. Sorenson, “Least-squares estimation: from Gauss to Kalman,” IEEE
Spectrum, vol. 7, no. 7, pp. 63–68, 1970.

91



[15] David A. Vallado, Fundamentals of Astrodynamics and Applications.
Hawthorne, CA: Microcosm Press, 4th ed., 2013.

[16] D. Vallado and P. Crawford, “SGP4 Orbit Determination,” AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, no. August, pp. 18–21, 2008.

[17] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, no. 1, 1960.

[18] J. R. Wright, “Optimal orbit determination,” in Advances in the Astronautical
Sciences, vol. 112 II, pp. 1123–1134, 2002.

[19] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” University
of North Carolina, vol. 7, no. 1, pp. 1–16, 2006.

[20] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter to
Nonlinear Systems,” 11th Symposium on Aerospace/Defense Sensing
(AeroSense), Simulations and Controls, 1997.

[21] S. J. Julier and J. K. Uhlmann, “Unscented filtering and Nonlinear
Estimation,” in Proceedings of the IEEE, vol. 92, pp. 401–422, 2004.

[22] B. O. Teixeira, M. A. Santillo, R. S. T. Erwin, and D. S. Bernstein, “Spacecraft
Tracking Using Sampled-Data kalman filters,” IEEE Control Systems, vol. 28,
no. 4, pp. 78–94, 2008.

[23] P. C. P. M. Pardal, H. K. Kuga, and R. V. de Moraes, “Robustness assessment
between sigma point and extended Kalman filter for orbit determination,”
Journal of Aerospace Engineering, Sciences and Applications, vol. 3, no. 3,
pp. 35–44, 2011.

[24] J. R. Wright and J. Woodburn, “Nonlinear Variable Lag Smoother,” Advances
in the Astronautical Sciences, vol. 132, pp. 745–764, 2008.

[25] R. E. Helmick, W. D. Blair, and S. A. Hoffman, “Fixed-Interval Smoothing for
Markovian Switching Systems,” IEEE Transactions on Information Theory,
vol. 41, no. 6, pp. 1845–1855, 1995.

[26] S. Sarkka, “Unscented Rauch Tung Striebel Smoother,” IEEE Transactions
on Automatic Control, vol. 53, no. 3, pp. 845–849, 2008.

[27] D. Magill, “Optimal adaptive estimation of sampled stochastic processes,”
IEEE Transactions on Automatic Control, vol. 10, no. 4, pp. 434–439, 1965.

[28] W. C. Li, P. Wei, and X. C. Xiao, “An adaptive nonlinear filter of discrete-time
system with uncertain covariance using unscented kalman filter,” ISCIT 2005 -
International Symposium on Communications and Information Technologies
2005, Proceedings, vol. I, pp. 1389–1392, 2005.

92



[29] R. L. Moose, “An Adaptive State Estimation Solution to the Maneuvering
Target Problem,” IEEE Transactions on Automatic Control, vol. 20, no. 3,
pp. 359–362, 1975.

[30] X. R. Li and V. P. Jilkov, “Survey of Maneuvering Target Tracking. Part V:
Multiple-Model Methods,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 41, no. 4, pp. 1255–1321, 2005.

[31] D. A. Vallado and J. H. Seago, “Covariance Realism,” in AAS/AIAA
Astrodynamics Specialist Conference, (Pittsburgh, PA), pp. 1–19, 2009.

[32] H. A. P. Blom and Y. Bar-Shalom, “The Interacting Multiple Model Algorithm
for Systems with Markovian Switching Coefficients,” IEEE Transactions on
Automatic Control, vol. 33, no. 8, pp. 780–783, 1988.

[33] Y. Bar-Shalom and K. Birmiwal, “Variable Dimension Filter for Maneuvering
Target Tracking,” IEEE Transactions on Aerospace and Electronic Systems,
vol. AES-18, no. 5, pp. 621–629, 1982.

[34] T. K. Yaakov Bar-Shalom, X. Rong LI, Estimation with Applications to
Tracking and Navigation. New York, NY: John Wiley & Sons, Inc., 2001.

[35] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The Mahalanobis
distance,” Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 1,
pp. 1–18, 2000.

[36] G. W. Hill, “Researches in the Lunar Theory,” American Journal of
Mathematics, vol. 1, no. 1, 1878.

[37] W. H. Clohessy and R. S. Wiltshire, “Terminal Guidance System for Satellite
Rendezvous,” Journal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658,
1960.

[38] W. E. Wiesel, Spaceflight Dynamics. Beavercreek, Ohio: Aphelion Press,
3rd ed., 2010.

[39] R. Bate, D. Mueller, and J. White, Fundamentals of Astrodynamics. 1971.

[40] T. A. Lovell and S. Tragesser, “Guidance for Relative Motion of Low Earth
Orbit Spacecraft Based on Relative Orbit Elements,” AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, no. August, pp. 1–16, 2004.

[41] C. Doolittle, F. Chavez, and T. A. Lovell, “Relative Orbit Element Estimation
for Satellite Navigation,” AIAA Guidance, Navigation, and Control Conference
and Exhibition, no. August, pp. 1–11, 2005.

[42] P. R. Escobal, Methods of Orbit Determination. New York, NY: J. Wiley, 1965.

93



[43] G. Gaias, S. D’Amico, and J.-S. Ardaens, “Angles-Only Navigation to a
Noncooperative Satellite Using Relative Orbital Elements,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 2, pp. 439–451, 2014.

[44] J. L. Junkins, D. C. Hughes, K. P. Wazni, and V. Pariyapong, “Vision-Based
Navigation for Rendezvous , Docking and Proximity Operation,” no. February,
pp. 24–28, 1999.

[45] M. P. Whittaker, R. Linares, and J. L. Crassidis, “Photometry and Angles
Data for Spacecraft Relative Navigation,” AIAA Guidance, Navigation, and
Control (GNC) Conference, pp. 1–17, 2013.

[46] U. Krutz, H. Jahn, E. K??hrt, S. Mottola, and P. Spietz, “Radiometric
considerations for the detection of space debris with an optical sensor in LEO
as a secondary goal of the AsteroidFinder mission,” Acta Astronautica, vol. 69,
no. 5-6, pp. 297–306, 2011.

[47] H. B. Hablani, “Laser Range Finder Closed-Loop Pointing Technology of
Relative Navigation, Attitude Determination, Pointing and Tracking for
Spacecraft Rendezvous.pdf,” 2004.

[48] H. Evans, J. Lange, and J. Schmitz, The Phenomenology of Intelligence-focused
Remote Sensing. New York, NY: Riverside Research, 2014.

[49] C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the
Atmosphere. New York, NY: Springer Science and Business Media, Inc., 2005.

[50] J. R. Wertz, D. F. Everett, and J. J. Puchell, Space Mission Engineering: The
New SMAD. Hawthorne, CA: Microcosm Press, 2011.

[51] D. Simon, Optimal State Estimation. Hoboken, NJ: John Wiley & Sons, Inc.,
2006.

94


	Air Force Institute of Technology
	AFIT Scholar
	3-1-2018

	Space-based Maneuver Detection and Characterization using Multiple Model Adaptive Estimation
	Justin D. Katzovitz
	Recommended Citation


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem
	Document Overview

	Literature Review
	Statistical Orbit Determination
	Applications of Estimation Theory
	Least Squares Estimation
	Kalman Filtering
	The Unscented Kalman Filter
	Filter Smoothers

	Multiple Model Adaptive Estimation
	Interacting Multiple Models
	Variable State Dimension Filter

	Relative Satellite Motion
	Local-Vertical Local-Horizontal Reference Frame
	The Hill Clohessy Wiltshire Model

	Space Sensor Analysis
	Space-based Measurements
	Measurement Collection Techniques
	Measurement Noise

	Summary

	Methodology
	Research Questions Reviewed
	Overview of the Approach
	Kalman Filter Algorithms
	VSD Algorithm
	IMM Algorithm

	Scenario Simulation
	Initial Conditions and Noise Factors
	Parameter Study for Maneuver Detection
	Kalman Filter Validation

	Summary

	Results and Analysis
	Maneuver Detection Analysis
	Small Maneuver Analysis
	Maneuver Characterization Analysis
	Dynamic Thrust Analysis
	Parameter Study Conclusions
	IMM Algorithm Analysis
	Summary

	Conclusions and Recommendations
	Research Questions Answered
	Research Implications
	Potential Future Research
	Conclusion

	Estimation Algorithms
	Additional Scenarios and Results
	Nonlinear Dynamical Analysis
	Bibliography

