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Abstract

In support of the Air Force Office of Scientific Research, this project sought to

identify the significance of nonlinear aerodynamic phenomena in regards to LCO of a

straked delta wing design. Previous works include unsteady Navier-Stokes aeroelastic

analysis of various wing designs and flight test of F-16 transonic LCO with interest

focused on oscillatory SITES behavior. The research presented within this investi-

gation further expanded the understanding of unsteady aerodynamics by performing

aeroelastic analysis of a wing oscillated in pitch with an Euler-based, boundary layer

coupled numerical method (ZEUS).

The wing was tested for a multitude of LCO parameters such as median AoA,

oscillation amplitude, oscillation frequency, Mach number, and the type of numerical

solver used. Computed pressure data sets were analyzed along the wing’s surface at

4 chordwise stations along the wing’s span.

Results indicate that oscillatory shock migration occurs in response to the pitch-

ing motion of the wing. ZEUS has the capability to run either a fully inviscid solution

or a boundary layer coupled solution (BLC). While the use of both methods found

shock migration to occur, the BLC solution predicted more significant shock migra-

tion. The inviscid solution predicted more aggressive shocks located further aft on

the wing than the BLC solution. In regards to oscillation amplitude, increasing the

amplitude resulted in a greater range of shock migration than lower amplitude cases.

Both oscillation frequencies tested did not show any noteworthy differences. The

aforementioned findings support the theory that potential oscillatory shock migration

can occur during certain cases of transonic LCO. In addition, it was concluded that

based on the flow solver used (ZEUS), shock movement during LCO is not purely a

function of viscosity (SITES), although the modeling of viscous effects does affect the

range of shock migration.
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An Efficient Euler Method to Predict

Shock Migration on an Oscillating

Straked Delta Wing Design

I. Introduction

As modern threats emerge and evolve, so must the development of new weapon

systems. Along with the advent of these new systems, current delivery platforms,

such as the multi-role F-16 aircraft, must be able to safely handle and accommodate

unforeseen load variations. F-16s are required to achieve both high altitudes and

supersonic speeds, which leads to thin airfoil shapes and reduced weight structures.

The introduction of heavy loads from newly designed weapon systems compounded

with thin, flexible wing structures of the F-16 can result in an aeroelastic instability

known as flutter and an aeroelastic nonlinearity known as limit cycle oscillations

(LCO). LCO results in undesirable airframe vibrations which can adversely affect

pilot performance and degrade targeting accuracy. Additionally, the occurrence of

LCO can lead to increased maintenance costs and reduced system lifespan.

The F-16 has nine traditional load stations: a pair of wingtip stations; a pair

of underwing missile stations; a pair of generally air-to-ground stations; a pair of

inboard stations which can be used to carry external fuel stores; and a centerline

station. Due to the ever increasing number of available weapon systems, the total

number of possible permutations of load configurations on the F-16 grows. Each of

these load configurations must first be certified by the Air Force SEEK EAGLE Office

(AFSEO) before the configuration may be flown operationally.

AFSEO is responsible for the test, evaluation, and certification of external equip-

ment and munitions carried by Air Force aircraft. As of 1983, AFSEO at Eglin Air

Force Base (AFB) has conducted all flutter testing of the F-16. Considering the exten-

sive analysis conducted during flight test, it would be impractical to test all available
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load configurations for the numerous flight regimes of the F-16 due to constraints on

time, cost and manpower. Thus, computational techniques which emphasize rapid

solutions with minimal sacrifice to accuracy are required to identify flutter sensitive

configurations [20, p. 1]. Subsequently, only the most critical configurations will re-

quire flight test validation. When employed successfully, a computational approach

to flight test will lead to reduced costs and expedited fielding of new weapon systems

required by the warfighter.

1.1 Background and Motivations

Aeroelasticity is the term used to describe the field of study concerned with the

interaction of the aerodynamic forces imposed on an elastic structure in an airstream

and the resulting deformation, both statically and dynamically. Classical aerody-

namics allows for the prediction of forces on a body given a flow condition. Elasticity

is used to determine the deflection of an elastic body under a load. Dynamics in-

troduces the effect due to inertial forces. When all three aforementioned fields are

applied simultaneously, the process is used to conduct dynamic aeroelastic analysis.

In regards to static aeroelasticity, divergence is an important property which

results in catastrophic failure. Divergence occurs when the deformation of a lifting

surface serves to increase the aerodynamic load, thus leading to further deformation of

the structure; this process continues until complete failure of the structure [18, p. 127].

Flutter is similar to divergence, but it is a dynamic aeroelastic phenomenon. Flutter

is a self-excited dynamic instability in which the aerodynamic forces on a flexible

body couple with the structure’s natural modes of vibration to produce oscillatory

behavior of increasing amplitude [18, p. 175-176]. In general, two or more modes

of vibration, such as bending and torsional motion, which under the influence of

unsteady aerodynamic forces, interact with each other in such a way that energy is

transferred from the passing airstream into the vibrating structure. A special case of

nonlinear flutter in which the amplitude of the oscillations remains constant is known

as a limit cycle oscillation.
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Figure 1.1: Example of LCO.

Limit cycle oscillations are defined as self-sustained oscillations in which there

is a balance between the destabilizing and restoring forces of a system, thus LCO lies

on the boundary of instability [22, p. 1]. In regards to aeroelastic LCO, aerodynamic

forces are translated into the aircraft’s structure, which in turn deforms due to the

applied load. The resultant deformation alters the aerodynamic forces and the process

is repeated such that there is a balance between the structural restoring forces and

aerodynamic loads. The motion of LCO is unique in that the motion is of limited

amplitude, cyclic (motion repeats for a given time period) and oscillatory (vibrational

amplitude occurs around some mean value). This means that in its most fundamental

state, LCO is defined by sinusoidal motion [2, p. 1]. Figure 1.1 depicts a hypothetical

LCO in which some perturbation disturbs the system from rest, resulting in the quasi-

steady, nonlinear oscillatory motion of the system attempting to return to equilibrium.

The F-16 and F/A-18 are LCO prone at high subsonic and transonic speeds

for store configurations with AIM-9 missiles on the wingtips and heavy stores on

the outboard pylons. The LCO response is primarily characterized by antisymmetric

motion of the wing and stores and lateral motion of the fuselage. In the case of the

F-16, LCO occurs at both elevated aircraft load factor maneuvers and level flight,

while the vibrations may be self-excited or induced by control inputs. Once initiated,

the oscillations perpetuate until flight conditions are altered to a non-LCO prone

condition. [2, p. 1].
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The phenomenon of LCO is considered to be closely linked to classical flutter

with the exception that the coupling of the unsteady aerodynamic forces and struc-

tural response is nonlinear in nature [2, p. 1]. Due to the complicated nature of

LCO, the nonlinear differential equations of motion which govern this vibration in-

frequently have no analytical solution. Modern computational flutter analyses can

accurately predict the frequency of LCO and the predicted flutter speed with zero

damping is often quite representative of the LCO onset speed in straight, level flight.

When considering more applicable portions of the flight regime such as transonic

flight, classical linear flutter analysis techniques fail to predict the onset velocity or

amplitude of LCO [10, p. 1].

Amongst aeroelasticians, there is little disagreement that LCO is a product

of the nonlinear interaction of the structural and aerodynamic forces acting on the

aircraft. However, there is no consensus as to which of these sources is the most signif-

icant contributor to the phenomenon. One possible explanation for the occurrence of

transonic LCO is the presence of shock induced trailing edge separation (SITES). The

role of SITES in limit cycles is thought to act as a nonlinear spring which both triggers

and drives LCO [6]. SITES occurs when the flow in the boundary layer separates due

to the pressure jump across a shock.

1.2 Research Objectives

The focus of this research is to provide further validation of ZONA Technologies

Euler unsteady solver (ZEUS) as a tool to predict the onset and severity of LCO in

the F-16. The program used for the flow analysis of the oscillating wing presented

in this thesis is an Euler solver with the option to add a coupled boundary layer

flow. As an Euler solver, the flow is assumed to be inviscid which raises the question,

”Why use an inviscid solver when the aerodynamic phenomenon of interest is a vis-

cous effect?”. Although ZONA’s Euler solver will fail to account for large regions of

separation potentially caused by the formation of shocks, the primary interest is the

shock movement as a result of wing oscillations.
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ZEUS has been optimized to provide rapid solutions to unsteady flow fields and

solutions can be run in a fraction of the time required for a full time-accurate Navier-

Stokes solution. With the speed of an Euler solver in mind, ZEUS has the potential to

provide predictive flight test capabilities for AFSEO and allow for a faster and more

budget-friendly approach to flight test.

At the request of AFOSR project sponsors, the research will compare computa-

tional results from ZEUS to previous wind tunnel tests conducted by Cunningham [7]

on a half-span straked delta wing design, which closely resembles the F-16’s wing

geometry. Cunningham’s tests had the objectives to 1) understand the physics of un-

steady transonic vortex flows about a simple straked delta wing and 2) to generate a

steady and unsteady airloads data base for a simple straked delta wing to be used for

validation of CFD computer codes. For the purposes of this research, a simple straked

delta wing was oscillated in pitch for a variety of Mach numbers, trim conditions, os-

cillation amplitudes and oscillation frequencies in order to closely replicate the wind

tunnel experiment and compare the results between the two sources. Additionally,

the significance of viscous effects in shock migration was of particular interest. For

this reason, fully inviscid and boundary layer coupled solutions were run in parallel

to compare any disparities between the two methods.
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II. Literature Review

2.1 Introduction

This chapter will provide an overview from a selection of the computational

methods currently employed for aeroelastic analysis in addition to previous research

and experiments relevant to limit cycle oscillations. As a precursor to LCO, this

section will begin with a review of linear flutter analysis. Next, LCO theory will be

discussed along with some of the possible sources of the nonlinear nature of LCO. A

brief discussion focusing on AFSEO’s approach to flutter and LCO testing will provide

foundation for the motivation behind the author’s research. Finally, the chapter will

conclude with an in-depth analysis of Cunningham’s [7] wind tunnel experiment which

provides a basis for the author’s own research.

2.2 Fundamentals of Linear Aeroelastic Analysis

Linear aeroelasticity begins with a summation of the forces on a lifting surface

in the form of second order equations of motion in matrix form (EOM)

Mẍ(t) + Cẋ(t) + Kx(t) = F(t) (2.1)

where M, C, and K are the mass, damping and stiffness matrices, respectively, gen-

erated by the structural FEM. The aerodynamic forces acting upon the lifting surface

are located on the right hand side of the EOM and can be further defined as

F(t) = Fa(x(t)) + Fe(t) (2.2)

where x represents structural deformation, Fa represents aerodynamic forces, and

Fe(t) represents external forces such as impulse type gust loads, store ejection forces

or control surface deflections due to pilot input [33, p. 2-1]. Should Fa(x(t)) be

nonlinear with respect to time, then a discrete time approach with initial conditions

is required.
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To further define the system, dynamic pressure is denoted with q∞ and an

aerodynamic influence coefficient (AIC) with H. We begin recasting (2.1) by assuming

no external forces (Fe(t) = 0) and that Fa(x) can be interpreted as an aerodynamic

feedback term. Thus the aerodynamic feedback can be related to the structural

deformation by way of a convolution integral:

Fa(x(t)) =

∫ t

0

q∞H

(
L

V
(t− τ)

)
x(τ) dτ (2.3)

where:

q∞H is the aerodynamic transfer function

V is the freestream velocity

τ is the integration variable

and:

L is the reference length, typically half-chord [33].

The Laplace domain analogue of Equation 2.3 is

Fa(x(s)) = q∞H̄(
sL

V
)x(s) (2.4)

where:

H̄ is the frequency domain counterpart of H

s is the complex number frequency parameter

which when combined with (2.1) simplifies to form the eigenproblem:

[s2M̄ + sC̄ + K̄− q∞H̄(
sL

V
)]x(s) = 0 (2.5)
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The end result of (2.5) is a computationally intensive eigenproblem due to the large

size of the mass, damping and stiffness matrices. Common practice makes a simplify-

ing assumption that aeroelastic instabilities typically consist of interacting lower-order

modes [33]. The “modal approach” truncates the infinite number of modes required

for continuous system analysis: 50 natural modes are usually sufficient to conduct

analysis of a whole aircraft structure [33, p. 2-3]:

x = Φq in the s-domain (2.6)

where Φ represents a modal matrix with only the selected lower order natural modes

[33, p. 2-4]. The generalized coordinates, q, is the eigenvector which will be deter-

mined. With the eigenvectors in hand, the structural deflections of the airframe are

known and then aerodynamic forces can be calculated. With (2.4) and (2.6), the

classical flutter matrix equation is produced:

[s2M + sC + K− q∞Q(
sL

V
)]q = 0 (2.7)

where:

M = ΦTM̄Φ is the generalized mass matrix with selected modes

K = ΦTK̄Φ is the generalized stiffness matrix with selected modes

C = ΦTZ̄Φ is the generalized damping matrix with selected modes

and:

Q(
sL

V
) = ΦTH̄(

sL

V
)Φ is the generalized aerodynamic forces matrix

The solution process to generate the aerodynamic transfer function with un-

steady aerodynamic methods is often facilitated by assuming simple harmonic mo-

tion. The frequency domain aerodynamic transfer function in matrix form is called
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the Aerodynamic Influence Coefficient (AIC) [33, p. 2-4]. The formulation of the

AIC matrices is the major functionality of ZAERO by way of the g-Method, a flut-

ter solution method unique to ZAERO. The g-Method can robustly handle non-zero

structural damping and represents the commercial state-of-the-art linear aeroelastic

algorithm. Other linear aeroelastic algorithms include the K-Method, P-Method and

P-K Method [4].

2.3 LCO Theory

The use of the term LCO in aeroelastic diction has become more prevalent since

the 1970s to describe the dynamic response of some aircraft and external store con-

figurations to encounter a sustained, oscillatory, periodic, but non-divergent motion

within portions of the flight envelope. Historically, terms such as limit cycle flutter

and limited amplitude flutter have been used as well. LCO differs from classical flutter

primarily in that the nonlinear coupling of aerodynamic and structural forces causes

the oscillations to grow from an initial perturbation to some limited amplitude. For

typical LCO, the amplitude of the vibrations is constant for a stabilized flight condi-

tion. Once above the LCO onset speed, the amplitude of the vibration grows until a

new flight speed is achieved. Once the speed is again stabilized, the periodic motion

will continue, but at a greater amplitude than the vibrations at lower velocity.

Denegri reported two distinct types of LCO which occurred during the flutter

test of the Block 15 F-16A [10]. He classified the two cases of LCO as typical and non-

typical LCO. Typical LCO was characterized by a gradual onset of sustained limited

amplitude oscillations of the wing where the amplitude increased with increasing Mach

number and dynamic pressure. Non-typical LCO was unique in that the oscillations

may only be present in a limited portion of the flight envelope.

Although it is easy to recognize the phenomenon, the true source of LCO re-

mains shrouded due to the nonlinear nature of this aeroelastic response. Speculation

of the root cause of LCO exists, whether it be aerodynamic nonlinearities, structural
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nonlinearities, or a complex interaction of the two. For this reason, classical linear

flutter analysis has been shown to adequately predict oscillation frequency and modal

composition of the LCO mechanism, but unable to predict the onset speed or severity

of the LCO [10, p. 1]. If the source/sources of LCO can be identified, computational

models which better predict LCO characteristics can be developed. The following sec-

tions will discuss some of the prevailing theories concerning LCO from the perspective

of a computational approach.

2.3.1 Store Aerodynamics. Several researchers have observed that many

fighter aircraft experience LCO at speeds below the predicted flutter speed when

carrying certain combinations of external stores [2,7,10,13,20,25,30]. Stores located

under the wing and at the wing tip can affect LCO by altering the inertial properties of

the wing or by changing the aerodynamics of the wing. Although the general trends

for the addition of store mass in relation to the elastic axis (EA) are established,

the role of store aerodynamics in LCO is still under investigation. The EA is a line

which spans from the wing root to the wing tip and produces pure bending when a

tranverse force is applied or pure torsion when a moment is applied. If store mass is

added forward of the EA, the flutter speed generally increases, producing a stabilizing

effect, and vice versa for store mass added aft of the EA [19].

It has been hypothesized that store aerodynamics can affect LCO through two

primary mechanisms: the store carriage loads transferred into the structure may suf-

ficiently change the total forces experienced by the wing or the store could interfere

with the airflow on the wing. In a study by Parker, Maple and Beran [25], it was found

that store aerodynamics LCO influence are most likely a combination of both mech-

anisms. The aerodynamic nonlinearity responsible for LCO in the Goland wing was

shock motion and periodic shock formation; stores were added to the underwing and

wingtip locations to determine how store aerodynamics affected LCO characteristics.

The aerodynamic forces on the store imparted energy into the structure increasing the
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amplitude of LCO while underwing stores interfered with airflow along the bottom of

the wing which served to limit the amplitude of LCO.

Several sources indicate that outboard stores and wingtip missiles play a sig-

nificant role in LCO characteristics. Bunton found that both the F-16 and F/A-18

encounter LCO at high subsonic and transonic speeds for store configurations with

heavy stores on the outboard pylons and AIM-9 missiles loaded on the wingtips [2].

A study by Dubben and Denegri found differences in LCO response characteristics

associated with slight aerodynamic differences in underwing missiles [13]. Dubben

discovered that slightly longer missiles with a raised collar section for the attachment

of fins and canards displayed vastly different LCO response than shorter missiles.

Computational analyses suggest that the fin collar has a significant effect on the wing

pressure distribution.

A study presented by Hajj and Beran [16] performed higher-order spectral anal-

ysis to identify nonlinear aeroelastic phenomena responsible for LCO during a ma-

neuver on the F-16. The results from flight test analysis showed that nonlinearities

leading to the LCO were mostly present at the forward locations on the wingtip

and underwing launchers. The detection of nonlinearities in the launchers and not

at the pylon-wing interface indicates that the nonlinearities are associated with the

aerodynamic or structural properties of the launcher.

Dowell et al. [15] implemented a nonlinear harmonic balance compressible RANS

flow solver to model the unsteady aerodynamics of the F-16 wing. The aerodynamic

model consisted of a clean wing with stores and missiles modeled by assuming aerody-

namic slender body theory. The structural portion of the aeroelastic model consisted

of modal masses and mode shapes obtained from a NASTRAN FEM. The structural

inertia and stiffness of the stores were included in the structural model. The focus of

his study was to detect any possible aerodynamic nonlinearities coinciding with LCO.

Dowell found the flutter onset Mach number to be highly dependent on the geometry

of the wing tip. Dowell reached the following conclusions:
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1. An Euler or Navier-Stokes based CFD code is required to predict transonic

flutter while a Navier-Stokes code is required for LCO prediction.

2. Correlation between computational results and flight test are highly sensitive to

variations in structural frequencies and aerodynamic modeling of wingtip missile

fins.

3. LCO frequency and structural modal participation were generally well predicted

but mixed results were achieved with LCO amplitude prediction.

Dowell suggests modeling of flow separation on the missile fins and modeling of

structural nonlinearities associated with the attachment points between the wing and

missiles would lead to possible improvements to future computational methods.

2.3.2 Shock Induced Trailing Edge Separation. In addition to store aerody-

namics, it has been proposed that shock induced trailing edge separation (SITES) may

play a significant role in LCO characteristics, notably within the transonic regime.

When an aircraft reaches its critical Mach number, the flow in some regions is sonic.

A normal shock forms and decelerates the flow back to subsonic. Figure 2.1 illustrates

the key features of transonic flow on an airfoil.

As the Mach number increases beyond the critical Mach number, a supersonic

region forms on the airfoil and is in general terminated by a nearly normal shock,

through which the flow is then returned to subsonic. With a further increase of the free

stream Mach number, the shock moves aft while the strength of the shock increases.

The adverse pressure gradient caused by the pressure jump across the shock can lead

to boundary layer separation along the trailing edge. In addition to the changes in

the Mach number, small variations in incidence may lead to considerable changes in

the pressure distribution, shock position, and shock strength. If the boundary layer

downstream of the shock separates completely, the flow can develop an unsteady

phenomenon known as buzz. [29].
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Figure 2.1: Flow features on an airfoil at and above the critical Mach number. (Fed-
eral Aviation Administration, 2004: 15-7)

The effect of SITES on LCO can be viewed as a feedback loop in which the

oscillatory motion of the wing causes the migration of the shock, or the reverse case

in which a self-sustained shock oscillation known as shock buffet can lead to vibrations

in the wing. The shock oscillation serves to initiate shock buffet, a large-scale flow-

induced shock motion which is self-sustained and repeated in an alternating fashion

along the upper and lower surfaces of the airfoil. As the angle of attack (AoA) of a

wing increases, the shock strength intensifies while moving aft. Once at a sufficiently

high AoA, the boundary layer separates either at the foot of the shock or at the

trailing edge, leading to a nose-down pitching moment which serves to reduce wing

incidence. At some point the flow will reattach and the nose-down moment dissipates.

The stored elastic energy within the wing then returns the wing to an elevated AoA

and the SITES process is repeated in a cyclic fashion.

Rokoni found that the interaction of shocks formed from transonic flow over a

supercritical airfoil with the boundary layer lead to self-sustained shock oscillations

and lift fluctuations which results in the initiation of the buffeting phenomenon [26].

Reynolds-averaged Navier Stokes (RANS) equations were utilized to account for the
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strong viscous-inviscid boundary layer interaction behind the shock. This method

was used to predict buffet onset and was validated with experimental data.

Cunningham, an advocate of SITES LCO, has suggested that SITES is the non-

linear spring which triggers and drives LCO. Cunningham observed that the appear-

ance of SITES coincides with the classical trailing edge divergence, a well-established

indicator of buffet onset [6]. The role of SITES in LCO was developed in response

to the observation that bending mode responses were very well predicted whereas

torsion mode responses were consistently underpredicted. The alternating transition

from SITES to attached flow could couple with wing torsional motion and low damp-

ing, resulting in LCO.

An analysis by Meijer and Cunningham has shown indications that at transonic

speeds, SITES plays a dominant role in the development of LCO on a fighter type

aircraft [21]. They utilized steady wind tunnel data to develop a LCO prediction

method. The method was used to correctly identify several configurations known to

encounter LCO. While this semi-empirical technique requires wind-tunnel data for the

airframe of interest, their results have the potential to identify aeroelastic instabilities

early in the design process of new aircraft.

Due to ease of access and potential for future growth, the majority of the

previously mentioned experiments consisted of computational analysis. A study by

Tauer [28] combined both computational methods with flight test as part of the Air

Force’s Test Pilot School (TPS) program. Tauer sought to use the flight test in order

to 1) validate computational methods for use by AFSEO and 2) to identify nonlinear

sources of LCO on the F-16 with particular interest in SITES. The flight test used

tufting and shadowgraph techniques to conduct in-flight flow visualization. From his

flight test, Tauer observed the following:

1. The presence of shocks did not result in any noticeable separation on the tufts.

2. Shock waves did not move in response to the pitching and plunging of the wing

during LCO.
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The movement of shocks on the wing was non-periodic and correlated to changes

in flight conditions. For the smaller amplitude LCO experienced during Tauer’s flight

test, it appears that some aerodynamic nonlinearity other than SITES is the culprit

behind F-16 LCO. Tauer suggested that further analysis of the complex aerodynamics

of the underwing with stores may provide insight to the development and sustainment

of LCO.

2.3.3 Nonlinear Structural Damping. Within the transonic regime, it is

understandable to hypothesize the influence of SITES in LCO characteristics. Despite

the plausibility of this hypothesis, LCO is not a phenomenon restricted to transonic

flight. A study by Mignolet, Liu, and Chen [23] indicated that a nonlinear transonic

aerodynamic model cannot wholly represent the mechanism for wing and store LCO.

Rather, a nonlinear structural damping (NSD) model based on Coulomb friction,

possibly compounded with nonlinear aerodynamics, would more accurately represent

LCO across more of the flight regime instead of just the transonic regime.

NSD can also help to explain why some wind-tunnel tests experience flutter

while the matching flight test resulted in LCO. While the aerodynamics should be

similar due to matched Reynolds number, the wind tunnel models are constructed

of far fewer pieces and components than the full-scale aircraft. The reduced model

complexity could result in changes to the NSD which could explain the variation

between the wind tunnel test and flight test. A final argument made by Mignolet, Liu,

and Chen in support of NSD questions why previous flight tests of four identical F-16s

found variations in LCO onset speeds and amplitudes for each aircraft. While the

aerodynamics of each aircraft should be the same, unique variations in the structural

integrity based on wear patterns from years of use could explain the differences in

LCO for each aircraft [23].

Chen has proposed that wing/store LCO is a post-flutter phenomenon which

occurs when the flutter mode contains low unstable damping which is identified as

a hump mode [5]. Chen goes on to say that the aircraft structure usually contains
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structural nonlinearity such as friction damping. This amplitude-dependent friction

damping can limit the growth of the oscillation amplitude resulting in a limited am-

plitude steady state oscillation. On the other hand, a typical flutter mode results in

amplitude growth largely due to destabilizing negative aerodynamic damping, hence

a drastic increase in the damping past the neutral stability point. Chen used his

own flutter analysis technique, the g-method, to provide further evdience for NSD by

showing a good correlation between the LCO/flutter prediction and the flutter test

of the F-16 MA41 and MA43 models [5].

2.3.4 Computational Analysis of LCO. Within the past decades, the use of

CFD has become more prevalent in the design and testing of aerospace structures. The

use of CFD has also extended into the realm of both steady and unsteady aeroelastic

analysis, to include the investigation of flutter and LCO. An aeroelastic study by

Nikbay [24] performed both static and dynamic analysis of the HIRENASD wing based

on NASA’s reference data to investigate steady and unsteady aeroelastic responses in

the transonic regime for low and high Reynolds numbers. The study used the ZEUS

Euler solver, the same solver used in the present study.

Nikbay found the ZEUS Euler solver with boundary layer coupling showed some

agreement with experimental results and a N-S solver. Due to lower fidelity model-

ing of viscous effects, ZEUS overpredicted the shock pressure magnitude, pressure

change across the shock and aftward relocation of the shock on the upper surface for

the steady case. For the unsteady case, the Euler solution predicts a more aggres-

sive dynamic response which occurs further aft than both the RANS solution and

experimental results. In general, the Euler solution results agree better with the ex-

perimental data sets near the mid-span locations where the effects of the wind tunnel

wall boundary layers and wing tip vortices were not as prevalent.

In a vein similar to LCO, shock wave interactions with a separated boundary

layer are associated with many unsteady phenomena. For aircraft in flight, flow-

induced vibrations known as buffeting can occur when separation of the boundary
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layer occurs. The shock induced fluctuations are often coupled with self-sustained

periodic shock motion of varying amplitude, although the mechanisms responsible

for the oscillatory motion are not yet fully understood. What is unique about the

shock-boundary layer oscillation is that they do not require oscillatory motion of the

wing to occur or perpetuate.

Work by Hashimoto et. al. [17] investigated the effects of turbulence model-

ing and grid resolution to improve 3-D buffet prediction accuracy with a N-S code.

Hashimoto compared two Zonal Detached Eddy Simulations (ZDES) with the Spalart-

Allmaras (SA) and Menter’s Shear Stress Transport (SST) models. With the SST

model, the shock wave location moved downstream to closely match experimental

results, but the shock oscillated widely with a large pressure fluctuation behind the

shock. Next, Hashimoto implemented a wall model with ZDES while reducing the

number of cells by one-third in order to reduce the computational time required for

unsteady simulation. ZDES with the wall model predicted shock wave location and

the power spectral density of pressure close to the experiment and in general was able

to predict the 3-D buffet reasonably well. As seen by this study, turbulence modeling

plays a significant role in N-S codes when predicting transonic shock oscillations due

to flow separation.

An alternative to a N-S solution is a boundary layer coupling method. In

essence, the procedure involves coupling an outer inviscid region with a inner viscous

boundary layer. The coupling method is based on the observation that for transonic

flow the unsteady flowfield can be characterized by oscillating shocks and separating

and reattaching boundaries. The coupled boundary layer method regards such flow

as a simulation of two dynamic systems, the outer inviscid flow and inner viscous

boundary, whose coupling requires proper convergence to ensure the coupling error

between the two distinct flows is minimized. An in-depth description of this coupling

process, called the Edwards method, can be found in the next chapter.
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Edwards [14] used his method to compute the buffet properties for an 18%

thick circular arc airfoil for Re = 10E6 and at M = 0.76. The calculated periodic

shock frequency agreed closely with the experimental value. Additionally, the coupled

boundary layer method was also able to compute the hysteresis effect due to increasing

or decreasing Mach number on the onset and quenching of periodic motion quite

accurately. For increasing Mach, periodic motion occurs at M = 0.75 compared to

0.76 experimentally while for decreasing Mach, periodic motion quenched at M =

0.735 compared to M = 0.73 experimentally. The increasing Mach number results

were more accurate for Edwards method than those obtained by way of a N-S code,

although the N-S code did more accurately predict the quenching boundary.

2.4 Current AFSEO Methodology

One of the most problematic conditions with performing LCO analysis is the

tremendous volume of analysis cases that must be examined in order to provide cer-

tification for a given store configuration and its permutations [12, p. 887]. The

ever-increasing cost of flight test compounded with the rapid proliferation of possible

flight configurations of an aircraft has led to a considerable growth of AFSEO’s work

to clear new weapons and configurations. While typical flutter and LCO analysis only

gives an indication of potential flight characteristics, flight test of the most critical

configurations is conducted to determine the true LCO characteristics in order to

verify the computational analyses.

Computational fluid dynamics (CFD) has become a powerful and accurate tool

for aerodynamic analysis and design. Despite the potential of CFD to provide flow

solutions for high fidelity full-scale numerical simulations, its ability to efficiently

conduct aeroelastic analysis falls short. In order to reliably simulate aerodynamic flow

and the associated nonlinear phenomena with the aircraft model requires a significant

amount of time. A recent study by Tang showed that using CFL3D required 4 days of

computation to complete a transonic LCO study on a 1 GHz computer of 2-D flow over
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an airfoil [27]. Although powerful, the implementation of unsteady CFD to conduct

the massive number of aircraft/store configurations for AFSEO is impractical.

AFSEO conducts bulk screening with lower fidelity models to identify flutter-

critical or LCO-critical configurations to offset the high cost of flight test [11, p.

500]. This computational approach to flutter/LCO testing is intended to determine

potentially dangerous configurations without the need for testing as well as identify

configurations whose response characteristics are acceptable, thus eliminating the need

for redundant flight testing [12, p. 887-888]. Given the scope of the problem and

available computational resources, AFSEO’s bulk simulations use MSC.NASTRAN’s

version of the K-method that includes a low-fidelity aerodynamic model. The F-16

aerodynamic model consists of only 13 panels split into 616 boxes. Aerodynamic

modeling of the underwing stores is not included [11, p. 502]. While the aerodynamic

model is low fidelity, the F-16 FEM model is the same fidelity as used with other F-16

aeroelastic simulations.

2.5 Straked Delta Wing Wind Tunnel Experiment by Cunningham

Steady and unsteady low speed wing tunnel tests were conducted in 1986 on a

pitching simple straked wing model representative of modern fighter aircraft [1,9]. The

model was oscillated in pitch at amplitudes sufficient to represent rapid pitch-ups and

push-overs at dynamically scaled full scale maneuver times. The tests were used to

show how wing and strake vortices develop and interact as well as how they break down

and collapse to fully stalled flow. There was interest to extend this understanding to

include compressibility effects as well as analysis of LCO flow conditions.

In 1991, Cunningham conducted a combined wind tunnel test using a common

instrumented wing panel to investigate configurations at typical LCO flow conditions,

and unsteady pressures and forces for a simple straked wing in flow that ranged from

incompressible to transonic [7]. The simple straked wing portion of the test had the

objective to extend the understanding of flow fields at low speeds and high incidences
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up to transonic speeds and high incidences. The LCO portion of the test had the

objective of providing information that could be used to help develop a prediction

method for full scale LCO characteristics of elastic aircraft.

The wing test was conducted in the NLR (National Aerospace Laboratory) 2.0 x

1.6 m2 high-speed wind tunnel located in Amsterdam. A sidewall mount was used to

secure the semispan model for a range of Mach numbers spanning from M = 0.225 to

M = 0.90. A hydraulic actuator was connected to the turntable which supported the

wing balance beam was used to provide oscillatory pitching of the wing. The semispan

model was constructed of an aluminum alloy so as to minimize inertial loads. The

simple wing/strake (SiS) configuration is shown in Figures 2.2 and 2.3. The outer

wing section was a linearly lofted NACA 64A204 with -3◦ of washout at the wingtip.

The strake section was attached to the outer wing so that the entire wing oscillated

as a single piece.

The model instrumentation included pressure transducers to measure the un-

steady pressure coefficient on the wing. Individual pressure ports were located along

pressure measurement sections placed both spanwise and chordwise along the wing.

Placement of pressure sections can be found on Fig. 2.2. The pressure sections con-

sisted of 4 chordwise sections and 3 spanswise sections located on the outer wing.

Grouping of pressure transducers toward the wingtip was done to concentrate instru-

mentation in the regions of known shock induced separation.

The SiS model was tested at three Mach numbers: M = 0.225, 0.6, and 0.9, all

of which were tested at a Reynolds number of 8 ∗ 106, based on the root chord. The

wing was then swept from 6◦ to 48◦ of mean incidence with an oscillation amplitude of

0.5◦ to 8◦ at frequencies varying from 5.7 Hz to 15.2 Hz. A sample of the test matrix

used by Cunningham can be found in Fig. 2.4. A similar test matrix was used by the

author so that the computational results presented in this thesis could be compared

to the original wind tunnel tests by Cunningham.
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Figure 2.2: Simple Wing/Strake Configuration. Pressure sensors are located along
the dotted lines labled 1-4. (dimensions in mm) [8]
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Figure 2.3: Dimensions of wing panel (dimensions in mm) [8]. The computational
model used in this study is slightly different than the model presented
here.

22



Figure 2.4: An example of a test matrix used in Cunninghman’s experiment. [8]
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2.6 Chapter Summary

Within the scope of this literature review, the author has covered the foundation

and relevant research pertaining to LCO theory. An introduction covering the linear

dynamic unstable aeroelastic response known as flutter explains the transition to

the nonlinear response of LCO. Possible sources of LCO such as store aerodynamics,

SITES and structural damping were investigated in detail to provide some speculation

to the cause of LCO. Current AFSEO flutter/LCO methodology was explained next

in order to define the motivation behind alternative computational methods for LCO

prediction. Finally, Cunningham’s 1994 Wind Tunnel experiment, which was the

basis for the computational study conducted within this investigation, was reviewed.
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III. Methodology

3.1 Introduction

This study performed a series of time-accurate analyses of a wing oscillated in

pitch with a commercial Euler code in order to gather data on potential shock migra-

tion on the wing. All aeroelastic analysis were carried out with Zona Technologies’

ZEUS software. ZEUS is a commercial Euler Unsteady Aerodynamic Solver which in-

volves an automated mesh generation scheme while using a stationary Cartesian grid

and implements a boundary layer coupling scheme. ZEUS uses a central difference

with JST (Jameson-Schmidt-Turkel) Artificial Dissipation Scheme for flux construc-

tion and Green’s Integral Boundary Layer Method to model turbulence. This chapter

discusses the Euler method employed and the parameters unique to this study.

3.2 ZEUS

3.2.1 Mesh Generation and Finite Element Model. ZEUS utilizes an auto-

mated mesh generation scheme that requires the surface mesh of the lifting surfaces

and bodies as input. The automated mesh generation is accomplished by creating a

block around the model which defines the outermost boundaries of the three dimen-

sional Cartesian mesh. For the purpose of defining the mesh orientation, the origin is

located on the root chord with the x, y, and z axis defined as out the tail, laterally out

the right wing, and vertically out the top of the aircraft, respectively. The surface grid

lines run orthogonally in the X-Y and Y-Z planes. ZEUS then activates a segregation

technique that divides the various lifting surfaces into several spanwise zones, called

Y-zones. Each aircraft component is projected onto the X-Y plane into individual

Y-zones. Within each Y-zone, the leading and trailing edge is extended upstream and

downstream, respectively, with the slope of each additional line decreasing so that the

final line is parallel to the upstream and downstream X-Y boundary.

A cubic spline technique then extends each line in the Y direction based on

the following constraints: the slope of adjoining cells must match and the line must

be perpendicular to the X-Z plane at the farfield boundary in the Y direction. The
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Figure 3.1: Mesh Generation, Top View, Close. XY plane view of the computational
mesh.

Y-zones allow for ZEUS to build an automated sheared mesh by growing the gridlines

from the surface mesh to the outer boundary of the block based on a user defined cell

growth rate [32, p. 5-5]. A top-down view of the mesh can be seen in Figures 3.1 and

3.2.

The mesh boundaries were extended two chord lengths upstream, five chord

lengths downstream, two spanwidths from the X-Z plane, and a chord length above

and below the X-Y plane. The generated mesh can be found in Figures 3.3 and 3.4.

Although various finite element method (FEM) models for the F-16 exist, Cun-

ningham’s experiment did not seek to replicate mass/inertial properties of the model

wing to a full scale wing. The wing was constructed of aluminum to reduce inertial

loads. Impact testing was conducted on the model to determine natural frequencies

and vibration modes. The results of these tests allowed for the selection of oscillation
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Figure 3.2: Mesh Generation, Top View, Full. XY plane view of the computational
mesh.

frequencies that were not close to the natural frequencies of the model. For harmonic

excitation frequencies below 8 Hz, the model was considered rigid. For this reason, it

was decided to implement a rigid body computational model with only a rotational

pitch mode.

A ”dummy” file was used to define the FEM model which contained a single

point located along the strake root at x = 0.733 ∗ Croot. The single point had one

eigenvector which defined rotational pitch mode. All of the aerodynamic panels were

then splined to the single FEM point which resulted in rigid body rotational motion of

the entire computational model. The entire strake-outboard wing structure was then

converted to a control surface with a rotation axis located in the same position as that

of the Cunningham model. Treating the entire wing structure as a control surface
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Figure 3.3: Mesh Generation, Close View. ZEUS uses a built-in, automated mesh
generation scheme to extrapolate a 3-D mesh from the 2-D panel distri-
bution along the wing’s surface.

allowed for direct control of the wing’s orientation so that LCO could be simulated

by providing input to the wing to oscillate at a prescribed amplitude and frequency.

ZEUS can run both a full or linearized Euler solver. While ZONA recommends

use of the linearized solver when possible, this recommendation applies more-so to

small amplitude disturbances. Due to the nonlinear nature of the LCO simulations,

high angles of attack, and large oscillation amplitudes, the full Euler solver was uti-

lized. ZEUS’ implementation of the Euler solver will be described in a later section.

3.2.2 Unsteady Euler Solver on Stationary Cartesian Grid. ZEUS gener-

ates unsteady aerodynamics based on a stationary Cartesian grid. ZEUS solves the

time-accurate Euler equations by way of a cell-centered central-differencing finite-
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Figure 3.4: Mesh Generation, Full View. ZEUS uses a built-in, automated mesh gen-
eration scheme to extrapolate a 3-D mesh from the 2-D panel distribution
along the wing’s surface.

volume method with Jameson-Schmidt-Turkel (JST) artificial dissipation scheme im-

plemented for the stability of the flow solver [32, 6.1].

3.2.3 Time-Accurate Euler Method. The three-dimensional Euler equations

in conservative differential form and in curvilinear coordinates are as follows:

∂Q

∂t
+
∂H1

∂ξ
+
∂H2

∂η
+
∂H3

∂ζ
= 0 (3.1)

where Q is the product of conservative flow variables vector q and the inverse of

the transformation Jacobian J, and Hi are the convective fluxes in three curvilinear
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coordinate directions:

Q = Jq = J



ρ

ρu

ρv

ρw

e


H1 = J



ρU

ρuU + pξx

ρvU + pξy

ρwU + pξz

(e+ p)U − pξt



H2 = J



ρV

ρuV + pηx

ρvV + pηy

ρwV + pηz

(e+ p)V − pηt


H3 = J



ρW

ρuW + pζx

ρvW + pζy

ρwW + pζz

(e+ p)W − pζt



(3.2)

U, V, W and u, v, w are the three components of the flow velocity in curvilinear and

Cartesian coordinates, respectively, and are related by the following metric terms:

U = ξi· < u, v, w > +ξt

V = ηi· < u, v, w > +ηt

W = ζi· < u, v, w > +ζt

(3.3)

The gas is assumed to be perfect and the equation of state is:

e =
1

γ − 1
p+

1

2
ρ(u2 + v2 + w2) (3.4)

Applying Equation (3.1) to each finite-volume grid cell results in a set of ordinary

differential equations of the form:

d

dt
(qi,j,kΩi, j, k) +R(qi,j,k) = 0 (3.5)

where Ωi,j,k is the volume of the cell with index (i,j,k) and the residual R(qi,j,k) is

obtained by evaluating the flux integral at all the cell surfaces and summing them up.
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Jameson’s artificial dissipation flux is added to the convective flux for stability:

R(qi,j,k)− Ci,j,k −Di,j,k = Ci,j,k − (D
(2)
i,j,k −D

(4)
i,j,k) (3.6)

C andD are the flux integrals of the cell due to convective flux and artificial dissipation

flux, respectively, while D(2) and D(4) are the 2nd and 4th order artificial dissipation

fluxes. Both artificial dissipation fluxes are the sum of the artificial dissipation at all

six surfaces of the computational cell. The 2nd and 4th order dissipative terms are

defined as:

ε
(2)

(i+ 1
2
,j,k)

= κ(2)min [0.25,max(νi+1,j,k, νi,j,k)]

ε
(4)

(i+ 1
2
,j,k)

= max
[
0, κ

(4)

32
− ε(2)

i+ 1
2
,j,k

] (3.7)

here κ(2) and κ(4) are the two parameters VIS2 and VIS4, respectively, found in the

MKPARAM bulk data card used to control the amount of artificial dissipation present

in the Euler solver for stability. The pressure sensor νi,j,k is defined as:

νi,j,k =

∣∣∣∣pi−1,j,k − 2pi,j,k + pi+1,j,k

pi−1,j,k + 2pi,j,k + pi+1,j,k

∣∣∣∣ (3.8)

The pressure sensor serves as a switch to toggle the effects of the artificial

dissipation. In the region close to the shock wave, the pressure has to jump and the

value of ε(2) is of order one which turns on the 2nd order dissipation and disables the

4th order dissipation. Alternatively, in an area with a smooth pressure region, the

2nd order term is turned off and the 4th order dissipation works to damp the high

frequencies that the central-differencing scheme fails to damp.

For the time accurate solution, the d
dt

operator from Equation 3.5 is approxi-

mated by an second-order, implicit backward difference method of the following form:

3

2∆t

[
qn+1Ωn+1

]
− 2

∆t
[qnΩn] +

1

2∆t

[
qn−1Ωn−1]+R

(
qn+1

)
= 0 (3.9)
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The equation above can be formed into a steady-state problem with the pseudo time

t∗:
d(qn+1Ωn+1

dt∗
) +R∗(qn+1) = 0 (3.10)

where

R∗(qn+1) =
3

2∆t

(
qn+1Ωn+1

)
− 2

∆t
(qnΩn) +

1

2∆t

(
qn−1Ωn−1)+R

(
qn+1

)
(3.11)

A five-stage Runge-Kutta (R-K) pseudo-time marching scheme can be applied

to Equation 3.10. A dual-time stepping method is used for the solution of the time-

accurate Euler equations due to the two different time-steps, ∆t and ∆t∗. The

five-stage R-K pseudo-time marching method is an explicit scheme which limits the

pseudo-time step size ∆t∗ to ensure numerical stability. ZEUS uses the Courant-

Friedrichs-Lewy (CFL) number to control the size of the time step. The coefficients

of the five-stage R-K scheme are chosen such that an optimal CFL number of about

4.0 without residual smoothing can be achieved. If residual smoothing is applied, the

maximum attainable value for CFL is pushed up to 8.0. For most practical purposes,

ZEUS should be able to use the CFL number of 7.0 for most cases with residual

smoothing turned on [32, 6.1].

Due to the implicit method used for the physical time step, the dual-time step-

ping method in ZEUS has no limitations on the stability for the physical time step.

Therefore, the physical time step should be driven by the flow physics. The ZEUS

manual recommends at least 50 physical time steps within a sinusoidal excitation.

ZEUS incorporates a variable-coefficient implicit residual smoothing scheme to

further increase the stability range of the Euler solver. In the case of a 2D flow field,

the residual smoothing formula is as follows:

(1− βξ∇ξ∆ξ)(1− βη∇η∆η)Ri,j ≡ Ri,j (3.12)
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where Ri,j and Ri,j are the residuals before and after smoothing. ∇∆ is the standard

second-difference operator and β is the residual smoothing coefficient. The value of

β can be either a constant or a function of the local spectral radii.

3.2.4 Transpiration Boundary Conditions. For complex configurations, the

generation of a body-fitted grid could be a daunting task. Additionally, the use

of deforming mesh can cause problems such as grid cross-over or over-skewed mesh

when performing unsteady simulations. In order to bypass these issues, ZEUS uses

a stationary Cartesian grid by utilizing the transpiration boundary conditions to

account for both thickness and small amplitude motion of the wing surface. Due

to the stationary grid, all time-derivative based terms from Equations 3.2 such as ξ,

η and ζ are dropped.

A thin wing with slight deformation about its mean position (horizontal plane,

z = 0) is then considered. The shape of the upper and lower surfaces of the wing

are defined as z = f(x, y) and g(x, y), respectively and the instantaneous position for

the upper and lower surfaces are described by z = F (t, x, y) and G(t, x, y). Assuming

||F || << 1, the surface velocity boundary condition on the upper surface of the wing

at time t can be found with the first order approximation:

w(t, x, y, 0+) = u(t, x, y, 0+)Fx + v(t, x, y, 0+)Fy + Ft +O(F ) (3.13)

The subscripts x, y and t indicate partial derivatives; O(F ) represents terms with the

same order of magnitude as F or higher. The normal velocity boundary condition on

the lower surface is treated in a similar fashion.

The normal momentum equation is used to derive the boundary condition for

pressure:

~n ·

[
∂~V

∂t
+ (~V · ∇)~V

]
= ~n ·

(
−∇p

ρ

)
(3.14)

where ~V is the flow velocity and ~n is the unit normal at the wing surface. The pressure

gradient in the normal direction can be derived from the previous equation for the

33



upper surface of the wing.

pz(t, x, y, 0
+) = px(t, x, y, 0

+)Fx + py(t, x, y, 0
+)Fy−

ρ(Ftt + 2Ftxu+ 2Ftyv + 2Fxyuv + Fxxu
2 + Fyyv

2) +O(F )
(3.15)

Further details regarding the application of a stationary Cartesian grid to this Euler

unsteady method can be found in Zhang [31].

3.2.5 Boundary Layer Coupling. In order to circumvent the need to develop

a complex RANS solver for a Cartesian grid, ZEUS provides a boundary layer coupling

scheme which accounts for the viscous effects associated with aerodynamic flows of

general concern. When considering flows with relatively high Reynolds number in

the millions, the boundary layer is confined to a thin space along the surface. This

assumption allows the flow to be partitioned into two zones: a viscous boundary

layer while the rest of the flow can be treated as inviscid. For the solution of the

boundary layer, an integral method or finite difference method are available. Due

to the complexity and uncertainties associated with accurately modeling turbulence

with a finite difference method, an integral boundary layer method was chosen to be

coupled with the ZEUS (Euler) solver.

3.2.6 Integral Boundary Layer Method. The integral boundary layer method

is applied in a 2-D quasi-steady manner; the boundary layer parameters are solved in-

dependently at each physical time step in the freestream x direction and then coupled

with the inviscid Euler flow solution for each individual strip in the y direction. The

quantities of the integral boundary layer are governed by the following set of ordinary

differential equations:
dUv

e

dx
= F1 + F2

1
m
dm
dx

dH
dx

= F3 + F4
1
m
dm
dx

dCE

dx
= F5 + F6

dU i
e

dx

(3.16)
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where U v
e is the boundary layer edge velocity, Fi are nonlinear functions of the bound-

ary layer parameters involved, H is the shape factor, CE is the lag entrainment co-

efficient and U i
e is the inviscid flow velocity calculated by the Euler solver at the

wall where the boundary layer grows. For further details on the derivation of the

above equations and definitions of all parameters, please refer to Zhang [31]. The

perturbation mass flow parameter, m is defined as:

m = ρeUeδ
∗ (3.17)

where ρe and δ∗ are the boundary layer edge density and displacement thickness,

respectively.

As Equation 3.16 contains initial unknown flow quantities such as velocity and

density at the boundary layer interface, the integral boundary layer solver must couple

with the inviscid Euler solver iteratively until the boundary layer interface velocity

matches between the integral boundary solver and the Euler solver. An overview of

the boundary layer coupling procedure occurs in the following fashion.

1. Obtain the density and edge velocity (U i
e) at the interface from the Euler solver

to approximate the mass flow parameter using the boundary layer thickness

from the previous iteration.

2. Solve the boundary layer equations with the assumed mass flow parameter to

obtain a new boundary layer edge velocity U v
e

3. Compare the velocities U v
e and U i

e. If the values are within tolerance, the solution

has converged. If otherwise, update the boundary layer thickness to use in the

next iteration. The method for updating δ∗ is described in the next section.

The coupling of the integral boundary layer solver and Euler solver is performed

at the end of each Newton sub-iteration. There is no boundary layer coupling con-

vergence control implemented in ZEUS so the guarantee of convergence is left to the

user to ensure.
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3.2.7 Boundary Layer Coupling Scheme. In the final stage of the boundary

layer coupling procedure, ZEUS utilizes two different schemes to update the boundary

layer thickness, δ∗. The first scheme is called Carter’s relaxation scheme [3]:

δ∗n+1

δ∗n
= 1 + ω

(
U v
e

U i
e

− 1

)
(3.18)

where n indicates the step iteration and ω is the relaxation factor.

After the boundary layer thickness is obtained from the integral boundary layer

solver at the end of each Newton sub-iteration, the wing surface slope, Fx, is added to

the thickness to account for the thickening effect of the boundary layer in the inviscid

Euler solution. Carter’s scheme converges well and fast for flows with an attached

boundary layer or even small separation bubbles but tends to fail for cases with a

large separation region.

In an effort to extend the range of application of the integral boundary layer

method, Edwards developed a variable gain integral control coupling scheme [14].

Edwards’ scheme introduces some limiters and gain control functions to deal with

cases with regions of extensive separation:

δ∗n+1 = δ∗n +XKINT ∗ t1 ∗ (1.0 + t1 ∗ t2)
(
Uv
e

U i
e
− 1
)

t1 = f1(GAIN1, BRK1, BRK2, δ∗)

t2 = f2(GAIN2, BRK3, BRK4, Cf )

(3.19)

where XKINT is the major gain factor, t1 is a nonlinear gain factor scheduled on

δ∗ rising from a value of 1.0 for values of δ∗ less than BRK1 to a value of GAIN1

for δ∗ greater than BRK2, t2 is another nonlinear gain factor scheduled on the skin

friction coefficient Cf falling from a value of 0.0 for Cf greater than BRK4 to a value

of GAIN2 for Cf less than BRK3. A more detailed description of Edwards’ coupling

scheme can be found in [14].

ZEUS uses Edwards scheme by default when viscous effects are taken into ac-

count. The ZEUS user’s manual recommends using the preset values for the limiters
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and gains until the effects of changing those parameters are made clear with additional

understanding of the flow.

3.2.8 Time Steps and Loops in ZEUS. As mentioned previously, ZEUS

solves the time-accurate Euler equations with a dual-time stepping method which

includes a pseudo-time marching loop within the physical time step loop. Within the

pseudo-time calculation, ZEUS implements a Newton sub-iteration loop to solve for

boundary layer coupling. Figure 3.5 shows each of these loops as they are solved in

ZEUS.

Figure 3.5: Flow Chart of the Euler Solver in ZEUS. NCYC, NEQTN and NSTEP
refer to input parameters within ZEUS [32].

The Euler cycle refers to a 5th order R-K pseudo-time marching scheme. The

coupling of the Newton sub-iterations within the Euler cycles combine to make the

pseudo-time marching iterations to achieve a converged steady flow solution or in-

stantaneous flow solution for each discrete physical time step.

With the exception of CFL, the number of Euler cycles and Newton sub-

iterations, all flow parameter inputs described in the previous sections which are

required for the ZEUS Euler solver were left at their default values. CFL was run at
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a value of 6.0 for all cases except those at a trim of 10◦ for which CFL was reduced

to 0.5 to ensure the solution converged while a physical time step of 0.5E-3 was used

in the time accurate analysis. The number of Euler cycles was increased to 3 while

the Newton sub-iterations was increased to 12 cycles based on a convergence study.

3.3 Computational Model

3.3.1 Matching of Reynolds Number. The Reynolds number was matched

to ensure similar flows between the computation test and wind tunnel test. All tests

run in the NLR wind tunnel were performed at a Reynolds number of 8 ∗ 106 based

on the root chord. The wind tunnel has the capability to adjust both temperature

and pressure of the incoming flow. Focusing solely on temperature control, the dy-

namic pressure, which is required for trim analysis in ZEUS, was backed out from the

Reynolds number. The process can be seen below. The equations for the Reynolds

number, dynamic pressure, and Mach number are defined first.

Re =
ρV L

µ
(3.20)

q∞ =
1

2
ρV 2 (3.21)

M =
V

a
(3.22)

where:

ρ is the freestream density

V is the freestream velocity

L is the characteristic length (chord length)

a is the speed of sound
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Substituting equation 3.21 into 3.20 results in the following:

Re = (
1

2
ρV 2)(

2L

V µ
) = q∞(

2L

V µ
) (3.23)

Reynolds number can now be redefined by substituting equation 3.22 into equation

3.23.

Re = q∞
2L

(Ma)µ
(3.24)

Viscosity can be rewritten as a function of temperature by way of Sutherland’s law.

Speed of sound and viscosity are now both functions of temperature, resulting in a

Reynolds number as a function of temperature. Equation 3.24 can be rewritten to

find the unknown dynamic pressure as a function of temperature.

q∞ =
ReM

2L
aµ (3.25)

a =
√
γRT (3.26)

µ = µ0
T0 + C

T + C

(
T

T0

)1.5

(3.27)

where:

a is the speed of sound

γ is the ratio of specific heats

R is the gas constant

T is the freestream temperature

µ0 is the reference viscosity

T0 is the reference temperature

C is Sutherland’s constant, C = 110.4 K
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A standard temperature of 25◦ C (298 K) was used to find the dynamic pressure based

on a set Reynolds number and given Mach number.

3.3.2 Computational Model Design. The computational model was designed

with the use of ZEUS. ZEUS takes the users input as a series of leading edge points

and chord lengths to define a flat plate in the desired shape. Additional information

such as airfoil shape is added onto the flat plate to create the final design as seen in

Fig. 3.7. The strake section was built with a diamond shaped cord of 2.5 percent

thickness located at 0.85 of the chord length. The strake was then linearly interpolated

from the diamond shaped chord at the root to a NACA 64A204 airfoil section, which

then connected seamlessly to the outer wing geometry. The outer wing section was

entirely a NACA 64A204 airfoil section with 3 degrees of washout at the wing tip

(-3◦ of incidence). The wind tunnel wall used in Cunningham’s test was simulated in

ZEUS by defining symmetry along the X-Z plane of the model.

Figure 3.6: Dimensioned Top View of Wing. All dimensions on the drawing are in
units of mm. Planform area is equal to 0.144 m2. Chord length is 0.8207
m. Span is 0.435.8 m.
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Figure 3.7: 3-D View of the computational SiS model at AoA = 4◦. The 4 black
lines on the outer wing section indicate the locations along which Cp was
evaluated. The locations denote Cp1, Cp2, Cp3 and Cp4 with the following
physical locations: y = 209 mm, 274 mm, 336 mm and 395 mm from the
centerline, respectively. Cp1 is located most inboard and Cp4 nearest the
right wing tip.

Due to ZEUS specific geometry definitions, the SiS computational model was

altered slightly from the wind tunnel model. The total span and chord length re-

mained unchanged but the boundary between the strake and outer wing was pushed

out 46.35 mm towards the wingtip. The change in the strake-wing interface location

is due to constraints in the ZEUS geometry input. The total planform area of the

computational model matches the wind tunnel model. Although the dimensions at

the strake-wing intersection are altered slightly, the section of the wing of the most

importance is the wingtip, for which the computational model matches the wind tun-

nel model closely. The 3-D model is not visually ”watertight” and this is because
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ZEUS uses a flat plate instead of a three dimensional wing with thickness to perform

calculations. Once the run is complete, the data from the mesh is then superimposed

onto the 3-D wing geometry.

3.3.3 Grid Sensitivity Study. A grid sensitivity study was conducted on

the wing model to determine proper grid resolution. A trim case for Nz = 1g was

run with multiple wing models of varying grid density. The panels on the wing were

created from divisions along the chordwise and spanwise length of the wing. The

spanwise and chordwise divisions were linearly distributed so that the distance from

one division cut to another in both directions was evenly spaced. Figure 3.8 displays

the trim AoA solved by ZEUS for various grid configurations.

Figure 3.8: Grid Sensitivity. The plot depicts changes in the trim AoA as a function
of panel density for a load factor of 1. The label below each point indi-
cates the number of spanwise and chordwise distributions along the wing,
respectively.

The final wing design was composed of 35 spanwise and 40 chordwise divisions,

which created 1400 aerodynamic panels on the surface of the wing as seen in Fig. 3.9.

ZEUS’ automated mesh generator used the 2-D panel distribution to extrapolate a
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3-D Cartesian computational mesh which was composed of over 83,000 cells. This

panel density resulted in a trim AoA within 0.18% of the high panel density solution.

For the various runs in Fig. 3.8, computational time was proportional to the number

of panels used. For this reason, the lowest possible grid density which still provided

an accurate result was used.

Figure 3.9: Aerodynamic Panels on Wing. 1400 panels were created from a distri-
bution of 41 nodes along the chord and 36 nodes across the span of the
Wing.

As seen in Fig. 3.9, the panels on the inboard strake section are highly skewed

near the leading edge. Due to the automated mesh generation scheme based on the

user defined wing surface panel density, ZEUS does not implement any sort of elliptical

smoothing technique to refine the 3-D Cartesian Mesh. While the lack of elliptically

smooth cells allows for the rapid generation of the cell mesh for complex aircraft
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configurations, this lack of functionality may limit the ability of ZEUS to refine areas

of high pressure gradients such as shocks.

3.4 Test Matrix

The SiS model was run for various combinations of Mach number, oscillation

frequency, median AoA and oscillation amplitude to determine how these factors

influence the migration of shocks when solved using ZEUS. The Mach number was

tested at M = 0.85, 0.90, 0.95 to cover a range within the transonic region. The

oscillation frequency was set to 5.7 Hz and 7.4 Hz. The median AoA (trim) was set at

4◦, 7◦ and 10◦. Although Cunningham’s report tested at trim angles of up to 30◦, such

results seem highly unlikely to occur in normal flight. In addition to feasibility, high

AoAs will lead to separated flow which ZEUS may have more difficulty resolving. For

these reasons, lower trim angles which are more likely to be seen during flight without

extensive regions of separation were tested. All tests were oscillated at both ±2◦ and

±4◦. The table below shows the flight condition combinations used to produce a total

of 32 unique tests.

Table 3.1: Test Matrix. The SiS model was run for various combinations of Mach,
trim, oscillation amplitude and oscillation frequency. x and o indicate an
oscillation frequency of 5.7 Hz and 7.4 Hz, respectively. I indicates a fully
inviscid test case.

Trim, (deg)
4 7 10

Mach
0.85 x x
0.90 xoI xoI xoI
0.95 xo xo x

Additional tests were run at Mach 0.9 with a frequency of 5.7 Hz with the

boundary layer coupling turned off to determine the difference between the fully

inviscid and boundary layer coupled solution.

3.4.1 Sinusoidal Transient Effects. Cunningham’s experiment rationalized

the response to a sinusoidal input would be harmonic, thus the data collected from a
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single cycle would be representative of all future cycles. For this reason, all data was

collected from a single oscillatory input perturbing the wing from steady state. This

method of data collection does not account for transient effects, if any such exist. In

the case of the computational model, the wing was oscillated two cycles for which both

the time accurate data and frequency domain data were collected from the response

from the second cycle. Based on the time domain response, it was clear transient

effects were present and ZEUS required a second cycle to reach a more harmonic

response.

3.5 Post Processing of Data

For the time-accurate analysis, ZEUS provides pressure data in the form of the

pressure coefficient on the wing’s surface for each desired time step. While the primary

intent of this data is to be viewed as a temporal three dimensional model in Tecplot,

the data was additionally converted to a format that could be read into Matlab for

further quantitative analysis. The four streamwise locations along the span of the

SiS model for which the pressure data was analyzed are the same 4 locations used by

Cunningham (y = 209mm, 274mm, 336mm and 395mm).
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IV. Results and Analysis

4.1 Introduction

This chapter presents the results from a time-accurate Euler code with bound-

ary layer coupling performed with ZEUS. A cropped delta wing, referred to as the

SiS model, with rigid body dynamics was oscillated in pitch along a specified axis

of rotation. Pressure coefficient data was collected along the wing’s upper surface

and analyzed with both TecPlot and Matlab. All figures follow the same naming

convention: MXXFXTXXDX where any X is a placeholder for each unique run.

1. MXX: Denotes the Mach number. MXX will be M85, M90 or M95 for Mach

0.85, 0.90 and 0.95, respectively.

2. FX: Denotes the oscillation frequency. FX will be F1 or F2 for an oscillation

frequency of 5.7 Hz or 7.4 Hz.

3. TXX: Denotes the trim angle or median AoA. TXX will be T04, T07 or T10

for 4◦, 7◦ and 10◦, respectively.

4. DX: Denotes the oscillation amplitude or ∆α. DX will be D2 or D4 for an

oscillation amplitude of 2◦ or 4◦, respectively.

5. A subset of fully inviscid cases were run alongside the boundary layer coupled

cases. The fully inviscid cases will be denoted with an ”I” in front of the

aforementioned naming procedure.

The following sections will cover the 31 unique test cases for a selection of the

chordwise pressure data locations and compare the effects of various LCO simulated

flow conditions. Figure 3.7 defines the location of the 4 chordwise pressure sections.

A comprehensive collection of the pressure data for all 4 test locations on the wing’s

upper surface can be found in the appendix for further reference.

For each test case, a wing was sinusoidally oscillated in pitch for a total of two

full cycles, with the data from the second cycle used for analysis. The wing began

at some predefined trim angle (4◦, 7◦, or 10◦), then perturbed ”nose up” to some
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maximum angle, perturbed ”nose down” to some minimum angle, then returned to

the original trim angle. This oscillation process occurred twice to account for transient

effects present during the first oscillation cycle. The maximum and minimum angle

was based on the original trim angle and the oscillation amplitude (either ±2◦ or

±4◦).

The oscillatory behavior of the shock during the simulated LCO can be charac-

terized by following key features:

1. Distance of shock migration. The migration distance accounts for the transition

from x
c

right before Cp drops due to the shock for the maximum and minimum

Cp time trace.

2. Change in Cp from the maximum and minimum Cp time trace normalized by

Cp0, the value of Cp right before the shock when t∗ = 0.

Fig. 4.1 has key features indicated to provide a clearer understanding of the afore-

mentioned points on interest. Each colored line indicates a chordwise time trace of

the Cp along the wing’s upper surface for various nondimensionalized times such that

t∗ = t ∗ frequency. The time is nondimensionalized for a single cycle with t∗ = 0,

0.25, 0.75, and 1 referring to trim, peak nose up, peak nose down, and return to trim

positions of the wing, respectively. All key points were chosen qualitatively as the

”knee” of the shock. This point was the local maximum of the absolute value of Cp

before the drop in Cp due to the pressure jump across the shock.

47



Figure 4.1: Example figure indicating the min and max Cp and x
c

as well as Cp0 for
the time trace of Cp1. M = 0.9, Freqeuncy = 5.7 Hz, Trim = 4◦, ∆α = 4◦.

4.2 Fully Inviscid and Boundary Layer Coupled Solution

Using the time-accurate solver in ZEUS, the pressure coefficients along the

wing’s surface were calculated. In addition to investigating the effects of various

LCO parameters such as oscillation amplitude and frequency, the modeling of vis-

cous effects was analyzed to determine what differences exist. As an Euler solver,

ZEUS can predict shock waves in areas of relatively simple flow. For flows concerning

shock boundary layer interactions (SBLI), the flow solution becomes more complex.

The figures within this section will compare fully inviscid solutions to boundary layer

coupled (BLC) solutions. Figures 4.2, 4.3 and 4.4 display the time trace of the BLC

solution on the top row and the fully inviscid solution on the bottom row.

For the least aggressive solution seen in Fig. 4.2 (M = 0.9, Trim = 4◦), Cp1

for both the inviscid and BLC solution show good agreement with each other for the

first 60% of the chord. After that point, the shock begins to form for the BLC case
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and the two solutions diverge. The BLC solution predicts a shock around 0.7-0.75c

while the inviscid solution predicts the shock to occur further aft on the wing around

0.75-0.8c. Additionally, the inviscid solution predicts a larger and steeper drop in Cp

across the shock.

For the most aggressive solution seen in Fig. 4.3 (M = 0.9, Trim = 10◦),

the solution for Cp1 shows less agreement than the lower trim case. Solutions remain

similar only up to 0.4c, after which the BLC solution predicts a shock to occur around

0.5-0.6c whereas the inviscid solution predicts the shock to occur further aft from 0.7-

0.75c. Again, the drop in Cp is much larger and sharper for the inviscid case. For all

cases of trim and oscillation amplitude for Cp1, the shock movement was predicted to

be greater for the BLC case. While the inviscid solution sees shock movement, the

range is anywhere from 30% to 50% that of the BLC case.

Cp locations 2 and 3 showed similar trends to location 1. Cp4, the location

closest to the wingtip, showed the greatest difference between the viscous and inviscid

solution. Agreement between the solutions occurred from only 0.05-0.4c with the

most agreement at the lowest AoA and least agreement when trim = 10◦. Figure 4.4

compares the solution for trim = 7◦. For this case the inviscid and BLC solution are

similar up to 0.3c with major differences occurring for the ∆α = 4◦ case.

In general, the fully inviscid solution predicted the shock to occur further aft on

the wing, as well as a larger and steeper drop in Cp across the shock than the BLC

solution. In addition to the location of the shock and shock strength, the inviscid

solution showed reduced shock migration. The reduced shock strength for the BLC

cases may be due to the influence from the boundary layer and resulting shock-

boundary layer interactions. The increased shock migration for the BLC cases could

be a result of changes in the boundary layer thickness, to include possible separation

in the boundary layer aft of the shock. While ZEUS provides quasi-steady pressure

data on the wing’s surface, it was not possible to confirm the presence of separated

flow. Inboard locations of the two solution methods had more similar results while
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the most outboard location (Cp4) showed the greatest discrepancy between the BLC

and inviscid solution. This is due to how close to the leading edge the shock occurred

for the wingtip location, which resulted in solution divergence occurring much farther

up the wing than the inboard locations.
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Figure 4.2: Inviscid/Viscous comparison for Cp1. M = 0.9, Frequency = 5.7 Hz, Trim
= 4◦.
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Figure 4.3: Inviscid/Viscous comparison for Cp1. M = 0.9, Frequency = 5.7 Hz, Trim
= 10◦.
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Figure 4.4: Inviscid/Viscous comparison for Cp4. M = 0.9, Frequency = 5.7 Hz, Trim
= 7◦.
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4.3 Effects of Median AoA and Oscillation Amplitude

This section serves to identify trends seen by altering the trim AoA and the

oscillation amplitude. Cases were run for M = 0.90, 0.95 at trim = 4◦, 7◦, 10◦ and

∆α = ±2◦,±4◦. All cases can be seen in Figures 4.5 and 4.6.

For the M = 0.9 cases, increasing the trim AoA reduces the severity in the drop

in Cp. For trim = 10◦, there may not even be a shock present on the wing, although

there is no quantitative data produced from the ZEUS solution to confirm or deny

whether or not a shock is present. The reduced drop in Cp may be due to regions

of separation which develop as the AoA increases. Increasing ∆α primarily affects

the range of observed shock migration. The higher oscillation amplitude results in a

shock migration of about twice that of the lower oscillation amplitude. Similar trends

can be seen for the M = 0.95 cases. The shock remains more coherent over the course

of the wing oscillation, but again the higher amplitude oscillation produces a larger

shock migration than the lower amplitude oscillation.
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Figure 4.5: BLC trim and ∆α comparison for Cp1. M = 0.9, Frequency = 5.7 Hz.
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Figure 4.6: BLC trim and ∆α comparison for Cp1. M = 0.95, Frequency = 5.7 Hz.
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4.4 Frequency Comparison

Another parameter of LCO is the frequency at which the oscillations occur. The

oscillation frequencies were chosen as 5.7 Hz and 7.4 Hz, both of which were picked

to match the reduced frequencies used in Cunningham’s experiment. In regards to

extrapolating this information to real world flight test, the absolute value of the

oscillation frequency is not as important as their relative values in reference to each

other. Namely, the wing was oscillated at a baseline frequency (5.7 Hz), then the

oscillation frequency was increased by 30% (7.4 Hz).

Trends were similar for all 4 Cp locations at both M = 0.9 and M = 0.95 with

position 4 showing the greatest variance. For position 1 as seen in Fig. 4.7, plots

of the time trace of Cp for the lower oscillation frequency are located along the top

row with the corresponding high frequency test case shown immediately below. Five

time stamps are shown to indicate the beginning, middle, end, peak nose up and peak

nose down positions of the wing. Both frequencies have almost identical results with

the exception of t∗ = 0.5. The middle time step shows that the higher frequency

oscillation produces greater a lag in the development of Cp along the wing’s surface

when compared the the lower frequency. All 4 test cases for all 4 positions indicate

the same result. Interestingly, both the peak nose up and peak nose down time trace

for both frequencies are nearly identical. This shows that the shock movement and

change in Cp are independent of the two frequencies tested.

For Cp4 seen in Fig. 4.8, the same trends are present for both oscillation fre-

quencies. The peak nose up and nose down time traces show very little difference

across the frequency range while the t∗ = 0.5 time trace indicates a more pronounced

lag for the higher frequency cases. The trim Cp lines (t∗ = 0.0, 1.0) are of lower

magnitude for all higher frequency cases. While all other LCO conditions are kept

constant and only oscillation frequency changes, the flow at the median AoA develops

slightly differently for each frequency while the peak values remain the same.

57



Fig. 4.9 plots the value of Cp with respect to time for three points along the

chord of position 1. The six plots cover each test case for M = 0.9, frequency =

5.7 Hz. The solid purple line provides a reference to the rotation of the wing about

the rotation axis, indicating a pitch doublet. The magnitude of the input was scaled

to the maximum value of Cp at 0.25c and given the same initial value of Cp as the

quarter-chord. The quarter-chord and half-chord data points show a smooth change

in Cp that follows the oscillation of the wing. The 0.75c point provides the most

interesting data. For the trim = 4◦, ∆α = 2◦ case, Cp is a smooth sinusoid similar

to the other points on the wing. For the trim = 4◦, 7◦, ∆α = 2◦ cases, Cp dives

down around t∗ = 0.4. This sharp change in Cp is due to the shock transition moving

across this point. As the wing begins to nose down from the peak AoA, the shock

migrates forward on the wing. As the shock passes across the 0.75c point at position

1, the Cp drops dramatically. For both of the trim = 10◦ cases, Cp at point 0.75c is

dramatically lower than the lower trim cases because the shock remains forward of

this point during the entirety of the oscillation.

Similar results can be seen in Fig. 4.10. These cases were run at M = 0.95

which resulted in the shock positioned further aft on the wing than the lower Mach

cases. For the trim = 4◦, ∆α = ±2◦,±4◦ cases, the characteristic dip in Cp at position

0.85c indicates the shock has transitioned across that point during the oscillation of

the wing.
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Figure 4.7: BLC frequency comparison for Cp1. M = 0.9, Frequency = 5.7/7.4 Hz.
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Figure 4.8: BLC frequency comparison for Cp4. M = 0.95, Frequency = 5.7/7.4 Hz.
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Figure 4.9: Time history of Cp for three points along the chord of position 1. M =
0.9, Frequency = 5.7 Hz.
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Figure 4.10: Time history of Cp for three points along the chord of position 3. M =
0.95, Frequency = 5.7 Hz.

62



4.5 Comparison of Shock Migration at Various Spanwise Locations

Up until this point, all of the results for each of the 4 spanwise locations along

the wing have been presented independent of one another. This section serves to

provide the reader with some context as to how the Cp at each location developed

over the course of the oscillation. Figure 4.11 shows all four spanwise locations for

selected times during the oscillation. At the initial median AoA position (t∗ = 0), the

shock remains nearly orthogonal to the root chord, indicated by the proximity of the

shock for all 4 positions. As the wing is oscillated to the peak amplitude (α = 6◦),

slight shock movement aft can be seen on Cp4. As time progresses, the shock remains

relatively close along the span. For the most part, the shock location remains in the

same vicinity for all 4 spanwise positions.

Fig. 4.12 tells a different story. At t∗ = 0, the shock location remains essentially

constant for each position. As the wing is oscillated to the peak amplitude at t∗ = 0.23

(α = 11◦), the shock can be seen much further aft for position 4 while the shock

remains coalesced for the other 3 wing stations. As the wing oscillates back down

in pitch at t∗ = 0.49 the shock at position 4 moves back to the group and falls in

line with the other stations when t∗ = 0.74. Figure 4.12 shows that for this slightly

more aggressive simulated LCO case, Cp4 experiences more shock movement than the

other inboard positions. Figures 4.13 through 4.16 present the pressure data along

the wing’s surface for the 4 discrete time steps shown in Fig. 4.12.
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Figure 4.11: Time history of Cp for all 4 positions along the wing. The chordwise po-
sition, X, has been normalized by the root chord to retain each position’s
relative distance to one another. t∗ = 0.23, 0.74 indicate peak nose up
and nose down of the wing, respectively. M = 0.9, Frequency = 5.7 Hz,
Trim = 4◦, ∆α = 2◦.
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Figure 4.12: Time history of Cp for all 4 positions along the wing. The chordwise po-
sition, X, has been normalized by the root chord to retain each position’s
relative distance to one another. t∗ = 0.23, 0.74 indicate peak nose up
and nose down of the wing, respectively. M = 0.9, Frequency = 5.7 Hz,
Trim = 7◦, ∆α = 4◦.
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Figure 4.13: Time stamp of Cp when t∗ = 0.0 indicating trimmed position. M = 0.9,
Frequency = 5.7 Hz, Trim = 7◦, ∆α = 4◦.

Figure 4.14: Time stamp of Cp when t∗ = 0.0 indicating peak nose up position. M =
0.9, Frequency = 5.7 Hz, Trim = 7◦, ∆α = 4◦.
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Figure 4.15: Time stamp of Cp when t∗ = 0.0 indicating oscillating nose down past
trim. M = 0.9, Frequency = 5.7 Hz, Trim = 7◦, ∆α = 4◦.

Figure 4.16: Time stamp of Cp when t∗ = 0.0 indicating peak nose down position. M
= 0.9, Frequency = 5.7 Hz, Trim = 7◦, ∆α = 4◦.
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4.6 Variation in Moment Coefficient

The following Figs. 4.17 through 4.19 present the change in the quarter-chord

pitching moment coefficient (Cm, c
4
) during the wing’s oscillation. All inviscid cases

along with their analogous BLC counterparts are presented to show the differences

in the two methods as well as how the moment at all 4 wing stations varied over the

course of the oscillation.

For all test cases, Cm, c
4

for stations 1, 2 and 3 remain coalesced with no major

deviations while Cm, c
4

at station 4 is much more sporadic. Again, due to station

4’s proximity to the wingtip, vortices may play a role in the observed behavior at

this station. The basic shape for the variation in Cm c
4

for all 4 stations resembles

a sinusoidal wave, although with a much flatter peak across the second half of the

oscillation, which may be due to aerodynamic lag in the development of the flow along

the wing’s surface.
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Figure 4.17: Variation in the pitching moment coefficient about the quarter-chord
for each wing station over the course of a single oscillation. M = 0.9,
Frequency = 5.7 Hz, Trim = 04◦, ∆α = ±2◦,±4◦, BLC and Inviscid.
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Figure 4.18: Variation in the pitching moment coefficient about the quarter-chord
for each wing station over the course of a single oscillation. M = 0.9,
Frequency = 5.7 Hz, Trim = 07◦, ∆α = ±2◦,±4◦, BLC and Inviscid.
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Figure 4.19: Variation in the pitching moment coefficient about the quarter-chord
for each wing station over the course of a single oscillation. M = 0.9,
Frequency = 5.7 Hz, Trim = 10◦, ∆α = ±2◦,±4◦, BLC and Inviscid.
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4.7 Summary of Results

The following parameters were adjusted to determine their effect on possible

shock migration during simulated LCO:

1. Mach number

2. Trim AoA

3. ∆α

4. Oscillation frequency

5. Fully inviscid solution vs BLC

This section contains an itemized table for the various LCO conditions with

the above parameters varied at station 1 on the wing. Stations 2 and 3 show similar

trends to station 1. Station 4 experienced much more variability due to its proximity

to the wingtip and thus it was difficult the qualitatively assess the shock migration

with consistency. The foremost and aftmost shock position as well as their associated

peak Cp value are tabulated on the next page in Table 4.1. The peak value of Cp

before the shock while the wing is at trim, Cp0, has also been recorded and used to

normalize the percent change in Cp as the wing oscillates.
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Table 4.1: Tabulated Results for cases of interest for position 1 on the wing. The
shock movement is reported in percent of local chord. The percent change
in Cp from the shock migration is reported as (Cp,max − Cp,min)/Cp0
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V. Conclusions and Recommendations

This research sought to replicate simulated LCO motion of a straked delta wing design.

A rigid wing was oscillated in pitch for various flight conditions with the use of ZEUS,

a commercial Euler-based CFD program.

5.1 Shock Migration and Variable Shock Strength during LCO

LCO parameters such as median AoA, oscillation amplitude, oscillation fre-

quency and Mach number were varied as well as the type of numerical solver used in

order to observe potential shock migration due to nonlinear aerodynamic flow on the

wing.

5.1.1 Shock Migration. Both the baseline frequency (5.7 Hz) and the 30%

elevated frequency (7.4 Hz) experience the same amount of shock migration and no

noticeable differences were observed. For the Mach comparison the wing was trimmed

at all three AoAs (4◦, 7◦ and 10◦) and both ∆αs (±2◦, ±4◦). For 5 of the 6 cases,

M = 0.90 experienced the same or more shock movement than M = 0.95. For all

M = 0.90 and M = 0.95 cases, increasing the oscillation amplitude from 2◦ to 4◦

increased the total shock migration. For the M = 0.90, increasing the trim while

holding the oscillation amplitude constant lead to increased shock migration. For

the M = 0.95 cases, increasing the trim for ∆α = 2◦ resulted in the same percent

shock movement for all three cases while increasing the trim for ∆α = 4◦ actually

reduced the percent shock movement. When comparing the fully inviscid solution to

the boundary layer coupled (BLC) solution, the BLC solution saw 2-3 times greater

range of shock movement as the inviscid solution.

5.1.2 Change in Cp during Oscillation. Both the baseline frequency (5.7

Hz) and the 30% elevated frequency (7.4 Hz) experience the same percent change in

Cp and no noticeable differences were observed. For the Mach comparison, the lower

Mach number (M = 0.90) experienced larger changes in percent Cp (3-41%) than that

of the M = 0.95 cases. For both Mach numbers, increasing the oscillation amplitude
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from 2◦ to 4◦ led to much more drastic percent change in Cp(10-45% greater). While

the BLC solution experienced a larger percent change in Cp when compared to the

inviscid solution for all cases, the difference was not as drastic as the trends seen in

the shock migration. Additionally, the percent change in Cp does not tell the fully

story as the drop in Cp across the shock was much more significant in the inviscid

cases. The total drop in Cp was greater as well as the rate at which the Cp dropped.

In reference to Tauer’s flight test results [28] regarding SITES as a aerodynamic

phenomena associated with transonic LCO of the F-16, he did not see any shock

movement in response to the pitching/plunging of the wing during LCO. Despite the

lack of oscillatory shock behavior, Taur’s flight test consisted of examining a small

region of the wing near the wingtip. As seen in Fig. 4.12, the shock behavior near the

wingtip may not be indicative of the shock movement for sections of the wing located

further inboard. A time-accurate aeroelastic analysis of the full F-16 computational

model in ZEUS would allow for better insight to oscillatory shock migration: if shock

migration should be expected to occur based on the flight conditions and where along

the span of the wing it should occur. A supplemental flight test to Taur’s initial

findings based on the results of the full F-16 model would provide more definitive

evidence to SITES’ role in LCO.

5.2 Future Research Areas

While this thesis identified several characteristics observed during simulated

LCO, validation of these results is needed to confirm the feasibility of the boundary

layer coupled Euler method (ZEUS). In addition to validation, an analogous Navier-

Stokes solution would provide another source which to compare results against.

5.2.1 Validation of ZEUS results. A time accurate analysis of a straked

delta wing design oscillated in pitch was conducted to replicate unsteady wind tunnel

tests conducted by Cunningham in 1993. While a database of unsteady results for

the wind tunnel data can be found, it is unclear to as how the unsteady coefficients
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for the harmonic motion of the wing was obtained. Once the method of unsteady

calculations is determined, the time accurate data presented in the current study can

be compared to the wind tunnel data and provide validation for the use of ZEUS.

5.2.2 Replicate Experiment with a Navier-Stokes Solver. Comparison of

the BLC solution to unsteady Navier-Stokes results would provide insight to the

importance of viscous models when simulating LCO. A NS solution would account

for large regions of separation if they are present and their contribution to shock

migration on an oscillating wing. As seen in an experiment by Nikbay [24], the BLC

solution had a tendency to both overpredict the shock strength and position the shock

further aft on the wing than the wind tunnel results. The NS solver used by Nikbay

(FUN3D) had the same trends as the BLC solution, although to a lesser degree. A

comparison of the results within the current investigation to a NS solution would

highlight any discrepancies between the two methods and further demonstrate the

trade-off between solution time and solution accuracy.
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Appendix A. Cp Data for Wing Station 1
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Figure A.1: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
5.7 Hz.
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Figure A.2: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
7.4 Hz.
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Figure A.3: Time history of Cp for for three points along the chord of station 1. M
= 0.90, Frequency = 5.7 Hz.
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Figure A.4: Time history of Cp for for three points along the chord of station 1. M
= 0.95, Frequency = 5.7 Hz.
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Figure A.5: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 4◦.
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Figure A.6: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 7◦.
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Figure A.7: BLC trim and ∆α comparison of Cp. M = 0.9, Frequency = 5.7 Hz.

84



Figure A.8: BLC trim and ∆α comparison of Cp. M = 0.95, Frequency = 5.7 Hz.
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Figure A.9: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 4◦.
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Figure A.10: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 7◦.
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Figure A.11: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 10◦.
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Appendix B. Cp Data for Wing Station 2
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Figure B.1: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
5.7 Hz.
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Figure B.2: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
7.4 Hz.
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Figure B.3: Time history of Cp for for three points along the chord of station 2. M =
0.90, Frequency = 5.7 Hz.
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Figure B.4: Time history of Cp for for three points along the chord of station 2. M =
0.95, Frequency = 5.7 Hz.
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Figure B.5: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 4◦.
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Figure B.6: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 7◦.
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Figure B.7: BLC trim and ∆α comparison of Cp. M = 0.9, Frequency = 5.7 Hz.
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Figure B.8: BLC trim and ∆α comparison of Cp. M = 0.95, Frequency = 5.7 Hz.
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Figure B.9: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 4◦.
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Figure B.10: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 7◦.

99



Figure B.11: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 10◦.
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Appendix C. Cp Data for Wing Station 3
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Figure C.1: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
5.7 Hz.
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Figure C.2: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
7.4 Hz.
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Figure C.3: Time history of Cp for for three points along the chord of station 3. M =
0.90, Frequency = 5.7 Hz.

104



Figure C.4: Time history of Cp for for three points along the chord of station 3. M =
0.95, Frequency = 5.7 Hz.
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Figure C.5: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 4◦.
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Figure C.6: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 7◦.
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Figure C.7: BLC trim and ∆α comparison of Cp. M = 0.9, Frequency = 5.7 Hz.
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Figure C.8: BLC trim and ∆α comparison of Cp. M = 0.95, Frequency = 5.7 Hz.
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Figure C.9: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 4◦.
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Figure C.10: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 7◦.
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Figure C.11: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 10◦.
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Appendix D. Cp Data for Wing Station 4
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Figure D.1: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
5.7 Hz.
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Figure D.2: Frequency Comparison. Time history of Cp for M = 0.90, Frequency =
7.4 Hz.
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Figure D.3: Time history of Cp for for three points along the chord of station 4. M
= 0.90, Frequency = 5.7 Hz.
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Figure D.4: Time history of Cp for for three points along the chord of station 4. M
= 0.95, Frequency = 5.7 Hz.
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Figure D.5: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 4◦.
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Figure D.6: Mach Comparison. Time history of Cp varying Mach number down the
column. Frequency = 5.7 Hz, Trim = 7◦.
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Figure D.7: BLC trim and ∆α comparison of Cp. M = 0.9, Frequency = 5.7 Hz.
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Figure D.8: BLC trim and ∆α comparison of Cp. M = 0.95, Frequency = 5.7 Hz.
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Figure D.9: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 4◦.

122



Figure D.10: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 7◦.
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Figure D.11: Inviscid/Viscous comparison of Cp. M = 0.9, Frequency = 5.7 Hz, Trim
= 10◦.
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Appendix E. Temporal Comparison of each wing station
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Figure E.1: Cp on the wing’s surface for all 4 chordwise stations. Each plot indicates
a temporal snap shot for the test case: M = 0.90, Frequency = 5.7 Hz,
Trim = 4◦, ∆α = ±2◦. 126



Figure E.2: Cp on the wing’s surface for all 4 chordwise stations. Each plot indicates
a temporal snap shot for the test case: M = 0.90, Frequency = 5.7 Hz,
Trim = 4◦, ∆α = ±4◦. 127



Figure E.3: Cp on the wing’s surface for all 4 chordwise stations. Each plot indicates
a temporal snap shot for the test case: M = 0.90, Frequency = 5.7 Hz,
Trim = 7◦, ∆α = ±2◦. 128



Figure E.4: Cp on the wing’s surface for all 4 chordwise stations. Each plot indicates
a temporal snap shot for the test case: M = 0.90, Frequency = 5.7 Hz,
Trim = 7◦, ∆α = ±4◦. 129



Figure E.5: Cp on the wing’s surface for all 4 chordwise stations. Each plot indicates
a temporal snap shot for the test case: M = 0.90, Frequency = 5.7 Hz,
Trim = 10◦, ∆α = ±2◦. 130



Figure E.6: Cp on the wing’s surface for all 4 chordwise stations. Each plot indicates
a temporal snap shot for the test case: M = 0.90, Frequency = 5.7 Hz,
Trim = 10◦, ∆α = ±4◦. 131
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