
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Human Optimization and Performance
Enhancement in Flight via Real-time Biofeedback
(Project HAVE HOPE)
Michael S. Fritts

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Astrodynamics Commons, Physiology Commons, and the Space Vehicles Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Fritts, Michael S., "Human Optimization and Performance Enhancement in Flight via Real-time Biofeedback (Project HAVE HOPE)"
(2018). Theses and Dissertations. 1769.
https://scholar.afit.edu/etd/1769

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/223?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/220?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1769?utm_source=scholar.afit.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 

 

 

 

 

 

 

 

 

 

 

 

HUMAN OPTIMIZATION AND PERFORMANCE ENHANCEMENT 
IN FLIGHT VIA REAL-TIME BIOFEEDBACK  

(PROJECT HAVE HOPE) 
 

THESIS 

 

Michael S. Fritts, Major, USAF 

AFIT-ENY-MS-18-M-258 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

DISTRIBUTION STATEMENT A. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



   ii 

  

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government.  This material is declared a work of the U.S. Government and is not 

subject to copyright protection in the United States. 

 

  



   iii 

AFIT-ENY-MS-18-M-258 

 

 
HUMAN OPTIMIZATION AND PERFORMANCE ENHANCEMENT 

IN FLIGHT VIA REAL-TIME BIOFEEDBACK  
 

(PROJECT HAVE HOPE) 
 

THESIS 

 

Presented to the Faculty 

Department of Aeronautics and Astronautics 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Aeronautical Engineering 

 

 

Michael S. Fritts, B.S.A.A.E., M.B.A., M.S.F.T.E 

Major, USAF 

 

March 2018 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



   iv

AFIT-ENY-MS-18-M-258 

 

 
HUMAN OPTIMIZATION AND PERFORMANCE ENHANCEMENT 

IN FLIGHT VIA REAL-TIME BIOFEEDBACK  
 

(PROJECT HAVE HOPE) 
 

THESIS 
 
 

Michael S. Fritts, B.S.A.A.E., M.B.A., M.S.F.T.E 

Major, USAF 

 

Committee Membership: 

 

Chad S. Hale, Lt Col, USAF (ret.), PhD 
Chair 

 

 

Dr. Ryan S. Mayes, PhD, MPH 
Member 

 

 

Daniel R. Montes, Major, USAF, PhD 
Member 

 

  



   v 

Abstract 

Human operators of aviation systems are not fully aware and cognizant of the 

myriad of factors that affect their performance on a daily basis.  Human-machine systems 

need an avenue to monitor operators, display physiological metrics, and provide alerts 

that augment the user in an intuitive and operationally relevant manner.  Operator 

physiological and cognitive (PC) state embodies current short term and long-term 

influences on the capabilities and limitations of an operator.  Operator enhancement 

informs individuals of PC state and has the potential to increase overall situation 

awareness (SA).  This research aimed specifically at enhancing operator awareness, 

decision-making, and performance in flight via real-time biofeedback.  

A four-phase, chronological, and build-up approach was implemented that 

commenced with basic hardware testing in a centrifuge and culminated in F-16 flights 

with operators augmented by real-time biofeedback displays.  A prototype Portable 

Electrocardiogram Unit (PECGU) was designed and proven to accurately measure heart 

rate (HR), and display HR metrics real-time, percentage heart rate reserve (%HRR). 

Results showed that %HRR was not a good sole predictor of cognitive state.  

Cognitive responses indicated some correlation with %HRR, but were influenced by 

environment (centrifuge vs. flight).  Subjective perceived exertion levels in subjects did 

not show statistically significant changes during test with biofeedback.  A G-tracking task 

was evaluated during centrifuge and flight tests.  One of four subjects showed statistically 

significant improvement during the centrifuge task.  One of three subjects statistically 

improved during airborne G-tracking.  Analysis of the human systems integration (HSI) 

of a %HRR biofeedback display in fighter aircraft cockpits generated key design features 

and recommendations for future military utility.             

This research marked the first time pilot HR was accurately measured and 

processed in flight, yielding a real-time biofeedback display.  Overall, results could not 

be characterized by a single HR metric.  A wide range of biosensors is needed to define 

operator PC state.  There is hope in the future for an individualized, all-inclusive, and 

data-driven complex biofeedback algorithm, which ultimately presents a streamlined and 

intuitive PC state index.  The potential to change how human system health monitoring is 

implemented and displayed may have tremendous enduring benefits to the warfighter. 
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Forward 

January 2, 2014 
 

It happened during the 4th engagement of a routine high aspect basic fighter 
maneuvers (BFM) training mission while I was deployed to Southwest Asia.  I was 
piloting an F-22 Raptor while attempting to maneuver to a position of advantage against 
an F-15.  Outside of the normal physiological stressors of elevated heart rate, breathing 
rate, perspiration, fatigue, and dehydration I was accustomed to, I felt completely normal 
prior to calling, “turn in, fights on!”  In driving specific training objectives, I elected to 
force a “single circle” fight after a left-to-left pass at the second merge, an accepted and 
safe tactical decision.  This maneuver required an aggressive left-to-right roll about the 
aircraft longitudinal.  Additionally, I remember aggressively rotating my head from 
looking out the left side of the cockpit to the right side in an attempt to immediately 
reacquire sight of the F-15.  I had performed this maneuver hundreds of times in the past, 
yet for some reason on that day the coupled effect of aircraft roll and rapid head 
transition generated an alternate output for my vestibular system, or inner ear.  While my 
actual aircraft state after the maneuver resembled a slightly nose low, 90 degree right 
banked turn, my perceived visual and physiological cues were telling me I was in a 
continuous and rapid right roll about the aircraft longitudinal axis while nose low 
toward the desert floor.  Initially I thought my F-22 had experienced some type of 
catastrophic aileron or rudder failure, but I later realized I was spatially disoriented and 
fighting my vestibular perceptions to safely fly the airplane. 
 

The Coriolis Illusion, a type of spatial disorientation phenomenon, involves 
simultaneous stimulation of two semicircular canals coupled with sudden tilting of a 
pilot’s head while the aircraft is turning.  The net result is an almost unbearable 
sensation that the aircraft is rolling, pitching, or yawing, (comparable to a sensation of 
tumbling down a hillside) which can rapidly lead to pilot disorientation and loss of 
aircraft control (Antunano, 2016).   
 

I couldn’t read my heads-up-display (HUD), but based on my last crosscheck I 
knew I had about 15 seconds to react before my aircraft reached the 6,000ft uncontrolled 
ejection altitude we brief before every flight.  For those next 15 seconds, I remember 
thinking about where the ejection handle was located and wondered if this was going to 
be the day I either died, ejected, or both.  I thought if I can just pull back on the control 
stick enough to turn brown desert floor into clear blue sky, I might buy myself some time.  
I did just that, recovered the aircraft from the nose low dive, and within 60 seconds my 
vestibular system had stabilized enough that I could cautiously fly the F-22 back to base.   
 

I got lucky that day.  But what if there were pre-indications that my physiological 
and cognitive (PC) state was limited or impaired in some way?  What if biosensors could 
have monitored my PC state and provided objective real-time biofeedback prior to the 
tactical engagement?  Would my tactical decisions have changed? 
 

     -Michael “Hijack” Fritts 
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HUMAN OPTIMIZATION AND PERFORMANCE ENHANCEMENT 
IN FLIGHT VIA REAL-TIME BIOFEEDBACK  

1. Introduction 

1.1 Background and Motivation 

From the moment the Wright Brothers took flight on December 17, 1903 in the 

first heavier-than-air human flight, mankind has pushed the limits of human performance 

in aviation.  Aircraft began flying faster, higher, and radially accelerating, growing a need 

to design cockpits, oxygen masks, and gravitational suits (G-suits) all with a common 

goal of keeping the pilot alive.  Today the performance and processing capabilities of 

aircraft surpass the physiological and cognitive limits of their human operators.  The first 

one hundred years of human flight aimed at maximizing the performance of the airplane, 

while simply keeping operators alive.  Little focus has been put on optimizing the human 

and maximizing their performance, too.  This research strives to expand the human 

performance envelope in an effort to enhance capabilities of the human-machine system 

in an aerospace environment.     

A large demand is placed on humans to execute soundly in high performance 

aircraft.  Split-second missioned decisions, sensor/ display information overload, and 

physical stressors (gravitational, thermal, and respiratory) that plague the body are all 

challenges faced by fighter pilots during a routine mission.  With the rise of artificial 

intelligence technology and machine learning algorithms being applied to unmanned 

aerial systems (UASs), is the window of opportunity for manned flight really closing?  

Why should additional research be placed on humans and their inherent limitations in the 

cockpit?  The simple acknowledgement of these technological advances only further 
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emphasizes the need for better understanding of human-machine systems.  Future warfare 

will be waged with human-machine teams consisting of mixed manned-unmanned 

airborne formations and ground assault vehicles.  Such configurations will leverage 

human strengths paired with computational merits.  Yet, human error remains a large 

contributor to aviation mishaps. Human-machine systems need an avenue to monitor 

operators, display physiological metrics, and provide alerts that augment the use in an 

intuitive and operationally relevant manner. 

1.2 Research Problem, Key Terms, and Justification 

Human operators of aviation systems are not fully aware and cognizant of the 

myriad of factors that affect their performance on a daily basis.  Why do humans perform 

better on some days than they do on others?  An operational need exists for a deeper 

understanding of the operator physiological and cognitive (PC) state and how 

performance is affected by fluctuating mission tasks, which drive changes to the operator 

environment.       

Operator PC state embodies the current short term and long term influences on the 

capabilities and limitations of an operator.  Environmental inputs capture the changing 

conditions the operator undergoes over the course of a mission due to mission tasks.  

Pilots are compensated with G-suits to help maintain blood flow to the brain during 

sustained gravitational forces (Gs) above 6 Gs.  Upper pressure garments (UPG) provide 

added protection in the event of rapid cockpit decompression during high altitude flight.  

Positive pressure breathing under Gs (PBG) deliver pilots increased forced air pressure 

through their oxygen masks to contest respiratory challenges and “air hunger” under high 

Gs.  Lastly, flight suits and gloves provide thermal protection while helmet visors shield 
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eyes from ambient light extremes.  Seen in Figure 1 below, all of these aircrew flight 

equipment (AFE) articles help pilots combat the physiological challenges encountered 

due to dynamic environmental inputs.  Finally, performance is the output of 

environmental inputs, compensation, and operator PC state.  Therefore, performance is 

directly affected by the demands of mission tasks. 

 

Figure 1: Aircrew Flight Equipment 

Operator enhancement projects what a human is capable of achieving when fully 

informed of their PC state.  This augmentation has the potential to increase overall 

situation awareness (SA) through the use of biofeedback.  Biofeedback is a mind-body 

aid that uses electronic sensors to measure physiological processes and help individuals 

gain a better understanding and control over normally automatic bodily functions (Gilbert 

& Moss, 2002).  The idea of biofeedback in aviation systems has been introduced 

(Calhoun, 2000), but little research has been done to support implementation. 

In 2014, the Air Force Medical Service (AFMS) highlighted a capabilities based 

assessment (CBA) gap that identified the strategic need for a Pilot Physiology and 

Cognitive Performance (P2CP) indicator: 
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The AF needs to quickly and accurately identify and prevent pilot/operator 
incapacitation from any/all causes.  The long-term goal is in-flight 
monitoring that would focus on physiologic and performance measures 
that are susceptible to stressors such as sleep loss, extended duty day, and 
the specific physiologic conditions faced by pilots in cockpit/ground 
station environments.  Need an objective, real-time mechanism to assess 
and monitor the performance (cognition, reaction time, fatigue, impact of 
medications or illness) of console operators (space, cyber, missile, RPA) 
(AFMS CBA-2014). 

The P2CP program’s desired end state aims to incorporate biofeedback into 

aviation systems by providing both cockpit and ground station operators with an 

integrated suite of sensors, analytics, and real-time data visualization capability.  This 

capability will objectively evaluate and feedback an aviator’s cognitive and physiologic 

performance in an operationally relevant manner. 

1.3 Research Question 

While the necessity for operator state enhancement is prevalent and needs to be 

addressed across the full spectrum of human-machine systems in the aviation community, 

this research is aimed specifically at enhancing pilots SA of their PC state in high 

performance aircraft.  As such, this research addresses the following question: 

1.4 Research Objectives and Scope 

This research aims to gain a better understanding of the benefits and implications 

of providing a pilot with real-time biofeedback, which informs the operator how their 

body is performing both physiologically and cognitively under the demanding 

environment of high performance aircraft.  Recent studies have assessed biometrics and 

biofeedback while evaluating their applications to sports medicine and human 
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performance.  Paul and Garg (2012) explored the advantages of biofeedback to control 

anxiety and increase performance among a sample of university basketball players.  

Further, studies of elite cyclists support a strong correlation between maximal oxygen 

consumption (VO2max) rate and heart rate (HR) intensity (Lounana, Campion, Noakes, & 

Medelli, 2007).  Additionally, flight studies using a mobile electrocardiogram (ECG) HR 

recorder show heart rate variability (HRV) increases during times of higher 

psychophysiological workload while airborne compared to pre-flight and post-flight 

conditions (Skibniewski et al., 2015).  To date the most relevant studies attempting to 

synthesize the challenges of PC state and workload in flight through the use of biosensors 

were done using a Cognitive Assessment Toolkit System (CATS) developed by the 

Operator Performance Laboratory (OPL) at the University of Iowa (Engler, Schnell, & 

Walwanis, 2013).  The OPL applied their CATS technology in simulated real-world 

fighter aircraft combat scenarios, striving to create the ultimate Cognitive Pilot Helmet 

(CPH) that could serve as a “gateway to human information” (Schnell, Melzer, & 

Robbins, 2009).  Evidence suggests that while attempts to capture elements of individual 

PC state have been done, no studies have investigated the effects of biofeedback on 

operator ability to assess their own PC state.   

This research only measured and displayed HR data to aid in operator PC state 

recognition.  Future P2CP efforts should incorporate the full spectrum of human 

biosensor technology discussed in Chapter 2.  The research question is supported by a 

methodology and experimental design broken down into four primary phases.  Each 

phase is supported by specific test objectives (STOs) and measures of performance 

(MOPs) as highlighted in Table 1 below. 
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Table 1: Specific Test Objectives (STOs) and Measures of Performance (MOPs) 

 

1.5 Methodology, Materials, Equipment, and Evaluation Standards 

Data collection and analysis was broken up into the four previously mentioned 

phases in Table 1.  Evaluation methods varied based on location and experiment type, but 

predominantly provided consistency of assessment techniques between phases.   
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1.5.1 Phase 1 (C1): Initial Hardware and Subject Centrifuge Trials 

Phase 1 was supported by the aid of KBRWyle Science, Technology and 

Engineering Group (KBRWyle) at Brooks City-Base (BCB) in San Antonio, TX from 1 

to 4 November 2016.  Seven test subjects from the High-G Acceleration Human Subject 

Panel (HGAHSP) at BCB (referred to as Subjects 1 through 7) were used to evaluate 

several initial proposed HR collection hardware configurations and assess the planned 

test profile.  During trials subjects were required to participate in tracking tasks that 

consisted of manipulating a flight control stick while tracking a target in a flight 

simulator. 

  HGAHSP subjects are volunteer members that participate in monthly centrifuge 

testing.  Level of experience varies.  Centrifuge exposure and G proficiency is greater 

than the average high performance aircraft operator, but tracking task proficiency is 

lower than the average operator.  HGAHSP subjects were only used in Phase 1 testing 

and were not part of the United States Air Force Test Pilot School (USAFTPS) 17A 

HAVE HOPE Test Management Project (TMP) team.   

1.5.1.1 Phase 1 (C1): Materials and Equipment 

All subjects were outfitted with AFE gear consisting of the following: flight suit, 

HGU-55/P flight helmet, MBU-20/P oxygen mask, and CSU-23P Advanced Technology 

Anti-G Suit (ATAGS).  Additionally, KBRWyle ECG leads were attached to the test 

subject chest to provide a “truth source” of HR data.  Additional hardware used consisted 

of the following: Portable Electrocardiogram Unit (PECGU), Aircrew Mounted 

Physiologic Sensor Suite (AMPSS) 2.5, Zephyr BioHarness 3.0 (Zephyr), and Elbit 
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Systems Canary Pilot Health Monitoring System (Elbit).  A detailed description of 

hardware used is included in Chapter 3. 

1.5.2 Phase 2 (L1):  Laboratory VO2max Testing 

Phase 2 testing was conducted from 13 to 14 July 2017 at the Physical Therapy 

clinic at Edwards AFB, CA by trained research team members from the 412th Medical 

Group.  Test administrators were certified to administer a VO2max test.  Five test subjects 

(referred to as Subjects A through E) consisted of members of the USAFTPS 17A HAVE 

HOPE TMP team.  Subjects performed a VO2max test on a treadmill to determine their 

exercise-base maximum heart rate (HRmax). 

1.5.2.1 Phase 2 (L1): Materials and Equipment 

Five ECG adhesive electrodes were placed along subject chest cavity to measure 

HR.  A standard treadmill was used to conduct the test.  Additional hardware used 

consisted of a Portable Metabolic Unit (PMU) and Garmin Fenix 3 Sapphire HR Monitor 

Watch (Garmin).  A detailed description of hardware used is included in Chapter 3. 

1.5.3 Phase 3 (C2): Training and Build-up Approach Centrifuge Testing 

Phase 3 testing was conducted from 14 to 16 August 2017 with the support of 

KBRWyle at BCB.  Subjects A through E from the USAFTPS 17A HAVE HOPE TMP 

team underwent initial centrifuge training and conducted data collection as a build-up 

approach for future flight test.  

1.5.3.1 Phase 3 (C2): Materials and Equipment 

Subjects used the same AFE gear, flight simulator, and PECGU as described in 

Phase 1.  Additionally, as described in Phase 2, the Garmin was worn as an additional 

data source and backup data collection measure in the event PECGU HR data were lost 
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or the hardware became inoperative.  Additional hardware used consisted of the 

following: GETAC T800 tablet with biofeedback display, GETAC thigh holster, and 

AMPSS 3.0.  A detailed description of the hardware introduced in this phase is included 

in Chapter 3.   

1.5.4 Phase 4 (F1): Flight Test 

Phase 4 testing was conducted from 5 to 18 September 2017 in the R-2508 

complex at Edwards AFB, CA with the aid of USAFTPS staff, technical support, aircraft, 

and facilities.  Subjects A through E from the USAFTPS 17A HAVE HOPE TMP team 

conducted flight test using Data Acquisition System (DAS) equipped F-16DM aircraft, 

tail numbers 87-0391 and 90-0797.  A total of 13 test sorties for a total of 7.4 hours were 

flown. 

1.5.4.1 Phase 4 (F1): Materials and Equipment 

    Predominantly, Phase 4 materials and equipment mirrored those used in Phase 

3.  Subjects used the same AFE gear, PECGU, GETAC T800 biofeedback display, and 

Garmin as described in previous phases.  No new hardware was introduced in this phase, 

but slight modifications were made to existing hardware.  A detailed description of the 

hardware used is included in Chapter 3.   

1.5.5 Testing Approval: Institutional Review Board and Negligible Risk Review 

An Institutional Review Board (IRB) is a required anytime testing is performed 

on or with human subjects.  The IRB committee applies research ethics and reviews the 

proposed testing methods to ensure they are ethical and confirms safe practices for 

human subjects.  Testing conducted using human subjects, but executed where hardware 

or processes are the primary systems under test (SUT), still requires an IRB but is 
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categorized as Not Human Subject Research (NHSR).  Testing in which humans are the 

primary SUT qualifies under a Greater-Than-Minimal Risk Protocol (GTMRP).  Testing 

for Phase 1, categorized as NHSR, was requested and approved through the IRB of Air 

Force Research Lab (AFRL).  Testing for Phases 2 through 4 highlighted a GTMRP and 

was approved for the protection of human subjects by the Naval Medical Research Unit 

Dayton (NAMRU-D) IRB under protocol number NAMRUD.2017.0013.   

A Negligible Risk Review (NRR) is a safety process required by Air Force Test 

Center Instruction 91-202 (AFTCI) Edwards Air Force Base (AFB) Supplement for the 

conduct of low-risk preliminary testing.  A certified NRR ensures internal safety and 

technical procedures are used to conduct adequate planning, execution, and reporting of 

testing prior to a Safety Review Board (SRB).  Testing for Phases 2 and 3 required an 

NRR in order to perform hardware compatibility, ground electromagnetic interference 

(EMI), laboratory VO2max, and centrifuge testing. 

1.6 Research Sponsor 

The primary sponsor for this research was the USAF School of Aerospace 

Medicine (USAFSAM), a member of the 711th Human Performance Wing (711 HPW) of 

AFRL.  Additional sponsors include the USAFTPS and Air Force Institute of Technology 

(AFIT).   

1.7 Future Contributions 

This research directly contributed to the desired end-state of the P2CP program 

being tackled by AFMS.  Studies of the human response to augmented flight through the 

use of biofeedback will allow a deeper understanding of the benefits and limitations of 

future human-machine research in aviation systems.  P2CP goals include development of 
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a more robust biosensor suite that will incorporate all aspects of the human PC state.  

Basic studies of cardio and respiratory responses will help gain momentum for studying 

biofeedback in flight and lead to future knowledge and investment.  This includes, but is 

not limited to, incorporation of ocular metrics, electroencephalography (EEG), blood 

flow sensors, hydration sensors, and cerebral oximetry.   

   Additional contributions include identification of the capabilities and limitations 

of the AMPSS oxygen mask and all component sensors.  Additional pilot feedback is 

expected into the design and incorporation of a biofeedback device in aircraft cockpits.   

1.8 Chapter Summary 

This thesis is organized into five chapters.  Chapter 1 serves as an introduction to 

the background and project motivation as well as summary of the remaining chapters.  

Chapter 2 encompasses a review of literature conducted by the author supported by 

studies in human performance limitations in aviation, human-machine systems, 

biofeedback, human physiology, and PC sensors.  Chapter 3 contains a detailed 

description of the research methodology, materials, and equipment.  Chapter 4 

incorporates results from Phases 1 through 4 and analysis of experimental data collection 

drawing correlations between laboratory, centrifuge, and flight test.  The proposed 

research question, STOs and MOPs are addressed.  Chapter 5 includes final conclusions 

and recommendations for future research.  Further information from all phases can be 

found in the appendices. 
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2. Literature Review 

2.1 Chapter Introduction 

To set the necessary framework for this research, a review of literature spanning 

multiple fields was necessary.  Chapter 2 encapsulates the current state of research, as 

well as knowledge gaps pertaining to a problem that spans fields of human physiology, 

biofeedback, human-machine systems, physiological and cognitive (PC) biosensors, 

workload, and human performance. 

The first section of this chapter highlights a myriad of factors that contribute to 

operator PC state.  Additional terms such as operator compensation, environmental 

inputs, operator performance, and operator enhancement are all defined.  The second 

section details the techniques, capabilities, and limitations of operator physiological 

measurement in flight.  Third, explanations are provided of both subjective and objective 

measures for characterizing levels of operator workload.  The fourth section elaborates on 

current research and definitions pertaining to heart rate metrics.  Lastly, a brief 

explanation is provided of how exercise intensity affects energy transfer and oxygen 

transport in the human body. 

2.2 Air Force Operator Enhancement Initiatives 

The rise of wearable technology (“wearables”) and mobile medical devices today 

allow humans to actively track their current PC state better than ever by gaining a deeper 

awareness of their capabilities through biofeedback.  Mobile computing has shown 

potential to support safety-critical systems, aircraft control, and medical applications 

(Motti & Caine, 2014).  When looking to optimize human performance in flight, the use 
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of wearable technology and biosensors within the cockpit environment is a natural 

collaboration.   

The necessity for operator state enhancement is prevalent and needs to be 

addressed across the full spectrum of human-machine systems in the aviation community.   

In 2014, the Air Force Medical Service (AFMS) highlighted a capabilities based 

assessment (CBA) gap that identified the strategic need for a Pilot Physiology and 

Cognitive Performance (P2CP) indicator (AFMS CBA-2014).  The P2CP program 

desired end state aims to incorporate biofeedback into aviation systems by providing 

console operators with an integrated suite of sensors, analytics, and real-time data 

visualization capability.  This augmentation will objectively evaluate and display aviator 

PC performance in an operationally relevant manner.  The goals of P2CP are directly in 

line with this research, which aims specifically at optimizing pilots in high performance 

aircraft via real-time heart rate (HR) biofeedback.     

2.3 Operator PC State, Compensation, Performance, and Enhancement 

Countless factors contribute to an operator’s performance in flight.  Performance 

is defined as the precision of control with respect to aircraft movement that a pilot is able 

to achieve in performing a task (Hodgkinson, 1999).  This performance is calculated as a 

measured output from the overall human-machine augmented system.  To facilitate 

further discussion, several definitions where established for this research and are 

highlighted in the following sections of this chapter.   

First, operator PC state, as shown in the feedback control diagram in Figure 2 is 

made up of six primary components.  Short-term dynamic factors that shape operator PC 

state include nutrition/hydration, sleep, and currency/training.  Nutritional intake before 



   14 

any athletic exercise has been proven to directly affect physiological performance 

(Rodriguez, DiMarco, & Langley, 2010).  Sleep and circadian rhythm are most affected 

by lifestyle decisions from the previous 24 hours.  However, sleep cycle changes 

proceeding up to seven days prior can also contribute to bodily health.  Finally, the 

30/60/90-day currency (number/type of sorties flown) and recent training program of a 

pilot directly affect his/her ability to not only perform a specific mission task correct, but 

also excel above personal baseline execution.   

 

Figure 2: Mission-Driven Operator-Compensated System 

Long term dynamic factors that shape operator PC state include pilot 

mental/emotional wellness, career flying experience, as well as physical fitness/recovery 

capabilities.  Mental/emotional wellness and resiliency contributes to cognitive 

throughput and performance during high-gain missionized tasks.  Conversely, a lack of 

balance and emotional stability hinder reasoning and effective task management.  Total 

flight time and Mission-Design Series (MDS) specific experience in a particular aircraft 
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or system increases operator situation awareness (SA) and performance.  In 2000, F-15J 

fighter pilots from the Japanese Air Self-Defense Force (JASDF) demonstrated that an 

increase in total flight time was directly proportional to an increase in cerebral oxygen 

status (COS) during high-G maneuvering, aiding their ability to combat the risks of G-

Induced Loss of Consciousness (G-LOC).  This phenomenon has plagued pilots in 

aviation-related fatalities for decades since the arrival of high-G capable aircraft and is 

caused by the reduction in cerebral blood flow and oxygen supplied to brain tissues 

(Kobayashi, Tong, & Kikukawa, 2002).  One acceptable method of obtaining COS 

measurements is through Near-Infrared Spectroscopy (NIRS) which includes non-

invasive readings of pre-frontal oxygenated hemoglobin in the brain from light wave 

propagation measurements (Kobayashi et al., 2002).  Lastly, physical fitness and 

recovery capability play an integral part in human capacity for physical exertion and 

sustainment under multi-axial accelerations. Fatigued muscles in fighter pilots are more 

susceptible to acute injuries, and they are not as capable of supporting the spinal column 

as effectively as unfatigued muscles (Sovelius, Oksa, Rintala, & Siitonen, 2008). 

Second, environmental inputs represent the changing conditions an operator 

undergoes over the course of a mission due to mission tasks.  Environmental inputs 

consist of gravitational forces (Gs), thermal stress, oxygen consumption (VO2) rate, and 

ambient light as seen in Figure 2.  A specific mission task, such as aerial combat, leads to 

an increase in Gs on the body, which is an example of a dynamic environmental input. 

Third, gravitational suits (G-suits), upper pressure garments (UPGs), pressure 

breathing under G (PBG) equipment, flight suits, gloves, and helmet visors are all 

examples of operator compensation.  These articles help the pilot fight through 
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challenges due to fluctuating environmental inputs and are denoted by the compensator 

block in Figure 2.   

Fourth, performance is the operator’s output from Figure 2 and characterized by 

the “open-loop response” of environmental inputs, operator compensation, and operator 

state.  The mission-driven operator-compensated (MDOC) system in Figure 2 is a 

function of the fluctuating inputs, compensation, and state. 

Next, performance enhancement projects what performance output a human pilot 

is capable of achieving when the feedback loop is closed and the operator is fully 

cognizant of current inputs, compensation, and PC state.  This augmentation has the 

potential to increase overall SA through the use of biofeedback.   

2.4 Biofeedback 

Biofeedback is a mind-body aid that uses electronic sensors to measure 

physiological processes and help individuals gain a better understanding and control over 

normally automatic bodily functions (Gilbert & Moss, 2002).  Biofeedback instruments 

track metrics such as: HR, heart rate variability (HRV), respiration, muscle activity, skin 

temperature, blood pressure, brain activity, and COS.  Research has shown that 

biofeedback is beneficial in treating a number of behavioral, attention, and medical 

challenges (Yucha & Gilbert, 2004).  The concept of using biofeedback techniques in 

aviation systems has been introduced, but not to aid in human performance and PC state 

recognition, rather in pilot vehicle interface (PVI) design.  In 2000, the Air Force 

Research Laboratory (AFRL) introduced the concept that pilot choice (gaze point) could 

be identified through dominant frequency electroencephalographic (EEG) patterns of 

visually evoked brain activity.  An eye gaze-based control would facilitate a simpler PVI 
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design with less mechanization.  These gaze patterns could be refined and brought under 

voluntary control through biofeedback training (Calhoun, 2000).   

The reason biofeedback has gaining little momentum in operator PC state 

recognition applications stems from the inherent challenges that exist with taking 

accurate measurements and rapidly processing data to a real-time display during flight.  

However, as advances in biosensor technology size, processing speed, and accuracy 

continue, the avenue is open for future research. 

2.5 Operator Measurement 

As previously discussed there are a myriad of factors that affect operator PC state 

throughout the dynamic flight environment.  Additional complications exist regarding 

measurement of physiological metrics from locations on the human body during flight.  

Cockpit ergonomic design, electromagnetic interference (EMI), aircrew flight equipment 

(AFE), thermal stress, perspiration, and multi-axis acceleration forces all present difficult 

challenges to correctly measure changes to the “pink squishy bag” known as a human 

body. 

2.5.1 Cardiac Metrics 

Various heart measurement techniques exist today that support a multitude of 

disciplines from medicine to professional athletes.  The most widely used type of heart 

monitoring device is the electrocardiogram (ECG), which functions by placing electrodes 

on the human chest to measure electrical activity.  By comparing inter-beat intervals a 

single HR value can be generated in beats per minute (BPM).  Recent studies 

demonstrated that a measurement of the low-frequency spectral power (LF) to high 

frequency spectral power (HF) ratio of the HRV spectrum could be used as a predictive 
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tool in gauging operator psychophysiological load.  The critical HRV metric, which 

reflects the statistical variability of heart rate (Cacioppo, Tassinary, & Berntson, 2007), 

had a significantly higher ratio of LF/HF recorded during flight compared to pre-flight 

and post-flight conditions of 59 cadets of the Air Force Military Academy, in Deblin, 

Poland (Skibniewski et al., 2015).   

2.5.2 Respiratory (O2 / CO2) Metrics 

Development of the Aircrew Mounted Physiologic Sensor Suite (AMPSS) has 

been an ongoing effort by AFRL and the 711th Human Performance Wing (711 HPW) at 

Wright-Patterson AFB, OH.  The vision of AMPSS is to incorporate sensors on AFE 

equipment to allow real-time monitoring of breathing gas delivery and in-flight 

measurement of aviator respiratory parameters.  The sensor suite includes respiratory, 

aircraft breathing gas, and cabin environmental sensors.  Current models are compatible 

with existing gear, while the program end-state includes full integration into AFE and 

fighter-type aircraft.   

  Future benefits to the warfighter will be seen through a real-time monitoring of 

respiratory state, which will enhance training and mitigate risks associated with breathing 

gas delivery failure, pilot hypoxia, and cardiorespiratory stress.  Through the use of smart 

algorithms developed to monitor and assess pilot stress and performance, sensing could 

be integrated into aircraft warning/alerting systems.  Based on a perceived debilitated 

cardiorespiratory state, progressive levels of alerting could lead to operator augmentation, 

and ultimately automation intervention if a pilot became incapacitated. 

A previous AMPSS iteration 2.0 was used as part of a United States Air Force 

Test Pilot School (USAFTPS) 14B Test Management Project (TMP) named HAVE 
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BREATHLESS.  The design was intended to offer a minimally invasive means to capture 

real-time operator breathing state through a modification to the existing MBU-20/P flight 

mask (Schmitt, Makover, Elliott, McDonald, & Koeniguer, 2015). 

AMPSS 2.5 as seen in Figure 3, capitalized on much of the same hardware as 

AMPSS 2.0, which facilitated measurement and collection of subject oxygen (O2)/carbon 

dioxide (CO2) pressures and mass flow rates.  AMPSS 2.5 was used in Phase 1 of this 

research as well as the USAFTPS TMP HAVE PUFFIN tested by members of class 16B.

AMPSS 2.5 included minor modifications to reduced size and increase functionality.  All 

AMPSS models have been tested in support of research by the 711 HPW. 

 

Figure 3: AMPSS 2.5 Layout 

AMPSS 3.0 as seen in Figure 4 is a completely new unit from previous versions 

in an attempt to greatly decrease weight while increasing user comfort and system 

functionality.  The system is designed to collect partial pressure of oxygen, breathing 

flow volume and rate, pressure, temperature, humidity, cabin pressure and temperature, 

and acceleration.  The device runs on an internal 9V Lithium battery and stores data on a 
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micro SD card.  Hardware is mounted in line between the CRU-60/P regulator and the 

subject’s oxygen breathing hose.  AMPSS 3.0 was used in Phases 3 and 4 of this 

research. 

Figure 4: AMPSS 3.0 - Mounted in line with CRU-60/P regulator and oxygen hose 

2.5.3 Electroencephalography (EEG) / Forehead Oximetry 

EEG is a means of measuring brain activity from voltage amplitude between two 

electrodes placed on the scalp (Kropotov, 2009).  In 2009, the Operator Performance 

Laboratory (OPL) at the University of Iowa demonstrated that increased EEG activity 

showed a strong correlation to high workload levels experienced by pilots in a simulated 

close-air-support (CAS) scenario (Schnell et al., 2009).  Measured EEG frequencies not 

only increased with workload, but the wave pattern correlated with a moment of decision.  

A decrease in EEG amplitude during high workload frequency peak, indicates impaired 

decision-making (National Aeronautics and Space Administration, 1987).  Future 

research as part of the P2CP program will look to leverage and incorporate EEG 

capabilities into a real-time displayed operator state.     
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2.6 Operator Workload and Exertion 

2.6.1 Subjective Workload Measures 

Quantifying pilot workload and its effect on human performance has been a 

challenge for aviation researchers for years.  Workload is defined as the integrated 

physical and mental effort required to perform a specified pilot task (Hodgkinson, 1999).  

Subjective workload measures are typically gathered as self-reports using common scales 

such as the Bedford Workload Scale (BWS) (Roscoe & Ellis, 1990) or National 

Aeronautics and Space Administration Task Load Index (NASA-TLX) (Casner & Gore, 

2010).  The use of paired-comparisons such as the Analytic Hierarchy Process (AHP) and 

the Subjective Workload Dominance (SWORD) technique have identified different levels 

of workload between flight phases when other methods did not (North Atlantic Treat 

Organisation, 2005).  Although popular, subjective workload assessments lack unbiased 

procedures. 

Seen in Figure 5, the BWS offers simplicity for operators who follow a 

hierarchical decision tree to give a rating from 1 to 10.  This takes minimal time, which is 

an advantage if performing the assessment in flight.  The disadvantage of the BWS is the 

task must be completed before a rating can be assigned, and operator attention must be 

free to focus on paper or displays.  Additionally, as operator proficiency increases, they 

tend to skip the hierarchical tree and immediately generate a numerical score (Casner & 

Gore, 2010).  BWS was developed to be a “domain-specific” rating metric aimed towards 

capturing workload and cognitive strain only.  However, coupled effects can occur in 

tests involving physiologically demanding tasks (dependent on subject environment and 

task), and yield BWS scores that fail to capture solely workload. 
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Figure 5: Bedford Workload Scale (Roscoe & Ellis, 1990) 

The NASA-TLX offers a blend of six sub-scales, which capture: mental, physical, 

temporal demand, performance, frustration, and effort.  Since individual definitions of 

workload vary by placing different emphasis on these metrics, combining the sub-scales 

into a total weighted score accommodates the different ways of conceptualizing workload 

among subjects.  The NASA-TLX scale also allows verbal collection and can be done 

either mid-task or post-task.  However, collection can be time consuming and may affect 

operator performance if completed mid-task (Casner & Gore, 2010). 

2.6.2 Objective Workload Measures 

Objective workload measures involve some type of data collection done on the 

operator or their environment and can be broken down into three sub-classes: (1) process 

input, (2) performance, and (3) physiological.  First, process input metrics capture any 
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inputs performed by an operator to the system.  Examples of this include the 

displacement an operator moves a device, lever, knob, or flight control while attempting 

to track a specific objective.  Second, performance metrics capture outputs from the 

system.  Examples include operator ability to track a specific objective (airspeed, bank 

angle, altitude, or G) while minimizing errors between the intended versus actual output.  

Third, the following physiological metrics collect sensory data from the operator PC state 

and dynamic environment: ECG, EEG, COS, pulse oximetry, ocular response, galvanic 

skin response, and respiratory response (Engler et al., 2013).  Ideally, physiological 

workload metrics allow unobtrusive measurements to be taken from operators, 

eliminating the need for secondary tasks or verbal opinions.  Unfortunately, different 

individuals display varying physiological responses to workload, so no all-encompassing 

physiological index has been constructed yet (Casner & Gore, 2010).   

 Varying operator capabilities captured by the uniqueness of PC state may initially 

mask increased pilot workload.  However, once PC overload occurs, the result is 

degraded performance.  Quantifying any excess cognitive capacity of a pilot is 

challenging and requires attempting to measure workload via the aforementioned 

subjective and objective techniques. 

2.6.3 Borg Rating of Perceived Exertion (RPE) Scale 

Classification of effort ratings of humans at work is neither simple nor trivial.  Health 

professionals recognize the importance of understanding the correlation between patient 

physical working capacity and subsequent subjective symptoms and strain.  Perceived 

exertion is arguably the single best indicator of the degree of physical strain.  High 

correlations exist between perceived exertion and heart rates as well as peripheral factors 
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such as blood lactates.  In 1970, Borg constructed a Rating of Perceived Exertion (RPE) 

scale under the foundation that oxygen consumption and HR increase linearly with 

workload and exercise intensity.  The scale, which has been translated into many 

different languages, contains values ranging from 6 to 20 (notionally denoting heart rates 

ranging from 60 to 120 BPM).  A modified scale with ratio properties seen in Figure 6

below was amended to a range from 1 to 10 and is widely used today.  Of note, the Borg 

RPE scale is a “domain-specific” rating metric aimed towards capturing physiological 

strain only. 

Figure 6: Borg Rating of Perceived Exertion (RPE) Scale 

2.7 Heart Rate (HR) and Percent Heart Rate Reserve (%HRR) 

Biometrics such as HR, %HRR, and HRV have proven effective metrics for 

determining physiological activity and workload.  A human HR, measured in BPM by 

sensors that sample/record once per second, is the oldest physiological workload metric.  
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While a worthy parallel to physical activity, HR is only a fair correlate to mental activity. 

The HRV metric is defined as the difference in the time intervals between heart beats, 

irrespective of the number of BPM (Casner & Gore, 2010).  A Finnish Air Force study 

found that comparisons of HR and HRV can differentiate varying task demands and 

workload levels in situations where performance variations were negligible (Mansikka, 

Virtanen, Harris, & Simola, 2015).   

Flight test efforts supporting the F-22 Life Support Systems Task Force identified 

%HRR as a potential predictive indicator of exertional fatigue during the performance of 

high G maneuvers (F-22 Life Support System (LSS) Independent Analysis, 2012). 

%HRR is a constantly changing value based on current HR and defined on a percentage 

scale (0 to 100) as the amount of heart rate capacity that a subject is currently using.  The 

scale is individualized based on a specific subject’s maximum HR (HRmax) and resting 

HR (HRrest).  A %HRR value of 90 would indicate that a subject was using 90% of their 

HR capacity and probably point to a noticeably exerted subject.  Specifically defined by 

Equation 1 below, %HRR is defined as the percent difference between current HR 

capacity over total HR capacity. 

     (1) 

Correlations have been drawn by the U.S. Department of Health and Human 

Services between %HRR, workout intensity level, and Borg RPE.  Additionally, %HRR 

has been correlated to VO2, which is discussed further in this chapter.  The RPE scores 

listed in Figure 7 below, taken from the Physical Activity and Health: Report of the 

Surgeon General in 1996, are in accordance with the traditional 6 to 20 Borg scale, 

notionally aligned with HR values of 60 to 200 BPM discussed previously in this chapter. 
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Focusing on the first three columns below, very light workout intensity and RPE scores 

below 10 traditionally correlate to %HRR and VO2 values of less than 20%.  As intensity 

increases to very hard and maximal intensity, %HRR/VO2 values increase beyond 85% 

correlating to RPE scores of 17 to 20 (170 to 200 BPM).  While these relationships are 

not always steadfast, they do provide a strong link between %HRR, Borg RPE, and 

workout intensity (Physical Activity and Health: A Report of the Surgeon General, 1996). 

 

Figure 7: %HRR and VO2 Indices By Workout Intensity 
 (Physical Activity and Health: A Report of the Surgeon General, 1996) 

2.8 Exercise, Energy Transfer, and the Oxygen Transport System 

Physical activity generates a great demand for energy transfer in the body.  

Immediate energy, at the onset of a power lift, brisk walk, or sprint is generated almost 

exclusively from high-energy phosphate sources like adenosine triphosphate (ATP) 

(McArdle, Katch, & Katch, 2015).  After initial consumption, short duration energy 
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requires immediate resynthesis of depleted ATP.  This process is fueled by anaerobic 

glycolysis, stored muscle glycogen breakdown, and results in lactic acid accumulation in 

blood and muscles.  During light to moderate activity, lactate disappearance matches 

formation and most ATP energy is still generated from oxygenated hydrogen.  As 

exercise intensity increases lactic acid, which accumulates faster in untrained athletes 

compared to trained athletes, builds ultimately generating a localized “tissue hypoxia”.  

An average human shows an exponential lactic acid increase around 50-55% maximal 

aerobic capacity (McArdle et al., 2015).    

 Energy transfer for long-term endurance is predominately a function of aerobic 

capacity and lactate removal rate, which is dominated by the oxygen transport system.  

The oxygen transport system consists of pulmonary ventilation, hemoglobin 

concentration, cardiac output, peripheral blood flow, and cellular metabolism.  Individual 

VO2 is the rate oxygen is consumed by volume, measured in mL per kg per minute.  This 

metric captures the ability to supply, transport, deliver, and use oxygen.  Endurance 

athletes can perform at a steady-state of 80-90% of their maximal aerobic capacity 

predominately due to superior rate of lactate removal and VO2 (McArdle et al., 2015).   

2.8.1 Maximal Oxygen Consumption (VO2max) 

Maximal oxygen consumption (VO2max), or maximal oxygen uptake, is reached in 

extreme high intensity exercise when oxygen consumption plateaus and maximal aerobic 

power is attained.   This metric provides a quantitative measure for the capacity for 

aerobic ATP resynthesis and indicates how well an athlete can maintain intense 

physiological activity.  A high VO2max demands integrated high-level response of the 

oxygen transport system.   
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2.9 Chapter Summary 

This chapter set the necessary framework for this research by covering a review 

of literature spanning fields of human physiology, human-machine systems, PC 

biosensors, workload, and human performance, and biofeedback.  First, definitions for 

operator PC state, compensation, performance, and enhancement were explained to 

facilitate a better understanding of an MDOC system.  Next, capabilities and limitations 

to operator PC measurements in flight were discussed.  Third, both subjective and 

objective measures for workload were addressed and critiqued.  Fourth, the importance of 

HR, HRV, and %HRR was highlighted as a proven and effective measure of operator 

physiological workload levels.  Lastly, a brief description of the oxygen transport system 

was provided and VO2max was defined.  Chapter 3 explains the materials, equipment, and 

experimental design supporting the research methodology. 
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3. Research Methodology 

3.1 Chapter Introduction 

This chapter will describe the primary materials, equipment, data collection 

processes, and overall methodology used to achieve research objectives.  The first section 

of this chapter highlights the theory as well as novelty of this research, while reaffirming 

basic terminology introduced in Chapter 2.  The second section identifies specific test 

objectives (STOs) and measures of performance (MOPs), which helped form the 

cornerstone of the research methodology.  Third, the system under test (SUT) and test 

roles and responsibilities are outlined.  Fourth, each phase is thoroughly detailed and 

broken down by materials and equipment as well as test and evaluation (T&E) 

procedures.  Lastly, testing resources are listed and limitations and constraints are 

identified which impacted test conduct. 

3.2 Theory 

This research spans fields of human physiology, biofeedback, human-machine 

systems, PC sensors, workload, and human performance.  An operator PC state is 

affected by both short term (nutrition/hydration, sleep, currency/training) and long term 

(mental/emotional wellness, experience, physical fitness/recovery) influences.  When 

combined with operator compensation methods and mission-driven changes to the 

operational environmental, performance is the result.  In order to enhance individual 

awareness of PC state, biofeedback tools must be in place to measure PC changes in 

operators.  High performance aircraft cockpits present many challenges in accurately 

measuring operator PC fluctuations.  The novelty of this research leveraged accurate PC 

measurements, while focusing solely on cardiac biometrics.  Through a sequential 
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approach that commenced with basic hardware testing and culminated with airborne 

augmentation, this research was targeted specifically at enhancing pilots in high 

performance aircraft by providing a valid real-time heart rate (HR) biofeedback solution 

to the operator.  The following research question was the driving force behind this 

methodology: 

3.3 Specific Test Objectives (STOs) and Measures of Performance (MOPs) 

This research was conducted in four primary phases as seen in Table 2 below and 

outlined in the following sections of this chapter.   

Table 2: Specific Test Objectives (STOs) and Measures of Performance (MOPs) 
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Materials, equipment, data collection, and evaluation methods varied based on 

phase and STOs, but predominantly provided consistency between phases.  The T&E was 

structured using a build-up approach to testing and is meant to directly support STOs. 

3.4 System Under Test (SUT) 

The primary SUT was a human subject.  The test subjects for Phase 2 laboratory

maximal oxygen consumption rate (VO2max) testing ran on a treadmill.  The test subject 

for all Phase 1 and Phase 3 centrifuge testing was the sole occupant of the centrifuge 

gondola.  The test subject for all flight tests was the Test Pilot (TP) and Aircraft 

Commander (AC) seated in the front cockpit (FCP).  A complete picture of all test items 

worn by the test subjects is illustrated in Figures 8 and 9 below.  Additionally, each 

hardware piece of the system under test is further described in the following sections, 

broken down by phase. 

 

Figure 8: Phase 1 Configuration  Phase 2 Configuration 
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Figure 9: Phase 3 and 4 Configuration 

3.5 Test Roles and Responsibilities 

At a minimum, execution of tests required a test subject, Test Director (TD), and

Test Conductor (TC). 

3.5.1 Test Subject 

The test subject wore the combined Portable Electrocardiogram Unit (PECGU)-

GETAC system and was the individual undergoing physiological monitoring for a 

particular test (flight or centrifuge). During centrifuge testing the test subject was the sole 

occupant of the centrifuge gondola.  During flight test the test subject was also the TP 

and AC. 



   33 

3.5.2 Test Director 

The TD was located in the United States Air Force Test Pilot School (USAFTPS) 

Control Room during flight test and Wyle control room during centrifuge testing.  The 

TD was responsible for the overall safe, effective, and efficient execution of the test.  

Responsibilities included briefing the safety plan, communications plan, test cards, 

overall test conduct, and debrief.  The TD was the primary team member responsible for 

timing test runs and rest periods, G-tracking, and administering cognitive testing to the 

test subject over intercom from the control room. 

3.5.3 Test Conductor 

The TC was responsible for timing individual cognitive tests, recording results, 

and overall test conduct of the mission during phases and leading up to the test runs.  This 

provided additional redundancy of data collection for the TD.  During flight test, the TC 

occupied the RCP.  During centrifuge tests the TC sat next to the TD in the control room. 

3.5.4 Aircraft Commander (AC) / Test Pilot (TP) 

The TP was the AC and responsible for safe test execution, and correct 

performance of the flight test techniques (FTTs) used during flight.  The TP briefed sortie 

administrative items and debriefed areas related to flight safety, flight test execution, and 

lessons learned.  Additional responsibilities included general airmanship, compliance 

with all applicable guidance and directives, and data collection in the form of surveys and 

comments.  This role was only performed during flight test. 

All team members (in flight or control room) were responsible for monitoring of 

the test subject for signs of excessive fatigue or adverse physiological symptoms.  Any 
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team member could initiate an abort, cancel further testing, and recommend return to 

base (RTB). 

3.6 Phase 1 (C1): Initial Hardware and Subject Centrifuge Trials 

Phase 1 was supported by the aid of KBRWyle Science, Technology and 

Engineering Group (KBRWyle) at Brooks City-Base (BCB) in San Antonio, TX from 1 

to 4 November 2016.  Seven test subjects from the High-G Acceleration Human Subject 

Panel (HGAHSP) at BCB (referred to as Subjects 1 through 7) were used to evaluate 

several initial proposed HR collection hardware configurations and assess the planned 

test profile.  During trials subjects were required to participate in tracking tasks that 

consisted of manipulating a flight control stick while tracking a target in a flight 

simulator.  A detailed description of the tracking task is provided in the Phase 1 T&E 

section below. 

  HGAHSP subjects are volunteer members that participate in monthly centrifuge 

testing.  Level of experience varies.  Centrifuge exposure and G proficiency is greater 

than the average high performance aircraft operator, but tracking task proficiency is 

lower than the average operator.  HGAHSP subjects were only used in Phase 1 testing 

and were not part of USAFTPS 17A HAVE HOPE Test Management Project (TMP) 

team. 

3.6.1 Phase 1 Materials and Equipment 

All subjects were outfitted with aircrew flight equipment (AFE) gear consisting of 

the following: flight suit, HGU-55/P flight helmet, MBU-20/P oxygen mask, and CSU-

23P Advanced Technology Anti-G Suit (ATAGS).  Additionally, KBRWyle ECG leads 
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were attached to the test subject chest to provide a “truth source” of HR data.  A detailed 

description of the hardware used is included in the following sections. 

3.6.1.1 Portable Electrocardiogram Unit (PECGU) 

A custom designed Portable Electrocardiogram Unit (PECGU) prototype with 

associated hardware and software developed by the 711 HPW was the primary hardware 

under test for this phase.  The PECGU seen in Figure 10, incorporating the Analog 

Devices ADAS1000 ECG board, is a multiple channel system for measuring ECG, pace, 

and respiration signals, with programmable digital signal processing filters for noise 

reduction.  The system is used in a 5-lead ECG configuration with adhesive electrodes 

and sampled at 2 kHz.  The ECG signal is packaged by a Systems Demonstration 

Platform with a SDP-B processor and outputs using a USB 2.0 cable.  The system was 

not capable of recording and storing ECG data without further modification.  For the 

purposes of this test, ECG data were used to measure raw HR for calculation and display 

of percentage heart rate reserve (%HRR) in future phases. 

Figure 10: Portable Electrocardiogram Unit (PECGU) 
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3.6.1.2 AMPSS 2.5 

The Aircrew Mounted Physiologic Sensor Suite (AMPSS) 2.5, a suite of sensors 

installed to the MBU–20/P aircrew mask and oxygen delivery hose, was used to measure 

subject breathing airflow rate and pressure changes.  The vision for this technology was 

to provide real–time, in–flight monitoring of pilot physiology.  Seen in Figure 11 below, 

AMPSS 2.5 served as an aerospace research tool in centrifuge, altitude chamber and 

aircraft flight environments (Thorn, Bartee, Buell, Goh, & Mastracchio, 2017).  The 

AMPSS 2.5 system consisted of a MBU–20/P modified mask exhale valve and an in–line 

inhalation sensor.  Further information on AMPSS and prior testing is outlined in Chapter 

2. 

 

Figure 11: AMPSS 2.5 - Modification to MBU-20/P Flight Mask 

3.6.1.3 Zephyr BioHarness 3.0 

A Zephyr BioHarness 3.0 (Zephyr) chest strap was used to measure subject HR, 

ECG, and breathing rate.  The BioHarness 3.0 is a physiological monitoring telemetry 

device consisting of a chest strap and an electronics module that attaches to the strap.  

The device stores and transmits vital sign data including ECG, heart rate, respiration rate, 

body orientation and activity.  Seen in Figure 12 below, the BioHarness 3.0 provides a 
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facility to detect and transmit single lead ECG signals to be received by USB qualified 

ECG instruments (Zephyr, 2012). 

Figure 12: Zephyr BioHarness 3.0 HR monitor chest strap 

3.6.1.4 Elbit Systems Canary Pilot Health Monitoring System 

The Elbit Systems Canary Pilot Health Monitoring System (Elbit) seen in Figure 

13 below was used to measure subject HR.  The Elbit introduced a miniature sensing 

platform to the standard HGU-55P helmet shell to produce an integrated, non–invasive 

cardiovascular monitoring system.  This miniature sensing platform was integrated in the 

helmet’s forehead edge roll (covering forehead) and included several electro-optic

sensors that produced a signal derived from pulsatile cerebral blood flow.  A Miniature 

Dynamic Light Scattering (MDLS) sensor measured cerebral blood perfusion and HR

(Thorn et al., 2017).  
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Figure 13: Elbit Layout 

3.6.2 Phase 1 Test and Evaluation 

As highlighted in Table 2, the STOs for Phase 1 were focused around assessing 

various hardware configurations for future testing and measuring subject cardio response, 

workload levels, and tracking performance.  The centrifuge test profile in Table 3 below

consisting of both loaded (high-G) and non-loaded (low-G) events directly supported

these STOs. 

Table 3: Phase 1 Centrifuge Profile 

Subjects began the profile at 1.4 Gs, which will subsequently be referred to as 

low-G because it corresponds to the minimum speed at which a test can be conducted.  

Once the first low-G event began subjects were required to perform a longitudinal

tracking task on X-Plane 10 simulator.  With a display mounted inside the centrifuge 

chamber, subjects had direct control of a gun cross on the display via a side-mounted 
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control stick.  Subjects input longitudinal stick forces to hold the displayed gun sight 

symbol over a target aircraft.  Target aircraft drift was generated by a series of sine wave 

disturbances at randomized frequencies that manifested in lead and lag on the display 

requiring subjects to continuously make small fine-motor corrections.  A sample of 

disturbed tracking and the X-Plane simulator display is shown in Figure 14 below.  The 

three graphs are an example of three different profiles with random disturbances injected.  

KBRWyle used these options during Phase 1 and each graph shows a different random 

profile the subjects attempted to track.  

After 50 seconds of tracking, subjects had 10 seconds to provide a subjective 

scoring of perceived workload from 1 to 10 by using the Bedford Workload Scale 

(BWS).  A score of 1 corresponds to insignificant workload and a score of 10 represents 

extreme workload in which tasks are abandoned.  A discussion of BWS is provided in 

Chapter 2.   

After 60 seconds total, the low-G event was terminated and a high-G event 

commenced for 30 seconds.  During loaded events subjects had no control of G force and 

no tracking task was required.  Once the high-G event was terminated the profile repeated 

in accordance with Table 3 until the last low-G event and BWS was completed.  Tracking 

task performance was quantified as a percentage of time on target (%TOT) and a root 

mean square (RMS) error score. 
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Figure 14: Phase 1 X-Plane Simulator Display with Tracking Task 

3.7 Phase 2 (L1): Laboratory VO2max Testing 

Phase 2 testing was conducted from 13 to 14 July 2017 at the Physical Therapy 

clinic at Edwards AFB, CA by trained research team members from the 412th Medical 

Group.  Test administrators were certified to administer a VO2max test.  Five test subjects 

(referred to as Subjects A through E) consisted of members of the USAFTPS 17A HAVE 

HOPE TMP team.  Subjects performed a VO2max test on a treadmill to determine their 

exercise-base maximum heart rate (HRmax).



   41 

3.7.1 Phase 2 Materials and Equipment 

Five ECG adhesive electrodes were placed along subject chest cavity to measure 

HR.  A standard treadmill was used to conduct the test.  A detailed description of 

additional hardware used is included in the following sections. 

3.7.1.1 Portable Metabolic Unit 

A Portable Metabolic Unit (PMU) similar to Figure 15 below was used during 

Phase 2 testing to determine when maximum oxygen uptake had plateaued.  PMUs 

provide precise real-time measurements of human metabolic functions.  Accurate 

measurements can be obtained for inhaled and exhaled oxygen and carbon dioxide, as 

well as heart rate, temperature, and gas pressure. 

 

Figure 15: Portable Metabolic Unit 

3.7.1.2 Garmin Fenix 3 Sapphire HR Monitor Watch (Garmin) 

The Garmin Fenix 3 Sapphire HR Monitor Watch (Garmin), seen in Figure 16 

below and used in Phase 2, featured a multisport training capability and a built-in optical 

HR sensor.  The HR sensor rested flush with the user’s wrist and could monitor, record, 

and display real-time HR data.  Additionally, a customized colored-coded HR scale based 

on resting and maximum HR was displayed during high intensity workouts.  Zone 
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settings were customizable, but default settings used for this research can be seen in 

Figure 16 below and included: Zone 1 (0-60%), Zone 2 (60-70%), Zone 3 (70-79%), 

Zone 4 (79-90%), and Zone 5 (90-100%). 

Figure 16: Garmin Fenix 3 Sapphire HR Monitor Watch (Garmin) 

3.7.2 Phase 2 Test and Evaluation 

As seen in Table 2, the primary STO for Phase 2 was to determine a baseline 

operator VO2max, peak physiologic output, and corresponding exercise-induced HRmax for 

each subject.  

The VO2max protocol adhered to the American College of Sports Medicine 

guidelines.  Subjects were instrumented with a PMU containing a HR monitor.  An 

appropriate jogging or running speed was determined by the test administrator and 

participant based on the subject’s aerobic training, fitness, and comfort.  This speed was 

maintained throughout the duration of the test. Participants were provided with a three-

minute warm-up at a slower self-selected jogging speed.  Once the test began, speed was 

increased to the pre-determined speed and the treadmill incline was increased by 2% 

every two minutes.  Cardiorespiratory and metabolic variables were measured and 
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recorded continuously.  Borg rating of perceived exertion (RPE) for the subject was 

recorded every two minutes prior to each inclination increase.  The test was continued 

until the participant reached two of the following VO2max criteria as outlined by the 

American College of Sports Medicine, Guidelines for Exercise Testing, 9th edition: 

Plateau in VO2 despite an increase in workload, Respiratory Exchange Ratio (RER) ≥ 

1.1, Borg RPE score ≥ 9 (1-10 scale), and/or HR within 10 BPM of calculated age-

predicted (220 BPM – age) HRmax.  It was also made clear to participants that they had 

the option to self-terminate the test at any time.  Upon reaching termination criteria, the 

participant would straddle the treadmill as speed was decreased to a slow, comfortable 

walking speed and incline was returned to level (0%).  Recovery lasted at least five 

minutes and was extended as required until achieving participant pre-test HR value.  The 

HRmax was recorded as the exercise-based HRmax. 

Prior to the VO2max test, each test subject wore the Garmin for one week. Test 

subjects recorded their HR immediately before bedtime and upon awakening to use as a 

measure of resting HR (HRrest). 

Test subject HRmax and HRrest was used to calculate a personalized %HRR that 

reflected low (<50%), moderate (50-85%), and high (>85%) cardiovascular demands 

from physical effort.  The individualized low, moderate, and high classifications were 

incorporated into software on the PECGU and displayed in a %HRR biofeedback gauge 

for Phases 3 and 4. 

3.8 Phase 3 (C2): Training and Build-Up Approach Centrifuge Testing 

Phase 3 testing was conducted from 14 to 16 August 2017 with the support of 

KBRWyle at BCB.  Subjects A through E from the USAFTPS 17A HAVE HOPE TMP 
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team underwent initial centrifuge training and conducted data collection as a build-up 

approach for future flight test.  

3.8.1 Phase 3 Materials and Equipment 

Subjects used the same AFE gear, X-Plane 10 flight simulator, and PECGU as 

described in Phase 1.  Additionally, as described in Phase 2, the Garmin was worn as an 

additional data source and backup data collection in the event PECGU HR data were lost 

or the hardware became inoperative.  There were some expected noise and system 

inaccuracies with measuring HR through an optical wrist-mounted sensor instead of 

traditional ECG leads.  A detailed description of new hardware introduced in this phase is 

included in the following sections.   

3.8.1.1 GETAC T800 Tablet 

The PECGU was connected to a GETAC T800 tablet with a graphical user 

interface (GUI) biofeedback display.  The GETAC tablet seen in Figure 20 in the Phase 4 

section, was a fully rugged tablet with a Windows 10 operating system, 8.1-inch display, 

and touchscreen capability.  The project used a wired-only application and all wireless 

capability was disabled.  The tablet had already passed appropriate airworthiness testing 

and been used previously in both HAVE CLASSI and HAVE SEXTANT TMPs in F-

16Ds at Edwards AFB.  The left side of the biofeedback display contained real-time raw 

ECG outputs.  During centrifuge testing, the right side of the display contained a real-

time HR output of the subject in beats per minute (BPM).  

For the purposes of this Phase 3 testing, PECGU data were used to display just 

raw HR in BPM on the GETAC T800 tablet using SDP-B software and a built-in GUI.  
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Modifications were made after Phase 3 and before Phase 4 to output %HRR on the 

biofeedback display.  

3.8.1.2 Thigh Holster 

A GETAC holster was worn around the thigh and G-suit of the test subject with a 

custom mount to allow for real-time viewing as shown in Figure 17 below.  The holster 

had already passed appropriate airworthiness testing and been used in previous TMPs. 

Figure 17: GETAC Holster 

3.8.1.3 AMPSS 3.0 

AMPSS 3.0 as seen in Figure 18 below is a completely new unit from previous 

versions in an attempt to greatly decrease weight while increasing user comfort and 

system functionality.  During this testing, AMPSS collected partial pressure of oxygen, 

breathing flow volume and rate, pressure, temperature, humidity, cabin pressure and 

temperature, and acceleration.  The device ran on an internal 9V Lithium battery and 

stored data on a micro SD card.  Hardware mounted in line between the CRU-60/P 

regulator and the subject’s oxygen breathing hose.  The AMPSS system was tested as 

part of an ongoing effort to understand physiological effects and stresses on the operator.  
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During this research, AMPSS testing was conducted during centrifuge testing only.  The 

system was not incorporated into the biofeedback display. 

 

Figure 18: AMPSS 3.0 

3.8.2 Phase 3 Test and Evaluation 

Phases 3 and 4 were combined and reflect directly back to the overall research 

question in how real-time biofeedback can enhance awareness, decision-making, and 

performance.  The purpose of Phase 3 centrifuge testing was two-fold.  First, as part of a 

risk reduction and build-up approach test plan, high-G exposure and training was 

conducted to provide team members with the necessary qualifications to conduct high-G 

flight test.  Second, centrifuge testing provided data in direct support of STOs 3 through 

7. 

For all profiles, the centrifuge accelerated and decelerated with an onset rate as 

required to arrive at the next required G-level over a 2 second transition period, to mirror 

flight test profile execution.  The ATAGS pressure was turned on, positive pressure 

breathing (PPB) was on, and participants performed an anti-G straining maneuver 
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(AGSM) as individually needed.  Termination criteria for all of the centrifuge profiles 

included completion of the profile, maximum light loss criteria (50% central light loss or 

100% peripheral light loss), exhaustion, or if anyone on the research team stopped the 

test.  Special care was made to ensure all testing was in accordance with the Institutional 

Review Board (IRB) and subjects were not coerced into testing.  Each test subject only 

completed one centrifuge sortie per day.   

3.8.2.1 Centrifuge Test Constraints 

This paragraph is a prelude to the Phase 4 T&E section and specifically describes 

the unique differences to centrifuge execution compared to flight test execution.  Due to 

centrifuge system constraints, test subjects were not in direct control of their current G 

state.  A preprogramed test profile was run in the centrifuge that mirrored flight test 

execution.  Test subjects were “along for the ride” as the centrifuge stepped through a 

series of low-G and high-G planned individual test points and test sets.  An example test 

set is described in Table 4 below and mirrors the same test set for flight test in Phase 4. 

Table 4: Sample Test Set (Centrifuge/Flight) 

 

Centrifuge G-tracking was conducted with the same X-plane 10 simulator used in 

Phase 1.  However, Phase 3 tracking was different from Phase 1 in that subjects were 

performing the task while under G during the “simulated basic fighter maneuvers (BFM)” 
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portion of the test set.  Furthermore, the centrifuge tracking task differed to the G-

tracking in flight since they were not the same task and total error should not be directly 

compared. 

3.8.2.2 Data Collection Methods and Conditions 

HR data was measured from two test equipment sources (PECGU and Garmin), 

as well a standard ECG HR monitor provided by KBRWyle and considered a “truth 

source” HR value.  KBRWyle HR data was recorded during all centrifuge tests and 

showed time delineated HR for both with and without biofeedback tests.  Since the 

PECGU could not record and store data, PECGU data was only recorded during with 

biofeedback tests via the test subjects verbalizing values over intercom.  KBRWyle HR 

was the primary source of HR data for post-flight analysis.  The remainder of primary 

Phase 3 T&E, to include cognitive assessments and the scoring algorithm is described in 

the Phase 4 T&E section later in this chapter. 

3.8.2.3 AMPSS 3.0 Data Collection 

AMPSS 3.0 testing in support of STO 8 was conducted on a separate day from primary 

Phase 3 data collection supporting STOs 3 through 7.  Two test subjects wore the 

AMPSS 3.0, each completing one centrifuge test.  The subject configuration during 

AMPSS data collection consisted of no other Phase 3 test hardware and can be seen in 

Figure 19 below.  Tracking task performance was quantified as a %TOT and RMS error 

score.   



 49

 

Figure 19: AMPSS 3.0 Data Collection Configuration (Centrifuge Only) 

3.9 Phase 4 (F1): Flight Test 

Phase 4 testing was conducted from 5 to 18 September 2017 in the R-2508 

complex at Edwards AFB, CA with the aid of USAFTPS staff, technical support, aircraft, 

and facilities.  Subjects A through E from the USAFTPS 17A HAVE HOPE TMP team 

conducted flight test using Data Acquisition System (DAS) equipped F-16DM aircraft, 

tail numbers 87-0391 and 90-0797.  A total of 13 test sorties for a total of 7.4 hours were 

flown. 

3.9.1 Phase 4 Materials and Equipment 

Predominantly, Phase 4 materials and equipment mirrored those used in Phase 3.  

Subjects used the same AFE gear, PECGU, GETAC T800 biofeedback display, and 

Garmin as described in previous phases.  No new hardware was introduced in this phase.  

Slight modifications were made to existing hardware. 
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As originally intended, after minor modifications to the biofeedback display after 

Phase 3, the right side of the display presented a subject-specific %HRR value based on 

Equation 1.  Hence, for the purposes of this phase ECG data were used derive raw HR, 

convert to %HRR, and display %HRR biofeedback on the GETAC T800 tablet using 

SDP-B software and a built-in GUI.  Seen in Figure 20 below, a scale of %HRR 

displayed from 0-100% was presented so subjects could view %HRR trends and relative 

magnitude.  Together the PECGU and GETAC display contributed to the biofeedback 

capability evaluated by the test subject during flight test.  

 

Figure 20: Subject-Specific %HRR Biofeedback Display 

3.9.2 Phase 4 Test and Evaluation 

Phases 3 and 4 were combined and reflect directly back to the overall research 

question in how real-time biofeedback can enhance awareness, decision-making, and 

performance.  Flight profiles mirrored centrifuge testing through a series of high-G FTTs, 
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followed by several cognitive assessments.  Subjects were augmented with a real-time 

%HHR biofeedback display to aid in assessing PC state, decision making, and G-tracking 

performance.  

3.9.2.1 Data Collection Methods and Conditions 

HR data was measured from two sources (PECGU and Garmin).  The PECGU 

was the primary source of %HRR data fed to the GETAC for real-time biofeedback 

display.  The Garmin was the only recorded HR data source for post-flight analysis. 

3.9.2.2 Single Test Set Description 

The basic FTT was defined as one test set, which is made up of 9 test points.  At 

the commencement of a test set the test subject maneuvered to a specified G at maximum 

G onset rate for 10 seconds.  Subsequently, the subject would modulate stick force to 

continue flying a series of “peak and valley” test points intended to simulate a (BFM) 

engagement.  In total, each test set consisted of 9 test points, 10 seconds in duration each.  

Between test points, a 2 second transition period was used for the test subject to adjust 

back stick pressure and recapture the next desired G point.  Eight transitions occurred and 

in total a test set lasted 106 seconds (90 seconds + 16 seconds of transition time) in 

duration and consisted of the test subject executing a 6-5-3-8-5-3-8-5-3 +G series.   

3.9.2.3 Complete Flight Profile 

A single flight or centrifuge test consisted of 4 fully completed test sets.  Figure 

21 below highlights an entire flight profile.  Figure 22 portrays a detailed description of 

the PC assessments a subject endured during a single test set.  A combination of these 

two figures can also be found in Appendix A. 
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Figure 21: Complete Flight/Centrifuge Profile 

Figure 22: Single Test Set for Centrifuge/Flight (FTT & Cognitive Evaluation)

When biofeedback was provided, test subjects monitored their %HRR on the 

GETAC display at the termination of high-G maneuvering and beginning of the rest 
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period.  Test subjects would verbally acknowledge their %HRR and then monitor as 

necessary throughout the rest period in order to assist with the rest time duration decision.  

Prior to each successive test set execution, a timed recording was started and played over 

VHF radio which contained a 6 second lead in to test set execution.  This recording 

verbally stepped the test subject through each test point and eliminated any variance in 

timing for test sets. 

The TD started and stopped timing at the hack specified on the recording.  The 

TC recorded total rest time between the previous test set termination and next test set 

execution.  The control room team monitored and recorded all time splits for the test 

subject to complete cognitive assessments described in the following sections. 

3.9.2.4 Borg Rating of Perceived Exertion (RPE) Score 

Immediately following the high-G portion of the test set (before beginning 

cognitive evaluations) test subjects reported their Borg RPE Score using the same 

modified Borg scale (1-10) that was used during Phase 2 laboratory VO2max testing.  A 

full-page version was provided in the test subject flight cards.  Additional information 

and a sample scale of the Borg RPE can be found in Chapter 2. 

3.9.2.5 Randomized Code 

After Borg RPE was reported, subjects began cognitive evaluations.  Prior to the 

beginning of each test set, the test subject had been directed to memorize a randomized 

code, five items in length, containing names of shapes, colors, and numbers (e.g., blue, 

circle, seven, three, five) as seen in Figure 23 below.  The code was randomly ordered, 

with a unique code provided each time.  After the Borg score was reported, the TD 

instructed the test subject to recall the randomized code.  The TD recorded the accuracy 
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of the response and the total completion time for the recall task, both contributing to the 

subject cognitive scores for that test set.  This task assessed short-term memory recall and 

was operationally representative to tasks such as memorizing frequencies, map objects, 

and other mission parameters. 

Figure 23: Sample Randomized Code 

Scoring was based on time to recall and correctly recalled items.  Time was 

scored as one penalty point per second to respond.  Response timing began when 

prompted for the answer and ended when the subject stated the last item or verbalized 

they could not recall any more items. 

3.9.2.6 Stroop Task 

After completion of the randomized code recall, the test subject would turn to a 

test card as shown Table 5 below.  The Stroop cognitive task consisted of correctly 

verbalizing the color of the printed word, not the color being named by the word itself.  A 

follow-up (opposite) Stroop cognitive task was then given in which the subject verbalized 

the color being named by the word.   In both tests the subject would be given a number 

indicating from which line to begin reading and did not know which type of Stroop 

would be requested first.  Once the number was given, the subject was scored on the time 

to complete all six words (Example: Line 16 words, in Table 5 below: purple blue green 

yellow green red) as well as accuracy of the read back.  This task assessed selective 

attention and mental flexibility.  Scoring was based on time to answer and number of

correctly interpreted colors.  Time was scored as one penalty point per second to respond.  
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Response timing began when prompted for the answer and ended when the subject stated 

the last item. 

Table 5: Stroop Task 

3.9.2.7 Operational Procedure Assessment (Ops Check) 

Upon completion of the Stroop task, the test subject would perform an in-flight 

Operational Procedure Assessment (Ops Check) check from memory in accordance with 

1F-16CM-1.  Subjects did not have a copy of the checklist readily available to read.  The

check is shown in Table 6 below. 

Table 6: F-16DM In-Flight Operational Check 
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The test subject read back numbers for total fuel quantity, cockpit pressure, 

engine RPM, and hydraulic system A/B.  The TD recorded the time required for the test 

subject to complete the procedure and noted if any steps were omitted.  This task assessed 

subject long-term memory recall and was operationally representative of typical 

operational tasks completed during flight phases. 

Scoring was based on time to perform the ops check and correctly executing all 

steps.  One penalty point was applied for each incorrect step.  Time was scored as one 

penalty point per second to complete the checklist.  Response timing began when the 

subject began verbalizing procedures and ended when the subject stated the last item.  

3.9.2.8 Scoring Algorithm 

TDs were responsible for ensuring a minimum of one-minute rest was 

accomplished at less than 3 G between each test set.  Borg score and cognitive 

assessments were accomplished during this time.  After the 60-second minimum rest 

time, the test subject was penalized 0.1 points for each second of rest in excess of the 60 

second minimum.  If at any point in the sortie, the TD, TC, or test subject believed that 

further testing was unwarranted due to excessive crew fatigue, light-loss, or physiological 

impairment, the crew would cease testing and return to base. 

 After the four test sets were accomplished, the TD tallied a score based on 

accuracy of the G maintained and time to complete the full set of four test sets.  Scores 

were calculated based on risk/reward system by accuracy of G-tracking performance, 

offering less penalty for successfully maintaining precise G within specified tolerances, 

while minimizing rest time.  Poor G-tracking performance yielded more penalty points 

against the total score; therefore, the test subject was encouraged to strategize their rest 
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time taking into account their level of fatigue and predicted performance.  In-flight 

augmentation through %HRR biofeedback was used by the test subject to aid in assessing 

PC state, decision-making (rest time), and G-tracking performance.  

A basic summary of the scoring algorithm is shown below: 

G-Tracking Error: 1+ (Gs (tenths) outside tolerance ± 0.2 Gs) * (time exceeded) 

Time Penalty Error: 1+ (Time (in seconds) exceeding 60 sec (min rest time)) * 0.1 

Test Set Error Score: G-Tracking Error * Time Penalty 

Total Error Score: Test set 1 + Test set 2 + Test set 3 + Test set 4  

Lower scores were an indicator of good G-tracking performance and/or less rest 

time.  Higher scores signified degraded performance and/or longer rest times.  Ideally, the 

weighting algorithm would have been extensively vetted from sample G-tracking errors 

and time penalties to ensure correct correlations were made of overall risk/reward 

performance.  Due to testing time constraints, no prior analysis was conducted of the 

scoring algorithm to determine if desired characteristics were weighted appropriately.    

3.10 Testing Resources 

3.10.1 Modeling and Simulation 

Flight profile development and pilot proficiency training was accomplished in the 

USAFTPS F-16 Unit Training Device (UTD).  The UTD is a very basic F-16 simulator 

with a single color screen looking through the Heads-Up-Display (HUD).  The cockpit 

has all the same switches, throttle, control stick, and displays as the aircraft.  The UTD is 

a decent avionics trainer with the ability to practice specific test profiles to identify entry 

airspeed and altitude parameters.   
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Additionally, PECGU and GETAC familiarization, AFE validation, F-16 high-G 

qualification, practice profile exposure, and initial data collection was accomplished as a 

buildup in the centrifuge at BCB, Texas. 

3.10.2 Test Range/Environment 

Centrifuge testing was accomplished at Brooks City-Base, Texas with the gondola 

set to an F-16 configuration to include a 30-degree tilt back seat angle and side stick 

mount.  All airborne testing was accomplished at Edwards AFB, CA and flown within the 

R-2508 complex in day Visual Meteorological Conditions (VMC).   

3.10.3 Test Aircraft 

The test aircraft for all flight test sorties was a DAS equipped F-16DM, tail 

numbers 87-0391 and 90-0797, with a 9G compatible configuration. The Automated 

Ground Collision Avoidance System (AGCAS) was noted as “highly desirable” by the 

safety review board (SRB) but not required for flight test.  The F-16DM was a tandem, 

single engine fighter aircraft as shown in Figure 24. 
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Figure 24: F-16DM 3-View 

3.11 Limitations and Constraints 

The combined PECGU-GETAC system lacked data recording capability to 

measure and save subject %HRR data to the GETAC.  As a mitigating procedure, test 

subjects wore the Garmin with incorporated optical wrist-mounted HR sensor.  The 

Garmin stored HR data vs. time in a graphical format.  Additionally, during sorties in 
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which biofeedback was incorporated, subjects read their current %HRR over hot 

microphone at the beginning and end of each cognitive assessment set for hand recorded 

data.  This led to constraints in the test execution, as subject rest time could not be 

equally scored, since added tasks were necessary during sorties with biofeedback. 

During Phase 3 centrifuge testing, %HRR was not available for display due to 

GETAC system immaturity.  Instead, raw HR was displayed direct to the test subject.  To 

compensate, the test subject would read their HR and the TC would read back the test 

subject resulting %HRR using a HR to %HRR conversion table specific to each test 

subject.  Modifications were incorporated into the GETAC after Phase 3 centrifuge 

testing and prior to Phase 4 flight tests.  The modifications resulted in a true %HRR 

display, as opposed to a raw HR display as previously evaluated in Phase 3. 

Furthermore, during Phase 3 test subjects had direct control of a gun cross on a 

display (inside the centrifuge gondola) via a side mounted control stick.  The displayed 

target performed a series of random maneuvers that manifested in lead and lag on the 

display.  In summary, the tracking task comparison between flight test and centrifuge test 

were not the same task and total error score should not be directly compared. 

Lastly, due to time constraints, the AMPSS 3.0 was not approved by the F-16 

System Program Office (SPO) for flight testing due to incomplete windblast testing.  

STO 8 data were collected only from centrifuge testing. 

3.12 Chapter Summary 

This chapter opened with a reminder of the research question and reiteration of 

the motivation behind real-time biofeedback to operators of high performance aircraft.  

Next, a brief recap was given of the principles that unify this research which include: 
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human physiology, biofeedback, human-machine systems, PC sensors, workload, and 

human performance.  Third, the STOs, MOPs, SUT and test roles and responsibilities 

were explained.  Fourth, a thorough description emphasized all materials and equipment 

associated with the four phases of this research.  Fifth, a T&E section highlighted the 

processes and procedures that supported the experimental design in a chronological 

format through all four phases as each applied to the research STOs.  Lastly, test 

resources were highlighted as well as limitations and constraints that impacted test 

conduct and data collection.  Chapter 4 expounds on the results and analysis of data 

collected from the methodology. 
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4. Results and Analysis 

4.1 Chapter Overview 

This chapter describes the results and analysis of the four-phased research 

methodology outlined in Chapter 3.  Results and analysis are address in a chronological 

format following the specific test objectives (STOs) and measures of performance 

(MOPs) outlined in previous chapters and Table 7 below.   

Table 7: Specific Test Objectives (STOs) and Measures of Performance (MOPs) 
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4.2 Phase 1 (C1): Initial Hardware and Subject Centrifuge Trials 

4.2.1 STO 1: Assess Initial Hardware and Test Profile 

As highlighted in Table 7 of this chapter, the STO for Phase 1 was focused around 

assessing various hardware configurations for future testing and measuring subject cardio 

response, workload levels, and tracking performance.  The centrifuge test profile in Table 

3 in Chapter 3 directly supported this STO.  A detailed description of the hardware used 

is included in Chapter 3.  Table 8 below provides demographic information about the 

seven subjects from the High-G Acceleration Human Subject Panel (HGAHSP).  All 

subjects were male between the ages of 22 to 33.  The column labeled as baseline HR is 

equivalent to resting HR (HRrest).  The column labeled APMHR indicates age-predicted 

maximum HR (HRmax).  This value is calculated by subtracting the subject’s age from 

220. The column labeled Zephyr indicates the exact Zephyr puck number that specific 

subject was wearing.  The final three columns indicate different percentage heart rate 

reserve (%HRR) indices at 50%, 70%, and 85% HRR based on Equation 1 in Chapter 2. 

Table 8: Phase 1 Test Subject Demographics 

 

4.2.1.1 MOP 1: Cardiorespiratory Response 

As discussed in Chapter 3, KBRWyle Science, Technology, and Engineering 

Group (KBRWyle) Electrocardiogram (ECG) leads were attached to the test subject’s 

chest to provide a “truth source” of HR data.  The four primary HR sensors were: Elbit 

Systems Canary Pilot Health Monitoring System (Elbit), Zephyr BioHarness 3.0 
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(Zephyr), KBRWyle ECG, and the Portable Electrocardiogram Unit (PECGU), the 

primary prototype hardware-under-test (HUT).  Additionally, the Aircrew Mounted 

Physiological Sensor Suite (AMPSS) 2.5 was tested as a potential avenue for collection 

an analysis of respiratory metrics.  HR data were collected for Wyle, Elbit, and Zephyr on 

all seven subjects.  PECGU data were collected for Subjects 1, 5, 6, and 7.  PECGU data 

was corrupt for Subjects 2, 3, and 4.   

A time series plot of the four primary HR sensors for Subjects 1, 5, 6, and 7 can 

be seen in Figure 25 below.  For Subject 1 and 7 it appears the Elbit is out of phase with 

other sensors.  The plot for Subject 5 shows that all sensors appear to follow the Wyle 

HR “truth data” plot.  Looking only at the time series plots provides minimal analysis of 

the data.  Further analysis is discussed in MOP 4 Hardware Accuracy of this STO.   

 

Figure 25: Phase 1 Heart Rate Sensors vs. Time 
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Cardio responses varied between subjects.  In all cases subjects showed drops in 

HR during low-G points and elevated HR during high-G points.  Some subjects showed 

greater HR recovery between high-G and low-G test points than others.  Additionally, all 

subjects reached peak HRs during simulated air-combat-maneuvering (SACM) test points 

at the end of the profile which were characterized by longer durations and high peak G 

values.  This is demonstrated in Figure 26 below, showing Subject 1.  The value labeled 

“HR-Calculated” was taken from the best data source (Wyle) and is plotted against the 

Elbit HR sensor.  Subject 1 demonstrates progressively increasing HR peaks 

commensurate with increasing high-G test points.  HR recovers less and less during low-

G resting points as subsequent high-G points increase in amplitude.  This was a dominant

trend among most subjects and is shown in the Elbit vs. Wyle plots of all Phase 1 subjects 

in Appendix L. 

Figure 26: Subject 1 Phase 1 Elbit vs. Wyle HR Sensors 

AMPSS 2.5 data was collected on all seven subjects and delivered to the 711th

Human Performance Wing (711 HPW) for analysis.  Continued challenges with accurate
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sensor measurement and collection of subject oxygen (O2)/carbon dioxide (CO2) 

pressures and mass flow rates were discovered.  Based on project timeline and further 

scoping this research to include only cardio metrics, a decision was made to discontinue 

incorporation of AMPSS 2.5 in this project.  As a led in to United States Air Force Test 

Pilot School (USAFTPS) 17A HAVE HOPE Test Management Project (TMP), this Phase 

1 testing occurred in November 2016, before 17A entered TPS.  Subsequently, members 

of USAFTPS 16B conducted follow up research in early 2017 of AMPSS 2.5 in a TMP 

named HAVE PUFFIN, as cited in Chapter 2.  AMPSS 3.0 was later added to this 

research in May 2017 and the hardware was tested during Phase 3.  All AMPSS 3.0 data 

were collected in pursuit of 711 HPW objectives.   

4.2.1.2 MOP 2: Tracking Performance 

Figure 27 below highlights the root mean square error (RMS error) values for 

tracking tasks of the seven subjects during different stages of the Phase 1 profile.  Lower 

values indicate better tracking performance.  Aside from Subject 4, all subjects had near-

constant tracking performance regardless of which stage they were in the profile.  Based 

on these the results, it was considered that subjects were potentially not being challenged 

enough during the profile and efforts needed to be made before Phase 3 to increase strain 

on the subject in an effort to find indices of performance drop.   



 67

 

Figure 27: Subjects 1-7 Phase 1 Tracking Task RMS Error 

4.2.1.3 MOP 3: Workload Level 

Figure 28 below presents a summary of Bedford Workload Scale (BWS) values 

given by the seven subjects at different stages of the profile.  BWS values are measured 

from 1 to 10 in accordance with the BWS discussed in Chapter 2.  Looking at each 

subject, it is evident that 5 out of 7 subjects reported a low (and near constant) BWS 

value (indicating not a challenging task) over the duration of the profile. 
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Figure 28: Subjects 1-7 Phase 1 Bedford Workload Scale (BWS) Values 

Looking at physiological indicators in Table 9 below, both peripheral and central 

light loss is indicated in the columns labeled “Reported L/L.”  Both values are 

percentages (0-100%) with peripheral light loss values listed first and central light loss 

values listed second.  Only 2 of 7 subjects reported any form of central light loss during 

the profile, with one instance (Subject 1) only occurring after the final high-G test point.  

All subjects did report some form of peripheral light loss during the profile.  Furthermore, 

all seven subjects reported not having significant issues with G tolerance or duration of 

the profile.   

Table 9: Phase 1 Tracking Task Performance and Workload 
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Based on the results of MOPs 2 and 3 it was identified that improvements were 

necessary to increase the level of difficulty of the subject profile before Phase 3 

centrifuge tests.  First, the recovery time allowed for subjects between high-G test points 

could be decreased.  Shortening this time from 60 seconds to 30 seconds would allow less 

time for the subject’s cardiovascular system to recover, thus increasing physical exertion.  

Second, an increase in total profile duration may eventually trigger more subject fatigue 

and a performance drop.  This option is less efficient and costs more money.  Third, 

increasing the amplitude and duration of high-G points (more area under the curve) 

would potentially initiate subject fatigue sooner.  Lastly, enabling the subjects to execute 

the tracking task while under G and giving them direct control of the centrifuge gondola 

G would force subjects to fight through high-G forces while attempting to execute an 

extremely tight closed-loop-control tracking task.  This setting would be much more 

representative of actual airborne execution and an operational environment as the subject 

is never “relieved of control”.  Ultimately, a combination of tracking while under high G 

and pulling more G in less time (more area under the curve) was identified as the best 

option to pursue moving towards Phase 3.   

Further discussion was continued with the KBRWyle team in the months between 

Phase 1 and Phase 3 testing.  Allowing subjects direct control of gondola G presented 

some programming challenges and was not feasible.  However, with some added work 

required, successful modifications were made to the centrifuge configuration to allow 

tracking while under G. 
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4.2.1.4 MOP 4: Hardware Accuracy 

As discussed in MOP1 of this STO, HR data were collected for Wyle, Elbit, and 

Zephyr on all seven subjects.  PECGU data were collected for Subjects 1, 5, 6, and 7.  A 

time series plot of the four primary HR sensors for Subjects 1, 5, 6, and 7 can be seen in 

Figure 25.  In order to provide further data analysis, a normalized cross-correlation 

function (NCCF) was performed on the time series plots for the four primary HR sensors.  

Results of the NCCF are presented in Table 10 below.    

Table 10: Normalized Cross-Correlation Function of Heart Rate Sensors 

 

An ordinary correlation function is a measure of the statistical correlation between 

two random variables and is a tool often used in signals analysis and processing as a 
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measure of the similarity between two signals.  An auto correlation is a measure of the 

correlation of a signal with itself.  A cross-correlation function (CCF) is a measure of the 

similarity of multiple series as a function of the displacement of one relative to the others 

and takes into account the autocorrelation between observations of the same variable in a 

time series.  Finally, the correlation data is normalized through a NCCF, which contains 

values between -1 and 1.  A value of 1 indicates that at a specific time alignment (t), the 

two times series have perfect alignment and the exact same shape.  A value of -1 

indicates the two series have the exact same shape, but opposite sign, or 180 degrees out-

of-phase.  A value of 0 shows the two series are completely uncorrelated.  After applying 

a NCCF, correlation coefficients greater than 0.7 indicates a good match (Wackerly, 

Mendenhall, & Scheaffer, 2008). 

Based on the results in Table 10, and maintaining our Wyle sensor as a truth 

source, several assessments were made.  The Zephyr was accurate on 3 of 4 subjects with 

correlation coefficients greater than 0.82, and showed fair correlation in Subject 1 with a 

coefficient of 0.56.  The PECGU was accurate on 3 of 4 subjects with correlation 

coefficients greater than 0.71, and showed poor correlation in Subject 6 with a coefficient 

of -0.14.  The Elbit was inaccurate on 3 of 4 subjects with correlation coefficients less 

than 0.1, but showed good correlation in Subject 5 with a coefficient of 0.71.   

In summary, both the Zephyr and PECGU were usually in agreement with Wyle.  

The Elbit was usually not in agreement with the other sensors.  Additionally, Figure 29 

further demonstrates the Elbit sensor often being 180 degrees out-of-phase with Wyle 

“truth source” during high-G test points, but not at low-G test points.  Hence, the Elbit 

sensor exhibited an inaccuracy while under G. 
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Based on these results from Phase 1, the PECGU hardware prototype was deemed 

valid to progress as the primary HR sensor for Phases 2, 3 and 4.  As an already mature 

system, Zephyr was no longer necessary moving forward.  Based on the limitations 

discussed, the Elbit was no longer used in Phases 2, 3, and 4. 

Figure 29: Phase 1 Subject 6 Elbit vs. Wyle HR Sensors 

4.3 Phase 2 (L1): Laboratory VO2max Testing 

As highlighted in Table 7 of this chapter, the STO for Phase 2 was to determine a 

baseline operator maximal oxygen consumption rate (VO2max), peak physiologic output, 

and corresponding exercise-induced HRmax for each subject.   

4.3.1 STO 2: Determine Operator Peak Physiologic Output 

This STO was designed to enable the test team to measure a baseline peak 

physiologic output for each test subject.  Since biofeedback is based on specific test 

subject personal physiological limits, VO2max data were used to develop a subject-

customized %HRR scale used during subsequent phases and STOs of this research. 
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4.3.1.1 MOP 1: Maximal Oxygen Consumption (VO2max) 

This MOP measured VO2max and HRrest values in order to develop minimum and 

maximum HR values for each of the test subjects needed for %HRR biofeedback.  

Measuring an individual’s VO2max allows a more accurate and reliable exertion-based 

HRmax.   

Table 11 below shows a summary of subject demographics and VO2max results. 

This table also includes the Borg Rating of Perceived Exertion (RPE) score each test 

subject assessed at each 2-minute test increment (with corresponding HR / %HRR value) 

during the test.  Additionally, Appendix C contains VO2max graphs with oxygen 

consumption rate (VO2) and HR plotted over time for all five subjects.  All subjects were 

within 10 beats per minute (BPM) of their calculated age-predicted (220 – age) HRmax.  

Furthermore, all subjects terminated based on a plateau in VO2 despite an increase in 

workload, with the exception of Subject D who terminated based on a Borg RPE score of 

9.   

Table 11:  Subjects A-E Demographics and VO2max Results 

 

Male Age 32 Male Age 29 Male Age 34 Male Age 31 Male Age 30
Sleep: 8 hrs avg Sleep: 6 hrs avg Sleep: 6-7 hrs avg Sleep: 7 hrs avg Sleep: 8 hrs avg

Hydration: Moderate daily 

Min HR 64 Min HR 52 Min HR 52 Min HR 61 Min HR 50
Max HR 197 Max HR 199 Max HR 195 Max HR 187 Max HR 198
HR HRR Borg HR HRR Borg HR HRR Borg HR HRR Borg HR HRR Borg

102 28.57% 0 85 22.45% 0 97 31.47% 0 93 25.40% 0 69 12.84% 0
184 90.23% 4 177 85.03% 2 163 77.62% 3 163 80.95% 4 188 93.24% 3
191 95.49% 6 184 89.80% 3 173 84.62% 4 173 88.89% 5 191 95.27% 5
197 100.00% 7 188 92.52% 4 179 88.81% 4 184 97.62% 8 196 98.65% 7

199 100.00% 7 185 93.01% 5 185 98.41% 9 198 100.00% 8
189 95.80% 7 187 100.00% 9
195 100.00% 8

Exercise: 45-60 mins a day moderate 
physical activities with children

Termination: VO2 Plateau
Termination: VO2 Plateau

Termination: VO2 Plateau

Termination based on Borg 9
Termination: VO2 Plateau

Exercise: 2-3 days/wk cardio & 
weight training
Hydration: Excellent daily
Other: Feels like excellent 
physical condition, healthy well 
rounded meals 3 times a day. 2-3 
cups of coffee daily.

Exercise: 2-3 days/wk cardio & 
weight training
Hydration: Excellent daily
Other: Feels like excellent 
physical condition, healthy well 
rounded meals 3 times a day. 2-3 
cups of coffee daily.

Exercise: 3-4 days/wk cardio & 
weight training

Exercise: 3-4 days/wk cardio 
Hydration: Moderate daily 

VO2Max Results VO2Max Results

Other: Feels like excellent 
physical condition, healthy well 
rounded meals 3 times a day. 
Protein/caffein workout 
supplements.

Hydration: Excellent daily

VO2Max Results VO2Max Results

Other: Feels like excellent 
physical condition, healthy well 
rounded meals 3 times a day. 1 
cup of coffee daily.

VO2Max Results

Other: Feels like good physical condition, 
mixed meals 3 times a day. 3-5 cups of 
coffee daily.

Subject A Subject B Subject C Subject D Subject E
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Figure 30: Subject B VO2max Results 

Figure 30 above shows an example of Subject B’s VO2max results.  It is evident in the 

data that the HR value for Subject B had plateaued.  Subject B’s age-predicted HRmax

value was 191 BPM.   

In summary, HRrest and HRmax values were accurately captured for Subjects A 

through E.  Based on these Phase 2 results, the necessary data were attained to develop 

subject-specific %HRR scales for incorporation into Phases 3 and 4.   

4.4 Phase 3 (C2) and Phase 4 (F1): Centrifuge and Flight Testing 

4.4.1 STO 3: Determine Operator PC State 

As highlighted in Table 7 of this chapter, STO 3 aimed to determine operator PC 

state through developing %HRR scales, measuring accuracy of the PECGU, and 

assessing cognitive evaluations.  Each subject conducted baseline cognitive assessments 
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in addition to HR measurements and cognitive evaluations during centrifuge and flight 

test.  Since biofeedback is based on specific test subject personal physiological limits, 

Phase 2 data were incorporated into a subject-customized %HRR biofeedback scale.  

Accuracy of the PECGU and %HRR scale was validated in Phase 3.   

4.4.1.1 MOP 1: Percentage Heart Rate Reserve (%HRR) 

Percentage Heart Rate Reserve, %HRR, varied with test subject and test event 

(due to G-loading).  Figure 31 below shows an example of HR data gathered from the 

KBRWyle ECG in the centrifuge, and the Garmin Fenix 3 Sapphire HR Monitor Watch 

(Garmin) over time with G-loading labeled as Nz.  As can be seen by Subject B, %HRR 

tended to increase following test sets with a rapid increase in HR and subsequently 

tended to recover in the same amount of time.  Across subjects, the amount of %HRR rise 

and decline varied.  Some subjects showed an increased %HRR with corresponding 

recovery like Subject B after each test set.  Other subjects showed variability in data and 

developed an overall trending increase in %HRR that remained at an elevated state 

throughout the remaining test sets.  Appendix E shows %HRR derived from the 

KBRWyle HR data source for subjects in Phase 3 tests.  Overall, data quality was good 

and %HRR was successfully measured for each subject.   
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Figure 31: Subject B Phase 3 Without Biofeedback %HRR and G vs. Time 

4.4.1.2 MOP 2: Portable Electrocardiogram Unit (PECGU) Accuracy 

All subject HR data can be found in Appendix B, under the HR Wyle, HR Watch 

(Garmin), and HR PECGU columns, displaying values in terms of %HRR.  HR was 

recorded and %HRR was derived.  Table 12 below shows the statistical results of 

comparing the Garmin and PECGU data to KBRWyle truth data.  The PECGU data was 

not proven to have a statistically significant difference from KBRWyle data and is 

assessed to be a valid source of %HRR for real-time biofeedback.  Data from the Garmin, 

however, was proven to be different than the KBRWyle HR truth source data.  The 

PECGU and Garmin were also proven to be statistically different measurements. 

Table 12: PECGU and Garmin HR Data Accuracy 

 

Response 2-Sample, Two tail, T-Test 
(Degrees of Freedom, P-Value) 

Result 
 

PECGU Accuracy versus Wyle DF = 29, P-Value = .6 No difference between PECGU and 
Wyle data was proven.  

Watch Accuracy versus Wyle DF = 39, P-Value = .0083 There is a statistically significant 
difference between Garmin Watch 

and Wyle data sources.  
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The Garmin followed the same general rise and decline trends as the PECGU and 

KBRWyle data as shown previously in Figure 31 above.  Garmin raw data goes through a 

smoothing algorithm before real-time display.  Data such as awareness, decision-making, 

and performance were all based on PECGU %HRR and were not affected by the 

difference in data from the Garmin. 

4.4.1.3 MOP 3: Cognitive State 

Cognitive results per %HRR for all subjects can be seen in Appendix D with one 

example provided below in Figure 32.  Cognitive results overall did not show variance 

with %HRR values.  Completion time was the primary metric for the Stroop task and 

Operational Procedure Assessment (Ops check) evaluation.  Stroop and Ops check values 

were not graphed because scores were nearly 100% accurate.  As can be seen in Figure 

32 below and in all subjects (Appendix D), task-specific memory recall times did not 

tend to vary with changes in %HRR.  Code recall shows more instances of reduced 

accuracy at higher %HRR values for all but one subject. 

Figure 32: Subject A Cognitive Assessment Results 
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A Two-tailed T-test was performed to test for difference in means between tests 

of with biofeedback and without biofeedback.  It was determined there was no 

statistically significant difference between cognitive response times and accuracy.  

Furthermore, tests showed little variance as a function of %HRR as seen in Figure 32 

above and Appendix D for all subjects.   

4.4.2 STO 4: Determine Effect of Biofeedback on Operator PC State Awareness 

As highlighted in Table 7 of this chapter, STO 4 aimed to determine the effect of 

providing biofeedback on operator PC state awareness by comparing tests between 

without biofeedback and with biofeedback.  Each subject identified a Borg RPE score at 

the termination of each test set both on tests conducted with and without biofeedback.  

Results were compared to assess if biofeedback provided added situation awareness (SA) 

of current PC state. 

Of note, when biofeedback was available, test subjects were directed to view the 

GETAC display and state %HRR value before stating their Borg RPE score.  This 

directed action aimed to determine any correlated effects of an objective %HRR value on 

subjective RPE scores. 

4.4.2.1 MOPs 1 and 2: Awareness of PC State Without and With Biofeedback 

A complete breakdown of cognitive data and Borg RPE scores versus %HRR data 

for each test subject can be found in Appendix D.  The primary discriminator between the 

sets was the utilization of biofeedback to inform the test subjects of current %HRR.  

Statistical analysis of data associated with cognitive tests, Borg RPE scores, and current 

%HRR was performed by the 412th Test Wing, 812th Test Support Squadron and can be 

viewed in Appendix M. 



 79

When comparing Borg RPE scores between biofeedback awareness states, the 

histograms in Figure 33 below, indicates that Borg RPE scores were slightly higher 

without biofeedback as compared to scores with biofeedback.  The median Borg score, as 

indicated by the blue line for with biofeedback was 1.97 while the median Borg score for 

without biofeedback was 2.89.  Despite these different values, a non-parametric median 

test between two samples proves that this difference is not statistically significant 

(Kruskal Wallis Chi-square p-value =0.2522).  Additionally, a parametric T-test result 

also proves a non-significant average difference between with and without biofeedback 

(Welch T p-value=0.2137). 

Figure 33: Borg RPE Scores With and Without Biofeedback 

Centrifuge results for Borg RPE scores were on average higher across all test 

subjects than flights.  All subjects noted that despite the G-loading and flight test 

technique (FTT) being identical between Phase 3 centrifuge test and Phase 4 flight test, 

the perceived exertion and overall discomfort was notably increased during Phase 3.  As 
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supported in Figure 34 below of Subject A, Borg RPE scores never exceeded a value of 5 

during Phase 4, while reaching as high as 7 during Phase 3.  However, Subject A %HRR 

values were higher during Phase 4.  

Figure 34: Subject A Borg RPE Score vs. %HRR 

Figure 35: Subject C Borg RPE Score vs. %HRR 

When compared to Figure 35 above for Subject C, Borg RPE scores also did not 

exceed a value of 5 during Phase 3 and reached as high as a value of 7 during Phase 4.  

However, counter to Subject A, Subject C experienced higher %HRR values during 
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Phase 3 centrifuge testing.  This result supports that variability exists between subjects 

and each subject had different results that can only be compared to individual baseline 

values.   

When looking at the combined results from all subjects in Appendix D, it can be 

seen that over the course of four test sets, Borg RPE score values tend to increase as 

%HRR increases.  However, this increase was not statistically significant enough to draw 

an exact correlation between %HRR and subject perceived exertion. 

As noted in Chapter 2, the Borg RPE scale was developed to be a “domain-

specific” rating metric aimed towards capturing physiological strain only.  However, 

coupled effects can occur in tests involving any form of cognitive workload (dependent 

on subject environment and task), and yield Borg RPE scores that fail to capture solely 

physiological strain. 

During Phases 3 and 4, test subject Borg RPE scores differed during testing in 

ways unique to scores identified during VO2max testing at corresponding %HRR values.  

While Borg RPE scores in the VO2max test were primarily due to the physical exertion of 

the running treadmill test with minimal cognitive demand, other factors in the centrifuge 

and flight increased this perceived exertion at lower %HRR values.  Subjects noted that 

when their mental workload increased in Phase 4, such as coordinating airspace, 

communications, establishing test set parameters and the combined functions of piloting a 

high performance aircraft; their Borg RPE scores may have been influenced. 

4.4.3 STO 5: Determine Effect of Biofeedback on Decision-Making 

As highlighted in Table 7 of this chapter, STO 5 aimed to determine the effect of 

providing biofeedback on operator decision-making.  At the termination of each test set, 
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each test subject was required to rest at 3 G or less for a minimum of 60 seconds while 

performing cognitive assessments.  Upon completion of cognitive assessments, subjects 

were permitted to continue rest as long as deemed necessary prior to continuing to the 

next test set.  Results were compared to assess if biofeedback provided added SA to aid 

in decision-making of total elected rest time. 

4.4.3.1 MOPs 1 and 2: Decision-Making Without and With Biofeedback 

Statistical analysis of data was performed by the 812th Test Support Squadron at 

Edwards AFB, CA and can be viewed in Appendix M.  When comparing the overall rest 

time penalty error for each run, there was not a statistically significant difference between 

runs without versus with biofeedback.  When looking at test scores, scores trended 

towards being slightly better (lower/less penalty time) without biofeedback, but not to a 

statistically significant difference.  Total penalty error scores were analyzed via an 

analysis of variance (ANOVA) test, and it was determined that statistical differences 

were due to test conduct and unique test subject traits.  Although total penalty error 

scores trended slightly higher with biofeedback, differences cannot be attributed to the 

presence of the biofeedback display alone.   

Figure 36 below shows the compiled rest times for test subjects with respect to 

%HRR, both with and without biofeedback.  There is a single outlier point indicating a 

long rest time on the plot for Subject A.  This point was the result of an inflight 

emergency procedure, which resulted in termination of the remainder of that test set.  An 

interesting observation was that although there was no statistical significance between 

rest times without versus with biofeedback, as %HRR increased rest time trended to 

decrease in 3 out of 4 subjects displayed below.  This could be attributed to body 
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functions, such as adrenaline and stress, aiding performance.  Additional charts 

supporting subject cognitive results for all subjects can be found in Appendix D. 

 

Figure 36: Rest Time Comparison for All Events 

Of note, during with biofeedback tests, subjects were required to perform key 

additional steps between high-G test sets that were not required during without 

biofeedback test sets.  As seen in Figure 22 in the Phase 4 test and evaluation (T&E)

section, step 1 after completion of the last high-G test point of a test set, subjects had to 

read off their %HRR value on the PECGU and their HR value on the Garmin. 

Furthermore, subjects performed this step again at the end of the cognitive evaluation to 

aid in determining if they were ready to terminate the rest period and to continue with the 

next high-G test set.  These additional steps resulted in “added” rest time and thus a 
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penalty to overall score.  Lower rest times and better scores during without biofeedback 

tests may be attributed to this aspect of test conduct and not specifically lack of 

biofeedback augmentation. 

4.4.4 STO 6: Determine Effect of Biofeedback on Tracking Performance 

As highlighted in Table 7 of this chapter, STO 6 aimed to determine the effect of 

providing biofeedback on operator ability to track G during a scripted test set.  Data were 

collected during both centrifuge and flight tests.  The results of with biofeedback tests 

were compared with the results of without biofeedback tests for each condition.  The 

tracking task in the centrifuge was slightly different than airborne tracking as highlighted 

in the Limitations and Constraints section of Chapter 3. 

4.4.4.1 MOPs 1 and 2: Centrifuge G-Tracking Without and With Biofeedback 

A summary of all test subject centrifuge G-tracking plots can be found in 

Appendix F.  Figure 37 below is one sample G-tracking plot of Subject B.  Target 

location data and commanded stick position data are shown with both and upper and 

lower tolerance displayed in accordance with the G-tracking error formula detailed in the 

Scoring Algorithm section in Chapter 3.   
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Figure 37: Phase 3 Subject B Centrifuge G-Tracking Error Without Biofeedback 

Statistical results of all subjects are displayed in Table 13 below.  For this 

statistical test, the null hypothesis states there is no statistical difference between 

centrifuge G-tracking scores when biofeedback was added.  Data was lost for Subject A’s 

with biofeedback test.  In analyzing the P-values listed below, it can be surmised that 

with P-values greater than 0.05, Subjects C through E G-tracking scores do not show 

statistical differences and it can be stated there was a failure to reject the null hypothesis.  

Restated, Subjects C through E did not show statistically significant improvement 

between centrifuge G-tracking errors when biofeedback was added.  Looking at Subject 

B’s centrifuge G-tracking score, with a P-value less than 0.05 the null hypothesis was 

rejected and a statistical difference was noted.  Restated, Subject B showed a statistically 

significant improvement when %HRR biofeedback was provided in the centrifuge. 

Figure 38 below tabulates all the total centrifuge G-tracking error scores (y-axis)

for Subjects A though E (x-axis).  Each column represents the total G-tracking error 

value (by subject) and is further broken down into G-tracking error per test set on a given 
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with biofeedback or without biofeedback flight.  As seen in Figure 38 below, the primary 

variances in G-tracking performance were attributed to individual subjects, and could not

be definitively linked to the presence of biofeedback.  

Table 13: Phase 3 G-Tracking Error T-Test Without vs. With Biofeedback 

 

 

Figure 38: Subject A - E Phase 3 G-Tracking Total Error Scores 

Counterbalance techniques were employed, as some subject’s first test was 

without biofeedback while others conducted their first test with biofeedback.  Test 

subject comments noted that learning effect of the task could have led to decreased task 

difficulty in subsequent tests.  This may have been a greater contributing factor than the 

presence of biofeedback on Subject B’s results.  The condition in which significant 

improvement was shown was on the second of two centrifuge tests.  Subjects were unable 

to practice the task before testing began; the first set was the first time they were ever 

exposed to the task. 
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4.4.4.2 MOPs 3 and 4: Airborne G-Tracking Without and With Biofeedback 

A summary of all test subject Phase 4 G-tracking plots can be found in Appendix 

H.  Flight order was randomized to counterbalance results.  Some subjects performed 

their first flight with biofeedback and some subjects performed their first flight without 

biofeedback.  Aircraft G was recorded and unfiltered data were processed with 

MATLAB.   

Figure 39 below is one sample airborne G-tracking plot of Subject C.  Target 

location data and commanded stick position data are shown with both and upper and 

lower tolerance displayed in accordance with the G-tracking error formula detailed in the 

Scoring Algorithm section in Chapter 3.   

Figure 39: Phase 3 Subject C Flight G-Tracking Error With Biofeedback 

Subjects A, B, and C were the test pilots (TPs) on the test team and were the only 

test subjects for Phase 4 flight tests.  Thirteen total flights were conducted and data from 

nine flights were used.  All data from four other flights were discounted since the entire 
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flight profile (all four test sets) was not completed due to fuel or early return for 

emergency procedures.  Each test subject flew one flight without biofeedback and two 

flights with biofeedback.  Data was lost for one of Subject A’s flights with biofeedback. 

Statistical results are displayed in Table 14 below.  For this statistical test, the null 

hypothesis states there is no statistical difference between G-tracking scores when 

biofeedback was added.  In analyzing the P-values listed below, it can be surmised that 

with P-values greater than 0.05, Subjects A and C G-tracking scores do not show 

statistical differences and it can be stated there was a failure to reject the null hypothesis.  

Restated, Subjects A and C did not show statistically significant improvement between 

G-tracking errors when biofeedback was added, but in line with Figure 40, improvement 

was observed.  Looking at Subject B’s G-tracking score, with a P-value less than 0.05 the 

null hypothesis was rejected and a statistical difference was noted.  Restated, Subject B 

showed a statistically significant improvement when %HRR biofeedback was provided. 

As seen in Figure 40 below, the primary variances in G-tracking performance were 

attributed to individual subjects, and could not be definitively linked to the presence of 

biofeedback. 

Table 14: Phase 4 G-Tracking T-Test Without vs. With Biofeedback 
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Figure 40: Subject A - C Phase 4 G-Tracking Total Error Scores 

Consistent with previous observations in Phase 3, test subject comments again 

noted that learning effect of the task could have led to decreased task difficulty.  Subject 

B commented on this effect directly saying, “cognitive ability was assessed as greater 

than the previous flight,” suggesting the influence of additional exposures to the task may

have influenced learning effect and increased tolerance to the high-G environment.

Subject B also commented that, “biofeedback wasn’t considered continuously during 

many of the test sets because of other tasks were deemed more important.”  This is in line 

with comments from other pilots that were too concerned with completing cognitive tests, 

managing airspace, and assessing energy requirements to always utilize the biofeedback

display. 

4.4.5 STO 7: Evaluate Human Systems Integration of Biofeedback Display 

As highlighted in Table 7 of this chapter, STO 7 aimed to evaluate the human 

system integration (HSI) and usability of the GETAC biofeedback display in cockpits of 

fighter aircraft.  Each subject was instructed to assess the usability of the display during 

all Phase 3 and 4 testing.  Results were assessed to provide recommendations for future 

design changes.  A picture of the cockpit set up and GETAC biofeedback display as 

viewed from the pilot’s perspective is seen in Figure 41 below. 
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Figure 41: F-16 Internal Cockpit Perspective with Biofeedback Display 

All test subjects completed surveys after centrifuge and flight tests using a 

common usability scale in accordance with the 412th Test Wing Six-Point General 

Purpose Scale located in Appendix I.  The main section of the scale is seen in Figure 42

below. 

Figure 42: 412th Test Wing Six-Point General Purpose Scale 
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4.4.5.1 MOP 1: Usability of Biofeedback Display 

Evaluations of survey numerical value ratings provided by all subjects were 

averaged to determine a mean score rating and resultant associated impact.  Figure 43

below shows the overall mean scores provided by each test subject.  Additionally, two 

aircrew flight equipment (AFE) personnel who participated in setting up and fitting the 

display also completed a survey assessment for a holistic overview of the GETAC.  AFE 

results were not included in the calculation of the final operator mean usability scores 

since they were not directly involved with display assessments for centrifuge or flight 

tests. 

Figure 43: Biofeedback Display Mean Usability Ratings by Subject 

Test subjects assessed the GETAC biofeedback display during centrifuge and 

flight tests.  In both environments, subjects considered human factors and usability before 

and after high-G maneuvering.  Specific usability evaluations were taken in terms of 

display format, readability, fit, comfort, jitter, distortion, visual access, information, 

controls and perceived workload required for display use.  Definitions of each of these 
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areas are included with the survey forms found in Appendix J.  Associated impacts to 

mission effectiveness and flight safety were noted through additional comments. 

Subjects A through E were equipped with and assessed GETAC biofeedback

display usability during Phase 3 centrifuge tests.  Additionally, as the team TPs subjects

A, B and C also assessed GETAC biofeedback usability during Phase 4 test flights.  All 

surveys were consolidated, by subject, and values were averaged and tabulated below in 

Table 15.  All completed surveys can be found in Appendix J. 

Table 15: Subjects A-E Biofeedback Display Usability Ratings 

 

The average of these data indicate a Marginal rating with a Moderate task impact 

in accordance with the 412th Test Wing scale.  Further justifications for the deduced 

rating and task impact are reflected in the subject comments.  General trends in subject 

comments noted during flight test that glare from the sun impeded the ability to read 

information from the GETAC display which was further exacerbated by the %HRR 

information being difficult to read due to font size, relative to screen size.  Additionally, 

all test subjects commented on the “noise” of  %HRR figures jumping between excessive 

values.  Subject B stated they, “had to compensate for the noisy data by assessing the 

%HRR value for several seconds and produce a mental average %HRR.”  Finally, the 

position of the GETAC display below the test subject forward field of view (FOV)

required subjects to rotate their head downwards, removing attention from the F-16 
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Heads-Up-Display (HUD), losing access to primary flight information such as airspeed 

and altitude.  Between test sets, several test subjects stated degradation in aircraft flying 

accuracy due to the “look down” requirement of the GETAC to obtain data. 

Setup of the GETAC system was not intuitive, required complex directions, and 

was uncomfortable to fit and remove due to electrodes attached to the test subject’s chest. 

During setup, multiple wires were required to be fitted around AFE gear in a methodical 

and standardized manner to avoid entanglement and inadvertent disconnect of devices 

during centrifuge and flight tests.  This process was complex and time consuming. 

Additionally, after the subjects had been fitted, due diligence still had to be taken to 

ensure no wires caught on objects during enter and exit of the centrifuge and aircraft. 

This induced increased workload and physical effort for the test subjects and slowed the 

process of centrifuge and flight test conduct.  In terms of safety, subjects noted due to the 

bulkiness of the GETAC, emergency egress of the aircraft would potentially be 

compromised and slow down the egress time.  During centrifuge and flight test several 

test subjects each commented that the GETAC would not be suitable for operational use 

during basic fighter maneuvers (BFM) engagements due to fatigue and strain on the 

subject’s neck during high-G maneuvers.  A picture of the cockpit set up and GETAC 

biofeedback display as viewed from the pilot’s perspective is seen in Figure 43 below. 

A major limitation was the inability for the GETAC to record and store HR data.  

This limitation significantly influenced test conduct and how the test team collected 

biofeedback data.  During with biofeedback tests, subjects had to verbalize their display-

presented %HRR value both upon completion of a previous test set and prior to 

commencing the next test set.  The additional time to read the %HRR value reduced the 
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usable time for the subject to complete cognitive assessment tasks and increased overall 

rest time penalty as discussed previously in this chapter and in Chapter 5. 

4.4.6 STO 8: Collect Aircrew Mounted Physiologic Sensor Suite (AMPSS 3.0) Data 

As highlighted in Table 7 of this chapter, STO 8 was a simple “ride along” 

objective added to facilitate data collection for AMPSS 3.0.  Subjects A and C collected 

data only during Phase 3.  The F-16 System Program Office (SPO) ultimately did not 

clear the AMPSS for full airworthiness because windblast testing had not being 

completed, thus eliminating AMPSS 3.0 from being incorporated into Phase 4 execution. 

Additional evaluations of the HSI were conducted through subject surveys based 

on the 412 TW Six-Point General Purpose Scale introduced in STO 7 of this chapter, 

seen in Figure 39, and located in Appendix I.  Results were assessed to provide 

recommendations for future utility.  In addition to aircrew evaluations, an AFE technician 

with considerable experience of previous AMPSS model trials (AMPSS 1.0, 2.0 & 2.5) 

was available to complete a survey while fitting the aircrew with AMPSS 3.0. All surveys 

were consolidated and tabulated below in Table 16 and 17 below.  Detailed completed 

surveys can be found in Appendix K.   

Table 16: Subject A and C AMPSS Usability Ratings 
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Table 17: AFE Technician AMPSS Usability Ratings 

Test Pilot (TP) subjects A and C assessed the hardware as Satisfactory with 

negligible task impact.  Important to note, Subject C had experience testing the previous 

version (AMPSS 2.5).  Subject A had no prior experience with any AMPSS system.  

These assessments are further justified by operator comments and numerical metrics on 

the subject surveys. 

General comments regarding AMPSS from an aircrew perspective described 

AMPSS as slightly bulkier than a non-AMPSS configuration but did not hamper ability 

to ingress or egress the representative F-16 cockpit within the centrifuge gondola.  

Although acceptable, a smaller, CRU-60–AMPSS integrated unit would be better. 

During high-G centrifuge profiles, the AMPSS was assessed not to interfere or cause 

discomfort to the operating aircrew and had the same functionality of a standard CRU-60 

connector. 

It was noted by the AFE technician that AMPSS 3.0 ISB (Inhale Sensor Block) 

contained all sensors within the in-line assembly, which connected to the hose O2

connector, and CRU-60/P connector.  Furthermore, the AIMS (Aircrew Integrated 
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Monitoring System) ISB operator user manual was very detailed and comprehensive.  

However, it didn’t include the complete AMPSS 3.0 suite of components to include the 

Exhale Sensor Block (ESB).   

During preflight, the ISB partial pressure of oxygen (ppO2) sensor component 

required a preflight sensor calibration in a humidity level less than 3% to operate 

efficiently.  This required the complete ISB unit to be inserted in a humidity wicking 

substance prior to flight, which was time consuming and required materials not located in 

a standard AFE shop.  During centrifuge trials, reliability comparison to an unmodified 

system was all that was tested.  No problems were encountered, and data were collected.  

During post flight inspection, AMPSS 3.0 cleaning by AFE personnel is limited to only 

the exterior of the ISB component as specified by the user manual.  This could present 

potential limitations, as the user manual also did not specify repair instructions. 

Essentially, the whole unit would need to be sent away for repairs or a complete unit 

replacement.  Additionally, it was noted disconnection of the AMPSS 3.0 from CRU-

60/P connector was simple and intuitive. 

In summary, AMPSS 3.0 HSI has vastly improved over baseline 1.0, 2.0, and 2.5 

model functionality.  Form factor was greatly reduced and did not impact aircrew ingress, 

egress, or execution of basic flight functions.  User interface is extremely basic (single 

LED).  Data were successfully gathered regarding the HSI of the device.  However, 

further flight testing regarding functionality will need to occur. 

4.5 Chapter Summary 

This chapter opened with a reminder of the research question, a reiteration of the 

motivation behind real-time biofeedback to operators of high performance aircraft, and 
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recap of the STOs and MOPs.  Next, a guided discussion covered the results and analysis 

of the four research phases.  Results from Phase 1 led to a decision to continue use of the 

PECGU as the primary HR sensor for Phases 2, 3, and 4.  The use of AMPSS 2.5 was 

discontinued and the project was scoped to include just cardio metrics.  Additionally, 

emphasis was placed on increasing centrifuge profile exertion (total G) and tracking task 

difficulty (tracking under G) for Phase 3 testing.  Phase 2 led to successful collection of 

HRrest and HRmax values for Subjects A through E; a necessity to develop subject-specific 

%HRR scales for incorporation into Phases 3 and 4.   

In Phases 3 and 4, STO 3 analysis of PECGU data was not proven to have a 

statistically significant difference from KBRWyle data.  Variability in the Garmin data 

from both the PECGU and Wyle data was observed, but the Garmin did follow the same 

rise and decline trends as the PECGU and KBRWyle data.  Furthermore, it was 

determined there was no statistically significant difference in cognitive response times 

and accuracy during without vs. with biofeedback testing.   

Analysis of mean Borg RPE scores in STO 4 revealed a non-significant average 

difference between with and without biofeedback tests.  These results and lack of 

statistically significant difference can primarily be pointed to the small sample size.  In 

all subjects, Borg RPE scores tended to increase as %HRR increased.  However, this 

increase was not statistically significant enough to draw an exact correlation between 

%HRR and subject perceived exertion. 

Analysis of STO 5 showed that during with biofeedback tests, subjects were 

required to perform key additional steps between high-G test sets that were not required 

during without biofeedback test sets.  Lower rest times and better scores during without 
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biofeedback tests may be attributed to this aspect of test conduct and not specifically lack 

of biofeedback augmentation. 

Results from STO 6 indicated statistically significant improvement in centrifuge 

tracking task performance with biofeedback in only one of four subjects.  Airborne G-

tracking performance did improve in all three subjects with the addition of biofeedback, 

but only one subject showed a statistically significant improvement.  Interestingly, 

Subject B was the individual that showed statistically significant improvement in both 

centrifuge and airborne tracking with the augmentation of biofeedback. 

STO 7 evaluation of the GETAC biofeedback display revealed a Marginal rating 

with a Moderate task impact.  Overall, the system is still in early stages of development 

and presents several HSI challenges to the operator. 

STO 8 analysis showed AMPSS 3.0 HSI had vastly improved over baseline 1.0, 

2.0, and 2.5 functionality.  The form factor was greatly reduced and did not impact 

aircrew ingress, egress, or execution of basic flight functions.  The user interface was 

extremely basic; yet further flight tests regarding functionality will need to occur. 

Chapter 5 expounds on the derived conclusions and recommendations for future 

testing identified based on the results and analysis discussed in this chapter.  
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5. Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter describes the principle conclusions and recommendations of the four 

phases of this research.  Discussion is addressed in a chronological format following the 

Specific Test Objectives (STOs) and Measures of Performance (MOPs) outlined in 

previous chapters and Table 18 below.   

Table 18: Specific Test Objectives (STOs) and Measures of Performance (MOPs) 
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5.2 Phase 1 (C1): Initial Hardware and Subject Centrifuge Trials 

5.2.1 STO 1: Assess Initial Hardware and Test Profile 

As stated in Chapter 4, the Zephyr BioHarness 3.0 (Zephyr) was accurate on 3 of 

4 subjects, and showed fair correlation in Subject 1.  The Portable Electrocardiogram 

Unit (PECGU) was accurate on 3 of 4 subjects, but showed poor correlation in Subject 6.  

The Elbit Systems Canary Pilot Health Monitoring System (Elbit) was inaccurate on 3 of 

4 subjects, but showed good correlation in Subject 5.  In summary, both the Zephyr and 

PECGU were usually in agreement with Wyle.  The Elbit was usually not in agreement 

with the other sensors.  Additionally, the Elbit sensor was inaccurate and occasionally 

180 degrees out-of-phase with Wyle “truth source” during high-G test points, but not at 

low-G test points.  Based on these results, the PECGU hardware prototype was deemed 

valid to progress as the primary heart rate (HR) sensor.   

Recommendations for future research based on conclusions of this STO are 

incorporated into the Phase 3 and 4 sections of this chapter. 

5.3 Phase 2 (L1): Laboratory VO2max Testing 

5.3.1 STO 2: Determine Operator Peak Physiologic Output 

Resting HR (HRrest) and maximum HR (HRmax) values were accurately captured 

for subjects A through E and the necessary data were available to develop subject-

specific percentage heart rate reserve (%HRR) scales for incorporation into Phases 3 and 

4. 

5.3.1.1 STO 2 Recommendations 

Recommendations for future testing include a more detailed quantitative log of 

test subject background to include sleep history, nutrition, hydration, and physical fitness.  
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This information will provide more context for each subject and potential insight into 

correlations between subject background and cardio metrics. 

5.4 Phase 3 (C2) and Phase 4 (F1): Centrifuge and Flight Testing 

5.4.1 STO 3: Determine Operator PC State 

5.4.1.1 MOP 2: PECGU Accuracy 

The results suggest that subjects could use the PECGU as an accurate data source 

in flight for %HRR biofeedback.  The variability in the Garmin Fenix 3 Sapphire HR 

Monitor Watch (Garmin) data from the PECGU and Wyle data was likely due to the 

source of HR measurement in the Garmin.  The Garmin uses an optical wrist-mounted 

HR sensor under the watch bezel.  It is assessed that the nature of the test conduct (high-

G exposure) could have an impact on optical HR measurements at the wrist and a follow-

on effect on data quality. 

5.4.1.2 MOP 2 Recommendations 

Recommendations for future testing include further development of in-flight 

recording and storage of HR in the PECGU.  The Garmin showed limitations when 

compared against the KBRWyle Science, Technology, and Engineering Group 

(KBRWyle) Electrocardiogram (ECG) and was used as a “work-around” so that some 

HR data could be collected in flight. 

5.4.1.3 MOP 3: Cognitive State 

Percentage Heart Rate Reserve, %HRR, is not a good sole predictor of cognitive 

state.  Code accuracy appeared to show correlation with %HRR, but was potentially 

influenced by task environment (centrifuge vs. flight).  Test subjects noted in daily flight 

reports the increased difficulty in code recall during flight test (due to workload) 
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compared to centrifuge test, despite often operating at lower %HRR values.  Subjects had 

increased cognitive workload during fight tests (airspace management, radio calls, setting 

aircraft parameters for subsequent test sets, etc.) compared to centrifuge tests and 

baseline ground evaluations. 

5.4.1.4 MOP 3 Recommendations 

Recommendations for future research include further investigation into 

differences observed with cognitive recall in the centrifuge vs. flight based on workload.  

A much larger sample size is needed to show statistical significance.  More robust testing 

in the centrifuge up front could provide cost savings and more data.  As previously stated, 

KBRWyle centrifuge programming limitations did not allow for subjects in Phase 3 

testing to have direct control over gondola G.  With research justification and more 

funding this capability may provide added workload challenges and more insight into 

cognitive limitations under G. 

5.4.2 STO 4: Determine Effect of Biofeedback on Operator PC State Awareness 

5.4.2.1 MOPs 1 and 2: Awareness of PC State Without and With Biofeedback 

Test subject data analysis points to the finding that there was no statistically 

significant difference between without vs. with biofeedback during subject’s subjective 

assessments of PC state (via Borg RPE scores).  Despite variability in Borg RPE score 

means, a non-parametric median test between the two samples proves that this difference 

was not statistically significant (Kruskal Wallis Chi-square p-value =0.2522).  These 

results and lack of statistically significant difference can primarily be pointed to the small 

sample size.   
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Variations in scores were due to methods and individual test subject traits, not 

specifically utilization of biofeedback.  This presents a complicated problem for a team 

attempting to tailor an interface to a specific individual as each person requires a custom 

tailored profile to accurately display biofeedback information that captures the unique 

attributes of that individual’s PC state and perceived exertion compared to that of a 

different subject.   

Additionally, subjects noted that when their mental workload increased in Phase 

4, such as coordinating airspace, communications, establishing test set parameters and the 

combined functions of piloting a high performance aircraft; their Borg RPE scores may 

have been effected (increased). 

Hence, while Borg RPE scores in the maximal oxygen consumption rate (VO2max) 

test were primarily attributed only to physical exertion of the running treadmill test, 

during Phase 3 and 4 testing other factors such as physical discomfort, G-strain, air 

hunger, and task loading likely contributed to an increase in Borg RPE scores at lower 

%HRR values. 

5.4.2.2 STO 4 Recommendations 

Future testing recommendations include incorporating larger sample sizes, which 

are needed to show statistical significance, and may draw correlations to the effect of 

biofeedback on Borg RPE and physiological and cognitive (PC) state awareness.  More 

robust testing in the centrifuge up front could provide cost savings and more data. 

As previously stated in STO 3, recommendations for future research could include 

further investigation into differences observed between the centrifuge vs. flight, but in 

this instance focus should key on subject perceived physical exertion with changing 
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mental task loadings.  These differences are pervasive based on subject test environment 

as we saw in comparisons between Phases 2, 3, and 4.   

More robust data mining from a wide array of PC sensors could be used to 

develop unique subject profiles with more informative individualized biofeedback 

displays beyond simply HR metrics.   

5.4.3 STO 5: Determine Effect of Biofeedback on Decision-Making 

5.4.3.1 MOPs 1 and 2: Decision-Making Without and With Biofeedback 

No statistical significance was found to support that subject decisions and elected 

rest time changed with respect to testing with or without biofeedback.  Variations in 

scores were due to methods and individual test subject traits, not specifically utilization 

or non-utilization of biofeedback.  Additional required steps during with biofeedback 

tests resulted in “added” rest time and thus a penalty to overall score.  Lower rest times 

and better scores during without biofeedback tests may be attributed to this aspect of test 

conduct and not specifically lack of biofeedback augmentation.   

5.4.3.2 STO 5 Recommendations 

Future testing should attempt to control as many variables as possible through test 

conduct.  Phase 3 and 4 testing required a few “work around” procedures (to gather 

necessary data, such as verbalizing %HRR values since PECGU data was not recorded.  

Mature hardware and capitalizing on modeling and simulation in advance can pay 

dividends during costly test and research. 
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5.4.4 STO 6: Determine Effect of Biofeedback on Tracking Performance 

5.4.4.1 MOPs 1 and 2: Centrifuge G-Tracking Without and With Biofeedback 

No discernable trend was observed, possibly due to a learning effect.  The one 

condition in which a statistically significant improvement was shown was on Subject B’s 

second of two centrifuge tests.  Previous Phase 3 exposures could have made the G-

tracking task easier to accomplish on subsequent runs regardless of the presence of 

biofeedback. 

5.4.4.2 MOPs 3 and 4: Airborne G-Tracking Without and With Biofeedback 

All three subjects did show improved G-tracking scores during with biofeedback 

flight tests, but only one out of three subjects showed a statistically significant 

improvement with biofeedback flight tests.  The only subject to show a statistically 

significant improvement stated the biofeedback display wasn’t being considered when 

making the decision to start the next test set.  It appears that improvements in G-tracking 

scores are more likely attributed to added exposures of the task, test conduct, and other 

flight-related stressors such as airspace management and traffic avoidance in the high-G 

environment. 

5.4.4.3 STO 6 Recommendations 

As previously stated, future recommendations for this STO need to capitalize on a 

much larger sample size of subjects.  Additionally, subjects need to be thoroughly 

familiar with the task to remove any learning effect.  This presents a challenge when 

funding and time are often limited.  However, at least a two-week trip to the centrifuge 

before burning jet fuel during flight tests may mitigate some of these challenges.   
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5.4.5 STO 7: Evaluate Human Systems Integration of Biofeedback Display 

5.4.5.1 MOP 1: Usability of Biofeedback Display 

Overall analysis of both numerical and subject comment metrics indicated 

usability of the biofeedback display to the test subject was accessed Marginally 

Unsatisfactory in accordance with Appendix J.  Specific analysis of general fit and 

comfort of the display was assessed to be Marginal with a Moderate impact to task and 

mission.   

For operationally representative tasks such as high-G basic fighter maneuvers 

(BFM), a pilot requires continuous “eyes out” time to ensure no loss of sight of the 

adversary.  At current design state, the GETAC display does not offer this capability due 

to the requirement for the pilot to look down and shift focus from the primary task while 

attempting to interpret the displayed biofeedback data.  Additionally, extreme head 

movements during high-G maneuvers are typically reduced to the minimum extent 

practical to reduce fatigue and long-term neck and health issues.   

5.4.5.2 STO 7 Recommendations 

The following recommendations are provided for future research using a 

biofeedback display.  First, the display/information should be incorporated within the 

forward pilot field of view (FOV) with appropriately sized font.  This will alleviate the 

operator from a “look down requirement” during critical phases of flight to assess 

biofeedback and provide a higher sample rate for the subject.  Second, a smoothing 

algorithm should be incorporated into future designs to allow for quick and precise 

interpretation of data.  This will reduce dwell time by operators to interpret the data, 

provide increased fidelity of collected data points, and lead to less interference with 
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overall test conduct.  Finally, internalization of wires and improved data storage 

capability will increase safety and provide more robust data analysis capability.  Further 

analysis is discussed in the Military Utility section of this chapter. 

5.4.6 STO 8: Collect Aircrew Mounted Physiologic Sensor Suite (AMPSS 3.0) Data 

Overall comparison of the Aircrew Mounted Physiologic Sensor Suite (AMPSS) 

3.0 from baseline mask installation, pre-flight, post-flight, maintenance, and 

uninstallation function was relatively easy and satisfactory.  The AMPSS 3.0 was very 

quick and easy to install and a considerable improvement from AMPSS 1.0, 2.0 and 2.5.  

However, no ESB (Exhale Sensor Block) was available to evaluate during Phase 3 tests.  

5.4.6.1 STO 8 Recommendations 

Of upmost importance, full airworthiness needs to be pursued through the F-16 

System Program Office (SPO) and airborne flight reliability testing of an unmodified 

system still needs to undergo test and evaluation (T&E).  Additionally, ESB diagrams 

and actual ISB and ESB mounting instructions with pictures will be needed in future 

versions to complete final evaluations of the AMPSS 3.0. 

5.5 Simulated vs. Actual Flight Environment Lessons Learned 

Numerous recommendations highlighted in this chapter have emphasized the 

importance of utilizing centrifuge testing in order to establish larger subject pools, garner 

statistical significance, and save in research costs.  While, these recommendations can 

provide additional data and save costs, the value of human subject testing in high 

performance aircraft established in the actual flight environment cannot be overstressed.  

As observed in STO 4, there are added stressors to PC state awareness and performance 

in a real flight environment that neither cannot be replicated nor accounted for in 
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simulated environments.  Subjects stated a “night vs. day” difference in post-flight 

reports of code recall and accuracy capability.  While this observation may seem obvious 

in hindsight, it was never considered during experimental design.  As humans we 

continually strive to not repeat the same mistakes, yet in retrospective the common 

phrase, “how did we not see this coming?” could not be more true. 

Simulated environments are inherently limited in their ability to accurately model 

the system in which they are designed to represent.  During Phase 3 testing, subjects 

noted the ease with which a short-term memory task could be conquered and the subjects 

could confidently “game the system” via a repeated audio-circulatory loop.  As Subject A 

noted, once the code was given, “I spent the entire time under high-G simply focused on 

staying awake and repeating the code in my head.”  No further cognitive processing was 

dedicated towards maneuvering an aircraft as in Phase 4.  The Phase 3 tracking task 

required minimal added cognitive functions and due to sensory-domain differences, the 

audio-circulatory code recall did not interfere with visual and fine-motor closed-loop 

tracking.  The net result was a simple code recall task, in no way representative of the 

added cognitive challenges present in a real flight environment. 

Testing in actual environments present added challenges and variables, which are 

difficult to control, and could lead to false conclusions if striving for simply pure and 

sanitized data.  In traditional engineering practice, statistical rigor and a “numbers don’t 

lie” approach is often undertaken.  While these fundamentals are paramount to scientific 

truth, in human subject testing we must accept that empirical observations and a holistic 

perspective may provide as much (if not more) value when assessing the uniqueness of an 

actual versus simulated test environment.   
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During Phase 4 testing, subjects did not have the luxury of repeating the code in 

an audio-circulatory loop because doing so was disruptive to the long list of additional 

tasks and added cognitive workload involved with flying the aircraft.  Subject C noted, “I 

tried to repeat the code, but quickly had to abandon the task” for higher priority cognitive 

functions.  The airborne G-tracking event was a high gain task of continuously closing-

the-loop of not just aircraft G, but also altitude, airspeed, Mach, bank angle, and aircraft 

velocity vector, all while managing airspace, communications, energy for follow-on test 

sets, etc.  Hence, while the centrifuge tracking task can be related to the airborne G-

tracking task, in reality the airborne environment adds a long list of coupled cognitive 

tasks that simply cannot be eliminated or modeled in a simulated environment.  As a 

result, observations during flight testing can be summarized by a witty “explosion of the 

noise”.  Subject code recall accuracy was initially vastly worse during flight testing as the 

added tasks and variables simply could not be overcome.  As airspace, communication, 

and task familiarization increased during second, third, and fourth flights, subjects found 

ways to compensate and code recall slowly improved. 

In summary, centrifuge testing is cheaper, safer, and easier to control or identify 

specific changes in one parameter.  Testing in a real flight environment is more 

expensive, carries more risk (both safety and technical), and is harder to control variables.  

However, in human subject testing a picture (flight) can often be worth a thousand words 

(centrifuge). 

5.6 Significance of Research 

This research was unique in that it marked the first time a pilot’s HR had been 

accurately measured, processed, and incorporated during flight into a real-time 
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biofeedback display.  When compared to the KBRWyle “truth data” ECG, the PECGU 

proved to accurately measure HR and display %HRR real-time.   

Additionally, it has been demonstrated through this research that many of the 

metrics that were measured did not always prove statistically significant or highlight 

correlation solely to %HRR.  Because of the academic nature of this project, the research 

sponsor knew of the pre-planned and limited subject pool before testing began.  Complete 

statistical significance of every STO was never the end goal, but rather statistical 

relevance and empirical observations. 

That being said, light has been shed onto the potential value of biofeedback in 

aerospace systems.  The human body is an extremely complex and sophisticated machine, 

one that cannot be surmised in a single parametric value.  Future military utility in 

biofeedback systems will be realized when a myriad of sensors can be integrated to 

provide a “whole body” metric with a simple user interface to allow pilots a quick glance 

at their entire PC state before critical airborne decisions are made. 

5.7 Military Utility 

When assessing military utility of a real-time biofeedback system for high 

performance aircraft pilots, total utility will be situation dependent based on mission 

tasks and tactical execution.  Two airborne situations are considered and basic 

implementation methods are discussed. 

5.7.1 Within Visual Range (WVR) 

Within Visual Range (WVR) maneuvering, or dogfighting, is a high-G, dynamic, 

and complex flight environment.  Pilot’s routinely sustain 4-5 Gs and will intermittently 

increase G-loading upwards of 8-9 Gs for short bursts of 10-15 seconds.  Engagements 
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can last anywhere from 10 seconds to 2-3 minutes.  Subsets of WVR maneuvering 

include: BFM, characterized by just one single aircraft versus another; and aerial combat 

maneuvers (ACM), which consists of three or more aircraft all within a single visual 

engagement.  These mission sets are often referred to as a “knife fight in a phone booth” 

whereby the first mistake that a pilot makes is usually their last.  A pilot’s attention span 

is spent almost executively outside the cockpit maintaining visual sight of the adversary, 

aggressively maneuvering the aircraft to a position of advantage, and controlling 

sensors/weapons through hands-on-throttle-and-stick (HOTAS) actuations to employ 

ordnance.  WVR execution can be correlated to a much more physically demanding 

environment and cognition is relegated to quick reactions based on mental sight pictures 

gained from training and prior experience. 

In these scenarios, physiological exertion is high and there is extremely limited 

cognitive bandwidth.  The likelihood of continuous use of a real-time biofeedback 

display during a WVR engagement may be low, but there may be some added value to 

biofeedback augmentation leading up to WVR maneuvering.  Combat missions in fighter 

aircraft are sometimes over four hours long, and depending on the mission can be as long 

as six to eight hours.  Increased situation awareness (SA) provided by biofeedback of a 

degraded PC state due to dehydration, deficient nutrition, physiological exertion, or 

mental fatigue may be the only objective measures a pilot may have as the critical fight or 

flight decision is being made.  Biofeedback for the pilot during this time could alert them 

to the fact that they may be tired or in a degraded PC state.  How this information is used 

is a completely different discussion.  Hence, in the context of WVR maneuvering a real-
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time biofeedback system appears to have some promise only in aiding a binary decision 

tree leading up to WVR maneuvering.   

5.7.2 Beyond Visual Range (BVR) 

Beyond Visual Range (BVR) maneuvering describes tactical operations that take 

place, just as the name dictates, beyond visual range and constitute all operations outside 

the small subset of WVR.  In a typical mission is a large majority of a pilot’s time and 

attention is spent in the BVR arena.  Aircraft maneuvering can be characterized as more 

smooth and benign.  G loading is typically 1-2 Gs with intermittent increases of 3-4 Gs.  

A much larger portion of a pilot’s attention span is spent with eyes inside the cockpit 

monitoring displays, controlling sensors, and executing higher-level mission management 

decisions.  BVR execution can be correlated to more top-down cognitive processing.  

Decisions are still made quickly, but are more deliberate and incorporate a wide-spectrum 

of information from real-time sensors and networks as well as mission planning prior to 

takeoff. 

Most modern aircraft mission computers contain robust failure mode and aircraft 

systems monitoring capabilities.  Pilots are alerted of degraded weapons, failed sensors, 

and deficient fuel states.  This information is fed-back and incorporated in higher-level 

mission management decisions.  An aircraft tells you when the radar is broken.  Why 

can’t it tell you when the human is broken (or degraded)?  In BVR maneuvering, a real-

time biofeedback system just may prove to have military utility. 

In BVR scenarios, biofeedback for the pilot could still alert them to a tired or 

degraded PC state, however more follow-on time may be available for missionized 

decisions to be influenced.  Furthermore, PC state information shared across a standard 
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formation of four aircraft, may offer even more flexibility within the formation.  

Awareness of degraded cognitive processing from pilot #3 may warrant switching 

formation positions with #2 (traditionally a more “follower” role).  Biofeedback 

indicating physiological limitations may temporarily drive the pilot to choose a lower risk 

decision, vice accepting a higher risk intercept that would normally be conducted.   

5.7.3 Methods 

Methods in which biofeedback informs the operator should capitalize on the same 

techniques employed in current integrated aircraft alerting systems.  The human system 

needs to be treated like any other aircraft system (engine, hydraulic, oil, pneumatic, 

environmental).  However, information needs to be presented in an intuitive fashion that 

is minimally intrusive to the operator.   

In order to optimize usability a fine balance needs to be struck between cued 

inputs and subject attention.  In engineering practice, attention has been divided into 

sustained attention (vigilance decrements occur) and selective attention.  In selective 

attention, as multiple displays are available to operators, switching triggers are driven by 

either endogenous or exogenous inputs.  Endogenous attention is characterized by 

voluntary focus to an area outside current focus to seek information.  Exogenous attention 

is generated by cued (audio/visual) inputs to force attention from outside the focus area to 

within a specific area of interest (Wickens, Hollands, Parasuraman, & Banbury, 2012).  

Biofeedback content should be incorporated into current displays and available 

via sub menus.  As the time-critical nature of PC state awareness is increased, exogenous 

inputs such as aural, visual, and tactile cueing should be employed.  Operators should not 

be burdened to “babysit” a biofeedback display and rely on endogenous attention means 
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to monitor PC state information.  Information needs to be non-invasive to the operator, 

but pervasive in nature and readily available when needed and prompted by exogenous 

cueing. 

In the most extreme cases, as physiological loading is boosted and potential for G-

induced loss of consciousness (G-LOC) increases, PC state recognition algorithms could 

inform aircraft systems, trigger a recovery profile, and safely recover the aircraft even 

prior to current automated ground collision avoidance systems (AGCAS) employed in 

modern fighter aircraft.  Further discussion on of ongoing research in improved systems 

health monitoring algorithms and the potential incorporation into the human system 

monitoring is addressed later in this chapter. 

5.8 Recommendations for Action 

The PECGU-GETAC combination served as an initial prototype to collect HR 

and display %HRR real-time.  As previously stated, in its current configuration there was 

never intent to satisfy military utility, but rather provide a research platform.  Moving 

forward the following recommendations should be considered to further develop 

biofeedback both from a research and operational perspective. 

Before further development of systems and displays are undertaken, more needs 

to be learned about PC state in high performance aircraft.  People have been trying to 

understand and categorize cognitive processing and physiological stress in aircraft for 

years.  While this problem will not be solved overnight, opportunities need to be 

capitalized on now. 

There is a wide range of biosensors that should be employed in a massive data 

collection initiative.  Dedicated trips to the centrifuge are not even necessary.  Every time 
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a pilot takes off there is an opportunity for free data.  As discussed in Chapter 2, ECG, 

electroencephalography (EEG), cerebral oxygen status (COS), pulse oximetry, ocular 

response, galvanic skin response, and respiratory response are some of the current 

objective means for attempting to capture operator PC state.  Combined with data and 

information on subject background, detailed operator profiles could be constructed.  

Subsequently, a robust data-mining initiative could potentially lead to valuable 

correlations between key biometrics and PC state.  Large variability may exist between 

subjects.  Different airborne missions may yield vastly diverse responses from one 

biometric to the next.  Such an endeavor may take years to fully develop.  In the end, 

there is hope for an individualized, all-inclusive, and data-driven complex weighting 

algorithm, which ultimately presents a streamlined and intuitive PC state/fatigue index.   

5.8.1 Future Research/Designs 

As previously discussed, in order to realize the full potential of real-time 

biofeedback in flight, a mindset shift of treating the human system like every other 

aircraft system (hydraulic, electrical, engine, fuel, etc.) is necessary.  This section ties 

together the potential for human system monitoring to current research of flight safety 

and real-time early warning techniques (Javorsek II, Barshi, & Iverson, 2016). 

A paper titled, Enhancing Flight Test Safety with Real-time Early Warning 

Techniques, introduces new mathematical methods to identify, characterize, and inform 

future operators of anomalous patterns of behavior in complex systems.  The Inductive 

Monitoring System (IMS) was utilized by the National Aeronautics and Space 

Administration (NASA) during the accident investigation in the aftermath of the 

Columbia disaster in 2003 (Iverson, 2004).  In short, IMS takes baseline data formatted 
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into vectors and builds a knowledgebase, whereby numerical techniques characterize 

system behavior by identifying all regions of a nominal N-dimensional state space.  

Clustering algorithms are used to recognize patterns and define allowable ranges of 

boundaries.  Extremely high/low values within a cluster can be thought of as borders of a 

minimum-bounding N-dimensional rectangle.  The four different cluster algorithms 

employed in IMS are seen in Figure 44 below: (a) Euclidean distance; (b) Hierarchical, 

each cluster subdivided into smaller clusters; (c) K-means (with k = 4) partitions space 

into four subspaces; (d) Self organizing map, centroids organized into grid structure.  

IMS employs a hybrid of clustering techniques, which ultimately focus on different ways 

that intercluster distances are defined, also referred to as the linkage function (Javorsek II 

et al., 2016). 

As knowledgebase is improved new vectors are assessed based on location 

relative to a cluster’s centroid (from previous vectors using K-means clustering method).  

Distances can be measured using a variety of metrics, but Euclidean has proven most 

effective.  New vectors are either added to previous clusters or assigned to a different 

cluster.  Once all baseline data is processed system performance can be characterized and 

a normal operating envelope is defined.  With a working baseline envelope, IMS can now 

inform the operator if and how a system is deviating from nominal operations.  As new 

vectors are reported real-time, alerting methods can be tailored from extra vigilance to 

immediate attention, based on severity.  Algorithms and numerical methods like IMS 

have to potential to unlock critical information, previously hidden within the data 

(Javorsek II et al., 2016). 
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Figure 44: IMS Cluster Algorithms (Javorsek II et al., 2016) 

Javorsek, Barshi, and Iverson further introduce a Composite Parameter Display 

(CPD), whereby a system health monitoring display template of interrelated complex 

systems may prove more valuable over traditional cockpit displays.  CPD incorporates 

complex parameters (product of two more primary values/parameters) and assigns 

“custom weighting factors based on the known interrelationships that arise naturally from 

the subsystem architecture” (Javorsek, et all.).       

In the example shown below in Figure 45 (Barshi, 2012), a display developed by

the NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) for a 

UH-60 Blackhawk helicopter included several primary and composite parameters from 
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instrumented engine values.  Primary parameters were recorded for power turbine speed 

(Np), gas generator speed (Ng), engine torque (Tq), and fuel flow (FF).  IMS analysis 

suggested composite parameters and a display was created based on medieval girih

tilework.  Primary parameters (left and right) were displayed as “petals” at the “flower” 

center, with subsequent composite parameters shown in outer petals conveying 

interrelationships and anomalous patterns via color changes.  Furthermore, displays can 

be expanded upon to incorporate other subsystems by connecting adjacent flowers.  

These interactions within complex subsystems may be the first indications during flight 

emergencies or mishaps (Javorsek, et all.).   

Figure 45: NASA RASCAL’s Medieval Girih Tilework Display (Barshi, 2012) 

As highlighted in the above summary of current research efforts in real-time early 

warning techniques, it is evident there is an avenue to incorporate real-time biofeedback 
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and monitoring of human systems as addressed in this research.  A baseline 

knowledgebase could be created through robust data collection.  Algorithms and 

numerical methods can then be applied real-time to airborne imported data from 

biosensors.  As knowledgebase increased, subject-specific profiles would need to be 

created.  Individual operators would be actively expanding and refining the 

knowledgebase of their PC state through continued flight operations.  While this 

endeavor may not be trivial, the potential to change how human system health monitoring 

is implemented and displayed may have tremendous enduring effects to the warfighter.  

5.9 Chapter Summary 

This chapter opened with a recap of the STOs and MOPs.  Second, conclusions 

and recommendations were expounded upon based on the results and analysis described 

in Chapter 4.  Third, the uniqueness of this research was affirmed in that it marks the first 

time a pilot’s HR has been accurately measured, processed, and incorporated during 

flight into a real-time biofeedback display. Fourth, implementation methods and analysis 

and was done of the potential military utility of biofeedback displays in high performance 

aircraft.  Fifth, a call for action was made and the importance of future data collection 

initiatives was identified.  Lastly, ongoing research in real-time early warning algorithms 

and displays was linked to this research as potential for improving human systems health 

monitoring via real-time biofeedback. 
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Appendix A – Flight Profile 

Figure 46: Phase 4 Flight Profile 



 124 

Appendix B – Phase 3 and 4 Master Data Spreadsheet 
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Figure 47: Phase 3 and 4 Master Data Spreadsheet 
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Appendix C – Subject A-E VO2max Results 

 

 

 

 

 

**Subject A VO2max graph unavailable due to errors in data** 
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Figure 48: Subject B VO2max 
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Figure 49 Subject C VO2max 
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Figure 50: Subject D VO2max 
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Figure 51: Subject E VO2max
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Appendix D – Subject A-E Physiological and Cognitive Results 

 

Figure 52: Subject A %HRR vs. Borg RPE Score (by Test Event and Category) 
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Figure 53: Subject A Cognitive Results (Time and Accuracy) 
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Figure 54: Subject B %HRR vs. Borg RPE Score (by Test Event and Category) 



 139 

Figure 55: Subject B Cognitive Results (Time and Accuracy) 
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Figure 56: Subject C %HRR vs. Borg RPE Score (by Test Event and Category) 
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Figure 57: Subject C Cognitive Results (Time and Accuracy) 
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Figure 58: Subject D %HRR vs. Borg RPE Score (by Test Event - All Centrifuge) 
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Figure 59: Subject D Cognitive Results (Time and Accuracy) 
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Figure 60: Subject E %HRR vs. Borg RPE Score (by Test Event - All Centrifuge) 
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Figure 61: Subject E Cognitive Results (Time and Accuracy) 
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Figure 62: Subject A-E Rest Times (%HRR When Rest Began)
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Appendix E – Subject A-E Phase 3 %HRR vs. G 

 

Figure 63: Subject A Phase 3 %HRR vs. G 
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Figure 64: Subject B Phase 3 %HRR vs. G 
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Figure 65: Subject C Phase 3 %HRR vs. G 
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Figure 66: Subject D Phase 3 %HRR vs. G 



 151 

Figure 67: Subject E Phase 3 %HRR vs. G 
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Appendix F – Subject A-E Phase 3 G-Tracking Scores 

Figure 68: Subject A Phase 3 Without Biofeedback Test Sets 1-2 



 153 

Figure 69: Subject A Phase 3 Without Biofeedback Test Sets 3-4 

**Subject A Phase 3 With Biofeedback Test Sets unavailable due to data errors** 
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Figure 70: Subject B Phase 3 Without Biofeedback Test Sets 1-2 
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Figure 71: Subject B Phase 3 Without Biofeedback Test Sets 3-4 
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Figure 72: Subject B Phase 3 With Biofeedback Test Sets 1-2 
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Figure 73: Subject B Phase 3 With Biofeedback Test Sets 3-4 
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Figure 74: Subject C Phase 3 Without Biofeedback Test Sets 1-2 
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Figure 75: Subject C Phase 3 Without Biofeedback Test Sets 3-4 
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Figure 76: Subject C Phase 3 With Biofeedback Test Sets 1-2 
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Figure 77: Subject C Phase 3 With Biofeedback Test Sets 3-4 
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Figure 78: Subject D Phase 3 Without Biofeedback Test Sets 1-2 
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Figure 79: Subject D Phase 3 Without Biofeedback Test Sets 3-4 
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Figure 80: Subject D Phase 3 With Biofeedback Test Sets 1-2 
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Figure 81: Subject D Phase 3 With Biofeedback Test Sets 3-4 
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Figure 82: Subject E Phase 3 Without Biofeedback Test Sets 1-2 
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Figure 83: Subject E Phase 3 Without Biofeedback Test Sets 3-4 
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Figure 84: Subject E Phase 3 With Biofeedback Test Sets 1-2 
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Figure 85: Subject E Phase 3 With Biofeedback Test Sets 3-4 
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Appendix G – Subject B and C Phase 4 %HRR vs. G 

Figure 86: Subject B Phase 4 %HRR vs. G Without Biofeedback 

 

Figure 87: Subject B Phase 4 %HRR vs. G With Biofeedback 
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Figure 88: Subject B Phase 4 %HRR vs. G With Biofeedback 

Figure 89: Subject C Phase 4 %HRR vs. G With Biofeedback 
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Figure 90: Subject C Phase 4 %HRR vs. G Without Biofeedback 

 

Figure 91: Subject C Phase 4 %HRR vs. G With Biofeedback 
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Appendix H – Subjects A-C Phase 4 G-Tracking Scores 

 

Figure 92: Subject A Phase 4 Without Biofeedback Test Sets 1-2 
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Figure 93: Subject A Phase 4 Without Biofeedback Test Sets 3-4 
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Figure 94: Subject A Phase 4 With Biofeedback Test Sets 1-2 
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Figure 95: Subject A Phase 4 With Biofeedback Test Sets 3-4 
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Figure 96: Subject B Phase 4 Without Biofeedback Test Sets 1-2 
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Figure 97: Subject B Phase 4 Without Biofeedback Test Sets 3-4 
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Figure 98: Subject B Phase 4 With Biofeedback Test Sets 1-2 
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Figure 99: Subject B Phase 4 With Biofeedback Test Sets 3-4 
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Figure 100: Subject B Phase 4 With Biofeedback Test Sets 1-2 
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Figure 101: Subject B Phase 4 With Biofeedback Test Sets 3-4 
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Figure 102: Subject C Phase 4 Without Biofeedback Test Sets 1-2 
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Figure 103: Subject C Phase 4 Without Biofeedback Test Sets 3-4 
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Figure 104: Subject C Phase 4 With Biofeedback Test Sets 1-2 
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Figure 105: Subject C Phase 4 With Biofeedback Test Sets 3-4 



 187 

 

Figure 106: Subject C Phase 4 With Biofeedback Test Sets 1-2 
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Figure 107: Subject C Phase 4 With Biofeedback Test Sets 3-4 
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Appendix I – Rating and Evaluation Criteria 

 

Table 19: 412th Test Wing Rating Criteria 

 

Table 20: 412th Test Wing Six-Point General Purpose Scale 

 

 

 

 

How Well Does the 
System Meet Mission 

and/or Task 
Requirements? 

Changes Recommended for 
Improvement 

Mission/Task  
Impact Descriptor Rating 

Exceeds requirements. None None Excellent Satisfactory 

Meets all or a majority of 
the requirements. 

Negligible changes needed 
to enhance or improve 
operational test or field use 

Negligible Good Satisfactory 

Some requirements met; 
can do the job, but not as 
well as it could or should. 

Minor changes needed to 
improve operational test or 
field use 

Minor Adequate Satisfactory 

Minimum level of 
acceptable capability 
and/or some noncritical 
requirements not met. 

Moderate changes needed to 
reduce risk in operational 
test or field use 

Moderate Borderline Marginal 

One or some of the 
critical functional 
requirements were not 
met. 

Substantial changes needed 
to achieve satisfactory 
functionality 

Substantial Deficient Unsatisfactory 

A majority or all of the 
functional requirements 
were not met. 

Major changes required to 
achieve system functionality  Major Unacceptable Unsatisfactory 

Mission not safe. Critical changes mandatory Critical Unsafe Failed 
 

Scale 
Value 

Response 
Alternatives Definitions 

1 Very 
Unsatisfactory 

Task cannot be performed or the item is unusable or unsafe. Mission/Task not 
accomplished due to equipment deficiencies or procedural limitations. 

2 Unsatisfactory 
Major problems encountered. Task accomplished with great difficulty or 
accomplished poorly. Significant degradation of mission/task accomplishment or 
accuracy. 

3 Marginally 
Unsatisfactory 

Minor problems encountered. Task accomplished with some difficulty. Some 
degradation of mission/task accomplishment or accuracy. 

4 Marginally 
Satisfactory 

The item or task meets its intended purpose with some reservations. Meets minimum 
requirements to accomplish mission/task. 

5 Satisfactory The item or task meets its intended purpose; it could be improved to make it easier 
or more efficient. 

6 Very 
Satisfactory The item or task is fine the way it is; no improvement required. 
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Table 21: 412th Test Wing Mean Score Evaluation Criteria 

 

Table 22: 412th Test Wing Mean Score Descriptors and Rating 

 

Rating Mean score 
Satisfactory 4.5 – 6.0 
Marginal 2.5 – 4.4 
Unsatisfactory 1.0 – 2.4 
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Appendix J – GETAC %HRR Display Surveys 

SUBJECT A 

RATING FACTOR DEFINITION 

3 Format, Readability Size, shape, and placement of the biofeedback text 
and symbology 

4 Fit/Comfort 
Fit and comfort of the tablet for duration of flight 

4 Jitter / Distortion Amount of symbology and text jitter/distortion  

2 Visual Access Visual angle sufficient to view required information 

3 Information Level of information provided is useful and 
appropriate  

2 Controls Ease of operation, placement 
 

Comments:  
 
Direct sunlight readability is a problem, barely visible in direct sunlight, which required aircrew to 
shadow screen to read information. Information provided is very basic, and no recording capability 
severely restricts data gathering for follow on testing. 
 
Tablet holder is basic, and obscures function buttons on top of tablet, but is comfortable for the 
duration of the flight. Recommend a hard side holder that tablet snaps into which allows 
manipulation of tablet buttons. 
 
Tablet GUI is okay for basic information presentation, but location on leg is not useful for 
immediate and quick checking of information. If system somehow gets out of the program, getting 
back into the program is extremely difficult. If for some reason the program crashed and you had to 
restart it, the clickable icons on the touchscreen are so small that without a tablet pen pointer, good 
luck restarting the program. 
 
 

 
 

Were there any aspects of the mission not covered by these question items that might 
adversely impact? 
 Workload? 
No [ X  ]   Yes   [   ] if yes, please comment: 
 
 Mission Effectiveness? 
No [ X  ]   Yes   [   ] if yes, please comment: 
 
 Flight Safety? 
No [ X ]   Yes   [   ] if yes, please comment: 
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SUBJECT B 

RATING FACTOR DEFINITION 

2.7 Format, Readability Size, shape, and placement of the biofeedback text 
and symbology 

5 Fit/Comfort 
Fit and comfort of the tablet for duration of flight 

3.3 Jitter / Distortion Amount of symbology and text jitter/distortion  

2.7 Visual Access Visual angle sufficient to view required information 

3 Information Level of information provided is useful and 
appropriate  

2.7 Controls Ease of operation, placement 

Comments:  
 
Glare from the sun impedes ability for aircrew to read information from the screen.  Additionally, 
issue is exacerbated by the fact the font is hard to read along with interpretation of my biofeedback 
due to noisy readout of data. 
 
No issues with fitment of tablet holder.  However, cumbersome getting into aircraft with wires and 
leads hanging out everywhere.  Recommend better consolidation of leads and wires. 
 
Heads down time require reading and interpreting data readouts adversely affected flying 
performance.  Would regularly have to correct speed or altitude deviations after continuous periods 
looking at the screen. 
 
Noticed a considerable increase in workload trying to interpret data during flying ops compared to 
centrifuge ops 
 
 

 

Were there any aspects of the mission not covered by these question items that might 
adversely impact? 
 Workload? 
No [ X  ]   Yes   [   ] if yes, please comment: 
 
 Mission Effectiveness? 
No [ X  ]   Yes   [   ] if yes, please comment: 
 Flight Safety? 
No [ X ]   Yes   [   ] if yes, please comment: 
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SUBJECT C 

RATING FACTOR DEFINITION 

2.5 Format, Readability Size, shape, and placement of the biofeedback text 
and symbology 

3 Fit/Comfort 
Fit and comfort of the tablet for duration of flight 

2.5 Jitter / Distortion Amount of symbology and text jitter/distortion  

3 Visual Access Visual angle sufficient to view required information 

3 Information Level of information provided is useful and 
appropriate  

1.5 Controls Ease of operation, placement 

Comments:  
Format/Readability:  
- %HRR displayed!  Improvement from previous version at centrifuge.  Also, incorporated 

basic 0-100% scale. Info could be bigger and more readable 
R1: Further incorporating MIL-STD human factors requirements into display. 

- Raw heart rate number displayed with no scale/graph/color display usage.  Recommend 
incorporating MIL-STD human factors requirements into display. 

 
Fit/Comfort: 
- Nothing changed since centrifuge.  Leg mounted tablet with holster acceptable, but not ideal.   
- R2: future incorporation into existing cockpit displays or added display mounted to aircraft.  

Leg mounted was bulky for aircraft walkout/preflight. 
- For initial concept a leg mounted tablet with holster was acceptable, but not ideal.  

Recommend future incorporation into existing cockpit displays or added display mounted to 
aircraft.  Leg mounted was bulky walking to/from centrifuge. 

 
Jitter/Distortion: 
- %HRR values more stable than centrifuge, but occasionally still jumping from actual %HHR 

value to bogus values greater than 100%.  Required looking for multiple seconds to ensure 
reading truth value. 

- Heart Rate values were not stable and/or easy to read.  Values jumping from actual HR value 
to 255 (bogus value). 
 

Visual Access: 
- R3: Incorporate information into existing cockpit displays and/or added mounted displays in 

accordance with current MIL-STD guidance for viewing angles, colors, contrast, etc. 
- For initial hardware in-flight concept, information was viewable, but for future 

implementation recommend incorporating information into existing cockpit displays and/or in 
accordance with current MIL-STD guidance for viewing angles, colors, contrast, etc. 
 

Information: 
- Information displayed heart rate values, which was not in accordance with expected final 

product.  We expected and planned for %HRR values on a 1-100% scale.  Hardware is still in 
early development stages, which caused display crashing issues with %HRR. 

- Information displayed %HRR values.  Big improvement from centrifuge to flight 
- Raw heart rate and breaths per minute were not displayed 
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Controls: 
- Function and usability was very poor.  Very specific steps/process was required to get display 

on and working without crashing.  If deviated, display froze and info not available.  Display 
needs to be very easy to use and manipulate controls/options for future in-flight cockpit 
implementation. 
 

 

 

 

 

  

 
 
 
Were there any aspects of the mission not covered by these question items that might adversely 
impact? 

1.  Workload? 

No [ X  ]   Yes   [   ] if yes, please comment: 
 

2.  Mission Effectiveness? 

No [  ]   Yes   [ X ] if yes, please comment: 
 
More difficult cross check with leg mounted.  Tough to scan information on tablet on leg 
vs. more forward mounted for better scan.  Ambient light in cockpit was also minor issue.  
Sometimes required shielding sunlight with hand to see display since couldn’t adjust 
brightness enough. 

 

3.  Flight Safety? 

No [   ]   Yes   [ X ] if yes, please comment: 
 
Added weight during aircraft egress.  Emergency ground egress might be tougher with 
bulky leg mounted tablet.  Aircraft ejection potentially more dangerous with leg mounted 
tablet 
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SUBJECT D 

RATING FACTOR DEFINITION 

2 Format, Readability Size, shape, and placement of the biofeedback text 
and symbology 

4 Fit/Comfort 
Fit and comfort of the tablet for duration of flight 

4 Jitter / Distortion Amount of symbology and text jitter/distortion  

2 Visual Access Visual angle sufficient to view required information 

3 Information Level of information provided is useful and 
appropriate  

1 Controls Ease of operation, placement 

Comments:  
Format/Readability:  
- %HRR information difficult to read due to font size 
- The key information (%HRR) is buried in the middle of the screen with a lot of other 

information not relevant to the user.  This cause distraction and difficultly to easily and 
quickly locate the required information. 

 
Fit/Comfort: 
- A lot of leads hanging off the GTAC.   
- Takes a lot of time and specific training to fit to subject. 

 
Jitter/Distortion: 
- Noisy values make it difficult to interpret 
- Stuck on arbitrary number during centrifuge trials – not useful 

Visual Access: 
- Requires look down – not an issue in the centrifuge but may be a factor in the aircraft. 

Information: 
- Information displayed in the GTAC was not the required %HRR during centrifuge trials. 
- Had to advise actual heart rate to control, then they would provide a %HRR from test subject 

specific generated table.  This added time and potentially corrupted test data. 
Controls: 
- Difficult to use without specialized training 
- Suspect significant increase in workload if required to modify controls while airborne 

 
 
Were there any aspects of the mission not covered by these question items that might adversely 
impact? 
 Workload? 
No [ X  ]   Yes   [   ] if yes, please comment: 
 Mission Effectiveness? 
No [  ]   Yes   [ X ] if yes, please comment:   The inability to provide %HRR will reduce 
the ability to gather data during flight test in September. 
 Flight Safety? 
No [ X ]   Yes   [   ] if yes, please comment: 
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SUBJECT E 

RATING FACTOR DEFINITION 

2 Format, Readability Size, shape, and placement of the biofeedback text 
and symbology 

6 Fit/Comfort 
Fit and comfort of the tablet for duration of flight 

5 Jitter / Distortion Amount of symbology and text jitter/distortion  

3 Visual Access Visual angle sufficient to view required information 

4 Information Level of information provided is useful and 
appropriate  

2 Controls Ease of operation, placement 

Comments:  
Format/Readability:  
- Heart rate is difficult to read due to font size 

 
Fit/Comfort: 
- Fits well on thigh with not movement or restraining issues. 
- Tablet holds well in plastic pouch 

 
Jitter/Distortion: 
- Hard to determine what the actually heart rate value is due to noisy readout of data 

 
Visual Access: 
- Not in field of view, sometimes difficult to interpret data 

 
Information: 
- Was not given the correct information during centrifuge trials.  Heart rate versus the required 

%HRR as per test plan 
 

Controls: 
- Was a set and forget, meaning the AFE guy would set it and I would have no understanding of 

how to operate it apart from looking at the screen. 
 

 
Were there any aspects of the mission not covered by these question items that might adversely 
impact? 
 Workload? 
No [ X  ]   Yes   [   ] if yes, please comment: 
 
 Mission Effectiveness? 
No [  ]   Yes   [ X ] if yes, please comment: 
Was showing heart rate instead of %HRR – this should be fixed prior to flight test 
 
 Flight Safety? 
No [ X ]   Yes   [   ] if yes, please comment:  
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AFE 1 

RATING FACTOR DEFINITION 

5 Format, Readability Size, shape, and placement of the biofeedback text 
and symbology 

5 Fit/Comfort 
Fit and comfort of the tablet for duration of flight 

4 Jitter / Distortion Amount of symbology and text jitter/distortion  

4 Visual Access Visual angle sufficient to view required information 

6 Information Level of information provided is useful and 
appropriate  

4 Controls Ease of operation, placement 

Comments:  
Numerous usability, connectivity, and integration with AFE equipment fixes were needed and 
accomplished during the course of the HAVE HOPE Project which vastly improved the final few 
flight executions.  The GETAC tablet is larger and heavier than other like devices that could have 
been better to wear for flight test (IPAD with the flight approved “FlyBoys” Kneepad).  GETAC 
Holster modifications for security to the ATAGs G-Suit were needed on the holster straps and case 
to hold in place due to weight and bulk.  Not being able to lock the touch screen for unavoidable 
touching during cockpit operations presented challenges to prevent uninterrupted viewing during 
flight.  Software display fixes (hide taskbar, maximize biofeedback app, eliminate all notifications, 
and turn off all time outs, and device sleep settings) were incorporated during project execution.  A 
dimly lit screen display for viewing during flight in sunlight filled cockpit also presented an early 
challenge, but was improved by maximizing devices lighting/brightness settings and disengaging 
the backlit auto sensor.  On the ECG box containing the motherboard circuitry, the USB 
connectivity ports were not exactly as flush to the surface as they needed to be. It was necessary to 
cut away areas around the port, and tape USB connectors down to prevent cable flexing hardware 
disconnects during aircraft walk around, ladder/cockpit access, and movements in flight. Software 
controls were relatively easy.  Pilots were able to perform Biofeedback tool software app re-
execution if needed in the cockpit on the ground, but not during flight due to difficulty in 
performing a device reset by a pin insertion or by removing a battery to reset.  Visual display angles 
were very acceptable, and I’m not aware of any symbology and or text jitter / distortion being 
reported by any of the HAVE HOPE flight test execution pilots.  The level of Biofeedback 
information was useful, and appropriate to satisfy the requirements of the flight test data parameters 
to my knowledge.        

 
 
Were there any aspects of the mission not covered by these question items that might adversely 
impact? 

1.  Workload? 

No [  ]   Yes   [ X ] if yes, please comment: 
Biofeedback software app related only.  There needs to be factors and ratings addressed 
which include Biofeedback tool/device and Control Box aircrew flight gear integration, 
hardware connectivity issues, and hardware power/battery drain and durations.  These 
added factors when related issues did come up, proved to cost time and added workloads 
during AFE prefights, and step times, and cockpit preflight times. 
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2.  Mission Effectiveness? 

No [  ]   Yes   [ X ] if yes, please comment: 
Biofeedback software app related only.  There needs to be factors and ratings addressed 
which include Biofeedback tool/device and Control Box aircrew flight gear integration, 
hardware connectivity issues, and hardware power/battery drain and durations, all of 
which could and did cost in-effective missions to occur. 

3.  Flight Safety? 

No [   ]   Yes   [ X ] if yes, please comment: 
 
All the factors listed above were Biofeedback software app related only.  There needs to 
be factors and ratings addressed which include Biofeedback tool/hardware device and 
Control Box aircrew flight gear integration, which in this case posed post ejection 
challenges for flight safety which needed to be worked out. 
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AFE 2 

 

RATING FACTOR DEFINITION 

5 Format, Readability Size, shape, and placement of the biofeedback text 
and symbology 

5 Fit/Comfort 
Fit and comfort of the tablet for duration of flight 

4 Jitter / Distortion Amount of symbology and text jitter/distortion  

4 Visual Access Visual angle sufficient to view required information 

6 Information Level of information provided is useful and 
appropriate  

4 Controls Ease of operation, placement 

Comments:  
There were constant issues with connectivity during the test in the chamber.  The tablet is 
bulky and heavier than some other tablets that could possibly be used.  The holster used was 
okay but I know some aircrew have better kneepads out there that would be more suitable.    

 
Were there any aspects of the mission not covered by these question items that might adversely 
impact? 
 Workload? 
No [ X ]   Yes   [   ] if yes, please comment: 
Mission Effectiveness? 
No [ X ]   Yes   [   ] if yes, please comment: 
Flight Safety? 
No [ X ]   Yes   [   ] if yes, please comment: 
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Appendix K – AMPSS 3.0 Surveys 

AFE 1 
 
AMPSS 3.0 AIRCREW SURVEY 
 
Use the 412th TW Rating Criteria below. 
 
Circle a rating for each item or circle N/A for any item that does not apply.  Please complete the following 
scale for items 1-11 and add any comments. 

 
1. Rate the ease which with the AMPSS system was installed onto aircrew oxygen masks. 

 
N/A      1 2 3 4 5 6 
 Comments: AMPSS 2.6 ISB (Inhale Sensor Block) contained all sensors within the inline 
assembly, which connects to the hose O2 connector and CRU-60/P connector. Very quick and easy, and a 
considerable improvement from AMPSS 1.0, 2.0 and 2.5.  No ESB (Exhale Sensor Block) was available 
for the HAVE HOPE centrifuge or flight test to evaluate.      
    

2. Rate the usefulness of instructions and manuals provided by the manufacturer for installation of 
the AMPSS 
 

N/A      1 2 3 4 5 6 
 Comments: The AIMS (Aircrew Integrated Monitoring System) ISB operator user manual 
provided was very detailed and comprehensive.  However, it didn’t include the complete AMPSS 3.0 
complete suite of components to include the Exhale Sensor Block.  ESB Diagrams and actual ISB and ESB 
mounting instructions with pictures will be needed in future versions to complete the AMPSS 2.6 suite.   
          

 
3. Rate the difficulty of pre-flight inspection/action requirements with AMPSS. 

 
N/A      1 2 3 4 5 6 
 Comments: The ISB ppO2 sensors component require a preflight sensor calibration in a humidity 
level less than 3% to operate efficiently. This requires the complete ISB unit to be inserted in a humidity 
wicking substance prior to flight which is time consuming and requires materials not located in an 
AFE/Aircrew Life Support Shop.           
   

4. Rate the difficulty of post-flight inspection/action requirements with AMPSS. 
 
N/A      1 2 3 4 5 6 
 Comments: Post flights are easy with AMPSS 2.6 and is of no consequence.    
         
 

5. Rate AMPSS reliability compared to the unmodified system. 
 

N/A      1 2 3 4 5 6 
 Comments:  Reliability comparison to unmodified system during centrifuge spins is all that was 
tested.  No problems encountered, and data were collected.  Actual flight reliability to unmodified still 
needs to be tested for evaluation. 
              

 
 
 

6. Rate AMPSS maintainability compared to the unmodified system. 
 



   201 

N/A      1 2 3 4 5 6 
 Comments: AMPSS 2.6 maintainability compared to the unmodified system seems easy and was 
only tested after the HAVE HOPE centrifuge spins.         
     

 
7. Rate the difficulty of performing any required cleaning/ repair/maintenance actions. 

 
N/A      1 2 3 4 5 6 
 Comments: AMPSS 2.6 required cleaning is limited to exterior of ISB component only. No 
physical repair or maintenance is allowed with the exception of software modifications.  So, no difficulty 
noted.              

 
8. Rate the adequacy of manufacturer’s user/maintenance manual for any required 

inspection/repair/cleaning. 
 
N/A      1 2 3 4 5 6 
 Comments: ISB Operator User Manual covers inspection and cleaning sufficiently.  Cleaning is 
only allowed on exterior of complete unit.  No physical component repairs are mention, short of replacing 
complete unit.              

 
9. Rate the ease of removal of the AMPSS from oxygen hose. 

 
N/A      1 2 3 4 5 6 
 Comments:  Ease of removal from the ISB inline connect is very easy and is of no consequence.  
No ESB (Exhale Sensor Block) was available for the HAVE HOPE centrifuge or flight test to evaluate. 
           

 
10. Overall, compare the AMPSS modified system to the baseline mask considering installation, 

pre/post flight actions, maintenance, and uninstallation. 
 
N/A      1 2 3 4 5 6 
 Comments: Overall comparison of AMPSS 2.6 from baseline mask installation, pre/post flight 
actions, maintenance, and uninstallation function is relatively easy and satisfactory.  However, no ESB 
(Exhale Sensor Block) was available for the HAVE HOPE centrifuge or flight test to evaluate, and this is 
necessary to compare the system suite overall.       
     

 
11. Are special tools or equipment not normally available in your section required for any 

inspection/maintenance actions?  NO,         AMPSS 2.6 requires no special tools for inspection or 
maintenance actions. 
 
If yes, list tools or equipment not available 
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Subject A 
 
AMPSS 3.0 AIRCREW SURVEY 
 
Use the 412th TW Rating Criteria below. 
 
Circle a rating for each item or circle N/A for any item that does not apply.  Please complete the following 
scale for items 1-20 and add any comments. 
 
PRE-FLIGHT (Items 1-8) 
 

1. Rate the ease with which you accomplished your AMPSS pre-flight compared to the baseline 
system. 

N/A      1 2 3 4 5 6 
 Comments:  I do not have experience with the baseline system, this system was easy to use. 
          

2. Rate the pre-flight effort required to ensure proper AMPSS data collection. 
N/A      1 2 3 4 5 6 
           

3. Rate the ease of storage and transportation of the AMPSS system from AFE to the aircraft. 
N/A      1 2 3 4 5 6 
          

4. Rate the ease of ingress into the aircraft with the AMPSS system compared to the baseline 
configuration. 

N/A      1 2 3 4 5 6 
 Comments:  I do not have experience with the baseline system, but this system was easy to 
ingress to the aircraft.           
 

5. Rate the ease of storage/arrangement of AMPSS components in the cockpit/on your person.  
N/A      1 2 3 4 5 6 
          

6. Rate the ease of connecting and turning on the AMPSS system in the cockpit 
N/A      1 2 3 4 5 6 
 Comments:  I never actually used the system in the cockpit, but in the centrifuge I never 
turned it on from the cockpit, it was already running.       
    

7. Rate the overall comfort of the AMPSS system on the ground compared to the baseline 
configuration. 

N/A      1 2 3 4 5 6 
 Comments:  I do not have experience with the baseline system, but this system was 
minimally invasive and comfortable.  If it could be integrated into a CRU style connector so that it 
would be even more compact, that would be even better!      
    

8. Rate any control or visual interference caused by the AMPSS on the ground 
N/A      1 2 3 4 5 6 
 
AIRBORNE (Items 9-15) 
 

9. Rate the overall comfort of the AMPSS system in the air compared to the baseline configuration. 
N/A      1 2 3 4 5 6 
 Comments:  I do not have experience with the baseline system, but this system was 
comfortable during use in the centrifuge.        
   

10. Rate the overall comfort of the AMPSS system in the air while under high G-forces compared to 
baseline configuration. 
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N/A      1 2 3 4 5 6 
 Comments:  I do not have experience with the baseline system, but this system was not 
noticeable during G-loading         
  

11. Rate any control or visual interference caused by the AMPSS in the air. 
N/A      1 2 3 4 5       
  

12. Rate any control or visual interference caused by the AMPSS in the air while under high G-forces. 
N/A      1 2 3 4 5 6 
 Comments:   None        
  

13. Rate any changes in breathing pressure or resistance caused by the AMPSS itself. 
N/A      1 2 3 4 5 6 
   

14. Rate the ease of storage/arrangement/security of AMPSS components in the cockpit/on your 
person while airborne. 

N/A      1 2 3 4 5 6 
 Comments:  Having it connected to the CRU-60 while going to and from the centrifuge felt 
odd, but did not hamper my ability to ingress or egress the cockpit. I would prefer an integrated unit, like a 
CRU-120 and AMPSS in one. That would be the ultimate equipment piece right there.   
        

15. Rate the ease of storage/arrangement/security of AMPSS components in the cockpit/on your 
person while airborne under high G-forces. 

N/A      1 2 3 4 5 6 
 Comments:  None noticed.        
   
POST-FLIGHT (Items 16-18) 
 

16. Rate the ease of normal egress out of the aircraft with the AMPSS system compared to the 
baseline configuration. 

N/A      1 2 3 4 5 6 
 Comments:  No problems noticed       
    

17. Rate the ease of emergency egress out of the aircraft with the AMPSS system compared to the 
baseline configuration. 

N/A      1 2 3 4 5 6 
 Comments:  I do not have experience with the baseline system, but this system was easy to 
get out of the centrifuge with.         
  

18. Rate the ease with which you accomplished your AMPSS post-flight compared to the baseline 
configuration. 

N/A      1 2 3 4 5 6 
 Comments:  do not have experience with baseline system, this system was easy to postflight. 
          
GENERAL RATINGS (Items 19-20) 
 

19. Rate the ease with which the AMPSS system could be widely implemented from an aircrew 
perspective. 

N/A      1 2 3 4 5 6 
 Comments:  With minimal training, this system could be easily integrated.   
        

20. Rate the overall comfort of the AMPSS modified mask compared to the baseline configuration. 
N/A      1 2 3 4 5 6 
 Comments:  I did not get any experience with the mask.      
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Subject B 
 
AMPSS 3.0 AIRCREW SURVEY 
 
Use the 412th TW Rating Criteria below. 
 
Circle a rating for each item or circle N/A for any item that does not apply.  Please complete the following 
scale for items 1-20 and add any comments. 
 
PRE-FLIGHT (Items 1-8) 
 

1. Rate the ease with which you accomplished your AMPSS pre-flight compared to the baseline 
system. 

N/A      1 2 3 4 5 6 
 Comments:           
  
 

2. Rate the pre-flight effort required to ensure proper AMPSS data collection. 
N/A      1 2 3 4 5 6 
 Comments:           
  
 

3. Rate the ease of storage and transportation of the AMPSS system from AFE to the aircraft. 
N/A      1 2 3 4 5 6 
 Comments:           
  
 

4. Rate the ease of ingress into the aircraft with the AMPSS system compared to the baseline 
compared to the baseline configuration. 

N/A      1 2 3 4 5 6 
 Comments:           
  
 

5. Rate the ease of storage/arrangement of AMPSS components in the cockpit/on your person.  
N/A      1 2 3 4 5 6 
 Comments:           
  
 
 

6. Rate the ease of connecting and turning on the AMPSS system in the cockpit 
N/A      1 2 3 4 5 6 
 Comments:           
  
 

7. Rate the overall comfort of the AMPSS system on the ground compared to the baseline 
configuration. 

N/A      1 2 3 4 5 6 
 Comments:           
  

8. Rate any control or visual interference caused by the AMPSS on the ground 
N/A      1 2 3 4 5 6 
 
AIRBORNE (Items 9-15) 
 

9. Rate the overall comfort of the AMPSS system in the air compared to the baseline configuration. 
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N/A      1 2 3 4 5 6 
 Comments:           
  

10. Rate the overall comfort of the AMPSS system in the air while under high G-forces compared to 
baseline configuration. 

N/A      1 2 3 4 5 6 
 Comments:           
  

11. Rate any control or visual interference caused by the AMPSS in the air. 
N/A      1 2 3 4 5 6 
 Comments:           
  

12. Rate any control or visual interference caused by the AMPSS in the air while under high G-forces. 
N/A      1 2 3 4 5 6 
 Comments:           
  

13. Rate any changes in breathing pressure or resistance caused by the AMPSS itself. 
N/A      1 2 3 4 5 6 
 Comments:           
  

14. Rate the ease of storage/arrangement/security of AMPSS components in the cockpit/on your 
person while airborne. 

N/A      1 2 3 4 5 6 
 Comments:           
  

15. Rate the ease of storage/arrangement/security of AMPSS components in the cockpit/on your 
person while airborne under high G-forces. 

N/A      1 2 3 4 5 6 
 Comments:           
  
POST-FLIGHT (Items 16-18) 
 

16. Rate the ease of normal egress out of the aircraft with the AMPSS system compared to the 
baseline configuration. 

N/A      1 2 3 4 5 6 
 Comments:           
  

17. Rate the ease of emergency egress out of the aircraft with the AMPSS system compared to the 
baseline configuration. 

N/A      1 2 3 4 5 6 
 Comments:           
  

18. Rate the ease with which you accomplished your AMPSS post-flight compared to the baseline 
configuration. 

N/A      1 2 3 4 5 6      
      
GENERAL RATINGS (Items 19-20) 
 

19. Rate the ease with which the AMPSS system could be widely implemented from an aircrew 
perspective. 

N/A      1 2 3 4 5 6 
           

20. Rate the overall comfort of the AMPSS, compared to the baseline configuration. 
N/A      1 2 3 4 5 6 
 Comments:   
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Appendix L – Phase 1 Subjects 1-7 Elbit vs. Wyle HR Sensor 

 

Figure 108: Phase 1 Subject 1 Elbit vs. Wyle HR Data 

 

Figure 109: Phase 1 Subject 1 Elbit Data 
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Figure 110: Phase 1 Subject 2 Elbit vs. Wyle HR Data 

 

Figure 111: Phase 1 Subject 1 Elbit Data 
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Figure 112: Phase 1 Subject 3 Elbit vs. Wyle HR Data 

**Other Elbit Data Unavailable** 
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Figure 113: Phase 1 Subject 4 Elbit vs. Wyle HR Data 

**Good Example: ELBIT HR inaccurate under G; Matches Wyle truth data at resting G. 

Figure 114: Phase 1 Subject 4 Elbit Data 
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Figure 115: Phase 1 Subject 5 Elbit vs. Wyle HR Data 

- Very noisy Wyle ECG signal, hence calculated HR is not shown.  
- Elbit Pleth signal is good.  ELBIT traces (hypothetical) smoothed version of Wyle HR. 
- Only phase 1 instance in which Elbit is accurate and Wyle HR is not accurate. 

Figure 116: Phase 1 Subject 5 Elbit Data
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Figure 117: Phase 1 Subject 6 Elbit vs. Wyle HR Data 

Figure 118: Phase 1 Subject 6 Elbit Data 
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Figure 119: Phase 1 Subject 7 Elbit vs. Wyle HR Data 

Figure 120: Phase 1 Subject 7 Elbit Data 
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Appendix M – Statistical Analysis 
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Appendix N – Daily Flight Reports 
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Appendix O – Phase 3 and 4 Test Cards 
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Appendix P – MATLAB Code 

This is a MATLAB code that takes the heart rate and normal acceleration 
values from the centrifuge and plots them together.  The HR data is 
filtered to reduce noise with a moving average filter that uses a box 
size of 2500.  The Nz is also filtered with a moving average filter but 
of only a 20 box size.  Data is then plotted with two different Y axes 
but the same X axis. 
 
FugePlot.m 
 
close all 
T=Time; 
HR=HRATE; 
Nz=ACCEL; 
%% Filter Parameters 
windowSize = 2500; 
b = (1/windowSize)*ones(1,windowSize); 
a = 1; 
x = HR; 
HRfilt = filter(b,a,x); 
%% Filter Parameters 
windowSize = 20; 
c = (1/windowSize)*ones(1,windowSize); 
d = 1; 
y = Nz; 
NZfilt = filter(c,d,y); 
%% the max and min HRs for each subject 
% PerHRR1=[64,197]; 
% PerHRR2=[52,199]; 
% PerHRR3=[52,195]; 
% PerHRR4=[60,185]; 
 PerHRR5=[50,198]; 
%% converting HR to HRR, one equation for each subject 
% HRR=((HRfilt-PerHRR1(1))/(PerHRR1(2)-PerHRR1(1)))*100; 
% HRR=((HRfilt-PerHRR2(1))/(PerHRR2(2)-PerHRR2(1)))*100; 
% HRR=((HRfilt-PerHRR3(1))/(PerHRR3(2)-PerHRR3(1)))*100; 
% HRR=((HRfilt-PerHRR4(1))/(PerHRR4(2)-PerHRR4(1)))*100; 
 HRR=((HRfilt-PerHRR5(1))/(PerHRR5(2)-PerHRR5(1)))*100; 
%% Plotting %HRR vs Time and Nz vs Time 
plot(T,HR) 
hold on 
plot(T,HRfilt,'k') 
figure() 
[hAx,hLine1,hLine2] = plotyy(T,HRR,T,NZfilt); 
title('Subject B W/O Biofeedback') 
xlabel('Time (sec)') 
tspan=[250 1050]; 
xlim(hAx(2),tspan) 
xlim(hAx(1),tspan) 
ylabel(hAx(1),'%HRR Based on Centrifuge ECG') % left y-axis 
ylabel(hAx(2),'Nz') % right y-axis 
ylim(hAx(2),[1.5 8.5]) 
ylim(hAx(1),[0 100]) 
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This is a code to plot %HRR values based on the Garmin watch heart rate 
data against the Nz seen in flight.  HR values are converted into %HRR 
based on each subjects max and min HR vaues. 
 
HRR_VS_Nz_Plotter.m 
 
%% Seting up some parameters to make import easier 
%  won't need this step if import doesn't have two lines of header 
t_sec=GarminTime(3:end); 
HR=HeartRate(3:end); 
%% HR Plotter 
Nz_Time=Delta_Irig-Delta_Irig(1); 
HR_Time=t_sec-t_sec(1); 
% HR_Time=HR_Time-50; %offset if times don't match up perfectly 
%% HR to HRR, select which subject below 
% %Subject A 
% maxHR=197; 
% minHR=64; 
% %Subject B 
maxHR=199; 
minHR=52; 
% %HRR from HR subject C 
% maxHR=195; 
% minHR=52; 
HRR=((HR-minHR)./(maxHR-minHR)).*100; 
%% Generate Plots 
close all 
figure(1) 
[hAx,hLine1,hLine2] = plotyy(HR_Time,HRR,Nz_Time,NZ); 
title('Subject B W/ Biofeedback') 
xlabel('Time (sec)') 
tspan=[400 1650]; 
xlim(hAx(2),tspan) 
xlim(hAx(1),tspan) 
ylabel(hAx(1),'%HRR Based on Garmin') % left y-axis 
ylabel(hAx(2),'Nz') % right y-axis 
ylim(hAx(2),[1.0 8.5]) 
hAx(2).YTick=[1:1:8]; 
ylim(hAx(1),[0 100]) 
hAx(1).YTick=[0:10:100]; 
%figure(2) 
%plotyy(HR_Time,HR,Nz_Time,NZ) 
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A code to generate error scores for the flights.  It measures how far 
out of the tolerance the pilot’s G was and for how long.  It then 
multiplies those numbers together to get the error score.  It also 
creates a plot showing the ideal profile, the tolerance interval, and 
the flown profile overlaid. 
 
NzAcurracy.m 
 
%% First Select the start time of the profile 
start_index=input('index of start time for data set'); 
%start_index=1; 
%% Individual Profile will be parsed out of data 
Executed_Profile=NZ(start_index:start_index+2119); 
Executed_Profile=Executed_Profile'; 
Start=Delta_Irig(start_index); 
End=Delta_Irig(start_index)+106-0.05; 
Time=[Start:0.05:End]; 
%% Generate the ideal profile to grade against 
SampleRate=0.05; 
N10=10/SampleRate; 
N2=2/SampleRate; 
SixGs=linspace(6,6,N10); 
SixToFive=linspace(6,5,N2); 
FiveGs=linspace(5,5,N10); 
FiveToThree=linspace(5,3,N2); 
ThreeGs=linspace(3,3,N10); 
ThreeToEight=linspace(3,8,N2); 
EightGs=linspace(8,8,N10); 
EightToFive=linspace(8,5,N2); 
PerfectProfile=[SixGs SixToFive FiveGs FiveToThree ThreeGs... 
    ThreeToEight EightGs EightToFive FiveGs FiveToThree... 
    ThreeGs ThreeToEight EightGs EightToFive FiveGs... 
    FiveToThree ThreeGs]; 
UpperProfile=PerfectProfile+.2; 
LowerProfile=PerfectProfile-.2; 
%% Plot the data agianst the ideal profile with tolerance limits 
close all 
plot(Time,PerfectProfile,'k-.') 
hold on 
plot(Time,UpperProfile,'k--') 
plot(Time,LowerProfile,'k--') 
plot(Time,Executed_Profile,'k') 
%% Error Determination 
Difference=abs(PerfectProfile-Executed_Profile); 
N=1; 
while N<=8 
    Begin=(200*N)+1+(40*(N-1)); 
    End=(200*N)+40+(40*(N-1)); 
    Difference(Begin:End)=0; 
    N=N+1; 
end 
N=1; 
while N<=length(Difference) 
    if Difference(N)<0.2 
        Difference(N)=0; 
    end 
    N=N+1; 
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end 
G_Tracking_Score=sum(Difference)*0.05 
%% Plotting Errors 
% figure() 
% plot(PerfectProfile) 
% hold on 
% plot(Difference) 
% plot(Executed_Profile) 
% plot(UpperProfile) 
% plot(LowerProfile) 
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A code to generate an error score for the tracking done in the 
centrifuge.  This takes the target location and adds a tolerance 
interval of 0.2G then determines how far out of that interval the 
commanded G was and for how long.  The two values are multiplies 
together to get the error score.  The target location, tolerance 
interval, and commanded G are then all plotted overlaid on the same 
figure. 
 
TrackingPlot.m 
 
close ALL 
Time=VarName1; 
TargetLocation=VarName2; 
PipperLocation=VarName3; 
plot(Time,PipperLocation,'k') 
hold on 
plot(Time,TargetLocation,'k-.') 
TargetUp=TargetLocation+0.2; 
TargetDown=TargetLocation-0.2; 
plot(Time,TargetUp,'k--') 
plot(Time,TargetDown,'k--') 
% Error=abs(TargetLocation-PipperLocation); 
% plot(Time,Error,'r') 
% MeanError=mean(Error) 
%% Error Determination 
Difference=abs(TargetLocation-PipperLocation); 
% N=1; 
% while N<=8 
%     Begin=(200*N)+1+(40*(N-1)); 
%     End=(200*N)+40+(40*(N-1)); 
%     Difference(Begin:End)=0; 
%     N=N+1; 
% end 
N=1; 
while N<=length(Difference) 
    if Difference(N)<0.2 
        Difference(N)=0; 
    end 
    N=N+1; 
end 
G_Tracking_Score=sum(Difference)*0.05 
clear 
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Appendix Q – Lessons Learned 

 
 

1. When planning for Electromagnetic Interference Compatibility (EMIC) testing 
with F-16 Maintenance, ensure that the specific configuration matches the loadout 
on the EMIC aircraft.  As well, plan on EMIC testing at least 1 month prior to the 
first flight of the test program to allow the System Program Office (SPO) the 
necessary time to complete paperwork for a flight release.  When coordinating the 
EMIC with Maintenance, ensure they know the jet must be in a fully configured 
and flyable state so that a complete ground run can be accomplished. Our jet had 
no O2 in the aircraft for our first attempt at the EMIC. 
 

2. When accomplishing testing with human subjects ensure to comply with proper 
protocols.  Thorough lead-time must be put into coordinating an Institutional 
Review Board (IRB).  Our team had points of contact at the 711th Human 
Performance Wing (711 HPW) and Naval Medical Research Unit Dayton 
(NAMRU-D).  Additionally, all test team members had to complete Collaborative 
Institutional Training Initiative (CITI) Program in order to be approved to conduct 
human testing on subjects.  We were both approved testers and test subjects.  The 
training consisted of 20 computer-based trainings (CBTs) with module tests 
totaling three to four hours culminating in a completion certificate. 
 

3. When coordinating to use the KBRWyle centrifuge ensure to contact them and get 
on their schedule early.  We booked our August 2017 testing back in November 
2016 during initial HAVE HOPE trials for the Air Force Institute of Technology 
(AFIT) and 711 HPW.  Additionally, ensure you’re specific with your requests for 
the type of testing needed and determine if their current capabilities can meet your 
required data.  They are a government contractor so any configuration changes or 
new capabilities outside of their baseline mission may require further funding 
and/or coordination. 

 

4. Ensure early and often coordination with the F-16 SPO anytime you plan to place 
any new test hardware inside the cockpit.  None of our hardware was wired to the 
aircraft, but still required coordination up to one year in advance to ensure all 
necessary approvals, cleared-to-fly, and airworthiness was complied with.  
Hardware often requires windblast testing, EMIC, AFE hanging harness, and 
cyber approval.  Ultimately, you are looking to obtain a Military Flight Release 
(MFR) for specific aircraft tail numbers and specific configurations. 

 

5. Ensure thorough coordination with your customer, project sponsor, and hardware 
developer.  We conducted bi-monthly telecoms with our 711th HPW team and 
found it extremely necessary. 
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