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Abstract 

 

Tension-compression fatigue behavior of an oxide-oxide ceramic matrix 

composite was investigated at 1200°C in air and steam environments. The 

composite is comprised of an alumina matrix reinforced with Nextel 720 alumina-

mullite fibers woven in an eight harness satin weave. The composite relies on a 

porous matrix for damage tolerance and crack deflection rather than on a fiber 

coating or fugitive interphase. Compression and tension tests to failure were 

conducted to characterize the basic mechanical properties of the material. 

Tension-compression fatigue tests were performed under load control with a 

sinusoidal waveform at 1 Hz frequency with a ratio of minimum to maximum 

stress of -1. Maximum stresses ranged from 60 to 120 MPa. Fatigue run-out was 

defined as 105 cycles and was achieved in air at 80 MPa and in steam at 70 

MPa. Retained tensile properties were measured for all specimens that achieved 

run-out. Specimens subjected to prior fatigue in air retained 100% of their tensile 

strength. The steam environment degraded material properties severely. Steam 

reduced fatigue lives by one order of magnitude and lowered tensile strength by 

17 to 38%. Tension-compression fatigue lives were lower than published tension-

tension fatigue lives by at least three orders of magnitude. In air, tension-

compression fatigue was also shown to be more damaging than tensile or 

compression creep.  
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The post-test composites microstructure was examined. Failure mechanisms 

were identified and fracture surface morphologies were characterized. The 

dominant failure mode under tension-compression fatigue was fiber micro-

buckling with characteristic compression curl morphologies found on fiber 

fracture surfaces. Shortened composite lives were associated with planar 

fracture surfaces and coordinated fiber failure due to loss of matrix porosity and 

increased fiber-matrix bonding. 
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TENSION-COMPRESSION FATIGUE OF AN OXIDE/OXIDE CERAMIC 
MATRIX COMPOSITE AT ELEVATED TEMPERATURE IN AIR AND STEAM 

ENVIRONMENTS 

I. Introduction 

1.1   Motivation 

Since the introduction of powered flight at the turn of the 20th century, there 

has been an ever present demand for improved flight performance. Today those 

demands include increased engine thrust, reduced weight, reduced fuel 

consumption, increased payload capacity, and lower emissions. In both military 

and civilian applications, the primary objectives can be summarized as increased 

performance and lower operating costs. 

 
In the early 20th century many aircraft structures were made of wood and 

fabric.  In later years, the wood and fabric were replaced with aluminum alloys as 

well as some steel and titanium alloys [1]. Incremental improvements in the 

properties of these alloys were achieved over several decades. These 

improvements included increased strength, fracture toughness, corrosion 

resistance, and damage tolerance [2]. These improvements in material properties 

allowed for drastic improvements in aircraft speed and maneuverability. 

Throughout this time, researchers continued to seek new materials for continued 

aircraft advancement. The material family which proved to become the next 

stepping stone was composites [1-2]. 

 
A composite material consists of at least two distinctly different phases (or 

constituents) and is designed such that the composite performance exceeds 
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those of its individual constituents. A typical composite consists of a relatively stiff 

and strong component called the reinforcement held together with a relatively 

soft and weak matrix. The reinforcement can take the form of small particles, 

discontinuous fibers, or continuous fibers [3]. To some extent, the material 

properties can be tailored to the application, making composites a very attractive 

choice for designers. Although composites have only recently become advanced 

enough for aircraft use, they have been around for centuries in various forms 

such as straw-reinforced clay brick or naturally occurring bone and wood [4]. 

Modern composites were seen as early as 1942 in the first fiberglass boat. At 

that time, composites made their debut into aircraft in the form of reinforced 

plastics for non-structural parts such as electrical components [3].  

 
In the 1970’s, composites were used in minor structural components such as 

radomes and fairings. Since then, composites have been used in aircraft primary 

structure in order to increase aircraft performance [5]. Relatively high strength, 

high stiffness, and low density of the composite materials result in structural 

improvements [2]. At present, rising fuel costs, increased pressure to reduce 

emissions, and continuing demand for increased performance has led to 

composites being used for nearly 80% of structure volume (or 50% by weight) in 

aircraft such as the Boeing 787 [5,6]. The insertion of composites into aircraft 

structure has recently seen exponential growth; in just the last 15 years, 

composite content in aircraft has increased by 25-35% [7].  
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In addition to the aircraft structural components, aircraft engines also can 

benefit from improved materials. The engine thrust can be increased and fuel 

consumption reduced by increasing turbine engine combustion temperatures [8]. 

However, maximum combustion temperatures are limited by the materials used 

in engine components. Higher combustion temperatures can be achieved 

through the use of improved materials and/or the introduction of cooling. 

Substantial gains in allowable combustion temperature have been made through 

the use of film-cooling and thermal barrier coatings (TBCs). Improvements in 

high-temperature performance of nickel and cobalt-based superalloys have 

provided for some combustion temperature increases. Recently, ceramic matrix 

composites (CMCs), capable of maintaining excellent strength and fracture 

toughness at elevated temperatures emerged as candidate materials for 

aerospace engine applications. The lower densities and higher use temperatures 

of the CMCs promise improved high-temperature performance when compared 

to conventional superalloys [8-10]. 

 
1.2   Problem Statement 

The introduction of CMC materials into high-temperature aerospace 

applications offers performance improvements such as extended component life 

and reduced operating costs. Although composites have been used successfully 

in aircraft structures in low temperature environments, high temperature 

environments pose additional requirements on material properties and 

performance. For example, such basic mechanical properties as ultimate tensile 
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strength and fracture toughness can become significantly degraded at higher 

temperatures. Further, oxidation and other forms of material degradation such as 

phase changes or grain growth can become important factors at higher 

temperatures [11-13].   

 
Research into these phenomena must be conducted in order to characterize 

the behavior of a material at the intended use temperatures. The testing should 

be performed in an environment which is characteristic of the intended operating 

environment. For example, turbine engine components can be simultaneously 

exposed to high temperatures and high concentrations of water vapor. Degrading 

effects of this severe operating environment on mechanical properties and 

performance of the material must be studied. Thorough understanding of the 

environmental durability of structural materials is critical to developing design 

guidance and life prediction methodologies, as well as to assuring structural 

integrity and long service life of components. 

 
1.3   Research Objectives 

An oxide/oxide CMC consisting of Nextel720 fibers in an alumina matrix is 

currently being considered for use in combustor liners of turbine engines. In this 

application, the CMC is likely to be subjected to fatigue spectra that include 

significant tensile and compressive loads. This research evaluates the tension-

compression fatigue performance of the Nextel 720/alumina (N720/A) composite 

at 1200°C in air and in steam.  
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The performance of this composite system is particularly sensitive to the fiber-

matrix interface which can be affected by the intended service environment. Of 

particular importance in this study are the failure mechanisms operating at 

elevated temperature in steam. Therefore, the tension-compression fatigue of 

N720/A is investigated at 1200 °C in laboratory air and in steam. Post-test 

examination of composite microstructure lends insight into the failure and 

damage mechanisms and their dependence on test environment.  

 
Results of this study provide an experimental foundation for developing 

design envelopes for this material along with establishing its suitability for 

aerospace applications. Furthermore, developing a catalog of failure 

mechanisms and causes corresponding to specific fracture surface morphologies 

and microstructural changes is important for evaluating future in-service failures 

and recommending corrective actions. This research effort represents a major 

stepping stone towards significant advances in aerospace vehicle performance. 

 
1.4   Methodology 

a. Perform monotonic compression and monotonic tension tests at 1200°C in air 

to determine the ultimate tensile strength (UTS) and the ultimate compressive 

strength (UCS) of the test material. 

b. Characterize the composite microstructure and fracture surfaces produced in 

monotonic tension and in monotonic compression tests using an optical 

microscope and a scanning electron microscope (SEM). 
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c. Perform tension-compression fatigue tests at 1200 °C in laboratory air and in 

steam. All fatigue tests are performed in load control at a frequency 1.0 Hz 

with an R ratio (ratio of minimum stress to maximum stress) of -1.  

d. Characterize the composite microstructure and fracture surfaces produced in 

the tension-compression fatigue tests using an optical microscope and SEM. 

e. Compare the results of the tension-compression fatigue tests to the tension-

tension fatigue and compression creep results previously obtained at AFIT for 

N720/A at 1200°C in air and in steam.  

f. Identify damage mechanisms and determine failure causes under tension-

compression fatigue in the characteristic environmental service conditions. 
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II. Background 

2.1  Ceramics 

Ceramic materials are defined as inorganic and typically non-metallic 

materials which are generally processed at high temperatures [12]. Ceramics are 

mainly crystalline with amorphous glass being considered a subset of ceramics 

[12, 14]. These materials have been manufactured and used by humans since as 

early as 24,000 BC with traditional uses including bricks, pottery, tiles, and art 

pieces [14]. Today, advanced modern ceramics are usually compounds formed 

between metallic and non-metallic elements [14]. These advanced ceramics 

include oxides, nitrides and carbides of silicon, aluminum, titanium, and 

zirconium [12]. 

 
One of the most important properties of ceramics is their ability to sustain high 

temperatures. As shown in Figure 1 below, maximum use temperatures for 

ceramics are significantly higher than those for polymers or metals [12]. Because 

of this, ceramics have long been used as thermal barriers for high-temperature 

furnaces, troughs, and ladles used in the manufacture of metal alloys such as 

steel [14]. They have even been used in extreme applications such as the 

thermal barrier on NASA’s space shuttle where temperatures as high as 1600°C 

can be reached during re-entry [14]. Further, ceramics offer high resistance to 

chemicals (corrosion), abrasion, and wear [12]. They also have relatively high 

strength, hardness, and stiffness combined with low density [12]. As shown in 

Figure 2, at operational temperatures at or above 900°C, ceramic materials have 
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significantly higher strength to weight ratios than several other advanced 

aerospace materials [15].  It is these qualities that make ceramics candidate 

materials for advanced aerospace applications operating in high temperature 

environments.  

 

Figure 1: Comparison of maximum use temperatures for polymers, metals 
and ceramics. After Chawla [12]. 
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Figure 2: Comparison of strength to weight ratios of several materials at 
various use temperatures. After Schmidt [15]. 

 

However, monolithic ceramics are exceptionally brittle having low fracture 

toughness and almost no inelastic strain (ductility) [11, 12]. This quality yields 

poor performance under tensile, impact, and thermal shock loading [12]. Even 

worse, low fracture toughness and the lack of ductility or plasticity results in 

catastrophic failure without warning [12]. 

 
In the 1960’s, a monolithic ceramic was developed to exhibit some ‘ductile’ 

behavior by inducing plasticity. However, the material still failed to achieve 

increased fracture toughness resulting in overall poor performance as a structural 

material [11]. Later research efforts in this area shifted towards increasing 

fracture toughness of monolithic ceramics [11]. Although some advancement was 

made, the materials remained macroscopically linear-elastic, meaning strain 
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concentrations remained and loads would not redistribute [11]. Therefore, the 

resulting material would still fail catastrophically without warning. A new path was 

needed for development of an improved high temperature structural material. 

 
2.2   Ceramic Matrix Composites 

Typically, the goal of composites is to produce a material which is stronger 

than its individual constituents or to harness the high strength of the fibers. This 

is usually accomplished by combining high strength fibers with a relatively low 

modulus matrix. Thus, the high strength of the fibers can be harnessed through 

efficient load transfer made possible by a strong bond between the matrix and 

fibers [12]. The matrix also provides lateral support to the fibers creating 

compression stability which the fibers lack on their own. The typical ratio of fiber 

modulus to matrix modulus in polymer matrix composites (PMC) and metal 

matrix composites (MMC) can vary from 10 to 100 [12].  

 
However, these norms change with high temperature ceramics. Ceramics 

generally have high strength and compression stability to begin with. What they 

lack is fracture toughness, damage tolerance, and what is sometimes referred to 

as a graceful failure where the material exhibits some macro deformation 

allowing for load redistribution [12]. The goal behind CMC materials is to 

overcome these shortcomings of monolithic ceramics. 

 
To achieve this end, ceramic materials are made into fine fibers and 

combined with a ceramic matrix material to form a CMC. However, the key to 
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producing a CMC with the superior high temperature properties of ceramics while 

achieving damage tolerance, fracture toughness, and graceful failure lies in the 

interface between the matrix and fiber [11-13]. If the interface or bond between 

the fibers and matrix is allowed to be too strong, the result would be a CMC with 

poor fracture toughness and damage tolerance similar to that of a monolithic 

ceramic material. This is because unlike PMC and MMC materials, CMC 

materials typically have ratios of fiber modulus to matrix modulus of around 1 so 

cracks would tend to initiate in the matrix and propagate straight through the 

fibers thus producing macroscopic brittle behavior similar to that of monolithic 

ceramics. Such crack growth behavior is schematically depicted in Figure 3 [12].  

On the other hand, if the interface is too weak, there will be insufficient load 

transfer between the matrix and fibers [11]. 

 

Figure 3: Representative crack growth behavior of CMC with strong 
interface (left) and sufficiently weak interface (right). After Chawla [12]. 
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Controlling the bond strength of the interface achieves fracture toughness and 

damage tolerance primarily by means of increasing the energy required for 

fracture or energy dissipation [12-13]. This increase is the result of several 

factors. As a crack is propagating through the matrix, it will deflect around the 

fibers due to the relatively weak interface as depicted in Figure 3. Interface 

control also serves to decouple the fibers allowing fiber failures to become 

uncorrelated [12]. Also, with fibers fracturing along several various planes within 

the material (uncorrelated fracture), the matrix-fiber interface can begin to 

debond in the region of the matrix cracking. This leads to fibers bridging the 

matrix crack as strains increase followed by fiber pull-out.  Each of these events 

dissipate additional energy resulting in a CMC which fails gracefully and exhibits 

increased fracture toughness and damage tolerance compared to monolithic 

ceramics [11-13]. 

 
Researchers and developers of CMC materials have achieved improved 

damage tolerance in two primary ways. The first CMC design philosophy relies 

on a weak fiber/matrix interface which is achieved either through the use of fiber 

coatings to directly control the interface properties or through the use of a fugitive 

interphase that is eliminated during processing. The fiber coating method has 

been successfully used with several materials such as silicon carbide fiber - 

silicon carbide matrix (SiC/SiC) CMCs with carbon and boron nitride fiber 

coatings [12].  
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The second method relies on a matrix with a controlled level of porosity. This 

microstructural design philosophy accepts the strong fiber/matrix interface, while 

encouraging crack deflection around fibers and into the exceptionally weak 

porous matrix [12-13]. The porous-matrix method of CMC toughening is generally 

used in oxide fiber – oxide matrix (oxide/oxide) CMC materials such as the 

Nextel 720/A studied in this research effort. This method of CMC toughening 

reduces manufacturing costs considerably as compared to fiber coatings typical 

of dense-matrix CMCs such as SiC/SiC materials [16]. Figure 4 illustrates the 

crack propagation mechanisms for the weak fiber/matrix interface concept and 

for the porous matrix concept [16]. 
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Figure 4: Illustration of two primary concepts used to achieve damage 
tolerance in CMCs. After Zok [16]. 

 

Controlled matrix porosity in oxide/oxide CMCs is typically achieved in one of 

two ways. Either a fine particulate ceramic powder is partially sintered or 

pyrolysis of a ceramic precursor creates the necessary porous matrix. Because 

neither of these processes is particularly practical with non-oxide CMC matrix 

materials, the porous matrix method is mainly used for oxide/oxide CMC 

materials [16]. In fact, the porous matrix concept was created through necessity 

rather than in an attempt to improve upon the weak fiber/matrix interface method. 
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The driver behind the porous matrix concept was the lack of fiber coatings 

suitable for use with oxide fibers [16]. 

 
The intended applications of CMC material systems generally include high 

temperatures and elevated levels of moisture such as in turbine engines. This 

results in a highly oxidizing environment. For this reason, thermodynamically 

stable constituents are desirable in CMCs. Considerable interest has been 

shown in oxide/oxide CMCs such as Nextel 720/A despite its lower strength and 

temperature capabilities compared to SiC/SiC CMCs [12]. This interest is due to 

the inherently increased thermo-oxidative stability of oxides over silicon carbide 

and other non-oxide materials. In fact, it is the inherent stability of oxides in 

oxidizing environments which originally motivated the development of oxide/oxide 

CMCs in order to meet the service longevity demands for current and future 

aerospace applications [16]. 

 
2.3   Previous Research 

The chemical composition of the Nextel 720 fiber is 85% Al2O3 and 15% SiO2 

by weight. The crystalline phases of the Nextel 720 fiber are α-Al2O3 and mullite. 

An extensive review of the mechanical properties of Nextel 720 and other Nextel 

ceramic oxide fibers is given by Wilson and Visser [17]. The following properties 

were reported for the Nextel 720 fibers: density of 3.4 g/cc, thermal expansion 

coefficient of 6.0 ppm/°C for a temperature range of 100-1100°C, room 

temperature tensile strength of 2.1 GPa, and room temperature tensile modulus 

of 260 GPa. A Nextel 720 multi-filament strand was shown to retain 85% of its 
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tensile strength with a displacement rate of 12.5 mm/min with a 250 mm gauge 

length at 1400°C and over 95% at 1200°C. Nextel 720 is the most creep resistant 

among the commercially available oxide fibers. At 1100°C and 100 MPa the 

Nextel 720 fiber produced a low creep rate of 1x10-10/s.  

Ruggles-Wrenn et al [18] studied the effect of loading rate on Nextel 720/A 

CMC at 1200°C in air. At a low loading rate (0.0025 MPa/s), initial strain rates 

were negative due to matrix densification (reduction in matrix porosity). The loss 

of matrix porosity combined with diffusion creep at elevated temperatures 

resulted in higher failure strains, and lower ultimate tensile strengths (UTS) 

compared to those obtained with loading rate of 25 MPa/s. Samples loaded at 

25 MPa/s had UTS values of 181 MPa and failure strains of 0.36%, while the 

samples loaded at 0.0025 MPa/s had average UTS values of 154 MPa with 

failure strains ranging from 0.73% to 1.06%.  

Ruggles-Wrenn and co-workers [19-21] investigated the tension-tension 

fatigue behavior of Nextel 720/A CMC at elevated temperatures in air and in 

steam. The following basic properties were obtained in tensile tests performed at 

1200°C with displacement rate of 0.05 mm/s: UTS of 190 MPa, elastic modulus 

of 76 GPa, and failure strain of 0.38%. At 1200°C in air, the fatigue limit of 170 

MPa (88% UTS) based on the fatigue run-out condition of 105 cycles was 

obtained at both 0.1 and 1 Hz. The presence of steam caused a significant 

reduction in the fatigue performance. In steam at 1200°C, the fatigue limit was 

125 MPa (65% UTS) at the frequency of 1 Hz. In steam, the fatigue performance 
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degraded dramatically when the frequency was decreased to 0.1 Hz; the fatigue 

run-out was not achieved even at a low fatigue stress of 75 MPa (39% UTS). 

Increasing the fatigue frequency to 10 Hz in steam at 1200°C resulted in a 

fatigue limit of 150 MPa (79% UTS) with a run-out of 106 cycles. The resulting 

conclusion was that time at temperature in steam was significantly more 

damaging than the separate effects of fatigue loading and steam environment. 

Severe degradation of fatigue performance at a low frequency in steam was 

attributed to several factors including silicon species migration from the fiber to 

the matrix (fiber property degradation), matrix densification (loss of damage 

tolerance), and creep damage to the fibers. The improved fatigue performance at 

increased frequencies was attributed to the progressive breaking up of the matrix 

during cyclic loading which counteracted matrix densification and served to 

maintain the necessary level of matrix porosity. In order to keep up with the 

densification rate, the fatigue frequency had to be sufficiently high. This 

conclusion was supported by examination of fracture surfaces under scanning 

electron microscope (SEM). Imaging revealed coordinated fiber failures 

associated with fatigue at lower frequencies or longer hold times at maximum 

stress. These findings have been supported by additional investigation of creep 

performance of the Nextel 720 CMC [22-29]. 

Prior research at AFIT also investigated the mechanical behavior of SiC/SiC 

CMCs at elevated temperatures in air and in steam [30-33]. Unlike the 

oxide/oxide CMC, SiC/SiC composite exhibited reduced tension-tension fatigue 
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performance with increasing fatigue frequency at 1200°C. As in the case of the 

oxide/oxide CMC, the presence of steam significantly degraded the fatigue 

performance of SiC/SiC composite. In the case of the SiC/SiC composite, the 

primary damage mechanism operating in tension-tension fatigue was oxidation 

embrittlement of the fibers. Matrix cracks formed during initial cycles allowed the 

ingress of oxygen into the composite interior where it attacked the boron nitride 

fiber coating and the oxidation-prone fibers. The degraded fibers were fused 

together, then failed in a coordinated fashion in the regions of oxidation 

embrittlement. To combat oxidation, a multilayered self-healing matrix is typically 

used in SiC/SiC CMCs. This self-healing matrix fills matrix cracks through the 

formation of glass phases at high temperatures preventing further degradation of 

the composite. As a result, the composite exhibits relatively good creep 

performance at high temperatures in oxidizing environments. However, high 

frequency fatigue loading causes extensive matrix cracking at high rates beyond 

the self-healing matrix capabilities resulting in environment infiltration and 

oxidation embrittlement.  

At 1200°C in steam, fatigue performance of a SiC/SiC composite with a self-

healing matrix was further reduced when compression was introduced into the 

fatigue cycle. As under tension-tension fatigue loading, matrix cracking occurred 

along planes normal to the loading. However, under tension-compression fatigue 

loading, additional cracking also occurred along planes parallel to the loading 

direction. Additional rapid crack initiation and growth permitted significant 
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additional environmental attack on the composite interior, which overwhelmed 

the self-healing capability of the matrix and led to oxidation embrittlement of the 

composite. As a result, tension-compression fatigue performance was 

considerably reduced compared to that under tension-tension fatigue.  
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III. Material and Test Specimen  

3.1   Material 

The material tested in this research effort was NextelTM 720/Alumina 

(N720/A), an oxide-oxide ceramic composite consisting of a porous alumina 

matrix reinforced with N720 fibers.  There is no fiber coating. The damage 

tolerance of the N720/A CMC is enabled by the porous matrix. The composite 

was manufactured by COI Ceramics, Inc. and supplied in a form of 5.76-mm 

thick panels comprised of 24 0/90 plies woven in an eight harness satin weave 

(8HSW). Table 1 lists the physical properties of the composite panel as reported 

by COI. 

Table 1: Reported physical properties of N720/A composite panel. 

Density 
(g/cm3) 

Fiber Volume 
(%) 

Matrix Volume 
(%) 

Open Porosity 
(%) 

2.84 44.2 33.5 22.3 

 

The N720 fibers consist of 85 wt.% Al2O3 and 15 wt.% SiO2 with crystalline 

phases composed of alpha alumina and mullite. The alpha alumina phase is 

generally elongated grains less than 0.1 µm in size. Also present are larger 

crystals of mullite and alpha alumina. These can be as large as 0.5 µm [34].  

Table 2 [35] summarizes some additional properties of N720 fibers and other 

similar oxide fibers. The N720 fibers have a relatively large (55-60%) volume of 

mullite. As a result, the density of N720 fiber is 13% less than that of N610 fiber. 

Additionally, large mullite content reduces the thermal expansion coefficient of 
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the N720 fiber by nearly 30% compared to those of the N610 fibers. These 

properties make N720 fibers particularly suitable for aerospace applications with 

thermal loading [35]. 

Table 2: Properties of N720 and similar oxide fibers [35]. 

Property NextelTM 720 NextelTM 610 NextelTM 650 

Composition 
(% by weight) 

85 - Al2O3 
15 - SiO2 

>99 - Al2O3 
89 - Al2O3 
10 - ZrO2 

1 - Y2O3 

Crystalline Phases 
α- Al2O3 +  

mullite 
α- Al2O3 

α- Al2O3 +  
cubic ZrO2 

Filament Diameter 
(µm) 

10-12 10-12 10-12 

Tensile Strength 
(GPa) 

2.1 3.3 2.5 

Modulus (GPa) 260 373 358 

Density (g/cc) 3.4 3.9 4.1 

Thermal 
Expansion 
(ppm/ºC) 

6.0 7.9 8.0 

 

3.2   Test Specimen Geometry 

Because compressive loading, and thus the potential for buckling failure 

modes, was involved in the fatigue cycle type, specimens with hourglass-shaped 

gage section were used in this work. The stress concentration inherent in an 

hourglass specimen was assessed. Finite element analysis of the specimen 

conducted by Oak Ridge National Laboratory shows that the axial stress at the 

edges in the middle of the hourglass section is about 3.5% higher than the 

average axial stress [36]. Note that hourglass specimens have been used 

successfully in tension-compression fatigue testing of polymer matrix composites 

[37]. The 5.76-mm thick composite panel was cut into 26 specimens according to 
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specifications shown in Figure 5. The 0º fibers were aligned with the specimen 

axis.  

 

Figure 5: Test specimen drawing and dimensions (mm). 

Before testing each specimen was fitted with 19 mm x 25 mm x 3.2 mm tabs 

of 6061-T6 aluminum alloy in order to protect the specimen surface from damage 

and to evenly distribute the loads from the hydraulic grips. Tabs were bonded to 

the gripping sections of the specimens using M-Bond 200 cyanoacrylate 

adhesive. Figure 6 shows a specimen with aluminum tabs attached. 

 

Figure 6: Specimen with aluminum alloy tabs attached 
(scale major units are cm). 

 
The narrowest part of the gauge section of each specimen was measured 

using Mitutoyo Corporation Digital Calipers. The resulting dimensions are 
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reported in Table 3 along with the corresponding specimen number and 

specimen designation provided by COI. 

Table 3: Specimen gauge section measurements. 

COI 
Specimen  

Designation 

Specimen 
Number 

Thickness 
(mm) 

Width 
(mm) 

Area 
(mm2) 

14-247 1 5.70 14.70 83.8 

14-248 2 5.70 14.91 85.0 

14-249 3 5.72 14.70 84.1 

14-250 4 5.84 14.70 85.8 

14-251 5 5.75 14.72 84.6 

14-252 6 5.64 14.70 82.9 

14-253 7 5.75 14.69 84.5 

14-254 8 5.77 14.71 84.9 

14-255 9 5.79 14.71 85.2 

14-256 10 5.73 14.70 84.2 

14-257 11 5.73 14.70 84.2 

14-258 12 5.74 14.72 84.5 

14-259 13 5.80 14.83 86.0 

14-260 14 5.70 14.72 83.9 

14-261 15 5.80 14.72 85.4 

14-262 16 5.76 14.72 84.8 

14-263 17 5.73 14.71 84.3 

14-264 18 5.75 14.71 84.6 

14-265 19 5.78 14.74 85.2 

14-266 20 5.81 14.71 85.5 

14-267 21 5.74 14.70 84.4 

14-268 22 5.77 14.71 84.9 

14-269 23 5.80 14.72 85.4 

14-270 24 5.83 14.72 85.8 

14-271 25 5.74 14.74 84.6 

14-272 26 5.76 14.79 85.2 
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IV.  Experimental Procedures 

4.1   Mechanical Testing and Environmental Control Equipment 

An MTS Systems Corporation model 810 servo hydraulic testing system was 

used for mechanical testing (Figure 7). An MTS FlexTest 40 digital controller with 

MTS Station Manager and Multi-Purpose Testware was used for input signal 

generation and for data collection. Test data was stored on the desktop computer 

and processed using Microsoft Excel.  

 

 

Figure 7: MTS Systems Corporation Model 810 Servo Hydraulic Testing 
System. 

 
An MTS model number 661.19E-04 force transducer with a 25 kN load 

capacity was used for load measurement. MTS model 647.02B-03 water-cooled 

hydraulic wedge grips with a dynamic load capacity of 25 kN were employed in 

all tests. A Neslab refrigerated recirculator, model RTE-7 was used to cool the 
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grip wedges with recirculated 15°C deionized water. Strain measurements were 

taken using an MTS model 632.53E-14 high temperature low contact force 

extensometer with a 12.5–mm gage length (Figure 8).  

 

 

Figure 8: Extensometer. 

 
An AMTECO Hot-Rail two-zone resistance-heated furnace and two MTS 

model 409.83B temperature controllers were used for high temperature testing 

(see Figure 9 and Figure 10). The temperature controllers use non-contacting 

control thermocouples exposed to the ambient oven environment near the test 

specimen.  

 

 

Figure 9: Furnace closed around test specimen mounted in grips. 
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Figure 10: Right side furnace heating elements and controller 
thermocouple. 

 
The furnace was calibrated on a periodic basis. To accomplish the calibration, 

a specimen was instrumented with R-type thermocouples connected to an 

Omega HH501BR hand-held digital thermometer for temperature read-out. The 

temperature inside the furnace was raised to 900°C at a rate of 1°C/s, then 

slowly increased until the specimen temperature (as monitored by the R-type 
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thermocouples) reached 1200°C. The furnace controllers were adjusted to 

determine the settings needed to achieve the desired 1200°C temperature of the 

test specimen. The determined settings were then used in actual tests. The 

power settings for testing in steam were determined by placing the specimen 

instrumented with thermocouples in steam environment and repeating the 

furnace calibration procedure. 

To achieve a more uniform and repeatable temperature distribution along the 

specimen gage section, a cylindrical alumina susceptor was used in all tests. The 

susceptor fits inside the furnace, specimen gage section is located inside the 

susceptor, with the ends of the specimen passing through slots in the susceptor 

(see Figure 11). For testing in steam, steam was supplied to the susceptor 

through a feeding tube in a continuous stream with a slightly positive pressure, 

expelling the dry air and creating a near 100% steam environment inside the 

susceptor.  An AMTECO Chromalox model HRFS-STMGEN steam generator 

and deionized water were used to produce steam.  
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Figure 11: Alumina susceptor. 

 

4.2   Testing Procedures 

4.2.1 Monotonic Tension and Monotonic Compression Tests 

In all tests, a specimen was heated to 1200°C at 1°C/min, and held at 

temperature for 30 min prior to testing. Monotonic tension and monotonic 

compression tests were performed at 1200°C in laboratory air in order to 

determine basic tensile and compressive properties. The tension and 

compression tests to failure were conducted in displacement control with a 
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displacement rate of 0.05 mm/s. The test specimens were gripped in the testing 

machine using a 16 MPa grip pressure. Force, strain, displacement, 

displacement command, temperature, temperature command and time were 

recorded during the specimen heat-up as well as during the actual test.  

 
4.2.2 Tension-Compression Fatigue Tests 

In all tests, a specimen was heated to 1200°C at 1°C/min, and held at 

temperature for 30 min prior to testing. The same procedures were used for 

testing in air and in steam. Tension-compression fatigue tests were performed in 

load control with an R ratio (minimum to maximum stress) of -1.0 at 1.0 Hz. 

Fatigue run-out was defined as 105 cycles. This cycle count represents the 

number of loading cycles expected in aerospace applications at that temperature. 

Force, force command, strain, displacement, temperature, temperature 

command, cycle number and time were recorded in all tests. Peak and valley 

data were collected for each cycle. Full cycle data were collected for the first 25 

cycles, every 10 cycles for cycles 30-100, every 100 cycles for cycles 100-1,000, 

every 1,000 cycles for cycles 1,000-10,000, and every 10,000 cycles for cycles 

10,000-100,000. To assess the effect of steam environment on tension-

compression fatigue performance all fatigue tests were performed in air and in 

steam. For testing in steam, the thermal soak was extended to 45 min allowing 

additional time to stabilize the steam environment ensuring an even temperature 

distribution. All specimens that achieved run-out were subjected to tensile test to 
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failure at 1200°C in laboratory air immediately following the fatigue test to 

determine the retained strength and stiffness.  

 
4.3   Microstructural Characterization 

Prior to testing all specimens were examined with an optical microscope in 

order to identify and document any defects. A Zeiss Discovery.V12 stereo optical 

microscope with a Zeiss PlanApo S 0.63x FWD 81-mm lense was used to image 

the specimens (Figure 12). Images were captured using a Zeiss AxioCam HRc 

digital camera. Image processing was carried out with AxioVision 4.8 software. 

Fracture surfaces of failed specimens were examined using a scanning electron 

microscope (FEI Quanta 450) as well as an optical microscope (Zeiss Discovery 

V12). The scanning electron microscope is shown in Figure 13.  

 

 

Figure 12: Zeiss Discovery.V12 stereo optical microscope. 
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Figure 13: Quanta 450 scanning electron microscope (SEM). 

 
For examination with an SEM the fractured portions of the specimens were 

cut normal to the loading direction using a Buehler IsoMet 5000 linear precision 

saw with a diamond abrasive cutting wheel (Figure 14). The blade speed was set 

to 2500 rpm with a feed rate of 10 mm/min. No cutting fluid was used in order to 

prevent specimen contamination.  
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Figure 14: Buehler IsoMet 5000 linear precision saw. 
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V. Results and Discussion 

5.1  Thermal Expansion 

All tests were conducted at 1200°C. In all tests, a specimen was heated to 

1200°C at 1°C/min, and held at temperature for 30 min prior to testing (45 min for 

testing in steam). Strain and temperature were recorded during the specimen 

heat-up and the thermal soak period. These results were used to calculate the 

coefficient of linear thermal expansion, , as 

T


 


 

(1) 

Here ε is the thermal strain produced during heating from T0 = 23°C to 

T1 = 1200°C and ΔT= T1 - T0.  The thermal strains and corresponding coefficients 

of linear thermal expansion obtained for N720/A in this study are summarized in 

Table 4.  
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Table 4: Thermal strains obtained for N720/A during temperature rise from 
23°C to 1200°C and corresponding coefficients of linear thermal expansion.  

Specimen 
Number 

Thermal 
Strain (%) 

Coefficient of Linear 
Thermal Expansion 

(ppm/°C) 

1 0.84 7.1 
2 0.80 6.8 
3 0.83 7.0 
4 0.81 6.9 
5 0.83 7.0 
6 0.86 7.3 
7 0.85 7.3 
9 0.85 7.2 

10 0.83 7.0 
11 0.83 7.0 
12 0.79 6.7 
14 0.77 6.5 
16 0.83 7.0 
17 0.82 7.0 
21 0.76 6.4 
22 0.76 6.5 
23 0.77 6.6 
24 0.75 6.4 
25 0.76 6.4 
26 0.77 6.5 

Mean 0.80 6.8 

Standard 
Deviation 

0.035 0.30 

Coefficient of 
Variation 

4.4% 

 

Thermal expansion results obtained in this work are compared with those 

from prior research in Table 5. Coefficients of linear thermal expansion for 

N720/A composite are compared to those of the composite constituents in 

Table 6. 
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Table 5: Thermal strains obtained for N720/A during temperature rise from 
23°C to 1200°C and corresponding coefficients of linear thermal expansion. 

Comparison of results from current work and previous research efforts 
[38-42]. 

Author 
Number 
of Tests 

Mean 
Thermal 

Strain (%) 

Thermal 
Strain 

Standard 
Deviation (%) 

Coefficient of 
Linear 

Thermal 
Expansion 
(ppm/°C) 

Mehrman [38] 16 0.90 0.072 7.6 
Hetrick [39] 7 0.89 0.029 7.6 
Eber [40] 6 0.86 0.031 7.3 

Harlan [41] 12 0.80 - 6.8 
Current Research 20 0.80 0.035 6.8 

Boyer [42] 10 0.73 0.014 6.2 

 

Table 6: Thermal expansion coefficients (ppm/K) of N720/A and constituent 
materials [12, 43, 44]. 

Author Alumina Mullite N720 fiber N720/A 

Chawla [12] 7-8 5.3 - - 
COI [43] - - - 6.0 

Bansal [44] 8.1 5.0 6.0 3.5 (room temp), 6.2 (1000°C) 

 

Data presented in Table 5 and Table 6 demonstrate that the thermal 

expansion results produced in this work are consistent with the results of prior 

research performed at AFIT. The material manufacturer (COI) has reported a 

typical thermal expansion coefficient of 6.0 ppm/°C for N720/A [43]. This is 

somewhat lower than what was found in this research effort and reported by 

others [38-42]. However, Bansal [44] found that the thermal expansion coefficient 

of N720/A can vary significantly with temperature; specifically 3.5 ppm/°C at 

room temperature and 6.2 ppm/°C at 1000°C. The N720/A constituents, namely 

alumina and mullite, have also been known to exhibit non-linear thermal 

expansion coefficients with respect to varying temperatures [12].  
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5.2   Monotonic Tension and Monotonic Compression 

To establish the baseline tension and compression properties, the N720/A 

specimens were tested in tension to failure and in compression to failure at 

1200°C in air. The results are summarized in Table 7, where elastic modulus, 

strength, and failure strain are presented for both tension and compression. In all 

tensile tests the modulus of elasticity was calculated in accordance with the 

procedure in ASTM standard C 1359 as the slope of the tensile stress-strain 

curve within the linear region. The same method was employed to calculate the 

modulus of elasticity in compression tests.  

Table 7: Summary of basic tensile and compressive properties for N720/A 
ceramic composite obtained in displacement controlled tests performed at 

0.05 mm/s at 1200°C. 

Specimen 
Designation 

Ultimate Strength  
(MPa) 

Elastic Modulus 
E (GPa) 

Failure Strain 
(%) 

Tensile Properties 
1 192 69 no data 
2 204 67 no data 
3 203 66 0.58 
4 200 64 0.58 

Average 200 67 0.58 

Compressive Properties 
5 142 68 -0.31 

 

Typical tensile and compressive stress-strain curves are shown in Figure 15.  

The decreasing modulus of the stress strain curves is attributed to continuous 

matrix micro-cracking during loading [43].  
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Figure 15: Monotonic tension and compression stress-strain curves 
obtained for N720/A composite at 1200°C in laboratory air. 

 

Basic tension and compression properties obtained in this effort are 

compared with properties reported in literature in Table 8. Strength and modulus 

values obtained for both tension and compression in this work are in good 

agreement with published data. The failure strain produced in compression is in 

good agreement with that reported by Szymczak [45]. Conversely, the failure 

strains obtained in tension tests were somewhat higher than those reported in 

literature. This may have been due to possible changes in CMC panel 

manufacturing techniques. 
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Table 8: Summary of basic tension and compression properties for N720/A 
at 1200°C from literature [38, 40, 41, 43-45]. 

Author Test Type 
Strength  
(MPa) 

Elastic 
Modulus 
E (GPa) 

Failure 
Strain 
(%) 

Szymczak [45] Compression 122 69 0.21 
Eber [38], Harlan [41] Tension 192 75 0.38 

Mehrman [38] Tension 186 78 0.37 
COI [43] Tension 224 69 0.44 

Bansal [44] Tension 189 75 0.38 

Tensile Average Tension 198 74 0.39 

 

5.3  Tension-Compression Fatigue at 1200°C in Air 

Results of the tension-compression fatigue tests performed at 1200°C in 

laboratory air are summarized in Table 9. Results are also presented in Figure 16 

as the maximum stress vs. cycles to failure curves. The tension-tension fatigue 

results obtained by Eber [40] are included in Table 9 and in Figure 16 for 

comparison. In Figure 16, arrow indicates that failure of specimen did not occur 

when the test was terminated. 
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Table 9: Summary of fatigue results for N720/A ceramic composite at 1 Hz 
at 1200°C in laboratory air. Tension-tension fatigue results from Eber [40]. 

Specimen 
Designation  

Max Stress 
(MPa) 

Cycles to 
Failure 

Failure (or Final a) 
Strain (%) 

Tension-tension fatigue, R = 0.05, Eber 2005 
6 100 120,199 a 0.63 a 
7 125 146,392 a 1.14 a 
8 150 167,473 a 1.66 a 
9 170 109,436 a 2.25 a 

Tension-compression fatigue, R = -1 
7 80 113,382 -0.96 

11 80 100,000 a -0.23 a 
22 90 71,484 -0.43 
10 90 28,159 -0.49 
26 95 12,636 -0.32 
9 100 5,264 -0.64 
6 100 4,902 -0.33 

23 110 3,488 -0.31 
16 110 2,121 -0.44 
17 120 199 -0.22 

a Run-out, defined as 105 cycles. Failure of specimen did not occur when the test 

was terminated. See Table 13 for retained properties. 
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Figure 16: Stress vs. cycles to failure for N720/A ceramic composite at 
1200°C in laboratory air. Arrow indicates that failure of specimen did not 
occur when the test was terminated. Tension-tension fatigue results from 

Eber [40]. 
 

 
At 1200°C in air, the fatigue run-out of 105 cycles was achieved at 80 MPa 

(40%UTS). It is noteworthy that all fatigue failures occurred during the 

compressive portion of the fatigue cycle. This result is likely due to the relatively 

low compressive strength of the material compared to its tensile strength. 

At 1200°C in air, the tension-compression cycling is considerably more 

damaging than tension-tension fatigue. Including compression in the load cycle 

caused dramatic reductions in fatigue life of N720/A composite. For a given 

stress level, the cyclic lives obtained in tension-tension fatigue by Eber [40] were 
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at least three orders of magnitude higher than those produced under tension-

compression fatigue. The run-out stress in tension-tension fatigue was a high 

170 MPa, more than twice the run-out stress of 80 MPa obtained in tension-

compression fatigue. Furthermore, while in tension-tension fatigue a run-out of 

105 cycles was achieved at 125 MPa, tension-compression cyclic life at 120 MPa 

was a very poor 199 cycles. Including compression in the fatigue cycle reduced 

fatigue life by 99% for max of 120 MPa.  

The ultimate compressive strength (UCS) of the N720/A is only 71% of its 

ultimate tensile strength (UTS). Hence it is instructive to view maximum stress 

levels as %UTS and %UCS rather than in standard units of MPa. In tension-

tension fatigue a run-out was achieved at 85%UTS (max = 170 MPa). In 

contrast, the specimen tested in tension-compression fatigue at 85%UCS 

(max = 120 MPa) survived only 199 cycles. This result indicates that the low 

compressive strength of the composite is not the sole reason for its poor fatigue 

performance in tension-compression compared to tension-tension cycling. 

Note that considerably larger failure strain magnitudes were produced in 

tension-tension fatigue than in tension-compression fatigue. The larger failure 

strains are indicative of longer damage zones and more extensive fiber pullout, 

which is typically associated with active crack deflection and improved toughness 

of the CMC.  
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The results of this work are in stark contrast to the results reported by Jones 

[33] for a Hi-Nicalon/PyC/HyprSiC CMC. Jones subjected the material to fatigue 

loading with an R value of -1 in air at 1200°C and compared the results to those 

found by Delapasse [46] with an R value of 0.05. Jones found that the change in 

R ratio reduced fatigue life by 19% to 63% depending on the maximum stress. 

The relatively low loss in fatigue life with the introduction of compression into 

fatigue cycles might be attributed to the fairly high compressive strength of the 

Hi-Nicalon/PyC/HyprSiC material compared to its tensile strength. However, it 

should be noted that the Hi-Nicalon/PyC/HyprSiC composite studied by Jones 

and Delapasse has a dense matrix, a fiber coating and relies on a weak 

fiber/matrix interface for flaw tolerance. In contrast, the N720/A CMC studied in 

this work relies on an exceptionally weak porous matrix for crack deflection and 

flaw tolerance.  

Szymczak [45] studied compressive creep behavior of N720/A at 1200 °C in 

air and in steam. Szymczak conducted compressive creep tests in air at creep 

stresses of 100, 80, and 60 MPa. Notably, a 100-h run-out was achieved in all 

tests performed in air. Tension-compression cyclic loading with the same 

maximum stress levels proved to be much more damaging than compression 

creep. As seen in Table 10, for a given maximum stress considerably shorter 

lifetimes were produced under tension-compression fatigue than under 

compressive creep. Reductions in lifetime were at least 68.5% for the maximum 

stress of 80 MPa and nearly 98.6% for the maximum stress of 100 MPa.  
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Table 10: Comparison of failure times for N720/A in air at 1200°C under 
tension-compression cyclic loading and under compressive creep. 

Compressive creep results from Szymczak [45].  

Maximum 
Stress 
(MPa) 

Failure 
(or Final a, b) 
Strain (%) 

Cycles to 
Failure 

Time to 
Failure (h) 

Reduction in 
Lifetime (%) 

Compressive Creep 
-60 -0.095 a - >100 a - 
-80 -0.14 a - >100 a - 

-100 -0.40 a - >100 a - 

Tension-Compression Fatigue,1 Hz, R = -1 
80 -0.96 113,382 31.50 >68.5 
80 -0.23 b 100,000 b >27.8 b - 

100 -0.64 5,264 1.46 >98.5 
100 -0.33 4,902 1.36 >98.6 

a Run-out, defined as 100 h. Failure of specimen did not occur when the test was 

terminated.  
b Run-out, defined as 105 cycles. Failure of specimen did not occur when the test 

was terminated. See Table 13 for retained properties. 

 

Evolution of hysteresis stress-strain response of N720/A composite with 

cycles at 1200°C in air is shown in Figure 17 and Figure 18 for the maximum 

stresses of 110 MPa and 90 MPa, respectively.  
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Figure 17: Evolution of stress-strain hysteresis response of N720/A 

composite with fatigue cycles at 1200°C in air, max = 110 MPa, Nf = 2,121 
cycles.  
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Figure 18: Evolution of stress-strain hysteresis response of N720/A 

composite with fatigue cycles at 1200°C in air, max = 90 MPa, Nf = 71,484 
cycles. 

 

It is seen that the hysteresis loops produced in tension-compression tests 

were nearly symmetric about the origin. In all tests, the slopes of the tensile 

portion and of the compressive portion of the hysteresis loop were measured for 

the second cycle and for the last cycle. The measured tension and compression 

moduli were nearly the same (within 2 GPa) in all tests. In addition, the overall 

tensile and compressive moduli (determined as maximum stress magnitude over 

maximum strain magnitude) were calculated for each cycle. In all tests performed 

in air, the change in the overall tensile modulus with cycles was approximately 

the same as the change of the overall compressive modulus. This result is 
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evident in Figure 17 and Figure 18. Although the damage (represented by the 

overall modulus loss) developed in a similar manner during tensile and 

compression portions of the cycles, the ultimate failure always occurred on the 

compression side of the loading cycle.  

The hysteretic stress-strain behavior of N720/A under tension-compression 

fatigue cycling is very different from that of Hi-Nicalon/PyC/HyperSiC composite 

[33]. In the case of Hi-Nicalon/PyC/HyperSiC CMC, the slope of the compressive 

portion of the hysteresis loops remained nearly unchanged in all tests. 

Contrastingly, tensile modulus decreased significantly with fatigue cycling. Not 

surprisingly, all failures occurred during the tensile portion of the cycle.   

Maximum and minimum strains vs fatigue cycles for tests conducted with max 

of 90, 95, 110, and 120 MPa at 1200°C in air are shown in Figure 19. In all tests, 

the evolution of minimum strain with cycles is nearly a mirror image of the 

change in maximum strain. In addition, higher levels of stress are generally 

associated with lower failure strains. Generally, lower strain accumulation with 

cycling indicates that less damage has occurred, and that it is mostly limited to 

some additional matrix cracking. However, in the case of 110 and 120 MPa tests 

conducted in this study, low accumulated strains are more likely due to early 

bundle failures leading to specimen failure. Similar observation was reported by 

Hetrick [39] who investigated tension-tension fatigue of N720/A at 1200°C.  
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Figure 19: Peak Maximum and minimum strains vs. fatigue cycles for 
N720/A ceramic composite at 1200°C in air. 

 

Of importance in cyclic fatigue is the reduction in stiffness (hysteresis 

modulus determined from the maximum and minimum stress-strain data points 

during a load cycle), reflecting the damage development during fatigue cycling. 

Change in modulus is shown in Figure 20, where normalized modulus (i.e. 

modulus normalized by the modulus obtained in the first cycle) is plotted vs. 

fatigue cycles.  
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Figure 20: Normalized hysteresis modulus vs fatigue cycles for N720/A 
ceramic composite at 1200°C in air. 

 

The results in Figure 20 reveal the slight increase in damage accumulation 

rates for higher stress levels. Cycling with higher maximum stress produces more 

damage during each cycle leading to earlier failures. Notably, specimens cycled 

with lower maximum stresses exhibit greater degree of damage as evidenced by 

a considerably greater modulus loss at the end of cyclic life. It is noteworthy that 

although some tests achieved run-out, a decrease in normalized modulus with 

cycling was still observed. 
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5.4   Tension-Compression Fatigue at 1200°C in Steam  

Results of the tension-compression fatigue tests performed at 1200°C in 

steam are summarized in Table 11 and in Figure 21. The results of the tension-

compression fatigue tests obtained at 1200°C in air as well as the results of the 

tension-tension fatigue tests reported by Eber [40] are also included in Table 11 

and in Figure 21 for comparison. In Figure 21, arrow indicates failure of specimen 

did not occur when the test was terminated. 
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Table 11: Summary of fatigue results for N720/A ceramic composite at 1 Hz 
at 1200°C in laboratory air and in steam. Tension-tension fatigue results 

from Eber [40]. 

Specimen 
Designation  

Test 
Environment 

Maximum 
Stress 
(MPa) 

Cycles to 
Failure 

Failure  
(or Final a)  
Strain (%) 

Tension-Tension Fatigue, R = 0.05, Eber 2005 
6 Air 100 120,199 a 0.63 a 
7 Air 125 146,392 a 1.14 a 
8 Air 150 167,473 a 1.66 a 
9 Air 170 109,436 a 2.25 a 
12 Steam 100 100,780 a 0.71 a 
13 Steam 125 166,326 a 1.08 a 
14 Steam 150 11,782 1.12 
15 Steam 170 202 0.81 

Tension-Compression Fatigue, R = -1 
7 Air 80 113,382 -0.96 
11 Air 80 100,000 a -0.23 a 
22 Air 90 71,484 -0.43 
10 Air 90 28,159 -0.49 
26 Air 95 12,636 -0.32 
9 Air 100 5,264 -0.64 
6 Air 100 4,902 -0.33 
23 Air 110 3,488 -0.31 
16 Air 110 2,121 -0.44 
17 Air 120 199 -0.22 
13 Steam 60 100,000 a -0.22 a 
18 Steam 60 100,000 a -0.13 a 
21 Steam 70 100,000 a -0.22 a 
8 Steam 75 86,548 -0.40 
24 Steam 80 22,426 -0.41 
12 Steam 80 8,581 -0.83 
20 Steam 90 9,092 -0.34 
15 Steam 90 5,023 -0.79 
25 Steam 95 2,316 -0.29 
19 Steam 100 450 No data 
14 Steam 100 247 -0.41 

a Run-out, defined as 105 cycles. Failure of specimen did not occur when the test 
was terminated. See Table 13 for retained properties. 
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Figure 21: Stress vs. cycles to failure for N720/A ceramic composite at 
1200°C in laboratory air and in steam. Arrow indicates that failure of 

specimen did not occur when the test was terminated. Tension-tension 
fatigue results from Eber [40]. 

 

Presence of steam causes significant degradation in fatigue performance of 

the N720/A composite. In steam the fatigue run-out was reached only at 70 MPa 

(35%UTS). Recall that in air the fatigue run-out of 105 cycles was achieved at a 

higher maximum stress of 80 MPa (40%UTS). The reduction in cyclic life due to 

steam was 80-92% for the maximum stress of 80 MPa. Similar reductions in 

cyclic lifetimes due to steam were observed under tension-tension fatigue 

[38-40]. However, detrimental effect of steam on cyclic lifetimes was considerably 

more pronounced in the case of tension-tension fatigue than under tension-
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compression fatigue. The cyclic lifetimes produced in steam in tension-

compression fatigue were nearly an order of magnitude lower than those 

produced in air. Conversely, in the case of tension-tension fatigue steam reduced 

the cyclic lifetimes by one to three orders of magnitude [38-40]. 

The results in Table 11 show that in steam for a maximum stress of 100 MPa, 

cyclic lifetimes under tension-compression fatigue were 247 and 450 cycles, 

while a run-out of 105 cycles was achieved under tension-tension fatigue. For a 

given maximum stress level, the introduction of compressive loading into fatigue 

cycle causes a nearly 1000-fold reduction in cyclic life in steam.  

It is instructive to compare the lifetimes produced during tension-compression 

fatigue tests at 1200°C in steam in the current work with those obtained during 

creep tests performed at the same maximum stresses [45] (see Table 12 and 

Figure 22).  

Table 12: Comparison of failure times for N720/A in steam at 1200°C under 
tension-compression cyclic loading and under compressive creep. 

Compressive creep results from Szymczak [45]. 

Max. Stress 
(MPa) 

Failure (or Final a) 
Strain (%) 

Cycles to 
failure 

Time to 
failure (s) 

Reduction in 
Lifetime (%) 

Compressive Creep 
-40 -1.577 - 13,920 - 
-60 -1.128 - 2,355 >97.6 
-100 -0.188 - 6.5 98.1 

Tension-Compression Fatigue,1 Hz, R = -1 
60 -0.22 a 100,000 a 100,000 a - 
60 -0.13 a 100,000 a 100,000 a - 

100 No strain data 450 450 - 
100 -0.41 247 247 - 

a Run-out, defined as 105 cycles. Failure of specimen did not occur when the test 
was terminated. See Table 13 for retained properties. 
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Figure 22: Stress vs. time to failure for N720/A ceramic composite at 
1200°C in laboratory air and in steam. Arrow indicates that failure of 

specimen did not occur when the test was terminated. Compressive creep 
results from Szymczak [45]. 

 

Recall that at 1200°C in air, tension-compression cyclic loading with the same 

maximum stress levels proved to be much more damaging than compression 

creep. Contrastingly, in steam compression creep results in much shorter 

lifetimes than the tension-compression cycling. In steam, reductions in lifetime 

were at least 97.6% for the maximum stress of 60 MPa and nearly 98.1% for the 

maximum stress of 100 MPa. Apparently in steam, creep loading is the most 

damaging for the porous matrix oxide/oxide composite, followed by tension-

compression fatigue, then tension-tension fatigue loading. 
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At 1200 °C in air, creep lifetimes exceed the tension-compression fatigue 

lifetimes in air. In contrast at 1200°C in steam, creep lifetimes are much shorter 

than those obtained in tension-compression cycling. Recent studies [47, 48] 

show that water attacks grain boundaries and degrades the strength of the 

polycrystalline alumina. Kronenberg et al [48] reported that alumina specimens 

heat treated under hydrostatic pressure in the presence of water developed two 

types of hydrogen defects: interstitial hydrogens in the bulk and molecular water 

clusters near surfaces, grain boundaries and cracks.  Moreover, it was found that 

the presence of hydrogen defects reduced the yield stress of fine-grained 

alumina by a factor of 6. The weakening was attributed to a change in the 

predominant deformation mechanism, from dislocation glide to grain boundary 

sliding and cracking. It is possible that hydrogen defects that are introduced into 

the alumina matrix of the N720/A specimens during compressive creep tests 

conducted at 1200 °C in steam, also contribute to the degradation of creep 

performance in steam. 

Additionally, it is recognized that the presence of steam promotes 

densification of alumina matrix and increased matrix-fiber bonding [47, 51]. 

Because the N720/A composite derives its damage tolerance from a porous 

matrix, the stability of matrix porosity against densification is a vital issue. 

Compressive creep loading in steam promotes additional sintering of the matrix 

and subsequent loss of matrix porosity [20, 24]. The densification of matrix 

occurring under static (creep) loading in either tension or compression 
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accelerates failure and reduces the lifetime of the composite. Contrastingly, 

cyclic loading (tension-tension as well as tension-compression) causes 

progressive matrix cracking and weakening of the fiber matrix interface thereby 

counteracting matrix densification and prolonging composite lifetime in steam. 

While tension-compression cycling in steam has a beneficial effect on composite 

durability compared to the compression creep loading, we recognize that shorter 

lifetimes are produced under tension-compression than under tension-tension 

fatigue. Once again we note that matrix densification and loss of matrix porosity 

is one of the major causes of the poor performance of the N720/A composite. 

While tension-tension cycling promotes continuous matrix cracking, tension-

compression cycling likely promotes matrix densification during compression 

portion of the cycle.  

Times to failure under tension-compression fatigue at 1200°C in air and in 

steam are compared to those produced under tensile creep [26] in Figure 23. 

Unlike the compressive creep lifetimes, tensile creep lifetimes exceed the 

lifetimes produced under tension-compression fatigue. Apparently, compression 

creep in steam is the most damaging loading/environment combination.  
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Figure 23: Stress vs. time to failure for N720/A ceramic composite at 
1200°C in laboratory air and in steam. Arrow indicates that failure of 

specimen did not occur when the test was terminated. Tensile creep results 
from Ruggles-Wrenn et al. [26]. 

 

Evolution of hysteresis stress-strain response of N720/A composite with 

cycles at 1200°C in steam (Figure 24) appears to be qualitatively similar to that 

observed at 1200°C in air.  
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Figure 24: Evolution of stress-strain hysteresis response of N720/A 

composite with fatigue cycles at 1200°C in steam, max = 90 MPa, Nf = 9,092 

cycles. 

 

Maximum and minimum strains vs fatigue cycles for tests conducted with 

max  of 90 MPa at 1200°C in air and in steam are shown in Figure 25. Results in 

Figure 25 reveal that strain accumulation is accelerated in the presence of 

steam. 
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Figure 25: Maximum and minimum strains vs. fatigue cycles for N720/A 
ceramic composite at 1200°C in air and in steam. 

 

Figure 26 shows the change in normalized hysteresis modulus with fatigue 

cycles at 1200°C in air and in steam. Significant contrast between the air and 

steam results is evident. Significant reductions in hysteresis modulus occur far 

earlier in the cyclic life in steam than in air for a given maximum stress. 

Moreover, the modulus loss with cycles in the 90 MPa test in steam is similar to 

that observed in the 110 MPa test in air.  
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Figure 26: Normalized hysteresis modulus vs fatigue cycles for N720/A 
ceramic composite at 1200°C in air and in steam. 

 

5.5   Effect of Prior Tension-Compression Fatigue at 1200°C on Tensile 
Properties  

All specimens that achieved run-out were subjected to tensile test to failure at 

1200°C in laboratory air to determine the retained strength and stiffness. 

Evaluation of retained properties is useful in assessing the damage state of the 

composite subjected to prior loading. Retained strength and stiffness of the 

tension-compression fatigue specimens that achieved run-out are summarized in 

Table 13 and in Figure 27. Table 13 also presents retained tensile properties 

reported by Eber [40] for the case of prior tension-tension fatigue.  
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Table 13: Retained tensile properties of N720/A specimens subjected to 
prior fatigue at 1200°C in air and in steam. Post tension-tension fatigue 

results from Eber [40]. 

Fatigue 
Stress 
(MPa) 

Fatigue 
Environment 

Retained 
Strength 
(MPa) 

Strength 
Retention 

(%) 

Retained 
Modulus 

(GPa) 

Modulus 
Retention 

(%) 

Failure 
Strain 
(%) 

Prior Tension-Compression Fatigue, R = -1 
80 Air 205 103 37 55 0.71 
60 Steam 165 83 33 49 0.53 
60 Steam 165 83 34 51 0.44 
70 Steam 123 62 31 46 0.47 

Prior Tension-Tension Fatigue, R = 0.05, Eber 2005 
100 Air 194 101 53 71 0.44 
125 Air 199 104 55 73 0.45 
150 Air 199 104 43 57 0.53 
170 Air 192 100 41 55 0.51 
100 Steam 174 91 48 64 0.40 
125 Steam 169 88 52 69 0.43 

 

 

Figure 27:  Effects on tensile stress-strain behavior of prior tension-
compression fatigue at 1200°C in air and in steam.  
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Results in Table 13 reveal that prior tension-compression fatigue at 1200°C in 

air did not reduce the tensile strength of the composite. The specimens subjected 

to 105 fatigue cycles in air retained 103% of its tensile strength. However, a 

modulus loss of 45% was observed. Prior tension-compression fatigue in steam 

caused significant degradation of tensile strength. Specimen subjected to 

105 fatigue cycles in steam retained only 62% - 83% of their tensile strength. The 

loss of tensile strength suggests that prior tension-compression fatigue in steam 

caused significant degradation of the N720 fibers. Prior tension-tension fatigue in 

steam also caused degradation of tensile strength and stiffness [40]. However, 

both strength loss and modulus loss were greater in the case of prior tension-

compression fatigue. This result indicates that tension-compression fatigue is 

more damaging than tension-tension fatigue for N720/A composite.  

A recent study by Wannaparhun et al. [50] concluded that at 1100°C in water-

vapor environment, SiO2 could be leached from Nextel™720 fiber. Wannaparhun 

et al. [50] proposed that H2O reacted with the SiO2 in the mullite phase of N720 

fibers exposed to water-vapor. The reaction product, Si(OH)4 then dispersed into 

the alumina matrix. Ruggles-Wrenn et al. [20] performed energy dispersive x-ray 

spectroscopy (EDS) of several N720/A samples exposed to tension-tension 

fatigue testing in air and in steam at 1200°C. As-processed specimens were 

examined for comparison. The results confirmed that in the presence of steam, 

silicon migrated from the fibers into the adjacent alumina matrix. It was proposed 
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that the depletion of the mullite phase from the N720 fibers could be the cause of 

reduced fatigue performance of the N720/A in steam [20].  

These findings were supported by Armani et al. [51], who tested N720 fiber 

tows in creep at 1200°C in air and in steam. Armani and co-workers reported that 

a porous alumina layer (void of mullite) of ~2.2-µm thickness formed on the 

exterior of the fibers tested in steam. Conversely, fibers tested in air did not 

exhibit such degradation. Formation of a ~2.2-µm thick porous alumina layer that 

no longer contributed to the load-bearing capacity of the fiber was significant 

considering the 10-12 µm diameter of N720 fiber.  

 
5.6  Microstructural Characterization 

5.6.1 Optical Microscopy 
 

The fracture surfaces and microstructure of the failed N720/A specimens 

were examined using optical microscopy and the SEM. Post-test microstructural 

characterization is useful in determining failure and damage mechanisms along 

with establishing baseline fracture morphologies corresponding to various 

loading and environmental conditions. Results of the microstructural 

characterization using optical microscopy are presented in this section. 

The fracture surfaces obtained in monotonic compression and tension tests 

are shown in Figure 28 and Figure 29, respectively. The differences are quite 

dramatic. A long damage zone and a fairly large fracture surface are produced in 

the compression test. Moreover, the compression fracture surface is oriented at 

an angle to the loading direction and exhibits a somewhat progressive stair-step 
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failure across plies. On the other hand, a shorter damage zone is produced in the 

tension test. The tension failure surface clearly shows plies failing on alternating 

planes. Both tension and compression fracture surfaces have a brushy 

appearance, indicating fibrous fracture associated with crack deflection and 

damage tolerance.  

Another significant difference between tension and compression failures is 

the presence of fiber micro-buckling in compression as evidenced by the curved 

and raised appearance of the surface fiber bundles indicated by the red oval in 

Figure 28. This feature is not seen in the tension fracture surface. These trends 

are consistent with those reported for N720/A at 1200 °C in compression testing 

[45] and in tension testing [38 - 42, 44]. 
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Figure 28: Fracture surface obtained in a compression to failure test at 
1200°C in air. 

 

Figure 29: Fracture surface obtained in a tension to failure test at 1200°C in 
air.  
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Figure 30 and Figure 31 show the fracture surfaces obtained in tension tests 

of the N720/A specimens subjected to 105 cycles of prior tension-compression 

fatigue in air and in steam, respectively. Recall that the specimen pre-fatigued in 

air retained 100% of its tensile strength. The fracture surface in Figure 30 exhibits 

the same general features as the N720/A fracture surface produced in tension to 

failure test (Figure 29). However, note the slightly less brushy appearance and 

the presence of fiber bundle micro-buckling due to the prior tension-compression 

fatigue cycling (Figure 30). The less brushy appearance is generally attributed to 

matrix densification. 

In contrast, the fracture surface of the N720/A specimen pre-fatigued in steam 

(Figure 31) has a shorter damage zone and is more planar and less brushy in 

appearance. The lack of a brushy appearance, small damage zone size, and 

relatively planar fracture indicate that the steam significantly reduced the CMC 

damage tolerance and inhibited crack deflection through matrix porosity. It 

appears that matrix porosity decreased and fiber-matrix bonding increased. 

Although both specimens achieved fatigue run-out, the retained properties of the 

two specimens were very different. While the specimen pre-fatigue in air retained 

100% of its tensile strength, the specimen pre-fatigued in steam retained only 

62% of its tensile strength. Such considerable loss of tensile strength suggests 

fiber degradation due to steam. 
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Figure 30: Fracture surface obtained in a tensile test of a N720/A specimen 

subjected to 105 cycles of prior tension-compression fatigue with max = 80 
MPa at 1200°C in air.  

 

Figure 31: Fracture surface obtained in a tensile test of a N720/A specimen 

subjected to 105 cycles of prior tension-compression fatigue with max = 70 
MPa at 1200°C in steam. 
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Figure 32 shows a fracture surface obtained in tension-compression fatigue 

with a maximum stress of 80 MPa at 1200°C in air. Figure 33 shows a fracture 

surface obtained in tension-compression fatigue with a maximum stress of 

75 MPa at 1200°C in steam. As was the case with all fatigue failures in this 

research effort, specimens shown in Figure 32 and Figure 33 failed in 

compression. Note that these specimens produced the longest cyclic lives in their 

respective environments culminating in fatigue failures. As in the case of fatigue 

run-out specimens, the fracture surfaces produced in fatigue in steam are 

relatively planar, while fracture surfaces produced in fatigue in air have a more 

brushy appearance. Both specimens exhibit significantly shorter damage zones 

than the as-processed specimen failed in compression test (Figure 28). 

 

Figure 32: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 80 MPa, Nf = 113,382 cycles.  
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Figure 33: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 75 MPa, Nf = 86,548 cycles. 

 
Of particular importance is the damage indicated by the red oval in Figure 33. 

This damage was noted on the specimen in the as-received condition. The 

damage, located within the gauge section of the specimen had approximate 

dimensions of 1.1 mm x 2 mm x 0.6 mm. As seen in Figure 33, cracks did not 

initiate from this preexisting damage. There is no sign of cracking at this location; 

the fracture surface is also well removed from this pre-existing damage. This is a 

prime example of the good damage tolerance exhibited by this material system. 

The fatigue life of this specimen was consistent with those of the other 

specimens tested in steam during this effort. This should be expected due to the 

fact that no cracking initiated at the preexisting damage. In monolithic ceramics 

cracks initiate at defects such as this, leading to catastrophic failure. 
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Fracture surfaces obtained in fatigue tests performed with the maximum 

stress of 95 MPa in air and with the maximum stress of 90 MPa in steam are 

shown in Figure 34 and Figure 35, respectively. These fatigue tests were neither 

the longest nor the shortest, but rather of intermediate duration. While the 

differences between the fracture surfaces in Figure 34 and Figure 35 become 

more subtle, the specimen tested in air exhibits a longer damage zone and a 

slightly more fibrous fracture.  

Fracture surfaces obtained in fatigue tests performed with the maximum 

stress of 120 MPa in air and with the maximum stress of 100 MPa in steam are 

shown in Figure 36 and Figure 37, respectively. Note that these specimens 

produced the shortest fatigue lives in their respective test environments. Not 

surprisingly, the effects of steam on fracture surface appearance are minimal. 

Both specimens have significantly shorter damage zones (~22 mm each) than 

the specimens tested in compression to failure in this research (~31 mm) and in 

prior work [45] (~45 mm). Note that damage lengths were measured parallel to 

the specimen length using dial calipers. 
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Figure 34: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 95 MPa, Nf = 12,636 cycles.  

 

 

Figure 35: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 90 MPa, Nf = 9,092 cycles. 
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Figure 36: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 120 MPa, Nf = 199 cycles. 

 

  

Figure 37: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 100 MPa, Nf = 450 cycles. 
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Figure 38 shows the fracture surfaces of N720/A specimens which failed in 

compressive creep tests in steam at 1200°C, Szymczak [45]. The differences 

between the fracture surfaces obtained in tension-compression fatigue and those 

obtained in compressive creep are readily apparent. The fracture surfaces 

produced in compressive creep are much less fibrous. Again, recall that these 

compressive creep failures are associated with significantly shorter lifetimes than 

the tension-compression fatigue lifetimes in steam with similar maximum loads.  
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(a)  

(b)  

(c)  

Figure 38: Fracture surfaces of N720/A specimens failed in compressive 
creep in steam at 1200°C: (a) -100 MPa, (b) -60 MPa, (c) -40 MPa, images 

from Szymczak [45]. 
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For each specimen that failed in tension-compression fatigue the length of the 

damage zone was measured parallel to the specimen length using dial calipers, 

then plotted vs. the maximum applied stress (Figure 39) and vs. cycles to failure 

(Figure 40). It is seen that longer damage zones correspond to higher maximum 

stresses. For a given maximum stress the damage zones obtained in air are the 

same as or only slightly longer than those obtained in steam. Conversely, results 

in Figure 40 reveal that for a given fatigue lifetime much shorter damage zones 

are obtained in steam than in air.  

 
Figure 39: Length of damage zone vs. maximum stress for N720/A 

specimens failed in tension-compression fatigue.  
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Figure 40: Length of damage zone vs. cycles to failure for N720/A 

specimens failed in tension-compression fatigue. 
 

5.6.2 Scanning Electron Microscopy 

A more thorough understanding of damage and failure mechanisms as well 

as of the influence of environment can be gained by examining the fracture 

surfaces with a scanning electron microscope (SEM). 

Figure 41 and Figure 42 show the fracture surfaces obtained in tension tests 

of the N720/A specimens subjected to 105 cycles of prior tension-compression 

fatigue in air and in steam, respectively. The fracture surface of the specimen 

pre-fatigued in air (Figure 41 a) exhibits large areas of brushy failure and fiber 

pullout. In contrast the fracture surface of the specimen pre-fatigued in steam 
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(Figure 42 a) exhibits extensive regions of coordinated fiber fracture. This trend is 

further illustrated in Figure 41 b-c and Figure 42 b-c. The increased level of fiber 

pull-out seen in Figure 41 indicates robust crack deflection as well as relatively 

little bonding between fibers and matrix. Recall that the specimen pre-fatigued in 

air retained 100% of its tensile strength which indicates that little or no damage 

occurred to the fibers. 

The planar fracture surface dominated by regions of coordinated fiber failure 

indicates that matrix densification and an increase in fiber-matrix bonding 

occurred in the specimen pre-fatigue in steam. The matrix cracks were able to 

propagate through fibers reducing the retained tensile properties. Additionally, 

fiber degradation due to the depletion of the mullite phase may be another factor 

contributing to the reduced strength and stiffness of the specimen pre-fatigued in 

steam.  
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 (a)      (b) 

 
(c) 

 
 

Figure 41: SEM micrographs of fracture surface obtained in tensile tests of 
N720/A specimens subjected to 105 cycles of prior tension-compression 

fatigue with max = 80 MPa at 1200°C in air. 
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(a)       (b) 

 
(c) 

 
 

Figure 42: SEM micrographs of fracture surface obtained in tensile tests of 
N720/A specimens subjected to 105 cycles of prior tension-compression 

fatigue with max = 70 MPa at 1200°C in steam. 
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The SEM micrographs of the fracture surfaces produced in tension-

compression fatigue tests with the longest lifetimes are shown in Figure 43. The 

differences between the fracture surfaces obtained in air (Figure 43 a-c) and in 

steam (Figure 43 d-f) are evident. The fracture surface produced in air 

(Figure 43 a) is fibrous with considerable regions of fiber pull-out where individual 

fibers are clearly discernible. In contrast, the fracture surface produced in steam 

(Figure 43 d) is dominated by planar regions of brittle failure. Higher 

magnification images show the typical features of the predominantly fibrous 

fracture surface in air (Figure 43 b and c) and the planar fracture surface in 

steam (Figure 43 e and f). Notably, the fibrous fracture surface is associated with 

a longer damage zone and a longer fatigue life, while a planar fracture surface is 

accompanied by a shorter damage zone and a shorter fatigue life.    
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Figure 43: SEM micrographs of fracture surfaces obtained in tension-

compression fatigue tests performed at 1200°C: (a)-(c) in air, max = 80 MPa, 

Nf = 113,382 cycles and (d)-(f) in steam, max = 75 MPa, Nf = 86,548 cycles. 

(d) (a) 

(e) (b) 

(f) (c) 
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The SEM micrographs of the fracture surfaces produced in tension-

compression fatigue with the shortest cyclic lives are shown in Figure 44 and 

Figure 45. However, the differences between the fracture surfaces obtained in air 

(Figure 44 a-c) and in steam (Figure 44 d-f) are not as pronounced. The fracture 

surface produced in air is somewhat brushier than that produced in steam. Still, 

higher magnification images reveal increased fiber/matrix bonding in steam 

(Figure 45), indicating progressive matrix densification in steam. Note that the 

cyclic life in air was more than 10 times that in steam. Progressive matrix 

densification in steam accounts for the reduction in cyclic life.  
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Figure 44: SEM micrographs of fracture surfaces obtained in tension-

compression fatigue tests performed at 1200°C: (a)-(c) in air, max = 100 

MPa, Nf = 5,264 cycles and (d)-(f) in steam, max = 100 MPa, Nf = 450 cycles. 

(a) (d) 

(e) (b) 

(f) (c) 
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(a)  

(b)  

Figure 45: SEM micrographs of fracture surfaces obtained in tension-

compression fatigue tests performed at 1200°C: (a) in air, max = 100 MPa, 

Nf = 5,264 cycles and (b) in steam, max = 100 MPa, Nf = 450 cycles. 
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It is evident that the test environment has a strong influence on composite 

microstructure. Brushy fracture surfaces dominated by areas of uncorrelated fiber 

failure and fiber pullout are produced in air. These microstructural features are 

indicative of damage-tolerant behavior and are generally accompanied by longer 

fatigue lifetimes. Contrastingly, coordinated fiber failure and planar fracture are 

prevalent in steam. Planar fracture surfaces typically represent brittle behavior 

and a shortened fatigue life of a CMC. 

Mehrman [21] examined tension-tension fatigue behavior of the N720/A 

composite at 1200°C in air in steam. Mehrman also reported an increase in 

coordinated fiber fracture and a reduction in fatigue life (about one order of 

magnitude) due to steam. Mehrman showed that introducing hold times at the 

maximum load during fatigue cycling reduced fatigue lives. Hetrick [39] found that 

tension-tension fatigue lives decrease by about two orders of magnitude when 

the fatigue frequency decreased by one order of magnitude. Reducing the fatigue 

frequency effectively increased time at higher load in the test environment. 

Hetrick concluded that for longer fatigue lives the fatigue frequency must be 

sufficiently high to continually break apart the matrix to counteract matrix 

densification and fiber-matrix bonding. Results of this work demonstrate that 

including compression in the load cycle produced a similar reduction in fatigue 

life and similar changes in the fracture surface appearance. Hence it is likely that 

the compression portion of the tension-compression fatigue cycle promotes 

matrix densification and fiber-matrix bonding. 
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Because all fatigue failures in this study occurred during a compression 

portion of the cycle, the fracture surfaces produced in fatigue were considerably 

different from those produced under tensile loading. These differences are 

particularly apparent in the SEM micrographs with higher magnification. Examine 

the individual fibers and their fracture surfaces in Figure 46 and Figure 47. Fiber 

micro-buckling and resulting compression curl are readily visible.  

Compressive failure in fiber-reinforced composites is generally associated 

with micro-buckling of the fibers [52-55]. The in-phase buckling of the fibers 

causes flexural stresses in the fibers. Compression curls are formed when a 

planar crack normal to the loading direction forms on the tension side of the fiber. 

The crack then changes direction due to internal shear stresses and becomes 

more parallel to the loading direction. Finally, the crack front curls towards the 

opposite edge of the fiber and the ultimate fracture of the fiber occurs. Fiber 

micro-buckling was prevalent throughout the fracture surfaces of the specimens 

that failed in compression during tension-compression fatigue, but not in the 

fracture surfaces produced in tension. 
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 (a)  

(b)  

Figure 46: Fracture surface obtained in tension-compression fatigue. 
Failure occurred during compression portion of fatigue cycle. Note fracture 

surfaces of the individual fibers. 
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 (a)  

(b)  

Figure 47: Fracture surface obtained in tension-compression fatigue. 
Failure occurred during compression portion of fatigue cycle. (a) Fiber 

micro-buckling. (b) Compression curl.  
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VI. Conclusions and Recommendations 

6.1   Conclusions 

Tension-compression fatigue behavior of N720/A ceramic composite was 

investigated at 1.0 Hz at 1200°C in air and in steam. The R (ratio of minimum to 

maximum stress) was -1 and the fatigue stresses ranged from 60 to 120 MPa. 

The fatigue run-out was achieved at 80 MPa (40%UTS) in air and at 70 MPa 

(35%UTS) in steam. The presence of steam noticeably degrades tension-

compression fatigue performance. Fatigue lives were reduced by approximately 

an order of magnitude due to steam. Prior fatigue in air with the maximum stress 

of 80 MPa causes no reduction in tensile strength, suggesting that no damage 

occurred to the fibers. Prior fatigue in steam with the maximum stresses of 60 

and 70 MPa reduced the tensile strength by 17-38%, indicating significant 

degradation of fiber performance. Notably, prior fatigue in air or in steam resulted 

in modulus loss of about 50%.  

Tension-compression fatigue is considerably more damaging than tension-

tension fatigue. Including compression in the load cycle can decrease fatigue 

lifetimes by nearly three orders of magnitude. At 1200°C tension-compression 

fatigue was also found to be more damaging than compressive creep in air. 

Conversely, in steam compressive creep was more damaging than tension-

compression fatigue. 

The damage and failure of the N720/A composite at 1200°C in both air and 

steam environments are due to loss of matrix porosity and increased fiber-matrix 
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bonding. In steam, depletion of mullite phase from the N720 fibers also 

contributes to the degradation of composite performance. During tension-tension 

fatigue in air, cyclic loading opposes matrix densification by causing progressive 

matrix cracking and weakening of the fiber-matrix interface. In steam, the 

beneficial effects of tension-tension cycling on damage tolerance of the N720/A 

composite compensate for the negative effects of the loss of mullite from the 

N720 fibers, resulting in improved durability. Compressive loading during tension-

compression fatigue promotes matrix densification and strengthening of 

fiber/matrix bond, which serve to degrade damage tolerance of the composite 

and to reduce fatigue lives. In steam, matrix densification and strengthening of 

fiber/matrix bond under compression work together with the degradation of N720 

fibers to further degrade the fatigue performance of the composite. In air and in 

steam the appearance of the fracture surface may be correlated with tension-

compression fatigue life. A brushy fracture surface is indicative of longer cyclic 

life. In contrast, planar fracture surface corresponds to a short fatigue life.  

6.2   Recommendations 

The results presented here should be reproduced using multiple specimens 

for each test condition in order to show reproducibility and the magnitude of 

statistical variation. The microstructural investigation performed in this research 

effort should be expanded to include examination of the composite with a 

transmission electron microscope (TEM). The TEM observations would permit 

direct assessment of the effect of loading type and/or test environment on 
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changes in matrix porosity. TEM observations would also enable a more 

thorough evaluation of microstructural changes in the fibers under different 

loading conditions and/or test environments. Results of such investigation could 

be complemented with those reported by Armani [51] for the N720 fiber tows. 

Tension-compression fatigue tests with different values of R should be 

performed to assess the influence of mean stress on fatigue performance of 

N720/A composite.  
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Appendix A: Additional Optical Micrographs 

 

 

Figure 48: Optical micrographs of fracture surface obtained in a tension to 
failure test at 1200°C in air. Specimen number 1. 
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Figure 49: Optical micrographs of fracture surface obtained in a tension 
to failure test at 1200°C in air. Specimen number 2. 
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Figure 50: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 90 MPa, Nf = 71,484 cycles. 
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Figure 51: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 90 MPa, Nf = 28,159 cycles. 
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Figure 52: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 100 MPa, Nf = 5,264 cycles. 
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Figure 53: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 100 MPa, Nf = 4,902 cycles. 
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Figure 54: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 110 MPa, Nf = 3,488 cycles. 
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Figure 55: Fracture surface obtained in a fatigue test conducted at 1200°C 

in air. max = 110 MPa, Nf = 2,121 cycles. 
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Figure 56: Optical micrographs of fracture surface obtained in a tensile test 
of a specimen subjected to 105 cycles of prior tension-compression fatigue 

with max = 60 MPa at 1200°C in steam. Specimen number 13. 
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Figure 57: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 80 MPa, Nf = 22,426 cycles. 
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Figure 58: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 80 MPa, Nf = 8,581 cycles. 
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Figure 59: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 90 MPa, Nf = 5,023 cycles. 
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Figure 60: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 95 MPa, Nf = 2,316 cycles. 
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Figure 61: Fracture surface obtained in a fatigue test conducted at 1200°C 

in steam. max = 100 MPa, Nf = 247 cycles. 
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Appendix B: Additional SEM Micrographs 

 

  

  

Figure 62: SEM micrographs of a fracture surface obtained in a tensile test 

of N720/A specimen subjected to 105 cycles of prior tension-compression 

fatigue with max = 80 MPa at 1200°C in air. 
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Figure 62 (continued): SEM micrographs of a fracture surface obtained in a 

tensile test of N720/A specimen subjected to 105 cycles of prior 

tension-compression fatigue with max = 80 MPa at 1200°C in air. 
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Figure 62 (continued): SEM micrographs of a fracture surface obtained in a 

tensile test of N720/A specimen subjected to 105 cycles of prior 

tension-compression fatigue with max = 80 MPa at 1200°C in air. 
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Figure 63: SEM micrographs of a fracture surface obtained in tension-

compression fatigue tests performed at 1200°C in air, max = 80 MPa, 

Nf = 113,382 cycles. 
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Figure 63 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

max = 80 MPa, Nf = 113,382 cycles. 
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Figure 63 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

max = 80 MPa, Nf = 113,382 cycles. 
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Figure 63 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

max = 80 MPa, Nf = 113,382 cycles. 
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Figure 63 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

max = 80 MPa, Nf = 113,382 cycles. 
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Figure 63 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

max = 80 MPa, Nf = 113,382 cycles. 
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Figure 64: SEM micrographs of a fracture surface obtained in tension-

compression fatigue tests performed at 1200°C in air, σmax = 90 MPa, 

Nf = 71,484 cycles. 
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Figure 64 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

σmax = 90 MPa, Nf = 71,484 cycles. 
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Figure 64 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

σmax = 90 MPa, Nf = 71,484 cycles. 
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Figure 64 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

σmax = 90 MPa, Nf = 71,484 cycles. 
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Figure 64 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

σmax = 90 MPa, Nf = 71,484 cycles. 
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Figure 64 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

σmax = 90 MPa, Nf = 71,484 cycles. 
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Figure 64 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

σmax = 90 MPa, Nf = 71,484 cycles. 
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Figure 64 (continued): SEM micrographs of a fracture surface obtained in 

tension-compression fatigue tests performed at 1200°C in air, 

σmax = 90 MPa, Nf = 71,484 cycles. 
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Figure 65: SEM micrographs of a fracture surface obtained in a tension-

compression fatigue test performed at 1200°C in air, max = 100 MPa, 

Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 

 
 



130 

 

  

Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 
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Figure 65 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in air, 

max = 100 MPa, Nf = 5,264 cycles. 

 

 
 



138 

  

  

Figure 66: SEM micrographs of a fracture surface obtained in a tensile test 

of an N720/A specimen subjected to 105 cycles of prior tension-

compression fatigue with max = 70 MPa at 1200°C in steam. 
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Figure 66 (continued): SEM micrographs of a fracture surface obtained in a 

tensile test of an N720/A specimen subjected to 105 cycles of prior tension-

compression fatigue with max = 70 MPa at 1200°C in steam. 
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Figure 66 (continued): SEM micrographs of a fracture surface obtained in a 

tensile test of an N720/A specimen subjected to 105 cycles of prior tension-

compression fatigue with max = 70 MPa at 1200°C in steam. 
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Figure 67: SEM micrographs of a fracture surface obtained in a tension-

compression fatigue test performed at 1200°C in steam, max = 75 MPa, 
Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 

 



146 

 

  

Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 67: (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 75 MPa, Nf = 86,548 cycles. 
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Figure 68: SEM micrographs of a fracture surface obtained in a tension-

compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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Figure 68 (continued): SEM micrographs of a fracture surface obtained in a 

tension-compression fatigue test performed at 1200°C in steam, 

max = 100 MPa, Nf = 450 cycles. 
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