
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Characterization of Silicon Ion Exposure on
Deinococcus radiodurans
Richard F. Daughtry

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Bacteriology Commons, and the Nuclear Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Daughtry, Richard F., "Characterization of Silicon Ion Exposure on Deinococcus radiodurans" (2018). Theses and Dissertations. 1743.
https://scholar.afit.edu/etd/1743

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1743&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/49?utm_source=scholar.afit.edu%2Fetd%2F1743&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/203?utm_source=scholar.afit.edu%2Fetd%2F1743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1743?utm_source=scholar.afit.edu%2Fetd%2F1743&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHARACTERIZATION OF SILICON ION EXPOSURE ON DEINOCOCCUS 

RADIODURANS 

 

 

THESIS 

 

 

Richard F. Daughtry, Captain, USA 

 

AFIT-ENP-MS-18-M-075 

 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

 

DISTRIBUTION STATEMENT A. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 2 

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government.  This material is declared a work of the U.S. Government and is not 

subject to copyright protection in the United States.



 3 

AFIT-ENP-MS-18-M-075 

 

 

CHARACTERIZATION OF SILICON ION EXPOSURE ON DEINOCOCCUS 

RADIODURANS 

 

THESIS 

 

Presented to the Faculty 

Department of Engineering Physics 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Combating Weapons of Mass Destruction 

 

 

Richard F. Daughtry, MS 

Captain, USA 

 

March 2018 

DISTRIBUTION STATEMENT A. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 4 

AFIT-ENP-MS-18-M-075 

 

CHARACTERIZATION OF SILICON ION EXPOSURE ON DEINOCOCCUS 

RADIODURANS 

 

 

 

 

Richard F. Daughtry, MS 

Captain, USA 

 

Committee Membership: 

 

Douglas R. Lewis, LTC, USA, PhD 

Chair 

 

Justin A. Clinton, PhD 

Member 

 

Roland J. Saldanha, PhD 

Member 

 

 

 

 

 

 

 

 



1 

 

AFIT-ENP-MS-18-M-075 

Abstract 

  Deinococcus radiodurans (Dr) is a very robust bacterium known for its ability to 

survive in extreme environments.  It “can survive drought conditions, lack of nutrients, 

and, most important, a thousand times more radiation than a person can”. [1]  Known for 

its ability to resist gamma radiation, Dr exhibits a unique capability to endure significant 

DNA damage.  The exact reasons why are not yet understood but evidence suggests it is 

possibly related to its DNA, proteins, or possibly its resistance to desiccation. [2]   

  In this experiment desiccated wild type Dr and seven mutant strains were 

irradiated with heavy silicon ion beams.  The strains were rehydrated after irradiation and 

colonies were counted to see if a significant kill rate was achieved.  The results indicated 

a kill rate less significant than expected. 
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CHARACTERIZATION OF SILICON EXPOSURE ON DEINOCOCCUS 

RADIODURANS 

 

I.  Introduction 

General Issue 

 One of the dangerous aspects of manned, deep space exploration is the body’s 

exposure to ionizing radiation.  The protective blanket provided by the Earth’s 

atmosphere means our susceptibility of ionizing radiation is not as great.  In the far 

reaches of outer space that protective environment is nonexistent, therefore the dangers 

posed by ionizing radiation are increased.  Terrestrial concerns with exposure are found 

with workers responding to nuclear power plant accidents such as Fukushima, and 

Soldiers responding to nuclear detonations through the National Technical Nuclear 

Forensics (NTNF).  Accordingly, various agencies of the United States Government seek 

to develop means in which to minimize or prevent the harmful effects posed by ionizing 

radiation.   

 In the 1950s, A.W. Anderson recognized the radiation resistance of Deinococcus 

Radiodurans’ (Dr) when he noted the bacterium remained on food cans despite being 

subjected to gamma radiation.  Further research conducted by D. Duggan and Anderson 

focused on Dr’s resistance by varying pH levels [3].  Early research conducted into Dr 

has been in an attempt to determine the processes that undergird Dr’s exceptional ability 

to resist ionizing radiation, and in the event of high-level exposure, its ability to repair its 

damaged DNA.  By achieving further understanding of this phenomenon we hope to 

advance methods to protect human cells to the ill effects of elevated levels of ionizing 
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radiation.  The investigation will specifically focus on Dr survivability in a high linear 

energy transfer (LET) silicon radiation environment. 

 

Problem Statement 

The literature review will show that Dr is extremely resistant to ionizing radiation.  

However, almost every reported exposure used gamma or electron beam radiation.  To 

date there is a dearth of information relating to Dr’s ability to withstand high LET 

radiation. 

The purpose of this research is to understand Dr’s ability to deal with varying 

doses of heavy charged particle (HCP) silicon radiation measured in Grays (Gy), (defined 

in SI units as a Joule per kilogram (J/kg)).  The doses of silicon radiation Dr will be 

subjected to are 500, 1,000, and 10,000 Gy.  Exposed Dr targets will be compared to non-

irradiated controls.  The significance of this experiment is to gain a better understanding 

of Dr’s resistance by looking at direct damage caused by high LET silicon particles.  

Hypothesis 

 The hypothesis is: exposed wild type and mutant strains of D. radiodurans will 

show a statistically significant reduction in colony numbers than non-exposed wild type 

and mutants.  The null hypothesis is that there will not be a statistically significant 

reduction between irradiated and non-irradiated strains.  Test statistics utilizing the one-

tailed test will be used for colony comparisons with a 95% confidence rate. 
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II. Literature Review 

Chapter Overview 

This chapter will explain the biology of Dr and its repair mechanisms after being 

subjected to radiation.  The differences between high and low linear energy transfer 

(LET) and its effect on Dr will also be discussed.  DNA and its structure, types of 

damage, and repair mechanisms will also be addressed, followed by a description of the 

Dr mutants used during the course of research.  

A Brief Description of Deinococcus radiodurans 

  Dr is a Gram-positive, red-pigmented, non-sporulating, nonpathogenic bacterium 

occurring in dyads and tetrads with an average cell diameter of 1 μm (range, 0.5 to 3.5 

μm). [2]  Other features include; two large chromosomes, “(2,648,615 and 412,340 base 

pairs), a megaplasmid (177,466 base pairs), and a small plasmid (45,702 base pairs) 

yielding a total genome of 3,284,123 base pairs, and two smaller plasmids”. [2]  The 

doubling time of Dr is approximately 80 minutes in a rich nutrient environment. [8] 

  Deinococcus radiodurans is best known for its resistance to ionizing gamma and 

ultraviolet (UV) radiation and desiccation as noticed by Anderson and Duggan in the 

1950s.  Furthermore, Slade, et al. noted that Dr survive[d], “7 kGy of ionizing radiation 

with marginal lethality (10%)” shattering its “3.28 Mb genome into 20–30 kb fragments 

by introducing 100–150 double-strand breaks and, presumably, at least 10 times as many 

single-strand breaks”.  Within 2.5 hours following exposure the Dr genome has 

reassembled itself. [4]  The reasons for this remarkable ability to repair are still being 

studied.  Blasius, et al. claimed Dr’s resistance to radiation “cannot be related to 
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prevention of DNA damage, because DNA double-strand breaks are formed at the same 

rate in Escherichia coli and D. radiodurans when cells are irradiated under identical 

conditions. [5]  Daly, et al. attribute Dr radioresistance to a “relationship between 

intracellular Mn/Fe concentration ratios” whereby the surviving cells contained “about 

300 times more Mn and about three times less Fe than the most-sensitive cells”. [6]  

Bertlet and Levine suggest proteins are what repair DNA damage in Dr. [7]   

   

 

Figure 1. Deinococcus radiodurans taken by SEM at USAFSAM. [9] 

 

High LET and Low LET 

  All matter is comprised of atoms.  The three main particles that create the atom 

are the positively charged and relatively “heavy” proton, a nearly equally heavy but 
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neutrally charged neutron, and a smaller and lighter negatively charged electron.  A 

stable atom is considered neutral; the composition of it does not tend to be positive 

(excess protons), or negative (excess electrons).  Atomic stability is desired and atoms 

that are unstable will radiate energy until they achieve a stable ground state. 

  Radiation interacts with matter in two different ways depending upon how the 

energy is deposited.  Linear energy transfer is a measurement of “the energy deposited 

per unit distance over the path of the radiation”. [10]  High LET is associated with heavy 

ions and alpha particles which deposit their energy quickly in matter and therefore have 

short ranges. [10]  This loss of great energy over a short distance (approximately 0.1-1.0 

mm) accounts for the high LET.  Conversely, electrons and photons (gamma rays and x-

rays) have low LET because their respective small size and neutral charge, and therefore 

do not lose their energy as rapidly and travel farther in matter (centimeters or longer) than 

the heavier charged particles. [10]  

  Most of the damage associated with low LET interaction is indirect.  Ionization 

occurs when radiation has sufficient energy to remove electrons from a surrounding 

atom.  Indirect damage is a result of ionization that happens when radiation ionizes or 

breaks apart a non “target” molecule, particularly water molecules.  The primary cause 

for cell harm when a low LET radiation interaction occurs is the creation of a reactive 

oxygen species (ROS), in this case a hydroxyl radical (HO), which is the primary radical 

created during the hydrolysis of water. [6]  Radiation enters the cell and deposits energy 

that has the potential to ionize the water molecule within as such: 

radiation  H2O  H+ + OH- 
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The highly reactive OH- radical subsequently attacks DNA as it looks for a donor electron 

to stabilize itself.  Single stranded DNA breaks are often associated with indirect damage. 

       High LET, high energy loss within a short time and distance and in matter, inflicts 

a majority of its damage through direct damage cell as opposed to indirect damage 

through the creation of ROS.  Heavy charged particles (HCP) enter matter and proceed in 

a generally straight path, stopping when their energy is depleted and imparting its energy 

directly into the molecule it stopped in, therefore high LET damage is less reliant upon 

ROS intermediaries and predominantly a result of the particle/target molecule interaction.  

In the case of DNA high LET damage usually manifests itself as double-stranded breaks 

(DSB).  The rate at which this energy loss occurs is a “function of its residual energy”. 

[11]   

DNA 

  Deoxyribonucleic acid (DNA) is the molecule responsible for conveying genetic 

information found in living organisms.  Located mostly inside the cell’s nucleus, DNA is 

comprised of four bases; adenine (A), cytosine (C), guanine (G), and thymine (T) that 

bind A-T and C-G to form base pairs.  The arrangements of base pairs determine what the 

organism may do regarding function, maintenance, and repair.  These base pairs are 

attached to a phosphate and sugar molecule to form a nucleotide.  Two nucleotides 

strands form a spiraled double helix that resembles a ladder.  The backbone of the helix is 

created through covalent bonds between the sugar and phosphate groups.  The two sides 

of the DNA “ladder: are held together by hydrogen bonds between the base pairs. [12] 
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Figure 2.  DNA Double Helix. [12] 

 DNA exposed to high LET generally results in numerous double strand breaks 

(DSBs) and DNA exposed to low LET typically experiences single-strand breaks (SSBs).  

A DSB is an alteration or break that occurs on both strands and results in a break of the 

covalently bonded sugar phosphate backbone.  A SSB is an alteration or break that occurs 

on only one strand and results in a break of the covalently bonded sugar phosphate 

backbone of the broken strand.    SSBs are considered less lethal and easier to repair as 

the overall integrity of the DNA molecule is retained, whereas a DSB will completely 

sever both backbones and result in loss of structural integrity. While SSBs are generally 

easier to repair, numerous SSBs on a strand of DNA within 6-10 base pairs can lead to 

DSBs. [11]  DSBs occur when there is, “damage to the deoxyribose-phosphate backbone 

in two or more nearby locations. [11]  DSBs are, “far more serious in the consequences 
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for a cell” and repair, “frequently lead[s] to mutation in the genome … and/or loss of 

reproductive capacity.” [11]  

Deinococcus radiodurans DNA Damage and Repair 

  As Slade notes, “[i]onizing radiation disintegrates the D. radiodurans genome by 

double-strand breakage into multiple fragments but also introduces at least 10-times more 

SSBs and many more sites of base damage”. [2]  Cellular desiccation also influences the 

amount of SSBs and DSBs damage received.  A hydrated target will receive 2-3 orders of 

magnitude more SSBs and DSBs from gamma radiation than a desiccated target that can 

be attributed in part to the creation of ROS. [14]    

  The main repair mechanism for SSBs in DNA is excision.  [11]  As Edward 

Alpen explains in Radiation Biophysics, excision, “assumes the existence of a 

complementary strand as a template, so it serves only to repair single-strand breaks.  [11]  

By their nature SSBs are less harmful to DNA than a complete severing of a strand 

caused by a DSB, therefore SSBs are easier to accurately repair.  There are five 

components to excision repair: damage recognition, assemble the subunit, excise the 

damaged portion by making incisions on each side, resynthesize the excised gap, and 

ligate to regenerate the molecule. [15] 

  There are two methods of repair in the instance of DSBs; homologous 

recombination (HR) or nonhomologous end joining (NHEJ).  [13]  HR is essential to 

repair errors that occur during DNA replication.  During HR an exchange of genetic 

information takes place between homologous sequences. [16]  Usually, these are located 

on two copies of the same chromosome. [16] Despite its complexity homologous repair is 
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the preferred method as it is more accurate and uses a sister chromatid to ensure proper 

sequencing.  [13]  NHEJ, while indeed a faster repair mechanism, is more error prone 

than homologous recombination.  NHEJ entails the rejoining of the two broken ends of 

the double helix through DNA ligation. [16]  This is viewed as an “emergency solution” 

for the repair of DSB. [16]  Figure 3 illustrates NHEJ and homologous end joining with 

the HR process. 

 

Figure 3.  Two different types of end-joining for repairing double-stranded breaks. [16] 

Deinococcus radiodurans and Mutant Strains  

 As with the previous experiment conducted by Lenker in 2017, the Dr. wild-type 

R1 strain selected for this experiment was acquired from the American Type Culture 

Collection (ATCC) for use by United States Air Force School of Aerospace Medicine 
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(USAFSAM).  An additional seven mutant strains created by the laboratory staff at 

USAFSAM were used during the experiment.  All eight strains were subjected to silicon 

ion irradiation at the Sandia Ion Beam Laboratory in Albuquerque, NM.  Two control 

samples plates remained at USAFSAM and were not shipped to Sandia.  The strains used 

for this experiment are listed in Table 1. 

 

Table 1.  Deinococcus radiodurans R1 strain list 

# Gene KO Common Name Proper Genotype 

1 none WT  

1.5 recF recF ‘merodiploid’ WT 

 

5 DR_1279 Mn SOD DR_1279::mlox 

8 DR_1546 

DR_A0202 

Cu/Zn SOD 

Cu/Zn SOD 

DR_1546::KAN 

DR_A0202::NAT 

11 BshA Bacillithiol Biosynthesis bshA::mlox 

16 uvrB uvrB  

6A recF recF ‘merodiploid’ WT 

 

27 uvrB uvrB  

 

 As shown in Table 1, with the exception of the WT strain the mutants have had 

either one or two genes removed.  It is believed these particular genes may affect the 

radiation resistance of Dr, as mentioned during the description of low LET interaction 

with the water within cells.  Mutant 5 had one, and mutant 8 had two superoxide 

dismutase (SOD) gene(s) knocked out (KO) or removed.  A SOD is a detoxifying 

enzyme and one of the three major cellular defense systems which protects against 

ionizing radiation by creating a less damaging chemical when reacting with a superoxide. 
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[16]  The cofactor for Mutant 5 is manganese (Mn).  The cofactors for Mutant 8 are 

copper (Cu) and zinc (Zn).   

 The KO gene for Mutants 16, and 27 is uvrB.  uvrB functions during nucleotide 

excision repair, serving as an enzyme to assist in DNA repair.  For Mutants 1.5 and 6A 

the KO gene is recF.  recF serves a role during homologous recombination which is 

essential to repair errors that occur during DNA replication.  Mutant 11 KO is BshA, or 

bacillithiol biosynthesis, a gene of uncertain function but believed to defend against 

peroxides and other reactive oxygen species. [17]  

 

III. Methodology 

Chapter Overview 

The purpose of this chapter is to describe the methodology utilized to create the 

Dr used during the experiment.  The first section will cover mutant creation, DNA 

amplification, plasmid creation and amplification, and Dr transfer to the knockout 

mutants.  The following section will discuss the kill curve, the various stages of Dr 

growth, desiccation, and rehydration, and a description of the nature of the silicon ion 

beam.  Finally, an explanation of counting methods is given.   

Plasmid Prep of pUC19mPheS and PCR for D. radiodurans Gene Knock-outs 

 To prepare the plasmid, the E. coli NEB 5 alpha bacteria carrying pUC19mPheS 

was isolated from a frozen glycerol stock and streaked and incubated overnight at 37°C in 

an unsealed plastic bag to prevent drying.  The following day a single colony from the 

plate was inoculated overnight at 37°C in 30ml of LB broth with 50μl/ml Carbenicillin in 
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a 125ml flask.  The next day the overnight culture was pelleted in a 50ml conical tube at 

3500 RPM for 20 minutes.  Supernatant was poured off and the pellet was suspended in 

750μl of Qiagen P1 buffer then added to 750μl of Qiagen P2 buffer, mixed, and 

incubated for 5 minutes to alkaline lyse the cells.  1050μl of Qiagen N3 buffer was mixed 

to neutralize the reaction.  Cell debris was precipitated by centrifuge at 3500 RPM for 5 

minutes.  After centrifugation the aqueous portion was distributed equally between two 

1.5ml microcentrifuge tubes and spun at maximum speed for 15 minutes to pellet any 

remaining precipitate.  The remaining supernatant was loaded into Qiagen spin miniprep 

columns and spun for 1 minute.  After discarding the flow through, 500μl of Qiagen PB 

buffer was added then spun for 1 minute.  After discarding the flow through, 750μl of 

Qiagen PE buffer was added then spun for 1 minute before discarding the flow through 

again and spun once more for 2 minutes.  The columns were then placed in sterile 1.5ml 

microfuge tubes.  100μl of Qiagen Elution buffer was added to each column and 

incubated at room temperature for 1 minute before spun at max speed for 1 minute to 

elute the plasmid DNA from the column.  DNA tubes were placed on ice and the quality 

and quantity of the plasmid DNA was measured at 124.9ng/μl using the NanoDrop.   

pUC19mPheS EcoRI Digest for NEBuilder Cloning 

 Following the NanoDrop measurement a digest mixture was created and 

incubated overnight at 37°C.  Table 2 details the mixture. 
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Table 2.  Digest mix 

Molecular Biology Grade Water  54μl 

pUC19mPheS Plasmid DNA at 124.9ng/μl 32μl 

10X NEB EcoRI Buffer 10μl 

NEB EcoRI Enzyme 4μl 

Total 100μl 

 

After incubation, 20μl (to 40μl) of 6x Sample Buffer was added and to and mixed with 

the plasmid digest.  The mixture was loaded over 3 lanes of a 0.8% agarose gel in 1xTBE 

with 0.5μg/ml ethidium bromide and ran at 10 volts per centimeter distance.  Using a 

razor blade and an UV light box, the ethidium bromide plasmid DNA bands (3895bp) 

were cut from the gel and distributed in 1.5ml microfuge tubes with no more than 300mg 

of gel slice per tube.  The linearized plasmid DNA was isolated from the agarose with 

Qiagen gel extraction mini spin columns.  Quantity and quality of the linearized plasmid 

DNA was measured with the NanoDrop. 

PCR Amplification of Fragments for Gene Knock Out Construct Cloning 

 Twelve primers from IDT Inc. were suspended to 100μM in 0.1xTE buffer with 

pH of 7.5.  Table 3 details the dilutions. 
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Table 3.  Primer dilution mixtures 

Primer Name nmoles μl of 0.1 TE for 100μM 

Puc_RecFup_Fwd 26.6 266 

Kan_RecFup_Rev 24.2 242 

RecFup_Kan_Fwd 30.1 301 

RecFdown_Kan_Rev 31.0 310 

Kan_RecFdown_Fwd 19.3 193 

Puc_RecFdown_Rev 27.7 277 

Puc_UvrBUp_Fwd 30.5 305 

Kan_UvrBUp_Rev 26.8 268 

UvrBUp_Kan_Fwd 36.9 369 

UvrBdown_Kan_Rev 26.2 262 

Kan_UvrBdown_Fwd 24.7 247 

Puc_UvrBdown_Rev 22.7 227 

 

Each primer was diluted to 1:10 in molecular grade biology water to 10μM (10μl in 90μl 

of water).  PCR templates were diluted to 50ng/μl in molecular grade biology water with 

20μl of 529ng/μl D. radiodurans genomic DNA stock added to 180μl of water.  

5μl of 144ng of pUCIDT-Amp::KANkanp plasmid was diluted to 50pg/μl in 120μl of 

molecular biology grade water.  Twelve PCR reactions (6 duplicates) were set up for 

genomic and Kan plasmid templates.  DNA fragments were then amplified in the 

thermocycler. 
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NEBuilder Construction of Knock-Out Plasmid  

 Several knockout plasmids were created based with NEBuilder protocols.  

Briefly the amplified fragments were combined with the plasmid backbone to create recF 

or uvR homologous regions (for gene knockout) along with a kanamycin selectable 

marker. Fragments 1 (recFup), 3 (recFdown), 4 (uvrBup), and 6 (uvrBdown) were diluted 

with water and DNA to 33ng/μl (~0.05 pmol).  The NEBuilder HiFi DNA Assembly 

Master Mix improves the efficiency and accuracy of DNA assembly. It allows for 

seamless assembly of multiple DNA fragments, regardless of fragment length or end 

compatibility by utilizing an exonuclease to create single-stranded 3 ́ overhangs that 

facilitate the annealing of the overlaps.  The polymerase then fills in gaps within each 

annealed fragment while the DNA ligase seals nicks in the assembled DNA resulting in a 

double-stranded fully sealed DNA molecule that can serve as template for PCR, RCA or 

a variety of other molecular biology applications, including direct transformation of E 

coli. [18] 

Table 4.  NEBuilder reaction mixes 

Additive A B 

 recF uvrB recF uvrB 

Water 4.5μl 5.5 μl 4 μl 5 μl 

5’ Homology Fragment 1 μl 1 μl 1 μl 1 μl 

Kan Fragment 2 μl 1 μl 2 μl 1 μl 

3’ Homology Fragment 1 μl 1 μl 1 μl 1 μl 

Plasmid Vector 1.5 μl 1.5 μl 2 μl 2 μl 

2x NEBuilder Mix 10 μl 10 μl 10 μl 10 μl 
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Mixture was incubated at 50°C for 60 minutes then stored at -20°C. 

Transformation of E. coli one-shot chemically competent cells 

The two cell types (NEB 5-alpha and NEB dam- dcm-) were thawed on ice.  2μl of 

the NEBuilder reaction was added and incubated on ice for 30 minutes.  It was then heat 

shocked at 42°C for 30 seconds and incubated on ice for 5 minutes.  950μl of Super 

Optimal broth with Catabolite repression (SOC) media was added to the cell/DNA mix 

and incubated at 37°C for 60 minutes with 220 RPM shaking for aeration.  The mixture 

was then pelleted in a microfuge at max speed for 2 minutes.  850μl of supernatant was 

removed and the cell was then pelleted in the remaining media.  The suspension was 

spread plated on LB agar with 32μg/ml Kanamycin and incubated overnight at 37°C in an 

unsealed plastic bag to prevent drying. 

 

Clone Construction Verification of D. radiodurans DNA Repair KO Clones Using 

Plasmid Template 

 Clone construction was verified by isolating plasmid DNA using Qiagen Spin 

Minipreps and analyzed with the NanoDrop.  All plasmids were reduced to 0.5ng/μl in 

water with remaining undiluted plasmid stored at -20°C for use in transformation.  2μl of 

diluted plasmid templates were added to 16 PCR tubes with a 10x mix for uvrB and recF.  

The primer sets for recF were Puc_RecFup_Fwd and Puc_RecFdown_Rev.  The primer 

sets for uvrB were Puc_UvrBUp_Fwd and Puc_UvrBdown_Rev.  PCR cocktail mix is 

shown in Table 5. 
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Table 5.  PCR cocktail with genomic template mix 

Molecular Biology Grade Water  290μl 

10mM dNTPs 15μl 

Forward Primer @ 10uM 20μl 

Reverse Primer @ 10uM 20μl 

5x LongAmp Taq Reaction Buffer 100μl 

DMSO (Final Conc. 3%)  15μl 

LongAmp Taq DNA Pol 20μl 

Total 480μl 

 

2μl of each templates was added to 48μl of cocktail in PCR tubes and placed in the 

thermocycler under the following conditions:  94°C for 2 minutes, 30 cycles of (2 step 

PCR), of 94°C for 30 seconds, 65°C for 3 minutes, 65°C for 10 minutes, then held at 4°C.  

Once complete, 20μl of each reaction was mixed with 6μl of Orange G loading buffer 

and run on a 0.8% agarose gel in 1xTBE with 0.5μg/ml ethidium bromide at 10 volts per 

centimeter distance.   

D. radiodurans Transformation 

 D. radiodurans wildtype from a frozen glycerol stock was streaked for isolation 

on 1xTGY agar and incubated at 32°C for 2 days in an unsealed ziplock bag to prevent 

drying.  A single colony from the plates was inoculated into 5mls of 1xTGY broth in a 

14ml round bottom snap cap tube along with a blank 5ml control and incubated overnight 

at 32°C and 220 RPM.  The overnight culture was diluted to an absorbance at 600nm 

between 0.2-0.3 which is approximately a 1:10 to 1:20 dilution.  2mls of the culture was 
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mixed into 20mls of 1xTGY in a 125ml flask and incubated 2 hours at 32°C and 220 

RPM.  After 2 hours, 2.2mls of 300mM CaCl2 (~30mM final) were added and incubated 

for 2 hours at 32°C and 220 RPM.  After the CaCl2 2 hour incubation, 100 μl of the 

culture were transferred to five sterile 1.5ml microfuge tubes and placed on ice.  1μg of 

plasmid DNA was added to each transformation and gently mixed and incubated on ice 

for 1 hour (as shown in Table 6). 

 

Table 6.  Plasmid DNA transformation mixture 

# Plasmid Concentration (ng/μl) μl volume to add 

1 
pUC19mPheS::KOuvrB::Kan 

27 37 

2 
pUC19mPheS::KOuvrB::Kan 

28.8 35 

3 
pUC19mPheS::KOuvrB::Kan 

31.2 32 

4 
pUC19mPheS::KOrecF::Kan 

30.8 33 

5 
pUC19mPheS::KOrecF::Kan 

28.2 36 

6 
pUC19mPheS::KOrecF::Kan 

22.8 44 

7 Negative Control (No DNA) N/A 0 

8 Blank (No DNA/No Cells) N/A 0 

 

After 1 hour the DNA/cell mix was transferred to a 14ml round bottom snap-cap tube 

containing 1ml of 1xTGY and incubated overnight at 32°C and 220RPM to grow out.  

The following day the grown out cultures were diluted 1:10 7x in series (20ul in 180μl 

1xTGY) using a multichannel pipet.  5μl of each dilution of the dilution series was 

spotted on 1xTGY agar containing 16ug/ml kanamycin and allowed to dry before the 
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plates were inverted and incubated for 48 hours at room temperature in an unsealed 

ziplock bag. 

4-CP Selection and Screening of D. radiodurans Knockouts 

 5mM 4-CP 1xTGY agar plates with 16μg/ml Kanamycin were made mixing 

500mls MQ water, 7.5g of agar, 2.5g of Tryptone, 1.5g of Yeast Extract, 0.5g of 

Dextrose, and 0.5g of 4-CP (4-chlorophenylalanine).  The solution was placed in the 

autoclave and cooled to 55°C before 250μl of 32mg/ml Kanamycin was added and 

mixed.  Plates were poured and left to solidify at room temperature for 48 hours.  

KanR Colony Pick for Grow out and Patch for Direct 4-CP Selection 

 For each transformation, 5-10 colonies were selected and mixed into 5mls of 

1xTGY broth with 16μg/ml kanamycin and incubated for grow out at 32°C and 220RPM 

for 48 hours.  The grown out cultures were then diluted 1:10 7x in series (20ul in 180ul 

1xTGY).  5μl of each dilution of the dilution series was spotted on 1xTGY agar and on 

5mM 4-CP 1xTGY agar with both agar types containing 16μg/ml kanamycin.  Once the 

spots dried, the plates were inverted and incubated at room temperature for 48 hours in an 

unsealed ziplock bag.  After 48 hours, 5-10 colonies for each transformation were 

selected and patched to the same area on a 5mM 4-CP 1xTGY agar plate with 16μg/ml 

kanamycin.  A loop was used to mix the patched bacteria and then streaked for isolation.  

Plates were then incubated at 32°C for 48 hours in an unsealed ziplock bag. 

Screening of 4-CP Resistant and Kanamycin Resistant Colonies 

 To screen the colonies, 1 colony from each transformation was suspended in 5mls 

of 1xTGY broth with 16μg/ml kanamycin and incubated at 32°C 220 RPM for 48 hours.   
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After incubation, 500μl of culture was mixed with 500μl of 50% Glycerol/50% 1xTGY 

broth in a 1ml cryovial and stored at -80°C for glycerol stock.  For genomic DNA 

isolation, 2mls of the culture was transferred to a 2ml microfuge tube and pelleted by 

centrifugation at max speed for 5 minutes.  Supernatant was removed by pipet and the 

genomic DNA was isolated using the QIAamp DNA Mini kit with the gram positive 

bacteria protocol.  The genomic DNA concentration was measured by NanoDrop and 

diluted to 50ng/μl in water.  Remaining undiluted genomic DNA was stored at -20°C.  

2ul of diluted genomic DNA templates were added to separate PCR tubes (16 total, 2 

each from RAD2, RAD3, RBD3, UAD2, UAD4, UBD1, and a WT and No DNA control) 

for each primer mix.  PCR Mix was 10x for uvrB and 10x for recF.  Primer sets for recF 

were Puc_RecFup_Fwd and Puc_RecFdown_Rev.  Primer sets for uvrB were 

Puc_UvrBUp_Fwd and Puc_UvrBdown_Rev.  Table 7 details the PCR cocktail and 

genomic template mixture. 

 

Table 7.  PCR cocktail and genomic template mixture 

Molecular Biology Grade Water  290μl 

10mM dNTPs 15μl 

Forward Primer @ 10uM 20μl 

Reverse Primer @ 10uM 20μl 

5x LongAmp Taq Reaction Buffer 100μl 

DMSO (Final Conc. 3%)  15μl 

LongAmp Taq DNA Pol 20μl 

Total 480μl 
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48μl of cocktail was added and mixed to each 2μl template then put into the thermocycler 

under the following conditions:  94°C for 3 minutes, 30 cycles of (2 step PCR), 94°C for 

30 seconds, 65°C for 3 minutes, 65°C for 10 minutes, and held at 4°C.  15μl of Orange G 

loading buffer was mixed with each 50ul PCR reaction and then the entire volume (65μl) 

ran on a 0.8% agarose gel in 1xTBE with 0.5μg/ml ethidium bromide at 10 volts per 

centimeter distance.   

New Kan Selection PCR Check of D. radiodurans DNA Repair Knock-Out Clones 

Using Plasmid Template 

 Plasmid DNA was isolated using Qiagen Spin Minipreps by the manufacturer’s 

protocol (16 total) and 4mls of culture.  NanoDrop measured DNA concentration and 

260/280 ratio.  All plasmids were diluted to 0.5ng/μl in water with no dilution step larger 

than 1:100.  Remaining undiluted plasmid was stored at -20°C for later transformations.  

2μl of diluted plasmid templates was added to separate PCR tubes (48 total).  Primer sets 

were diluted to 10μM (1:10 dilution of 100μM stock from IDT Inc.).  Primer sets were as 

follow:  recF whole:  Puc_RecFup_Fwd and Puc_RecFdown_Rev, uvrB whole:  

Puc_UvrBUp_Fwd and Puc_UvrBdown_Rev, recF Kan:  RecFup_Kan_Fwd and 

RecFdown_Kan_Rev, uvrB Kan:  UvrBUp_Kan_Fwd and UvrBdown_Kan_Rev.  The 

PCR mix for the primers is shown below in Table 8. 

Table 8.  PCR mix (15x for uvrB whole, recF whole, uvrB Kan, and recF Kan) 

Molecular Biology Grade Water  435μl 

10mM dNTPs 22.5μl 

Forward Primer @ 10uM 30μl 
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Reverse Primer @ 10uM 30μl 

5x LongAmp Taq Reaction Buffer 150μl 

DMSO (Final Conc. 3%)  22.5μl 

LongAmp Taq DNA Pol 30μl 

Total 720μl 

 

48ul of cocktail was added and mixed with 2ul of appropriate template then placed in the 

thermocycler.  PCR conditions for full-length 3kb plus PCR were:  94°C for 2 minutes, 

30 cycles of (2 step PCR) at 94°C for 30 seconds, 60°C for 30 seconds, 65°C for 3 

minutes, then 65°C one cycle for 10 minutes and held at 4°C.  PCR conditions for Kan 

1kb plus PCR were:  94°C for 2 minutes, 30 cycles of (2 step PCR) at 94°C for 30 

seconds, 60°C for 30 seconds, 65°C for 1 minute, then 65°C one cycle for 10 minutes and 

held at 4°C.  20μl of each reaction was mixed with 6μl of Orange G loading buffer then 

ran on a 0.8% agarose gel in 1xTBE with 0.5μg/ml ethidium bromide.  The gel ran at 10 

volts per centimeter distance. 

 

PCR Check of D. radiodurans DNA Repair Knock out Clones Using Genomic 

Template 

 Genomic DNA was isolated using Qiagen QiaAmp Spin Mini-Columns by the 

manufacturer’s protocol (30 total).  DNA concentration and 260/280 ratio was then 

measured using the NanoDrop.  Genomic DNA samples were diluted to 25ng/μl in water 

with the remaining undiluted sample stored at -20°C.  4μl of diluted plasmid templates 

were added to separate PCR tubes (34 total).  Primer sets (Appendix A) were arranged as:  
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recF full length:  Puc_RecFup_Fwd, Puc_RecFdown_Rev, uvrB full length:  

Puc_UvrBUp_Fwd, Puc_UvrBdown_Rev, recF intra-deletion:  recFIntDelFwd, 

recFIntDelRev, uvrB intra-deletion:  UvrBIntDelFwd, UvrBIntDelRev.  PCR mix is 

shown in Table 9. 

 

Table 9.  PCR mix (20x for uvrB full length, uvrB internal deletion, recF full length, and 

recF internal deletion) 

Molecular Biology Grade Water  540μl 

10mM dNTPs 30μl 

Forward Primer @ 10uM 40μl 

Reverse Primer @ 10uM 40μl 

5x LongAmp Taq Reaction Buffer 200μl 

DMSO (Final Conc. 3%)  30μl 

LongAmp Taq DNA Pol 40μl 

Total 920μl 

 

46μl of cocktail was added to each 4μl template and then placed in the thermocycler.  

Full length PCR conditions were set as:  94°C for 2 minutes , 30 cycles (3 step PCR) of 

94°C for 30 seconds, 60°C for 30 seconds, 65°C for 4 minutes, one cycle at 65°C for 10 

minutes, and held at 4°C. Intra-del PCR conditions were set as:  94°C for 2 minutes, 30 

cycles (3 step PCR) of 94°C for 30 seconds, 56°C for 30 seconds, 65°C for 1 minute, one 

cycle at 65°C for 10 minutes, and held at 4°C.  15ul of Blue Juice loading buffer was 

added to each 50μl PCR reaction and ran on a 20μl 0.8% agarose gel in 1xTBE with 

0.5μg/ml ethidium bromide.  The gel ran 10 volts per centimeter distance until the 

loading buffer reached the bottom of the gel.  At the conclusion of the gel run it was 
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noted the full length PCR did not work well due to the inability to get a clean recF 

mutant.  This necessitated a re-transformation that would last for two weeks.  Re-

transformation yielded satisfactory results for uvrB 

 It was assumed a pure recF mutant was not obtained based upon electrophoresis 

gel results.  These results demonstrated that recF mutants likely retained some degree of 

the WT genome in at least one copy of the chromosome.   

D. radiodurans Mutant Sample Prep for Dried Spot UVC Treatment Including E. 

coli  

 E. coli and five strains of D. radiodurans were streaked on agar plates then 

incubated for 48 hours at 32°C (37°C for E. coli).  Strain list is shown in Table 10. 

 

Table 10. Strain list for UVC treatment 

Number Strain Plate 

N/A E. coli DH5α LB agar 

1 

 

(1) D. radiodurans R1 

WT  

 

1xTGY agar 

5 (5) D. radiodurans R1  

 

1xTGY agar 

8 (8) D. radiodurans R1 

 

 

1xTGY agar KAN 

16μg/ml NAT 50μg/ml 

11 (11) D. radiodurans R1 

 

1xTGY agar 

16 (16) D. radiodurans R1  

 

1xTGY agar KAN 

16μg/ml 

27 (27) D. radiodurans R1  

 

1xTGY agar KAN 

16μg/ml 
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After incubation, an individual colony from each strain was inoculated into 5ml of 

1xTGY broth (LB broth for E. coli) and with the appropriate antibiotics added for each 

strain, then placed in 14ml round bottom tubes, and incubated at 32°C (37°C for E. coli) 

and 220 RPM overnight.  The following day the cultures were diluted 1:100 (20μl of 

culture in 20ml broth) into the appropriate media type in 125ml vented cap flasks and 

incubated overnight.  After incubation a measurement of the 600nm absorbance was 

taken from a 1:10 dilution of each culture (100μl of culture and 900μl of broth).  The 

dilution was placed in a spectrophotometer cuvette and measured against a blank, broth 

only, cuvette.  The NanoDrop readings of each cuvette determined the volume of culture 

needed to add to 40mls of broth to achieve an Abs. 600 of 0.25. 

40𝑚𝑙𝑠 ∗ 0.25

10 ∗ 𝐴𝑏𝑠. 600𝑛𝑚
= 𝑣𝑜𝑙. 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑖𝑛 𝑚𝑙𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 

The calculated volume of each culture was added to 40mls of broth in a 250ml vented cap 

flask and incubated at 32°C (37°C for E. coli) 220 RPM for 4 hours (when D. 

radiodurans cultures reach early log phase).  After incubation, 30ml of each culture was 

transferred to a 50ml conical tube. The bacteria were pelleted by centrifugation at 3500 

RPM for 20 minutes. During the centrifugation, the 600nm Abs. values of each undiluted 

culture was read and the value was used to calculate the re-suspension volume for each 

culture to reach a 600nm Abs. value of 5 (2-5x108 CFU/ml for D. radiodurans).   

30𝑚𝑙𝑠 ∗ 𝐴𝑏𝑠. 600𝑛𝑚

5
= 𝑣𝑜𝑙. 𝑜𝑓 𝑏𝑟𝑜𝑡ℎ 𝑖𝑛 𝑚𝑙𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 

After centrifugation, the supernatant was poured and pipetted off and the bacterial pellet 

was suspended in the calculated volume of broth for a 600nm Abs. value of 5. 
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In a laminar flow hood, a single channel pipet was used to deliver a 60µl drop to 2 plate 

lids in duplicate (see Table 11 below).  One plate was for UVC treatment and the other 

was an untreated control.  The plates remained in the hood overnight to dry. 

Table 11.  Plate Map for 60ul Drops 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B             

C 1  5  8  11 16 27  E.coli  

D             

E             

F 1  5  8  11 16 27  E.coli  

G             

H             

 

The samples used for spotting were also diluted 1:10 seven times in series (200µl of cells 

in plate well row A, then 20µl into 180µl of broth) and spotted 5µl onto 1xTGY agar in 

duplicate (LB agar for E. coli). This was to determine the input CFU and CFU loss due to 

drying and vacuuming.  Once the spots were dry, the plates were incubated over the 

weekend in unsealed bags at 32°C (37°C for E. coli overnight).  After drying in the 

laminar flow hood, the lids with dried spots were placed on the 96 well plate bottoms, 

wrapped with parafilm, and stored at room temperature in the dark.  E. coli input CFU 

colonies were counted and recorded. 

Colony Count ∗  Dilution Factor

5
∗ 60𝜇𝑙 = 𝐶𝐹𝑈 𝑝𝑒𝑟 60𝜇𝑙 𝑠𝑝𝑜𝑡 
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Vacuum and UVC Treatment 

The plates were removed from dark storage, parafilm was removed and then the 

plates were placed in the ultracentrifuge (no rotor in the centrifuge) with the lids down. 

The ultracentrifuge was turned on and set to pull a vacuum.  After 15 minutes the plates 

were removed.  The UVC crosslinker was prepared and ran at 9999 J/m2.  Immediately 

after, the first plate lid was placed in the crosslinker and treated at 850 J/m2.  After 

treatment, the lids with the dry spots were placed on the 96 well plate bottoms, re-

wrapped with parafilm, and stored at room temperature in the dark. 

Re-suspension of Bacteria in Dried Spots; Dilutions and Plating 

 Dried spots were suspended with 60µl of broth and pipetted up and down 20 

times.  After all spots were suspended, each one was pipetted up and down 20 times 

before the volume was transferred to a well in row A of a 96 well plate.  The samples 

used for spotting were also diluted 1:10 seven times in series (200µl of cells in plate well 

row A, then 20µl into 180µl of broth) and spotted 5µl onto 1xTGY agar in duplicate (LB 

agar for E. coli).  This is to determine the untreated CFU and CFU loss due to UVC 

treatment.  Once dry, the spots were incubated at 32°C (37°C for E. coli overnight) in 

unsealed bags for 2 days.  Colonies were counted and recorded in the dilution so the CFU 

per 60µl spot could be calculated.  
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Table 12.  D. radiodurans CFU counts normalized to 10-5 

 Untreated (Drying and Vacuum only) Drying, Vacuum, and UVC Treated 

Strain A B C D A B C D 

1 9-5 5-5 19-5 13-5 9-5 11-5 7-5 19-5 

5 9-5 9-5 24-5 10-5 15-5 19-5 11-5 11-5 

8 7-5 2.1-5 19-5 7-5 9-5 9-5 20-4 2.9-5 

11 13-5 8-5 20-5 13-5 50-5 17-5 18-5 18-5 

16 9-5 21-5 26-5 15-5 18-5 20-5 21-5 100-5 

27 11-5 9-5 24-5 17-5 19-5 24-5 10-5 23-5 

 

Noticeable CFU loss between treated and untreated was seen in strain 8, C and D.  An 

unexplained rise between treated and untreated was seen in strain 11 A and 16 D. 

All four E. coli demonstrated CFU loss between treated versus untreated. 

 

Table 13.  E. coli treated and untreated CFU counts 

E.coli Untreated (Drying and Vacuum only) E.coli Drying, Vacuum, and UVC Treated 

6-3 15-2 

14-3 8-2 

30-3 8-2 

22-3 2-1 

 



35 

Silicon Dose Calculations 

SRIM and TRIM was utilized to determine the proper silicon ion dose calculation.  

The layers were selected based upon materials the silicon ion beams would interact.  

Sandia Tandem Accelerator information is located in Appendix C.   

  

 

Figure 4.  SRIM input screen with variables selected 
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Figure 5.  Based upon input from Figure 4.  Simulation of 15 MeV silicon ions irradiating 

Dr. 
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Figure 6.  Chart created showing the ionization in Dr and the polystyrene lid measured 

around 250 eV/Angstrom.  The red region measures energy loss to the target electrons.  

The blue recoil region measures energy loss due to recoil atom interaction. 

 

 

Figure 7.  Chart showing the penetration depth of 15 MeV silicon ions into Dr.  It is 

approximately 10.7um.  
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 This ionization information is utilized to determine the fluence necessary to 

achieve a specific irradiation dose. 

𝐷𝑜𝑠𝑒 =  
𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
∗ 𝐹𝑙𝑢𝑒𝑛𝑐𝑒 

250 
𝑒𝑉

𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚−𝐼𝑜𝑛
∗  

1.6022 𝑥 10−19 𝐽

1 𝑒𝑉
∗  

1 𝑥 108 𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚

1 𝑐𝑚
∗

𝑐𝑚3

0.9392 𝑔
∗

1.17 𝑥 108 𝐼𝑜𝑛𝑠

1 𝑐𝑚2 ∗  
1000 𝑔

1 𝑘𝑔
=

498.98 𝐺𝑦 ~ 500 𝐺𝑦  

 

IV. Analysis and Results 

Chapter Overview 

 The purpose of this chapter is to show and describe the results of the experiments 

between irradiated samples and the control samples.  The hypothesis stated there would 

be a statistically significant difference between irradiated samples and non-irradiated 

controls.  The null hypothesis stated there would not be a statistically significant 

difference between the two groups.  The results were compared using a one sided t-test 

with a confidence value of 95% certainty.   

Colony Average Comparisons Pre- and Post Silicon Exposure 

Silicon ions are heavy charged particles that will cause double strand breaks in the 

exposed cells.  With the exception of WT, all mutants were grown with one or more 

knock-outs to inhibit post-irradiation cell repair.  Single strand breaks created by reactive 

oxygen species should not be as much of a factor as double strand breaks created by 

interaction with silicon ions.  The single strand breaks should be limited due to 

desiccation of one month and being subjected to the ion beam’s vacuum of 10-7 Torr.   
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Figure 8.  Comparison of strains by exposure. 

Figure 8 shows a comparison of total colonies counts, normalized to 10-5 dilution, 

for each exposure condition.  According to test statistics, colony counts for CFU inputs to 

desiccation in strains WT, 1.5, 5, 8, 11, and 27 accounted for all of the statistically 

significant results observed throughout the experiment.  There were no statistically 

significant results observed in the any strains resulting from irradiation when compared 

their unexposed control.  There was a statistically significant reduction when comparing 

WT treated at 1,000Gy to Mutant 1.5 treated at 1,000Gy and when comparing WT treated 

at 10,000Gy to Mutant 1.5 treated at 10,000Gy.  Figure 5 shows the input CFU colonies 

after rehydration and spotting.  The strains are WT, 1.5, 5, 8, 11, 16, 6A, and 27 in order 

from left to right.   
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Figure 9.  Rehydrated input CFU colonies.

 

Figure 10.  Desiccated and vacuumed CFU. 
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Figure 10 shows the rehydrated and spotted CFU for the desiccated and vacuumed 

strains.  The strains are WT, 1.5, 5, 8, 11, 16, 6A, and 27 in order from left to right.  The 

WT average colony input was 18.3.  The WT control shows a 48% reduction from 

desiccation and vacuum with a gradual increase in colony count of 35.9% at 500Gy, 

23.6% at 1,000,Gy and 10% at 10,000Gy exposure compared to the WT CFU input.  

The 1.5 recF knock-out mutant was the weakest during the course of the 

experiment.  The recF enzyme is necessary for repairs of double stranded DNA breaks.  

Accordingly, the mutant displayed the fewest number of CFU throughout all phases of 

the experiment.  Although a statistically significant 45% CFU decrease was observed 

during desiccation, a 4% growth was observed during 500Gy irradiation, 14.5% growth 

and 28% growth was observed during 1,000Gy and 10,000Gy irradiation respectively.  

Mutant 5 superoxide dismutase (SOD) knock-out is a manganese (Mn) 

transporter.  Proteins necessary for DNA damage and repair are inhibited when D. 

radiodurans is grown in conditions limiting Mn2+. [14]  Statistically significant reduction 

in CFU input to desiccation and vacuuming was observed.  However, no statistical 

reduction in growth was observed. 

Mutant 8 is a double SOD knock-out of copper (Cu) and zinc (Zn) transport 

genes.  These two cofactors, or enzymes, assist the cell in repair after desiccation and 

irradiation.  A statistically significant reduction was observed from CFU input to 

desiccation and vacuuming.   

Mutant 11 knock-out is BshA, or bacillithiol, a gene of uncertain function but 

believed to defend against peroxides and other reactive oxygen species. [17]  This mutant 
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also displayed a statistically significant reduction from CFU input to desiccation.  No 

statistically significant reduction was observed with the irradiated strains. 

The knock-out gene for Mutant 16 was uvrB.  uvrB functions during nucleotide 

excision repair, serving as an enzyme to assist in DNA repair.  

Mutant 6A was a merodiploid recF knockout.  recF is an essential enzyme 

necessary for error correction during DNA repair.  Mutant 6A was the only strain in 

which growth (9.2%) was observed from CFU input to desiccation and vacuuming.  Like 

mutant 16, no statistical significant reduction in colonies was observed.  Like mutant 16, 

mutant 27 is a uvrB knockout.  Statistically significant CFU reduction was observed from 

CFU input to desiccation and vacuuming.  No other statistically significant reduction was 

observed.  

Colony Comparison of Mutants to Untreated Control 

 

Figure 11.  Colony comparison of mutants to their own untreated control. 
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Figure 11 shows colony counts for each mutant strain over all exposure 

conditions.  No statistically significant difference is observed at any exposure dose when 

exposed bacteria are compared against their un-exposed control.  

While not significant, reductions were observed in exposed bacteria.  Reductions 

of 35.9%, 23.6%, and 10% were observed in the WT strain at 500, 1,000, and 10,000Gy 

respectively.  It is suspected that an upregulation of repair enzymes is occurring after 500 

and 1,000 Gy exposure, however this is not known for certain. 

Reductions observed in mutant 1.5 were 14.5% and 28.2% at 1,000 and 10,000Gy 

respectively.  500Gy irradiation exhibited a 4% growth in CFU.  The reason for this is not 

understood.     

Mutant 5 exhibited reductions of 37.5%, 34.6%, and 55.7% at 500, 1,000, and 

10,000Gy respectively.   

Mutant 8 exhibited reductions of 71.3%, 49.2% and 47% at 500, 1,000, and 

10,000Gy respectively.   

Mutant 11 exhibited reductions of 44.5%, 20.6%, and 40.2% at 500, 1,000, and 

10,000Gy respectively.   

Mutant 16 exhibited reductions of 38.2%, 1.2%, and 11.7% at 500, 1,000, and 

10,000Gy respectively.   

Mutant 6A exhibited unique results with a 22.7% reduction at 500Gy but growth 

of -56.6% and -12.5% at 1,000 and 10,000Gy respectively. 

Mutant 27 exhibited reductions of 49.3%, 27.7%, and 31.3% at 500, 1,000, and 

10,000Gy respectively.   
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Unexpectedly, all irradiated samples fell within the rejection region when 

compared to their respective controls, therefore the hypothesis that there would be a 

statistically significant difference between desiccated, irradiated strains and desiccated, 

non-irradiated controls must be rejected.  In this case the hypothesis must be rejected.  

Strains WT, 1.5, 5, 8, 11, and 27 were outside the rejection region with respect to CFU 

input and desiccation comparisons, and in this case, the hypothesis is not rejected.    

 

V. Discussion/Conclusions 

 

 Prior to the experiment at Sandia it was expected that statistically significant 

decreases in exposed mutants and WT would be observed. It was hypothesized that the 

recF and uvrB mutants would lack critical repair enzymes which would increase the 

amount of damage observed from the high LET silicon ions.  The Mn, Cu, and Zn SOD 

knockouts would have a decreased ability to prevent ROS damage, but with high LET 

silicon ions used to irradiate the Dr, ROS damage was not expected to be the dominant 

damage mechanism.  

 From the results it was observed that the only significant reduction was observed 

when non-desiccated bacteria were compared with desiccated or treated bacteria.  Within 

exposed bacteria no significant reduction in growth was observed when untreated and 

treated bacteria of the same strain were compared.   This is unexpected and an attempt 

will be made to interpret these results. 

One interesting data point is the behavior of wild type bacteria exposed to high 

levels of radiation.  The experimental data showed no significant difference between 
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unexposed wild type and wild type bacteria exposed to 500, 1,000 and 10,000 Gy. Based 

upon this experiment using silicon ions (atomic weight of 28.0855 amu) and the 

experiment conducted by Major Todd Bryant using oxygen ions (atomic weight 15.999 

amu) [21], the data may suggest a relative biological effectiveness (RBE) for D. 

radiodurans of 1 for heavy charged particles.  The molecular weight of silicon is 1.75 

times oxygen yet both experiments returned similar post-exposure data despite using 

different ions.  If true this could be a significant finding relative to Dr’s radiation 

resistance.  This would imply the Dr possesses a radioresistance to heavy ions that has 

not yet been seen in other organisms.  

 It was unexpected that statistical analysis of the irradiated strains indicated the 

hypothesis must be rejected.  There were several reasons statistically significant results 

from irradiation were expected.  First, it was expected that heavy charged particles 

(especially in a desiccated sample) would create predominantly more DSBs which are 

more damaging and difficult to repair than SSBs.  Second, mutants were grown with 

specific genes knocked-out to inhibit DNA repair.  Mutants 16 and 27 lacked uvrB, 1.5 

and 6A lacked recF, and these knockouts should make DNA repair much more difficult 

to carry out, resulting in observable reductions in colony growth, which was not 

observed.  Finally for many biological entities high LET particles have a high RBE with 

some estimates ranging from 10 to 60. [19]   

 Based upon the inconsistent data it is impossible to make a statement on the 

behavior of SOD/Bsh mutants.  The genes targeted in these mutants help protect the 

bacteria against excess ROS, and hence are assumed to play a role in low LET resistance 

due to the high incidence of indirect damage.  However, it was hypothesized that these 
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pathways would have less of a protective effect against high LET radiation, where direct 

damage is assumed to be the predominant mechanism.  Therefore the lack of significant 

reduction in colony growth in these strains is not necessarily unexpected.  However, 

based upon the lack of significant reduction in any mutant strain it is not possible to make 

a definitive statement about the behavior of these strains. 

 The most probable explanation to these unexpected results is the researcher’s 

procedural laboratory inexperience.  It is probable that laboratory experimental procedure 

during rehydration and dilution for spotting explains the absence of expected results.  

Once the plates returned from Sandia they were rehydrated, diluted and spotted.  Plates 

waited for dilution in the order they were rehydrated.  Many of the rehydrated plates sat 

idle for 30-60 minutes before dilution commenced.  It is possible there was insufficient 

pipet mixing before spotting.  This could result in highly concentrated inputs, particularly 

when extracted from the plate well bottom.  Methodically processing post-irradiated 

plates from rehydration to spotting one at a time and strict attention to mixing would have 

likely prevented this outcome.  The literature clearly indicates what the expected results 

should be when irradiating D. radiodurans strains grown with various knockouts.  Those 

results were not observed in this experiment. 

 Recommendations for future experiments would be a repeat of this experiment 

using the same ion and improved reconstitution techniques in order to attain the expected 

results.  If successful, the data could be compared with a similar experiment using a 

different heavy charged particle to determine if a RBE of 1 for D. radiodurans is a 

possibility.  
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 Additionally, comet assays could be conducted to determine DNA damage. 

Treated and untreated cells are lysed and protease treated then immobilized in agarose on 

slides.  The chromosomal DNA is electrophoresed from the lysed cells, stained with a 

DNA specific fluorescent dye and imaged using epifluorescence microscopy. [22]  Comet 

assay is a method to determine actual chromosomal DNA damage and correlate that 

damage to kill curves.  By observing the cells after exposure it may also be possible to 

calculate a repair curve for exposed Dr.  
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Appendix A:  Primer Sets and Sequences 

Table 14.  recF Primer sequences 

Primer Name Sequence    

Puc_RecFup_Fwd ttgtaaaacgacggccagtgTGTGTTCGACCGCTTGCC Puc RecF_upstream Fwd 

Kan_RecFup_Rev acgaacggtaTAGACAGGGCCGAGAGAC Kan RecF_upstream Rev 

RecFup_Kan_Fwd gccctgtctaTACCGTTCGTATAGCATAC RecF_upstream Kan Fwd 

RecFdown_Kan_Rev catctcctcaTACCGTTCGTATAATGTATG RecF_downstream Kan Rev 

Kan_RecFdown_Fwd acgaacggtaTGAGGAGATGCAAGCGGAGGG Kan RecF_downstream Fwd 

Puc_RecFdown_Rev atccccgggtaccgagctcgTTCCGGCAGCGCGCGGTA Puc RecF_downstream Rev 

 

Primer Name  Sequence    

Puc_UvrBUp_Fwd ttgtaaaacgacggccagtgTGCGCAAGGTACCGCAGATGC Puc Uvr_Upstream Fwd 

Kan_UvrBUp_Rev acgaacggtaCCTGCGCGCCACGACCAC Kan Uvr_Upstream Rev 

UvrBUp_Kan_Fwd ggcgcgcaggTACCGTTCGTATAGCATAC Uvr_Upstream Kan Fwd 

UvrBdown_Kan_Rev tgccttctgcTACCGTTCGTATAATGTATG Uvr_downstream Kan Rev 

Kan_UvrBdown_Fwd acgaacggtaGCAGAAGGCACGGCGGAA Kan Uvr_downstream Fwd 

Puc_UvrBdown_Rev atccccgggtaccgagctcgTTCCGGCAGCGCGCGGTA Puc RecF_downstream Rev 
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Appendix B:  Dr Statistical Results 
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Appendix C:  Sandia’s Tandem Accelerator 

 

The Sandia Tandem Accelerator is a High Voltage Engineering 6 MV EN Tandem 

accelerator capable of accelerating a range of ions from hydrogen to gold over a range of 

energies from 800 keV to 10’s of MeV on target.  The ions are generated using negative 

ion sources, these ions are accelerated towards the positive terminal of the accelerator 

where the ions are run through a nitrogen gas channel which strips the electrons from the 

ions and produces a range of positively charged ions.  These positive ions are then 

accelerated away from the positive terminal.  The desired ion species and charge state is 

then selected using a mass analyzing magnet and directed to the end-station.  The landing 

energy of the ions is then: 

 

Landing Energy = (charge state + 1) * terminal voltage   (1) 

 

In the selected end-station the ion fluence is determined using the beam area, beam 

current and the beam pulse length on target.  As our beam spots sizes are typically 

between 0.001 to 4 mm we either measure the beam or irradiate the target.  We have 

developed a reproducible methodology that allows us to determine the fluence and then 

irradiate the target using a range of pulse lengths from <20 ns to DC.  The error in the ion 

fluence is typically between 2-10% of the total fluence. 

 

To accommodate large areas samples we have developed an implantation technique 

where we characterize the beam and then perform a series of irradiations where we move 
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the sample under the beam using an x,y stage.  This allows us to implant over a large (up 

to 1 inch) area using our small beams. [20] 

 

Appendix D:  UVC Rollup of WT and Mutant Strains 
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Appendix E:  Colony Comparison Against Treated WT 
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Appendix F:  Colony Comparisons of Treated Mutant Against Untreated WT 
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