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Abstract

This paper introduces a new approach to identify the shortest path across a
stochastic network with correlated random arcs utilizing nonparametric samples of
arc lengths. This approach is applied to find optimal aircraft routes that mini-
mize expected fuel consumption for a given airspeed utilizing predicted wind out-
put from numerical weather prediction (NWP) ensemble models. Results from this
new methodology are then compared to the current fuel minimization route planning
method that utilizes deterministic NWP wind data for arc lengths. Comparisons are
also made to other previously proposed alternative fuel minimization methodologies

that utilize mean and median wind data calculated from NWP ensemble wind data.
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SHORTEST PATH ACROSS STOCHASTIC NETWORK WITH CORRELATED
RANDOM ARCS

I. Introduction

1.1 Overview

With the increased scrutiny on government spending, Air Mobility Command
(AMC) has been looking for ways to reduce costs. Fuel has become the largest con-
tributor to aircraft operating costs. As the biggest consumer of aircraft fuel in the
Department of Defense (DoD), significant savings could come from more efficient
flight planning [23]. According to Lt Col Vince Zabala, AMC’s fuel efficiency pro-
gram manager, energy costs for the Air Force total nearly $6.8 billion annually, with
about 86 percent of that cost spent on aviation fuel [26]. AMC consumes approx-
imately 56 percent, more than all other Major Command (MAJCOM)s combined.
If improvements can be made to significantly reduce fuel consumption, AMC could
potentially save millions of dollars. In fact, Heseltine [19] determined that $28M a

year could be saved if the command saved as little as $200 per sortie.

1.2 Background

The culture in AMC surrounding fuel-efficiency has changed in recent years, but
there is still room for improvement. By identifying and utilizing fuel-efficient routes,
fuel consumption can be minimized throughout the MAJCOM. While a lot of fac-
tors have an impact on fuel efficiency in flight, winds aloft play a large role during

long-haul flights. Accurate wind forecasts are vital to ensuring fuel efficiency during



flight planning; Inaccurate forecasts may result in over- or under-estimating the fuel
necessary, which translates into wasted money [20].

AMC contractors currently use deterministic numerical weather prediction (NWP)
models for aircraft route planning. Deterministic NWP models utilize a single forecast
to estimate weather predictions, whereas ensemble models utilize an independently
and identically distributed (IID) sample of forecast models to make predictions. These
different forecasts (ensemble members) are generated by running multiple simulations
with slightly different initial conditions and/or various perturbations of models [36].
The intent is that these model variations represent the range of uncertainty associated
with initial weather conditions and yield a range of potential forecasts [14].

Krishnamurti et al. [27] compared ensemble models with their deterministic coun-
terparts and found that the ensemble models illustrated superior forecasting skill over
all of the individual models inspected. In the last 30 years, many experts have pro-
posed replacing the traditional deterministic forecast with the ensemble mean forecast
(32, 41, 46]. In the last 20 years, ensemble mean forecasts have consistently been found
to outperform deterministic forecasts on average [4, 8, 13, 45, 46]. With this consis-
tent improvement upon the traditional deterministic forecasts, the use of ensemble
forecasting has become routine [17]. Most recently, Homan [20] used ensemble mean
forecasts to predict fuel burn for long range flights and found that ensemble means

generally provided more accurate estimates over the deterministic model.

1.3 Motivation

While the use of ensemble NWP data may be routine, it is not common practice
in AMC. Therefore, its introduction may provide added value in aircraft routing
and fuel estimates. To identify any added value, a technique must be developed

that will leverage the uncertainty that is accounted for in the ensemble NWP data.



The stochastic shortest path algorithm is widely used in route planning when there
is uncertainty in the model. Unfortunately, however, ensemble NWP output values
are highly correlated within ensemble members while randomized but independent
between members. Furthermore, the randomized error between ensemble members
is nonparametric. These features combine to make creating a stochastic network
difficult.

Chapter 2 reviews current methodologies for solving the discrete and probabilistic
shortest path problems. In Chapter 3, a new methodology is presented that identifies
the shortest path across a stochastic network with correlated random arcs which
addresses some limitations of current methodologies. In Chapter 4, this new approach
is applied toward the optimal routing of AMC aircraft with respect to minimizing
fuel usage and compared to current practices. Finally, Chapter 5 concludes with key
insights gained from this research and propose efforts to further this research, as well

as additional applications of this new methodology.



II. Literature Review

2.1 Overview

This chapter discusses the stochastic Shortest Path Problem (SPP) and three
current methodologies for determining the shortest path: the expected shortest path,
the most shortest path, and the a-shortest path. The goal of the classic (determin-
istic) SPP is to find the quickest, cheapest, and/or the most reliable route between
two points [1]. These problems are very common when dealing with transportation,
routing, and communication networks. However, the discrete SPP is not always the
most realistic, particularly when the arc lengths are uncertain. For instance, the
optimal routing of an aircraft between two points will be highly affected by winds;
predictions of which are highly probabilistic in ensemble NWP models. In situations
such as these where there is significant uncertainty in the network, the classic SPP is
far from sufficient [48]. The robust, or stochastic, SPP varies from its classic coun-
terpart wherein the length of each arc is associated with a probability distribution
[6]. Several different models have been proposed when solving this type of problem.
Three of these models are the expected shortest path, the most shortest path, and
the a-shortest path. For comparison, the Linear Programming (LP) formulation for

the deterministic SPP is shown in (1).

2.2 Stochastic SPP

The three stochastic shortest path models discussed below are variations of their
deterministic counterpart. The objective function varies with each model, but the
constraints from the deterministic model remain constant in each variation, as does
its notations. A is the set of all arcs (7, j) in the network and z;; defines the arc from

node i to node j, where 1 <i,j < n. If the arc (7, 7) is in the path, then z;;=1 and

4



0 otherwise. ¢;; is the cost of traversing, or the length of, the arc (i, j).

min 3 jiea Gy
subject to :
Z(l,j)eA Lij — Z(j,l)eA T =1,
DAty — 2 ieatsi =0, 2<i<n—1,

Z(n,j)eA Tnj — Z(j,n)eA Tjn = —1,

Ti; € 0,1, V(l,]) € A.

\

Expected Shortest Path

The expected shortest path finds the path with the shortest expected length be-
tween two nodes; that is, the path that is shortest on average [43]. Murthy and
Sarkar [34] found that finding the expected shortest path reduces to the discrete SPP
where the arc costs are replaced by their expected values. There has been extensive
research in the development of formulas to calculate these solutions. Davis and Priedi-
tis [11] developed a closed-form approximation, building upon the recursive method
developed by Kulkarni [28]. They determined the expected shortest path when arcs
are independent and exponentially distributed. Davis and Prieditis [11] also found
that their same formula gives a close approximation when the arcs are uniformly dis-
tributed. Ji [24] identified a general linear formulation for identifying the expected
shortest path as (2).

The only difference between the expected shortest path formulation (2) and the
deterministic case (1), is the objective function. Instead of minimizing the cost to get
from the source node to the terminus node, the goal is to minimize the expected cost
and identify the path that is shortest on average. E[Z(m)eA &ijxi;| is the expected

shortest path and §;; is the arc length, with the associated probability distribution,



from nodes 1 to n.

min £ [Z(i,j)eA §ij i
subject to :
Z(l,j)eA Lij — Z(j,l)eA T =1,

Z(n,j)eA Tnj — Z(j,n)eA Tjn = —1,

Ti; € 0,1, V(l,]) € A.

\

The Most Shortest Path

The most shortest path model determines the path that has the highest prob-
ability of being faster than some requirement T, [24]. Using the dependent-chance
programming (DCP) concepts outlined by Liu [29], Ji [24] developed the following
DCP model for the most shortest path shown in (3). The most shortest path for-
mulation contains the same constraints as the deterministic model, again the only

variability is in the objective function.

”

fHax PT{ > (igyeabiiTiy < To}
subject to :
Z(IJ)EA xl] - z(j71)eA ,I]l = 1’
Z(M)GA Lij — E(j,i)eA r;;=0,2<i<n-—1,

Z(n,j)eA Tnj — Z(j,n)eA Tjp = —1,

Tij € 0, 1, V<Z,j) c A.



The a-Shortest Path

The a-shortest path identifies the path that minimizes some time constraint 7T
with a confidence level of at least a [24]. Leveraging the chance-constrained pro-
gramming (CCP) concepts developed by Charnes and Cooper [10] and Liu [30], Ji
[24] developed a model for determining the a-shortest path shown in (4). The de-
terministic formulation in (1) is augmented with an additional constraint and new

objective function.

min T

subject to :
P’”{ D igyea Sigtij < T} > a,
Z(Lj)eA X1 — z(j,l)eA X1 =1, (4)
Z(z] ea Xij Z(MEAXW—O 2<i<n-1,

Z(’I’LJ €A n] Z(]n €A ]n = _]‘7

X;; €0,1, V(i,j) € Al

\

These and many other methodologies assume arc lengths to be independently
distributed to simplify models and reduce computational complexity [22]. While this
assumption may be necessary to simplify a problem and its computational complexity,
it is extremely limiting to ignore such a strong characteristic of the network and
dampens the strength of the result. For this reason, newer methodologies have been

introduced that account for arc correlation.

Correlated Arcs

There are many instances where arc lengths are not only uncertain, but they are

correlated. For example, groups of nodes or links in a specific region of the net-



work may be correlated and, in turn, adjacent links and nodes are also affected [15].
Therefore, when determining the shortest path, prior choices will inform the deci-
sion making for the duration of the path construction, i.e. identifying the shortest
path. Fan et al. [15] outline a formulation for solving the shortest path problem with
correlated arcs. The arcs are considered congested or not congested, affected or not
affected. Conditional probabilities are associated with each arc; that is, the proba-
bility that node i is affected given that node i — 1 is affected. Fan et al. [15] present
two formulations to identify the expected shortest path between two nodes depend-
ing on the type of network: node-based or link-based congestion. These networks
are described by where the congestion may occur, at the nodes as in the node-based
approach or along the arcs as in the link-based approach.

Eq. (5) is the formulation when node-based congestion is present. Where u;; =
the lowest expected travel time from uncongested node i to node j and v;; = the
lowest expected travel time from congested node ¢ to j, where ¢ = 1,2,.... N — 1
and j = 2,3,..., N. The «;; is the probability that if node 7 is uncongested, then
node j is uncongested and f;; is the probability that if node 7 is congested then j is
congested. The ¢;; and 7;; are the expected arc lengths from (¢, j) under uncongested

and congested conditions respectively.

U; = m;n{t” + QU5 + (1 - Oéij)l)j}, 1= 172, ,N —1
JFi
V; = m;n{ﬂj + ﬁijvj + (1 — ﬁij)uj}, 1= 1,2, ,N —1
J#i
UN,UN = 0

Eq. (6) shows the formulation when link-based congestion is present. The same
notation from the node-based formulation also apply here. However, there are addi-

tional variables that need to be defined. That is,



Aij =1 = By,
pij(T)dT = the probability that traveling (i, j) requires time between 7 and 7 + dr
given that the arc traversed to node ¢ was uncongested, and
¢;;(T7)dT = the probability that traveling (i, j) requires time between 7 and 7 + dr

given that the arc traversed to node ¢ was congested.

U; = m;n{tw + QiU + (1 - Oéij)l)j}, 1= 172, ,N —1
J#i

V; = min{nj + )\ijuj + (1 - )\ij)vj}, 1= 1,2, ,N —1

UN,UN = 0

where:
[o@)

ti]’ = /Tpij(T)dT and

0
Tij = /Tqij(T)dT.
0

While the formulations proposed address correlated arcs, they are contingent on
conditional probabilities, which are difficult for the AMC problem. In addition, Fan
et al. [15] requires assumptions about the distribution of probabilities across each arc

which is not possible in the AMC problem.

The Mean Ensemble Model

Homan [20] compared the fuel burn estimates of a mean ensemble model to those
of the deterministic approach currently in use today. Specifically, the study compared
the fuel loads planned using a deterministic model forecast to those using three differ-
ent ensemble mean forecasts across five aircraft and five pre-determined routes. The
+00 hour forecast was used as the ‘truth’ source for a given date/time for the previous

forecasts at the same date/time. The ‘true’ fuel burn was compared to the estimates



for the previous forecasts to calculate a fuel burn error. The results suggested that
the use of ensemble means generally provided more accurate estimates.

While this approach might provide a better fuel point estimate than the deter-
ministic approach currently in use, there is still a great deal of data that is not
being utilized. By averaging the ensembles, data that could provide additional in-
sight toward fuel planning is lost. More accurately, winds at point A and time 1 are
correlated to winds at point B upstream at time 0. Correlation information within
each ensemble member is lost, therefore averaging across the ensembles may not be

the best approach.

2.3 Conclusion

While these examples are just a subset of the many ways to approach the stochastic
SPP, many of these approaches only work when the arcs are independent. Of the
formulations that allow for correlation, there are other limitations that do not fully
address the AMC problem. A new methodology is outlined in the next chapter that
determines the shortest path across a correlated random network without assuming

independence of arc lengths or a distribution for the arc costs.
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III. Methodology

3.1 Introduction

This chapter outlines the methodology for the a posteriori Shortest Path (APSP)
approach proposed in this research and for the case study provided. The AMC ap-
plication is described in detail to show how the data were gathered, how the network
was constructed, and how this model differs from previous approaches. Lastly, infor-
mation is provided showing which statistical techniques were applied to the results

to gain further insight. Figure 1 provides an overview of this methodology.

for each route do
Extract Weather Data every 6 hours for 7 days using
GFS Deterministic Model, and
Ensemble NWP Model
Build Network
Create Nodes
interpolate data across time and space
Calculate Arc Costs
¢;; = fuel required to fly from Node 7 to Node j
leverage data and fuel equations to caleulate each ¢;;
Determine Shortest Path using
Deterministic Model,
Homan Model, and
ITD Model
Analyze
Compare all Model Results
Using 11D Model Results, calculate
Mean and Median Confidence Intervals
t-tests on multiple optimal routes, if applicable

end

Figure 1. Outline of Methodology

Ensemble NWP

NWP leverages current weather observations and computer models to forecast
future weather [38]. Current AMC models utilize NWP deterministic forecasts as
opposed to the readily available ensemble forecasts. A deterministic forecast is a

single member of an ensemble model initialized without random perturbations [16].

11



In other words, this type of model utilizes one forecast, whereas ensemble forecasts

utilize multiple forecasts for weather prediction.

The a posteriori Shortest Path

Unlike current methodologies where the arcs are probabilistic, the stochastic na-
ture of this network is analyzed after-the-fact. Using structural factoring, the complex
network is broken down into k subnetworks [18]. Each subnetwork is then solved as
the discrete SPP, formulation in (1), to obtain optimal solution(s) [6]. These k opti-
mal solutions are then analyzed using nonparametric statistics, i.e. kernel smoothing,

to obtain descriptive statistics and other relevant analyses on the £ solutions.

3.2 AMC Routing Practices

AMC is the largest single consumer of fuel in the DoD. As such, their focus has
shifted toward a more fuel-efficient culture and a great deal of work has been done to

identify more fuel-efficient practices.

Previous Work

Mirtich [33] introduced the concept of Cost Index Flying (CIF). This is a program
now used by commercial airlines to balance the cost of time and the cost of fuel. The
USAF has since adopted this program and renamed it Mission Index Flying (MIF).
Weather data is leveraged when determining aircraft routing, and in the last few years,
research has improved the current routing practices. Homan [20] compared ensemble
mean and deterministic forecasts for route planning. Homan’s results suggested that
ensemble mean forecasts outperform deterministic forecasts. That is, ensemble mean
forecasts provide more accurate fuel burn estimates which could result in less reserve

fuel being carried. However, unlike Mirtich, Homan’s research has yet to be adopted.

12



Current Methodology

This new APSP methodology arose in an effort to provide better fuel estimates
to AMC. AMC currently utilizes the Advanced Computer Flight Planner (ACFP)
system to route cargo and ensure aerial refueling operations [40]. This is done by
optimizing routes with respect to fuel consumption, subject to aircraft performance
with wind and temperatures aloft and air traffic control and diplomatic constraints
[20]. The 557th Weather Wing (557th WW) provides ACFP with the weather data
necessary for this optimization scheme.

Weather data are extracted from a single forecast, one-degree NWP model at six-
hour increments, from six to 96 hours, for each waypoint along the route [3]. These
data consist of wind data for each latitude/longitude pair at each of the 4 atmospheric
pressure levels [39]. Note that additional weather data are available but were not used
in this analysis.

Wind data are presented with U- and V- components in meters per second (m/s).
These components are the East/West and North/South components of the wind,
respectively. Positive U-component indicate that the wind is traveling West to East.
Positive V-component indicates that the wind is traveling from South to North. These
components are utilized to determine the wind speed, direction, and angle.

Atmospheric Pressure Levels are provided in millibars. These pressure levels,
when combined with temperature at a given point, translate to the altitude above
mean sea level (MSL).

At the core of ACFP is the Worldwide Aeronautical Flight Planner (WARP).
WARP serves to leverage advanced search techniques to produce routes that minimize
fuel burn [40]. According to the AMC Director of Weather (AMC/A3W), routes are
broken down into segments, legs, and sublegs within WARP (Fig. 2) [3]. Segments

lie between two points. That is, if a route has four points, then that route would have

13



midpoint 3
Leg 2: Cruise

4000 f 7

midpoint 2
4000 f§8ublegs

midpoint 1

Q = weather midpoint

Figure 2. Segments, Legs, and Sublegs Example [3]

three segments. Legs lie between two navigational points along the route. Legs are
then divided into sublegs inside WARP. If the length of a cruise leg is greater than
60 miles, then WARP divides the leg into sublegs such that all sublegs are less than
or equal to 60 miles. During climb, sublegs are divided into 4000-foot (ft) increments.
Weather at each subleg is determined at the midpoint of that subleg and the average
of these subleg midpoints within each leg is reported as the weather for that leg. [3]

To get the weather data for a specific point (latitude, longitude, altitude, and
time), WARP interpolates the weather data from nearby, known points, specifically
from lower altitude and earlier time to higher altitude and later time. For example,
if a specific point is 75% through a time slot, then the temperature and winds will be

representative of 75% of the change in the temperature or wind, respectively.

3.3 The AMC Application

Data Gathering

Two MATLAB scripts were written to extract NWP data directly from National
Oceanic and Atmospheric Administration (NOAA) using nctoolbor developed by
Schlining et al. [44] [21]. Wind data, temperature, pressure levels, and model step
times are provided at each latitudinal and longitudinal coordinate. Given the latitu-

dinal and longitudinal coordinates, the U- and V- wind components are extracted in

14



6-hr increments across 20 ensemble members. Given the latitudinal and longitudinal
coordinates, the U- and V- wind components are extracted in 3-hr increments across

1 deterministic forecast.

Building the Network

To investigate the problem at hand, three models were developed using different
NWP data sets: a deterministic model, IID ensemble model, and Homan (mean
ensemble) model. Each of these shortest path models are identical, the only difference
being how the initial weather conditions are input into the model.

The weather data for the deterministic model are provided with one forecast in 3-
hr increments with 1-degree resolution. These weather data from NOAA are extracted
for three pressure altitudes converted to altitude MSL in standard atmosphere: 25K,
30K, and 35K feet. Operators will not change altitude in 5K-ft increments, therefore
linear interpolation over time and space is used to calculate weather data in 1K-feet
increments between 25K and 35K feet and hourly increments of time.

The weather data for the IID and Homan models are provided with 20 ensemble
members in 6-hr increments with 1-degree resolution. Therefore, the network is sepa-
rated into 20 subnetworks, where subnetwork ¢ leverages the weather data at ensemble
1. These weather data from NOAA are extracted at the same three pressure levels as
in the deterministic forecast and interpolated in the same manner. To validate model
comparisons, described in detail later in Section 3.3, the weather data for all models
begins with the +06 hour forecast.

Each subnetwork consists of 11n + 1 nodes (i) and 11(11n — 20) arcs (j), where
n is the number of equidistant legs along the great circle route from the source node
s to the terminus node t. The weather data are provided from a 1 degree Global

Forecast System (GFS) model, therefore a weighted average based on the location of
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actual node with respect to the nearest 1 degree nodes was applied to determine the
weather data at each node.

Ng et al. [37] found that travel time and fuel savings for initial climb and final
descent are negligible when compared to those during cruise. For this reason, the
take-off and landing portions of flight are ignored; that is, node 1 and node 11n + 1
are forced to be 25k feet.

According to the C-17 Fact Sheet, the average cruising speed is 450 nautical miles
per hour (knots) [12]. Therefore, this research assumes that the C-17 maintains a
constant airspeed of 450 knots during cruise. To calculate the effect that winds have
on fuel efficiency, that is, the headwind, tailwind, and crosswind, the wind speed and
direction and the aircraft heading is first calculated. Weather data are provided in
U- and V- components in m/s, therefore the wind speed (m/s) was calculated using

the Pythagorean Theorem as (7).

WS =VU2+V? (7)

The wind direction was calculated using MATLAB’s atan2d function, (8), to
calculate the wind direction in degrees. MATLAB’s atan2d(y,z) function returns the

four-quadrant arctangent of y/x [31].

Wind Direction = atan2d(—U, —V) (8)

The aircraft heading from A to B, without any wind effects, was calculated using

the atan2d function as (9) [47].

AC heading;_; = mod(atan2d(Y, X'), 360) (9)
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where:

X = coslasinfp — sinf gcosOpcosAy,
Y = cosfgsinAp,

L = Longitude, and

0 = Latitude.

The aircraft corrected heading, due to winds, was calculated using MATLAB’s
driftcorr function which takes AC_heading, True airspeed (TAS), Wind_Dir, and wind
speed (WS) as inputs and returns the aircraft’s corrected heading (AC_heading_corr),
ground speed (in knots), and the correction angle (in degrees) due to winds. The
distance between neighboring nodes were small enough to be assumed linear; therefore
Pythagorean Theorem was again used to determine the straight-line distance between
nodes.

Reiman [42] developed regression models on flight data from performance manuals
to estimate fuel consumption for the C-17, C-130, and C-5. These models were utilized
to determine the path that required the least amount of fuel to traverse. These models
were broken down into climb, cruise, and descent. For the purposes of this problem,
only the C-17 data are provided in the tables.

The regression model for calculating the fuel and distance required to climb in
(10) and their respective s are shown in Table 1. The descent model for calculating

the the fuel and distance required for descent in (11) with the 8s in Table 2.

b = Bo+ i+ B2a® + B3P + Baw + Bsw? + Bew? + 10705707 + 107 550%w®  (10)

¢p = Bo + Biw + Bow® + Bza + Baaw (11)
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where:

¢c = Fuel to Climb in Klbs or Distance to Climb in NMs

¢p = Fuel to Descend in Klbs or Distance to Descend in NMs
a = Altitude in Thousands of Feet
w = Aircraft Gross Weight in Klbs at Climb/Descent Start

Table 1. Climb ¢c Regression Terms [42]

Fuel Dist

By 47054 -51.504 Table 2. Descent ¢p Regres§ion Terms [42]
Bi 0.2869  2.0961 Fuel — Dist

By -0.0070  -0.0282 Bo 0.2574 -16.382

B3 7.1E-05  0.0003 B1 0.0005 0.1278

By 0.0267  0.3363 By -8.5E-7 -1.7E-A4

Bs -5.9E-05 -0.0008 B3 0.0108 1.3919

Bs 4.8E-08 6.9E-07 Bs  3.2E-5 0.0036

B 6.7E-05  0.0003
By -2.1BE-07 1.7E-05

Finally, the cruise model for calculating the fuel consumed during cruise in (12)

with the respective 3 values in Table 3.

B 141
“r= 31 342
1
" 34

[2B3 —9ABC + 27A2D + \/(2B3 — 9ABC + 27A2D)? — 4(B2% — 3AC)3]

i/; [2B% — 9ABC +2742D — /(2B% — 9ABC + 27A2D)? — 4(B? - 3AC)?)
(12)

where (all weights in Klbs):

A=t
3
B = (% + Ba(wop + Were + Wran + wp) + %a

C = Bo+ fra+ Boc® + B3(Wop + Were + Wran + wp)+

Ba(Wop + Wire + Wean + wWp)?) + B5a(Wop + Wire + Wian + wp)
D=-§
o = Altitude in Thousands of Feet
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0 = Distance in NMs
w = Aircraft Gross Weight
wfr. = Reserve/Contingency Fuel Weight
wep = Operating Weight
wran = Alternate/Holding Fuel Weight
w, = Payload Weight
wyrs = Cruise Fuel Weight
f = Fuel Consumed

:w0p+wfrc+wfah+wp+f

Table 3. Cruise ¢ Regression Terms [42]

Fuel
Gy  31.735
51 0.9897
By -0.0043
By -0.0642
B4 5.8E-05
Bs -0.0011

A binary integer programming model is formulated to determine the shortest path,
with respect to fuel consumed, between two points. This model utilizes the great circle
route between the two points, and optimizes the cruising altitude to minimize fuel
consumption along that route. This model is the deterministic model in (1) where
¢;; is calculated utilizing the regression models developed by Reiman [42], code is

provided in Appendix B and C.

The Different Models

This subsection identifies the differences between the three models developed for
this analysis. Each model utilizes the same network(s), however the weather data is
implemented into each model differently. Only one approach, the IID Model, actually

uses the new a posteriori methodology.
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Each of the models are applied to four operationally relevant routes as identified

by a subject matter expert, a C-17 Instructor Pilot [7]. The following routes are used:
KSUU-PHNL Travis Air Force Base (AFB), CA to Honolulu, HI

KTCM-CYQX McChord AFB, WA to Gander Newfoundland and Labrador (NL)
KTCM-KCHS McChord AFB, WA to Charleston AFB, SC

KRIV-KWRI March Air Reserve Base to Joint Base McGuire-Dix-Lakehurst, NJ

Deterministic Model

The purpose of the deterministic model was to replicate current AMC routing
practices. AMC currently uses deterministic forecasts for aircraft routing, therefore a
single forecast was used to determine the optimal path: NOAA’s deterministic 1°GFS
model forecast. These weather data were utilized to identify the route that would
minimize fuel burn; see Appendix A for the MATLAB code for the deterministic
model. This network does not utilize the a posteriori approach proposed because
there is no uncertainty accounted for in the model. Therefore, no subnetworks are

analyzed.

Homan Model

The Homan model is a recreation of the mean ensemble model introduced by
Homan [20]. This model is similar to the deterministic model in that it does not utilize
the a posteriori approach developed and reverts to the discrete SPP. However, unlike
the deterministic model, the Homan model leverages the ensemble data. Instead of
using one deterministic forecast, the average of all of the ensembles is input into the

network for the mean model, code is provided in Appendix B. However, there are
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issues with this model due to the inter-correlation between wind values within each

ensemble member.

ITD Model

The IID model leverages the a posteriori approach. Twenty subnetworks are
developed, one for each ensemble. The optimal path for each subnetwork is then
saved. With these 20 optimal paths, up to 20 unique routes are identified. Each
unique route is then re-ran through each of the subnetworks again, code provided in
Appendix C. This provided 20 estimates of fuel consumption for each unique route.
Descriptive statistics were then applied to determine which routes were statistically
significantly better (consume less fuel) than others across all ensembles and to develop

confidence intervals on the fuel estimates.

Model Comparison

The accuracy of each of the three models is calculated using the root mean square
error (RMSE) of the fuel burn estimates. The model estimates are compared to a
truth value in order to calculate the fuel burn error. This truth is calculated using
the Deterministic Model across the +00 hour forecasts. The +00 hour forecast for
a specific date/time is the initialization of the deterministic model and is therefore
the closest thing to the true conditions at each GFS model run time. This method of
comparison was used by Homan [20] and is a common technique for NWP researchers
[25]. The RMSE is calculated as (13) where N is the sample size, F' By, is the true
fuel burn, and F B,y is the estimated fuel burn for a given model. N = 1 for the

Deterministic and Homan models and N = 20 for the IID model.

==

N
FBruse =y« O _(FBest = FBipun)? (13)
=1
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Statistical Analysis Techniques

The aforementioned descriptive statistics allow a better characterization of fuel
usage across flights. Through t-tests, any statistically significant differences between
the optimal route for each subnetwork can be identified. This will identify the overall
optimal route(s) and, if multiple routes are identified, potentially provide the user
with route options that consume statistically equivalent amounts of fuel.

Using the estimated fuel consumption for each ensemble will also result in fuel
usage confidence intervals. These intervals provide the user with more fidelity when
calculating the amount of fuel required for a mission. The ensemble data can provide
the user with the (1 — «)% confidence interval around the mean fuel usage. This is
shown in (14) where p is the true mean, Z is the sample mean, n is the number of

ensembles (20), and o is the sample standard deviation.

o
1\/ﬁ

Confidence intervals around the median fuel usage can also be calculated by de-

WEeETE tl—%,n— (14)

termining the values of j and k such that P(X(;) <z, < X4)) = 1 — a after sorting
the data from smallest to largest [9]. This is shown in (15) where n is the number of
ensembles (20) and ¢ is the proportion (0.5). Therefore, the 95% confidence interval

of the median when n = 20 is always between Xg and Xi5.

= g — g /)
k= |ng+ t17%,n71mJ

Comparing the different models and the unique routes identified in the IID model

(15)

is done using t-tests, more specifically the paired ¢-test. Because fuel estimates depend
on the specific forecasts used and are not independent, the paired t-test is the most

appropriate test for detecting statistically significant differences in the fuel estimates.
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The paired ¢-test tests the null hypothesis, Hy : pus—p1 = dy, versus the alternative,
Hy @ po — py # dy, where dy is the difference to detect and p; is the true mean of
group ¢. For this study, dy = 0 because the goal of the test is to identify if there is a
difference between the true means. Let d and sy be the sample mean and standard
deviation of the differences, respectively, and n be the number of observations, then
the critical value, to is calculated as (16) [5]. The statistic, ¢, is then tested against
the test statistic to determine if there is a statistically significant difference between
the means. If |ty > t1_4 /2.n—1, then there is enough evidence to identify a statistically
significant difference between the means with

(1 — )% confidence.

i
" s
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IV. Analysis

4.1 Introduction

For the deterministic and mean models, only one route and fuel point estimate
is calculated. However, with the IID model, 20 different estimates of fuel usage and
at least one route is identified. To show the differences between the models, seven
consecutive days of weather data, ranging from 28 January to 5 February 2018, were
extracted for each route of interest every six hours. This resulted in 27 deterministic

and ensemble weather forecasts for each of the routes.

4.2 KSUU-PHNL

The RMSE of fuel burn estimates for the KSUU-PHNL route for the I1D, Deter-
ministic, and Homan models are shown in Figure 3. The RMSE for the Homan and
ITD models are nearly identical, whereas the RMSE using the Deterministic model is
much larger in all but two cases.

The Homan model point estimates are well contained in both mean and median
confidence intervals generated by the IID model, as seen in Figure 4. However, the
fuel estimate yielded by the deterministic model is outside of the 95% mean confi-
dence interval 27/27 times. When outside the confidence bounds, the deterministic
model under- or over-estimates between 21.85 and 4,414.44 pounds of fuel at each
time interval. The deterministic model under-estimated and over-estimated 27 times.
Figure 4 shows the offsets between the current deterministic model with all other
models, including the 95% mean and median confidence intervals calculated using
the IID model.

The large spread between the deterministic model and Homan model is verified by

the paired t-tests. These tests show that there is a statistically significant difference
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RMSE: IID vs Deterministic and Homan Models
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and Homan Models

between the deterministic and Homan models, with a p-value of 3.69 x 1078.

Aside from the ability to generate confidence intervals around the mean and me-

dian, there is another advantage to the IID model. Of the 27 timesteps, 13 found

multiple routes across all ensembles. These timesteps and their results are shown in

Table 4. In 11 scenarios, only two unique routes were identified, and three routes were

identified in the other two scenarios. 13 of the 17 total route comparisons performed

identified a statistically significant difference between the means. So, depending on

the day and time, multiple alternative routes could be suggested that will not use

statistically significant more fuel.
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IID Model vs Deterministic and Homan Models
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Figure 4. KSUU-PHNL: All model comparisons

For each date/time, the optimal routes identified by each model were compared
to the optimal path of the true forecast. In 10 of 25 comparisons, the IID model
identified the true optimal path (Figure 5). The Deterministic and Homan models
did not identify the true path in any of the scenarios inspected. Figure 3 shows which

date/times each model identified the true optimal path.

4.3 KTCM-CYQX

The RMSE results for the KTCM-CYQX route for the IID, Deterministic, and

Homan models are shown in Figure 6. The RMSE for the Homan and IID models are
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Count of Times True Path Identified or Missed
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Figure 5. KSUU-PHNL: True Path Comparisons

Table 4. KSUU-PHNL: Unique Route Comparisons

Legend

Mo

Missed

Date & Time Number of Routes Comparison p-value Result
31 Jan 0600 3 [ = flo 2.02 x 1076 #+
M1 = U3 2.1 x 10_6 7é
31 Jan 1200 Lo = [i3 5.67 x 1076 #
M1 = U3 6.72 X 10_4 7é
Mo = 3 3.85 x 1078 7é
31 Jan 1800 2 [ = fio 0.151 =
2 Feb 0600 2 [ = fio 5.00 x 1074 =+
2 Feb 1200 2 1 = l2 0.052 =
2 Feb 1800 2 [ = flo 0.117 =
3 Feb 1200 2 [ = flo 1.45 x 10710 #
3 Feb 1800 2 [ = fo 0.021 =+
4 Feb 0000 2 1 = fio 2.67 x 1074 =+
4 Feb 0600 2 1 = l2 0.140 =
4 Feb 1800 2 1 = 2 4.03 x 107 =+
5 Feb 0000 2 [ = flo 0.015 #+
5 Feb 0600 2 [ = fio 6.91 x 1078 =+
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nearly identical, whereas the RMSE using the Deterministic model is much larger in

all but three cases.

RMSE: IID vs Deterministic and Homan Models
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The Homan model point estimates are well contained in the mean and median

confidence intervals generated by the IID model, as seen in Figure 7. However, the

fuel estimate yielded by the deterministic model is outside of the 95% mean confi-

dence interval 24/24 times. When outside the confidence bounds, the deterministic

model under- or over-estimates between 186.25 and 2,731.89 pounds of fuel at each

time interval. The deterministic model under-estimated and over-estimated 24 times.

Figure 7 shows the offsets between the current deterministic model with all other
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models, including the 95% mean and median confidence intervals calculated using

the 11D model.

IID Model vs Deterministic and Homan Models
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Figure 7. KTCM-CYQX: All model comparisons

The large spread between the deterministic model and Homan model is verified by
the paired t-tests. These tests show that there is a statistically significant difference
between the deterministic and Homan models, with a p-value of 8.01 x 1072,

Aside from the ability to generate confidence intervals around the mean and me-
dian, there is another advantage to the IID model. Of the 27 timesteps, 14 found
multiple routes across all ensembles. These timesteps and their results are shown in

Table 4. In six scenarios, only two unique routes were identified and the number of
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routes identified in the other eight scenarios ranged from three to seven. A total of
29 of the 47 total route comparisons performed identified a statistically significant
difference between the means. Depending on the day and time, multiple alternative
routes could be suggested that will not use statistically significant more fuel.

For each date/time, the optimal routes identified by each model were compared
to the optimal path of the true forecast. In 16 of 25 comparisons, the IID model
identified the true optimal path (Figure 8). The Deterministic and Homan models
did not identify the true path in any of the scenarios inspected. Figure 6 shows which

date/times each model identified the true optimal path.

Count of Times True Path Identified or Missed
KTCM-CYQX

25

- Legend
3 M oa
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Wodel
Figure 8. KTCM-CYQX: True Path Comparisons
Table 5. KTCM-CYQX: Unique Route Comparisons
Date & Time Number of Routes Comparison p-value Result
29 Jan 1800 4 = 3.83x 1070 £
M1 = U3 1.84 x ]_0_9 7é
=y 335x10°% £
Mo = U3 7.99 x 10710 7&
Mo = U4 2.66 x 10_8 #
Uz = [y 3.36 x 1077 +#
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Table 5. (continued)

Date & Time Number of Routes Comparison p-value Result
30 Jan 0000 2 1 = [y 2.87 x 1077 #
30 Jan 0600 2 1 = flo 0.057 =
30 Jan 1200 3 1 = flo 6.60 x 1077 #+
1 = U3 2.11 x 10°¢ #
Mo = U3 1.03 x 10_3 %
30 Jan 1800 7 [ = fio 5.65 x 1072 =
H1 = U3 0.124 =
1 = [y 0.602
Mm1 = Us 0.996 =
= fi6 0.023 #
= pir 0.019 #
Mo = U3 0.771 =
Mo = U4 0.337 =
Lo = [ 0.638 =
f2 = fi6 0.027 #
o = pi7 0.022 #
U3 = 4 0.318 =
M3 = Us 0.602 =
M3 = e 0.028 v
P = Hr 0.023 #
g = s 0.124 =
4 = fi6 0.019 #
o = Hr 0.015 #
Hs = He 0.023 #
W5 = Hr 0.019 #
e = b7 0.124 =
31 Jan 0000 3 1 = flo 0.046 #
= 3 0.027 #
Mo = U3 0.083 =
31 Jan 0600 2 1 = flo 2.93 x 1076 #+
31 Jan 1200 3 1 = flo 8.37 x 107° #+
M1 = U3 3.86 x 1076 %
Mo = U3 3.37 x 10_6 ?é
31 Jan 1800 2 1 = flo 6.33 x 1076 +
1 Feb 0600 2 1 = flo 0.527 =
1 Feb 1800 2 1 = flo 1.10 x 1073 #*
2 Feb 1800 3 1 = flo 0.401 =
Mm1 = U3 0.458 =
Mo = U3 0.671 =
3 Feb 1200 2 1 = flo 0.079 =
4 Feb 1200 2 1 = U2 3.56 x 1078 #+
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4.4 KTCM-KCHS

The RMSE results for the KSUU-PHNL route for the IID, Deterministic, and
Homan models are shown in Figure 9. The RMSE for the Homan and IID models are
nearly identical, whereas the RMSE using the Deterministic model is much larger in

all scenarios.

RMSE: IID vs Deterministic and Homan Models
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Figure 9. KTCM-KCHS: RMSE for IID, Deterministic, and Homan Models

The Homan model point estimates are well contained in both mean and median
confidence intervals generated by the IID model, as seen in Figure 10. However, the
fuel estimate yielded by the deterministic model is outside of the 95% mean confidence

interval 25/25 times. The deterministic model over-estimates the true fuel estimate
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between 2,981.81 and 6,940.05 pounds of fuel at each time interval. Figure 10 shows
the offsets between the current deterministic model with all other models, including
the 95% mean and median confidence intervals calculated using the IID model. The

Homan model overlaps the mean confidence interval in every scenario.

IID Model vs Deterministic and Homan Models
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Figure 10. KTCM-KCHS: All model comparisons

The large spread between the deterministic model and Homan model is verified by
the paired t-tests. These tests show that there is a statistically significant difference
between the deterministic and Homan models, with a p-value of 5.01 x 1072L.

Aside from the ability to generate confidence intervals around the mean and me-

dian, there is another advantage to the IID model. Of the 26 timesteps, 13 found
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multiple routes across all ensembles. These timesteps and their results are shown in
Table 6. In 11 scenarios, only two unique routes were identified, and three routes were
identified in the other two scenarios. All 17 total route comparisons performed iden-
tified a statistically significant difference between the means. Depending on the day
and time, multiple alternative routes could be suggested that will not use statistically
significant more fuel.

For each date/time, the optimal routes identified by each model were compared
to the optimal path of the true forecast. In 15 of 25 comparisons, the IID model
identified the true optimal path (Figure 11). The Deterministic and Homan models
did not identify the true path in any of the scenarios inspected. Figure 9 shows which

date/times each model identified the true optimal path.

Count of Times True Path Identified or Missed
KTCM-KCHS

Legend
M oa
. Missed

count

10

Deterministic Homan o
Model

Figure 11. KTCM-KCHS: True Path Comparisons
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Table 6. KTCM-KCHS: Unique Route Comparisons

Date & Time Number of Routes Comparison P value Result

28 Jan 0000 3 [ = o 2.36 x 106
M1 = Us 1.10 x 1075
Mo = [i3 2.79 x 1073
28 Jan 0600 2 [ = [l 7.27 x 1077
28 Jan 1200 2 U1 = o 2.48 x 1073
28 Jan 1800 3 1 = o 4.46 x 1073

p1 = W3 2.70 x 107°
Mo = U3 7.78 x 1077

RN N N N N N N N N N N N NN

29 Jan 0000 2 [ = [y 1.89 x 10~
29 Jan 0600 2 p = py  1.03 x 1072
29 Jan 1200 2 =y 1.17 x 1072
29 Jan 1800 2 1= pp  1.59 x 1077
30 Jan 0600 2 1 =fpa  5.50 x 1078
31 Jan 0000 2 p1 = s 5.08x107°
31 Jan 1200 2 o =pe 111 x 1074
1 Feb 0000 2 i =y 6.45x 107
3 Feb 0600 2 =y 1.52x107°

4.5 KRIV-KWRI

The RMSE for the KRIV-KWRI route for the IID, Deterministic, and Homan
models are shown in Figure 12. The RMSE for the Homan and IID models are nearly
identical, and the RMSE of the Deterministic model varies with the other models.

The Homan model point estimates are well contained in both mean and median
confidence intervals generated by the IID model, as seen in Figure 13. However,
the fuel estimate yielded by the deterministic model is outside of the 95% mean
confidence interval 24 of 26 times. The deterministic model under-estimates the
true fuel burn between 235 and 1,707.09 pounds of fuel at each time interval. The
deterministic model under-estimated 27 times. Figure 13 shows the offsets between
the current deterministic model with all other models, including the 95% mean and

median confidence intervals calculated using the IID model.
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RMSE: IID vs Deterministic and Homan Models
KRIV-KWRI

1500
W Legend
s
c 1000 -~ - Deterministic Model
o
= *** Homan Model
w
3] —— |ID Model
= .
o # Truth Path ID'd
500
|:| [ ]

= O o R s | = O = = = [ [ o | = O = O =2 O = O =2 O = = =

=2 2 22 22 82 2 2222 2222 22 2 2 2 2 2

Lo Y o TR o N N o o N o N I v = T o I o A o T e I o o N T A = o N O I o I

— O O — — O O — — — O O — — O O — — O O — — O O

= = = = = = = = = a O g O O o O O a O =] =] =]

m m m m m m m m m @ [:H] L1k] L1k Lk @ L1k] L1k Lk @ L1t L1k] LE] @ [1H]

= T2 - T2 = T2 — - — L L | IR | W b L | W [ N L L L

DO O O O = o o T = = o o 0t ™ M M MM = = =

o M M M m Mm Mmoo Mmoo m

Date & Time

Figure 12. KRIV-KWRI: RMSE for IID, Deterministic, and Homan Models

The large spread between the deterministic model and Homan model is verified by
the paired t-tests. These tests show that there is a statistically significant difference
between the deterministic and Homan models, with a p-value of 2.35 x 1072

Aside from the ability to generate confidence intervals around the mean and me-
dian, there is another advantage to the IID model. Of the 24 timesteps, 10 found
multiple routes across all ensembles. These timesteps and their results are shown in
Table 7. In five scenarios, only two unique routes were identifiedand the number of
routes identified in the other five scenarios ranged from three to six. A total of 34

of the 42 total route comparisons performed identified a statistically significant dif-
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IID Model vs Deterministic and Homan Models
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KRIV-KWRI: All model comparisons

3Febi8:00

4 Feb 0000
4 Feb 0500

4 Feb12:00

routes could be suggested that will not use statistically significant more fuel.

For each date/time, the optimal routes identified by each model were compared to
the optimal path of the true forecast. In 3/24 comparisons, the IID model identified
the true optimal path (Figure 14). The Deterministic and Homan models did not

identify the true path in any of the scenarios inspected. Figure 12 shows which

date/times each model identified the true optimal path.
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Figure 14. KRIV-KWRI: True Path Comparisons

Table 7. KRIV-KWRI: Unique Route Comparisons

Date & Time Number of Routes Comparison p-value Result
31 Jan 0600 3 [ = [l 3.26 x 1072 +
M1 = Us 0.236 =
Mo = U3 9.90 x 1076 7£
31 Jan 1200 2 [ = fo 3.69 x 1074 #+
31 Jan 1800 2 [ = fo 0.269 =
1 Feb 1800 5 [ = fo 2.81 x 1078 #+
M1 = U3 5.88 x 107° 7é
H1 = fla 0.035 #
M1 = Us 0.236 =
Mo = U3 0.299 ==
Mo = U4 0.148 =
po = 15 0.034 #
M3 = L4 3.22 x 1074 7é
H3 = s 0.020 #
pa = s 0.038 #

38



Table 7. (continued)

Date & Time Number of Routes Comparison p-value Result
1 Feb 0000 6 W1 = o 4.10 x 107° #*
M1 = U3 7.87 x 1075 7£
M1 = g 2.00 x 1074 #+
1 = fis 1.81 x 1074 #
H1 = Ug 2.02 x 10_4 #
Mo = U3 6.07 x 107° 7é
Mo = [4 1.95 % 1074 7é
Mo = Us 1.76 x 10_4 7&
Mo = Ug 1.97 % 10_4 7£
3 = fig 2.75 x 1074 #*
H3 = Us 2.46 X 10_4 7é
3 = Ue 2.78 X 1074 7’é
M4 = Us 6.90 x 1079 7£
Ha = e 0.013 #
M5 = Ue 0.595 =
2 Feb 0000 2 U1 = o 1.24 x 107 #+
3 Feb 1800 2 i =y 2.69 x 1074 +
4 Feb 0600 3 W1 = o 4.66 x 1074 #*
p1 = p3 0.011 #
o = li3 1.01 x 1074 #
4 Feb 1200 2 1 = fo 0.101 =
4 Feb 1800 4 U1 = o 3.13 x 1077 #+
1 = U3 5.27 x 1077 7é
M1 = U4 6.51 x 1074 7£
M2 = U3 0.949 ==
Mo = g 5.08 x 1074 #*
M3 = 4 2.34 x 10_4 #
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V. Conclusions and Future Research

5.1 Conclusion

By incorporating ensemble NWP into the route planning, AMC can reduce the
amount of excess fuel burned by poor forecasts. The Homan model performed well
when compared to the IID but due to the inability to account for the inter-correlation
within each ensemble member and the correlation across ensembles, this model is not
ideal.

Of the three models discussed, the Deterministic model almost always over-estimated
fuel burn compared to the IID and Homan models; sometimes up to almost 4,500
pounds of fuel. For one of the four routes inspected, the Deterministic model under-
estimated the fuel burn up to 2,000 pounds. While these over-estimations of fuel
consumption could result in up to 671 gallons of excess fuel, these estimates are only
for a small subset of coast-to-coast routes that AMC flies regularly and only for the
C-17 aircraft. When not over-estimating the fuel necessary, the Deterministic model
under-estimated the fuel required up to almost 300 pounds of fuel. The average
RMSE for the IID and Homan models across all routes investigated was roughly 512
and 501 pounds, respectively, while the average RMSE of the Deterministic model
was almost 2,500 pounds of fuel. On average, the Deterministic model misses the
true fuel burn by nearly 2,000 more pounds than the IID and Homan models. These
severe inconsistencies in fuel burn estimates can make it difficult for appropriate route
planning. The amount of wasted or insufficient fuel will add up quickly for longer,
i.e. transoceanic, routes resulting in excess costs or dangerous situations.

Applying the APSP methodology in the IID model provides users with additional
information and more fidelity. The deterministic and Homan models provide point

estimates. The IID model provides a range of potential values which further aids in

40



flight planning. It has the ability to provide multiple routes that will not statistically
change the amount of fuel used. Additionally, the IID model was the only model to

ever identify the true optimal path during the testing period.

5.2 Future Research

This research only accounts for aircraft performance and weather in determining
the optimal route. A more useful flight plan should also include route restrictions from
Air Traffic Control (ATC) and relevant regulatory restrictions [2]. This application
only accounts for the effects of wind on fuel consumption, what about other weather
conditions? As a proof of concept, several simplifying assumptions were made: con-
stant TAS, linearity between time, space, and points, and only looking at the great
circle route. Building upon these assumptions would yield a more accurate tool for
identifying optimal aircraft routing and estimating fuel consumption. Another in-
teresting expansion of this application would be to look at lateral route deviations
instead of just vertical deviations.

This research focused on shorter, coast-to-coast routes. While differences between
the current methodology and the application of the APSP, a study should be con-
ducted to investigate the differences between the models for longer flights. In addition,
a study should also be conducted to identify a distribution of fuel by month, day, etc.
This study could leverage the +00 hour forecasts from this analysis and the National
Centers for Environmental Prediction (NCEP) GFS Historical Archive [35], which
has weather data from 15 January 2015 to 21 February 2018.

AMC aircraft are large and can handle the affects of wind better than smaller
aircraft. This technique could provide valuable insight to the small aircraft and
drone communities, because they are heavily impacted by winds. This a posterior:

approach could also apply to communication networks.
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Appendix A. Matlab Code: Data Extraction

A Data Extraction Loop

Code/PullData.m

1 clear;

2 clc;

3

4 % Add the current directory and subdirectories to the path

5 addpath (genpath (pwd()));

6

7 % Get the current UTC

8 t1 = datetime(’now’,’ TimeZone’, 'utc’);

9

10 % Strip off the minutes and seconds

11 t1 = t1 — minutes(minute(tl)) — seconds(second(tl));

12

13 % Count back to the model time

14 while (mod(hour(tl),6) "= 0)

15 t1 = t1 — hours(1);

16 end

17

18 t2 = t1 — days(7); %go back 7 days

19

20 strt_-trial = 100;

21 num-_trial = 1;

22 stepsize = 100;

23 nlegs = 100;

24

25 % Pressure levels

26 levels = [400,350,300,250]; %pressure levels interested in

27

28 num-mem = 20; %number of ensemble members

29 TAS = 450; %constant TAS

30

31

32 routes = { 'KSUU-PHNL’ , 'KTCM-CYQX’ , 'KTCM-KCHS’, 'KRIV-KWRI’ };

33

34 % lat/longs from airnav.com

35

36 latlongs_routes = [38.2645367, —121.9241315, 21.3178275, —157.9202627; %Travis lat/long, Honolulu

lat\long

37 47.1376778, —122.4764750, 48.936944, —54.567778 ; %McChord Lat/Long, Gander
lat/long (from skyvector)

38 47.1376778, —122.4764750, 32.8986389, —80.0405278; %McChord Lat/Long,
%Charleston

39 33.8819433 —117.2590169, 40.0155833, —74.5916991]; %March Air Reserve Air
base, JBMDL lat/long

40

41 [num_routes,”] = size(latlongs_routes);

42
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61

62
63

83
84
85
86

87
88
89
90
91

while (t1 >= t2) % Loop back seven days

for i = l:num_routes %create all folders

FolderName = sprintf(’'%s’ ,routes{i});

mkdir(’../ Thesis Docs/Data’, FolderName)

LatA = latlongs_routes(i,1);
LongA = latlongs_routes (i,2);
LatB = latlongs_-routes(i,3);

LongB = latlongs_routes (i,4);

based on route mames before pulling data

Z%save

in folder mamed after route

%create new folder wunder data tab

latlongmat = gcwaypts(LatA,LongA,LatB,LongB, nlegs);

%% Pull Weather Data

% Hours in forecast

tot_dist = deg2nm(distance(’gc’ ,[LatA,LongA] ,[LatB,LongB])); %calculate total

from pt A to pt B across great circle route in nautical miles

totalHrs = 2xceil(tot_dist/TAS); % double time to travel

hours) —> amount of hours at least

while (mod(totalHrs ,6) "= 0) % Adjust the total hours

hour increments)

totalHrs = totalHrs + 1;

% Left/Right longitude

to pull weather

leftlon = mod(floor (min(latlongmat (:,2))) ,360);

rightlon = mod(ceil (max(latlongmat (:,2))) ,360);

% Top/Bottom latitude

across gc route and round up (in

data for

to a multiple of 6 (model

toplat = ceil (max(latlongmat (:,1))); %% ceil (LatA);
bottomlat = floor (min(latlongmat (:,1))); %floor (LatB);
err = 1;
while err =1

% Gets the winds and temps

[ =, U, V, W, lat, lon, iso ] = Ensemble.-Wind_-Temp( tl1,levels ,

totalHrs ,

leftlon , rightlon ,

if (isempty (U) || isempty (V) || isempty (W) ||

isempty (lat) || isempty(lon)

isempty (iso))

toplat , bottomlat );

disp(strcat (’Route’,32,routes{i},32, download failed for ensemble GFS run

starting’,32,datestr (tl)));
err = 1;
%return ;
else

%file-name =

sprintf(’%02i%02i_%02i%02i_-Ensemble .mat’, day (W(1)),month(W(1) ), hour(W(1)),0);

if month(W(1)) ==
mnth = ’Feb’;
>

else mnth = ’"Jan’;

end

file_.name = sprintf(’%02i%s_-%02i%02i_Ensemble .mat’,day (W(1)) ,mnth, hour(W(1)) ,0)
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92
93
94
95
96
97
98

100
101
102
103
104

105
106
107
108

109
110
111
112
113
114
115
116
117
118

© 0 9 O Uk W N =

e e s e =
0 N O Utk W N = O

matfile = fullfile (pwd, FolderName, file_name);

save (matfile, U, V’, ’lat’, ’lon’,’iso’);
err = 0;
end
end
while err == 0
[ 7, U, V, W, lat, lon, iso ] = Deterministic.Wind_-Temp (t1, levels,
totalHrs , leftlon , rightlon, toplat, bottomlat );
if (isempty (U) || isempty (V) || isempty (W) ||
isempty (lat) || isempty(lon) || isempty(iso))
disp(strcat (’Route’,32,routes{i},32, download failed for deterministic GFS run
starting ’,32,datestr(tl)));
err = 0;
%return ;
else
%file_name =
sprintf(’%02i%02i_-%02i%02i_-Deterministic.mat’, day (W(1)),month(W(1)),hour(W(1)),0);
file_.name = sprintf(’%02i%s_-%02i%02i_Deterministic.mat’,day(W(1)) ,mnth,hour(W(1)),0)
matfile = fullfile (pwd, FolderName, file_name);
save (matfile, ’U’, V’, ’lat’, ’lon’,’iso’);
err = 1;
end
end
end
tl = t1 — hours(6); % decrement model initialization time by 6 hours
end

B Ensemble Data Extraction

Code/Ensemble_Wind_Temp.m

function [ T, U, V, W, lat, lon, iso ] = Ensemble.-Wind_-Temp( tl1, levels,
totalHrs , leftlon , rightlon, toplat, bottomlat )

% This function retrieves the GFS 1 degree ensemble Numerical Weather

% Prediction (NWP) model wind and temperature output for the requested

% level(s) and time period(s).

% This function requires the mctoolboz package:
% https://github.com/nctoolboz/nctoolbox
% Make sure to include the nctoolbox directory in the MATLAB path.

% Input variables:

% levels—isobaric pressure levels (1000,925,850,700,500,400 and/or 800 mb)
% totalHrs — total mumber of hours of forecast data needed

% leftlon — Western edge of longitude window (0 — 360)

% rightlon — Eastern edge of longitude window (0 — 860)

% toplat — Northern edge of latitude window (—90 — 90)

% bottomlat — Southern edge of latitude window (—90 — 90)
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

= []; % NWP model step times
lat = []; % Latitudes in degrees (—90 — 90)
lon = []; % Longitudes in degrees (0 — 360)
iso = []; % Isobaric pressure levels (translates to altitude MSL)
% Approzimate altitude calculations from pressure can be found here:
% http ://ww2010. atmos. uiuc.edu/(Gh)/wwhlpr/constant_pressure_surface.rzml
% Dimensions in order are time (entries in W), ensemble member (1 to 20),
% pressure level (entries in iso in millibars), latitude , and longitude
T = []; % Temperature values in degrees Celsius
U= []; % U component of winds in meters per second
V=[] % V component of winds in meters per second
% Ezplanation for how to use U and V wind components can be found here:
% http://colaweb.gmu.edu/dev/clim301/lectures/wind/wind—uv. html
% Make sure top and bottom lat are correctly configured
if bottomlat > toplat
temp=bottomlat ;
bottomlat = toplat;
toplat=temp;
end
if toplat > 90 || bottomlat < —90
return;
end
% Make sure left and right longitudes are correctly configured
if leftlon > rightlon
temp = rightlon;
rightlon = leftlon;
leftlon = temp;
end
if leftlon < 0 || rightlon > 360
return;
end
% Set up the pressure levels to ensure only standard levels are entered
levels = intersect(levels ,[1000,975,950,925,900,850,800,750,700,650,600,...
550,500,475,450,400,350,300,250,200,150,125,100,70,50,30,20,10,7,5,2,1]);
% Set up mnctoolbozx
setup-nctoolbox;
% Count back to the model time
while (mod(hour(tl),6) "= 0)
tl = t1 — hours(1);
end
% Adjust the total hours to a multiple of 6 (model is in 6 hour increments)
while (mod(totalHrs ,6) "= 0)
totalHrs = totalHrs + 1;
end
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73 t2 = tl—hours(12);

74

75 DownLoadError = 1;

76

77 while (DownLoadError && t1 >= t2)

78

79 % Store model data times

80 W = t1 + hours (0:6:totalHrs);

81

82 for j = 0:6:totalHrs

83

84 for i = 1:20

85

86 % The weather data URL

87 URL = ’http://nomads.ncep.noaa.gov/cgi—bin/filter_gens.pl?file=gep’;
88 URL=strcat (URL,num2str (i, *%02i’),’.t’ ,num2str(hour(tl), %02i’));

89 URL=strcat (URL, ’z. pgrb2f’ ,num2str(j, '%02i’));

90 for k = 1:1:max(size(levels))

91 URL=strcat (URL, ’'&lev_’ ,num2str(levels(k)),’-mb=on’);

92 end

93 URL=strcat (URL, ’&var-TMP=on&var_UGRD=on&var_.VGRD=on&subregion=&leftlon=",num2str(leftlon));
94 URL=strcat (URL, ’&rightlon=",num2str(rightlon) , &toplat=",num2str(toplat),
95 ’&bottomlat=",num2str(bottomlat) , &dir=%2Fgefs.’);

96 URL=strcat (URL,num2str(year (t1l)));

97 URL=strcat (URL, num2str (month (t1), %02i ")) ;

98 URL=strcat (URL,num2str(day (t1),’%02i’));

99 URL=strcat (URL, %2F’ ,num2str (hour (t1), ' %02i ), %2Fpgrb2’);

100 fileName = strcat (pwd(),’/winds_.’ ,num2str(j),’ -’ ,num2str(i),’.grib2’);
101

102 % Download weather data

103 try

104 outfilename = websave(fileName ,URL) ;

105 catch

106 if (j==0 && i == 1)

107 tl = t1 — hours(6);

108 totalHrs = totalHrs + 6;

109 DownLoadError = 1;

110 break;

111 else

112 return;

113 end

114 end

115

116 % Import weather data into MATLAB

117 nc = ncgeodataset (outfilename);

118

119 % Fill values for T, U and V

120 V(floor (j/6)41,i,:,:,:) = nc{’v—component_of_wind_isobaric’}(:); %#ok<AGROW>
121 U(floor(j/6)+1,i,:,:,:) = nc{’u—component_of_wind_isobaric’}(:); %#ok<AGROW>
122 T(floor (j/6)+1,i,:,:,:) = nc{’ Temperature_isobaric’}(:); %#ok<AGROW>
123 DownLoadError = 0;

124 end

125 if (DownLoadError == 1)

126 break;
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127
128
129

131
132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

ook W N

© 0 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

end
end
end
if (DownLoadError == 1)
return;
end
lat = nc{’lat’}(:);
lon = nc{’lon’}(:);
iso = nc{’isobaric’}(:)/100;
for j = 0:6:totalHrs
for i = 1:20
outfilename = strcat (pwd(),’/winds_.’ ,num2str(j),’_-’ ,num2str(i),’.grib2’);
% Delete the weather data file
delete (outfilename) ;
delete (strcat (outfilename ,’.gbx97));
delete (strcat (outfilename ,’ .ncx’));
end
end
end

C Deterministic Data Extraction

Code/Deterministic. Wind_Temp.m

function [ T, U, V, W, lat, lon, iso] = Deterministic-Wind_Temp( t1, levels,
totalHrs , leftlon , rightlon, toplat, bottomlat )

% This function retrieves the GFS 1 degree deterministic Numerical Weather

% Prediction (NWP) model wind and temperature output for the requested

% level(s) and time period(s).

% This function requires the mctoolbox package:

% https://github.com/nctoolbox/nctoolbox

% Make sure to include the nctoolbox directory in the MATLAB path .

% Input variables :

% levels—isobaric pressure levels (1000,925,850,700,500,400 and/or 300 mb)

% totalHrs — total number of hours of forecast data needed

% leftlon — Western edge of longitude window (0 — 3860)

% rightlon — Eastern edge of longitude window (0 — 860)

% toplat — Northern edge of latitude window (—90 — 90)

% bottomlat — Southern edge of latitude window (—90 — 90)

= []; % NWP model step times

lat = []; % Latitudes in degrees (—90 — 90)

lon = []; % Longitudes in degrees (0 — 360)

iso = []; % Isobaric pressure levels (translates to altitude MSL)

% Approzimate altitude calculations from pressure can be found here:

% http://ww2010. atmos. uiuc.edu/(Gh)/wwhlpr/constant_pressure_surface.rzml
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% Dimensions in order are time (entries in W), ensemble member (1 to 20),
% pressure level (entries in iso in millibars), latitude , and longitude
T = []; % Temperature values in degrees Celsius

=[] % U component of winds in meters per second

= []; % V component of winds in meters per second

X < c

Ezplanation for how to wuse U and V wind components can be found here:

X

http://colaweb .gmu. edu/dev/clim301/lectures /wind/wind—uv. html

% Make sure top and bottom lat are correctly configured
if bottomlat > toplat

temp=bottomlat ;

bottomlat = toplat;

toplat=temp;

end
if toplat > 90 || bottomlat < —90
return;

end

% Make sure left and right longitudes are correctly configured

if leftlon > rightlon
temp = rightlon;
rightlon = leftlon;
leftlon = temp;
end
if leftlon < 0 || rightlon > 360
return;
end
% Set up the pressure levels to ensure only standard levels are entered

levels = intersect(levels ,[1000,975,950,925,900,850,800,750,700,650,600,...
550,500,475 ,450,400,350,300,250,200,150,125,100,70,50,30,20,10,7,5,2,1]) ;

% Set up mctoolbox

setup-nctoolbox;

% Count back to the model time

while (mod(hour(tl),6) "= 0)
tl = t1 — hours(1);
end
% Adjust the total hours to a multiple of 6 (model is in 6 hour tincrements)

while (mod(totalHrs ,6) "= 0)
totalHrs = totalHrs + 1;

end

t2 = tl—hours(12);

DownLoadError = 1;

while (DownLoadError && t1 >= t2)
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79

80 % Store model data times

81 W = t1 + hours (0:3:totalHrs);

82

83 for j = 0:3:totalHrs

84

85 % The weather data URL

86 URL = ’http://nomads.ncep.noaa.gov/cgi—bin/filter_gfs_1p00.pl?file=gfs.t’;
87 URL=strcat (URL,num2str (hour (t1),’%02i’),’z.pgrb2.1p00.f’ ,num2str(j, %03i’));
88 for k = 1:1:max(size(levels))

89 URL=strcat (URL, ’&lev_’,num2str(levels(k)),’-mb=on’);

90 end

91 URL=strcat (URL, "&var_.TMP=on&var_UGRD=on&var_VGRD=on&subregion=&leftlon=",num2str(leftlon));
92 URL=strcat (URL, ’&rightlon=" ,num2str(rightlon), &toplat=",num2str(toplat),
93 ’&bottomlat=",num2str(bottomlat) , '&dir=%2Fgfs. ) ;

94 URL=strcat (URL,num2str(year (t1)));

95 URL=strcat (URL,num2str(month(t1), %02i’));

96 URL=strcat (URL,num2str(day (t1),’%02i ")) ;

97 URL=strcat (URL,num2str (hour (t1), %02i’));

98 fileName = strcat (pwd(),’/deterministic_winds_’ ,num2str(j),’.grib2’);

99

100 % Download weather data

101 try

102 outfilename = websave (fileName ,URL) ;

103 catch

104 if (j==0)

105 tl = t1 — hours(6);

106 totalHrs = totalHrs + 6;

107 DownLoadError = 1;

108 break;

109 else

110 return;

111 end

112 end

113

114 % Import weather data into MATLAB

115 nc = ncgeodataset (outfilename);

116

117 % Fill values for T, U and V

118 V(floor(j/3)+1,1,:,:,:) = nc{’v—component_of_wind_isobaric’}(:); %#ok<AGROW>
119 U(floor(j/3)+1,1,:,:,:) = nc{’u—component_of_wind_isobaric’}(:); %#ok<AGROW>
120 T(floor(j/3)+1,1,:,:,:) = nc{ Temperature_isobaric’}(:); %#ok<AGROW>

121 DownLoadError = 0;

122 end

123

124 end

125

126 if (DownLoadError == 1)

127 return;

128 end

129

130 lat = nc{’lat’}(:);

131 lon = nc{’lon’}(:);

132 iso = nc{’isobaric’}(:)/100;
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for j = 0:3:totalHrs
outfilename = strcat (pwd(),’/deterministic_.winds_’ ,num2str(j),’.grib2’);
% Delete the weather data file
delete (outfilename) ;
delete(strcat (outfilename ,’.gbx9’));

delete(strcat (outfilename ,’ .ncx’));
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Appendix B. Matlab Code: Network Building

A Linear Interpolation in Time and Space

Code/InterpolateAllData.m

routes = { KSUU-PHNL’ , 'KTCM-CYQX’, ’KTCM-KCHS’, 'KRIV-KWRI’ };

% lat/longs from airnav.com

latlongs_routes = [38.2645367, —121.9241315, 21.3178275, —157.9202627; %Travis lat/long, Honolulu
lat\long
47.1376778, —122.4764750, 48.936944, —54.567778 ; %McChord Lat/Long, Gander
lat/long (from skyvector)
47.1376778, —122.4764750, 32.8986389, —80.0405278; %McChord Lat/Long,
%Charleston
33.8819433 —117.2590169, 40.0155833, —74.5916991]; %March Air Reserve Air

base, JBMDL lat/long

num_routes ,”] = size(latlongs_routes);
B g 5

%mkdir Data

for i =l:num-_routes %create all folders based on route names before pulling data
FolderName = sprintf(’'%s’ ,routes{i}) %save in folder named after route
matfile = fullfile (’C:\ Users\smboo\Desktop\Thesis (1)\Thesis\Data’,FolderName) ;

cd(matfile)
addpath (genpath(’C:\ Users\smboo\Desktop\ Thesis (1)\Thesis’))
files = dir(’*.mat’);

for file = files

load ( file .name) ;

[num_its,”,”,7,7] = size(U)
tic
%% issues with interpolation code, can only interpolate between two times, this is a workaround

% NOTE: this works for the short routes we are investigating during this

% research , will need to adjust for longer routes (i.e. routes > 6 hours)

if file .name(12) == 'D’ %determine if its ensemble or deterministic data
model = 'D’;
num-mem = 1;
for j = 3:num-its—2
[U_interpl, V_interpl] = time_alt_interp (U(j:j+1,:,:,:,:),V(j:j+1,:,:,:,:),model,num mem) ;

[U_interp2, V_interp2]

time_alt_interp (U(j+1:j+2,:,:,:,:),V(j+1:j+2,:,:,:,:) ,model ,num_mem) ;
U_interp = [U_interpl ; U_interp2(2:end,: ,:,:,:) ];
V_interp = [V_interpl ; V_interp2(2:end,: ,:,:,:)];
end
else
model = "E’;
num-mem = 20;
[U_interp, V_interp] = time_alt_interp (U(2:end,: ,:,:,:),V(2:end,: ,:,:,:) ,model ,num-mem) ;
end
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time-elapsed = toc;
if time_elapsed > 60
time_elapsed = time_elapsed /60;
metric = ’min’;
else
metric = ’sec’;
end
matfile = fullfile (’C:\ Users\smboo\Desktop\Thesis (1)\Thesis\Data’,FolderName, file .name) ;
save(matfile ,’ U_interp’,’ V_interp’, —append’)
fprintf( %s: %.2f %s\n’,file .name, time_elapsed ,metric)
end
clear matfile
end
Code/time_alt_interp.m
function [U_interp, V_interp] = time_alt_interp (U,V,model ,num_mem)
if model == 'E’ %if ensemble data
%% time interpolation
x = [0;6]; %because time is in 6 hour timesteps, we have time 0 and time 6
xi = [0:6]; %interpolating between 0 and 6 (included so that they are in the output vector)
[num_times,” ,num_alts ,num_lats ,num_longs] = size (U);
U_time = []; %initialize matriz for concating
V_time = [];
for m = 1l:num_times—1
for 1 = 1l:num-longs
for k = 1l:num_lats
for j = l:num-alts
for i = 1:num_mem
y-U = Umm+1,i,j,k,1);
U_time_temp (:,i,j,k,l) = interpl(x,y-U,xi); %interpolate across U
y-V = V(mm+1,i,j,k,1);
V_time_temp (:,i,j,k,1) = interpl(x,y-V,xi); %interpolate across V
end
if m> 1
[cur_row_U ,”] = size(U_time); %ensure no duplicate rows
U_time (cur_-row_U:cur_-row_U+6,:,j ,k,1) = U_time_temp (:,:,j,k,1);
[cur_row_V ,7] = size(V_time); %ensure no duplicate rows
V_time (cur-row_V :cur-row_-V+6,:,j,k,1) = V_time_-temp (:,:,j,k,1);
else
U_time (:,:,j,k,1) = U_time_-temp (:,:,j,k,1); %add temporary to U with interpolation
V_time (:,:,j,k,l) = V_time_temp (:,:,j,.k,1); %add temporary to V with interpolation
end
end
end
end
end
%% altitude interpolation
[num_times,” ,num-alts ,num_lats ,num-_longs] = size(U_time);
U_interp = zeros(num_times, 20, 11, num_lats, num_longs);
V_interp = zeros(num_times, 20, 11, num_lats, num_longs);
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for 1 = l:num-longs
for k = l:num_lats
step_-low_U = (U_time(:,:,2,k,l) — U_time (: ,1,k,1))/5;
step_high_ U = (U_time (:,:,3,k,1) — U_time(:,:,2,k,1))/5;
step_low_V = (V_time(:,:,2,k,1) — V_time(:,:,1,k,1))/5;
step-high_V = (V_time (:,:,3,k,1) — V_time(:,:,2,k,1))/5;
for incr = 0:10
if incr <=5
U_interp (:,:,incr+1,k,1) = U_time(:,:,1,k,1) 4+ incrxstep-low_U; %each new dim in num-_alts
will be 1000k increments from 25:35k
V_interp (:,:,incr+1,k,1) = V_time(:,:,1,k,1) 4+ incrxstep_-low_V; %ecach new dim in num_alts
will be 1000k increments from 25:35k
else
U_interp (:,:,incr+1,k,1) = U_time(:,:,1,k,1) + incrxstep_-high_U; %each new dim in num-_alts
will be 1000k increments from 25:35k
Vi_interp (:,:,incr+1,k,1) = V_time(:,:,1,k,1) 4+ incr*xstep_high_V; %each new dim in num_alts
will be 1000k increments from 25:35k
end
end
end
end
elseif model == D’ %if deterministic data
%% time interpolation
x = [0;3]; %because time is in 6 hour timesteps, we have time 0 and time 6
xi = [0:3]; Z%interpolating between 0 and 6 (included so that they are in the output wvector)
[num_times,” ,num_alts ,num_lats ,num_longs] = size (U);
U_time = []; %initialize matriz for concating
V_time = [];
for m = 1l:num_times—1
for 1 = 1l:num-longs
for k = l:num_lats
for j = l:num_alts
for i = 1:num_mem
y-U = Umm+1,i,j,k,1);
U_time_temp (:,i,j,k,l) = interpl(x,y-U,xi); %interpolate across U
y-V = V(m:m+1,i,j,k,1);
V_time_temp (:,i,j,k,1) = interpl(x,y_-V,xi); %interpolate across V
end
if m> 1
[cur_row_ U ,”] = size(U_time); %ensure no duplicate rows
U_time (cur-row_U:cur-row_U+3,:,j,k,1) = U_time_temp (:,:,j,k,1);
[cur_row_V ,7] = size(V_time); %ensure no duplicate rows
V_time (cur_row_V:cur_row_V+3,:,j,k,1) = V_time_temp (:,:,j,k,1);
else
U_time (:,:,j,k,1) = U_time_temp (:,:,j,k,1); %add temporary to U with interpolation
V_time (:,:,j,k,l) = V_time_temp (:,:,j,k,1); %add temporary to V with interpolation
end
end
end
end
end
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%% altitude interpolation

dim in num_alts

in num_alts

in num_alts

in num_alts

output wvector)

[num_times,” ,num_alts ,num_lats ,num_longs] = size (U_time);
U_interp = zeros(num-_times, 1, 11, num_lats, num_longs);
V_interp = zeros(num-_times, 1, 11, num-_lats, num_longs);
for | = l:num_longs
for k = 1l:num_lats
step_-low_U = (U_time(:,:,2,k,1) — U_time(:,:,1,k,1))/2;
step-high_U = (U_time (:,:,3,k,1) — U_time (:,:,2,k,1))/2;
step_-low_V = (V_time(:,:,2,k,1) — V_time(:,:,1,k,1))/2;
step_high_V = (V_time (:,:,3,k,1) — V_time(:,:,2,k,1))/2;
for incr = 0:10
if incr <= 2
U_.interp (:,:,incr+1,k,1) = U_time(:,:,1,k,1) + incr*xstep_-low_U; %each new
will be 1000k increments from 25:35k
Vi_interp (:,:,incr+1,k,1) = V_time(:,:,1,k,1) 4+ incr*step_-low_V; %each new dim
will be 1000k increments from 25:35k
else
U_interp (:,:,incr+1,k,1) = U_time(:,:,1,k,1) 4+ incrxstep-high_U; %each new dim
will be 1000k increments from 25:35k
V_interp (:,:,incr+1,k,1) = V_time(:,:,1,k,1) + incrxstep_high_V; %each new dim
will be 1000k increments from 25:35k
end
end
end
end
else
%% Truth Source
%% time interpolation
x = [0;6]; %because time is in 6 hour timesteps, we have time 0 and time 6
xi = [0:6]; %interpolating between 0 and 6 (included so that they are in the
[num_times,” ,num_alts ,num_lats ,num_longs] = size (U);
U_time = []; %initialize matriz for concating
V_time = [];
for m = 1l:num_times—1
for 1 = l:num_longs
for k = 1l:num_lats
for j = l:num_alts
for i = 1:num_mem
y-U = Um:m+1,i,j,k,1);
U_time_temp (:,i,j,k,1) = interpl(x,y-U,xi); %interpolate across U
y-V = V(m:m+1,i,j,k,1);
V_time_temp (:,i,j,k,l) = interpl(x,y-V,xi); %interpolate across V
end
if m>1
[cur_row_U ,”] = size(U_time); %ensure no duplicate rows
U_time (cur_-row_U:cur_row_U+6,:,j,k,1) = U_time_temp (:,:,j,k,1);
[cur_row_V ,7] = size(V_time); %ensure no duplicate rows
V_time (cur_row_V:cur_row_V+6,:,j,k,1) = V_time_temp (:,:,j,k,1);
else
U_time (:,:,j,k,1) = U_time_temp (:,:,j,k,1); %add temporary to U with
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V_time (:,:,j,k,1) = V_time_-temp (:,:,j,k,1); %add temporary to V with interpolation
end
end
end
end
end
%% altitude interpolation
[num_times,” ,num_alts ,num_lats ,num_longs] = size(U_time);
U_interp = zeros(num-_times, 1, 11, num-_lats, num_longs);
V_interp = zeros(num-times, 1, 11, num-_lats, num_longs);
for 1 = l:num-longs
for k = l:num_lats
step_-low_U = (U_time(:,:,2,k,1) — U_time(:,:,1,k,1))/2;
step_high_ U = (U_time (:,:,3,k,1) — U_time(:,:,2,k,1))/2;
step_low_V = (V_time(:,:,2,k,1) — V_time(:,:,1,k,1))/2;
step-high_V = (V_time (:,:,3,k,1) — V_time(:,:,2,k,1))/2;
for incr = 0:10
if incr <= 2
U_interp (:,:,incr+1,k,1) = U_time(:,:,1,k,1) 4+ incrxstep-low_U; %each new dim in num-_alts
will be 1000k increments from 25:35k
V_interp (:,:,incr+1,k,1) = V_time(:,:,1,k,1) 4+ incrxstep_-low_V; %ecach new dim in num_alts
will be 1000k increments from 25:35k
else
U_interp (:,:,incr+1,k,1) = U_time(:,:,1,k,1) + incrxstep_-high_U; %each new dim in num_alts
will be 1000k increments from 25:35k
Vi_interp (:,:,incr+1,k,1) = V_time(:,:,1,k,1) 4+ incr*step_high_V; %each new dim in num_alts
will be 1000k increments from 25:35k
end
end
end
end
end
end

B Wind Calculations

function [optimal_value, path, DG]

V_interp, lon,

Code/WindCalcs_260ct.m

= windcalcs(nlegs ,

TAS, model ,num_mem)

AC = 2; %use C—17 regression models

omega = 496.5; %AC gross weight estimate

PW = 5; %payload weight estimate

load RegressionCoeffs.mat %load Betas for Reiman
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%%

U_temp = U_interp (: ,memmnum,: ,: ,:) ; % look at one ensemble member at a time

U.mem = squeeze (U_temp) ; % reduce size of U since ensemble mem dimension went from 20 to

singular)

% Positive: West

V_temp = V_interp (: ,memmnum,: ,:,:); % look at one ensemble member at a time

V_mem = squeeze (V_temp) ;

% Positive: South

[nhrs,”,7,7,7] = size(U_.interp);
%% Determine U and V components along the route

%1 degree model, so need to look at each degree. so we can either:

% Used a weighted average based on the location of the actual data pt wrt to the upper/lower

lat_.rnd = round(latlongmat (:,1)); % just looking at the lower bnds for lat

long_lw = floor (latlongmat (:,2));

long_-up = ceil(latlongmat (:,2));

lon = mod(lon ,360); %change lon coordinate from —180 to 180 to 0 to 360

for i = l:nlegs+1 %find idz of our route among all data
long-idx-lw (i) = find(lon == long_-lw(i));
long_idx_up (i) = find(lon == long_up(i));
lat_idx (i) = find(lat == lat_rnd (i));

end

for i = 1l:nlegs %determine U and V components along route using a weighted average between
degrees; dims: time, altitude , leg

U_route (:,:,1i) = ((Umem (:,:,lat_idx(i+1),long_idx_lw (i+1))=*(latlongmat(i+1,2) — long_-lw (i+1)) +
Umem (: ,:,lat_idx (i+1),long_idx_up (i+1))*(1—(latlongmat(i+1,2) —
long_-lw (i+1))))+(Umem(:,:,lat_idx (i) ,long-idx-lw (i))=*(latlongmat(i,2) — long-lw(i)) +
Ummem (:,:,lat_idx (i) ,long-idx-up(i))=*(1—(latlongmat(i,2) — long-lw(i)))))/2;

V_route (:,:,i) = ((Vomem (: ,:,lat_idx (i+1),long_idx_lw (i+1))*(latlongmat (i+1,2) — long_lw (i+1)) +
Vomem (: ,:,lat_idx (i+1),long-idx_up(i+1))*(1—(latlongmat (i+1,2) —
long_lw (i+1))))+(Vomem (: ,:,lat_idx (i) ,long_-idx_lw (i))=*(latlongmat(i,2) — long_-lw(i)) +
Vomem (: ,:,lat_idx (i),long_idx_up(i))*(1—(latlongmat(i,2) — long_lw(i)))))/2;

end

%% calculate headwind/tailwinds

WS = sqrt(U_route.”2 4+ V_route. " 2); %Calculate windspeed m/s.. converted to knots later

angle.W = atan2(—U_route, —V_route)x*180/pi; %angle in degrees

for i = 2:nlegs+1 % calculate the aircraft heading between waypoints i: from, j: to

ac_heading_orig(i—1,1) =

mod (atan2d (sin (latlongmat (i,2)—latlongmat(i—1,2))*cos(latlongmat(i,1)),cos(latlongmat(i—1,1))*sin(latlongmat(i,1))-

end
windfrom = atan2(—U_route, —V_route)*180/pi; %Wind Direction (degrees)
for i = l:nlegs % calculate new aircraft heading taking into account drift,

the wind correction angle (pos to the right)

56
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53 [ac-heading-corr (:,:,i), GS(:,:,i), windcorrangle(:,:,i)] = driftcorr(ac_-heading-orig (i) ,TAS,
windfrom (:,:,i) ,WS(:,:,1)); %corrected heading to stay on course, groundspeed (knots), the

wind correcting angle in degrees

54 end

55

56 [~ ,GC] = legs(latlongmat (1:2,1) ,latlongmat (1:2,2),’gc’); %dist between pts around GC
57

58 alt_delta = [0:10; %hard coded from altitudes we are investigating

59 1,0:9;

60 2:—1:1,0:8;

61 3:—-1:1,0:7;

62 4: —1:1,0:6;

63 5:—1:1,0:5;

64 6: —1:1,0:4;

65 7:—1:1,0:3;

66 8:—1:1,0:2;

67 9: —1:1,0:1;

68 10: —1:0]; % (i,3) i is starting alt, j is ending alt

69

70

71

72 dist = sqrt(alt_-delta."2 4+ GC"2); % assuming a straight line distance between points
73

74 avg_time_leg = mean(mean(dist/TAS)); %avg time across all altitudes to fly 1 leg
75 flt_time = avg_time_leg;
76 for i = 2:nlegs+1

77 flt_time (i,1) = flt_time(i—1) + avg_-time_leg; %sum the time at each leg

78 end

79 timestep_-use = round(flt_time); %round to nearest integer and wuse that hour of data
80

81 %% Create Network and Determine Optimal Path

82

83

84 for latlong = 1l:nlegs %Calculate the time to traverse each arc based on ground speed and the

distance between them

85 for row = 1l:size(alt_delta ,1)

86 for col = 1l:size(alt_delta ,1)

87 alpha_i = 24+4row;

88 alpha_j = 24+4col;

89 time_TAS=dist (row, col)/TAS; %time in hours to fly distance without winds

90 time_GS=dist (row, col)/GS(timestep_use (row)+1,col ,latlong); %time in hours to fly
distance with winds

91 dist_leg = dist (row,col)*time_.GS/time_TAS; %ratio to determine equivalent distance
of fuel wused with winds in NM

92 if row == col

93 fuel{latlong }(row,col) = FuelCalc(’cruis’,AC, alpha_i, omega, PW, dist_leg);

94 elseif row < col

95 fuel_i = FuelCalc(’climb’,AC, alpha_i, omega);

96 fuel_j = FuelCalc(’climb’,AC, alpha_j, omega);

97 fuel{latlong }(row,col) = abs(fuel_j — fuel_i);

98 dist_climb_i = Climb_reg_dist (1,AC) + Climb_reg_dist (2,AC)*alpha_i +

Climb_reg_dist (3,AC)*alpha_i”2 4+ Climb_reg_dist (4,AC)*alpha_i~3 +
Climb_reg_dist (5,AC)*omega + Climb_reg_dist (6 ,AC)*omega”2 +
Climb_reg_dist (7 ,AC)*omega”3 + 10" (—6)*xClimb_reg_-dist (8 ,AC)*alpha_i”2%omega”3
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4+ 10°(—6)*xClimb_reg_-dist (9,AC)+alpha_i " 2xomega”~3; %determine distance to climb

dist_climb_j = Climb_reg_dist (1,AC) + Climb_reg_dist (2,AC)*alpha_j +
Climb_reg_dist (3,AC)*alpha_j 2 + Climb_reg_dist (4,AC)*alpha_j 3 +
Climb_reg_dist (5,AC)*omega + Climb_reg_dist (6 ,AC)*omega”2 +
Climb_reg_dist (7 ,AC)*omega”3 + 10" (—6)*xClimb_reg_dist (8 ,AC)*alpha_j " 2xomega”3
+ 107 (—6)*Climb_reg_dist (9,AC)*alpha_j " 2xomega”~3; %determine distance to climb

dist_climb = dist_climb_j — dist_climb_i;

if dist_climb < dist_leg %if climb dist is < dist of leg, calculate fuel consumed
on remaining dist as cruise
fuel{latlong }(row,col) = fuel{latlong}(row,col) + FuelCalc(’cruis’ AC,

alpha_i, omega, PW, dist_leg—dist_climb);

elseif dist_-climb > dist_-leg %if climb dist is > dist of leg, only use a fraction
of the total fuel for that climb
fuel{latlong}(row,col) = fuel{latlong}(row,col)*dist_leg/dist_climb ;

end

else

fuel_i = FuelCalc(’descd’ ,AC, alpha_i, omega);

fuel_j = FuelCalc(’descd’,AC, alpha_j, omega);

fuel{latlong }(row,col) = abs(fuel_j — fuel_i);

dist_-descd_-i = Descend_-reg_fuel (1,AC) + Descend_reg_fuel (2,AC)*omega +
Descend_reg_-fuel (3,AC)*omega”"2 + Descend-reg_fuel (4,AC)*alpha_i +
Descend-reg_-fuel (5,AC)*alpha_i*omega;

dist-descd-j = Descend-reg-fuel(1,AC) + Descend-reg_-fuel (2,AC)+*omega +
Descend_reg_fuel (3 ,AC) xomega"2 + Descend_reg_fuel (4,AC)*alpha_j +
Descend-reg_fuel (5,AC)*xalpha_j*omega;

dist_descd = dist_-descd_-j — dist_-descd_i;

if dist_-descd < dist_leg %if descend dist is < dist of leg, calculate fuel
consumed on remaining dist as cruise
fuel{latlong }(row,col) = fuel{latlong}(row,col) + FuelCalc(’cruis’,AC,

alpha_i, omega, PW, dist_leg—dist_descd);

elseif dist_descd > dist_leg %if descend dist is > dist of leg, only use a

fraction of the total fuel for that descend

fuel{latlong }(row,col) = fuel{latlong}(row,col)xdist_leg/dist_-descd;

end
end
end
end
end
fuels =[]; %initialize
strt_-node =[]; %initialize
end_node =[]; %initialize
for i = 2:nlegs—1 %create a vector for time to traverse nodes across cruise waypoints (omit
nodes 1 and nlegs because we are forcing them to happen at the lowest altitude)
fuels = [fuels fuel{i}(:) ’];
end
for i = 2:nlegs—1 % create a vector of ”from” nodes that correspond to the times wvector above
strt_.node = [strt-node repmat([1+11*(i—1) 2411*(i—1) 3+11x(i—1) 44+11x(i—1) 54+11x(i—1)
64+11%(i—1) 7+11%(i—1) 8+11x(i—1) 94+11x(i—1) 104+11x(i—1) 114+11x(i—1)],1,11)];
end
strt_node = [strt_node (1llxnlegs)—10:11xnlegs];
for i = 23:11*nlegs+1 %create "to” nodes that correspond to the 7from” nodes and the times above
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136 end_-node = [end_-node repmat(i,1,11)];
137 end

140 W = [fuel {1}(1,:), fuels, fuel{nlegs}(:,1) ’]; %the arc weights for all nodes (correspond to the
times to traverse, for mnow)

141 DG = sparse( [repmat(1,1,11), strt_node],[12:22, end_node], W); %create the network

142 DG =[DG; zeros(size (DG,2)—size (DG,1) ,size(DG,2))]; % spare arrays mneed the same number of rows
and cols (in order to implement graphshortestpath), so add an empty row to make the array
square

143

144 [optimal_value ,path,pred] = graphshortestpath (DG,1,(11l*nlegs) + 1);

145 %optimal_value %in kLbs

146
147 end
C Fuel Regression Equations
Code/FuelCalc.m
1 function fuel_consumed = FuelCalc(eq,AC, alpha, omega, PW, dist)
2 load RegressionCoeffs.mat %load Beta’s from Reiman regression models
3
4 if eq == ’climb’
5 % fuel to climb in Klbs
6 fuel_consumed = Climb_reg_fuel(1,AC) 4+ Climb_reg_fuel (2,AC)xalpha + Climb_reg_fuel (3,AC)*alpha”2
+ Climb_reg_fuel (4,AC)xalpha”3 4+ Climb_reg_fuel (5,AC)*omega + Climb_reg_fuel (6 ,AC)*omega”2 +
Climb_reg_fuel (7 ,AC)*omega”3 + 10°(—6)*xClimb_reg_fuel (8 ,AC)*alpha”2xomega”3 +
10" (—6)*Climb_reg_fuel (9 ,AC)*alpha”2%omega " 3;
7
8 elseif eq == ’descd’

9 % fuel to descend in Klbs
10 fuel_-consumed = Descend_-reg_fuel (1,AC) + Descend_reg_fuel (2,AC)*omega +
Descend_-reg_fuel (3,AC)*omega”"2 + Descend_reg_fuel (4,AC)*alpha +

Descend_reg_fuel (5,AC)*alpha*omega;

11

12 else

13 % fuel to cruise in Klbs

14 OW = PayloadAssumptions (1,AC); % operating weight

15 FRC = PayloadAssumptions (5,AC); % reserve/contingency fuel weight

16 FAH = PayloadAssumptions (6 ,AC) + PayloadAssumptions (7,AC); %alternate/holding fuel weight

17 A = SpecRange_reg (5,AC) /3;

18 B = (SpecRange_reg (4,AC)/2) + SpecRange.reg (5,AC)*(OW + FRC + FAH + PW) +
(SpecRange_reg (6 ,AC) /2)xalpha;

19 C = SpecRange_reg(1,AC) + SpecRange_reg(2,AC)*alpha + SpecRange_reg(3,AC)*alpha’2 +
SpecRange_reg (4 ,AC) * (OWHAFRCHFAHHPW)+SpecRange_reg (5 ,AC) * ((OWHFRCHFAHAPW) “2) +
SpecRange_reg (6 ,AC) xalpha % (OWHFRCHFAHAPW) ;

20 D = —dist;

21 %fuel_consumed = —B/(3xA) —

1/(8%A) % ((1/2) % (2%xB"3—9%AxBxC+27+A"2%D+sqrt ((2%B"3—9xAxBxC+27xA"2xD) "2— 4% (B "2—3%A%C) "8)) "(1/3))

1/(8%A) % ((1/2) %(2%xB 38— 9%AxBxC+27+A"2xD—sqrt ((2*B"3—9xAxBxC+27xA"2xD) "2— }*(B"2—3%AxC) "8)) "(1/3))
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22 commonterml = 2xB"3 — 9xAxBxC + 27%xA"2xD;

23 commonterm2 = 4x(B"2 — 3xAxC) " 3;

24 cubterml = ((1/2) *(commonterml + sqrt(commonterml”2 — commonterm2))) "~ (1/3);

25 cubterm2 = ((1/2)+abs(commonterml — sqrt(commonterml”2 — commonterm2))) " ~(1/3) ;

26 cubterm2 = sign(commonterml — sqrt(commonterml”2 — commonterm?2))xcubterm2; %b/c matlab

yields a complexr number
27 fuel_consumed = —B/(3%xA) — (1/(3%A))xcubterml — (1/(3%A))s*cubterm2;
28 end
29 end
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Appendix C. Matlab Code: The Models

A Deterministic Model

Code/SolveRoutes_Det.m

function [optimal_value, path] = SolveRoutes_Det(latlongs_routes ,

route_num ,strt_trial ,stepsize ,num_trial, TAS, U_interp, V_interp,klat

model = ’D’; %using deterministic data

sol_-mat = zeros(num-_trial, 3); %ensemble number | nlegs | optimal value
nlegs = strt_trial:stepsize:num-_trial*xstrt_trial;

num_mem = 1;

sol_mat = [];

%based on which route analyzing (route_num= 1,2,3,4,5)

LatA = latlongs_routes (route_num ,1);

LongA = latlongs_routes (route_num ,2) ;

LatB = latlongs_routes (route_num ,3);

LongB = latlongs_routes (route_num ,4) ;
for i = l:num-_trial

path_temp = zeros(20,nlegs (i) +1);

sol_mat_temp = [];

latlongmat = gcwaypts(LatA,LongA,LatB,LongB, nlegs(i));

latlongmat (:,2) = mod(latlongmat (:,2) ,360);

[optimal_value , path, DG] = WindCalcs_260ct (nlegs (i), 1, latlongmat ,

lon , TAS,model ,num_mem) ;

sol_mat_temp (1, 1) = 1;
sol_mat_temp (1, 2) = nlegs(i);
sol_mat_temp (1, 3) = optimal_value;

path_temp (1,:) = path;
path_mat (: ,1:nlegs(i)+1,i) = path_temp;
sol_mat = [sol_mat; sol_mat_temp ];

end

end

B Homan Model

Code/SolveRoutes_Mean.m

function [optimal_value, path] = SolveRoutes_Mean(latlongs_routes ,

route_num , strt_trial ,stepsize ,num-_trial, TAS, U_interp, V_interp,lat

model = 'E’; %using ensemble data

num-mem = 20;

%based on which route analyzing
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LatA = latlongs-routes (route_num,1);
LongA = latlongs_routes (route_num ,2) ;
LatB = latlongs_routes (route_.num ,3);
LongB = latlongs_routes (route_num ,4) ;
sol_mat = zeros(num-_trial, 3); %ensemble number | nlegs | optimal value
nlegs = strt_trial:stepsize:num_trial*xstrt_trial;
sol_mat = [];
for i = l:num_trial
path_temp = zeros(20,nlegs (i) +1);
sol_mat_temp = [];
latlongmat = gcwaypts(LatA,LongA,LatB,LongB,nlegs(i));
latlongmat (: ,2) = mod(latlongmat (:,2) ,360);
mean_-U = mean(U_interp ,2) ;
mean_-V = mean(V_interp ,2);
[optimal_value , path, DG] = WindCalcs_260ct(nlegs (i), 1, latlongmat, lat,
lon, TAS, model ,num_mem) ;
sol_mat_temp (1, 1) = 1;
sol_mat_temp (1, 2) = nlegs(i);
sol_mat_temp (1, 3) = optimal_value;
end
end
C IID Model
Code/SolveRoutes_IID.m
function [path_mat,optimal_vals,unique_routes, num-_routes, cost]
SolveRoutes_IID (latlongs_-routes , route_num ,strt_trial ,stepsize ,num-_trial,
V_.interp ,lat ,lon)
model = 'E’; %using ensemble data
num_-mem = 20;
%based on which route analyzing
LatA = latlongs_routes (route_num ,1);
LongA = latlongs_routes (route_num ,2) ;
LatB = latlongs_routes (route_num ,3);
LongB = latlongs_routes (route_.num ,4) ;
sol_-mat = zeros(num-_trial, 3); %ensemble number | nlegs | optimal value
nlegs = strt_trial:stepsize:num_trial*xstrt_trial;
mem = l:num-mem; % # of ensemble member to analyze
sol_mat = [];
for i = l:num_trial
path_temp = zeros(20,nlegs (i) +1);
sol_mat_temp = [];
for j = 1:num_mem
latlongmat = gcwaypts(LatA ,LongA,LatB,LongB, nlegs (i));
latlongmat (:,2) = mod(latlongmat (:,2) ,360);
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[optimal_value , path, DG] = WindCalcs_260ct(nlegs (i), mem(j), latlongmat, lat, U_interp,
V_interp, lon, TAS);
sol_mat_temp(j, 1) = j;
sol_mat_temp (j, 2) = nlegs(i);
sol_mat_temp (j, 3) = optimal_valuej;
path_temp(j,:) = path;
end
path_mat (: ,1:nlegs(i)+1,i) = path_temp;
sol_mat = [sol_-mat; sol_mat_temp ];
end
optimal_vals = sol_mat (:,3);
%%
ncol = 0;
all_unique_routes = [];
for 1 = l:num_trial
unique_routes = unique(path_mat (:,:,1),’rows’); %determine which paths are wunique across
ensemble members for each wval of nlegs
if num_trial > 1
unique_routes (:,l*stepsize+2:end) = []; % remove 0’s from nlegs being different
end
[num_routes ,”] = size(unique_routes); % determine the number of wunique paths
latlongmat = gcwaypts(LatA,LongA,LatB,LongB,nlegs(1));
latlongmat (:,2) = mod(latlongmat (:,2) ,360);
for k = l:num_routes
for i = 1:20
cost_vect = [];
[, 7, DG] = WindCalcs_260ct(nlegs (1), mem(i), latlongmat, lat, U_interp, V_interp,
lon, TAS, num-mem) ;
for j = 2:nlegs(1)+1
cost_-vect = [cost_vect; full(DG(unique_routes(k,j—1),unique_routes(k,j)))];
end
cost ((20x(k—1)+i) ,ncol+4+1l:ncol+2) = [sum(cost_-vect) k];
end
end
num-_routes_vec(l) = num_routes;
[T ,ncol] = size(cost);
end
end
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