
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2015

Reflections of a Wave: An Analysis of Photonic
Doppler Velocimetry Systems
Brian K. Lagrange

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Aerospace Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Lagrange, Brian K., "Reflections of a Wave: An Analysis of Photonic Doppler Velocimetry Systems" (2015). Theses and Dissertations.
174.
https://scholar.afit.edu/etd/174

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/174?utm_source=scholar.afit.edu%2Fetd%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


REFLECTIONS OF A WAVE: AN ANALYSIS
OF PHOTONIC DOPPLER VELOCIMETRY

SYSTEMS

THESIS

Brian K. Lagrange, 2nd Lt., USAF

AFIT-ENY-MS-15-M-242

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENY-MS-15-M-242

REFLECTIONS OF A WAVE: AN ANALYSIS OF PHOTONIC DOPPLER

VELOCIMETRY SYSTEMS

THESIS

Presented to the Faculty

Department of Aeronautical Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Brian K. Lagrange, B.S.E.E.

2nd Lt., USAF

March 16, 2015

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED



AFIT-ENY-MS-15-M-242

REFLECTIONS OF A WAVE: AN ANALYSIS OF PHOTONIC DOPPLER

VELOCIMETRY SYSTEMS

THESIS

Brian K. Lagrange, B.S.E.E.
2nd Lt., USAF

Committee Membership:

Dr. R. B. Greendyke
Chair

Dr. M. F. Reeder
Member

Maj. D. M. Liu, PhD
Member



AFIT-ENY-MS-15-M-242

Abstract

Munitions are one of the Air Force’s most effective weapons in eliminating targets,

but also one of the most expensive. Due to the inherent high-cost in deploying mu-

nitions, munition shock wave detonation must be better observed and quantified for

munitions to be more cost-efficient. PDV systems have the potential to achieve this

quantification of shock wave properties on a molecular scale during solid-aginst-solid

impacts. The overall goal of this research was to determine whether the current

photonic Doppler velocimetry (PDV) system at Eglin Air Force Base is prepared for

future explosive sensitivity testing. This determination was done through an un-

certainty analysis of the PDV system’s results. The PDV system was given shock

detonation velocities comparable to experimental explosive detonation velocities to

investigate how well the system performed. This thesis concluded that the current

PDV system employed by the Advanced Initiation Sciences team, (Munitions Direc-

torate, AFRL) is capable of explosive sensitivity testing. The errors from the data

results shows the current PDV system is within reasonable range to measure molecu-

lar shock wave interaction, with the highest noise fraction percentage at 5.1 percent.

The highest noise fraction percentage corresponded to a peak frequency of 1.27×1010

Hz, which corresponds to 3700 m/s. The bounds for velocity uncertainty were be-

tween 0.41 m/s to 1.51 m/s for all data sets in this thesis which lies in accordance

with past PDV experimental data.
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REFLECTIONS OF A WAVE: AN ANALYSIS OF PHOTONIC DOPPLER

VELOCIMETRY SYSTEMS

I. Introduction

“If you are going to use military force. Use too much and deliberately use too

much...You’ll save lives, not only your own, but the enemy’s too” [4]. This quote is

by one of the Air Force’s greatest warriors and leaders, General Curtis E. LeMay.

General LeMay was a Chief of Staff of the Air Force in his later years, but he is

more famously known for his bombing campaign against Japan in World War II. He

changed the United States bombing strategy against Japan from daylight bombing to

night-time bombing. On the night of March 10th, he flew alongside 325 B-29s loaded

with firebomb clusters ready to bring hell to Japan, as he would say.

The first night of the firebombing campaign was devastating. The raid hit over

16 square miles of land, resulting in the killing of about 100,000 people, civilian and

military included. According to the official Air Force History report of World War

II, “No other air attack of the war, either in Japan or Europe, was so destructive of

life and property.” The nighttime firebombing campaign continued for months until

the end of the war. At the end of the war, LeMay’s forces had dropped incendiary

munitions on 63 Japanese cities, leaving millions homeless.

Although this sort of tactic worked well in World War II, it is not popular with

the majority of the global audience as seen by the civilian response to Vietnam. The

Vietnam War is considered the first television war because many Americans, from

the comfort of their home, were able to watch horrific visuals of civilian casualties

from war fighting. These visuals led to many protests and propaganda denouncing
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the American military. This unpopular opinion of the American military lasted for

several years after Vietnam. In order to combat this unpopular opinion, the American

military had to realize that “Total War”, as defined by Clauswitz, is not possible.

About 55,000 civilian lives were claimed by United States bombings alone [22].

This number dropped significantly in the Gulf War to 3,500 civilian lives claimed from

bombings [24]. This statistic included bombings from both sides of the conflict. Dur-

ing the Iraq War from 2003 until 2015, only 5,300 civilian casualties were accounted

for by air attacks alone [1]. The majority of these casualties stemmed from the first

five years in theater. This number is incredible given the time frame this number is

distributed over but regardless of how precise the United States Air Force bombing is,

collateral damage and casualties do not assist the troops on the ground. Our current

enemies use these civilian casualties against us to win over the general population in

the Middle East, mainly in Afghanistan and Syria [20]. These extremists manipulate

people’s anger to perform heinous acts. Al-Qaeda and the Islamic State continually

gain members through the use of anti-foreign military propaganda specifically aimed

at the United States Armed Forces and the collateral damage caused by warfare [6].

Terrorists’ use of social media has been to their advantage with the ability to glob-

ally share their videos and pictures that promote their anti-foreign message [20]. As

long as this anti-foreign promotion continues, the U.S. troops will continue having

difficulty winning the hearts and minds of the middle eastern citizens [6].

This anti-foreign promotion can be attenuated through a reduction of collateral

damage. Ever since the advent of asymmetric warfare, terrorists have been using

guerrilla tactics and hostages to combat their enemies. These guerilla tactics prove

formidable against any countries’ military tactics, as shown currently in Syria, Libya,

and Nigeria. The effectiveness of these tactics is because the enemy themselves do

not follow the Law of Armed Conflict nor respect any haven for religion or displaced

2



refugees. Terrorists do not wear any formal uniforms, which makes them difficult

to identify [10, p. 11]. They literally could be anyone and the military would not

know it without prior intelligence. Terrorists also tend to hideout in mosques and

schools, knowing the military will not attack these places because it would be against

the military’s rules of engagement [11]. The only way places of religious practice and

public servitude can be targeted is if intelligence reveals that the specific building

in question is accommodating hostiles and/or equipment related to hostile activity

[2]. If this sort of intelligence is confirmed, the building becomes a legitimate target

under the international Law of Armed Conflict and the military is allowed to attack

the targeted building [2].

Even if the hostiles are identified, they are usually never in open areas or fields.

Operations Iraqi Freedom and Enduring Freedom introduced a long-forgotten type of

warfare recognized as Urban Warfare. Battles and ambushes take place in the mid-

dle of markets or even civilian’s neighborhoods. This sort of urban warfare requires

incredible precision and accuracy in explosive munition deployment to minimize civil-

ian casualties. As stated before, any civilian casualties during these type of battles

will just be attributed to allied military forces and used as propaganda. In order to

increase precision and accuracy in munitions and reduce collateral damage, it is vital

to understand explosive munitions themselves.

Explosive munitions can be detonated multiple ways but usually are pulse det-

onated in military application. Pulse detonated or pressure detonated explosives

means the explosive is ignited when strong pressure waves can cause the explosive

to detonate. The detonation event itself occurs on a microscale within the explosive.

Observing these microscaled events in an explosive will lead to better manipulation

of munitions in the future. The greater control the Air Force has over munitions,

the fewer bombs are required to eliminate a target. Due to the reduction of deployed

3



bombs the Air Force will eventually save money and lives as well.

Munitions cost millions of dollars to operate in combat. The LeMay way of muni-

tion deployment would not only be highly unpopular in today’s age, but it would also

be exorbitantly costly. With the United States government reducing funds to national

defense, munitions must be used wisely in theater and more importantly, complete

the mission successfully the first time. A major problem in theater is shielding from

explosive munitions [15, p. 23]. It usually requires several munitions to penetrate an

enemy’s defenses even behind a simple barrier, such as concrete or stone because the

munition tends to detonate on impact against the barrier before reaching the target.

The more munitions that are deployed, the more likely there will be collateral damage

suffered by the local community. The ideal situation would be for the munition to

penetrate through the defensive barrier and then detonate directly on target [15, p.

23].

In order for this ideal detonation to occur, munition detonation must be un-

derstood on a molecular level through cost-effective analysis. High-frame rate or

high-speed cameras have been used in past explosive research, but they do not reveal

any new information on a microscale. These sort of cameras are only useful on a

macroscale. In order to overcome the limitations of a high-speed camera, it would

have to be very close to the explosive and zoom in on the explosive until it can

view phenomenon on a microscale. This type of experiment would be very expensive

because the camera would be destroyed or at least damaged in the process of ob-

serving microscale decomposition. Recently, a new method of microscale observation

using lasers and the study of velocimetry has shown the most promise of effectively

analyzing shock-detonation phenomenon on a microscale in a cost-efficient manner.

Velocimetry is the study of the ”velocity of fluids” and has been of great interest

recently in the hydrodynamics community [23]. The reason for this sudden spark of
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interest is because it allows for accurate measurements of fluid properties at temporal

resolutions as small as a femtosecond in some velocimetry systems. Particularly for

this research, the temporal resolutions for both the traditional and upshifted photonic

Doppler Velocimetry (PDV) systems are on the nanosecond scale. The frequency

resolution for both systems in this particular research is measured in gigahertz, which

allows for the measurement of velocities in km/s [9]. The way a photonic Doppler

Velocimetry works is that a laser source at a particular wavelength, in this case λ =

1550 nanometers, is split into two beams [9]. The target laser beam is reflected off of

the moving target and is shifted based on the Doppler effect. The reference laser and

the shifted properties are combined and compared, from which target velocity can be

determined [9].

The flexibility and simplicity of the system is what makes the photonic velocimetry

system appealing for shock wave experimentation [9]. Wherever a Velocity Interfer-

ometer Sensor for Any Reflector (VISAR) is being used, a PDV can also be installed

and also be repaired quicker if damaged [9]. Results from PDV systems have been

shown to be “consistent” with VISAR readings [9]. Velocity resolution is better with

PDV system than VISAR, but uncertainty has yet to be determined with PDV system

which this research aims to resolve [9]. Also, there is a trade off between temporal

resolution and velocity resolution in PDV systems, but “the actual limits have not

been investigated” [9].

This thesis is aimed to test the upper limits of a single point PDV system and cal-

ibrate the system for future explosive sensitivity testing through an in-depth analysis

of shock-wave digitization by the PDV system. The PDV system will digitize and

measure shock wave velocities comparable to shock detonation velocities of explosives

to test the PDV system’s functionality. The experimental range of velocities will be

between 1500-4000 m/s from which uncertainties will be determined. The PDV sys-
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tems’s overall uncertainty will be quantified in noise fraction percentage, frequency

uncertainty, and velocity uncertainty. The uncertainty of this PDV system should

be comparable to uncertainties from past PDV experiments in order to prove it is

prepared for explosive sensitivity testing. The particular pressure at which certain

explosives detonate can be more precisely estimated in the future, which in turn leads

to greater control over detonation mechanisms for bombs on target. In order to gain

this mastery of munitions, a better understanding of shock-initiated detonation of

explosives is required to become more effective and cost-efficient in combat theater.

Timing is a huge factor when deploying munitions and meticulous analysis of shock

initiation of explosives will improve lethality, increase safety for munition handlers,

operators, and civilians, and reduce costs to the Air Force.
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II. Background

2.1 Early Initiation Theories

When the first explosives were formulated, many experiments were conducted to

analyze them. It soon became apparent that an explosion is just a special case of

combustion [25, p. 174]. The combustion within an explosion is dependent on “the

chemical kinetics and energetics of the reaction” between the fuel and oxidant [25, p.

174]. The fuel and oxidant are usually in physical contact in most explosions [25, p.

174]. The combustion happens so rapidly in an explosion “about an initiation source

that the heat generated as a consequence of the reaction cannot diffuse away from the

reaction front” [25, p. 174]. This heat from the initiation source causes other ignition

points to begin their combustion and “expand the gaseous products of combustion”

[25, p. 175]. From these rapid reactions, the gas products are compressed because

they cannot escape the reaction front and causes a “steep pressure gradient” [25, p.

175]. The pressure gradient itself becomes so steep that it eventually becomes a jump

increase in pressure, “or shock wave” [25, p. 175]. This shock wave is known as the

detonation wave “which then moves through the rest of the unconsumed mixture at

supersonic velocity” [25, p. 175]. The velocity of the detonation wave is relative to the

“speed of the sound in the undisturbed medium” [25, p. 175]. Therefore, keeping all

other factors constant, materials with a higher density will have higher sound speeds,

which results in higher detonation velocities [25, p. 175].

Detonation waves were first “observed around 1880 in France” [25, p. 175]. A

“high-velocity flame front” was seen as it propagated down a combustion tube in

several experiments back then [25, p. 175]. This phenomenon, identified as a shock

wave, was explained two decades later by Chapman(1899) and Jouguet(1906) [25,

p. 175]. Their explanations have been the basis for all shock wave research to this
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modern day [25, p. 175]. A “reaction zone” just behind the front of a detonation

wave “propagates the wave at a constant velocity through the energetic, also known

as an explosive, transforming the energetic into gaseous detonation products” [25, p.

175]. The main difference between a regular shock wave and a detonation wave is that

a “reaction zone” exists in a detonation wave to propel it and a regular shock wave

does not contain one. It is important to keep in mind both are “steady discontinuous

waves” [25, p. 175]. An analysis of how well the PDV system at Eglin AFB can trace

shock-wave interaction with thin-walled materials is the sole purpose of this thesis.

Detonation waves, given more resilient technology, will also be analyzed in the future

as well.

Before detonation can occur, the explosive must go through a state of deflagration

from a result of shock impact[25, p. 175]. Deflagrations are not as unstable as

detonations, but can be stabilized “through the use of the additives and physical

controls over burning rates” [25, p. 175]. Over the course of deflagration, given the

correct conditions, “the gas expansion reactions transition from being controlled by

the decomposition kinetics of the energetic material to the physics of the shock wave”

[25, p. 175-176]. Depending on the strength of the impact, the period of time to

transition from deflagration to detonation “may occur relatively slow or quick” [25,

p. 176]. The faster the impact, “the higher the intensity of the shock, the more

rapidly the explosive reaches a stable detonation” [25, p. 176]. Also, the containment

of the energetic material helps causes Deflagration to Detonation Transition (DDT).

The main difference between a deflagrant and a pure explosive is the presence of an

oxidizer. A deflagrant requires an oxidizer while a pure explosive already has the

oxidizer present in its chemical molecular structure. The only factor missing to ignite

a pure explosive is an increase in the material’s temperature which comes from a

transfer of heat into the material. This heat transfer can come from both a steady
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heat transfer into the energetic, like putting it in an oven, or from an increase in

pressure which translates to an increase in temperature, such as a shock from impact,

which is the preferred method.

2.2 Thermal Explosion Theory

According to Zukas, thermal explosion is defined as “spontaneous ignition of an

energetic material which generally means the sudden inflammation of a uniformly

heated mass of material” [25, p. 176]. Thermal explosion theory deals with the

relative rates of heat generation from the exothermic reaction versus the sources

of heat loss which are convection, conduction, and radiation [25, p. 176]. As the

temperature of the “reacting medium” increases during self-heating, it eventually

rises above the “temperature of the surroundings” [25, p. 176]. When the energetic

material’s temperature rises above the temperature of the surroundings, the heat from

the material begins to leak into the surroundings through the surface of the material

[25, p. 176]. As the heat dissipates to the surroundings, the reaction rate decreases

[25, p. 176]. Two theories were proposed to describe this phenomenon: Semenov’s

Theory and Frank-Kamenetskii Theory [25, p. 176].

2.2.1 Semenov’s Theory

Between 1928 and 1932, Semenov assumed an Arrhenius reaction form to the

chemical oxidation of a given energetic [25, p. 176] Therefore, the rate of heat gener-

ated rises exponentially as a function of temperature but the rate of heat dissipation

is a linear function of temperature [25, p. 176]. Given this information, there exists

a “Critical Temperature” in which heat generation by exothermic reaction greatly

exceeds heat dissipation to surroundings which results in “ignition” of an explosive

[25, p. 177]. This “critical temperature” is the boundary between deflagration of an
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explosive or its complete decomposition leading to detonation [25, p. 177]. Note, an

explosive will always oxidize on its own. What matters is how fast this oxidation

occurs to cause an ignition of the explosion.

Figure 1. Temperature curves as a function of time under different conditions in self-

heating [25, p. 177]

In Figure 1, each curve represents different self-heating reacting conditions for

the same material [25, p. 177]. Also note in Figure 1 T0 represents the temperature

of the local environment surrounding the energetic. Curve 1 in Figure 1 represents

the condition when the rate of heat generation exceeds the rate of heat loss which

results in an explosion [25, p. 177]. Curve 2 in Figure 1 displays what happens
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when “the rate of heat loss, after some time, exceeds the rate of heat production”

[25, p. 177]. Curve 3 is the most important of the curves because it represents the

peak temperature at which stable decomposition can occur which will not result in

an explosion which is known as the “critical condition” [25, p. 177]. In Figure 1, as

the warming periods become shorter to reach the same temperature, which means a

higher rate of heat generation, the energetic will more likely explode.

In 1928, Semenov made the first mathematical representation of a critical con-

dition but it was very simplified given the time period. It was originally a partial

differential equation but Semenov had to make glaring assumptions in order to solve

for it because, during that time, there were no ways to solve the partial differential

equation. He assumed the energetic self-heated to a uniform temperature throughout

the material, which as scientists know, is blatantly wrong due to “hot spot” theory

which will be explained later in this chapter. The following equation describes heat

generation according to Semenov Theory:

dq1
dt

= QV ρAexp

(
E

RT

)
(1)

Here, Q is the exothermicity of the reaction, ρ is the density of the explosive,

and V is the volume of the explosive in equation (1) [25, p. 178]. To continue with

equation (1), A is known as the pre-exponential factor, E is the activation energy, T

is temperature, and R is the universal gas constant.

Semenov also assumed the rate of heat loss was linear, which is correct according

to a Newtonian Law of Cooling, but Semenov only considered convection as the sole

form of heat transfer between the energetic and its surroundings [25, p. 178]. He

did not consider radiation, conduction, nor advection. The equation for heat loss

according to Semenov Theory is as follows:
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dq2
dt

= χS(T − T0) (2)

In equation (2), χ is the heat transfer coefficient which Semenov assumed was

independent of the temperature, but later developments showed this variable was

very dependent on the temperature [25, p. 178]. S is the surface area, T is the

uniform temperature of the explosive material, and T0 is the temperature of the

surroundings [25, p. 178]. When equation (1) equals equation (2), a “steady thermal

state” is achieved [25, p. 178]. A steady thermal state is quite difficult to achieve

in reality and is quite transitory [25, p. 179]. Semenov’s research although was far

from the truth in combat application, it did pioneer into a new aspect of explosives in

which different forms of heat transfer became important for explosive initiation [25,

p. 182]. In 1961, experiments proved that Semenov Theory aligned well with well-

stirred liquids [25, p. 179]. In combat applications, the military usually utilizes solid

explosives instead of liquid ones due to the higher stability of solid-molded explosives

where conduction has a huge influence on initiation.

2.2.2 Frank-Kamenetskii Theory

In Semenov Theory, the main mode of heat dissipation was convection. In Frank-

Kamenetskii Theory (1939), the main mode of heat dissipation was convection as well,

but into the energetic itself. An erroneous assumption Frank-Kamenetskii made was

that thermal conductivity between the reactant and surroundings was small, but as

shown in combat missile testing, thermal conductivity must be considered as a factor

especially in the coldness of high altitude. The Frank-Kamenetskii Theory is great for

thin-walled containers but military projectiles are thick-walled which causes a tem-

perature gradient in the wall or the reactant [25, p. 183]. He did consider the heat

conductivity within the reactant itself as a form of heat dissipation, which contrasts
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with Semenov Theory [25, p. 182]. This consideration assumes a distributed tem-

perature in the reactant itself, where Semenov assumes a uniform temperature in the

reactant, which makes Frank-Kamenetskii Theory much more realistic than Semenov

[25, p. 182]. This consideration also allows for Frank-Kamenetskii to approximate

“hot spot” heating as well as bulk heating for a reactant [25, p. 182]. A tempera-

ture difference, or heat sink, must exist between the center of the material and the

surface. This temperature difference is important because later experiments showed

that ”hot spots” in an energetic begin not at the surface, but within the energetic.

Experiments also have shown that resistance to heat flow in a reactant exists both at

the surface and within the material itself which means realistic heat transfer exists

between Semenov’s and Frank-Kamenetskii’s theory. Frank-Kamenetskii applies best

to unstirred liquid explosives and low-conductivity solids [25, p. 183].

∇·(λ∇T ) = Cv
∂T

∂t
(3)

Fourier’s Law of Heat Conduction, as shown in equation (3), formed the basis for

the equation representation of Frank-Kamenetskii’s Theory [25, p. 183]. Here, λ is

the thermal conductivity of the material and Cv is the heat capacity per volume [25,

p. 183]. In order for equation (3) to be solved, isotropic conductivity must be as-

sumed [25, p. 183]. After this assumption, equation (3) becomes a partial differential

equation which means exact solutions were only possible for three geometries. These

geometries are an infinite plane slab, an infinite circular cylinder, and a sphere. From

these geometries, equation (3) can be expanded into the following:

λ∇2T − Cv
∂T

∂t
= −Q·f(c)·Aexp

(
− E

RT

)
(4)

In equation (4), ∇2 represents the Laplacian operator [25, p. 183]. Also, f(c) is a
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function of the reactant concentration related to the material’s density [25, p. 183].

The three major assumptions made in Frank-Kamenetskii were assuming steady state,

assuming the energetic was in the shape of one of the three geometries, and assuming

a series approximation for the exponent term [25, p. 184]. The first assumption allows

for a constant density throughout the material. The second assumption is acceptable

for theoretical studies but does not capture the complexities of the real world. The

third assumption makes use of Semenov’s identity for “critical temperature”. These

assumptions turned the partial differential equation into an ordinary differential equa-

tion because Frank-Kamenetskii eliminated time and two spatial dimensions but his

elimination of time was highly incorrect.

Tcrit =
RT 2

0

E
(5)

This identity was reached after a Taylor Series Expansion in equation (4) for the

exponential term [25, p. 185]. After lengthy non-dimensionalization using equations

(5) and (4), Frank-Kamenetskii Theory was proven to be seen as the lower bound of

“critical temperature” approximations while Semenov’s Theory was the upper bound.

A thermal explosion study by Merzhanov in 1959 of molten tetryl measured critical

temperatures of the energetic at specified oven temperatures [25, p. 188]. Conclusions

from this study stated that the true critical temperature was between the predicted

values by Semenov and Frank-Kamenetskii [25, p. 188]. Further investigation of this

study revealed that assumptions of both Semenov and Frank-Kamenetskii were vio-

lated. The thermal gradient within the reactant violated Semenov’s assumption of

a uniform temperature. The temperature difference between the energetic’s surface

and the surroundings violated the assumption of convection only happening going into

the energetic. Regardless of these violations in the study, Merzhanov’s experiments,

through time-dependent numerical solutions, led to quantitative and qualitative in-
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sight into “hotspot” initiation.

2.3 Early Detonation Theory

There is a specific “critical mass” for each explosive where anything less than this

mass and the explosive will deflagrate, or burn slowly, given the explosive is in an

open area uncontained [25, p. 189]. At the specific “critical mass”, the explosive

will detonate in an open area uncontained [25, p. 189]. The explosive still has the

capability to detonate at a mass less than the critical mass “if the explosive were

under confinement” [25, p. 189]. An explosive’s detonation can also cause other

explosives to detonate under conditions where they would not “if the explosive was

subjected only to an open flame condition” [25, p. 189].

These studies on deflagration and detonation were conducted during the late nine-

teenth century in order to see how quickly, and specifically where in the energetic,

these events occurred [25, p. 189]. Shock-wave theory was also emphasized during

this time and scientists began to realize that “compression waves of finite amplitude”

can be increased in small steps of pressure and velocity at the front of the wave which

it will cause it to become endlessly steep [25, p. 189]. This ever-increasing steep-

ness in the wave ultimately would result in a discontinuous, or a jump, supersonic

wave known as a “shock wave” which will be described in greater detail later in this

chapter [25, p. 189]. When the detonation reaches a state of stability, the chemical

transformation of the explosive into gas products supplies energy to the shock wave

to continue steadily or accelerate [25, p. 191].

Rarefactions appear from these gas products which merge with shocks and reduce

a shock wave’s amplitude and velocity [25, p. 191]. There is a “critical diameter” in

which the detonation products must be greater than in order to maintain the shock

wave [25, p. 191]. When the column of detonation products is greater than the
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critical diameter, the rarefaction waves form “too far from the shock wave to affect

the detonation front” [25, p. 191]. If the column is less than the critical diameter,

the rarefaction waves collide with the detonation front and decelerate the shock wave

due to the gas products expanding perpendicular to the direction of the detonation

wave [25, p. 191].

Data on chemical changes is vital to the study of shock waves, especially in the

hydrodynamic theory of detonation [25, p. 192]. Within this data set, the variables

must include the heat of explosion, the amount of gas products, the detonation tem-

perature, and the pressure at detonation [25, p. 192]. Multiple techniques, such as

calorimetric bombs and scanning calorimeters, have been utilized to gain experimental

data which are compared to theoretical solutions [25, p. 192].

2.4 Shock Initiation of Warheads

Shock initiation is the main method of detonating explosives in combat. An in-

crease in pressure in the warhead from a shock wave causes an increase in temperature.

The increase in pressure must be on the order of gigapascals for prompt detonation

[25, p. 192]. The microstructure within the explosive itself is compressed into small

little voids inherent in the physical structure of the material. This compression in

such a small void leads to an enormous increase in temperature very rapidly within

the void which affects the grains of explosive surrounding the void. These voids of

extreme temperature are called “hotspots.” [25, p. 188].

Hotspots are essentially where the detonation process begins and it occurs on a

molecular scale. Hotspot areas are significantly hotter than the rest of the material by

at least 10 orders of magnitude. There are two types of hotspots: inert and reactive

[25, p. 188]. Reactive hotspots occur within the explosive itself and inert hotspots

occur within the voids of the explosive material [25, p. 188]. Inert hotspots are more
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likely to happen after a shock-wave passes through the explosive.

Deflagration to detonation transitions can occur when the explosive is contained

but it is easier to study detonations from shock inputs [25, p. 192]. Deflagration to

detonation transitions are difficult to study because the “high-confinement” systems

make it difficult to observe the phenomenon [25, p. 192]. Shock inputs are much

more controllable and also can be more easily observed in terms of amplitude and

duration which is important for this thesis [25, p. 192]. Hopefully in the future, PDV

systems can be applied to analyze how explosive material interacts with shock-waves

on a molecular scale.

As stated before, this thesis deals with the shock propagation similar to that seen

in flyer-type initiators used in detonators. Gap tests were performed in 1958 and

1960 to “determine the thickness of barrier required to prevent the receptor charge”

in the explosive from detonating in 50% of the experimental tests [25, p. 192]. Shock

initiation theory is dependent on the chemical reaction rate that is initiated by the

original shock going through the barrier [25, p. 193]. In turn, the chemical reaction

rate is dependent on the amplitude of the shock [25, p. 193]. The weaker the shock is,

the slower reaction is, and the less likely the explosive will detonate and more likely

deflagrate [25, p. 193]. The way the shock was weakened in gap tests was through

the incremental increase in barrier thickness [25, p. 193]. As the barrier thickness

increased, the weaker the initial shock entering the receptor became [25, p. 193]. The

input shock amplitude is decreased until a threshold is reached “for a given explosive

in a given geometry” where detonation does not occur [25, p. 193]. The accuracy

of this input shock threshold is what this thesis lays the foundation for in future

experiments. Photonic doppler velocimetry systems can give scientists better insight

into improving the control of shock initiated detonations.
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2.5 Hugoniots

A Hugoniot represents the loci of equilibrium products from isentropic expansion

back down to equilibrium. Essentially, they represent the equation of state for a

specific explosive at a certain pressure and volume. Equations of state are “all of

the equilibrium states in which a material can exist and is written in terms of three

variables: specific internal energy, pressure, and specific volume” [7, p. 186]. One

perfect example of an equation of state is the ideal gas equation, shown below [7, p.

186].

PV = nRT (6)

Gases are not of great concern within this thesis but the main interest is solids [7, p.

186]. The perfect equation of state for solids is listed below [7, p. 186].

e = f(P, v) (7)

Through some equation manipulation, “the internal energy, e, term is eliminated,

resulting in the following relationship” [7, p. 186].

P = f(v) (8)

The equation (8) is known as the Hugoniot equation, but there are many versions of

this equation [7, p. 186]. Through the use of the conservation of mass, momentum,

and energy, a multiplex of variables can be related. These variables include shock

velocity, U, and particle velocity, u [7, p. 186]. A list of relationships is listed below.

P − U, P − u, P − v, U − u, U − v, u− v (9)
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Over the years of explosives research, it was experimentally determined that “the

shock velocity was linearly related to the particle velocity, for most materials” [7, p.

186]. An equation for the linear relation was developed [7, p. 186].

U = C0 + su (10)

The most useful of the variable relationships stated beforehand are the U-u plane,

P-v plane, and the P-u plane [7, p. 186].

2.5.1 The U-u plane

As seen in equation (10), the shock velocity and the particle velocity are linearly

related. The y-axis intercept, C0, from equation (10) is known as the “bulk sound

speed” [7, p. 186]. The term, s, represents merely the slope of the line and has no

physical value [7, p. 186].
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Figure 2. U-u Hugoniot Data for 6061 Aluminum from [7, p. 187]

The linear relationship between shock velocity and particle velocity can also be

visualized on a chart, as shown in Figure 2. For a specific material, the initial shock

velocity can be predicted after the particle velocity has been calculated using a graph

similar to Figure 2. The square blocks on Figure 2 are shock states of that specific

material and these square blocks are data points that were obtained experimentally.

After plotting the data points, it was determined a first degree polynomial was the

best fit curve, hence how the linear relationship was constructed. This experimen-

tation and calculation was done for many inert materials and unreacted explosives.
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As the particle velocity increases, the accuracy of the linear equation decreases as

seen in Figure 2. The linear Hugoniot equations for all materials are not listed in

any references across the spectrum of explosives research [7, p. 187]. How scientists

work around this setback is through extrapolation from similar materials [7, p. 187].

Scientists try to match materials from “same chemical families and similar crystal

structure” in order to extrapolate a linear relationship from a known material [7, p.

187]. The best case scenario from this matching methodology “will yield guesstimated

values within a 10 to 15 percent range of reality” [7, p. 189].

2.5.2 The P-u plane

The U-u Hugoniot equations are manipulated to eliminate the shock velocity and

just leaving P-u [7, p. 199]. The biggest difference between the P-v plane and the

P-u plane is that the P-v plane is Lagrangian while the P-u plane is Eulerian [7, p.

199]. The P-v plane assumes the initial particle velocity, u0, to be zero which meant

looking at the shock “relative to the material” [7, p. 199]. The P-u plane takes into

account the motion of the material before the shock impacts the material [7, p 199].

The Lagrangian P-v equation is:

P1 = p0C0u1 + p0s(u1)
2 (11)

and after an Eulerian transformation becomes [7, p. 199]

P1 = p0C0(u1 − u0) + p0s(u1 − u0)2 (12)

This transformation can also be viewed visually.
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Figure 3. P-u Lagrangian Hugoniot Plot with u0 at zero from [7, p. 199]
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Figure 4. P-u Eulerian Hugoniot Plot with u0 at different constants from [7, p. 200]

Figure 3 is Lagrangian and Figure 4 is after the Eulerian transformation [7, p.

199-200]. Each plot in the series of P-u Hugoniots in Figure 4 represent a different

u0. Each Hugoniot curve in Figure 4 represents a different initial particle velocity,

but the same Hugoniot, hence why they are parallel. [7, p. 200]. The slope from

initial conditions to final conditions along the Hugoniot is also a straight line, which

is the same in the P-v plane [7, p. 200]. The equation for the slope of the jump is:

(slope of jump) = (P1 − P0)/(u1 − u0) = p0(U − u0) (13)

From equation (13), “the slope of the jump condition on the P-u plane is also

a function of shock velocity” [7, p. 200]. The U in equation (13), represents shock

velocity with respect to laboratory coordinates [7, p. 200]. The Lagrangian shock
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velocity is symbolized by the quantity U−u0 [7, p. 200]. Both types of shock velocities

can be solved for through simple algebra [7, p. 200].

(slope of jump)/p0 + u0 = UE Eulerian/laboratory Coordinates (14)

(slope of jump)/p0 = UL Lagrangian Coordinates (15)

2.5.3 The P-v plane

This planar relationship was the most vital for this research because both variables

can be directly measured from experiments and the relationship can easily be proven.

If it is assumed P0=0 and u0=0 in U-u Hugoniot equation, an expression P=f(v)

can be derived by discarding the particle and shock velocity terms [7, p. 189]. The

Hugoniot in the P-v plane is expressed as the following [7, p. 191]:

P = ((C0)
2)(v0 − v)[v0 − s(v0 − v)]−2 (16)

As stated before, a Hugoniot represents a particular material’s locus of potential

equilibrium states in which it can exist, not necessarily the course of stress the material

takes [7, p. 191]. Multiple experiments and simulations have to be performed in order

to discover each equilibrium state for a specific material [7, p. 191]. An example of

these results is shown in Figure 2 for aluminum 6061 [7, p. 191]. The Hugoniot itself

can be considered an isentrope for applicative purposes in engineering explosives [7,

p. 191]. In theory, the Hugoniot is not the isentrope itself but the values for both

are so similar, they can be considered the same for practical purposes [7, p. 193]. As

pertaining to the thermodynamic laws, isentropic functions are continuous, therefore

relief waves, also known as rarefactions, are continuous as well [7, p. 191]. This
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characteristic of continuity is why the Hugoniot is also known as “the unloading

isentrope” [7, p. 193].

Figure 5. A general P-v Hugoniot from [7, p. 193]

The Hugoniot shown in Figure 5 is a chart that will be referred to quite often

throughout this thesis. The Rayleigh line in Figure 5 represents the jump condition,

and it “joins the initial and final states” which means it is discontinuous [7, p. 193].

The equation for the Raleigh line is as follows:

P1 − P0 =
U2

v0
− U2

v20
v1 (17)

If equation (13) is treated as the point-slope form of a line equation, then the

slope of the line is −U2

v20
[7, p. 193]. The shock velocity can be solved for from this
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information, as shown below [7, p. 193]:

U = −(slope of jump)/p0 (18)

Also, if either the final P-v state or the initial P-v state along with the shock

velocity is known, we can solve for the other unknown state [7, p. 193].

Figure 6. Elastic-Plastic Region P-v Hugoniot from [7, p. 194]

Looking at Figure 6, there are three different regions: Plastic, Elastic-Plastic,

and Elastic. The line at P1 is the “elastic limit” [7, p. 193]. The straight line going

through P0, v0 and P1, v1 is just linear elastic stress-strain correlation [7, p. 194]. This

correlation means any pressure waves that are contained within the elastic region will

have the same longitudinal sound speed, CL [7, p. 194]. The longitudinal sound speed
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is just simply the “characteristic velocity of a uniaxial elastic wave” [7, p. 194]. This

longitudinal sound speed is not the same as C0 from the U-u, although the two are

related. Generally, CL is higher than C0 by 15-20 percent for most materials [7, p.

194]. If a pressure wave passing through is higher than P2 from Figure 6, it will have

a “Rayleigh line slope greater than the slope of the elastic Hugoniot, and will have

a shock velocity higher than CL” [7, p. 194]. The region above P2 is also known

as the “strong shock” region, as shown in Figure 6 [7, p. 194]. This region is the

“strong shock region” because “no pressure waves can be faster at the shock front

than the shock velocity” and the pressure waves in this region also have a “sharp,

discontinuous front” [7, p. 194]. This discontinuity at the shock front is known as the

peak pressure. The plastic, or strong shock, region is investigated greatly throughout

this research [7, p. 194].

As shown in Figure 6, between the elastic region and the plastic region is the

elastic-plastic region. If a pressure wave from the initial state moves to any pressure

between P1 and P2, “it will have a shock velocity below CL” [7, p. 194]. This

phenomenon is proven just by simply looking at Figure 6 because the “Rayleigh

line slope is less than that of the elastic Hugoniot.” A pressure wave that is within

the elastic-plastic region is essentially two waves [7, p. 194]. There is an “elastic

wave traveling at CL” and a plastic shock wave whose shock velocity is given by the

Rayleigh line slope at that specific pressure [7, p. 194]. Both waves are moving in

the same direction, but the plastic shock wave “trails farther and farther behind” as

time progresses [7, p. 194]. This progressive trailing means the wave will eventually

dissipate due to the faster “elastic precursor” [7, p. 194]. Also, the rarefaction wave

reaching the back of the shock helps dissipate the initial pressure wave as well [7,

p. 194]. Through rarefaction and “smearing” of the wave, the pressure wave in the

elastic-plastic region eventually becomes an acoustic wave [7, p. 194].
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The only Hugoniot plane that exists in the strong shock region is the U-u plane.

There is very little data on the elastic-plastic region due to the difficulty of measuring

transitioning Hugoniots [7, p. 195].

Figure 7. The path a shock takes on a P-v Hugoniot from [7, p. 197]

Figure 7 represents a visualization on how the energy transforms during the shock

process in the plastic region [7, p. 195]. As stated before, the Rayleigh line represents

the jump condition “from an initial state (P0, v0) to a state behind the shock (P1, v1)”

[7, p. 196]. Through elimination of the shock velocity from the mass and momentum

equation and assuming u0=0, an expression for shock energy can be derived [7, p.

196].

1

2
u21 =

1

2
(P1 − P0)(v0 − v1) (19)
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The term on the left side of equation (19) is the “kinetic energy per unit mass

of the material in the state behind the shock (KE=1
2
mu2), which is also known as

the specific kinetic energy” [7, p. 196-197]. The term on the right side of equation

(19) is the “area of the triangle bounded by the Rayleigh line” where the Rayleigh

line represents the hypotenuse of the triangle [7, p. 197]. From equation (19), it can

be deduced that if the area of the triangle increases, the specific kinetic energy will

increase as well [7, p. 197]. Using the energy equation, an equation for the change in

specific energy can be found [7, p. 197].

e1 − e0 =
1

2
(P1 + P0)(v0 − v1)

=
1

2
(P1 + 2P0 − P0)(v0 − v1)

=
1

2
(P1 − P0)(v0 − v1) + P0(v0 − v1)

(20)

This change in specific energy is equal to “the area of the triangle plus the area

of the rectangle bounded by P = P0, P = 0, v = v0, and v = v1” [7, p. 197]. As the

pressure wave follows the path of the Rayleigh line, the relief wave follows the “path

of the isentrope” which essentially is the Hugoniot [7, p. 197]. The relief wave returns

the material back to its initial state at P0, v0 [7, p. 197]. Knowing this information

about the relief wave, it can be seen from Figure 7 that “the change in specific internal

energy for the relief wave is the total area under the Hugoniot segment from P0 to

P1” [7, p. 198]. Upon further inspection of Figure 7, there is an area between the

Raleigh line and the Hugoniot [7, p. 198]. The area between the Raleigh line and the

Hugoniot is the “final specific internal energy” the energetic material was increased by

[7, p. 198]. This observation makes sense because this area is “the difference between

the area under the Raleigh line and the area under the Hugoniot segment” [7, p.

198]. The increase in the material’s internal specific energy is due to an increase in

temperature in the material’s thermal state [7, p. 198]. This increase in temperature
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was caused by an increase in pressure from the initial shock wave passing through

the material [7, p. 198]. If the initial shock wave is strong enough in magnitude, “the

area between the Hugoniot and the Raleigh line, for some materials, gets sufficiently

large that the final internal energy change is great enough to melt or vaporize it” [7,

p. 198].

2.6 Impact of Two Slabs

In order to better visualize the experiments, an example will be utilized to explain

similar phenomenon seen in the experiments. Imagine there are two slabs, slabs A

and B, where “slab A is flying from the left toward slab B on the right at a velocity of

u0 = u0A” [7, p. 203]. The slabs are very thick in this case in order to better highlight

rarefaction waves, but rarefaction waves are not of major importance in this thesis.

Upon impact between the two slabs, “a pressure or shock pulse is formed” which

moves into slab B toward the right as well to the left into slab A [7, p. 203]. In

accordance with this thesis, the chip colliding with the PMMA window is slab A and

the PMMA window is slab B.

30



Figure 8. An x-t diagram of slab A impacting slab B from [7, p. 205]

As long as contact is maintained between slab A and slab B, the pressure and

particle velocity “on both sides of the interface, must remain the same and equal”

in that moment of collision [7, p. 204]. As seen in Figure 8, slab A continues to

move towards slab B “as time progresses” while slab B stands still [7, p. 204]. This

phenomenon can be seen by the line segment from (x1, t0) to (x2, t1) where the slope

of this line segment is the reciprocal of slab A’s particle velocity [7, p. 204]. Therefore

as the particle velocity gets smaller, the slope becomes steeper [7, p. 204]. Any of
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the shock velocities being displayed in Figure 8 are in reference to the lab coordinate

system. [7, p. 204]. At time t1, slab A impacts slab B where two shocks are essentially

created: one that runs into slab A and one that runs into slab B [7, p. 204]. The

shocks originated from the same impact, which means both the pressure and particle

velocity are same for both materials [7, p. 204]. The shock velocities cannot be the

same for both materials due to impedance, which will be explained later [7, p. 204].

Using the Hugoniot equations for both the right-running and left-running shock, the

particle velocity u1 can be solved for along with P1 [7, p. 205].

Hugoniot for right-running shock [7, p. 204]:

PR = p0C0(u1 − u0) + p0s(u1 − u0)2

p0 = p0B, C0 = C0B, s = sB, u0 = 0

P1 = p0BC0Bu1 + p0BsBu
2
1

(21)

and the Hugoniot for left-running shock [7, p. 205]:

PL = p0C0(u0 − u1) + p0s(u0 − u1)2

p0 = p0A, C0 = C0A, s = sA, u0 = u0A

P1 = p0AC0A(u0A − u1) + p0AsA(u0A − u1)2

(22)

Using the set of equations from equation (21) and equation (22), “the shock ve-

locity in both materials can be solved for” [7, p. 206].

ULAB,B =
P1

u1p0B
(23)

ULAB,A =
P1

p0A(u1 − u0A)
+ u0A (24)
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Figure 9. A P-u diagram of slab A impacting slab B from [7, p. 206]

A graphical representation of each slabs respective shock velocities and Hugoniots

can be seen in Figure 9 Notice how the shock in slab A is moving from right to left

and the shock in slab B is moving from left to right. The intersection of both curves

in Figure 9 at P1, u1 represents the final jump condition for both materials [7, p. 206].

The shock velocity for each material is also the “slopes of lines connecting the jump

conditions for each material” [7, p. 206].

33



2.6.1 Impedance: Shock at Interface

Impedance, Z in this case, is defined as “the measure of the opposition that a

system presents to an acoustic flow when an acoustic pressure is applied to it” [21].

The equation for shock impedance, according to Cooper, is [7, p. 208]:

Z = p0U (25)

As seen from equation (25), density, p0, is one of the terms on the right side of the

equation along with shock velocity, U [7, p. 208]. For this thesis, consider the shock

velocity is constant as it moves through both slabs of material [7, p. 208]. Pressure

increases with increasing shock velocity, as shown in the momentum equation below.

P = p0uU (26)

The change in pressure is very slow for each material in a such a short time span

that the shock velocity can be considered constant throughout the collision [7, p. 208].

Therefore, in this case, the only factor that can alter a specific material’s impedance is

the density [7, p. 208]. The higher the density of a material, the higher the impedance

of that material given the same shock velocity when comparing to other materials [7,

p. 208]. In this research, the shock will travel from a high-impedance material to

a low-impedance material for every experiment, therefore only what happens to the

shock during this phenomenon will be clarified[7, p. 208].

As a shock passes from a high-impedance material to a low-impedance material,

the shock pressure will decrease [7, p. 208]. This in turn will decrease the particle ve-

locity of the shock, dissipating the shock throughout the material which will lengthen

the time the shock passes through the material [7, p. 208].
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Figure 10. A P-X diagram of slab A approaching slab B
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Figure 11. A P-X diagram of slab A approaching slab B just before impact from [7, p.

214]
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Figure 12. A P-X diagram of slab A approaching slab B at moment of impact from [7,

p. 214]
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Figure 13. A P-X diagram of slab A colliding against slab B just after impact from [7,

p. 215]
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Figure 14. A shock depiction of when ZA is greater than ZB from [7, p. 215]

Due to the higher impedance of slab A, the Hugoniot of slab B will be lower than

the Hugoniot of slab A as shown in Figure 14 [7, p. 213]. In Figure 10, slab A is

approaching slab B. Slab B has all initial conditions at zero because it is stationary

while slab A has specific initial conditions. In Figure 11, slab A is just about to

impact slab B but the shock itself is just slightly ahead of slab A. This means the

shock from slab A impacts slab B before slab A physically collides with slab B. The

fact that there is a shock ahead of the flying slab is important in this thesis. In the

data, this is shown as a spike in the frequency analysis, representing the highest shock

pressure throughout the whole event. The spike is known as the peak pressure and

will be explained later during the discussion of the results.
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After the collision, a shock passes through slab A and a separate shock passes

through slab B as shown in Figure 12. Both of these shocks are identical in magnitude

initially. Figure 13 is the aftermath of the impact and the shocks are still passing

through their respective slabs. Note the pressure for shock UA2 in Figure 13 is the

same as the initial pressure condition because it is passing through the same material

in Figure 10. The pressure for shock UB in Figure 13 is of lower magnitude than initial

conditions because the original shock is passing from a high-impedance material to a

low-impedance material.

The original shock emitted from slab A at impact is essentially split into two

shocks, but each shock is identical to the original. In Figure 14, the two identical

shocks are represented by the slab A right-going Hugoniot and the slab A left-going

Hugoniot. Note, both Hugoniots intersect at P1 which is the same pressure of slab A

at initial conditions, before impact. While the left-going Hugoniot moves away from

the interface between the slabs, the right going Hugoniot goes towards the interface

as shown in Figure 12. After the right-going Hugoniot passes through the interface,

the right-going shock’s pressure drops due to the impedance change from high to

low, which can be seen in Figure 13. The drop in pressure for the right-going shock

passing through the slab B material is represented by the right-going B Hugoniot

in Figure 14. The right-going B Hugoniot has dropped to a pressure level of P2

according to Figure 14. This drop in pressure will also be seen in Chapter 4.

2.7 Photonic Doppler Velocimetry (PDV) Overview and History

Photonic Doppler Velocimetry (PDV) systems were used successfully in labora-

tory experiments throughout the early 2000s and its flexibility was truly demonstrated

during an “R-Damage series” experiment [17]. This experiment dealt with the analy-

sis of shock waves and magnetic fields. The fact that the PDV system was still intact
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and did not require recalibration after the experiments demonstrated the robustness

of the system. A PDV is essentially a “Michelson interferometer” contained in optical

fiber wiring which allows it to operate at high frequency. A laser at an original wave-

length (λ0) of 1550 nanometers (nm) is split into two paths. Some percentage of the

laser is used as a reference laser and is aimed at the interferometer unaltered. The rest

of the laser’s percentage is aimed at a moving surface which causes a Doppler-shift

in that percentage of the laser. The Doppler-shift results in a different laser wave-

length, and hence frequency, being reflected off the moving target. The interferometer

receives the Doppler-shifted light reflected off the moving surface and recombines it

with the reference laser. This recombination of the two laser paths results in a fringe

pattern, or beat frequency, due to the differences in wavelength from each path. This

beat frequency is then proportional to the velocity of the specified moving target by

(λ0)/2 [12]. A current PDV system utilizes a wavelength of 1550 nm because of the

excellent compatability this wavelength has with fiber optic cables, as proven through

commercial telecommunication operations.

Highly efficient digitizers record these signals and are able to produce graphs of

frequency vs. time through “Fast Fourier Transform techniques.” The velocity of the

moving surface can be obtained as well by just simply multiplying this frequency by

λ/2 which is a constant proportionality between the velocity and the beat frequency

[12]. The use of optic fiber cables in the PDV system is also what makes the system

so appealing. The optic fiber cables make it more compact, lightweight, and easy

to setup in a mere few hours as opposed to past interferometers which would take

days to be fielded. As to be seen in data analysis, noise frequency will always be a

problem but can be avoided simply through a band filter or band pass [12]. Other

velocimeters, such as Velocity Interferometer System for Any Reflector (VISAR) or

Fabry-Perot, operate in the amplitude domain which limit these velocimeters in cer-
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tain experimental configurations [17].

Figure 15. Differences between how VISAR measures versus how PDV measures

Also, VISAR measures position at two different discrete times while a PDV con-

tinuously measures position while the target moves as shown in Figure 15 [12]. This

difference in each system’s measurement procedures means a scattering shift for a

change in velocity looks as a ramp for a VISAR while it looks as a step for a PDV.

Analysis of signals for both VISAR and PDV is an approximation. PDV systems
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operate in the frequency domain which allows for a versatile range of dynamic data

analysis under “a wide variety of experimental conditions.” The way displacement

is measured in a PDV is that the reflected beam signal from the moving target is

recorded as well as the reference beam signal in which a fringe pattern can be de-

duced. The sources of interference for the reflected beam signal is from the steady

velocity of the analyzed target, surface roughness, and surface temperature variation.

In past flyer plate shock experiments at Livermore Laboratories and Sandia, similar

to this thesis research, PDV was shown to have an accuracy error of less than 0.1%.

Los Alamos National Laboratory conducted a series of experiments to “measure the

shock induced damage and spall of cylindrical targets” and PDV tracked the spall

as well as the shock passing through the material until complete deceleration of the

material.

2.7.1 Strand’s Research

Dr. Oliver Ted Strand, from the Livermore National Laboratory, was a pioneer in

applying PDV systems to shock physics experiments in the early 2000’s[16]. Before

PDV systems, interferometers could only measure velocity on “a few discrete points

on a target’s surface” at a very high cost. Dr. Strand led a team to design and

develop a multiplexed photonic Doppler velocimetry (MPDV) that utilizes 96 optical

channels to acquire velocity data at a “fraction of the former cost.” PDV finds the

difference between two waves, known as the “beat frequency”, to determine velocity

of a moving target. These two waves are “the reference laser and the Doppler-shifted

light reflected from a moving surface. This method of finding the beat frequency is

known as the “heterodyne method.” The maximum velocity a PDV can measure is

“limited by the bandwidth of the electronics and the sampling rate of the digitizers.”

The larger the beat frequency is, the higher the velocity.
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Dr. Strand’s team continued to do improvements on the MPDV system by “in-

creasing the data-recording capacity by an order of magnitude and reduced the cost

per data channel five fold.” MPDV systems also “incorporates frequency- and time-

division multiplexing to provide increased channel count, simultaneously measuring

up to 32 discrete surface velocities onto a single digitizer” through fiber-optic cables.

Dr. Strand’s advancements in PDV systems provided scientists at Los Alamos and

Lawrence Livermore with “high-quality data” in shock physics experiments. The sci-

entists have utilized this data to better “predict shock and material conditions”, as

well as more in-depth “comparisons between computational and experimental results.

Progress in telecommunications hardware, specifically in fiber-optic technology, al-

lowed for the effective application of PDV systems [14]. The variety of fiber-optic com-

ponents that operate at 1550 nm has increased greatly since the early 2000’s, “along

with many high bandwidth electrical components.” These components are cheap to

construct, “relatively abundant”, and commercially available in today’s modern age.

Also, the components are lightweight and fairly easy to setup and operate as well.

Usually, it only takes a few hours to setup and begin recording data when installing

a PDV system in a new facility.

The biggest disadvantage of PDV systems is their operable electromagnetic spec-

trum range. The laser operates in the infrared spectrum. It would be much more

useful to have a visible wavelength laser to see “the illuminated spots on the target

surface.” The Advanced Initiation Sciences (AIS) team located at Eglin Air Force

Base is currently constructing a green laser with a 532 nm wavelength. The visible

wavelength corresponds to a frequency-doubled Nd:YAG laser which emits light at

532 nm. Another disadvantage of PDV systems is that if fluctuations in the system

are too large, it could skew the dynamic range at which the PDV is taking data,

causing it to overlook “low beat amplitudes.”
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Fiber optic cable coupling allow for the high efficiency of the PDV system [14].

The only air transport being allowed is at the probes which greatly reduces noise

in the data. Most fiber cables on average have about 95-99 percent light transport

efficiency, meaning 95-99 percent of the light from the source is reflected upon the

moving surface [14].

Dr. Strand performed a sliding Fourier transform on his raw data from his ex-

periments in order to obtain frequency versus time information. The raw data for

this thesis used a Short Time Fourier Transform, which is slightly better than Dr.

Strand’s Fourier Transforms. A program, similar to Dr. Strand’s, named SIRHEN

by Sandia National Laboratories was sued to reduce data along with several other

programs. SIRHEN will be described in great detail under the Methodology chapter.

Windows of raw data are chosen to perform Fourier transforms upon, and the length

of the windows present tradeoffs. Shorter windows result in better time resolution but

“noiser data.” Longer windows have better frequency resolution but “lower time re-

sponse.” User discretion is advised when reducing data to perform Fourier transforms

that give results that make “physical sense.”

2.7.2 Air Force Materiel Command and Air Force Research Labora-

tory PDV Research

In the last three years, Air Force Research Laboratory has been funding PDV re-

search at the High Explosives Research and Development (HERD) facility located at

Eglin Air Force Base under Air Force Materiel Command. In 2010, experiments were

done using the PDV and a high-speed camera in order to better analyze controlled

fragmentation [8]. Controlled experimental fragmentation alone is difficult to achieve,

much less analyze it. The data processed by the PDV has assisted hydrocodes in pre-

dicting and modeling case failure and fragmentation [8]. The case being observed was
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a scored cylinder case and the model being calibrated was the Johnson-Cook damage

model. The PDV was able to obtain the average fragment velocity, approximate time

to complete fragmentation, and highest peak pressure before complete fragmentation.

The PDV, along with an ultra-high speed framing camera, resulted in “a coupled data

set with high confidence and meaningful input to the model.” The fragment distribu-

tions and mass distributions recovered from the experiment itself were then compared

to the Johnson-Cook model fragment and mass distributions given the same scenario.

This comparison between experimental results and computer simulated results ensued

in the model’s improved calibration [8].

In 2011, the HERD began doing experiments with mixture design of explosives

[18]. Mixture design experimentation is “statistically rigorous” with massive amounts

of data due to the small incremental changes in the explosive composition. These

small changes are then processed and compared in order to find the most efficient

combination of explosives for “safety and performance.” A large amount of infor-

mation is known about each explosive individually therefore risk is reduced when

combining these explosives. Essentially, small adjustments are being made to an ex-

plosive composition and the effects of these adjustments are being analyzed. These

minor chemical composition changes are in order to increase the energy of the explo-

sive while reducing the sensitivity of the explosive but not entirely for the explosive

still needs to detonate to achieve the mission. Sensitivity testing of these new explo-

sives is what the PDV system is being prepared for in the future through this thesis.

The explosive should be able to crash through multiple layers of concrete and still

be able to detonate on target. In order to perform this mission successfully, explo-

sive sensitivity must be analyzed on a microscopic scale to see effects from impact,

friction, and electrostatic discharge.
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III. Methodology

3.1 Data Reduction and Analysis Programs

This section will go over the three programs used in reducing the data given

by the HERD at Eglin Air Force Base. The Sandia InfraRed HEtrodyne aNalysis

(SIRHEN) is a program engineered by Sandia National Laboratories at Albuquerque,

New Mexico. The two other programs are used jointly at the HERD PDV laboratory:

pTool and PlotData. All programs result in the same data reduced plots, just with

slightly different formats. SIRHEN will prove to be the most versatile of the three

programs.

3.1.1 Sandia InfraRed HEtrodyne aNalysis (SIRHEN)

The program is independently operable and does not require any use of other

programs to transform signals [5, p. 12]. It is operable on every commercially available

platform (Mac OS X, Windows XP/Vista, and Linux) and it was written in MATrix

LABoratory (MATLAB) but can only be operated on MATLAB versions 2008b or

later. MATLAB is not a requirement to use this program because there is also an

executable file available but can only be used on Windows XP.

PDV data can be reduced in either a displacement framework or velocity frame-

work [5, p. 13]. The displacement mode analysis was used for this research because

shock-phenomenon can be more easily seen, even though the velocity mode is the

foundation of operation for the SIRHEN program [5, p. 13].
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Figure 16. Conceptual figure for PDV measurement from [5, p. 14]

In the displacement mode, the light input is split into different paths as shown in

Figure 16 [5, p. 13]. One path is channeled directly into the output and the other path

is reflected off of the moving target at position x(t) in Figure 16. The reflected light

off the moving target is then combined with the “unshifted reference light” that is fed

directly into the output. The combination of these two lights at position xr results

in a fringe, or interference, which creates a “beat frequency” that is proportional to

the moving target’s velocity at that moment. This proportionality is written in an

equation below.

f = 2v/λ0 (27)
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The wavelength is still 1550 nanometers for all PDV systems so far. Other wave-

lengths are being considered which will be discussed in Chapter 5. From the beat

frequency, velocity can be obtained and can also be cross-examined with numerical

differentiation through phase changes but this cross-examination could result in noise

amplification [5, p. 16].

For the velocity mode to obtain valid results, the target must be accelerating slowly

over a certain time interval, τ . The average velocity of that specific time interval is

represented by v and the center of the time interval is represented by t. From the

prior variables, the radial beat frequency (w) within the signal can be calculated as:

w =
4πv

λ0
(28)

A short-time Fourier transform (STFT) is then performed on that specific window

of time. The STFT is able to extract the beat frequency from the peak of the power

spectrum at each time of interest (t) within each time duration (τ). The average

velocity is then given as:

v =
λ0
2
f =

λ0
4π
w (29)

The resolution of the average velocity is determined by how well the frequency

peak can be extracted from the STFT. SIRHEN transforms the detector signal in the

time domain (represented by the input function s(t)) into the frequency domain (rep-

resented by the output function S(f)) through a discrete Fourier transform (DFT).

DFT can only work successfully if the input function is discrete and the non-zero

values have a finite duration. This type of Fourier transform fits perfectly for digi-

tizing a continuous PDV electrical signal at a finite sampling rate. Normally, DFTs

are time-consuming but can be computed efficiently using a fast Fourier transform
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(FFT) algorithm. Discrete Fourier transforms are not to be confused with discrete-

time Fourier transforms (DTFT). DFT only evaluates enough frequency components

from the signal to reconstruct the original finite segment that was analyzed [5, p. 17].

This information means DFT assumes the finite segment analyzed is one complete

period of an infinitely extended periodic signal, which is an erroneous assumption

to make for experimental signals. In order to overcome this assumption, a window

function must be used to reduce the artifacts in the spectrum. Window functions

are essentially weighting functions applied to reduce spectral leakage when analyzing

finite observation intervals. Spectral leakage are a series of frequency “side-lobes”

that have leaked from the original signal spectrum into other frequencies. When a

certain interval of a signal is being viewed using a window function, any signal data

outside the interval is zeroed so all that remains is the signal segment being observed.

The criteria for the spectral response of a window are the main lobe width, the at-

tenuation of the side lobes’ peaks, and the attenuation rate of the side lobes’ peaks.

The ideal spectral response would be a narrow main lobe, a low first-side-lobe, and

rapid fall-off of the remaining side-lobes. These ideal criteria correspond to high fre-

quency resolution and noise suppression in order to more clearly see any limitations

of the PDV. SIRHEN program has four available window functions for DFT analysis:

Boxcar, Hann, Hamming, and Blackman.

50



Table 1. Chart describing advantages of each window function in SIRHEN from [5, p.

18]

Window

Highest

Side-lobe

Level (dB)

Side-lobe

Fall Off

(dB/oct)

Comments

Boxcar -13 -6 sensitive to signal phase

Hann -32 -18 preferable with low noise (1%)

Hamming -43 -6 preferable with moderate noise (5%-10%)

Blackman -58 -18 widest main-lobe

The fact that SIRHEN has four spectral window functions, as shown in Table 1,

shows how much more versatile it is than the other two programs. pTool and PlotData

can only do three window functions. The advantages of each of SIRHEN’s window

functions are listed in Table 1 as well. The Hamming function was the function chosen

for the data reduction process in this thesis. The Hamming function best suited the

environment the experiments were conducted given the amount of noise from the

equipment and the impact itself from the target colliding against the circular plastic

plate. After using the STFT analysis to create a power spectrum, the strongest peak

must be located within the spectrum.

Table 2. Chart describing advantages of each peak finding method in SIRHEN from

[5, p. 21]

Method
Frequency

Range
Comments

maximum all f velocity “hopping”

Gaussian f1≤f≤f2 computationally intensive

centroid f1≤f≤f2 computationally efficient

parabola f1≤f≤f2 fitting restricted to near peak

robust all f centroid method over entire data
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The five-peak finding methods are listed in Table 2. Each method has its ad-

vantages and disadvantages but the Gaussian method was the best suited for this

data set. Although the Gaussian method is computationally intensive, this disad-

vantage did not affect this data set due to the small amount data derived from each

experiment. Each individual experiment itself only lasted nanoseconds hence the

digitized data from these experiments could easily be computed with complex algo-

rithms. The maximum method may seem the most attractive method because it is

the least computationally intensive of the methods and will always produce a result.

The accuracy of said result from the maximum method is more prone to error than

the other methods[5, p. 22].

Adding “zero-padding”, or generating more frequency points to the spectrum, re-

sults in a lower peak finding error for all peak finding methods. However, adding

more frequency points to the spectrum will slow computation time greatly. The max-

imum method’s most notable disadvantage is mapping out rapid transitions between

“low and high velocities as the intensities of the two spectral peaks compete in mag-

nitude” [5, p. 22]. The maximum method results in a jagged velocity history as it

tracks between the two extreme frequency values. The Gaussian method produces

much smoother transitions between low and high velocities which noticeably improves

peak frequency location over the maximum method. Also, the Gaussian method only

has a moderate amount of zero-padding to the signal which does not slow-down the

computation considerably.

A standard PDV configuration was used in all of the experiments at Eglin Air

Force Base. The following equation shows the relationship between time duration of

a target’s accelerationτ and width between peak frequencies in the STFT ∆f in order

to achieve an accepted precision:
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(∆f)(τ) ≥ 1

4π
(30)

Using the acceptable rule by equation (30) for velocities larger than 1 km/s, the

relative velocity precision (∆v/v) is less than one percent. Equation (30) is the stan-

dard across all PDV research for acceptable uncertainty in velocity measurements

greater than 1 km/s. This relative velocity standard is sufficient to measure and in-

vestigate dynamic material properties, such as shock waves. This relationship between

time duration and peak width is what makes the PDV appealing in hydrodynamic

research. This PDV configuration is utilizing a single light source to sense the moving

target. If the target is not moving, then there is no beating within the PDV signal

because the reflected light off the target has not been shifted. A disadvantage of this

configuration is that it does not do well with low velocity since the beat period of the

PDV system is longer than the time duration of the analysis.
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Figure 17. Visual representation of analysis stages in SIRHEN from [5, p. 31]

An outline of the analysis procedures for SIRHEN are shown in Figure 17 [5, p.

30]. The signal is time-cropped to the region of interest and then analyzed with a

short-time Fourier transform (STFT) after being multiplied by a window function.

The STFT is applied at certain discrete time points to generate a power spectrum

of the cropped signal. Then at each time point, the frequency of each spectral peak

is found through a peak finding algorithm, which in this thesis is the Gaussian. The

peak frequencies are then converted to velocity values to form a velocity history of

the experiment.

The SIRHEN program is only two screens: the “Selection Screen” and “Analysis

Screen” as shown in Figure 18 below.
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Figure 18. Schematic of analysis stages in SIRHEN from [5, p. 32]

SIRHEN’s simple graphical user interface makes it very user-friendly. At the

selection screen, the signal data can be loaded and a coarse STFT is performed on

the full signal. SIRHEN can only accept a single data file at a time and it must

be in either text or binary format. The time region of experimental interest can be

selected as well as the reference region for a reference calculation. The “Next” button

at the bottom of the “Selection Screen” takes the user to the “Analysis Screen.” Then

the STFT is performed on the selected experiment region of the signal and its STFT

resulting image is displayed. Refinement of the velocity history can also be performed.
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From here, the velocity history can be saved as a text file and the STFT image can

be saved as a JPEG or PNG file.

3.1.2 pTool and PlotData

PlotData is also a program from Sandia National Laboratories that is used at the

HERD [19]. The most updated version is from June 2012. The signal is recorded

on Tektronix oscilloscopes and then loaded onto PlotData. From here, the signal is

investigated to see if the data recorded is valid for analysis. If the user is unable

to accurately select a good experimental region to extract velocity from on the Fast

Fourier Transform (FFT), then additional filtering may be required. The frequency

band of interest from the signal is recorded in the Fourier domain and a bandpass

is applied in PlotData to eliminate noise. The bandpass spans from 0.5 GHz to a

maximum of 1 GHz above and below the desired frequencies. This bandpass is the

main usage for PlotData and at this point the data is transferred to pTool for further

FFT analysis. From here, the velocity can be extracted and saved for further optional

analyses, such as pulse duration or particle velocity time history.

pTool version 1.4.9 is being used and is somewhat outdated, with the last update

being in August 2008 [3, p. 1]. pTool was developed from the Physics and Analysis

Section of NSTec from the Los Alamos Operations. pTool can operate on any PDV

signal (raw or filtered) and any part of that PDV signal. It can perform a FFT, Hilbert

Transform, and Hilbert-Huang Transform on the signal. The transform used in this

thesis was a FFT. pTool allows the user to perform direct extraction of velocities

and a velocity graph with error bars as well. The velocity versus time graph can be

written to ASCII text files for use in other applications.

pTool is also a stand-alone application, like SIRHEN, but it is written in the In-

teractive Data Language (IDL). The program was developed and tested on Microsoft

56



Windows so Mac users may encounter problems using this application. pTool will

accept input data in the form of .dig files and ASCII (.txt) files. In either case, the

program data will be represented in microseconds and the amplitude in volts. When

first opening the program, there will be many options in the top left hand corner

of the window screen. The three main sub-menus are File, Filter, and Analysis.

The Filter menu is quite powerful in this program because it is possible to setup

pre-analysis signal filtering before loading the signal.

Figure 19. Example of loaded raw signal in pTool [3, p. 3]

Figure 19 shows an example of what a raw signal may look like loaded in pTool.

Before the user can continue, pTool requires calibration information about the signal.

The laser wavelength must be inputted and the velocity conversion factor, which is

0.99 in this thesis. pTool can do whole datasets as well if there are other similar files

in the same file directory. It is also possible to zoom in on the region of interest in

the signal before analysis. This feature of zoom is much more user-friendly on pTool
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than SIRHEN.

The Filter menu is multifaceted in this program [3, p. 5]. A band pass, high

pass, or low pass can be applied on the signal among other filters such as a time

derivative filter. Then under Analysis, a FFT can be performed on the zoomed-in

portion of the signal. A dialog box appears that gives the user many variables to

adjust but the most important are WindowSize and Shift which are also options for

SIRHEN. These two variables determine the number of FFTs performed on the signal

and consequently the maximum number of velocity values that can be extracted.

Depending on if the user wants time resolution or frequency resolution, window size

and shift can be adjusted to tradeoff one variable resolution for the other. These

tradeoffs will be explained further in the Results and Discussion section. A limit

of pTool is that it cannot display the power spectrum in three dimensions like in

SIRHEN, only in two dimensions. Therefore, the FFT/STFT graphs will be presented

only in two dimensions. From here velocities can be enclosed and extracted, along

with uncertainties. These velocity graphs are presented similarly to SIRHEN velocity

graphs along with the uncertainties.
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3.2 Lab Setup

This section will present PDV blueprints and pictures of equipment used during

this research.

3.2.1 PDV Blueprint/Schematic

Figure 20. Schematic of PDV system in the Advanced Initiation Sciences (AIS) lab at

Eglin AFB

Figure 20 is the most updated schematic of the PDV system used in this thesis

since of November 2014. The monitors/attenuators at the bottom of Figure 20 are

used to balance all the PDV channels to the optical power level in order to capture

all possible data on the digitizer. The PDV injects a laser light of known wavelength

into a networked fiber optical system that splits the laser light into two different

optical paths: one for the target and one used as the reference leg. When these
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signals are recombined, they are transmitted to a photodetector and digitized with

an oscilloscope. As the target moves toward the optical probe, the instantaneous

motion of photons being reflected off of the target creates multiple Doppler shifts in

the detected signal which causes changes in the beat frequency. From this information,

the particle velocity of the target can be calculated as:

v =
fbλ

2n
(31)

In equation (31), fb is the beat frequency, λ is the known wavelength, and n is

the window correction factor of an optically clear material the laser is transmitted

through, which is 0.99 for this thesis.

Figure 21. Detailed Schematic of PDV system in the AIS lab at Eglin AFB
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There are six main components to a PDV system: the control computer, the laser,

the main chassis, variable attenuation monitors, a photodiode optical receiver, and a

high speed oscilloscope as shown in Figure 21. The control computer can set the laser

settings and store experimental data from the scope. The laser wavelength is 1550

nm and a critical disadvantage of this laser is that it is not visible to the human eye.

Therefore, another visible wavelength must be used to align the probe to the moving

surface being measured. The main chassis divides the laser energy evenly among four

channels by a 1X4 fiber splitter. Each channel has an individual circulator up to

0.5 watts and each circulator has three ports. The laser is connected to port 1, the

target is connected to port 2, and the detector is connected to port 3. the source

of the non-Doppler shifted and Doppler shifted light comes from the 95/5 splitter

out of port 2. Afterwards, it is combined sent through an analog-digital converter

and amplified before the raw data is sent to the control computer. The attenuation

monitors are used to measure the amount of Doppler shifted and reference light that is

being directed to the optical detectors, as well as balance the two signals to optimize

the beat frequency. The oscilloscope can record velocities up to 10 km/s and will

store beat frequency history on its hard drive, essentially backing up any data.

The hardest part about maintaining the PDV is continually cleaning the fiber

optic connectors. If any particles such as dust or lint are within the fiber optic

connector, the optic signal will not be complete and the data will be skewed. Lack of

maintenance can also lead to misalignment of fiber cores and instability in the laser

system. Misalignment can lead to coupling losses from angular misalignment to lateral

misalignment. These misalignments are dependent on fiber type, core diameter, and

the distribution of optical power among propagating modes.

The splitter in the PDV system utilized during testing was an FC Series 1x4

Compact Fiberoptic Splitter from Agiltron. This splitter is a very important piece
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of equipment because it sets the precedent for the rest of the PDV system. If the

splitter does not split the power level to 95% for the target and 5% reference, it can

skew the rest of the readings for all the instruments involved in the system. A high

percentage of light is required to go downstream to the target due to probe losses and

returns on the target port. The reference laser percentage is all internal so it does

not experience that loss in signal.

The circulator used in the PDV system was a 1310/1550 nm high power optical

circulator which minimizes back-reflection and back scattering in the opposite direc-

tion of the light’s vector. The circulator also connects the target path of the laser

to two other ports. One port aims the laser to the target and the other port sends

the reflected laser from the target to the attenuator/monitor. Looking closely at the

circulator in Figure 21, the first port is where the target’s 95 light percentage is sent

after the 95/5 splitter. The third port on the bottom is where the target laser exits

and returns back through the same fiber after reflecting off the moving target. The

Doppler-shifted target laser is then sent to the second port on the right where an

attenuator receives the Doppler-shifted laser.

The power monitors in Figure 21 display the power level being received in units

of decibel-meters (dBm). This instrument ensures that the splitter is splitting the

laser in the intended ratio, as well as ensuring the power levels of the reference light

and the Doppler-shifted light are balanced before recombining. There is one monitor

for the target, one for the reference, and finally one another monitor right before the

optical receiver after the split-paths recombine. The power monitors for the target

and reference light are EigenLight’s Series 400 Power Monitor-Attenuators (PMAs).

The power monitor after the lasers recombine is an EigenLight Series 500 PMA.

Both models of power monitors have the same attenuation range of 40 decibels (dB)

and the same attenuation resolution of 0.1 dB. All of the power monitors in the

62



schematic should be reading between -15 to 22 dBm when completely unattenuated.

The power monitors do not have to be the same value due to losses in power from

fiber misalignment and lack of perfect cleanliness.

The measurement instrument of the PDV system is located within the optic re-

ceiver as a photodiode responder. After the lasers recombine, an interference is cre-

ated due to the differences in frequency between the two sets of light. This light

interference is known as a fringe shift, or “beat frequency”, and the photodiode re-

sponder samples this fringe shift to digitize the signal in the oscilloscope. The lasers

recombine at a second splitter named a coupler as shown in Figure 21. This coupler

is identical to the first splitter but it is installed backwards. After the recombined

light passes through the final power monitor, the light is sent to the optic receiver

which measures the power from the recombined light and outputs the result in volts

via the oscilloscope. The model number for the optic receiver is SCMR-100K20G by

MITEQ, Inc. This piece of equipment is vital to determining the sampling rate of

the PDV system. The higher the sampling rate is for the optic receiver, the lower the

velocity uncertainty and frequency uncertainty will be for the Fourier transformed

signal because of the higher amount of captured frequency points from the photodi-

ode. The bandwidth sampling rate for the optic receiver is 100 kilohertz (kHz) to 20

gigahertz (GHz). In this thesis, the max sampling rate of 20 GHz was used because

the oscilloscope also had a max sampling rate of 20 GHz which resulted in incredi-

ble signal resolution. The oscilloscope used during testing was a 50 GS/s Scope by

Tektronix.

Once all connections have been made in the PDV, a “thumper check” must be

done. Essentially, an optical mirror is connected to every port and the laser is on

low power. This configuration of the laser allows the certified user to adjust the

laser power for optimum performance. The signal return should be between -15 to 22
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dBm on the monitors. Lastly, line checks and trigger checks are performed as well to

make sure the complete optical signal is being received without delay. Safety is the

number one priority as always in a laboratory. Laser safety glasses and warning lights

must be in place before use. Only laser certified users should operate the PDV. High

voltage is a safety hazard as well. The experiment requires high voltage to generate an

electrical breakdown in the chip’s bridge. This breakdown generates a plasma which

then shears the top layer of the chip and accelerates the flyer at the PDV probe. This

experiment should be operated in pairs just in case one of the certified users requires

CPR.

3.2.2 Chip Slapper Experimental Setup

Figure 22. Essential equipment used in the AIS lab

The PDV circuit box in Figure 22 is the main control for operating the laser.

The laser can be turned on and the power level as well can be adjusted here. The
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isolation box is where the actual chip slapper experimentation occurs. The box is

there to protect any persons within the lab in case anything goes wrong. It also has

sensors which tells the users if any access doors are open and will not allow the users

to continue hazardous operations if that happens.

The laser lockbox is used to upshift the PDV system but it was not used for

this experiment. Only the certified technician can unlock the lockbox to operate the

laser, else it will not turn on. The oscilloscope shows the digitized signal data. The

PDV attenuaters balance the energy from the laser among the 4 channels for optimal

optical signal.

The high voltage voltmeters show the voltage that is feeding into the PDV from

the fireset during the experiment as well as the amount of voltage sent into the chip

to cause it to discharge and collide with the plastic circular slab. The high voltage

controller can determine how much energy is fed into the PDV and the chip. The

DG535 trigger controls when the high voltage is released into the isolation box. The

actual target laser wavelength during testing was 1550.12 nm and the reference laser

wavelength was 1550.13 nm which attributes to uncertainty in data reduction and

analysis.
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Figure 23. Actual chip used in the AIS lab

The chips, also known as flyers, can vary in thickness but all are made from the

same material and chemical composition of Parylene C as shown in Figure 23. The

PDV measures the velocity of these chips, or flyers, because the chips are the target in

this experiment. The bridge or flyer itself is the only object colliding with the plastic

slab, not the golden parts of the item. The gold flex cable contactors seen are to

pass the high voltage to the chip to cause a massive discharge. Each chip used in the

experiments was labeled wafer number W76 which corresponds to specific dimensions

of the chip. Each chip was 0.4 inches wide by 0.5 inches long with a thickness of 50.09

microns. The chip was constructed out of Parylene C which is a special polymer.
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Figure 24. Chip Slapper setup used in the AIS lab

Figure 24 represents the chip slapper setup unassembled. The two square cases

to the left are what contain the collision between the chip and circular plastic slab,

which are below these two square cases. The circular slab is 0.5 inches in diameter

and is made out of PMMA. There is another thinner plastic square (PMMA window)

which is covered over the fiber optic cable to protect it from getting damaged and

keep out residue particles from the collision. The fiber optic cable itself is screwed in

the aluminum funneled cap to keep the fiber optic cable, and thus the laser, aligned

against the flyer. The long brown strip is the flex connector cable itself that is con-

nected directly to the 10 kilovolt (kV) fireset. The flex cable part number and revision

used in these experiments was RSI-1129RevB. The fully assembled experiment setup

is shown all the way to the right in Figure 24.
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Figure 25. Chip Slapper setup assembled

A closer view of the assembled chip slapper experiment is presented in Figure 25.

Note both the base and top are acrylic in order to withstand the high velocity at

which the chip is moving at. The chip and the PMMA window are 0.045 inches apart

when fully assembled. The chip must travel this distance before impacting with the

window.
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Figure 26. The 10 kV capacitor that delivers the high voltage to the PDV and flex

connector

The Figure 26 is the 10 kV fireset inside the isolation box that delivers a jolt of

high voltage to the chip slapper experiment through the flex connector cable. The

model number for the fireset is LLNL SN2. This 10 kV fireset is a very dangerous

piece of equipment to operate and should be handled with caution.
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Figure 27. The chip slapper experiment connected to the 10 kV capacitor in the

isolation box

Figure 28. The chip slapper experiment connected to the 10 kV capacitor in the

isolation box
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Figures 27 and 28 present the complete setup at different angles (the chip slapper

setup connected to the 10 kV fireset inside the isolation box) right before firing the

high voltage fireset.

Figure 29. Example results of chip slapper experiment

Figure 29 exhibits the plastic slab after the chip collides with it at an incredible

velocity. The imprint the chip leaves is impressive given the relative thickness of the

plastic slab to the flyer. Sometimes the backside of the plastic slab is damaged as well

from the force of the shock traveling through the material. The chip itself usually

fragments, and if the plastic slab is placed under a microscope, fragments from the

chip can be seen embedded in the circular slab.
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IV. Data Results and Discussion

Table 3 represents important equipment readings during all the chip slapper ex-

periments conducted at Eglin Air Force Base. Table 3 contains the actual cap voltage

data that each chip was charged with before jolting off the bridge and colliding with

the plastic PMMA cylinder window slab. The actual cap voltage was how the chip’s

velocity was controlled. Varying the cap voltage would vary the chip’s velocity. The

higher the cap voltage, the higher the chip’s velocity. The target/reference power

ratio is also included in the table and it represents the ratio between the target wave-

length power and the reference wavelength power. A general pattern in this ratio is

that as the voltage increases, the ratio increases which makes it difficult to separate

noise from actual meaningful lab signal data which can attribute to error. However,

the tradeoff is as the voltage increases, the faster the chip collides with the slab.

For those chip shots with higher target/reference power ratio, band passes and band

stops were applied in PlotData to reduce the amount of noise. Shot classification

numbers in both figures are simply a methodical way to organize the shots in the AIS

laboratory.

Table 3. Chart of equipment readings during testing

Shot Classification Actual Cap Voltage (volts) Target/Reference Power Ratio

EG-I0119 4511 0.3906

EG-I0120 4510 0.4303

EG-I0121 4757 0.1883

EG-I0122 4511 1.7012

EG-I0123 7996 1.2495

EG-I0124 8093 2.0126

EG-I0125 6035 0.5032

EG-I0126 6048 2.7024
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All chip slapper experiments were captured by the photodiode responder in the

optical receiver at a sampling rate of 20 GHz and digitized on the oscilloscope at a

sampling rate of 20 GHz. Figures 30 and 31 are the results of the first chip slapper

experiment. Figure 30 is the untransformed signal from the oscilloscope in the lab.

Figure 31 is the result of performing a STFT/FFT on the raw signal. The window

type method used was the Hamming method. The Hamming method was applied

with a 1024 window size and 512 frequency points with an overlap ratio of 2 for

all chip slapper shots. This large window size and frequency point shift was best

for frequency resolution. A larger window size is best for frequency resolution but

horrible for temporal resolution. A narrow window size is best for temporal resolution

but results in poor frequency resolution. The window size can be adjusted depending

on the phenomenon being studied, which in this case is the frequency resolution. Both

pictures in this figure are zoomed in on the experimental region of the signal in order

to better view shock Hugoniots.

Figure 30. Digitized signal of EG-I0119 in SIRHEN
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Figure 31. STFT signal of EG-I0119 in SIRHEN

In Figure 31, the blue background represents natural noise from the lab. The

multicolored curve in this picture represents the target’s reflected frequency as it

approaches the PMMA slab. The target’s acceleration can be noted by the increas-

ing frequency in the curve. The different coloration between the target’s frequency

curve and the background noise is from the difference in intensity of sound pressures.

The bright red line below the curve represents the target’s frequency at a station-

ary position as it is still connected to the bridge. The x-axis is time, measured in

microseconds, and the y-axis is frequency, measured in Hz. The magnitude of the

y-axis changes throughout the data reduction process. There will be projections of

lower intensity stemming from the target’s frequency curve, as it can be slightly seen

in the lower picture of Figure 30. Intensity represents the abundance of that specific

frequency during the experiment, whose axis is on the right side of the STFT graph.

These projections are due to the multichannel sensitivity inherent in the PDV system.

The actual measurement of the chip’s frequency can be recognized by the stationary

frequency with the higher intensity which is the bright red line at under the curve.

After the chip, or flyer, discharges from the bridge to collide with the PMMA slab,
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two shocks are instantly produced. These shocks are observed in the final microsec-

onds of each target’s frequency curve and this phenomenon can be better observed

in Figure 32. There seems to be an additional smaller curve produced after the chip

collides with the PMMA slab and begins to slow down. This smaller curve is located

at the end of the STFT signal, before rarefactions appear. This smaller curve is the

production of two shocks from the chip’s collision which is incredible to capture due to

the speed this event occurs. At impact, The PDV system is measuring the reflected

laser that was shifted from the shock vibrations that are moving through the slab

from impact, as well as rarefactions moving through the slab. The deceleration and

collision of the chip against the slab all occur in about 1 nanosecond.

The chip’s peak frequency can be better seen after signal extraction in the Fig-

ure 33. The peak frequency is synonymous with the chip’s peak velocity for these

experiments. The signal extraction was performed through a dynamic limit of 1×108

Hz to extract data from the target’s frequency curve with minimal noise. This dy-

namic limit is essentially a bandpass for SIRHEN. The chip’s peak velocity is slightly

just before collision. The peak velocities in this thesis lied between 1500 m/s to 4000

m/s which was dependent on the actual cap voltage. The first instance of deceleration,

or decrease in frequency, is due to the compression of air that slows the chip before

impacting the slab. Then there is a slight plateau, which is the actual collision of the

flyer against the PMMA window slab which causes the production of two shocks. One

shock travels through the flyer itself and the other shock travels through the circular

slab, which is the shock the PDV system measures. At the shock, pressure decreases

because the shock wave moves from high-impedance material to low-impedance mate-

rial. The deceleration occurs so quickly at the end of the event the target’s frequency

curve becomes discontinuous during the sampling of the shot signal, even at 20 GHz

sampling rate. After the collision, rarefactions can be seen in subsequent time due
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to slight oscillations in the PDV measurement, as the rarefactions decompress the

PMMA slab back down to its natural pressure.

This pattern of target acceleration, deceleration, shock plateau, and shock pro-

duction will be seen in all of the proceeding figures for the chip slapper shots. The

velocity extraction and Hamming method all also were performed in similar fashion.

Also, every true measurement in every shot can be recognized with the 8 GHz target’s

natural reflected beat frequency.

Figure 32. STFT signal of EG-I0119 zoomed in on shock in SIRHEN
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Figure 33. Extracted signal of EG-I0119 zoomed on on shock in SIRHEN

Figure 34. STFT signal of EG-I0120 in SIRHEN
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Figure 35. Extracted signal of EG-I0120 in SIRHEN
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Figure 36. Filtered signal of EG-I0120 with a band pass and band stop by PlotData

displayed in SIRHEN

Figures 34 and 35 represent the data captured from the second shot. In Figure 34,

the shock plateau can be seen much clearer as well the deceleration of the target itself

near the 2.2×10−9 second mark. After the collision, deceleration still continues after

the shock plateau because the back end of the flyer is still accelerating towards the

slab and compressing within itself until the shock produced by the original collision

completely reaches the open end of the chip, as described earlier in the Background

chapter of this thesis. In Figure 35, the excellent resolution in the STFT signal led

to good extraction of the peak velocity and shock plateau extraction. The extraction

of this shock plateau is important in this thesis because it signifies the beginning of

shock production from solid-solid collisions. The strength and speed of the shock
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wave can be deduced from the extraction of the shock plateau.

Figure 36 is the raw data of the second shot with a bandpass and bandstop applied

to it. This set of raw data is different from the pictures before because there is no

longer a projection of the event as well as significantly reduced noise. Also, the

raw signal itself is no longer shifted but centered around the zero axis due to the

bandpass. The bandstop has eliminated almost all of the noise in this case. Although

PlotData does a wonderful job of eliminating extraneous noise, it can also lead to loss

of important data. The bandpass and the bandstop do not change the peak velocity

or peak frequency of the data. SIRHEN had trouble dealing with this sort of data

which will be explained later in this chapter.

Figure 37. STFT signal of EG-I0121 in SIRHEN
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Figure 38. Extracted signal of EG-I0121 in SIRHEN

The third shot is represented in Figures 37 and 38. This shot had a much larger

voltage potential than the previous shots, as seen in the greater intensity during

collision in Figure 37. Also, the deceleration is much higher in this case due to the

greater acceleration. The shock plateau in Figure 37 is much sharper than the shots

before it due to this greater deceleration. Also, the oscillations are much greater

during the decompression phase of the experiment in Figure 37. The peak velocity in

this case is much greater than the two previous shots as well and the shock plateau

happens about a 0.1 nanosecond earlier than the two previous shots, as shown in

Figure 38.
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Figure 39. STFT signal of EG-I0122 in SIRHEN

Figure 40. Extracted signal of EG-I0122 in SIRHEN

Figures 39 and 40 are a series of data plots for the fourth shot. The shock plataeu

is acceptable in Figure 39, with an intensity at collision of about -30 dB. The rapid

acceleration causes much noise in this case which makes it difficult to extract the
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peak frequency or velocity, as depicted by Figure 40. The larger the voltage, the

faster the flyer impacts the PMMA window, and the greater the noise fraction is but

this increase in noise fraction is minimal. Noise fraction is the ratio between true

signal and background noise, and it is represented in percentage.

Figure 41. STFT signal of EG-I0123 in SIRHEN

Figure 42. Extracted signal of EG-I0123 in SIRHEN
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The data in Figures 41 and 42 is of lower intensity when compared to the previous

sets of data. In Figure 41, there is a discontinuity in the initial deceleration of the

flyer, as well as in the collision with the slab, yet the oscillations afterwards are quite

small compared to the rest of visualized data. It was quite difficult to apply a dynamic

limit to such a low-intensity signal, as shown in Figure 42. The shock plateau itself is

much longer in Figure 42 than in most data sets, resulting in a much longer impact

time against the PMMA window due to the chip’s relatively high peak velocity.

Figure 43. STFT signal of EG-I0124 in SIRHEN
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Figure 44. Extracted signal of EG-I0124 in SIRHEN

The set of data in Figures 43 and 44 is slightly stronger than the previous shot.

The discontinuities occur mainly during deceleration and the shock production after

collision, as shown in Figure 43. The shock plateau was captured by the PDV system,

regardless of the low-intensity of the frequency, but the deceleration of the chip was

barely recorded. The sampling of the chip’s deceleration is important because this

deceleration influences the timing of shock production from solid-solid collisions. As

the magnitude of the chip’s deceleration increases, the strength and speed of the

produced shock from collision also increase.
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Figure 45. STFT signal of EG-I0125 in SIRHEN

Figure 46. Extracted signal of EG-I0125 in SIRHEN

The data for Figures 45 and 46 can be considered an ideal set of data for its

continuity and intensity. The shock plateau in Figure 45 can be clearly seen and the

peak frequency in Figure 46 is easily discernible. Figure 46 shows how well defined

the shock plateau in this case, as well as the steep deceleration in the chip’s velocity.
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Figure 47. STFT signal of EG-I0126 in SIRHEN

Figure 48. Extracted signal of EG-I0126 in SIRHEN

The last shot data is presented in Figures 47 and 48. Figure 47 shows the PDV

captured the chip’s deceleration and collision with the PMMA window reasonably

accurate at an intensity around -35 dB, but the peak frequency does not have high
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resolution. This lack of resolution is shown in Figure 48 where a definitive peak

frequency is absent. The peak frequency represents the chip’s peak velocity before

impact with the PMMA window. It is important to capture this peak frequency

because the time from peak velocity to physical collision must be measured in order

to improve precision in the timing of shock production.

Figure 49. Plotted voltage and peak velocity data of all shots displayed in Microsoft

Excel

The peak frequency in each chip slapper experiment does not represent the actual

velocity. Although there may be higher frequency peaks in some cases throughout

the signal data, it does not necessarily mean that it corresponds to a higher velocity

[12]. Those high-frequency peaks merely represent the projected or apparent velocity

in some cases. In this thesis, it is safe to assume the highest averaged peak frequency,
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as derived by the Gaussian method, is the fastest perceived velocity with a small

degree of uncertainty. In order to obtain the actual velocity, the target’s natural

stationary frequency must be subtracted from the measured peak frequency. This

subtraction results in the actual frequency peak because it is being measured from

a zero frequency. The actual peak frequency is then converted to the actual peak

velocity of the target through the following familiar equation:

v =
λ0
2
f (32)

The results of this calculation were then plotted on Figure 49 against the actual

cap voltage delivered to the bridge of each chip. As seen in the figure, the chip’s

peak velocity ranged from 1500-4000 m/s for each experiment at differing voltages.

From this plot, an equation of correlation was obtained that could predict the peak

velocity of this specific W76 chip. Error bars are plotted in the chart but could not

be seen due to the small magnitude of the uncertainties relative to the actual peak

velocity value. The uncertainty values for frequency and velocity will be shown in

a table later in this chapter. Further shots must be done with this chip in order to

confirm the equation in Figure 49 but it shows the chip’s peak velocity is predictable

given an actual cap voltage.
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Table 4. Table comparing peak frequencies for each shot experiment

Shot Classification Peak Frequency (GHz) (Gaussian)

EG–I0119 10.0586

EG–I0120 10.1704

EG–I0121 10.5957

EG–I0122 9.96094

EG–I0123 12.7930

EG–I0124 12.7441

EG–I0125 11.9141

EG–I0126 11.8652

Table 4 revealed a general pattern between the resolution of the signal in the

STFT and the perceived peak frequency. The resolution of the signal would increase

as the peak frequency increased up to a point. After near 11.9 GHz point of peak

frequency, the resolution of the frequency would slightly diminish, especially near the

discontinuity and shock plateaus. The source of this loss in resolution can come from

the fragmentation of material during collision. Fragmentation of the chip became

more likely as the actual cap voltage increased, which could result in scattering of the

reflected light and loss in target frequency resolution.
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Figure 50. Plotted max noise fraction and peak velocity data of all shots displayed in

Microsoft Excel

An investigation of Figure 50 shows that although there is a slight decrease in

signal resolution, the noise fraction was reasonably constant given an increase in

peak velocity throughout the experiments. The noise fraction would stay between 2

percent and 5 percent, which is acceptable for this thesis. The importance of this

constant noise fraction shall be presented in the conclusion.
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Table 5. Table listing frequency uncertainties and velocity uncertainties for each shot

experiment

Shot Classification Frequency Uncertainty (Hz) Velocity Uncertainty (m/s)

EG–I0119 8.1×105–1.8×106 0.63–1.40

EG–I0120 5.7×105–1.8×106 0.44–1.40

EG–I0121 6.6×105–1.7×106 0.51–1.30

EG–I0122 7.1×105–1.7×106 0.55–1.30

EG–I0123 9.2×105–1.9×106 0.71–1.51

EG–I0124 8.0×105–1.7×106 0.62–1.30

EG–I0125 8.4×105–1.8×106 0.65–1.40

EG–I0126 7.8×105–1.7×106 0.60–1.30

The frequency and velocity uncertainty also increased with the increase in per-

ceived frequency, as shown in Table 5. If the voltage delivered to the bridge becomes

too high, it essentially overloads the PDV system’s sensors. According to the data,

near 8000 volts is where the frequency resolution begins to slightly deteriorate.

Table 6. Table listing frequency uncertainties and velocity uncertainties for each shot

experiment’s signal that was filtered

Shot Classification Noise Fraction Frequency Uncertainty (Hz) Velocity Uncertainty (m/s)

EG–I0120 4.3%–2.1×102% 1.6×106–7.7×107 1.2–60

EG–I0122 2.1%–8.4% 7.8×105–3.1×106 0.61–2.40

EG–I0124 2.4%–8.6% 8.9×105–3.2×106 0.69–2.50

EG–I0125 2.6%–9.0% 9.5×105–3.4×106 0.74–2.60

EG–I0126 2.4%–8.5% 8.7×105–3.2×106 0.68–2.50

Table 6 is displayed in order to show a drawback of using the SIRHEN program.

The SIRHEN program does not extract frequency points from prefiltered signals.
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Prefiltered signals include any signal that has been filtered by a bandpass or a band-

stop. SIRHEN does worse with the bandstop. This error arises from the process of

selecting a reference region and an experimental region. SIRHEN compares the two

region to help the user evaluate the magnitude of the dynamic limit but if there is

not much noise, the user is essentially comparing an experimental region with another

experimental region, or at least altered reference region.

Figure 51. Plotted actual cap voltage and time duration data of all shots displayed in

Microsoft Excel

Figure 51 shows the time elapsed for the chip to decelerate from its peak velocity

to colliding with the PMMA window. In general, the chip’s with the higher velocity

(higher actual cap voltage) had shorter time durations than those with lower veloc-

ities. This trend does not hold true for all the ship slapper shots because some of
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the chips would partially fragment from such high voltage jolts before collision. The

reason for this general pattern is because the faster the chip accelerated towards the

PMMA window, the faster it would also decelerate due to the formation of the shock

in front of the chip interacting with the PMMA window. The faster the chip acceler-

ated, the stronger this shock became which caused faster air drag from the compressed

air in between the two materials as the chip approached the PMMA window. The

lowest time duration was around 0.01 µs for about 8000 volts charged to the flyer.

The digitization and quantification of this deceleration is vital in precise-timing of

munition shock detonation.
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V. Conclusions

5.1 Data Deductions

The aim of this thesis was to perform an analysis of the PDV system and deter-

mine whether the PDV system was prepared for explosive sensitivity testing through

shock-solid material interaction. This thesis has proven the standard PDV system

located at Eglin AFB is prepared for explosive sensitivity testing by analysis of noise

fraction and uncertainty. The PDV becomes less precise as signal intensity decreases,

with a reduction of at least 4×106 Hz in frequency accuracy, according to this thesis

data, but the uncertainty still met PDV laboratory standards. PDV systems typi-

cally are accurate to about 1×105-1×106 Hz when peak frequency measurements are

above 2 GHz. Therefore, the thesis data aligns well with past experimental results

considering the thesis measurements are well above 2 GHz and accuracy uncertain-

ties in this thesis are comparable in magnitude [9]. Peak velocities measured in this

thesis were also comparable to typical detonation velocity criteria for solid explosives,

approaching velocities of shock-shock interaction between two solids. Peak velocities

were in between 1500-4000 m/s while detonation velocities for most explosives used

in combat are between 2000-5000 m/s [7, p. 258-262]. These explosives include forms

of TNT, RDX, and PETN.

Noise fraction stayed relatively constant given an increase in peak velocity, which

means the noise fraction will continue to be relatively low throughout these veloc-

ity regimes. The extraction of true signal from signal randomness will continue to

have similar resolution given increases in peak velocity. This extraction means de-

celeration and shock production from solid collisions can be measured and quantified

for improved shock detonation precision in explosives. The decelerations and shock

plateaus are what must be captured to better understand shock detonation explosives
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and the PDV system demonstrated it is capable of capturing these phenomenons in

a cost-efficient manner. These solid-solid impacts are what begin the process to

hotspot emergence and eventual deflagration-detonation transition to cause a muni-

tion to explode on target. The improvement in munition detonation timing will lead

to improved cost-effective warfare, reduction in collateral damage, and more lives

saved.

5.1.1 Uncertainty Explanation

Uncertainty in the STFT signal can be attributed to a multitude of factors. The

uncertainties can be caused by the thickness of the chips. Several of the chips frag-

mented during the course of impact against the PMMA window. If the thicker chips

were utilized, the signal readings would be more stable because the thicker chips

would withstand the impact force with greater durability, resulting in less fragmenta-

tion. The pulverization of the chip itself can cause scattering of the Doppler-shifted

laser, leading to inaccurate readings from the PDV optical receiver. Perhaps more

ductile material can be used in future experiments to minimuze the amount of pul-

verized material embedded into the PMMA window to reduce light scattering. Also,

the sampling rate of the photodiode optic receiver can be increased to reduce uncer-

tainty. The current photodiode has a maximum sampling rate of 20 GHz but there

are several photodiode detectors that are commercially available through Photonics

with max sampling rates of 50-60 GHz. This purchase would have to be in conjunc-

tion with an upgraded oscilloscope in order to accurately capture the voltage data.

Oscilloscopes of identical sampling rates are available through Tektronix or Teledyne

Lecroy.
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5.2 Recommendations for Further Research

Regardless of the plethora of advantages the PDV system has to offer, technology

can always be improved upon and must be improved upon if the Air Force expects to

continue its air-space dominance and global reach. Although the 4 channel PDV shows

great promise in the use of explosive mixture design and munition case engineering,

its accuracy and precision can still be improved upon to overcome the discontinuities

in the STFT signal. Also, the potential applicability of the PDV system exceeds far

beyond just velocimetry and shock wave analysis. The PDV system would be useful

in the study of thermally ignited explosives after improving upon the standard PDV

configuration itself. Also, PDV systems would work excellently in conjunction with

microscaled high-speed cameras in order to better define real world visualizations

through digitization.

5.2.1 Green Laser

The Munitions Directorate under AFMC at Eglin AFB has been exploring the

potential of comparing the data of a standard PDV configuration against a recently

developed PDV configuration. The newly developed PDV configuration would utilize

a laser at a wavelength of 532 nanometers, instead of 1550 nanometers. A 532 nm

wavelength laser is being considered because it is a standard Nd:YAG laser, therefore

it is widely-available in the scientific community. A laser of another color in the visible

spectrum would require the development of a new laser which would lead to higher

costs. A wavelength of 532 nanometers lies in the visible range of the electromagnetic

spectrum, which corresponds to the color green. The wavelength of the standard

PDV configuration lies in the infrared range of the electromagnetic spectrum, which

means it is invisible to the naked eye.

The invisibility of the standard PDV 1550 nm laser makes it difficult to correctly

97



align and center the laser against the target, which results in error that cannot be

exactly quantified. Another visible laser is required currently to align the standard

PDV configuration. With the green laser, another visible laser would not be needed

to correctly align the green laser which overall would save the Air Force money spent

to maintain and operate another visible laser.

This inherent invisibility of infrared lasers also makes them more dangerous than

visible lasers because humans cannot see in what direction the infrared laser is de-

flecting after it comes in contact with a surface. At least with the visible laser, it is

possible to see what direction the laser is deflecting.

The new green laser would have a shorter wavelength than the standard PDV

laser, which means the new PDV laser would have a higher frequency. The green laser

would have three times the frequency of the standard PDV. This increase in frequency

would result in more frequency points in the power spectrum, which means less “zero-

padding.” Less “zero-padding” means less computational time required to perform

fast Fourier transforms or short-time Fourier transforms. Also, the higher frequency

from the green laser should result in less uncertainty and smaller error bars than the

standard PDV system. The upshifted frequency in the green laser would overall result

in better temporal and frequency resolution, which means better velocity resolution

as well. The larger amount of data from the green laser would mean more frequency

points would have to be recorded in a short time period. The installation of the

green laser would have to be in conjunction with upgraded photodiode detectors and

oscilloscopes. Higher sampling rates would be needed in order to accurately capture

data from the green laser’s fringe shift. The green laser was still being constructed

before any testing could begin on it and the AIS team is currently in the process

of repairing it. If this PDV green laser configuration proves superior, past PDV

experiments could be redone for better results, such as the controlled fragmentation
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testing done at Eglin Air Force Base in 2010. These improved results from a cost-

effective configuration will lead to better munitions in the future.

5.2.2 Study of Explosive Grains

The microstructure of an explosive is a major influence on the detonation behavior

[13, p. 1]. With the advent of the green laser in future PDV systems, better resolu-

tion will be possible for shock wave interaction with explosives. Stronger quantified

correlations were revealed between pressed microstructures and threshold initiation

behaviors using a 1550 nm upshifted PDV configuration. In an experiment led by Dr.

Welle for AFRL involving explosive microstructure, he used a James like framework

model to evaluate pulse duration effects within microstructures. These same pulse

duration effects were later quantified by an upshifted PDV configuration. This same

experiment hopefully can be revisited once the AIS team installs a green laser in

the PDV for better resolution. Dr. Welle states that for future similar experiments,

higher shock waves should be produced by using finer grained explosive and thinner

flyers for a more versatile data set [13, p. 9].

Another similar experiment was conducted by Dr. Schwarz to investigate shock

initiation threshold sensitivity of HNS type explosives [13, p. 2]. He noticed as

the individual grains of the explosive grew larger, the narrower was the range of

pressures separating detonation from deflagration. This narrow range of pressures

can be identified and quantified using PDV systems in future similar experiments.

These narrow ranges of pressures can be the difference between detonating on target

and predetonating on a civilian.
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