
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Simulation and Modeling of High Energy Laser-
Induced Droplet Shattering In Clouds
Andrew P. Lawrence

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Physical Sciences and Mathematics Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Lawrence, Andrew P., "Simulation and Modeling of High Energy Laser-Induced Droplet Shattering In Clouds" (2018). Theses and
Dissertations. 1739.
https://scholar.afit.edu/etd/1739

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277525156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholar.afit.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1739?utm_source=scholar.afit.edu%2Fetd%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


SIMULATION AND MODELING OF
HIGH ENERGY LASER-INDUCED

DROPLET SHATTERING IN CLOUDS

THESIS

Andrew P. Lawrence, 2d Lt, USAF

AFIT-ENC-MS-18-M-003

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENC-MS-18-M-003

SIMULATION AND MODELING OF

HIGH ENERGY LASER-INDUCED

DROPLET SHATTERING IN CLOUDS

THESIS

Presented to the Faculty

Department of Applied Mathematics and Statistics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Mathematics

Andrew P. Lawrence, B.S.

2d Lt, USAF

February 28, 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENC-MS-18-M-003

SIMULATION AND MODELING OF

HIGH ENERGY LASER-INDUCED

DROPLET SHATTERING IN CLOUDS

THESIS

Andrew P. Lawrence, B.S.
2d Lt, USAF

Committee Membership:

Dr. Benjamin Akers, PhD
Chair

Dr. Steven Fiorino, PhD
Member

Maj Jonah Reeger, PhD
Member



AFIT-ENC-MS-18-M-003

Abstract

The process of a megawatt laser passing through a cloud is modeled. Specifically, the

potential for droplet shattering is explored as a method for clearing a path through

a cloud through which a second laser may be sent unobstructed. The paraxial ap-

proximation, an approximation to Maxwell’s equations, is used to model the beam

propagation. The simplified cloud model has assumed a distribution of pure, timescale

restricted, droplets evenly distributed with uniform radius and initial temperature.

All of the radiative heating is assumed to heat the droplet, neglecting radius change

and vaporization based upon characteristic time scales. A 1+1 dimensional model

is solved analytically over time and used to verify a numerical model which is then

scaled up and applied to the 2+1-dimensional, radially symmetric case. The process is

shown to create a cleared channel in a realistic amount of time given the constraining

assumptions.
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SIMULATION AND MODELING OF

HIGH ENERGY LASER-INDUCED

DROPLET SHATTERING IN CLOUDS

I. Introduction

This document models the effect of self-induced atmospheric changes on the prop-

agation of pulsed High Energy Lasers (HELs). Atmospheric laser propagation is an

important aspect of many applications including targeting, wireless communication,

energy transfer, remote sensing, the measurement of gravity waves, and many more

[1, 2, 3, 4]. Specifically, the interactions between electromagnetic radiation and water

droplets in the atmosphere are important to high-flux laser cloud-clearing. The use of

HEL to clear clouds has been discussed by a number of authors over the past several

years [5, 6, 7, 8, 9]. Experimental tests have measured the instability of droplets at

high irradiances, demonstrated the clearing of ice crystal clouds, and achieved the

clearing of stratus-like clouds [10, 11, 12, 13, 14]. There has also been theoretical

research investigating how a prescribed beam affects cloud dynamics [15, 16, 17, 18]

and how a prescribed cloud affects a dynamic beam [19, 20, 21]. Research has been

done on coupling the beam dynamics with those of the cloud [22, 23, 24]. The model

presented here will also couple the cloud and beam, but will use a 2+1 dimensional,

radially symmetric model at high laser irradiances where evaporation is negligible.

In this work, a model to numerically simulate the propagation of pulsed wave

HEL is developed in order to study the interplay between laser-induced droplet shat-

tering and medium-based refractive index changes. This process can be visualized

in Figure 1. The scale of laser wavelengths and beam propagation distance typically
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differ by many orders of magnitude making direct simulations of the dynamics of the

atmosphere unreasonable. The conventional approach is to use an envelope equation

for the beam propagation such as the paraxial equation [25, 26, 27]. An envelope

equation will be used as the basis for the laser model, but will also include refractive

index terms which depend on the presence of water droplets or lack thereof. This

coupling allows the beam to respond to the surrounding droplet medium and change

accordingly.

The droplet dynamics depend on the deposition of energy by the incident laser.

The droplets respond to the energy changes through a number of thermodynamic,

and hydrodynamic processes, including vaporization, convection, conduction, and

radiative heating. Stimulated Raman scattering and other nonlinear optical effects

important in transparent droplets are negligible [28, 29, 18]. For high irradiances,

the effects of conduction and convection are of negligible size, and the effects of

vaporization increase but operate on a relatively slow characteristic time scale when

compared to that of radiative heating and can be neglected as well [18, 30]. Thus, the

time evolution of the droplet distribution depends only on temperature fluctuations

within each droplet resulting from the radiative heat transfer from the laser. As the

beam heats the droplets, hot spots are created due to nonuniform heating. This

Figure 1. Visual model of a pulsed laser incident upon a distribution of droplets. Not
to scale. (Courtesy of Dr. Ben Akers)
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process is present in all laser radiative droplet heating, but is more pronounced at

higher intensities [18, 31, 32]. Unlike liquid water at atmospheric pressures, the

phase transition from liquid to vapor for suspended, pure, atmospheric droplets does

not occur at 100◦C [18, 33, 34]. Instead, the maximum temperature of the liquid

phase is the critical temperature, Tcrit ≈ 305◦C [35], at which a sudden spontaneous

nucleation of the vapor phase occurs. When hot spots cause the interior of the

droplet to reach this critical temperature, the sudden vaporization causes the droplet

to explode [28, 18, 36, 37].

For this analysis we consider a regime in which the incident laser flux is large

enough to cause shattering (>104 W/cm2), but not so large as to create plasma (<108

W/cm2), given a laser wavelength of 10.6 µm [18, 38, 39, 40, 41]. Such a regime

corresponds to rather high irradiances when considered in atmospheric propagation

scenarios, but relatively small irradiances compared to the lasers often used in labo-

ratory or industrial settings [42, 43, 44]. The U.S. Air Force operated Airborne Laser

(ABL) was able to maintain a 106 W/cm2 continuous-wave laser for seconds at a time

[45]. An artificially induced pulse could be applied to this laser to achieve the desired

pulse length. Other lasers exist that can achieve 10 megawatt peak irradiance over

microsecond pulses with a rate of 200 pulses per second and are CO2 based, which

is necessary for producing the desired 10.6 µm wavelength [46]. Therefore, practi-

cal means are available which meet and exceed the desired specifications to induce

droplet shattering.

When the irradiated droplets shatter, this analysis assumes that they leave behind

a cleared zone within the larger spatial distribution of droplets that does not contain

drops. Consequentially, the refractive index in this cleared domain will be different

from the area containing droplets. This is assumed to be the only change to the

refractive index; there is assumed to be no change based upon the temperature fluc-
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tuation of the droplets or the surrounding vapor [18, 22, 47]. This piecewise change

in the refractive index of the propagation medium feeds back upon the beam allowing

it to penetrate further, heat up more drops, shatter them, and repeat.

The remainder of the paper is organized as follows. In section 2, we present

the models used for simulation of the coupled beam and atmospheric dynamics. In

section 3, we present the numerical methods and simulation results, including both

spatial and temporal convergence studies. In section 4, we conclude and present

future research areas.

4



II. Background

We will derive our model equations from first principles and describe the ansatz

used to arrive at a closed form solution. But first, we will discuss the assumptions in

our model.

First, let us review the assumptions concerning our cloud medium. A simple

cloud consisting of a uniform distribution of droplets with constant initial radius,

D0, and temperature, T0, will be assumed. The inclusion of nonuniform droplet

radii would require absorption coefficients as a function of the laser wavelength to

droplet size ratio and could be included in future research. A nonuniform initial

temperature distribution would result in multiple droplet shattering fronts occurring

within the cloud. The numerical scheme presented below could accommodate the

more complicated initial condition, but a uniform initial temperature distribution is

assumed for a simple, initial approach.

The droplets themselves are assumed to be perfect spheres which do not rotate

or move; the time scale on which our laser is operating is significantly shorter than

that of any potential velocity fields. The cloud is also assumed to consist only of

gas and droplets. The droplets are assumed to be pure H2O and contain no impuri-

ties. The droplets shatter instantaneously once any internal point reaches the critical

temperature. The maximum temperature of each drop at a given location and time,

Tmax(r, z, t), is sufficient to track when shattering will occur. The droplets do not to

change radius on the time-scale of the droplet shattering. When a droplet is shattered

it is assumed to be immediately replaced by vapor. The droplet radius distribution

for all space and time can be represented by

D(r, z, t) =

 D0 Tmax(r, z, t) < Tcrit

0 Tmax(r, z, t) ≥ Tcrit

5



Next, we will outline the assumptions governing our laser. Our model will ignore

any propagation in the backwards direction. We will assume that the propagation

distance of our laser is large with respect to the beam width, an approximation which

allows one to derive the paraxial approximation. Finally, the laser will be assumed

collimated.

2.1 Paraxial Wave Equation

As we are modeling the propagation of a laser, we will begin our derivation of

the laser equation with Maxwell’s equations in a generic medium free of charge and

current:

∇ · E = 0 (1a)

∇ ·B = 0 (1b)

∇× E = −∂B
∂t

(1c)

∇×B = µε
∂E

∂t
(1d)

In (??) ε and µ are the permitivity and permeability, respectively, of the propagation

medium (in our case, a cloud).

We will now take the curl of Faraday’s Law, equation (1c), to get

∇× (∇× E) = ∇× (−∂B
∂t

) (2)

Using the vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A

we can simplify the left hand side of equation (2) and, assuming that continuous

6



second partial derivatives of E and B exist, we can simplify the right hand side,

leaving

∇(∇ · E)−∇2E = − ∂

∂t
(∇×B) (3)

Substituting in equation (1a), simplifying the left hand side of equation (3), and

using the equation (1d) gives

∇2E =
1

v2

∂2E

∂t2
(4)

where v = 1√
µjεj

such that µj and εj depend on the medium.

Assuming a solution to equation (4) of the form

E = E(r, z)e−iωtê1

where ω is the frequency of our laser and ê1 is the unit vector along z, we see that

the time dependence falls out:

∇2E = − 1

v2
ω2E.

We can take advantage of the relevant governing physics to express the constant

v, the speed of light in the propagation medium, in terms of the speed of light, c, and

the medium index of refraction, n,

∇2E = −n
2ω2

c2
E.

Making use of the spatial frequency, k = ω
c
, we now have the wave equation in our

given medium

∇2E + k2n2E = 0 (5)

7



to which we propose a solution of the form

E = A(r, z)eikn0z

where eikn0z is the plane wave with amplitude A, r = εR, and z = ε2Z. The plane

wave is slowly varying as evidenced by the incorporation of ε into the spatial depen-

dence. This is known as the paraxial approximation. The ε coefficients also represent

the approximation that the laser varies less in the direction of propagation, z, than

it does in the radial transverse direction, r. The solution is assumed to be radially

symmetric. We define the index of refraction as

n(r, z, t) = n0(r, z, t) + ε2n1(r, z, t)

= η0(r, z, t) + iβ0(r, z, t) + ε2(η1(r, z, t) + iβ1(r, z, t)) (6)

with the initial refractive index expressed through η0 and changes in the refractive in-

dex due to the laser beams interaction with the medium represented by η1. Similarly

the initial absorptivity is represented by β0 and variations thereupon are represented

by β1.

Plugging our solution into the wave equation, (5), assuming our laser is radially

symmetric, only decays in the propagation direction, z, and radial transverse direc-

tion, r, and simplifying gives

ε2

(
1

r
Ar + Arr

)
eikn0z + ε22ikn0Aze

ikn0z − k2n2
0Ae

ikn0z + ε4Azze
ikn0z

+k2n2
0Ae

ikn0z + ε22k2n0n1Ae
ikn0z + ε4k2n2

1Ae
ikn0z = 0.

8



Let us now group terms on the same order of ε and drop the common exponential

term. As expected, the O(1) terms satisfy equation (5) on their own,

−k2n2
0A+ k2n2

0A = 0.

Next, the O(ε2) terms give

1

r
Ar + Arr + 2k2n0n1A+ 2ikn0Az = 0.

Assuming the O(ε4) terms are negligible, this is the Schrödinger equation which

is known in this context as the paraxial wave equation.

Az =

(
i

2kn0

(
∂2

∂r2
+

1

r

∂

∂r

)
+ ikn1

)
A

or

Az =

(
iη0 + β0

2k(η2
0 + β2

0)

(
∂2

∂r2
+

1

r

∂

∂r

)
+ ikη1 − kβ1

)
A.

2.2 Index of Refraction

As in (6) we have separated the real and imaginary parts of the index of refraction.

In order to appropriately model the physics of our system, the values of the index

of refraction and absorption (and their first order corrections) must reflect a propor-

tionality between the water in the droplets and the surrounding vapor, reflected here

as a volume ratio. The effective ratio of water to vapor, then, is

P (r, z, t) =
Vdrops
V

D(r, z, t)

D0

= 10−6D(r, z, t)

D0

from Cloud Physics [48]. Using the rule of mixtures [49], the coupled values then
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take the form

η0(r, z, t) = P (r, z, t)η0,H2O + (1− P (r, z, t))η0,v

η1(r, z, t) = P (r, z, t)η1,H2O + (1− P (r, z, t))η1,v

β0(r, z, t) = P (r, z, t)β0,H2O + (1− P (r, z, t))β0,v

β1(r, z, t) = P (r, z, t)β1,H2O + (1− P (r, z, t))β1,v

where we have incorporated our cloud composition assumption stated previously.

2.3 Heat Equation

Over time, the droplets will undergo periods of heating, due to the laser, and

cooling, due to thermal conduction. Given the assumption of spherical symmetry,

the heating inside the droplet is approximated by

cρTt = ∇ · (K∇T ) + f(ξ)|A| (7)

f(ξ) =
4π

λ0

S(ξ)Re(n)Im(n) (8)

S(ξ) =

√
3

2π
e
−9
2

(ξ−0.9)2 + 0.8 (9)

where c is the specific heat of water, ρ is the density of water, K is the thermal

conductivity, f defines the heat production distribution, and S is a normalized source

function representing how much a 5 µm droplet is heated due to radiation as a func-

tion of one, normalized, internal space dimension, ξ, visually approximated from

Armstrong [18] and seen in Figure 2.

In equation (7) above, the first term on the right side of the equation accounts for

thermal diffusion, while the second term represents heat effects due to radiation. Fol-

lowing Armstrong, for intense radiation, the heating term will dominate the thermal

10



Figure 2. Normalized source function for λ0 = 10.6 µm and D0 = 5 µm along the droplet
diameter parallel to the laser propagation direction of the incident laser beam (from
left to right) sourced from Armstrong [18].

diffusion, a ratio of the two terms, set equal to one, and solved for a critical irradiance

gives

|A|crit =
K∆Tλ0

4πS(ξ)(∆D)2Re(n)Im(n)
.

Given a droplet radius of D0 = 5 µm and a laser wavelengths of λ0 = 10.6 µm, the

critical irradiance is on the order of 104 W
cm2 . In order for the heating term to dominate

and neglect diffusion, we consider a laser irradiance of at least |A(0, 0, t)| = 106 W
cm2 =

1MW
cm2 .

With a pulse laser of megawatt irradiance, the temperature equation becomes

piecewise, the heating term dominating when the pulse is on, and being nonexistent

11



when the pulse is off, leaving the temperature to decay governed by the heat equation

cρTt =

 |A(r, z, t)|f(ξ) Pulse on

KTξξ Pulse off
.

2.4 Heat equation boundary conditions

The heat equation in the cooling period can be solved numerically, once the bound-

ary conditions have been determined. When evaluating the evolution of temperature

between pulses, we no longer have a forcing function to dominate the heat dissipation

and we are left with a simple heat equation

Tt =
K

cρ
Tξξ. (10)

The boundary conditions for equation (10) prove more complex and take the

following form [18]

−K ∂T

∂ξ

∣∣∣∣
ξ=Ξ−

= −K ′ ∂T
∂ξ

∣∣∣∣
ξ=Ξ+

+mL+mc(T − T0) +
m3

2ρ′2
.

The term on the left-hand side of the equation is heat flux from inside the drop. On

the right-hand side of the equation, the first term is the heat flux from the ambient

water vapor outside of the drop, the second term is the energy used in vaporization

on the surface, the third term is the energy loss due to droplet shrinking, and the last

term is the convection term which represents the kinetic energy exchange [18].

As discussed earlier, the droplet shrinkage and convection are of negligible size,

roughly one and two orders of magnitude smaller than the vaporization term, respec-

tively. The vaporization term itself is negligible on the short time scale (µs) that

droplet shattering takes place [18, 30]; in Armstrong, the vaporization term is shown

12



to cool droplets at a rate of ≈ 1
◦C
µs

[18]. Assuming a constant heating at 50% efficiency

over the period of a µs pulse, the rate of cooling at the beginning of the pulse off

period will be O(104), making the vaporization term negligible. The only term left is

that of heat transfer leaving through the surface of the drop. Thus we approximate

the boundary conditions as

∂T

∂ξ
(−1, t) =

∂T

∂ξ
(1, t) = 0

which imply no heat loss on the surface of the droplet until the droplet shatters.

2.5 Model

Below is a collective list of the relevant governing equations.

Az =

(
iη0 + β0

2k(η2
0 + β2

0)

(
∂2

∂r2
+

1

r

∂

∂r

)
+ ikη1 − kβ1

)
A

which is coupled with

η0(r, z, t) = P (r, z, t)η0,H2O + (1− P (r, z, t))η0,v

η1(r, z, t) = P (r, z, t)η1,H2O + (1− P (r, z, t))η1,v

β0(r, z, t) = P (r, z, t)β0,H2O + (1− P (r, z, t))β0,v

β1(r, z, t) = P (r, z, t)β1,H2O + (1− P (r, z, t))β1,v

given that

P (r, z, t) = 10−6 D(r, z, t)

D0

13



when D is defined by

D(r, z, t) =

 D0 Tmax(r, z, t) < Tcrit

0 Tmax(r, z, t) ≥ Tcrit

and the droplet heating is defined by

cρTt =

 |A(r, z, t)|f(u) Pulse on

KTξξ Pulse off

where the heat distribution and source function are defined as

f(ξ) =
4π

λ0

S(ξ)Re(n)Im(n)

and

S(ξ) =

√
3

2π
e
−9
2

(u−0.9)2 + 0.8.

A collection of parameter values can be found in the Appendix.

2.6 1+1 Dimensional Laser Equation

At this point we will explore the simplified case in which the transverse directions,

here r, are ignored. The simplified laser equation only considering the propagation

direction, z, becomes a linear, (piecewise) constant coefficient ODE of the form

Az = i(α(z, t) + iβ(z, t))A (11)

where α(z, t) = kη1(z, t) and β(z, t) = kβ1(z, t) are piecewise constant in z. As we

proceed to find the solution to equation (11), the solution will be valid on the same

piecewise support as α(z, t) and β(z, t).
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To find the general form of the solution to our 1+1 dimensional laser equation at

a given time, t, we begin with the conjugate of equation (11)

Az = −i(α− iβ)A. (12)

Multiplying equation (11) by A and its conjugate, (12), by A gives

AAz = i(α + iβ)AA

and

AAz = −i(α− iβ)AA.

Adding those last two equations, (2.6) and (2.6), together and recognizing the

product rule returns

|A|2 = |A|2(z = 0)e−2βz

or

|A| = |A|(z = 0)e−βz

which is our solution in space at a given time, t.

Now that we know the general form of our laser equation in 1+1 dimensions, we

can specify what it looks like in the different regimes. Before time t = tcrit(0) no drops

have been shattered and the thus, β is only the absorptivity of the region containing

droplets. After time t = τ , we must consider the boundary of the cleared zone, zcrit(t).

For z < zcrit(t) the laser travels through a cleared region and β is the absorptivity of

vapor only. For z > zcrit(t) the absorptivity is back to that of a droplet region, but

we must account for the fact that the laser has already traveled a distance of zcrit(t)
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in a cleared medium.

|A|(z) =


|A|(0)e−kβ0,H2O

z t < tcrit(0)

|A|(0)e−kβ0,vz z < zcrit(t)

|A|(0)e−kβ0,vzcrit(t)e−kβ0,H2O
(z−zcrit(t)) z > zcrit(t)

 t > tcrit(0)

We now consider the maximum temperature of the droplets at the interface, which

is governed by the equation

Tt = C|A|(z, t) (13)

where C = maxξ∈[−1,1] f(ξ) = 2
√

2π
λ0

η0,H2Oβ0,H2O. Solving for temperature at the

droplet interface,

T (z, tcrit(z)) =

∫ tcrit(z)

0

C|A|(z, t)dt (14)

= tcrit(0)C|A|(0)e−kβ0,H2O
z + e−kβ0,H2O

z

∫ tcrit(z)

tcrit(0)

C|A|(0)e−k(β0,v−β0,H2O
)zcrit(t)dt.

It should be noted that the temperature along the droplet interface is T (z, tcrit(z)) =

Tcrit, by definition. Seeking to solve for tcrit, we differentiate equation (14) with re-

spect to z yielding

dT

dz
= 0 =− tcrit(0)kβ0,H2OC|A|(0)e−kβ0,H2O

z + C|A|(0)e−k(β0,v−β0,H2O
)zcrit(tcrit(z))e−kβ0,H2O

zt′crit(z)

− kβ0,H2Oe
−kβ0,H2O

z

∫ tcrit(z)

tcrit(0)

C|A|(0)e−k(β0,v−β0,H2O
)zcrit(t)dt. (15)

Let u = zcrit(t). Then du = z′crit(t)dt. Since zcrit and tcrit are inverse func-

tions of one another, tcrit(u) = tcrit(zcrit(t)) = t making u = zcrit(tcrit(u)) and

16



du = z′crit(tcrit(u))dt. Thus, equation (15) becomes

0 = −tcrit(0)kβ0,H2O+e−k(β0,v−β0,H2O
)zt′crit(z)−kβ0,H2O

∫ z

0

e−k(β0,v−β0,H2O
)u du

z′crit(tcrit(u))
.

(16)

But since

u =zcrit(tcrit(u))

d

du
u =

d

du
zcrit(tcrit(u))

1 =z′crit(tcrit(u))t′crit(u),

equation (16) simplifies to

0 = −tcrit(0)kβ0,H2O + e−k(β0,v−β0,H2O
)zt′crit(z)− kβ0,H2O

∫ z

0

e−k(β0,v−β0,H2O
)ut′crit(u)du.

(17)

Differentiating with respect to z

0 = −k(β0,v−β0,H2O)e−k(β0,v−β0,H2O
)zt′crit(z)+e−k(β0,v−β0,H2O

)zt′′crit(z)−kβ0,H2Oe
−k(β0,v−β0,H2O

)zt′crit(z)

and simplifying leaves a linear, constant-coefficient differential equation

kβ0,vt
′
crit(z) = t′′crit(z)

to which the solution is known to be exponentials

t′crit(z) = t′crit(0)ekβ0,vz. (18)
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Integrating equation (18) to solve for tcrit(z) gives

tcrit(z) =
t′crit(0)

kβ0,v

ekβ0,vz +H

where H is a constant of integration that, once solved for, leaves

tcrit(z) =
t′crit(0)

kβ0,v

ekβ0,vz + tcrit(0)− t′crit(0)

kβ0,v

.

Evaluating equation (17) at z = 0 returns t′crit(0) in terms of tcrit(0) returns

t′crit(0) = tcrit(0)kβ0,H2O.

The closure for tcrit(0) can be found from the heat equation by taking advantage

of the fact that the laser is constant in time on the interval 0 ≤ t ≤ tcrit(0). Thus

tcrit(0) =
Tcrit

|A(0, 0)| C
.

Finally,

tcrit(z) =
Tcrit

|A(0, 0)| C

(
β0,H2O

β0,v

(
ekβ0,vz − 1

)
+ 1

)
. (19)

Equation (19) can be inverted to produce

zcrit(t) =
1

kβ0,v

ln

[
β0,v

β0,H2O

(
t|A(0, 0)| C

Tcrit
− 1

)
+ 1

]
. (20)

The equations for zcrit and tcrit can be used to predict the required time to pene-

trate a cloud of some depth or the depth penetrated at a given time given the laser

irradiance, heating profile and critical temperature of water. Figure 3 shows tcrit(z)

including labels denoting where droplets are and are not.

18



Figure 3. The time of the shattering droplet front as a function of distance through
the cloud. The cleared area is labeled along with the remaining droplets.
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III. Numerical Results

3.1 Numerical Method

For the 2+1-dimensional, radially symmetric case, the governing equations will

be solved numerically. The laser equation in space will be solved first, for a fixed

time, using the Crank-Nicholson scheme with zero boundary conditions [50]. Then

the temperature equation will be solved with the laser irradiance just found using

Euler’s method. The droplet distribution is updated next, based on the temperature

solution. The entire scheme is visualized in the flow chart in Figure 4 and repeated

for the duration of a pulse. Between pulses, the built up heat in the droplets is

the only dynamic variable in the system. Thus the heat equation governs that heat

dissipation; it is modeled in one dimension and is solved using the Crank-Nicholson

scheme. [50]

The scheme ends when the laser has penetrated the cloud. A channel is considered

to be sufficiently cleared once all of the drops along the azimuthal axis, z, have been

shattered. Additional clearing of droplets at the far side of the cloud, the maximum

z distance, may occur due to the discretization in time. The last azimuthal drop can

only be assessed to have been shattered at the end of a time step, allowing for the

clearing of additional drops after the last azimuthal drop has shattered but before

the time step is over. This effect can be seen in Figure 11 as the width of the cleared

channel at the maximum z distance is wider than ∆r, the transverse spatial resolution.

Parameters, such as pulse length and irradiance, are chosen to satisfy the underly-

ing assumptions of our model. As discussed earlier, an irradiance between 104 W/cm2

and 108 W/cm2 is necessary to avoid plasma formation while allowing shattering to

dominate droplet dynamics. Our model will use an irradiance of 106 W/cm2. Given a

wind speed of 30 mph and a cleared channel width of 1 m, the assumption of station-
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Figure 4. First the laser equation is solved in space. Then the temperature is solved for
using the previously found laser irradiance. Then the droplet distribution is updated
using the temperature. This process is repeated for the duration of a pulse.

ary droplets with respect to the laser effects only holds true if the laser can penetrate

in less than 0.0357 seconds. That is the time it takes for a droplet to cross half the di-

ameter of the cleared channel. Our model also maintains an implicit assumption that

the laser acts on the entire cloud at once (the front of the laser entering the cloud is

not tracked). Therefore, given a reasonable cloud depth of 100 m [48], the pulse must

be no shorter than 3∗ 10−7 s or 0.3 µs (and preferably an order of magnitude longer).

Based on these restrictions and specifications of an existing laser system given in Gas

Lasers [46], the laser model will operate with a pulse on time of ton = 4.185× 10−6 s,

a pulse off time of toff = 8.069× 10−4 s, a 1.25 kHz rate, and MW/cm2 irradiance.

For numerical accuracy, the laser irradiance will be normalized, Ã = A
‖A‖∞

. The

laser equation will remain unchanged:

Ãz =

(
iη0 + β0

2k(η2
0 + β2

0)

(
∂2

∂r2
+

1

r

∂

∂r

)
+ ikη1 − kβ1

)
Ã.
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A time scale will be introduced in the temperature equation when the pulse is on

to account for the normalization. Here we include c and ρ in the time scale while the

pulse is on, τon = ‖A‖
cρ
ton. A different time scale will be used when the pulse is off

accounting just for K, c and ρ, τoff = K
cρ
toff .

Tτon = |Ã|f(u)

Tτoff = Tξξ.

We will transform the results back to unscaled times after the simulation for

reporting purposes.

3.2 Convergence Studies

As was discussed in Section 2.6, the 1+1 dimensional system has an explicit solu-

tion for all space and time. The exact solution can be used to verify the accuracy of

the numerical scheme by implementing it in the 1+1 dimensional case and comparing

the results. The numerical scheme is shown to solve the system and is visualized over

all z and at discrete scaled times in Figure 5. Slices in time of the laser irradiance

over space are shown for the duration of the laser. An initial high decay rate is seen

as the laser is attenuated by the droplets, until the first drop shatters. From that

time on, there is an initial low decay rate in the domain with only vapor, and then a

change back to the droplet domain and a high decay rate.

By nature of the discretization of the domain onto a grid and the necessity of the

scheme to round the location of the droplet front to either the left or the right of the

interval in which the exact location exists, the scheme will introduce an error on the

order of the spatial step size, O(∆z). It is interesting to note in Figures 6 and 7 that

the space and time interdependency of our model introduces an error on the order
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Figure 5. The irradiance of the laser for all z at discrete times in 1+1 dimensions. The
pulse on length was τon = 4.185× 10−6 s, the pulse off time was τoff = 8.069× 10−4 s, and
the cloud depth used was 100 m.

of the time step size, O(∆τ), due to the O(∆z) discussed above even when a second

order, O(∆τ 2), integration scheme (Trapezoidal method) is used.

Following are convergence plots of the Cauchy error (Figures 6 and 8) and forward

error (Figures 7 and 9 ) in both time (Figures 6 and 7) and space (Figures 8 and 9)

demonstrating that the error is O(∆τ,∆z) as expected. In both space and time, the

Cauchy error and forward error decay toward zero. Here, the Cauchy error is defined

as

ECj
=
∥∥∣∣A∆zj(z, τ

′)
∣∣− ∣∣A∆zj−1

(z, τ ′)
∣∣∥∥
∞

and the forward error is defined as

EFj
=
∥∥|A(z, τ ′)| −

∣∣A∆zj(z, τ
′)
∣∣∥∥
∞

where
∣∣A∆zj(z, t

′)
∣∣ is the irradiance of the laser for all z and fixed time τ ′ found by
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the numerical scheme using the jth step size. The laser equation was solved until

time τ ′ = 0.01 s with ∆z = 0.01 m for the convergence study in time, and until

τ ′ = 0.0100374 s with ∆τ = 10−7 s for the convergence study in space.
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Figure 6. A convergence study in time of the Cauchy error of the numerical scheme in
1+1 dimensions for different integration schemes at time τ ′ = 0.01 s. The Cauchy error
is defined as ECj

=
∥∥∣∣A∆zj (z, τ ′)

∣∣− ∣∣A∆zj−1
(z, τ ′)

∣∣∥∥
∞, represented by asterisks connected

by dots for the right hand method, dashes for the left hand method, and dots and
dashes for the trapezoidal method, and decays like O(∆τ).

Figure 7. A convergence study in time of the forward error of the numerical scheme in
1+1 dimensions for different integration schemes at time τ ′ = 0.01 s. The forward error
is defined as EFj

=
∥∥|A(z, τ ′)| −

∣∣A∆zj (z, τ ′)
∣∣∥∥
∞, represented by circles connected by dots

for the right hand method, dashes for the left hand method, and dots and dashes for
the trapezoidal method, and decays like O(∆τ).
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Figure 8. A convergence study in space of the Cauchy error of the numerical scheme
in 1+1 dimensions at time τ ′ = 0.0100374 s. The Cauchy error is defined as ECj =∥∥∣∣A∆zj (z, τ ′)

∣∣− ∣∣A∆zj−1(z, τ ′)
∣∣∥∥
∞. The error values are represented by asterisks and decay

like O(∆z).

Figure 9. A convergence study in space of the forward error of the numerical scheme
in 1+1 dimensions at time τ ′ = 0.0100374 s. The Cauchy error is defined as EFj

=∥∥|A(z, τ ′)| −
∣∣A∆zj (z, τ ′)

∣∣∥∥
∞. The error values are represented by circles and decay like

O(∆z).
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3.3 2+1 Dimensional, Radially Symmetric Laser Equation Simulation

We can finally solve the full governing system including the original 2+1-dimensional,

radially symmetric PDE confident that our splitting scheme works. Figure 10 shows

the laser irradiance over two-dimensional, radially symmetric space for times t =

0.0008 s (after the first pulse and cooling period) and t = 0.0016 s (the final time) and

Figure 11 shows the maximum temperature within each drop over two-dimensional,

radially symmetric space for the same times. The laser is found to have penetrated

the cloud after 2 pulses and t = 0.0016 seconds which is an order of magnitude smaller

than the 0.0357 seconds necessary to satisfy our assumptions.
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Figure 10. The irradiance of the laser over two-dimensional, radially symmetric space
for times t = 0.0008 and 0.0016 s. The pulse on time was ton = 4.185 × 10−6 s, the pulse
off time was toff = 8.069× 10−4 s, and the cloud depth was 100 m.

Figure 11. The maximum temperature within each droplet over two-dimensional,
radially symmetric space for times t = 0.0008 and 0.0016 s. The pulse on time was
ton = 4.185× 10−6 s, the pulse off time was toff = 8.069× 10−4 s, and the cloud depth was
100 m. The white space is used to represent the cleared channel where the droplets
have been shattered.
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IV. Conclusions and Future Research

The model described above has simulated the process of a pulsed, high-energy laser

directed toward a cloud. The constituent droplets are heated to a critical temperature

at which they shatter, leaving a cleared space. Over time, this process creates a cleared

channel in the cloud through which another laser can be sent unobstructed. The model

used, however, was very simplified and intended, primarily as a proof of concept. The

inclusion of water vapor dynamics would make the model more realistic, to include

pluming and turbulence. Specifically, tracking the vapor temperature would be a

natural and straightforward extension of this work.

The inclusion of nonuniform droplet radii and nonuniform initial temperature dis-

tribution are also opportunities for future research, as well as is a model for lower

values of laser irradiance. While the high intensities necessary for this model are at-

tainable, it is far more practical to use lower regime. Therefore, it would be interesting

to develop a model for the lower irradiances in which effects such as evaporation, ab-

lation and vaporization dominate droplet dynamics. Fluid effects within the droplets

are likely to become more important in the lower regime levels.

While the model presented demonstrates that this effect is limited to small clouds

(100 m), some military conclusions can still be drawn. Aircraft can use large clouds to

hide behind without worry of adversary lasers reaching them. Conversely, an aircraft

can hide visually behind a small cloud while still affecting what is on the other side.

In conclusion, this project proved, in concept, that the high energy, droplet shat-

tering approach to laser induced cloud clearing is possible. A numerical simulation is

provided, along with analytical equations for predicting the required time to penetrate

a cloud of given depth.
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Appendix

Parameter values

λ0 = 10.6× 10−6 m

k =
2π

λ0

m−1

ρ = 103 kg

m3

c = 4.1855× 103 J

kg·◦C

K = 5.187× 10−2 J

s·m·◦C

η0,H2O = 1.179

η1,H2O = 0.776405

η0,v = 1

η1,v = 3.64807 ∗ 10−6

β0,H2O = 0.07558

β1,H2O = 0.03

β0,v = 0.003× 10−3

β1,v = 0.003× 10−9
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