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Abstract

This research develops optimized flight paths for localization of a target using

Line Of Bearing (LOB) measurements. The target area is expressed as an error ellipse

using the measurement errors of the LOBs. The optimization approach is focused on

minimizing the size of the error ellipse. The algorithm for the optimized path is

generated and compared with typical flight paths. The optimization routine is based

on the results derived from similar research in the literature.

A geometrical method to estimate the error ellipse is combined with optimal con-

trol in this research. Each LOB gives a possible target area and this target area can

be reduced by overlapping areas developed from multiple LOBs. This geometrical

method is easy to understand because its target area can be visualized intuitively.

The algorithm based on this method is tested with a single target and with multiple

targets in simulation. In addition to analytical simulations of the proposed method,

a real-world test is conducted using a remotely controlled truck. From the simulation

and a real-world test, the change of the semi-major axis of the error ellipse with in-

creasing number of measurements and the total number of measurements needed to

achieved a predefined semi-major axis are verified.

A comparison between the simulation results and an experimental test shows

what the similarities and differences are. In addition, a no-fly zone is included into

the optimization for the safety of the UAV in real world. Its application and how it

improves the performance are described.
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OPTIMIZED FLIGHT PATH

FOR LOCALIZATION USING LINE OF BEARING

I. Introduction

1.1 Background

Throughout the world, Unmanned Aerial Vehicle (UAV) technology is developing

very rapidly and has penetrated deeply in various fields. The military has performed

much research on UAVs. A few decades ago, UAVs could take only video and still

images of a target for surveillance purposes. However, they now can perform military

operations by themselves.

The past decade for Remotely Piloted Aircraft (RPA) mirrors the rapid
evolution of combat airpower during World War I: a wave of great ideas,
tactics, and technology, brought from air-minded communities flowed in
faster than our ability to field them and slower than the land forces would
have linked them. But like the Rickenbackers and Lufberys of their day, it
was the RPA lieutenants and imperfect as they were, and integrated them
into the evolving fight, transitioning the platforms from reconnaissance-
only to true multirole Intelligence, Surveillance, and Reconnaissance(ISR)
and strike. They delivered disciplined and effective combat airpower every
day; another generation of the Air Force’s great captains is born.[7]

– RPA Expeditionary Operations Group Commander(2010-2012),
Colonel Bill Tart

In other cases, some companies plan to transport products to their customers using

UAVs. Clearly, UAV technology is no longer unique. Many countries and companies

have established organizations for researching UAV technology and have invested

much money for developing UAV technology.

The continued growth of Unmanned Aircraft Systems (UAS) has helped the De-

partment of Defense (DoD) in adopting UAV usage more widely. Especially, cutting-
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edge technologies with respect to Artificial Intelligence (AI), communications, propul-

sion and power enhance its potential capability. In the future, UAVs will be multi-

mission and adverse weather capable, so, the DoD is managing its plan for developing

RPA and Small Unmanned Aircraft Systems (SUAS). As a part of the DoD organiza-

tion, the Advanced Navigation Technology (ANT) Center at the Air Force Institute

of Technology (AFIT) conducts a wide variety of research for the development of

guidance, navigation, and control of UAVs.

Among the various UAV technologies, passive position finding technology is the

focus in this thesis. This technology is widely used in military equipment for several

reasons. First of all, it is a safe covert way to geolocate in an operational field because

it doesn’t generate a detectable radio signal. It just receives a radio frequency and

determines where it comes from. The operator and/or platform has less possibility to

be detected by an enemy’s RAdio Detection And Ranging (RADAR). Furthermore,

it is more economical and simpler than an active method. For these reasons, this

research will discuss passive localization technology, especially concerning what is an

efficient and effective UAV flight path for emitter localization.

1.2 Problem Statement

This thesis describes the development of an optimized flight path generation tech-

nique for a UAV to find a target’s position using passive localization technology. For

passive localization, a UAV needs to measure the LOB to an emitter from several

places. A single LOB gives the direction to the target emitter. The intersection of

several LOBs can be used to localize the target position. When using more LOBs, the

target position can be determined more accurately. However, bearing measurements

always have some errors due to incorrect equipment operation, equipment precision,

equipment calibration, and environmental factors. These errors introduce uncertainty

in the LOB measurements. Each LOB has the possibility of being incorrect. Any

method of reducing this uncertainty, considering multiple LOBs from multiple dif-
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ferent aircraft, can be effective statistically. Developing and efficient method and

analyzing the performance for a UAV is the problem considered herein.

Every UAV flight path has a different required flight time for estimating the correct

target position within a desired accuracy time. The flight path is a very crucial factor

for measuring the LOB. Some collections of LOBs take a short time for calculating the

target position with acceptable accuracy. Adversely, some collections of LOBs take

a long time to calculate the target position with the same accuracy. In this research,

finding out what is an efficient flight path for localization using LOB measurements

is a final objective. For this problem, the UAV is referred to as the ‘agent’ and the

emitter is called the ‘target’. The ‘optimal path’ as defined in this research is a UAV

flight path that requires the minimum amount of time to localize the target to a given

accuracy requirement.

Figure 1. Frame of Problem for Localization

The UAV or Agent position is considered to be a known position PA = [xa(t),

ya(t)]T ∈ R2 at time t, and target position is considered to be an unknown position

PT = [xt(t), yt(t)]T ∈ R2 at time t. The LOB, β is defined as the angle between the

x axis and a line from PA and PT as in Figure 1.

For finding the optimized path for determining the target position for a simulated

case, PT , the initial agent position is considered to be the some point in 2D space.
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Additionally, the target position is considered to be the other point. The speed of

the agent is assumed constant and the angular velocity is constrained, the optimized

path for finding the target position will be discussed later.

Initially, the optimized flight path for a single target is analyzed in order to find

out the tendencies of the general flight path. After that, the multiple target problem

is analyzed comparing with the single target problem. By doing this, the effect of

adding a target to the optimized path is explored and discussed.

1.3 Research Objective and Scope

The development of an algorithm forming the optimized flight path for a single

target is the main objective of this research. The optimized flight path model can be

derived for certain situations using optimal control theory. Additionally, for multiple

targets, a method to determine the optimal flight path will be determined.

Proof of the optimized path is the next objective in this thesis. A MATLAB

simulation model will be developed to provide this proof. With this model, the

optimized flight path can be analyzed to determine its performance for single target

and multiple target cases.

Finally, a real-world test using a remote controlled truck is the final step of this

research. Analysis of the truck’s movement and comparison with simulation will

follow for determining the optimized path modeling and its application to the UAV

problem.

1.4 Significance of Research

Intelligence/information has been the focal point in recent warfare. Therefore,

the speed of intelligence/information updating is significant because of the variability

of war theater factors. Agility of surveillance is required for the acquisition of infor-

mation. In this respect, optimized path planning may be the best way for acquiring

agility using UAV surveillance.
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The UAV is operated inside of enemy territory for achieving target information.

The enemy’s weapons always threaten the survivability of the UAV. There are many

ways to maximize survivability such as maintaining a high altitude, often used with

high resolution cameras. Alternatively, optimized flight path planning is a good

method to increase survivability by reducing the time of exposure to the enemy’s

threats.

(a) DOD & Air Force Spending

(b) Cost per Flying Hour

Figure 2. Cost Spending [2]

Recently, managing finances has been a big concern to the Air Force because the

cost of operation and maintenance of aircraft has soared tremendously as shown in
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Figure 2a. This trend is expected to continue. Especially, newer aircraft require more

funds than older ones as shown in Figure 2b. This trend will also continue in future.

Therefore, An unmanned and autonomous system is required for saving the cost of

Air Force. It will need less people and less cost to be operated.

1.5 Methodology

Every objective has a different methodology for achieving it. First of all, optimal

control theory is used for finding the optimized path with constraints like velocity and

heading angle rate. There are discrete methods and continuous methods in optimal

control theory. Among these methods, the discrete method is used for this research.

The cost function will be the time to acquire a desired accuracy and constraints on

speed and angular velocity of heading angle will be considered.

MATLAB/Simulink is used for solving the optimal control problem. Among the

many functions for solving the optimal problem, the ‘fmincon’ function will be used

for doing this. This function is used for finding the flight path which minimizes the

cost function using optimal control theory. It is easy to express the cost function and

constraints. By using iteration, the optimal solution can be found which satisfies the

constraints.

In a real-world test, a remote controlled(RC) truck and autopilot equipment are

used for the test. Additionally, direction finding equipment, including a modem and

radio are used for measuring the LOB. A portable radio functions as a target emitting

radio signal. By using a RC truck, the real test can be done easier on the ground

than in a flight test. From this test, the shape of the optimal path from real-world

data can be compared to the result of the MATLAB/Simulink simulation predictions

for future flight tests can be made.
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1.6 Thesis Overview

This chapter provided a brief background about passive localization technology

and the reason why this topic is worth researching. In addition, the specific problem

concerning passive localization technology and methodology for targeting is described

briefly.

In Chapter II, the theoretical background knowledge will be described from the

contents of previous work. Additionally, these previous results are used partially to

design the optimal control algorithm and their results can be compared with this

research’s results.

Chapter III describes an algorithm to find an optimal flight path for targeting.

In addition, the specific process of the algorithm is explained using a sample result

using MATLAB/Simulink. Sensitivity of the result and specific results of the scenario

follows it.

In Chapter IV, the preparation and execution of a real-world test using the al-

gorithm described in this research is presented. The result of the test is compared

to the expected results from Chapter III. So, comparing these results gives us the

difference between theory and real world. Chapter V includes the conclusions and

recommendations.
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II. Literature Review

2.1 Overview

This chapter provides two categories of research. The first part is fundamental

background research, and the second is related research. The background research

provides ideas on how to achieve the goals identified in Chapter I. They suggest the

framework of the solution using LOB to localize the target position. What are the

control rules of the agent and the constraints on this problem are described in the

background research. However, their goals and methodologies are different from the

research herein. One of them tries to maintain a certain distance from the target

position in the final state with its own control rules. The other goal is to make the

agent arrive at the target position minimizing uncertainty in the x-z plane. Their

approaches for solving the optimal problem provide an alternative way of solving

these different problems. Even though the cost function, constraints and boundary

conditions are different, the fundamentals of the problem and what is minimized for

an optimal solution are similar.

The related research section deals with similar issues involving geolocation. They

suggest different approaches to solving these issues. The first one describes a ge-

olocation problem in 3D space. Even though a 3D problem can be different from

a 2D problem, its algorithm to define the estimated target region is very valuable

in proceeding with similar research. In addition, it shows what happens to the es-

timated target region while flying a straight flight path. Another research paper

suggests several ways of numerical calculations for passive geolocation. It explains

several technical methods for calculating target position and how to analyze the error

of the LOBs. These methods provide the technical background for proceeding with

this research. The last research proposes a path planning method, rapidly-exploring

random trees. An RRT is iteratively formed using random points by applying control

inputs and this can be assumed as the moving object’s path.
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2.2 Background Research

There are articles about target localization and circumnavigation using bearing

measurement and stochastic real-time optimal control using a pseudospectral ap-

proach which provides the background research for this thesis. First, a paper from

the 49th IEEE conference covers the fundamentals of the problem with respect to the

mathematical approach in the cartesian coordinate system. In addition, the thesis on

stochastic real-time optimal control described by Ross gives ideas about using error

ellipses to represent uncertainty of the target position.

The mathematical foundation in the cartesian coordinate system describes how

one similar error ellipse representing the uncertainty of the target position for one

target differs from a second target ellipse as will be dealt with in this thesis.

2.2.1 Target Localization using LOB [5].

The first paper reviewed, which is from the 49th IEEE conference, proposes an

estimator using the bearing angle to the target to solve the localization and navigation

problem for a stationary target. As previously described for the current research,

the final state of the agent in this problem is to circumnavigate the target with a

specified stand off distance. In the cartesian coordinate system, PA and PT are the

agent position and target position. The distance, ρd is the desired radius of the circle

around the target in the final state and ρ(t) is the distance between the agent and the

target. In addition, P̂T is the estimated target position, ρ̂(t) is the distance between

the agent and the estimated target position, ϕ(t) is a unit vector on the line from

the agent to the target and ϕ̄(t) is the unit vector perpendicular to ϕ(t) as shown in

Figure 3. With these definitions, estimation error is defined as

P̃T (t) = P̂T (t)− PT (t) (2.1)
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Figure 3. Agent, Target and Estimated Position of the Target (adopted from [5])

The first goal is to find an estimator that estimates the unknown target position,

PT , using LOBs. The estimator is defined as

˙̂
P T (t) = kest(I − ϕ(t)ϕT (t))(PA(t)− P̂T (t)) (2.2)

where I is the identity matrix and kest is a constant scalar.

The derivative of the agent position is defined using ϕ(t) and ϕ̄(t) as

ṖA = (ρ̂(t)− ρd)ϕ(t) + α ϕ̄(t) (2.3)

where α is a scalar multiplier for making the agent move the right way. As this

equation expresses, ϕ(t), ϕ̄(t) and α effect the direction of PA . Later, this makes the

distance between the agent and target, ρ(t), converge to the value of ρd. So, Equation

2.3 functions as the control law of the agent.

Using this control law, ϕ̄(t) is varied which makes P̃T exponentially approach

zero. This guarantees the norm of the estimation error is less than ρd. Additionally,

it prevents the agent from colliding with the target.
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The simulation result shows that the agent approaches with the target following

a spiral flight path until it meets a certain radius as seen in Figure 4. Furthermore,

the norm of P̃T goes to a very small value.

Figure 4. Simulation Result [5]

2.2.2 Stochastic Real-Time Optimal Control for Bearing-Only Trajec-

tory Planning [11].

In his dissertation, Ross proposes a method to deal with the optimal control

problem and the final estimation requirements at the same time. The goal of his

research was to provide an optimal flight path for landing at a certain place in the

x-z plane.

For solving this optimal problem, the Fisher Information Matrix (FIM) was used.

When the agent moves for a certain amount of time, the amount of information is

gathered by the agent’s sensor. The FIM measures the amount of information along

each direction, and this is expressed by the probability density of the measurements.

So, observability can be assessed from the geometry of the problem. It is defined as,

Zk = E [(
∂

∂xk
ln pzk|xk)2 | xk] (2.4)
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which is a byproduct of the Cramer-Rao Lower Bound (CRLB). For minimizing the

uncertainty ellipsoid of the target position, the smallest FIM eigenvalue needs to be

maximized. Eigenvalues of the FIM are the radius size of the information ellipse.

So, maximizing the eigenvalues means maximizing the information ellipse, and it will

minimize uncertainty.

Figure 5. Conceptual Approach [11]

The control mechanism for landing on the wire was divided into 4 steps. The

first two steps are the acquisition & maneuver segments where control is provided for

moving to the approximated position. The next step is the approach segment, where

control is provided to an offset approach point for maximizing observability. Finally,

the flare segment tries to land the agent on a predetermined target position safely.

These steps are shown in Figure 5. This problem is solved in the x-z plane as shown

in Figure 5. Note that pitch angle is the control for this problem.

In this problem, the position of the agent is defined as

x = [ x z ]T (2.5)
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which denotes the position in the x-z plane. The relative position of the agent to the

target is defined as

xr =

 xt − x
zt − z

 (2.6)

The real measurement value of the angle from the horizontal inertial level to the

target is,

h(x) = β = tan−1(zr/xr) (2.7)

and the Jacobian of it, H, contains the information for determining each new mea-

surements. The Jacobian of the real measurement value is given as,

Hk = 5xkh(xk) =
[
zrk
ρ2k

− xrk
ρ2k

]
(2.8)

where ρ represents the range from the agent to the target, ρk =
√
x2rk + y2rk .

By gathering information on the movement of the agent, the entire FIM becomes,

Zk = Z0 +
1

ρ2β


n∑
i=1

sin2βi
ρ2i

−
n∑
i=1

sinβicosβi
ρ2i

−
n∑
i=1

sinβicosβi
ρ2i

n∑
i=1

cos2βi
ρ2i


≡ Z0 +

∫ tkt0 ζ̇1(t)dt ∫ tk
t0
ζ̇3(t)dt∫ tk

t0
ζ̇3(t)dt

∫ tk
t0
ζ̇2(t)dt

 (2.9)

where ζ i(t) is the information state.

The optimal control problem can be then solved with the state vector :

x̃ = [x z vx vz ζ1 ζ2 ζ3]
T (2.10)
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with this constraint vector,

−9m

0.8m

−0.5m/s

−0.5m/s2

−30◦


≤



x

z

vx, vz

ux, uz

β


≤



xoffset + x̃

5.5m

0.5m/s

0.5m/s2

40◦


(2.11)

where the constraints were specific for the application Ross was using. The simulation

result from this optimal solution gives the optimal path for safe landing at the pre-

determined position. Figure 6 shows the experimental flight test result. The ellipse

on each graph of Figure 6 denotes the estimated predetermined location for landing.

Figure 6. Result from real-world flight test [11]

The indicated ellipse size is closely related to the uncertainty of the final location.

The size of the ellipse is proportional to the uncertainty. As shown in Figure 6,
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the ellipse becomes smaller with increments of time because the LOB from several

different positions makes it smaller. The uncertainty of the final target location is

shrinking with an increasing number of LOBs.

Minimizing the size of the uncertainty ellipse is the goal of the research herein using

optimal control theory. So, the next chapter will develop minimizing the uncertainty

ellipse for a target localization with the LOB, using some of the concepts just reviewed.

2.3 Related Research

In this section, research about a mathematical model for geolocation is described.

The first one is geolocation using direction finding angles. It describes a real method

of geolocation from a direction finding angle in 3D space. How the estimation ellipse

is generated in 3D space is described mathematically. In addition, the result of a

simulation provide a good understanding of the nature of geolocation with LOBs.

The second paper reviewed is on numerical calculations for passive geolocation sce-

narios. The paper introduces several statistical processing methods for bearing data

and algorithms. These methods could suggest several new ideas and support for de-

veloping them. This mathematical research presented is very helpful for approaching

the goal of this thesis. The last research paper reviewed suggests an algorithm for

path planning. Tge method uses a random state for a new state and a set of these

new states is assumed as a vertex. This process is more efficient in time than existing

techniques, so it is widely used in real-world applications.

2.3.1 Geolocation Using Direction Finding Angles [6].

Geolocation using direction finding angles (Grabbe, 2013) provides geolocation

algorithms for the estimated target location and estimation error covariance matrix.

The error covariance matrix is a statistical uncertainty in location estimation. Using

error covariance, the error ellipse illustrates the possible region for the target position.

In their paper, LOB was measured in 3D space and expressed as a scalar angle

λ. Considering the error of measurement, it can be thought of in 3D space and 2D
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(a) 3D view (b) 2D view

Figure 7. LOB measurement [6]

space as shown in Figure 7. With respect to position, ψ is defined as longitude and

θ as latitude. So, the target position is described as

x =

ψ
θ

 (2.12)

and measurement function hi and zi are defined as

hi(x) = fi(ptgt(x)) (2.13)

zi(x) = hi(x) + vi (2.14)

where vi represents the measurement error. If these errors are unbiased, uncorrelated

and normally distributed, they can be expressed as

vi ∼ N(0, σ2
i ) (2.15)

where σi(the standard deviation) is assumed known for each measurement i.

Next, these stacks of LOBs are described in vector form as

z = h(x) + v (2.16)
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v ∼ N(0, R) (2.17)

where the covariance of all the measurements are contained in R as

R =


σ2
1 0 · · · 0

0 σ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 σ2
n

 (2.18)

Using this data, the recursive estimated position of the target is

x̂k+1 = x̂k + [HT
k R
−1Hk]

−1HT
k R
−1(z − hk) (2.19)

where Hk = αh
αx

(x̂k) and the covariance matrix for the target position error is calcu-

lated by

Px = E[(x− x̂)(x− x̂)T ] = [HTR−1H]−1 (2.20)

where E[ · · · ] is the statistical expectation operator.

(a) Flight Path & TGT Position (b) Estimated TGT Position & Error Ellipse

Figure 8. Straight Flight Path Result [6]

This statistical calculation gives the error ellipse surrounding the estimated target

position. Figure 8 shows the result of this method from a straight flight path of the

aircraft. In Figure 8a, points on same direction describes the movement of aircraft

and the point located in bottom of this figure shows the target position. Figure 8b
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expresses the error ellipse and target position. The center of the error ellipse is the

estimated target position and other point (0, 0) is the true target position.

The error ellipse has the long radius directed towards the straight flightpath from

the real target position because the LOBs give more error information in the horizon-

tal direction to the flightpath. Considering the positions of the aircraft and target,

the perpendicular direction to flightpath has more ambiguity. So, this result is very

reasonable.

Figure 9. 95% Elliptical Error Probability [6]

As shown Figure 9, more LOBs can reduce the length of the semi-major axis of

the error ellipse. Each LOB confines the possible target position region. This error

ellipse can be changed by varying the aircraft flightpath. The flightpath will affect

the semi-major axis of the error ellipse. The relation between the flight path and the

error ellipse is discussed in Chapter III, and will provide a method to choose a ‘best’

flightpath to achieve the desired error ellipse size.

2.3.2 Numerical Calculations for Passive Geolocation [8].

In Koks, he suggests a method of passive geolocation by the analysis of LOBs

considering measurement noise. The LOBs are measured from various points following

the flightpath to a stationary radio emitter positioned at a certain point. These
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LOBs from different points make the Circular Error Probability (CEP) smaller. The

probable emitter point is described by the CEP. This circle has a 50% probability

of the estimated position of the emitter. A smaller CEP means more accurately

estimated position than a larger CEP. For analysis, the CRLB was used in Koks

research.

The CRLB shows how well a parameter can be assumed as described in Ross’s

work. If we want to extract a parameter x, the unknown data contained in the signal

has an effect on the parameter x. To determine x, an estimator x̂ is calculated when a

new LOB is measured. The Cramér-Rao theory is used for calculating this estimator.

The variance of the estimator and the inverse of the Fisher Information Maxtix, J ,

is used as the CRLB.

var(x̂) > J−1 ≡ CRLB (2.21)

The specific calculation steps taken in Koks are similar to Ross’s paper.

Another method for analyzing error is the least squares method. Each measure-

ment, z, includes noise. Several measurements can be expressed as,


z1
...

zn

 = H


x1
...

xm

 (2.22)

where H is n×m matrix. The best estimated position of the emitter can be chosen

by minimizing the distance between Hx and z.

5 {|Hx− z|2} = 5[(Hx− z)T (Hx− z)] (2.23)

So, the least squares solution, x̃, to Equation 2.22 is

x̃ = (HTH)−1HT z (2.24)
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In this case, the difference between Hx̃ and z is assumed to be the error for each mea-

surement. The CEP can be extracted from these errors by using several measurements

in a batch process.

Another method for analysis is the Cartesian Pseudo-Linear Estimator (CPLE).

This method uses the orthogonality of vectors indicating the LOB. In 2D space, x is

defined as

x =



s0,x

s0,y

v0,x

v0,y

ax

ay


(2.25)

where s0 is the initial estimated emitter position, v0 is the initial velocity and a is

the acceleration. The next estimated emitter position is calculated as

s(t) = A(t)x (2.26)

where

A(t) =

1 0 t 0 t2

2
0

0 1 0 t 0 t2

2

 (2.27)

Similarly to the least squares method, CPLE minimizes |Hx-z|2 to arrive at the

estimated emitter position. |Hx-z| is defined as
∑
k

(b⊥k vk) in the CPLE method. bk

denotes the vector of the LOB and vk describes error of LOB as shown in Figure 10.

So, for analysis with error, b⊥k vk gives the CEP shape on the graph.
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Figure 10. Cartesian Pseudo-Linear Estimator Approach [8]

2.3.3 Rapidly-Exploring Random Trees: A new Tool for Path Plan-

ning [9].

The Rapidly-exploring Random Tree (RRT) provides a broad class of path plan-

ning as a randomized data structure. A RRT can expand iteratively by applying con-

trol laws with randomly, selected points. So, this iterative method is different than

the point-to-point convergence method. This point-to-point convergence method is

hard to naturally extend to the general nonholonomic planning problem. In addition,

the connection problem in path planning is as difficult as designing a nonlinear con-

troller. With respect to path expansion, the RRT method suggests a very efficient

path planning solution.

Path planning generates a continuous path from initial state, xinit, to a goal state,

xgoal, in the configuration space, C. A state transition equation is defined as

ẋ(t) = f(x, u) (2.28)

where vector u is a set of inputs and xnew is defined as

xnew ' x+ f(x, u) · 4t (2.29)
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using Euler integration. This process is denoted as NEW STATE(x, u,4t) in Table

1. Additionally, an initial state is described as xinit, RRT is shown as τ and K is the

number of vertices as shown in Table 1.

Table 1. Algorithm of Rapidly-Exploring Random Trees [9]

GENERATE RRT(xinit, K,4t)

1 τ .init(xinit);
2 for k = 1 to K do
3 xrand ← RANDOM STATE();
4 xnear ← NEAREST NEIGHBOR(xrand, τ);
5 u← SELECT INPUT(xrand, xnear)
6 xnew ← NEW STATE(xnear, u,4t)
7 τ .add vertex(xnew)
8 τ .add vertex(xnear,xnew, u)
9 Return τ

In this algorithm, xrand is chosen from the configuration space in each iteration

and the closest vertex xnear from xrand is selected in Step 4. u is calculated recursively

for moving xnear in Step 5. With this u value, NEW STATE gives xnew value and it is

iteratively accumulated in vertex, τ . This algorithm is widely used in path planning

and its application example is shown in Figure 11.

Figure 11. Application Example of Rapidly-Exploring Random Trees [9]
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2.4 Summary

The objective of this research is to determine methods applicable to UAVs with

direction finding equipment for localization of the target. Background research shows

how previous researchers met this objective. They explained what can be a control

rule, constraints and a cost function in the optimal problem. The overall framework of

solution became fundamental to this research. Related research described several ways

of numerical methods about geolocation. This discussion of methods gave motivation

to this research.

In addition, results of the background research and related research supported the

proposed research direction to develop an algorithm to minimize uncertainty. These

results suggested both the shape of the flightpath as an optimal control solution and

how the error ellipse is changed by varying the flightpath. This information was a

good reference to proceed this research. How this previous research effects the current

research is shown in the next chapter.
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III. Methodology

3.1 Overview

This chapter discusses the proposed method of targeting using LOBs. Each LOB

includes measurement error as previously described. This thesis uses a geometric

method to eliminate error for targeting. This geometric approach is different from

other research work described in Chapter II. In addition, a method for determining the

optimal flightpath for targeting is discussed after explaning the method. However,

the optimal flightpath process using a geometric method has several singularities.

These singularities and solutions are described in this chapter. Furthermore, simple

results drived from the presented algorithm are analyzed and a sensitivity on several

factors is described. Finally, application of this algorithm and resulting performance

is discussed for specific scenarios of single target and multiple targets.

3.2 Geometric Targeting Approach

3.2.1 Introduction.

Targeting methods using LOBs discussed in Chapter II normally use a line from

the agent position to the direction of measured LOB. Using a single line per single

LOB gives an estimated target position directly by the least square method. However,

the error ellipse which indicates the possible target region cannot be derived directly

by considering error of the measurement. This is explained as follows. First of all,

the error matrix must be calculated before an error ellipse can be made. The error

matrix requires a set of vectors from the estimated target position to the intersections

of the LOBs or the nearest point to line of LOBs. The directly calculated error ellipse

from this error matrix are shown in Figure 12. In this case, the errors of LOBs are

assumed to be 3◦. In some cases, the direct ellipse of error doesn’t include the real

target position as shown in Figure 12c and 12e. Using only estimates of the real target

position but without uncertainty results in a region identified that does not contain
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the target. This is a result of using a small number of LOBs and not including the

uncertainty with each LOB. So, a method is needed to enlarge these ellipses to fix

the accuracy problem using a probability method.

(a) Situation Example

(b) Intersections of LOBs (c) Intersections of LOBs

(d) Nearest Points (e) Nearest Points

Figure 12. Error Ellipses of Different Methods
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An alternative approach is to use a new targeting method using a geometric ap-

proach which uses two lines per single LOB. When using two lines, the angles which

add and subtract from the maximum error value, ε, to measured LOB value, β, are

used.

β̃ = β ± ε (3.1)

The region between these two lines indicate the possible target region. Even though

β has error, β̃ indicates the real target position. So, β̃ can be used for targeting.

Using a single LOB created only one line as a possible target position but using two

lines per single LOB creates an area as a possible target position. Overlapped areas

by LOBs indicate a possible target position as shown in Figure 13. This overlapped

area can be reduced by increasing the number of LOBs from different agent locations.

In this case, the intersections of lines are used for constructing the error matrix and

the error ellipse can be derived from this error matrix directly. For these reasons, this

method is simpler to apply and more intuitive than a non-geometric approach.

(a) Overall Situation (b) Error Ellipse

Figure 13. Two Line use Method

3.2.2 Error Ellipse Generation.

Every intersection is determined by two lines resulting from the different LOBs

using Equation 3.1. The error vector is a vector from the estimated target position
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to the intersection. So, for creating the error vector, the estimated target position is

needed to be calculated. The estimated target position will become the center of the

error ellipse. The estimated target position, P̂T , is calculated by taking the average

of intersections. The error matrix is composed of a set of these error vectors. Using

this P̂T , the error matrix is defined as

 Error
Matrix

 =


P̂T − Pinter,1

...

P̂T − Pinter,n

 =


xerr,1 yerr,1

...
...

xerr,n yerr,n

 (3.2)

where Pinter,n is the position of intersection and n is the number of intersections.

Next, the error covariance matrix is needed for analyzing the relation between the

intersections of the x and y values. The covariance shows how much the variables

change related to the average value in this matrix. Defining the error matrix as in

Equation 3.3,

A =


xerr,1 − xerr,1+···+xerr,n

n
yerr,1 − yerr,1+···+yerr,n

n
...

...

xerr,n − xerr,1+···+xerr,n
n

yerr,n − yerr,1+···+yerr,n
n

 (3.3)

the error covariance matrix can be calculated by

Covariance error of matrix =
AT · A
n− 1

(3.4)

In this case, the terms xerr,1+···+xerr,n
n

and yerr,1+···+yerr,n
n

are zero by the definition of

error matrix(Equation 3.2). So, the error covariance matrix can be simply calculated

as 
Error

Covariance

Matrix

 =

 (x2err,1+···+x2err,n)
(n−1)

(xerr,1 · yerr,1+···+xerr,n · yerr,n)
(n−1)

(xerr,1 · yerr,1+···+xerr,n · yerr,n)
(n−1)

(y2err,1+···y2err,n)
(n−1)

 (3.5)
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Figure 14. General Ellipse

Next, the error ellipse is extracted from the error covariance matrix. For making

an ellipse, semi-major axis, semi-minor axis and rotation angle for expressing it in the

cartesian coordinate system like Figure 14 is required. The radii can be calculated

using the eigenvalues of the error covariance matrix and the rotation angle can be

calculated with the eigenvector of the error matrix. The eigenvector, v, is a non-zero

vector and eigenvalue, λ, is a scalar multiplier in

A · v = λ · v (3.6)

where A is a square matrix. In this case, the covariance matrix is a 2 × 2D matrix

and eigenvalues of it gives two values. So, the radii are defined as

radius =
√
eigenvalue ( covariance ( Error matrix ) ) (3.7)

which is computed for each eigenvalue to produce the major and minor axis radii.[13]

So, the largest value among them is the semi-major axis, a and small one is the short

radius, b. In addition, the eigenvector matrix of the covariance matrix is composed

as
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Eigenvector
Matrix

 =

cos θ sin θ

sin θ −cos θ

 =

V1 V2

V2 −V1

 (3.8)

tan θ =
V2
V1

θ = tan−1
V2
V1

(3.9)

where θ is a rotation angle. With two radii and a rotation angle, θ, the error ellipse

can be expressed in the cartesian coordinate system as shown in Figure 14.

3.2.3 Approximation of Optimal Flight Path Contour.

In the battlefield, operation time spent in the enemy’s territory has to be mini-

mized because exposure for a long time to the enemy’s threat means that it has less

of a probability to survive. Therefore, the optimal flight path needs to minimize the

operation time while satisfying the mission constraints. In the problem posed in this

research, satisfying the mission constraint means reducing the possible target location

to an acceptable area of an ellipse. The area of ellipse is defined as

The Area of Ellipse = π · a · b (3.10)

where a and b are as shown in Figure 14. The area of the ellipse can be used as a

cost function in the optimal control problem. However, it has drawbacks when used

as a cost function. As shown in Figure 15, it is hard to say that the smaller ellipse is

always better than bigger ellipse area. Even though the area of 15a is smaller than

that of 15b, the range in the direction of semi-major axis is too wide for determining

the target position. So, the case like 15a is harder to use than 15b. As a result, area

of an ellipse is still worth analyzing and can be used as a standard for targeting, but

the semi-major axis of the ellipse is more adequate for use as a cost function than

the area of it. It is easier and more efficient to use in the real world. The optimal
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control problem in this research will be solved by minimizing the semi-major axis of

the error ellipse.

(a) Thin Ellipse (area = 1000 · π) (b) Fat Ellipse (area = 1020 · π)

Figure 15. Comparison of Ellipse

Before solving the optimal control problem, several typical flight paths can be

assumed as an optimal path. The first one is a straight flight path. The distance

from the agent to the real target is varied but the direction is the same on the flight

path. In this example using a straight path, the velocity of the agent is assumed as

10 m/s, 4t between measurements is 2 seconds, total measurement number is 11 and

max measurement error is 3◦. The LOB measurement is assumed that it has no error

for analysis purposes, i.e., the two lines are ± 3◦ of truth.
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(a) t = 6

(b) t = 10

(c) t = 14

(d) t = 20

Figure 16. Straight Path & Error Ellipse
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(a) t = 6 (b) t = 10

(c) t = 14 (d) t = 20

Figure 17. Error Ellipse of Straight Path

Figures 16 and Figures 17 show the true agent’s straight path and the results.

The initial ellipse shape shown in Figures 16a and 16b show that semi-major axis is

oriented towards the agent’s position but after the agent passes the same x value of the

target position, there is not much change to the ellipse. In addition, it is impossible

to see the effect on the shape of the ellipse after some amount of time as seen on

Figure 17c and Figure 17d because the distance between the two lines of the same

LOB is farther than the semi-major axis of the ellipse. There is no change after the

8th measurement as shown in Figure 18. As a result, the final semi-major axis is 3.15

m, the area of ellipse is 18.2 m2 and distance between real target and the estimated
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(a) Semi-major Axis of Ellipse (b) Area of Ellipse

(c) Distance (Real - Estimated TGT)

Figure 18. Results of Using Straight Path

target is 0.02 m. The final result shows good targeting performance. However, the

fact that it cannot minimize the semi-major axis after passing the same x value of

the target position as in the example shows that it definitely has a disadvantage for

use in targeting.

The second option is a circular flight path. A circular path is one path to rep-

resent a curved path solution. It maintains the same distance with respect to the

target position but the angle changes between target and the x axis on the cartesian

coordinate system. Figures 19 and 20 show an example flight path and the result of

it. The velocity of the agent is 10 m/s, 4t is 2 seconds, total time is 22 seconds and

the max measurement error is 3◦. The measurement LOB values are again assumed

error free. Every other condition is the same as with the straight flight path case.

The initial shape of
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(a) t = 4 (b) t = 10

(c) t = 14 (d) t = 20

Figure 19. Circular Path & Error Ellipse

(a) t = 4 (b) t = 10

(c) t = 14 (d) t = 20

Figure 20. Error Ellipse of Circular Path
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(a) Semi-major Axis of Ellipse (b) Area of Ellipse

(c) Distance (Real - Estimated TGT)

Figure 21. Results of Using Circular Path

the error ellipse shows that its semi-major axis is oriented towards the agent as shown

in Figure 20a like the initial shape from of straight path. However, Figure 20b shows

that the error ellipse for the circular path is almost a circle. There is not much

difference between the semi-major axis and semi-minor axis. This is because the

LOBs of the agent creates an ellipse on the x-direction and y-direction evenly as

shown in Figure 19b. Finally, Figures 19d and 20d show that the ellipse results in a

circle after full measurements around the circlular path. This is reasonable because

every measurement is taken in every direction on the circle path in even degrees.

Every intersection on the circle shape is in even degrees, too. As a result, the final

semi-major axis converges to 1.31 m/s, area of the ellipse is 4.66 m2 and the distance

between real target and estimated target is 0.04 m.
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(a) t = 4 (b) t = 10

(c) t = 14 (d) t = 20

Figure 22. Spiral Path & Error Ellipse

(a) t = 4 (b) t = 10

(c) t = 14 (d) t = 20

Figure 23. Error Ellipse of Spiral Path
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(a) Semi-major Axis of Ellipse (b) Area of Ellipse

(c) Distance (Real - Estimated TGT)

Figure 24. Results of Using Spiral Path

The third option explored was a spiral flight path. This path is another way

to represent a curved path solution. The difference with the circular path is that

distance to the target in the spiral path is being reduced while the agent is flying.

Its flight path and results are shown in Figures 22 and 23. The agent’s velocity is 10

m/s, 4t is 2 seconds, LOBs are measured 11 times and the max measurement error

is 3◦. The measurement LOB values are again assumed error free for comparison with

the other paths. Every other condition is the same as with the straight path and the

circular path. The initial ellipse shape is very similar as with the circular path. The

semi-major axis is oriented towards the agent position. However, it doesn’t result

in a circular shape and maintains typical ellipse shape even when it flies half of the

total path as shown in Figure 23b. This tendency is not changed even after it passes

360◦ around the target. Its shape doesn’t become circular because the distance is
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getting closer to target position. The LOB when taken near to the target position

can shape the ellipse more than the LOB of the measurements taken farther from

target position. Its result is better than the circular path with radius equal to the

radius at time initial radius of the spiral path. The final semi-major axis converges to

1.07 m/s, area of ellipse is 2.76 m2 and the distance between real target and estimated

target is 0.03 m. These results show that the spiral path is more efficient than the

circular path.

These three flight paths represent varied paths in real world. From the results,

several characteristics can be seen on the error ellipse. First of all, each error ellipse

is not plotted on the intersections. This is because the error ellipse is calculated

using the error covariance matrix. If all intersections are on the same line, the error

ellipse is expressed as a line on all intersections. However, all intersections for these

example paths are put on the circular shape. If the axes of this circular shape are the

same as the x-axis and y-axis, intersections on x-axis and y-axis have the maximum

value with respect to axis. It is impossible for the error ellipse to pass through these

intersections because there are other intersections have less values with respect to the

same axis.

In addition, the distance graphs of the three paths are not asymptotic. This is

because of the measurement positions. If the number of measurements near a certain

axis is same as the number of measurements near the other axis, the distance value

is decreased. Conversely, if the number of measurements near a certain axis is more

than the number of measurements near the other axis, the distance value increased.

This tendency can be shown in Figure 21b. The distance from the target to each

measurement position is also a important factor. The measurement position nearer

to the target effect stronger on this value. This effect is shown in Figure 24c.
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Table 2. Example Results of Typical Flight Paths

Ellipse
Path Semi-major Axis (m) Size (m2) Distance (m)

(Real-Estimated)

Straight 3.15 18.2 0.02
Circular 1.31 4.66 0.04
Spiral 1.07 2.76 0.03

(a) Semi-major Axis of Ellipse (b) Area of Ellipse

(c) Distance (Real - Estimated TGT)

Figure 25. Comparison of Typical Flight Paths

Table 2 shows the results of the three cases. The overall comparison of straight

path and curved path including circular and spiral paths is impossible using only

Table 2 because these value depend on the distance between agent and target. In

these examples, the distance of the straight path and the curved path is different from

each other. However, the straight path already shows its limitation in the example.

It has an effect only on a single axis direction in the 2D space. A curved path can

be assessed to be a more efficient path than the straight path. The comparison of
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the circular path and the spiral path is possible. Their initial distance between the

agent and the target is the same and the other conditions are also the same without

the change in distance after departure. Every value of the spiral path distance to

target is lower than for the circular path. The shape of the ellipse in the spiral path

is more preferable than the shape in the circular path case and the distance between

the real target and the estimated target is closer. As a result, the spiral path can

be approximated as an optimal path in targeting problem using LOBs, or at least

optimal from these three choices. Next, a true optimal solution will be computed for

comparison.

3.2.4 Optimal Control Problem.

3.2.4.1 Initial Flight Path.

The error ellipse which was described before needs the intersections computed to

form the ellipse. This requires that more than two LOBs are needed for the ellipse

construction. Given an initial condition, the agents don’t have enough information

about the target position, so, they must maintain an initial direction until the ellipse

is formed. As previously described, the minimum number of measurements to form

the ellipse is two measurements. Figure 26 shows an example of the error ellipse

formed with two measurements.

(a) Error Ellipse (b) Real Target & Estimated Target

Figure 26. Correct Ellipse Formation with 2 Measurements

40



However, two measurements don’t guarantee the correct ellipse formation. As shown

in Figure 27, a incorrect ellipse is created because the estimated target position is in

the wrong direction from the agent position. So, this ellipse cannot be used in the

optimal control problem. It will move the agent in the reverse direction compared to

real target position, and this case must be checked for and avoided.

(a) Error Ellipse (b) Real Target & Estimated Target

Figure 27. Incorrect Ellipse Formation with 2 Measurements

The difference between the two examples is the position where the agent measures the

LOBs. The example shown in Figure 27 uses LOBs measured very near the position

at the target. Actually, this problem is the result of several factors. First of all,

maximum error value is one factor. A low value of maximum error makes the distance

between the two lines per single LOB smaller. In this case, the small amount of change

of the agent position brings an intersection behind the agent as compared with real

target position shown in Figure 27a. In addition, the large value of the distance

between the agent and the target is another factor. This causes a small amount of

difference between two LOBs from each position. It results in identifying an incorrect

intersection and it affects the estimated target position. The last factor is a small

difference of the measurement position. This results in an incorrect intersection and

an incorrect estimated target position, too. The measurement positions are decided

by the velocity and measurement time step(4t). Confluence of these factors cause

the singularity as shown in Figure 27.
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(a) Error Ellipe (b) Real Target & Estimated Target

Figure 28. Ellipse Formation with 3 Measurements

To eliminate the singularity, the agent must check all intersections when the ellipse

is generated. Every intersection needs to be put on each side of the estimated target

position. If some of the intersections are on the reverse side with respect to agent

position, it indicates that the error ellipse is not suitable to be used for the optimal

control problem. In this case, it needs to gather more information of the target,

LOBs. The agent should continue its heading and gather more LOBs. Figure 28

shows the case that one more measurement is taken than used in the Figure 27. As

seen by Figure 28a, intersections are now on the correct side of the estimated position

and the estimated position is in the correct direction to the real target position with

respect to agent position. This technique can now be used to calculate the cost for

use in the optimal control problem.

3.2.4.2 Cost Function & Constraints.

The answer to the optimal control problem depends primarily on the cost function

used. In this research, the cost function is the semi-major axis of the error ellipse as

described before.

J = max [
√
λ (P ) ] (3.11)

where P is the error covariance matrix given in Equation 3.5. By using this cost

function, the next measurement position which minimizes the semi-major axis of the
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error ellipse can be calculated. The optimal flight path for getting a satisfactory

semi-major axis value can be derived by iteration of this step.

The state vector for solving optimal problem is defined as

X =


x

y

ψ

 (3.12)

where ψ indicates heading angle and the inequality constraint related to angular

velocity effects on heading angle of the agent. In this research, angular velocity is

assumed as 3◦/sec. So, the inequality constraint on ψ is defined as

ψ̇ ≤ 3◦/sec (3.13)

Additionally, xi and yi are affected by ψ. They function as the equality constraints

to the optimal control problem. So, they are defined as

x = x0 + V · 4t · cos(ψ)

y = y0 + V · 4t · sin(ψ)
(3.14)

where V is assumed the velocity of the agent and4t is assumed to be the measurement

time step. As a result, the optimal control problem is described as

J = max [
√
λ (P ] (3.15)

subject to

ψ̇ ≤ 3◦/sec

x = x0 + V · 4t · cos(ψ)

y = y0 + V · 4t · sin(ψ)

(3.16)
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The optimal control problem with constraints can be solved by using the ‘fmincon’

function in MATLAB. ‘fmincon’ uses the Karush-Kuhn-Tucker (KKT) conditions for

solving the optimal problem and the KKT conditions use the Lagrangian function

defined as

L(x, λ) = f(x) +
n∑
i=1

λg,igi(x) +
n∑
i=1

λh,ihi(x) (3.17)

where f(x) is a cost function, λ is a multiplier, g(x) is the inequality constraint and

h(x) is the equality constraint. From this Lagrangian function, the KKT conditions

are

5x L(x, λ) = 0 (3.18)

λg,igi(x) = 0 ∀i (3.19)
g(x) ≤ 0

h(x) = 0

λg,i ≥ 0

(3.20)

These KKT conditions are required for solving the optimal control problem.[3]

The ‘fmincon’ function finds a suitable state vector, x satisfying the KKT con-

ditions. The initial value of x0 is needed to be given. x0 is applied to the the cost

function and different x values are applied for comparison with the result of the cost

function. Propagation of x is determined as

x(k+1,j) = xk + tj · dk (3.21)

where k is the iteration number and dk is the search direction. The step size within

each iteration, tj, is defined as

tj =
(1

2

)j
j = 0, 1, 2, 3, 4, · · · (3.22)
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With this propagating x values and the KKT conditions, ‘fmincon’ finds an op-

timal state vector. If the cost function is a convex function, it is simple to solve the

optimal problem. This is because it has only one local minimum point and it is a

global minimum point at the same time. However, if a cost function is non-convex, the

problem becomes complicated. Normally, a nonlinear function has several minimum

points. When some point is found as a local minimum point, it is hard to determine

if this point is a global minimum point. The cost function used in this research is a

non-convex function. As a result, it has the same problem mentioned before.

(a) Example Optimal Path (b) 14th Semi-Major Axis on Possible ψ

Figure 29. Multiple Local Minima Example

Figure 29 shows this case well. In this example, the agent starts from (-1000, -1000)

and the target is at (0, 0). Its maximum measurement error is 3◦ and the agent speed

is 10 m/s. The agent is flying to the 14th optimal path point in Figure 29a. Its

possible heading angle at the 14th point is -1.5◦ ∼ 58.5◦. This heading angle decides

the next semi-major axis of the ellipse as shown in Figure 29b. In this graph, there

are two local minimum points when ψ is 10.46◦ and 55.46◦. So, the local minimum

value of ψ depends on which value is used as ψ0.

Elimination of the local minima ambiguity can be done by using an approximated

flight path as was previously shown. The optimal flight contour is approximated as

a spiral path as before. There are several ways to eliminate local minima ambiguity

using an approximated contour. First of all, ψ0 needs to be directed towards the
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estimated target point. It will help to find the local minimum point to move the

agent to the target position as near as possible. Furthermore, moving the agent to the

nearest position to the estimated target is helpful when an ambiguity is encountered.

The first solution is to move the agent to the position nearer to the target. However, it

doesn’t guarantee to move the agent closer to the target compared with former agent’s

position. Sometimes, a local minimum ψ value results in the agent moving farther

from the target. Even though it can temporarily reduce the semi-major axis, it will

adversely effect the future semi-major axis value. So, moving to the farther position

from the target position needs to be avoided for the future semi-major axis. As a

result, ψ0 is needed to be set to the direction closer to the estimated target position,

but if the agent moves to a farther position from the estimated target position as

compared to the former position, the agent is required to move to the nearest position

to the estimated target position. The decision logic for this method is shown in a

flow chart in the next section.

3.2.4.3 Optimal Flight Path Algorithm.

An optimal flight path is generated by the iteration of solving the optimal control

problem. The cost function and constraints is as suggested in Section 3.2.4.2. The

solution of the optimal control problem supplies the next point to move for the agent.

The repetition of these steps produces the sequence of points to defining the path. The

line connecting each point is the optimal flight path.[1] However, it needs to create an

error ellipse before solving the optimal control problem and all intersections are on

the estimated target’s side preventing the agent from going in the wrong direction.

In the optimal control problem, the local minima ambiguity can generate ambiguity

to the flightpath. So, a filter preventing local minima ambiguity is needed and an

assumption of the flightpath is referenced to do it.
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Figure 30. Optimal Flight Path Algorithm

47

Optimal Flight Path Algorithm 

c 
.Q 
"§ 
Q) 
c 
Q) 

(.!) 
Q) 
1/) 

~ 
UJ 

e c 
8 
(i'j 

E 
:;::; 
c. 
0 

Move straight 
& Measure LOB 

calculate 
Semi-MaJor Axis 

Calculate 
Intersections 

Calculate 
Error matrix 

Calculate 
-..,..4--------------i Error Covariance 

Move to the 
> -------+!Nearest Position to 

No Estimated Target 

Matrix 



The optimal flight path is propagated using the process as described in Section

3.2. First of all, satisfactory semi-major axis(user requirement) and ε error informa-

tion(hard specification) are needed before applying the algorithm. The whole process

is divided in two parts.

The first part is an initial error ellipse generation. This process is the preparation

for running the optimal control of the agent. The objective of part one is to gather

enough information for solving the optimal control problem. In this process, the agent

flies a straight path until it makes a proper error ellipse. First the agent flies straight

and measures the LOB information. Based on the position information and the

measured LOB value, the agent calculates intersections of lines described in Section

3.2.1. Error matrix and error covariance matrix can be calculated using intersections.

If the error ellipse can be formed with this error covariance matrix and all intersections

are on the estimated target’s side, the agent calculates the semi-major axis. If it is

not, it moves straight and measures more LOBs.

The second part is the optimal control process. This process makes the agent move

to the best position for reducing the semi-major axis of the error ellipse. However, it

has a filter in place to prevent the local minima ambiguity as described before. The

result of the optimal position needs to be checked whether it is a closer position to

the estimated target point as compared with the former position. After moving to

the next point, the agent measures the LOB and calculates intersections, the error

matrix, the error covariance matrix and the semi-major axis. While doing this optimal

process, its result needs to be checked whether its semi-major axis is smaller than the

predetermined satisfactory semi-major axis value. If it is smaller, the algorithm is

finished. The entire algorithm is shown in Figure 30. The next section will implement

this algorithm.

3.3 Sample Result for Models

Figure 31 shows the sample result when using this algorithm. For doing this,

V is set to 16 m/s, 4t is 10 seconds and the max measurement error is assumed
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as 3◦. Velocity of the agent is based on the real air frame intended for testing, the

SigRascal 110. Its cruise velocity is 28 ∼ 40 knots(14.40 ∼ 20.58 m/s)[4]. So, 16

m/s is determined as the velocity of agent. Figure 31a shows the initial error ellipse

generation step. Every intersection is on the side of the estimated target position. It

is ready for part two, the optimal control step.

(a) No Iteration (b) 10th Iteration

(c) 20th Iteration (d) 30th Iteration

Figure 31. Sample Optimal Flight Path
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(a) Loop Shape of Flight Path (b) Error Ellipse

Figure 32. Last Part of Optimal Flight Path

For the optimal control solution, the agent as it progresses, the path has one

tendency. The error ellipse on every figure has a red line which shows the semi-major

axis direction. The semi-minor axis is normal to this red line. The agent in Figure 31

flies to the semi-minor axis. It is very reasonable because turning on the side of the

semi-minor axis is more efficient. Taking the path on semi-minor axis can shape the

direction of the semi-major axis. Conversely, taking measurements on the semi-major

axis side, it is possible to shape the direction of the semi-minor axis.

Figure 33. Predetermined Semi-Major Axis
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Another trait of the optimal flight path is that it shows a loop shape in the final

part with a tight turn radius. This is shown well in Figure 32. This loop shape can

give a clue to limit the predefined semi-major axis value. In Figure 33, the large

circle indicates a loop shape path and a small shape indicates an example of the error

ellipse. In Chapter II, a circular path results in a circular shape of the error ellipse,

so, the final shape of the error ellipse is circular. The radius of the large circle, R, is

decided by the angular velocity, ω. R is defined as

R =
v

ω
(3.23)

for constant velocity and τ represents the possible LOB value. So, its value is the

same with two times of the maximum measurement error value. Using τ and R values,

r is defined as

r = R · τ
2

(3.24)

In this sample problem, V is set to 16 m/s and ω is 3◦/s. R is calculated as 305.58

m and r is determined as 16 m geometrically. These values are very similar with the

simulation. In simulation, R is 309.09 m and r is 10.01 m. The reason why r is

different for both cases is that the error ellipse is not on the center of the loop shape

of the path in the simulation. As shown in Figure 32a, the error ellipse is canted to

the left side of the circular path. However, this low value is generated accidentally.

It is hard to anticipate a tilt of the error ellipse inside of the circular path. As a

result, the predefined semi-major axis value needs to be over 16 m in this case and it

is helpful to use this to escape an infinite loop in the algorithm.
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Figure 34. Semi-Major Axis of Ellipse

The semi-major axis is reduced continuously while the number of measurements is

increased as in Figure 34. Sometimes, however, it is increased by a small value but it

is decreased again with the following measurement. At last, its reduction is stopped

on the 25th measurement because of the geometric reason described previously. From

the 25th measurement onward, the agent starts a loop shape flying as shown in Figure

31d. However, the change of the semi-major axis for the loop shape the agent is flying

is very small.

Figure 35. Distance (Real - Estimated TGT)
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Often, the distance between the real target and the estimated target fluctuates in

the beginning as shown in Figure 35. However, the most important thing is that it is

still inside of the error ellipse and the distance is still lower than the semi-major axis

so it is decreasing along with reduction of error ellipse at last. Its reduction is almost

stopped on the 25th measurement, like the semi-major and there is not much change

while flying the loop path. Next, the sensitivity to the different parameters used in

the simulation is explored.

3.4 Sensitivity

The targeting algorithm developed provides varied results for several different

factors. Especially, the first step of the algorithm is to set a satisfactory semi-major

axis and max ρ error value. The results obtained from the algorithm is very dependent

on these two factors. For finding sensitivity of the algorithm, the same assumption is

used with the Section 3.3.

Figure 36. Measurement Number vs. Predefined Semi-Major Axis(ε = 3◦)

A satisfactory semi-major axis results are tied directly to the time to get to the

predefined semi-major axis value. A small value of the semi-major axis requires a

longer time to get to it. Because the small semi-major axis needs more measurements
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and a closer measurement position to the target. These results are shown in Figure 36

while varying the predefined semi-major axis from 10 m to 210 m. Average values and

standard deviation values are calculated using the results of 100 simulations. This

result uses the same conditions as with Section 3.2.5. It shows that the measurement

number is inversely proportional to the predefined semi-major axis value. However,

its slope is smaller as the predefined semi-major axis is increased. It means that the

measurements in the beginning can affect the semi-major axis value more and its

effect diminishes with an increasing number of measurements.

Figure 37. Measurement Number vs. Max Measurement Error(ρd = 100m)

The measurement error bound, ε, is another factor which effects the required

number of measurements. The semi-major axis of the ellipse is directly connected

with ε because it decides the range of β̃. Small ε is more advantageous to shape

the ellipse. The relationship between ε and the required measurement number is

shown in Figure 37. As described before, a low value of maximum measurement

error requires fewer measurements. However, it is not valid in all the cases. Even

though the overall tendency shows that the measurement number is increased with a

larger maximum measurement error, some cases show more measurements with less

maximum measurement number. This is because moving to the nearest position in
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the optimal control process doesn’t always guarantee a smaller semi-major axis of the

ellipse. The error ellipse is decided by the intersections of LOBs. So, intersections

created by a new LOB can create a larger ellipse than the former one. However, this

case is caused randomly and it is impossible to control because of the measurement

error in the real world. As a result, the tendency of measurement number versus max

measurement error is considered correct although there are individual cases where

this trend may not hold.

3.5 Scenario

3.5.1 Overview.

As specific scenario was devised and is divided into two cases. The first one is a

single target localization. It is similar to the sample result taken before but the initial

distance from the agent to the target is farther than the distance of shown previously.

This makes the agent fly longer and show the flightpath in detail. Changes to the

length of the semi-major axis and the distance between real target and estimated

target is checked in detail.

In addition, localization for multiple targets is described. The LOBs from different

targets are taken at the same time while the agent flies. So, the agents sort these

LOBs and make two different error ellipse. The algorithm for multiple targets are

explained at first and its flightpath is explained. Additionally, the change of length of

semi-major axis and distance between real target and estimated target is measured.

3.5.2 Single Target.

This section describes the specific result of a single target in a certain condition.

For doing this, V is set to 16 m/s,4t is 10 seconds and 3◦ is used as max measurement

error, ε. The single target is at (0, 0) and initially the agent is at (-2000, -2000). A

satisfactory semi-major axis is set to 10 m.
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The optimal flight path for single target is shown in Figure 38 based on using the

algorithm in Figure 30. Its shape has the common traits with the sample result shown

in Figure 31. The initial flightpath maintains its heading until the ellipse is shaped

and overall flightpath has a spiral shape for targeting. Finally, the flightpath for the

single target shows a loop shape at the end. In Figure 40, the change in heading angle

is shown and it shows the same derivative in the end. This shows that the agent is

looping around a target.

Figure 38. Optimal Flight Path for Single Target
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(a) n = 10 (b) n= 20

(c) n = 30 (d) n = 41 (Final Ellipse)

Figure 39. Error Ellipse for single Target

Figure 40. Heading Angle for Single Target
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The shape of the error ellipse is shown in Figure 39. The semi-major axis is

oriented towards the agent like the sample results. In addition, its area decreases while

the agent flies the optimal path. Finally, its semi-major axis satisfies its predefined

value on the 41th measurement position, t = 410 sec.

The semi-major axis value is drastically reduced in the beginning of the flight

path as shown in Figure 41. While time is increasing, the rate of the semi-major axis

reduction is decreased. However, the semi-major axis is continuously decreased by

adding measurements until it satisfies the predefined value. As a result, its final value

is 7.61 m. The distance between the real target and the estimated target position is

decreasing though the graph and is fluctuating as shown in Figure 42. However, it is

clear that the decreasing distance is its tendency and the amplitude of the fluctuation

is also decreasing. Surely, the distance value for every step is lower than the semi-

major axis value. So, every time when the agent increases its number of LOBs, the

tendency is to get closer and closer to the target. In this scenario, the final distance

value is 0.70 m.

Figure 41. Semi-Major Axis of Ellipse for Single Target
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Figure 42. Distance (Real - Estimated TGT) for Single Target

3.5.3 Multiple Targets.

This section shows the results where there are multiple targets. Its assumptions are

the same as that of a single target. In addition, the agent is assumed to be capable of

measuring multiple LOBs separately and distinguish each other. This can be possible

by using a rotating directional antenna [10]. A rotating directional antenna can make

time series in LOB measurements data. So, it can distinguish each from the other

when it receives multiple signals that have the same frequency. Besides, when the

agent knows the channel of every target’s radio signal, each LOBs measurement data

from the different channels can be distinguished by measuring every channel in each

time step with a rotating directional antenna. In this section, multiple targets are at

(0, 0) and (0, 2000).
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Figure 43. Optimal Flight Path for Multiple Targets

The algorithm for multiple targets are a composition of the algorithm for the single

target. First of all, the agent decides which target is nearer from the agent position

by using the estimated targets’ positions. It follows the optimal path for the nearer

target while measuring LOBs for multiple targets. After getting satisfactory semi-

major axis of the nearer target, it follows the optimal path for the farther target. The

optimal flight path looks like a composition of optimal paths for two single targets.

Figure 43 shows the optimal flight path for these multiple targets. This optimal

path has several characteristics. First of all, the ellipse error of the farther target

is bigger than that of the nearer target. This is because of the effect of the LOBs

measured from the further distance target is lower than that of the nearer target and

the initial optimal path is for the nearer target.
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(a) n = 15 / TGT ]1 (b) n= 15 / TGT ]2

(c) n = 30 / TGT ]1 (d) n= 30 / TGT ]2

(e) n = 45 / TGT ]1 (f) n= 45 / TGT ]2

61



(g) n = 51 (Final) / TGT ]1 (h) n= 51 (Final) / TGT ]2

Figure 44. Error Ellipse for Multiple Targets

Figure 45. Heading Angle for Multiple Target

Secondly, the optimal path shows the loop shape on Figure 44e but it doesn’t loop

around the nearer target. This is because the satisfactory semi-major axis is achieved

when the agent arrives right under the target position, (-5.5514, -35.6846). So, it can

fly to the second target from that position.

The long radii of the ellipses are shown in Figure 46. Because of the algorithm for

multiple target as described before, the overall semi-major axis for the farther target

is larger than it is for nearer target. For obtaining a satisfactory semi-major axis for
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Figure 46. Semi-Major Axis of Ellipse for Multiple Target

the nearer target, the agent needs 37 LOBs and it takes only 17 more LOBs for the

farther target. This is because the agent continuously measures LOBs for both of

them from the beginning. By doing this, the ellipse for the farther target becomes

smaller continuously even though the agents flies to minimize the nearer target error

ellipse.

Figure 47. Distance (Real - Estimated TGT) for Multiple Target

Figure 47 shows the distance between the real targets and the estimated targets.

The final distance between real target and estimated target for the target #1 is 1.5 m
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and for target #2 is 0.3 m. The contours of Figure 46 and Figure 47 are very similar.

Normally, the values for the nearer target are lower than for the farther target but

this relation is reversed in some ranges as shown in Figure 47. Even though there are

several exceptions, it can be assumed that the semi-major axis is proportional to the

distance between the real target and the estimated target.

3.6 Summary

An algorithm based on a geometric approach is described in this chapter. The

significant characteristic of this algorithm is that it uses two lines by adding and

subtracting maximum error, ε, from the measured LOBs. These two lines provide

a possible region and LOBs from varied positions creates intersection regions. The

intersection of these regions provide an estimated target position. The intersection of

this region is called an error ellipse because its shape is an ellipse made by measure-

ment error. The error ellipse area is determined by taking measurements at different

positions on the flightpath. Among the varied flightpaths, the spiral path is assumed

as an optimal path contour. This contour supports the method to eliminate singu-

larities in the optimal control problem.

The results for a single target scenario was satisfactory. By doing optimal control,

this algorithm supplies an optimal path for minimizing the error ellipses. Using semi-

major axis as the metric to determine the area of the ellipse can meet the predefined

value. In addition, the result of using multiple target paths can be derived from

the result of single target scenario. Its shape is the composition of two single target

optimal paths. It shows that the composition of multiple single target optimal paths

can be used to geolocate more targets.
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IV. Test & Analysis

4.1 Overview

A real-world test is done to verify the algorithm described in Chapter III. Even

though it worked well in simulation, it can have problems and be useless in the real

world. So, what are the pitfalls for this algorithm and how can they be resolved is

the objective for this test. This thesis is motivated for use with UAVs but a remote

controlled truck is used for experimental test instead of real UAV. Using a truck

saves time for flight preparation like assembling the airplane and safety consideration.

This real test was conducted on 22-23 Dec 2015 around the National Museum of the

United States Air Force. To conduct the test, a large empty space was needed for

maneuvering the truck around the target. The parking lot of National Museum of

the United States Air Force was a good place to do it with an RC truck.

Chapter IV describes the simulation result based on geographical information of

the parking lot. Next, equipment for the experiment is described in detail. Finally,

the analysis and comparison between simulation and real test is presented.

4.2 Simulation

Figure 48. Arrangement of Target & Agent
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In the real test, the target is in the position where the longitude is -84.1150000◦

and the latitude is 39.7788000◦. Considering the agent’s movement, the truck is in

the position where the longitude is -84.1152050◦ and the latitude is 39.7785950◦ and it

moves in longitude direction. It is shown in Figure 48. ε is set to 10◦ and satisfactory

semi-major axis of ellipse is 40m. The speed of the agent is assumed as 0.66 ft and

4t is 10 sec. The speed of the agent is constrained by the small space of the parking

lot. If the real speed of the air frame was used, it is hard to control the movement of

the agent. So, this speed is determined as a good value for the real test. In practice,

it would have been better to apply scaling laws to ensure similarity between ground

vehicle and flight vehicle testing.

(a) 1st Type (b) 2nd Type

(c) 3rd Type (d) 4th Type

Figure 49. Optimal Flight Path & Error Ellipse
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The second position is the position where longitude is -84.1151845◦ and latitude is

39.7785950◦ for making intersections. The agent can get its initial correct ellipse on

the third position where longitude is -84.1151640◦ and latitude is 39.7785950◦. The

measurement error can effect the flight path propagation. So, several different types

of flight paths are generated and they are shown in Figure 49. Every type of path is

around the target position and it shows roughly a spiral shape.

Figure 50. Semi-Major Axis of Ellipse for Simulation

The change of semi-major axis on flight path is shown in Figure 50. This result

is taken by 100 different simulations. In the graph, the blue line means the average

value of semi-major axis on each measurement number. The fact that the semi-major

axis is reduced with time is very definitely shown in Figure 50.

Figure 51. Distance (Real - Estimated TGT) for Simulation

67



Figure 51 expresses the distance between the real target and the estimated target.

This graph is taken the same way as Figure 50 and its trend is very similar to the

semi-major axis of ellipse.

Table 3. Percentage of Measurement (100 simulations)

Measurement (n) Percentage (%) Measurement (n) Percentage (%)
22 1 28 13
23 7 29 9
24 4 30 8
25 21 31 2
26 22 32 1
27 11 33 1

As described before, the simulation is run 100 times. Every simulation has the

different measurement number for getting satisfactory semi-major axis. Table 3 shows

how many times a certain measurement number is needed for getting the predefined

semi-major axis among 100 runs simulation. So, the different measurement errors

bring up the different shape of flight path and measurement number.

4.3 Implementation

The LOBs are measured by radio signal. The radio emitter and radio direction

finder take significant roles in the real test. The radio emitter is assumed to be a

target and the radio direction finder is mounted on the remotely controlled truck as

in Figure 52d. A radio direction finder measures the LOBs and transfers data to the

computer.

A remote controlled truck is needed for moving to the correct position in latitude

and longitude, automatically. So, it uses an autopilot and GPS for doing this function.

The autopilot makes it move to the point where the program commanded and the

GPS supplies the current position information to the autopilot.

MATLAB calculates the next optimal position with the LOBs and the optimal

position information is input to the ‘Mission Planner’ software. The software interface
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(a) Radio Direction Finder (b) Radio Emitter

(c) Remote Controlled Truck (d) Truck Assembly

Figure 52. Real Test Equipment

is shown in Figure 48. The ‘Mission Planner’ communicates with the truck and

controls the truck position using the GPS and autopilot.

The truck assembly is provided by the ANT lab at AFIT and had been used for

other research. Mounting the radio direction finder and adjusting the proper speed of

truck were needed for the original configuration. It doesn’t take much time to change

its configuration for this real test.

As described before, the radio emitter serves the role of the target. So, radio emit-

ter is put in the position where longitude is -84.1151640◦ and latitude is 39.7785950◦.

The truck moves in a straight path until a proper ellipse is formed from the position

where -84.1152050◦ and latitude is 39.7785950◦. The speed of agent is assumed as 0.66

ft/s and 4t is 10 sec. After forming a proper ellipse, it moves to an optimal position

and measures the LOB using radio direction finder. With these measurements, MAT-

LAB calculates error ellipse and the next optimal position. When the semi-major axis

of error ellipse meets the predefined number, the truck stops its movement.
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4.4 Test Result & Analysis

4.4.1 Flight Path & Semi-Major Axis.

The result of real test produced an optimized path as shown in Figure 53. Its

contour is similar with Figure 49a. This type of contour is very general for a single

target problem. The curve of the path is very smooth and truck shows a spiral

movement to the radio emitter as expected.

(a) Mission Planner Interface

(b) MATLAB Graph

Figure 53. Optimized Flight Path
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(a) Heading Angle

(b) Heading Angle Rate

Figure 54. Heading Angle and Rate for Real-World Test
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Figure 55. Semi-Major Axis of Ellipse for Real-World Test

Figure 56. Distance (Real - Estimated TGT) for Real-World Test

The semi-major axis values of the real test are very similar with the simulation

results. In Figure 55, the line of test is almost inside of simulation result range

even though the last part is not. In addition, the distance between real target and

estimated target is normally inside of simulation range or lower in value as in Figure
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56. Similarly with the semi-major axis tendency, the graph of distance is extended

further than simulation result.

Figure 57. Percentage of Measurement Time (100 simulations)

This extended graph means that the real test takes more time to meet the pre-

defined semi-major axis value. Figure 57 shows how many measurements are needed

to meet the predefined number. To get the percentage value, the simulation was run

100 times. The minimum measurement number is 22 and the maximum measurement

number is 33. The most frequent measurement number is 25 and 26. So, the result of

real test, 35 measurements, is a quite a bit larger number than the statistical result.

However, this can be due to the assumed vs actual value of the measurement error.

4.4.2 Scenario Improvement.

As demonstrated in simulation and in a real test, the agent flies into a real target

position to minimize the error ellipse. However, it can be dangerous considering

enemy’s attack systems in real warfare. Normally, a radio emitter is used in RADAR

or Missile defense facilities. So, if the agent approaches the real target position, it

is threatened by the enemy’s attack weapon. As a result, a flight prohibited area

around an estimated target is needed to enhance its survivability.[12] To achieve this,
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a constraint in the optimal control problem is required to keep the agent out of the

threat zone and is defined as

| PA − P̂T | ≥ RTGT (4.1)

where RTGT is the radius of the flight prohibited area.

Furthermore, the agent may consider obstacles like mountains, hills, trees or build-

ings. Increasing the altitude of the agent is the easiest way to escape these obstacles.

However, increasing the altitude effects the accuracy of the radio measurement. So,

the agent needs an avoidance process for evading the danger of crashing into these ob-

stacles. This avoidance process can be helpful to evade the identified enemy’s weapon

facility around a target. Information about geographical obstacles can be achieved

by using a satellite map. So, each identified obstacle is considered in this section for

the avoidance process.

The avoidance process can be achieved by adding the inequality constraint to the

optimization problem as previously defined. This inequality constraint is defined as

δ− | ψ − φ | ≤ 4t · ψ̇max (4.2)

where Robs is a radius of flight prohibited area around a obstacle, ρobs represents the

distance between the agent and the obstacle and δ is the avoidance angle as shown in

Figure 58. The avoidance angle can be calculated by using Robs and ρobs. If the sum

of the maximum change in heading angle and the absolute value of the heading angle

subject to ρobs is bigger than the avoidance angle, the agent can evade the obstacle.
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Figure 58. Obstacle Avoidance

As a result, the optimal control problem is described as

J = max [
√
λ (P ) ] (4.3)

subject to

x = x0 + V · 4t · cos(ψ)

y = y0 + V · 4t · sin(ψ)

RTGT ≤ | PA − P̂T |

ψ̇ ≤ 3◦/sec

δ− | ψ − φ | ≤ 4t · ψ̇max

(4.4)

The result of the simulation including the new constraints is shown in Figure 59a.

Its RTGT value is 300 m and the agent doesn’t fly inside of flight prohibited area.

The results of setting flight prohibited area around obstacles are shown in Figure

59b, 59c and 59d. The first obstacle is on (0, -2000) and its RTGT is 300 m. The
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second obstacle is on (1000, -1000) and its RTGT is 500 m. The last one is on (700,

-200) and its RTGT is 200 m.

(a) Around Target (b) Around Target + 1 Obstacle

(c) Around Target + 2 Obstacles (d) Around Target + 3 Obstacles

Figure 59. Flight Prohibited Area

The significant feature of the optimal path including a flight prohibited area is

that the agent choose the path near the target but around the flight prohibited area.

When the agent approaches the flight prohibited area, it has two ways to avoid flight

into the prohibited area. One option is nearer to the target and the other is farther

away. However, it chooses the way nearer to the target. It is very advantageous with

respect to radio signal receiver. If the agent flies farther way, the obstacle hinders the

radio reception. This result is considered very natural because the nearer position to

the target is more advantageous to minimize error ellipse.
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4.5 Summary

In this chapter, simulation based on situation based on real-world test was con-

ducted and real-world test was conducted using RC truck. The results of simulation

and real-world test were compared each other.

The results of real-world test are very similar with them of simulation. The semi-

major axis and distance between real target and estimated target of real-world test are

almost inside of simulation result range. However, more measurements were needed

for the predefined semi-major axis. In addition, the algorithm for evading the flight

prohibited area is added using inequality constraints. With this algorithm, the agent

approaches nearer way to the target around the flight prohibited area. This can be

advantageous with respect to radio transmittnace.
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V. Conclusions and Recommendations

5.1 Conclusions

The goal of this research was to minimize uncertainty in the target position in

minimal time. Minimizing uncertainty is achieved by using an optimal problem solu-

tion. Uncertainty of the target position was assumed as the shape of the ellipse that

is generated by LOBs measurement error. LOB measurement values and a prescribed

error of the equipment produces an area which suggest a possible region of target.

More than 2 LOBs make intersection and can be reduced adding LOBs information

from different places. So, LOBs adding error information can shape the surface of

a possible target position, geometrically. For doing this, a semi-major axis of ellipse

is used as a cost function and it provides an a optimal position for minimizing the

semi-major axis of the error ellipse.

The algorithm suggested in this research propagates this sequence until the semi-

major axis meets a satisfactory value. Finally, it can reduce the error ellipse and

estimate the target position precisely. This algorithm was successfully demonstrated

in Chapter IV. The semi-major axis value is continuously decreased with flightpath

and the distance between the real target and the estimated target is reduced. Even-

tually, the decrease of the semi-major axis is bounded because of measurement error.

The flightpath shows the spiral path to the real target position. This result corre-

sponds with the approximation in the beginning of this research.

An algorithm for multiple targets is presented, briefly. Further research is needed

for multiple targets. In addition, implementation of this algorithm onto a UAV should

be demonstrated. Disturbances associated with real UAV flight conditions and their

effects on the algorithm’s performance should be investigated. So, additional research

is needed for adoption to real world applications.
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5.2 Recommendations for Future Research

5.2.1 Real Flight Test.

A real flight test is required to fully validate the algorithm. The result of an

application to a truck is very restricted. Specifically, the truck moves in 2D space,

whereas the airplane moves in 3D space. It affects the overall algorithm profoundly.

The 3D circumstance needs to address LOBs measurement and flightpath including

altitude of aircraft. As a result, incorporation of 3D is needed for the overall algorithm.

This will require more steps in the algorithm to calculate the optimal path.

For the real flight test, more stable equipment is needed. The UAV creates vi-

bration and effects the error on the devices. These conditions adversely effect the

device’s performance. Sometimes, the devices used in this research showed several

malfunctions. A real flight test with stable devices could validate the targeting algo-

rithm.

Furthermore, a transition to real software for the aircraft(not MATLAB) is re-

quired when this algorithm is used for a real UAV. By doing that, it can reduce the

required hardware processor and make the system more efficient.

5.2.2 Multiple Target Algorithm.

The algorithm used in this research for multiple target minimized the error ellipse

of the nearer target and then transited to minimizing for the next target. However,

this algorithm doesn’t guarantee minimal time for targeting. The optimal direction

to the first target can adversely effect the next target position. The initial flightpath

can create a long distance to the second target. So, the direction of flightpath needs

to consider the next target position. As a result, the optimal decision of flightpath

direction has to be done for minimal time.

In addition, this algorithm is not guaranteed as the best solution for minimizing

time for targeting. So, research into for minimizing the error ellipse summation or

any other cost function is needed for validation. Even though the algorithm using
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transition to error ellipse used in this research works well, the comparison with other

algorithms using other cost function is needed for validation and comparison to true

optimal.

5.2.3 Global minimum Solution.

Finding the global minimum condition requires computation time. So, it is not

suitalbe for real-time control problem, especially where aircraft cannot wait for the

next position to move because it threatens the safety of the aircraft. This is the

reason why this thesis used a local minimum. However, the simulation result shows

that the semi-major axis is increased sometimes. Even though it is decreased after

all, this needs to be prevented.

There are deterministic methods and stochastic methods for global optimization.

So, there are several ways to find a global minimum. But, the important thing is that

it must be suitable for real-time control.

5.2.4 Radio Direction Finding Device Validation.

This research required a radio direction finding device that the measurement error

is less than some certain value. This error is directly related with accuracy and time

to achieve a satisfactory semi-major axis. So, the correct maximum error associated

with the hardware used needs to be known for this algorithm.

This value can be measured by real field test. Many experiments with radio emitter

and radio direction finder can give approximated value. However, the barriers like

buildings and trees effect the experiment results. So, many variables needs to be

considered for measurement.

For the purpose of the real flight test experiment in an open field, the radio

direction finding measurement experiment for multiple tests in an open field can give

maximum error value and this value can be validated. However, the usage of this

algorithm in real-world needs higher accuracy device than the device used for the
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experiments herein. Additional low cost radio direction finding equipment suitable

for use on a UAV should be explored and tested.
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Appendix A. Data Tables

Table 4. Key Flight Parameters of SigRascal110 [4]

Parameter Unit Value
Wing Span feet 8.8

Length feet 6.1
Propulsion feet Electric

MTOW pounds 16
Payload Weight pounds 11
Payload Volume cu-in 756
Criuse Velocity knots 28-40

Table 5. Real-world Test Result

No. Lat(◦) Lon(◦) ψ(◦) β(◦) No. Lat(◦) Lon(◦) ψ(◦) β(◦)
1 3.9778595 -8.4115205 0.0 53 19 3.9778698 -8.4114895 81.8 128
2 3.9778595 -8.4115185 0.0 56 20 3.9778717 -8.4114888 71.1 131
3 3.9778595 -8.4115164 0.0 52 21 3.9778738 -8.4114892 101.1 145
4 3.9778595 -8.4115143 0.0 55 22 3.9778758 -8.4114890 82.3 154
5 3.9778585 -8.4115126 30.3 61 23 3.9778778 -8.4114889 88.1 162
6 3.9778585 -8.4115105 0.0 65 24 3.9778799 -8.4114889 89.6 163
7 3.9778590 -8.4115085 13.6 70 25 3.9778819 -8.4114889 90.0 180
8 3.9778584 -8.4115066 14.8 71 26 3.9778837 -8.4114899 120.0 -167
9 3.9778581 -8.4115045 10.3 82 27 3.9778847 -8.4114917 150.0 -158
10 3.9778583 -8.4115025 7.4 87 28 3.9778857 -8.4114935 153.2 -150
11 3.9778590 -8.4115006 21.1 83 29 3.9778864 -8.4114954 160.3 -140
12 3.9778597 -8.4114986 16.5 95 30 3.9778865 -8.4114975 175.4 -128
13 3.9778605 -8.4114967 23.4 102 31 3.9778856 -8.4114993 -154.6 -106
14 3.9778615 -8.4114950 30.5 100 32 3.9778840 -8.4115007 -131.2 -91
15 3.9778629 -8.4114935 43.6 111 33 3.9778820 -8.4115011 -101.2 -86
16 3.9778644 -8.4114920 44.2 114 34 3.9778800 -8.4115008 -83.4 1
17 3.9778660 -8.4114907 50.9 120 35 3.9778783 -8.4114997 -57.0 99.4
18 3.9778678 -8.4114898 62.7 128
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Appendix B. MATLAB simulation code

2.1 Sample Result.m

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % Sample Result

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 c l e a r a l l ; c l o s e a l l ; c l c ;

5

6 s igma beta=deg2rad (1) ;

7

8 %% Max e r r o r & Prede f ined semi−major a x i s

9 e r r c o n s t = 3 ;

10 r a d i u s l i m i t = 5 ;

11

12 %t a r g e t p o s i t i o n :

13 t x t r u e =0;

14 t y t r u e =0;

15

16 % I n i t i a l path

17 x i n i =[−1000;−840];

18 y i n i =[−1000;−1000];

19

20 X=x i n i ;

21 Y=y i n i ;

22 pos X= X;

23 pos Y=Y;

24

25 % LOB Measurement

26 beta = atan2 ( ty t rue−Y, tx t rue−X)+sigma beta ∗( rand (1 ) ) ;

83



27

28 p s i = [ 0 ; atan2 (Y(2)−Y(1) ,X(2)−X(1) ) ] ;

29 d e l p s i = [ 0 ; 0 ] ;

30

31 e r r=sigma beta ∗ e r r c o n s t ;

32 [ a1 , b1 ] = s i z e ( beta ) ;

33 f o r loop1 =1:a1

34 i f beta ( loop1 , 1 ) < e r r

35 beta ( loop1 , 1 )= beta ( loop1 , 1 ) +2∗pi ;

36 e l s e

37 end

38 end

39

40 b e t a e r r ( : , 1 ) = [ beta−e r r ] ;

41 b e t a e r r ( : , 2 ) = [ beta+e r r ] ;

42

43 l i n e = s q r t ( (X(1)−t x t r u e ) ˆ2+(Y(1)−t y t r u e ) ˆ2) ∗ 1 . 2 ;

44

45 f i g u r e (1 )

46 [X,Y, beta , be ta e r r , i n t e r ,TGT, LongRadius , E l l i p s e S i z e ] =

pathmaker (X,Y, beta , be ta e r r , err , tx t rue , ty t rue , s igma beta

) ;

47 hold on

48 p lo t (X,Y,X,Y, ’ ko ’ )

49 hold on

50 h (1)=p lo t (X,Y, ’ ko ’ ) ;

51 TGTn=TGT( length (TGT) , : ) ;

52 h (2)=p lo t (TGTn(1 , 1 ) ,TGTn(1 , 2 ) , ’ r ˆ ’ ) ;

53 h (4)=p lo t ( tx t rue , ty t rue , ’ ks ’ ) ;
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54 h (5)=p lo t ( i n t e r ( : , 1 ) , i n t e r ( : , 2 ) , ’∗ ’ ) ;

55

56 l egend (h ( [ 1 5 4 2 ] ) , ’ Agent Pos i t i on ’ , ’ I n t e r s e c t i o n o f LOBs ’ ,

’ Real Target Pos i t i on ’ , ’ Estimated Target Pos i t i on ’ ) ;

57 ax = gca ;

58 XTick = [ −1200 :400 : 1000 ] ;

59 YTick = XTick ;

60 s e t ( gca , ’ XTick ’ , XTick , ’ YTick ’ , YTick , ’ f o n t s i z e ’ ,13)

61 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ ) ;

62 a x i s ( [−1300 ,1000 ,−1300 ,1000])

63 a x i s square

64 hold o f f ;

65

66 i n t e r = [ ] ;

67

68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 %% I t e r a t i o n Option

70 t f =10;

71 V=16;

72 N=1;

73

74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75 %% I t e r a t i o n Star t

76 l en=length (X) ;

77 x update = X( l en ) ;

78 y update = Y( l en ) ;

79 ps i update =0;

80 x path ( : , 1 )=X;

81 x path ( : , 2 )=Y;
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82 x path ( : , 3 ) =0;

83 i t n = 1 ;

84

85 whi le LongRadius ( l ength ( LongRadius ) ) > r a d i u s l i m i t

86 p s i i n i t = ps i update ;

87 x i n i t = x update+( t f /N)∗V∗ cos ( deg2rad ( p s i i n i t +30) ) ;

88 y i n i t = y update+( t f /N)∗V∗ s i n ( deg2rad ( p s i i n i t +30) ) ;

89 p s i p r e v = 0 ;

90 x0=[ x i n i t y i n i t p s i i n i t +30] ;

91 s0 =[ x update y update ps i update ] ;

92

93 A= [ ] ;

94 b = [ ] ;

95 Aeq = [ ] ;

96 beq = [ ] ;

97 lb = [ ] ;

98 ub = [ ] ;

99

100 opt ions=opt imset ( ’ Algorithm ’ , ’ sqp ’ , ’ Disp lay ’ , ’ I t e r ’ , ’

MaxFunEvals ’ ,1 e10 , ’ MaxIter ’ ,1 e2 ) ;

101 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

102 % Cal l fmincon us ing the f o l l o w i n g syntax

103 % [ x , fva l , e x i t f l a g , output , lambda , grad , he s s i an ] =fmincon

(@myfun , x0 , [ ] , [ ] , [ ] , [ ] , lb , ub , @mynonlcon , opt ions )

104 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

105 [ x s ta r , f va l , e x i t f l a g , output , lambda ] = fmincon (@( x0 ) Eval th (

x0 , s igma beta , beta , err , tx t rue , ty t rue ,N, len , x path ) , x0 ,A,

b , Aeq , beq , lb , ub ,@( x0 ) cons th ( x0 , s0 ,N, t f ,V) , opt ions ) ;
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106 [ f , beta , err , be ta e r r ,TGTn, e l l x , e l l y , i n t e r s e l ]= Eval th (

x s ta r , s igma beta , beta , err , tx t rue , ty t rue ,N, len , x path ) ;

107 [ ˜ , ˜ , p s i d o t s t a r ]= cons th ( x s ta r , s0 ,N, t f ,V) ;

108

109 TGTa=TGT( l en+itn −1 , : ) ;

110

111 i f ( s0 (1 )−TGTa(1) ) ˆ2+( s0 (2 )−TGTa(2) ) ˆ2 < ( x s t a r (1 )−TGTa

(1) ) ˆ2+( x s t a r (2 )−TGTa(2) ) ˆ2

112 opt ions=opt imset ( ’ Algorithm ’ , ’ sqp ’ , ’ Disp lay ’ , ’ I t e r ’ , ’

MaxFunEvals ’ ,1 e10 , ’ MaxIter ’ ,1 e2 ) ;

113 [ x s ta r , f va l , e x i t f l a g , output , lambda ] = fmincon (@( x0 )

Eval th2 ( x0 ,N,TGTa) , x0 ,A, b , Aeq , beq , lb , ub ,@( x0 )

cons th ( x0 , s0 ,N, t f ,V) , opt ions ) ;

114 [ d i s ]= Eval th2 ( x s ta r ,N,TGTa) ;

115 [ ˜ , ˜ , p s i d o t s t a r ]= cons th ( x s ta r , s0 ,N, t f ,V) ;

116

117 X=[ x path ( : , 1 ) ; x s t a r (1 ) ] ;

118 Y=[ x path ( : , 2 ) ; x s t a r (2 ) ] ;

119 e l s e

120 end

121

122 x update = x s t a r (1 ) ;

123 y update = x s t a r (2 ) ;

124 ps i update = x s t a r (3 ) ;

125

126 % LOB Measurement

127 [ x update , y update ]

128 beta ( l en+i t n ) = atan2 ( ty t rue−y update , tx t rue−x update )+

sigma beta ∗( rand (1 ) ) ; % Real ang le + ERROR
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129

130 [ a1 , b1 ] = s i z e ( beta ) ;

131 f o r loop1 =1:a1

132 i f beta ( loop1 , 1 ) < e r r

133 beta ( loop1 , 1 )= beta ( loop1 , 1 ) +2∗pi ;

134 e l s e

135 end

136 end

137 b e t a e r r ( : , 1 ) = [ beta−e r r ] ;

138 b e t a e r r ( : , 2 ) = [ beta+e r r ] ;

139 X=[ x path ( : , 1 ) ; x s t a r (1 ) ] ;

140 Y=[ x path ( : , 2 ) ; x s t a r (2 ) ] ;

141 [ i n t e r s e l , e l l x , e l l y ,TGTn, LongRadiusn ] = E l l i p s e (X,Y,

be ta e r r , e r r ) ;

142

143 LongRadius ( l en+i t n )=LongRadiusn ;

144 TGT( l en+itn , : )=TGTn;

145 x path ( l en+itn , 1 : 3 ) = x s t a r ;

146 o b j e c t i v e f u n c ( i t n )=f v a l ;

147

148 f i g u r e (1 ) ;

149 p lo t ( x path ( : , 1 ) , x path ( : , 2 ) , x path ( : , 1 ) , x path ( : , 2 ) , ’ ko ’ )

150 hold on

151 h (1)=p lo t ( x path (1 , 1 ) , x path (1 , 2 ) , ’ ko ’ ) ;

152 h (2)=p lo t (TGTn(1 , 1 ) ,TGTn(1 , 2 ) , ’ r ˆ ’ ) ;

153 h (3)=p lo t (TGTn(1)+e l l x ,TGTn(2)+e l l y , ’m’ , ’ l i n ew id th ’ , 2 ) ;

154 h (4)=p lo t ( tx t rue , ty t rue , ’ ks ’ ) ;

155 h (5)=p lo t ( i n t e r s e l ( : , 1 ) , i n t e r s e l ( : , 2 ) , ’∗ ’ ) ;

156 p=s q r t ( ( e l l x ) .ˆ2+( e l l y ) . ˆ 2 ) ;
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157 pp=f i n d (p==max(p) ) ;

158 ppp= [TGTn(1 , 1 ) +1000∗( e l l x (pp) ) ,TGT(1 ,2 ) +1000∗( e l l y (pp) ) ] ;

159 h (6)=p lo t (TGTn(1 , 1 ) ,TGTn(1 , 2 ) , ’ r∗ ’ ) ;

160 hold on

161 g r id on ;

162 h (6)=p lo t ([−ppp (1 , 1 ) ,TGTn(1 , 1 ) , ppp (1 , 1 ) ] , [−ppp (1 , 2 ) ,TGTn(1 , 2 )

, ppp (1 , 2 ) ] , ’ r ’ ) ;

163 h (7)=p lo t (TGTn(1)+e l l x ,TGTn(2)+e l l y , ’m’ , ’ l i n ew id th ’ , 2 ) ;

164 h (8)=p lo t ( i n t e r s e l ( : , 1 ) , i n t e r s e l ( : , 2 ) , ’∗ ’ ) ;

165 aa=length (X) ;

166 h (9)=p lo t ( [X( aa ) , X( aa )+l i n e ∗ cos ( deg2rad ( x s t a r (1 , 3 ) +30) ) ] , [Y

( aa ) , Y( aa )+l i n e ∗ s i n ( deg2rad ( x s t a r (1 , 3 ) +30) ) ] , ’−−k ’ , ’

l i n ew id th ’ , 1 . 5 ) ;

167 h (10)=p lo t ( [X( aa ) , X( aa )+l i n e ∗ cos ( deg2rad ( x s t a r (1 , 3 )−30) ) ] , [

Y( aa ) , Y( aa )+l i n e ∗ s i n ( deg2rad ( x s t a r (1 , 3 )−30) ) ] , ’−−k ’ , ’

l i n ew id th ’ , 1 . 5 ) ;

168 l egend (h ( [ 1 5 4 2 ] ) , ’ Agent Pos i t i on ’ , ’ I n t e r s e c t i o n o f LOBs ’ ,

’ Real Target Pos i t i on ’ , ’ Estimated Target Pos i t i on ’ ) ;

169 ax = gca ;

170 XTick = [ −1200 :400 : 1000 ] ;

171 YTick = XTick ;

172 s e t ( gca , ’ XTick ’ , XTick , ’ YTick ’ , YTick , ’ f o n t s i z e ’ ,13)

173 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ ) ;

174 a x i s ( [−1300 ,1000 ,−1300 ,1000])

175 a x i s square

176 hold o f f ;

177

178 %% Drawing E l l i p s e

179 f i g u r e (2 )
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180 p lo t ( x path ( : , 1 ) , x path ( : , 2 ) , x path ( : , 1 ) , x path ( : , 2 ) , ’ ko ’ )

181 hold on

182 h (1)=p lo t ( x path (1 , 1 ) , x path (1 , 2 ) , ’ ko ’ ) ;

183 h (2)=p lo t (TGTn(1 , 1 ) ,TGTn(1 , 2 ) , ’ r ˆ ’ ) ;

184 h (3)=p lo t (TGTn(1)+e l l x ,TGTn(2)+e l l y , ’m’ , ’ l i n ew id th ’ , 2 ) ;

185 h (4)=p lo t ( tx t rue , ty t rue , ’ ks ’ ) ;

186 h (5)=p lo t ( i n t e r s e l ( : , 1 ) , i n t e r s e l ( : , 2 ) , ’∗ ’ ) ;

187 p=s q r t ( (TGTn(1 , 1 )−e l l x ) .ˆ2+(TGTn(1 , 2 )−e l l y ) . ˆ 2 ) ;

188 pp=f i n d (p==max(p) ) ;

189 ppp= [TGTn(1 , 1 ) +1000∗( e l l x (pp)−TGTn(1 , 1 ) ) ,TGT(1 ,2 ) +1000∗(

e l l y (pp)−TGTn(1 , 1 ) ) ] ;

190 g r id on ;

191 h (6)=p lo t ([−ppp (1 , 1 ) ,TGTn(1 , 1 ) , ppp (1 , 1 ) ] , [−ppp (1 , 2 ) ,TGTn(1 , 2 )

, ppp (1 , 2 ) ] , ’ r ’ ) ;

192 h (7)=p lo t (TGTn(1)+e l l x ,TGTn(2)+e l l y , ’m’ , ’ l i n ew id th ’ , 2 ) ;

193 h (8)=p lo t ( i n t e r s e l ( : , 1 ) , i n t e r s e l ( : , 2 ) , ’∗ ’ ) ;

194

195 aa=length (X) ;

196 l egend (h ( [ 1 5 4 2 ] ) , ’ Agent Pos i t i on ’ , ’ I n t e r s e c t i o n o f LOBs ’ ,

’ Real Target Pos i t i on ’ , ’ Estimated Target Pos i t i on ’ ) ;

197 ax = gca ;

198 XTick = [ −1 0 : 2 : 1 0 ] ;

199 YTick = XTick ;

200 s e t ( gca , ’ XTick ’ , XTick , ’ YTick ’ , YTick , ’ f o n t s i z e ’ ,13)

201 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ ) ;

202 a x i s ( [−10 ,10 ,−8 ,12])

203 a x i s square

204 hold o f f ;

205
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206 i t n= i t n +1;

207 end

208

209 d i s t ance = s q r t ( (TGT( : , 1 )−t x t r u e ) .ˆ2+ (TGT( : , 2 )−t y t r u e ) . ˆ 2 )

210

211 f i g u r e (3 )

212 p lo t ( LongRadius ) ; g r i d on ;

213 a x i s ( [ 1 0 , 4 5 , 0 , 1 0 5 ] )

214 ax = gca ;

215 XTick = [ 1 0 : 5 : 4 5 ] ;

216 YTick = [ 0 : 1 0 : 1 0 0 ] ;

217 s e t ( gca , ’ XTick ’ , XTick , ’ YTick ’ , YTick , ’ f o n t s i z e ’ ,13)

218 x l a b e l ( ’ measurement number (n) ’ ) ; y l a b e l ( ’ l ength (m) ’ ) ;

219

220 f i g u r e (4 )

221 p lo t ( d i s t anc e ) ; g r i d on ;

222 a x i s ( [ 1 0 , 4 5 , 0 , 2 2 ] )

223 ax = gca ;

224 XTick = [ 1 0 : 5 : 4 5 ] ;

225 YTick = [ 0 : 5 : 3 0 ] ;

226 s e t ( gca , ’ XTick ’ , XTick , ’ YTick ’ , YTick , ’ f o n t s i z e ’ ,13)

227 x l a b e l ( ’ measurement number (n) ’ ) ; y l a b e l ( ’ l ength (m) ’ ) ;

2.2 Ellipse.m

1 f unc t i on [ i n t e r s e l , e l l x , e l l y ,TGT, LongRadius ] = E l l i p s e (x , y

, be ta e r r , e r r )

2

3 l en = length ( x ) ;
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4 i n t e r = [ ] ;

5 [ row1 , co l 1 ]= s i z e ( i n t e r ) ;

6

7 f o r m = 1 : ( len −1)

8 f o r n = 1 : ( len−m)

9 f o r n2 = 1 :2

10 i f abs ( tan ( b e t a e r r (m, 1 ) )−tan ( b e t a e r r ( l en+1−n ,

n2 ) ) ) < 10ˆ(−2)

11 i n t e r ( row1+1 ,1) = ( ( y ( l en+1−n , 1 )−y (m, 1 ) ) + ( x

(m, 1 ) ∗ tan ( b e t a e r r (m, 2 ) )−x ( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .

12 ( tan ( b e t a e r r (m, 2 ) )−tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ;

13 i n t e r ( row1+1 ,2) = ( i n t e r ( row1+1 ,1)−x (m, 1 ) )∗

tan ( b e t a e r r (m, 2 ) )+y (m, 1 ) ;

14 i f n==1

15 i n t e r ( row1+1 ,4) = 1 ;

16 i n t e r ( row1+1 ,5) = b e t a e r r (m, 2 ) ;

17 i n t e r ( row1+1 ,6) = b e t a e r r ( len , n2 ) ;

18 e l s e

19 end

20 [ row1 , co l 1 ]= s i z e ( i n t e r ) ;

21

22 e l s e i f abs ( tan ( b e t a e r r (m, 2 ) )−tan ( b e t a e r r ( l en+1−n , n2

) ) ) < 10ˆ(−2)

23 i n t e r ( row1+1 ,1) = ( ( y ( l en+1−n , 1 )−y (m, 1 ) ) + ( x

(m, 1 ) ∗ tan ( b e t a e r r (m, 1 ) )−x ( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .
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24 ( tan ( b e t a e r r (m, 1 ) )−tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ;

25 i n t e r ( row1+1 ,2) = ( i n t e r ( row1+1 ,1)−x (m, 1 ) )∗

tan ( b e t a e r r (m, 1 ) )+y (m, 1 ) ;

26 i f n==1

27 i n t e r ( row1+1 ,4) = 1 ;

28 i n t e r ( row1+1 ,5) = b e t a e r r (m, 1 ) ;

29 i n t e r ( row1+1 ,6) = b e t a e r r ( len , n2 ) ;

30 e l s e

31 end

32 [ row1 , c o l ]= s i z e ( i n t e r ) ;

33 e l s e

34 i n t e r ( row1+1 ,1) = ( ( y ( l en+1−n , 1 )−y (m, 1 ) ) + ( x

(m, 1 ) ∗ tan ( b e t a e r r (m, 1 ) )−x ( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .

35 ( tan ( b e t a e r r (m, 1 ) )−tan (

b e t a e r r ( l en+1−n , n2 ) ) )

;

36 i n t e r ( row1+1 ,2) = ( i n t e r ( row1+1 ,1)−x (m, 1 ) )∗

tan ( b e t a e r r (m, 1 ) )+y (m, 1 ) ;

37 i f n==1

38 i n t e r ( row1+1 ,4) = 1 ;

39 i n t e r ( row1+1 ,5) = b e t a e r r (m, 1 ) ;

40 i n t e r ( row1+1 ,6) = b e t a e r r ( len , n2 ) ;

41 e l s e

42 end

43 [ row1 , co l 1 ]= s i z e ( i n t e r ) ;
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44 i n t e r ( row1+1 ,1) = ( ( y ( l en+1−n , 1 )−y (m, 1 ) ) + ( x

(m, 1 ) ∗ tan ( b e t a e r r (m, 2 ) )−x ( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .

45 ( tan ( b e t a e r r (m, 2 ) )−tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ;

46 i n t e r ( row1+1 ,2) = ( i n t e r ( row1+1 ,1)−x (m, 1 ) )∗

tan ( b e t a e r r (m, 2 ) )+y (m, 1 ) ;

47 i f n==1

48 i n t e r ( row1+1 ,4) = 1 ;

49 i n t e r ( row1+1 ,5) = b e t a e r r (m, 2 ) ;

50 i n t e r ( row1+1 ,6) = b e t a e r r ( len , n2 ) ;

51 e l s e

52 end

53 [ row1 , co l 1 ]= s i z e ( i n t e r ) ;

54 end

55 end

56 end

57 end

58

59 %% i n t e r s e c t i o n s e l e c t i o n

60 [ r , c ]= s i z e ( i n t e r ) ;

61 f o r q1=1: r

62 f o r q2 = 1 : l en

63 s l i d e = atan2 ( i n t e r ( q1 , 2 )−y ( q2 ) , i n t e r ( q1 , 1 )−x ( q2 ) ) ;

64

65 i f ( s l i d e−b e t a e r r ( q2 , 1 ) ) ∗( s l i d e−b e t a e r r ( q2 , 2 ) ) <=

0.0000001

66 i n t e r ( q1 , 3 )=i n t e r ( q1 , 3 ) +1;

67 e l s e
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68 end

69 i f s l i d e <= 2∗ e r r

70 s l i d e=s l i d e +2∗pi ;

71 i f ( s l i d e−b e t a e r r ( q2 , 1 ) ) ∗( s l i d e−b e t a e r r ( q2

, 2 ) ) <= 0.0000001

72 i n t e r ( q1 , 3 )=i n t e r ( q1 , 3 ) +1;

73 e l s e

74 end

75 e l s e

76 end

77 end

78 end

79

80 [ a1 , b1 ] = s i z e ( i n t e r ) ;

81 i n t e r l e n g t h=a1 ;

82 i n t e r s e l = [ ] ;

83 [ r1 , c1 ]= s i z e ( i n t e r s e l ) ;

84 f o r u=1:a1

85 i f i n t e r (u , 3 ) == len

86 i n t e r d a t a ( r1 +1 , : )=i n t e r (u , : ) ;

87 i n t e r s e l ( r1 +1 , : )=i n t e r (u , 1 : 2 ) ;

88 e l s e

89 end

90 [ r1 , c1 ]= s i z e ( i n t e r s e l ) ;

91 end

92

93 i f l ength ( i n t e r s e l ) ==0

94 i n t e r s e l = [ ] ;

95 avg = [ 0 , 0 ] ;
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96 e l l x = [ ] ;

97 e l l y = [ ] ;

98 TGT= [ ] ;

99 LongRadius =10000;

100 e l s e

101

102 %% TGT p o s i t i o n Acqu i s i t i on

103 avg = [ mean( i n t e r s e l ( : , 1 ) ) ,mean( i n t e r s e l ( : , 2 ) ) ] ;

104 TGT = avg ;

105

106 %% Error Matrix (TGT − I n t e r s e c t i o n )

107 e r r o r = [ ] ;

108 f o r l = 1 : r1

109 e r r o r ( l , : ) =[ i n t e r s e l ( l , 1 )−avg (1 , 1 ) , i n t e r s e l ( l , 2 )−

avg (1 , 2 ) ] ;

110 end

111

112 %% E l l i p s e S i z e & Long Radius

113 covar iance=cov ( e r r o r ) ;

114 [ e igvec , e i g v a l ] = e i g ( covar iance ) ;

115 i f l ength ( e i g v a l )==1

116 LongRadius =10000;

117 e l s e

118 a=s q r t ( e i g v a l ( 1 , 1 ) ) ;

119 b=s q r t ( e i g v a l ( 2 , 2 ) ) ;

120 ang=dcm2angle ( [ e i gve c [ 0 ; 0 ] ; 0 0 0 ] ) ;

121 E l l i p s e S i z e = pi ∗ s q r t ( e i g v a l ( 1 , 1 ) )∗ s q r t ( e i g v a l ( 2 , 2 ) ) ;

122

123 LongRadius=s q r t (max(max( e i g v a l ) ) ) ;
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124 end

125

126 %% Drawing E l l i p s e

127 e l l n =100;

128 e l l p =0: p i / e l l n :2∗ pi ;

129

130 e l l = [ cos ( e l l p ’ ) , s i n ( e l l p ’ ) ] ∗ s q r t ( e i g v a l ) ∗ e igvec ’ ;

131 e l l x = e l l ( : , 1 ) ;

132 e l l y = e l l ( : , 2 ) ;

133

134 end

2.3 Pathmaker.m

1 f unc t i on [X,Y, beta , be ta e r r , i n t e r ,TGT, LongRadius , E l l i p s e S i z e ]

= pathmaker (X,Y, beta , be ta e r r , err , tx t rue , ty t rue ,

s igma beta ) ;

2

3 [ a2 , b2 ] = s i z e (X) ;

4 f o r z=1:a2

5 %% −−−−−−−−−−−−−−−−−− 1 s t −−−−−−−−−−−−−−−

6 i f z==1

7 f i g u r e (1 )

8 p lo t ( tx t rue , ty t rue , ’ go ’ ) ; g r i d on ; hold on

9 p lo t ( [X( z ) , X( z )+l i n e ∗ cos ( b e t a e r r ( z , 1 ) ) ] , [Y( z ) , X( z )

+l i n e ∗ s i n ( b e t a e r r ( z , 1 ) ) ] , ’ r− ’ )

10 p lo t ( [X( z ) , X( z )+l i n e ∗ cos ( b e t a e r r ( z , 2 ) ) ] , [Y( z ) , Y( z )

+l i n e ∗ s i n ( b e t a e r r ( z , 2 ) ) ] , ’ r− ’ )

11 a x i s square
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12 a x i s equal

13 hold o f f

14

15 TGT( 1 , : ) = [X(1) ,Y(1) ] ;

16 LongRadius (1 , 1 ) = [ 0 ] ;

17 E l l i p s e S i z e (1 , 1 )= [ 0 ] ;

18

19 %% −−−−−−−−−−−−−−−−−− 2nd −−−−−−−−−−−−−−−

20 e l s e i f z==2

21 quad check =0;

22 whi le quad check == 0

23 l en = length (X) ;

24 i n t e r = [ ] ;

25 [ ra , ca ]= s i z e ( i n t e r ) ;

26 f o r m = 1 : ( len −1)

27 f o r n = 1 : ( len−m)

28 f o r n2 = 1 :2

29 i f abs ( tan ( b e t a e r r (m, 1 ) )−tan ( b e t a e r r ( l en+1−n ,

n2 ) ) ) < 10ˆ(−3)

30 i n t e r ( ra +1 ,1) = ( (Y( l en+1−n , 1 )−Y(m, 1 ) ) + (X(m

, 1 ) ∗ tan ( b e t a e r r (m, 2 ) )−X( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .

31 ( tan ( b e t a e r r (m, 2 ) )−tan ( b e t a e r r ( l en+1−n ,

n2 ) ) ) ;

32 i n t e r ( ra +1 ,2) = ( i n t e r ( ra +1 ,1)−X(m, 1 ) )∗ tan (

b e t a e r r (m, 2 ) )+Y(m, 1 ) ;

33

34 i n t e r ( ra +1 ,4) = 0 ;
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35 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra +1 ,1)−

t x t r u e ) > pi /10 ;

36 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra

+1 ,1)−t x t r u e ) < pi /2 .2

37 i n t e r ( ra +1 ,4) = 1 ;

38 e l s e

39 end

40 e l s e

41 end

42 [ ra , ca ]= s i z e ( i n t e r ) ;

43 e l s e i f abs ( tan ( b e t a e r r (m, 2 ) )−tan ( b e t a e r r (

l en+1−n , n2 ) ) ) < 10ˆ(−3)

44 i n t e r ( ra +1 ,1) = ( (Y( l en+1−n , 1 )−Y(m, 1 ) ) + (X(m

, 1 ) ∗ tan ( b e t a e r r (m, 1 ) )−X( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .

45 ( tan ( b e t a e r r (m, 1 ) )−tan ( b e t a e r r ( l en+1−n ,

n2 ) ) ) ;

46

47 i n t e r ( ra +1 ,2) = ( i n t e r ( ra +1 ,1)−X(m, 1 ) )∗ tan (

b e t a e r r (m, 1 ) )+Y(m, 1 ) ;

48

49 i n t e r ( ra +1 ,4) = 0 ;

50 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra +1 ,1)−

t x t r u e ) > pi /10 ;

51 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra

+1 ,1)−t x t r u e ) < pi /2 .2

52 i n t e r ( ra +1 ,4) = 1 ;

53 e l s e

54 end
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55 e l s e

56 end

57 [ ra , ca ]= s i z e ( i n t e r ) ;

58 e l s e

59 i n t e r ( ra +1 ,1) = ( (Y( l en+1−n , 1 )−Y(m, 1 ) ) + (X(m

, 1 ) ∗ tan ( b e t a e r r (m, 1 ) )−X( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .

60 ( tan ( b e t a e r r (m, 1 ) )−tan ( b e t a e r r ( l en+1−n , n2 ) )

) ;

61 i n t e r ( ra +1 ,2) = ( i n t e r ( ra +1 ,1)−X(m, 1 ) )∗ tan (

b e t a e r r (m, 1 ) )+Y(m, 1 ) ;

62 i n t e r ( ra +1 ,4) = 0 ;

63 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra +1 ,1)−

t x t r u e ) > pi /10 ;

64 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra

+1 ,1)−t x t r u e ) < pi /2 .2

65 i n t e r ( ra +1 ,4) = 1 ;

66 e l s e

67 end

68 e l s e

69 end

70 [ ra , ca ]= s i z e ( i n t e r ) ;

71 i n t e r ( ra +1 ,1) = ( (Y( l en+1−n , 1 )−Y(m, 1 ) ) + (X(m

, 1 ) ∗ tan ( b e t a e r r (m, 2 ) )−X( l en+1−n , 1 ) ∗ tan (

b e t a e r r ( l en+1−n , n2 ) ) ) ) / . . .

72 ( tan ( b e t a e r r (m, 2 ) )−tan ( b e t a e r r ( l en+1−n ,

n2 ) ) ) ;

73 i n t e r ( ra +1 ,2) = ( i n t e r ( ra +1 ,1)−X(m, 1 ) )∗ tan (

b e t a e r r (m, 2 ) )+Y(m, 1 ) ;
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74 i n t e r ( ra +1 ,4) = 0 ;

75 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra +1 ,1)−

t x t r u e ) > pi /10 ;

76 i f atan2 ( i n t e r ( ra +1 ,2)−ty t rue , i n t e r ( ra

+1 ,1)−t x t r u e ) < pi /2 .2

77 i n t e r ( ra +1 ,4) = 1 ;

78 e l s e

79 end

80 e l s e

81 end

82 [ ra , ca ]= s i z e ( i n t e r ) ;

83 end

84 end

85 end

86 end

87

88 %% i n t e r s e l e c t i o n

89 [ r f , c f ]= s i z e ( i n t e r ) ;

90 f o r qa=1: r f

91 f o r qb = 1 : l en

92 s l i d e = atan2 ( i n t e r ( qa , 2 )−Y( qb ) , i n t e r ( qa , 1 )−X( qb ) ) ;

93

94 i f ( s l i d e−b e t a e r r (qb , 1 ) ) ∗( s l i d e−b e t a e r r (qb , 2 ) ) <=

0.0000001

95 i n t e r ( qa , 3 )=i n t e r ( qa , 3 ) +1;

96 e l s e

97 end

98 i f s l i d e <= 2∗ e r r

99 s l i d e=s l i d e +2∗pi ;
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100 i f ( s l i d e−b e t a e r r (qb , 1 ) ) ∗( s l i d e−b e t a e r r (qb , 2 ) )

<= 0.0000001

101 i n t e r ( qa , 3 )=i n t e r ( qa , 3 ) +1;

102 e l s e

103 end

104 e l s e

105 end

106 end

107 end

108

109 [ rg , cg ] = s i z e ( i n t e r ) ;

110 i n t e r l e n g t h=rg ;

111 i n t e r s e l = [ ] ;

112 [ rh , ch ]= s i z e ( i n t e r s e l ) ;

113 f o r pd=1: rg

114 i f i n t e r (pd , 3 ) == len

115 i n t e r d a t a ( rh +1 , :)=i n t e r (pd , : ) ;

116 i n t e r s e l ( rh +1 , : )=i n t e r (pd , 1 : 2 ) ;

117 e l s e

118 end

119 [ rh , ch ]= s i z e ( i n t e r s e l ) ;

120 end

121

122 %% TGT p o s i t i o n Acqu i s i t i on

123 [ rg , cg ]= s i z e (X) ;

124

125 avg = [ mean( i n t e r ( : , 1 ) ) ,mean( i n t e r ( : , 2 ) ) ] ;

126 TGT( rg , : ) = avg ;

127
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128 %% Error Matrix (TGT − I n t e r s e c t i o n )

129 f o r pc = 1 : rh

130 e r r o r ( pc , : ) =[ i n t e r s e l ( pc , 1 )−avg (1 , 1 ) , i n t e r s e l ( pc , 2 )−avg

(1 , 2 ) ] ;

131 end

132

133 %% E l l i p s e S i z e & Long Radius

134 covar i ance=cov ( e r r o r ) ;

135 [ e igvec , e i g v a l ] = e i g ( covar iance ) ;

136 a=s q r t ( e i g v a l ( 1 , 1 ) ) ;

137 b=s q r t ( e i g v a l ( 2 , 2 ) ) ;

138 ang=dcm2angle ( [ e i gve c [ 0 ; 0 ] ; 0 0 0 ] ) ;

139 [ r f , c f ]= s i z e (X) ;

140 LongRadius ( r f , 1 )=s q r t (max(max( e i g v a l ) ) ) ;

141 E l l i p s e S i z e ( r f , 1 ) = pi ∗ s q r t ( e i g v a l ( 1 , 1 ) )∗ s q r t ( e i g v a l

( 2 , 2 ) ) ;

142

143

144 %% Drawing E l l i p s e

145 e l l n =100;

146 e l l p =0: p i / e l l n :2∗ pi ;

147

148 e l l = [ cos ( e l l p ’ ) , s i n ( e l l p ’ ) ] ∗ s q r t ( e i g v a l ) ∗

e igvec ’ ;

149 e l l x = e l l ( : , 1 ) ;

150 e l l y = e l l ( : , 2 ) ;

151

152 f i g u r e (1 )

153 p lo t ( avg (1 )+e l l x , avg (2 )+e l l y , ’m’ , ’ l i n ew id th ’ , 2 ) ;
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154 g r id on ; hold on

155 p lo t ( tx t rue , ty t rue , ’ ks ’ ) ;

156 p lo t ( avg (1 , 1 ) , avg (1 , 2 ) , ’ r∗ ’ )

157

158 p lo t ( i n t e r ( : , 1 ) , i n t e r ( : , 2 ) , ’∗ ’ )

159 axn=min (min ( e l l x+avg (1 , 1 ) ) , min ( e l l y+avg (1 , 2 ) ) ) ;

160 axp=max(max( e l l x+avg (1 , 1 ) ) ,max( e l l y+avg (1 , 2 ) ) ) ;

161 hold o f f

162 quad sum = sum( i n t e r ( : , 4 ) ) ;

163

164 i f quad sum >= 1

165 quad check = 1 ;

166 e l s e

167 X( l en +1) = 2∗X( l en )−X( len −1) ;

168 Y( l en +1) = 2∗Y( l en )−Y( len −1) ;

169 [X( l en +1) , Y( l en +1) ]

170 beta ( l en +1) = atan2 ( ty t rue−Y( l en +1) , tx t rue−X(

l en +1) )+sigma beta ∗( rand (1 ) ) ;

171

172 i f beta ( l en +1) < e r r ;

173 beta ( l en +1)= beta ( l en +1)+2∗pi ;

174 e l s e

175 end

176

177 b e t a e r r ( l en +1 ,1) = beta ( l en +1 ,1)−e r r ;

178 b e t a e r r ( l en +1 ,2) = beta ( l en +1 ,1)+e r r ;

179

180 p s i ( l en +1) = atan2 (Y( l en +1)−Y( l en ) ,X( l en +1)−X( l en

) ) ;
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181 d e l p s i ( l en +1) = 0 ;

182 end

183 end

184 end

185 end

2.4 Eval th.m

1 f unc t i on [ f , beta , err , be ta e r r ,TGT, e l l x , e l l y , i n t e r s e l ]=

Eval th (x , s igma beta , beta , err , tx t rue , ty t rue ,N, len , x path

)

2

3 AA( : , 1 ) = [ tan ( beta ) ] ;

4 AA( : , 2 ) = −ones ( l ength ( beta ) ,1 ) ;

5 BB = tan ( beta ) .∗ x path ( : , 1 )−x path ( : , 2 ) ;

6

7 a f t = ( inv (AA’∗AA)∗AA’∗BB) ’ ;

8 X=[ x path ( : , 1 ) ; x (N) ] ;

9 Y=[ x path ( : , 2 ) ; x (2∗N) ] ;

10

11 beta new=atan2 ( a f t (2 )−x(2∗N) , a f t (1 )−x (N) ) ;

12 beta = [ beta ; beta new ] ;

13

14 [ a1 , b1 ] = s i z e ( beta ) ;

15 f o r loop1 =1:a1

16 i f beta ( loop1 , 1 ) < e r r

17 beta ( loop1 , 1 )= beta ( loop1 , 1 ) +2∗pi ;

18 e l s e

19 end
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20 end

21

22 b e t a e r r ( : , 1 ) = [ beta−e r r ] ;

23 b e t a e r r ( : , 2 ) = [ beta+e r r ] ;

24

25 [ i n t e r s e l , e l l x , e l l y ,TGT, LongRadius ] = E l l i p s e (X,Y, be ta e r r

, e r r ) ;

26

27 f=LongRadius ;

2.5 Eval th2.m

1 f unc t i on [ d i s ]= Eval th2 (x ,N,TGTa)

2

3 d i s =(x (N)−TGTa(1) ) ˆ2+(x(2∗N)−TGTa(2) ) ˆ2 ;

2.6 Cons th.m

1 f unc t i on [ g , h , p s i d o t ]= cons th (x , s0 ,N, t f ,V)

2

3 dt=t f /N;

4 % c a l c u l a t e p s i

5 p s i d o t = abs ( s0 (3 )−x (3 ) ) /dt ;

6 g = p s i d o t − 3 ;

7

8 h (1) = x (1)−s0 (1 )−dt∗V∗ cos ( deg2rad ( x (3 ) ) ) ;

9 h(N+1) = x (N+1)−s0 (N+1)−dt∗V∗ s i n ( deg2rad ( x (3 ) ) ) ;
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This research develops optimized flight paths for localization of a target using LOB measurements. The
target area is expressed as an error ellipse using the measurement errors of the LOBs. The optimization approach is
focused on minimizing the size of the error ellipse. The algorithm for the optimized path is generated and compared with
typical flight paths. The optimization routine is based on the results revised from previous similar research in the
literature.
A geometrical method to estimate the error ellipse is combined with optimal control in this research. Each LOB gives a
possible target area and this target area can be reduced by overlapping areas developed from multiple LOBs. The
algorithm based on this method is tested with a single target and with multiple targets in simulation. In addition to
analytical simulations of the proposed method, a real-world test is conducted using a remotely controlled truck. From the
simulation and a real-world test, the change of the semi-major axis of the error ellipse with increasing number of
measurements and the total number of measurements needed for to achieved predefined semi-major axis are verified.
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