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Abstract 

 Perfluoroalkyl substances (PFAS) are metabolically stable synthetic chemicals 

that have been manufactured for commercial and industrial purposes since the 1950’s 

(Brown, 2016; Buck et al., 2011).  PFAS possess surfactant properties that make them 

ideal to fight hydrocarbon fires and are therefore present in aqueous film forming foams 

(AFFF) (Lau et al., 2007; Moody & Field, 2000).  Furthermore, AFFF may contain 

blends of both linear and branched PFAS isomers.  Research suggests that branched 

PFAS isomers have greater relative placental transfer efficiencies than their linear 

counterparts, but few studies have evaluated their toxicity (Beesoon et al., 2011; Beesoon 

& Martin, 2015; Gützkow et al., 2012).  Therefore, the sustained use of AFFF in the U.S. 

Air Force presents an unquantified risk of branched PFAS exposure to pregnant females.   

This study investigated the toxicological differences between branched and linear 

PFAS isomers in vitro using the JEG-3 human placental cell-line as a model.  Cells were 

exposed to linear and branched perfluorohexane sulfonate (PFHxS) for 24 to 48 hours at 

concentrations ranging from 0.2 μM to 50 μM.  Subsequently, changes in three specific 

biomarkers were examined.  No significant statistical differences in cellular proliferation 

and cellular viability were highlighted in cells exposed to both compounds at equivalent 

concentrations; however, mean cell proliferation appeared greater when exposed to linear 

PFHxS.  Reactive oxygen species (ROS) generation was statistically higher in JEG-3 

cells exposed to branched PFHxS isomers at corresponding concentrations. 
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TOXICOLOGICAL DIFFERENCES BETWEEN PERFLUORALKYL 
SUBSTANCES (PFAS) ISOMERS USING DEVELOPMENTAL BIOMARKERS 

 
I.  Introduction 

1.1 General Issue 

Perfluoroalkyl substances (PFAS) are a family of synthetic organic chemicals that 

have been manufactured since the mid twentieth century, and have been employed 

extensively in a wide range of commercial and industrial settings (Brown, 2016; Buck et 

al., 2011).  PFAS are unique in that they resemble fatty acids, and are characterized by a 

charged oleophobic moiety attached to a hydrophobic carbon chain.  The carbon atoms 

on the chain have all had their hydrogen bonds replaced with highly electronegative 

fluorine atoms (Buck et al., 2011).  These carbon-fluorine (C-F) bonds are considered the 

second strongest in organic chemistry, and render PFAS extremely stable in the 

environment and resistant to degradation (Andersen et al., 2008; Lau et al., 2007).  The 

C-F bonds are also responsible for the low surface tension of PFAS, and for their 

hydrophobic and oleophobic properties (Lau et al., 2007).  Because, of their unique 

properties, PFAS are considered ideal surfactants and have been employed in various 

consumer and industrial applications such as photographic emulsifiers, oil and stain-

resistant coatings, paints, adhesives, and aqueous film forming foams (AFFF) that are 

used to fight hydrocarbon fires (Lau, et al., 2007; Moody & Field, 2000).   

The detection of organic fluorine in human sera by Taves in 1968 began a series 

of investigations that led to the discovery of PFAS in water, wildlife, and in the general 

public around the world (Andersen et al., 2008; Giesy & Kannan, 2001; Lau et al., 2007).  

Consequently, the toxicological properties of PFAS have become of greater concern to 
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the regulatory and scientific communities.  Three specific PFAS have become the subject 

of most environmental and toxicological studies, as well as the topic of regulatory 

scrutiny – perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and 

perfluorohexane sulfonate (PFHxS).  Both PFOS and PFOA are formed by a linear 

carbon backbone that is eight atoms in length, however, their moieties are different; 

PFOA contains a carboxylate moiety, whereas PFOS contains a sulfonate moiety.  

PFHxS also contains a sulfonate moiety; however, its backbone is formed by only six 

carbon atoms.  All three of these perfluorinated alkyl substances have been detected in 

wildlife and in human matrices (Lau et al., 2007).  PFHxS and PFOS have also been 

detected at abnormal levels in the sera of firefighters exposed to AFFF (Rotander, Toms, 

Aylward, Kay, & Mueller, 2015). 

Although there has recently been a drive on behalf of industries and the United 

States Environmental Protection Agency (USEPA) to phase out the manufacture of 

certain PFAS such as PFOS, the production of other types of PFAS has increased (Lau et 

al., 2007; USEPA, 2016).  Additionally, the use of legacy products containing PFOS 

continue to be employed in various industries, most notably, photographic emulsifiers 

and AFFF formulations that are employed by the Department of Defense (Brown, 2016; 

Moody & Field, 2000; USEPA, 2016).   

There are two manufacturing processes that are used to create PFAS at an 

industrial scale, electrochemical fluorination (ECF) and telomerization.  ECF was 

predominantly utilized over the first four decades of production, and generated mixtures 

of linear and branched PFAS isomers.  AFFFs are known to contain blends of PFAS 

isomers and PFAS homologues with various carbon chain lengths.  There are currently 
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few products that meet the required military specifications to suppress aircraft fires, and 

those that do, are manufactured using precursors that have the potential to oxidize or 

transform in-situ to a more persistent homologue (Nilsson et al., 2013; Place & Field, 

2012). Therefore, there are presently no substitute AFFFs for use by the USAF that are 

completely free of PFAS.   

The sustained use of PFAS has prompted many research studies from which a 

wide range of health effects in both animals and humans have been observed.  Animal 

studies have suggested PFAS are predominantly found in plasma and in highly 

vascularized organs such as the liver and kidneys and that PFAS elimination rates are 

greater in females (J P Benskin et al., 2009; Ohmori, Kudo, Katayama, & Kawashima, 

2003; Vanden Heuvel, Kuslikis, Van Rafelghem, & Peterson, 1991; Zhang, Beesoon, 

Zhu, & Martin, 2013). Studies have found that longer and linear forms of PFAS, are 

generally more toxic and have greater oral adsorption rates than shorter chained and 

branched isomers (Loveless et al., 2006; Ohmori et al., 2003).  Furthermore; compounds 

with sulfonate moieties demonstrate greater toxicity than those with carboxylate moieties 

(Gorrochategui, Pérez-Albaladejo, Casas, Lacorte, & Porte, 2014).  However, short and 

branched isomers, by and large, have higher clearances than their linear homologues (J P 

Benskin et al., 2009; Ohmori et al., 2003; Zhang et al., 2013).  Epidemiological 

investigations have revealed that PFAS can persist in human serum for several years, and 

compounds with sulfonate moieties have longer blood half-lives than those with 

carboxylate moieties (Beesoon & Martin, 2015; Olsen et al., 2007).  Furthermore, linear 

compounds with longer carbon backbones typically have longer blood half-lives than 

their branched and shorter homologues (Beesoon & Martin, 2015; Olsen et al., 2007).  
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PFHxS, while having a shorter chain length than PFOA and PFOS, was observed to have 

the longest mean half-life in human serum at approximately eight and a half years, almost 

twice as long as those of PFOA and PFOS (Olsen, et al., 2007).  Additional 

epidemiological studies observed that PFHxS concentrations were greater than PFOS in 

umbilical cord blood than in maternal blood and suggested that its shorter chain-length 

was the determining factor in placental passage efficiency (Gützkow et al., 2012).  

Furthermore, Gützkow et al. (2012) observed greater relative placental transfer 

efficiencies of branched PFOS over its linear counterpart.  Larger relative transplacental 

transfer efficiencies of branched PFAS isomers are also highlighted in other studies, and 

human cell-line research suggests that long-chained linear PFAS are more cytotoxic than 

their short-chained counterparts (Beesoon & Martin, 2015; Eriksen et al., 2010; 

Gorrochategui et al., 2014).   

As previously mentioned, in-vitro human cell studies have been used to evaluate 

the cytotoxicity of PFAS.  The results from animal studies are highly variable; therefore, 

human cell-line studies may produce more reproducible and consistent toxicological 

models.  The human choriocarcinoma cell-line JEG-3 (ATCC® HTB36™) is a cancerous 

placental cell-line that is epithelial in nature and can be grown on a large scale (figure 1).   

JEG-3 has been previously used to determine the developmental toxicity of linear PFAS 

in an in-vitro study and may be used to evaluate the toxicity of branched PFAS isomers  

(Gorrochategui, Perez-Albaladejo, Casas, Lacorte, & Porte, 2014).   
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Figure 1:  Image of JEG-3 choriocarcinoma cells captured using an Olympus CKX41 
inverted microscope coupled with an Olympus DP71 camera at a 10x magnification 
(2016).   

1.2 Problem Statement 

Over the past decades, scientific research has focused on examining the 

toxicological properties of linear PFAS due to their greater manufactured abundance, 

more persistent in the environment, and because linear isomers have displayed greater 

retention times inside humans (Andersen et al., 2008; Olsen et al., 2007).  Branched 

isomers, on the other hand, are more efficiently excreted in urine, but have been observed 

to have higher transplacental transfer efficiencies (Beesoon et al., 2011; Gützkow et al., 

2012; Zhang et al., 2013).  Beeson and Martin (2015) suggested that the higher affinity of 

linear isomers to human sera proteins was partly due to the fact that branched isomers 

were less hydrophobic than their corresponding linear isomers.  Additionally, they 

suggested the larger size of branched isomers reduced the binding to albumin because of 

steric hindrance (Beesoon & Martin, 2015).  Therefore, the higher concentration of the 
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unbound branched PFAS in human sera suggests greater transfer efficiencies from 

mothers to their fetuses.  Monroy et al. (2008), observed serum levels of PFHxS in 

umbilical cords that were statistically greater than the levels in maternal serum and thus 

provided evidence of developmental exposures to this particular chemical. 

Sustained use of PFAS-containing AFFFs in the USAF presents a risk of exposure 

to branched forms of PFAS to female personnel.  Consequently, investigating the 

toxicological effects of the branched PFAS isomers and their modes of action would 

contribute to the overall toxicological knowledge. 

1.3 Research Focus 

The objective of this research is to clarify the hypothesis that linear and branched 

isomers of PFHxS interact with JEG-3 cells differently, and that this difference may lead 

to diverse cytotoxic effects in the cell cultures.   

1.4 Scope and Approach 

Three cell-line experiments were performed in the 711th Human Performance 

Wing’s biological laboratories at Wright-Patterson Air Force Base (WPAFB).  The 

human placental cell-line JEG-3 was selected to serve as the developmental toxicity 

model.  The JEG-3 placental cell-line was exposed to both linear and branched isomers of 

PFHxS at specific dose ranges, and then incubated for a period of time.  At the end of the 

experiment, the cells were analyzed for a set of biological endpoints using fluorescence 

microscopy and colorimetric assays. 
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1.5 Significance 

The focus of this thesis is to compare the specific toxicity of linear and branched 

isomers of PFHxS on human placental cell-lines, and provide potential insights on the 

biochemical mechanisms of their toxicity using a series experiments. 

1.6 Preview 

This document was written using the AFIT style guide.  Chapter II of this thesis 

describes the review of literature that was conducted for the purpose of this thesis.  

Chapter III presents the methodology used to perform the thesis experiments.  All results 

and analyses from the experiments are revealed in Chapter IV, and a detailed discussion 

of the findings as well as the potential areas of future research are presented in      

Chapter V.  Comprehensive data and sampling results are detailed in the appendices. 
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II. Literature Review 

2.1 Chapter Overview 

This chapter discusses and evaluates published scientific literature relevant to the 

thesis topic and to the related fields of study.  The section provides the foundation and 

justification for our research. 

2.2 Background 

Perfluoroalkyl substances possess unique physicochemical characteristics that are 

the source of their remarkable stability under both natural and extreme environmental 

conditions.  These distinctive properties allow PFAS to be highly resistant to 

biodegradation, and to be highly persistent in the environment.  The perfluorinated 

substance family is constituted of many chemicals with individual configurations, 

moieties, and derivatives (Andersen, 2008).  The toxicological effects of PFAS are 

dependent of the structure and size of the chemical isomer (Beesoon & Martin, 2015; 

Buhrke, Kibellus, & Lampen, 2013; Ohmori et al., 2003).  Additionally, Perfluoroalkyl 

substances continue to be manufactured using the electrochemical fluorination (ECF) 

process, which produces mixtures of linear and branched forms of the compounds (Buck 

et al., 2011).  The toxicological profiles of branched PFAS isomers have not been the 

focus of many research studies; however, there is evidence to suggest that branched 

PFAS have greater relative transplacental transfer efficiencies and are less toxic than their 

linear counterparts (Beesoon et al., 2011; Gützkow et al., 2012; Loveless et al., 2006).  

The JEG-3 human placental choriocarcinoma cell line has been used to examine the 

toxicity of linear PFAS and will be used to explore the toxicological potential of 
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branched forms of the chemicals (Gorrochategui et al., 2014; Tsang et al., 2013).  JEG-3 

is an epithelial cell-line that can be easily passaged and that forms adherent monolayers.  

These characteristics make JEG-3 cells ideal for fluorescence microscopy analyses and a 

suitable developmental toxicity model. 

Cell metabolic activity and proliferation will be evaluated using a colorimetric 

assay at three PFAS exposure concentrations of 5μM, 10μM, and 50μM.  Cellular 

viability, membrane integrity, and reactive oxygen species generation will be measured 

using two dye fluorescence assays at a concentration range between 0.2μM and 20μM.  

The concentrations and experimental parameters that were selected for this study are 

based on the conditions and results from similar work found in literature.  A summary of 

the studies reviewed in literature can be found in Table 1. 

Table 1:  Summary of PFAS studies reviewed and observed effects 

Authors Chemical Model Dose Level 
Average 

Measured 
Concentration 

Observed Effect 

Steenland and 
Woskie  
(2012) 

PFOA 
Epidemiological: 

Cohort 
Occupational 

N/A 350 ng/mL 
(0.845 μM) Renal Disease 

Barry, 
Winquist, and 

Steenland 
(2013) 

PFOA 

Epidemiological: 
Cohort 

Occupational N/A 

174 ng/mL 
(0.42 μM) Kidney and Testicular 

Cancer Epidemiological:  
General Public 

19.4 ng/mL 
(0.047 μM) 

Rotander et al. 
(2015) 

PFOS 
Epidemiological: 

Cohort 
Occupational 

N/A 

74 ng/mL 
(0.148 μM) 

None PFHxS 33 ng/mL 
(0.066 μM) 

PFOA 4.6 ng/mL 
(0.011 μM) 

Calafat et al. 
(2007) 

PFOS 

Epidemiological:  
General 

Population (U.S.) 
N/A 

21.1 ng/mL 
(0.0422 μM) 

None 
PFOA 4 ng/mL 

(0.01 μM) 

PFHxS 1.9 ng/mL 
(0.004 μM) 

PFNA 1 ng/mL 
(0.002 μM) 
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Authors Chemical Model Dose Level 
Average 

Measured 
Concentration 

Observed Effect 

Butenhoff et al. 
(2012) PFOS 

In-vivo: 
Sprague Dawley 

Rats 
20 μg/g/day N/A 

Decreased cholesterol 
levels; Increases in 
hepatocellular 
adenomas 
LOAEL: 20 ppm 

Lau et al. 
(2006) PFOA 

In-vivo: 
Rats 

1 to 40 
mg/kg/day N/A 

Adverse developmental 
outcomes; 
Lower post-natal 
survival; 
Increased liver weight; 
Growth delays 
LOAEL: 3 mg/kg/day 

In-vivo: 
Mice 

Loveless et al. 
(2006) 

Linear/ 
Branched 

APFO 

In-vivo: 
Rats 

0.3 to 30   
mg/kg/day N/A 

Weight loss; Decrease 
lipid levels 
LOAEL: 0.3 to 1      
mg/kg/day 

In-vivo: 
Mice 

Weight loss; 
Lower HDL and 
cholesterol; 
Increased triglycerides 
LOAEL: 0.3 mg/kg/day 

Seacat et al. 
(2003) PFOS 

In-vivo: 
Sprague Dawley 

Rats 

0.5 to 20 
ppm/day N/A 

Increased liver weight; 
Decreased cholesterol 
LOAEL: 20 ppm 
 

Eriksen et al. 
(2010) 

PFOA 

In-vitro:  
HepG2 

Hepatocarcinoma 

0.4 to 2000 
μM N/A 

ROS production and 
DNA damage after 
PFOS and PFOA 
exposures 
LOAEL: 0.4 μM 
 

PFOS 
PFBS 
PFNA 

PFHxA 

Wielsøe et al. 
(2015) 

PFHxS 

In-vitro:  
HepG2 

Hepatocarcinoma 

0.2 to 200 
μM N/A 

ROS production; 
DNA damage; 
TAC decrease 
LOAEL: 0.2 μM 
(PFOS) 
 

PFOS 
PFOA 
PFNA 
PFDA 

PFUnA 
PFDoA 

Florentin et al. 
(2011) 

PFOA In-vitro:  
HepG2 

Hepatocarcinoma 
5 to 800 μM N/A 

Cytotoxicity 
LOAEL: 200 μM 
(PFOA) 
 

PFOS 

Buhrke et al. 
(2013) 

PFBA 

In-vitro:  
HepG2 

Hepatocarcinoma 

0.1 to 2000 
μM N/A 

Cytotoxicity; 
Cell proliferation; 
PPARα activation 
LOAEL: 0.3 μM 
(PFDDA) 

PFOA 
PFHxA 
PFHpA 
PFNA 
PFDA 

PFDDA 
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Authors Chemical Model Dose Level 
Average 

Measured 
Concentration 

Observed Effect 

Buhrke et al. 
(2015) PFOA 

In-vitro:  
HepG2 

Hepatocarcinoma 

0.1 to 100 
μM N/A 

Cell proliferation; 
PPARα activation; 
Gene expression 
LOAEL: 10 μM 

Gorrochategui 
et al.  

(2014) 

PFBA 

In-vitro: 
JEG-3 

Choriocarcinoma 

3 nM to 500 
μM N/A 

Cytotoxicity; 
Cell lipid alteration; 
Aromatase inhibition 
LOAEL: 57 μM 
(PFOS) 

PFHxA 
PFOA 
PFNA 

PFDoA 
PFBS 

PFHxS 
PFOS 

Tsang et al. 
(2013) PFOA 

In-vitro: 
JEG-3 

Choriocarcinoma 

0.01 to 100 
μM N/A 

Spheroid attachment; 
Β-catenin suppression; 
E-cadherin expression; 
PPAR activation 
LOAEL: 10 μM 

O’Brien et al. 
(2011) 

T-PFOS 
L-PFOS 

In-vitro: 
Chicken 

Embryonic 
Hepatocytes 

1 to 40 μM N/A 

Altered expression of 
transcripts from genes 
regulating lipid 
metabolism, cell growth 
and proliferation, and 
liver development 
LOAEL: 10 μM 

2.3 Toxicology 

During the last few decades, numerous sampling studies uncovered PFAS in air, 

water, soil, wildlife, as well as in individuals around the world (Giesy & Kannan, 2001).  

Furthermore, these surveys exposed the bioaccumulative and biomagnification potential 

of PFAS in mammals (Giesy & Kannan, 2001; Kannan, et al., 2001).  The primary 

exposure pathway for perfluoroalkyl substances is through ingestion of contaminated 

water or food, but low levels of the compounds may also enter the body by means of 

inhalation and dermal contact (Haug, Huber, Becher, & Thomsen, 2011; Steenland, 

Fletcher, & Savitz, 2010).  Therefore, the health effects, distribution, and modes of action 

of perfluorinated compounds are of significant interest to the scientific community.  
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There are currently no known deaths that have occurred from acute overexposures 

to PFAS; however, human epidemiological studies have investigated mortality and 

morbidity rates in chronically exposed individuals (ATSDR, 2009).  Some studies have 

suggested links between PFAS exposures and cholesterol and uric acid levels in humans, 

others have observed slightly higher incidences of prostate, testicular, and kidney cancer 

in individuals that have been occupationally exposed to the chemicals (ATSDR, 2009; 

Barry, Winquist, & Steenland, 2013).  Positive correlations between serum PFOA 

concentrations and both kidney and testicular cancer were found in residents of the Mid-

Ohio Valley exposed to contaminated drinking water (Barry et al., 2013).  Likewise, 

Steenland and Woskie (2012) examined death rates in workers at a West Virginia DuPont 

chemical plant whose median PFOA serum levels were two orders of magnitude greater 

than the general population (4 ng/mL or 0.01 μM).  The authors found evidence to 

suggest positive associations between high PFOA exposures and renal diseases.  

Epidemiological studies have also positively associated mean serum PFOA concentration 

levels in humans to the years of residence in a contaminated environment (Seals, Bartell, 

& Steenland, 2011).  Elevated mean serum levels of PFOS (74 ng/mL), PFHxS (33 

ng/mL), and PFOA (4.6 ng/mL) were also measured in a more recent study conducted by 

Rotander et al. (2015) on a group of Australian firefighters working with 3M AFFF.  In 

3% of the firefighters that participated in this study, mean serum concentration levels of 

PFOS remained above 200 ng/mL a decade after 3M’s phasing out of PFOS-containing 

AFFF.  Commonly encountered perfluorinated compounds have mean serum half-lives 

that ranged up to eight and a half years and have been detected at low concentration 

levels in the general U.S. population (Calafat, Wong, Kuklenyik, Reidy, & Needham, 
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2007; Olsen et al., 2007; Steenland et al., 2010).  Although epidemiological studies have 

correlated specific health outcomes to PFAS exposures, evidence of the potential 

toxicological and carcinogenic effects of PFAS in humans is often inconsistent, and their 

distribution inside human tissue or target organs is not fully understood (ATSDR, 2009; 

Chang et al., 2014; Lau et al., 2007; Steenland et al., 2010).  There is little to no 

indication that PFAS are directly genotoxic, there is however evidence that suggests that 

exposures to PFAS may result in liver and developmental toxicity (ASTDR, 2009; 

Andersen et al., 2008). 

Humans and animals respond differently to PFAS exposures.  Animal studies 

have revealed associations between PFAS exposures and a range of health outcomes.  In 

addition to liver and developmental toxicity, immunologic and endocrine disruptions 

have been identified (Andersen et al., 2008).  Biochemical effects and morphological 

changes in response to PFAS exposures have been widely studied in rodents.  Dietary 

PFOS intakes of 20 μg/g/day have demonstrated increases in liver size and tumorigenesis 

as well as growth delays, and decreased post-birth survival rates in rodents (Butenhoff, 

Chang, Olsen, & Thomford, 2012; Lau et al., 2006).  Weight loss and lowered cholesterol 

and triglyceride levels in plasma have been observed in rodents orally exposed to PFOS 

at levels of 20 μg/g/day (Andersen et al., 2008; Seacat et al., 2003).     

Few toxicological studies have been conducted on branched PFAS isomers.  Loveless 

et al. (2006) compared the responses of linear/branched, linear, and branched ammonium 

perfluorooctanoate (APFO) exposures in mice and rats.  Ammonium perfluorooctanoate 

is a precursor of PFOA that is used in the manufacturing process.  The authors noted that 

the toxicity profile of linear/branched APFO mix had similar endpoints to the toxicity 
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profile of linear APFO.  Furthermore, the rodents exposed to linear PFAS experienced 

greater weight losses than those exposed to their branched counterparts.  In rats, all three 

forms of PFAS exposure reduced lipid levels.  In mice, all three forms of PFAS exposure 

lowered HDL cholesterol but triglycerides increased at lower levels (Loveless et al., 

2006).  Exposures to branched PFAS isomers of PFOA appeared to be less effective than 

linear and mixed forms.  An animal-based in vitro study conducted by O’Brien et al 

(2011) revealed that technical grade PFOS containing mixtures of branched and linear 

isomers affected the expression of a greater number of transcripts from genes involved in 

lipid metabolism, cell proliferation and growth, and liver development.  The authors 

suggested that the greater structural diversity of branched PFOS isomers activated a more 

extensive number of receptors, affected more signaling pathways, and employed a greater 

number of transcription factors (O’Brien et al., 2011).  The limited data that is currently 

available in literature indicated evidence that branched PFAS isomers may generate 

different toxicological effects that the linear forms (Beesoon & Martin, 2015). 

Linear PFAS such as PFOS and PFOA have greater binding affinity to human 

serum proteins than their branched counterparts (Beesoon & Martin, 2015).  That said, 

shorter and branched forms are generally more readily eliminated and are believed to be 

less toxic overall (Jonathan P Benskin et al., 2009; Loveless et al., 2006; Ohmori et al., 

2003; Zhang et al., 2013).  Evidence for the lower toxicity of branched isomers is 

supported by the Loveless et al. (2006) study previously discussed in which mean body 

weight reductions in rodents exposed to branched PFAS isomers that were four to six 

times lower than those exposed to linear compounds.  Nonetheless, researchers have 
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measured higher relative transplacental transfer efficiencies of branched isomers than 

their corresponding linear forms (Beesoon et al., 2011; Gützkow et al., 2012).  Beeson et 

al. (2011) observed median transplacental transfer efficiencies between 0.34 and 0.88 for 

branched PFOS isomers and 0.30 for linear PFOS.  Additionally, the authors measured 

transplacental transfer efficiencies that were at times greater than one for several 

branched PFOA isomers.  Therefore, it is of great interest to understand the toxicological 

properties of branched perfluorinated compounds in order to evaluate their effects on 

fetal development. 

2.4 Toxicokinetics and Modes of Action 

 Perfluoroalkyl substances structurally resemble fatty acids and seem to 

share several of their characteristic behaviors inside biological systems.  Additionally, 

PFAS appear to be metabolically stable; thus, the toxicity of their potential metabolites is 

of little or no concern (Andersen, et al., 2008).  This remarkable stability coupled with 

the observed affinity of linear PFAS towards albumin and other human serum proteins 

may explain their relatively long half-lives and poor elimination rates in humans 

(Andersen et al., 2008; Beesoon & Martin, 2015).   

There is evidence that perfluorinated compounds increase the production of 

intracellular reactive oxygen species (ROS) that may lead to DNA damage, and cell death 

(Eriksen et al., 2010; Wielsøe, Long, Ghisari, & Bonefeld-Jørgensen, 2015).  However, 

some studies have indicated contradictory results that show no link between PFAS and 

DNA damage (Florentin, Deblonde, Diguio, Hautemaniere, & Hartemann, 2011).  PFAS 

activation of various types of peroxisome proliferator-activated receptors (PPAR) has 
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been confirmed in mice and rats (Vanden Heuvel, Thompson, Frame, & Gillies, 2006).  

Activation of PPARα in rodents induced weight loss and lowered cholesterol and 

triglyceride levels in plasma due to increased mitochondrial and peroxisomal oxidation of 

fats (Andersen et al., 2008; Seacat et al., 2003).   

Elimination rates vary significantly with each animal species and gender, and 

excretion primarily occurs via bile and urine.  However, fecal excretion predominates in 

humans (Andersen, et al., 2008).  With the exception of 1m-PFOS, branched isomers of 

PFOA and PFOS are preferentially excreted in urine compared to linear isomers (Zhang 

et al., 2013).  Additionally, PFHxS has the lowest renal clearance efficiency out of the 

linear isomers (Zhang et al., 2013).  

The focus of PFAS toxicological research has been on linear isomers.  Branched 

forms of PFAS, however, have higher transplacental transfer efficiencies (Beesoon et al., 

2011; Gützkow et al., 2012).  Beeson and Martin (2011) observed that the placental 

transfer of branched PFOS increased as branching point moved closer to the sulfonate 

moiety.  The authors used ultrafiltration devices to determine dissociation constants of 

PFOS and PFOA isomers with human serum albumin, and to examine relative binding 

affinities of isomers to human serum.  Their results indicated that linear PFAS bind more 

tightly to human sera proteins than branched isomers (with the exception of 1m-PFOS).  

The authors suggested that the difference in affinity is due to the lower hydrophobicity 

and larger size of branched PFAS isomers with respect to their linear counterparts.  They 

noted that larger ligands do not bind as readily to albumin and other serum proteins 

because of steric hindrance (Beesoon & Martin, 2015).  Furthermore, the authors propose 

that the lower binding affinity of branched isomers results in their higher relative 
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concentrations in human sera and may potentially explain their higher transplacental 

transfer efficiencies and favored renal excretions (Beesoon & Martin, 2015; Zhang et al., 

2013). 

Animal studies, however, are often species and gender specific, and their relevance to 

humans is sometimes difficult to extrapolate (Lau et al., 2007; Steenland et al., 2010).  

Similarly, human and epidemiological studies may not be able explain the biological 

mechanisms from which a chemical can induce toxicity.  Investigating toxicological 

effects using human cell-lines may therefore provide more applicable and reproducible 

data. 

2.5 Human Cell-line Studies: 

 Human cell-line studies have been used to model the toxicological effects of 

PFAS in humans because they provide an easier, relevant, and more cost effective 

solution to animal studies and human epidemiological studies.  Various cell-line studies 

have been conducted to characterize the toxicological effects of PFAS.  Several studies 

suggested hepatotoxic effects from PFAS exposures using the HepG2 hepatocellular 

carcinoma cell-line, and hypothesized that the potential mode of action is through 

generation of oxidative stress (Wielsoe M. , Long, Ghisari, & Bonefeld-Jorgensen, 2014; 

Florentin, Deblonde, Hautemaniere, & Hartemann, 2011; Eriksen K. T., et al., 2010).  

HepG2 cells are often used in liver toxicological studies because they exhibit a 

significant metabolic activity and because their epithelial nature allows scientists to easily 

grow and observe their morphological changes (Florentin, Deblonde, Hautemaniere, & 

Hartemann, 2011).  Eriksen et al (2010) investigated the potential of five different 



18 

perfluorinated compounds of different carbon chain lengths to generate ROS and induce 

oxidative DNA damage in hepatocellular HepG2 cells.  The study confirmed modest 

increases in intracellular ROS production from exposures to PFOA and PFOS, but 

genotoxic effects were only observed in cells exposed to perfluorononanoic acid (PFNA) 

at concentrations capable of cytotoxicity (Eriksen et al., 2010).  Similarly, Wielsøe et al 

(2015) examined the potential effects of seven long-chained PFAS commonly found in 

human sera using the HepG2 cell-line.  The authors of this particular study tested ROS 

generation, genotoxicity, and total antioxidant capacity (TAC) disruption of PFAS after a 

24 hour exposure to PFAS concentrations between 0.02 μM to 200 μM (Wielsøe et al., 

2015).  Their results mirrored Eriksen et al study in terms of the potential for PFAS to 

induce the production of ROS; however, four of the compounds that they tested (PFHxS, 

PFOA, PFOS, and PFNA) showed signs of genotoxicity due to a dose dependent increase 

in cellular DNA damage registered by comet assay.  Furthermore, their results suggested 

that PFOA decreased the TAC 0.70 to 0.82 fold relative to their solvent control (Wielsøe 

et al., 2015).  The concentrations used in this study were comparatively high to the levels 

commonly found in humans.  Mean serum concentration levels of PFOA, PFOS, and 

PFHxS in the general U.S. population are in the 1.5 to 55.8 ng/ml range or approximately 

3 to 135 nM (ATSDR, 2009).  Florentin et al (2011) investigated the genotoxic and 

cytotoxic effects of PFOA and PFOS using human HepG2 cells after one hour and 24 

hour exposures and determined direct mutagenic effects  through DNA damage and 

indirect mutagenic effects  though ROS generation.  The cytotoxic effects were evaluated 

by MTT assay and the genotoxic potential was investigated using single cell gel 

electrophoresis assay and micronucleus assay.  Cytotoxic effects were only observed after 
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24 hour exposures at concentrations over 200 μM for PFOA, and at concentrations 

greater than 300µM for PFOS.  Moreover, above these concentrations intracellular 

vacuoles began to form and extracellular matrices disappeared which resulted in a 

substantial number of suspended cells.  Despite the resulting cytotoxic effects, no 

significant genotoxic effects were observed during this study which supported Eriksen et 

al results, but differed from those of Wielsøe et al.  Both PFOA and PFOS decreased 

ROS generation relative to a 2.5% DMSO solvent control in the Florentin et al study.  

The effect of different chain length PFAS was also explored by Buhrke et al (2013) using 

the HepG2 cell-line.  This specific study showed no evidence of genotoxic potential, 

though cytotoxic effects increased with PFAS chain length.  

Human cell-line studies have been conducted to determine toxicity of PFAS using 

placental choriocarcinoma cells (JEG-3).  Gorrochategui et al (2014) examined the 

cytotoxicity of eight PFAS using the JEG-3 cell-line.  The cell’s chemical uptake was 

analyzed to confirm that PFAS were being absorbed by the cells, the cell’s P450 

aromatase activity to observe signs of endocrine disruption, and the cell’s lipid content to 

examine for lipid metabolism disturbance.  The authors noted that long-chained PFAS 

such as PFOA, PFOS, perfluorododecanoic acid (PFDoA), and perfluorononanoic acid 

(PFNA) were cytotoxic to JEG-3 cells, whereas short-chained PFAS such as PFHxS 

showed no cytotoxicity even at the highest concentration of 500µM.  Short-chained 

PFAS did, however, appear to inhibited aromatase activity suggesting a potential 

disruption of the endocrine regulatory system.  Additionally, the authors observed that 

PFAS with sulfonated moieties had relatively higher toxicity than perfluorinated 

compounds with carboxylated moieties of the same length.  This difference in 



20 

cytotoxicity was most apparent between PFOS and PFOA where the latter was observed 

to have an EC50 that was five times greater.  Moreover, Gorrochategui et al (2014) 

distinguished that PFAS altered the patterns of cellular lipids at concentrations below 

those associated with cytotoxicity and hormonal disruption.  The most pronounced 

changes in cellular lipidome were recorded at an exposure concentration of 0.6µM which 

was the lowest concentration that was evaluated.  Another study performed on JEG-3 

cells showed evidence that PFOA at a concentration equal or greater that 10 μM also 

disrupted cell to cell adhesion by means of PPARα activation (Tsang et al., 2013).  Cell 

to cell adhesion in placental cells is critical to the initial attachment of an embryo to the 

uterine wall (Tsang et al., 2013).   

The results from the Tsang et al study and the higher transplacental transfer 

efficiencies observed in branched PFAS isomers support the need for further 

toxicological studies in the field.  Thus, the objective of this thesis is to confirm the 

hypothesis that linear and branched isomers affect cells differently, and that this 

difference will lead to diverse cytotoxic effects in cell cultures. The research may also 

provide proof that higher transplacental transfer efficiencies of branched isomers lead to 

increased developmental toxicity by investigating cell viability, cell morphology, and 

ROS generation of JEG-3 cells under PFAS exposure. 
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III.  Methodology 

3.1 Chapter Overview 

The purpose of this chapter is to describe the materials, experiments, and 

analytical procedures that were used to investigate the toxicological differences between 

branched and linear isomers of PFHxS on a human cell line.  The JEG-3 choriocarcinoma 

placental cells were treated with different concentrations of both linear and branched 

PFHxS isomers and then observed for changes in biomarkers.  Three distinct experiments 

were performed to analyze the cytotoxicity of PFAS exposures.  

Cell viability was examined using a colorimetric MTT (3-(4,5-dimethylthiazol-2-

yl)-2, 5-diphenyl tetrazolium bromide) assay at PFHxS concentrations of 5 μM, 10 μM, 

and 50 μM.  MTT is a dye that is metabolized by living cells into the purple compound 

formazan whose peak light absorbance is near 570 nm.  Exposures to PFAS will either 

promote or inhibit cell proliferation.  At higher cell densities the MTT assay will result in 

higher light absorbencies that can be read by a microplate reader.   

Cell death and cell membrane damage was investigated using the Molecular 

ProbesTM LIVE/DEAD® fluorescence-based cell viability assay at five concentrations 

between 0.2 μM and 20 μM.  JEG-3 cells were treated with a calcein AM and ethidium 

homodimer (EthD-1) fluorescent dye solution that measures intracellular esterase activity 

and plasma membrane integrity, respectively.  Intact living cells are discerned from dead 

cells by a green fluorescence, whereas dead cells are characterized by a red fluorescence. 

This assay is used to determine the cytotoxicity of PFAS via fluorescence microscopy 
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under a blue excitation light through a longpass filter.  Higher red to green fluorescence 

ratios indicate greater cell toxicity. 

Intracellular reactive oxygen species (ROS) generation was studied using a 6-

carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) based 

fluorescence assay at four concentrations between 0.2 µM and 10 µM.  Cells are treated 

with both carboxy-H2DCFDA fluorescent dye and Hoechst 33342 nuclear counterstain.  

The carboxy dye interacts with intracellular esterases and oxidation from ROS and is 

transformed into a homologue that fluoresces green under a blue excitation light.  The 

counterstain reacts with nuclear DNA and fluoresces blue under UV light.  Subsequently, 

green fluorescence is normalized by cell number and quantified via software.  A greater 

presence of ROS will result in more intense green fluorescent signals.   

3.2 Materials and Equipment 

3.2.1 Chemicals 

Linear and branched forms of PFHxS (MW = 400.12 g/mol; pKa = 0.14) were 

purchased from Wellington Laboratories (ON, CANADA) and dissolved in dimethyl 

sulfoxide (DMSO) to a one millimolar (mM) stock solution.  Figure 2 displays the 

structural diagrams of all the PFHxS isomers that were employed in this study.  The 

LIVE/DEAD® (Molecular ProbesTM, OR, USA) cell viability assay was ordered from 

Thermo Fisher Scientific (MA, USA).  Reactive oxygen species generation assay dyes 

and MTT dye were obtained from Sigma-Aldrich (MO, USA).  
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Figure 2:  Structural diagrams of linear and branched PFAS isomers tested (R = CF2SO3 
-

and R’= SO3
-).  The image was retrieved from the 2016-2018 Wellington Laboratories 

catalog on 5 February 2017. 

3.2.2 Cell Cultures 

The JEG-3 cell line was acquired from American Type Culture Collection 

(ATCC, MD, USA), and cultured in 75 cm2 culture flasks (Corning, NY, USA) at 37°C 

and 5% CO2 in a humidified environment with Eagle’s Minimum Essential Medium 

(EMEM) (ATCC, VA, USA) supplemented with 10% fetal bovine serum (ATCC, VA, 

USA) and 1% and penicillin-streptomycin (Sigma-Aldrich, MO, USA).  The cells were 

passaged every three to four days at 70-90% confluency.  Cell densities were selected and 

adjusted based on comparable research. 
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3.2.3 Equipment and Software 

Fluorescence imaging for the LIVE/DEAD® cell viability assay was conducted 

with an Olympus CKX41 inverted microscope coupled with an Olympus DP71 camera.  

Images were taken at 10X or 20X magnification and processed with the DP71 proprietary 

software.  Cell counting was accomplished with Fiji image analysis software (Schindelin 

et al., 2012).  Absorbance measurements for the MTT assays were collected using a 

BioTek® Synergy 2 high-performance multi-mode reader.  Absorbance data was 

processed with BioTek®’s Gen5 microplate reader and imager software.  Fluorescence 

images for the ROS generation assay were obtained with a Molecular Devices 

ImageXpress Micro high capacity imager and analyzed with Fiji image analysis software 

(Schindelin et al., 2012). 

3.3 Experimental Procedures 

3.3.1 Metabolic Activity and Cell Proliferation Examination 

JEG-3 cells were seeded in a 96-well culturing plate at a density of 5,000 cells per 

well in 200 μL of EMEM media and then incubated for 24 hours at 5% CO2 and 37°C.  

Subsequently, the cells were treated with 5 μM, 10 μM, and 50 μM of each chemical and 

then incubated for another 48 hours.  Three wells were left unseeded and served as blank 

samples.  An additional well was treated with 5% DMSO to serve as a negative control 

and another well was treated with 10 ng/mL of epidermal growth factor (EGF) to serve as 

a positive control.  A 48 hour exposure to PFAS was specifically selected for this assay 

based on logistical constraints; however, the exposure time is consistent with similar 



25 

studies found in literature.  After the 48 hour exposure to both linear and branched 

PFHxS, the cells were incubated for four additional hours with a 5mg/ml MTT solution 

in sterile phosphate-buffered saline (PBS) solution.  Following the incubation period,    

50 µL of DMSO was mixed into each well and the culturing plate was incubated for 

another ten minutes at 5% CO2 and 37°C in a humidified environment.  Upon 

completion, the contents of each well were then mixed using a plate shaker and their 

absorbance was measured at a wavelength of 540 nm using the microplate reader.  Three 

technical replicates were conducted simultaneously. 

3.3.2 Cell Viability and Membrane Damage Examination 

JEG-3 cells were seeded in a 8-well chamber slide at a density of 5,000 cells per 

well with 200 µL of EMEM media and incubated for 24 hours at 5% CO2 and 37°C.  Five 

wells were then treated with different concentrations of PFAS and incubated at 5% CO2 

and 37°C for 24 hours. After the 24 hours, the cells were rinsed with PBS and two wells 

were treated with 70% ethanol for ten minutes to serve as negative controls. The negative 

controls were rinsed three times with PBS, and the fluorescent dyes were then mixed into 

each well. The slide was then incubated for an additional 45 minutes.  The staining 

solution was then removed from each well and 100 µL of PBS was added to each well.  

Subsequently, the cells were imaged under a fluorescent microscope and then counted. A 

series of three independent experiments were performed for both linear and branched 

PFHxS to ensure reproducibility. 
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3.3.3 Intracellular ROS Generation Examination 

JEG-3 cells were seeded in a 8-well chamber slide at a density of 5,000 cells per 

well with 200 µL of EMEM media, and incubated for 24 hours at 5% CO2 and 37°C.  

The cells were then treated with 0.2 μM, 2 μM, 5 μM, and 10 μM of both linear and 

branched PFHxS and incubated at 5% CO2 and 37°C for 24 hours.  One well was treated 

with 0.1% DMSO to serve as our solvent control.  After the 24 hours, the cells were 

rinsed with PBS and an additional well was treated with a 100 μM solution of tert-butyl 

hydroperoxide (tBuOOH) for one hour to serve as our positive control, and then rinsed 

again with PBS.  The cells were subsequently labeled with carboxy-H2DCFDA 

fluorescent dye, and incubated for 30 minutes under the previous conditions.  After 25 

minutes, the nuclear counterstain was applied to each well and the cells were then rinsed 

three times with PBS prior to being imaged under fluorescence microscopy.   

3.4 Statistical Analysis 

Statistical analysis was accomplished using GraphPad Prism version 5.00 for 

Windows, GraphPad Software, La Jolla California USA, www.graphpad.com.  Statistical 

differences in the MTT, LIVE/DEAD®, and ROS generation assays were evaluated using 

non-parametric Kruskal-Wallis tests with Dunn’s post hoc test (p < 0.05).  Mann-

Whitney U tests (p < 0.05) were also used to compare statistical differences between 

isomers at specific concentrations as well as the differences between different 

concentrations.  Data could not be tested for normality due to the small sample numbers; 

however, parametric analyses (one-way ANOVA with Bonferroni multiple comparison 

test, and Student’s t-tests) were conducted in parallel under the assumption of normality, 
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and compared to our results (p < 0.05).  F-tests were performed to compare variances 

between sample sets and Welch’s corrections were applied to comparisons between 

samples sets with unequal variances. 
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IV.  Analysis and Results 

4.1 Chapter Overview 

This chapter presents and discusses the results from the three experiments that 

were designed and conducted for to test the toxicological differences between linear and 

branched isomers of PFHxS.  Assay development and improvement are not addressed in 

this section. 

4.2 Experimental Results 

4.2.1 Metabolic Activity and Cell Proliferation 

The results of the MTT assay are presented in Figure 2 as relative percent 

absorbance to untreated cells (control). After the 48 hours of exposure to linear and 

branched PFHxS, no statistically significant differences were observed between linear 

and branched PFHxS at any of the concentrations that were tested (Kruskal-Wallis one-

way ANOVA with Dunn’s post hoc test and Mann-Whitney U tests, p < 0.05).  However, 

the arithmetic mean absorbance of branched PFHxS was measured to be 20.25% lower 

than that of its linear homologue at a concentration of 50 μM.  Similarly, no statistically 

significant differences were found between untreated cells and exposed cells, though the 

mean absorbance for linear PFHxS at 50 μM was 20.4% higher than that of untreated 

cells.  Lastly, no statistically significant differences were perceived between all three 

concentrations in both linear and branched forms of PFHxS.  Arithmetic means do 

suggest, however, a slight dose-dependent increase in cell proliferation induced by the 

linear form of PFHxS.  Parametric analyses of our data found similar outcomes.   
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Results from this experiment are consistent with similar human cell-line studies.  

The negative control successfully decreased metabolic activity but the positive control 

showed no changes with respect to untreated cells.  Buhrke et al. (2013) measured 

cellular proliferation stimulation in HepG2 cells when exposed to low PFAS 

concentrations.  PFOA, most noticeably, induced metabolic activities in cells at 

concentrations between 5 μM and 25 μM, and inhibited (IC50) cell proliferation at 

approximately 47 μM (Buhrke et al., 2013).   

Branched PFHxS exposures resulted in a decrease in cell proliferation with 

increasing concentration.  The drop in cell metabolic activity was most noticeable 

between 5 μM and 10 μM (-16.9%), however, the mean relative absorbance at 50 μM was 

negligibly higher than at 10 μM (9.3%) and lower than at 5 μM (-9.2%).  After an 

extensive review of literature, there are no scientific studies that have specifically 

examined the effects of branched PFAS on cell proliferation of human cell-lines.  

Therefore the results from this experiment are new to the field and cannot be compared to 

other research. 
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Figure 3: Metabolic activity induced by linear and branched PFHxS. JEG-3 cells were 
exposed to three concentrations for 48 hours. The metabolic activity was subsequently 
measured via MTT assay and normalized to the untreated control set to 100%.  A 5% 
DMSO solution served as negative control and 10 ng/mL of EGF served as positive 
control. Overall data was analyzed using Kruskal-Wallis non-parametric test followed by 
Dunn’s post hoc test (p<0.05).  Mann-Whitney U tests were used to compare data sets to 
the control (p<0.05).  Error bars indicate ± SD from the mean (n=3). 

4.2.2 Cell Viability and Membrane Damage 

 Results from the cell-viability experiments are presented in Figure 3 as percent 

viability of total cells.  After 24 hours of exposure to both linear and branched PFHxS, no 

statistical differences were observed between linear and branched PFHxS exposures at 

any of the concentrations that were tested (Kruskal-Wallis one-way ANOVA with 

Dunn’s post hoc test and Mann-Whitney U tests, p< 0.05).   Mean cellular viability, 

however, was negligibly higher in JEG-3 cells exposed to the branched form of PFHxS at 

all five concentrations 0.2 μM (3.74%), 2 μM (3.79%), 5 μM (2.12%), 10 μM (3.42%), 

and 20 μM (1.1%).  
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Figure 4: Cellular viability after exposure to linear and branched PFHxS. JEG-3 cells 
were exposed to five concentrations for 24 hours. The experiment was conducted using 
Thermo Fisher Scientific’s LIVE/DEAD® fluorescence-based cell viability assay. Results 
are presented as percent viability of total cells.  A 0.1% DMSO solution served as solvent 
control.  Kruskal-Wallis one-way ANOVA was used to compare all data (p<0.05).  
Mann-Whitney U tests were used to compare two data sets (p<0.05). Means ± SD (n=3). 

 

Furthermore, no statistically significant differences in cell viability were 

measured between untreated cells and cells exposed to both linear and branched PFHxS 

isomers at any of the concentrations that were tested.  

 Nevertheless, parametric analyses (one-way ANOVA with Bonferroni’s multiple 

comparison test and unpaired Student’s t–tests with Welch’s corrections when applicable, 

p < 0.05) showed statistically significant differences between branched and linear isomers 

at 2 μM (p = 0.0061), and at 10 μM (p = 0.0058).  No differences were found at any of 

the other concentrations.  Compared to untreated cells, viability was statistically lower in 
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cells exposed to linear PFHxS at 2 μM (p = 0.0003), 5 μM (p = 0.0002), 10 μM              

(p = 0.0002), and 20 μM (p = 0.0006).  Similarly, cells exposed to branched PFHxS 

showed statistically lower viabilities than untreated cells at 10 μM (p = 0.0234) and at   

20 μM (p = 0.0074). 

The data was subsequently normalized to the control (untreated cells) in order to 

discern any potential effects on the cells from the solvent and plotted as relative percent 

viability (Figure 4).  Although no statistical differences were observed between untreated 

cells and the solvent control after a Mann Whitney U test, an unpaired Student’s t-test 

found a difference between the two that was statistically significant (p = 0.0365).  

Additionally, the mean viability of cells exposed to the solvent was 2.72% lower than the 

viability of untreated cells.  This difference is expected but does not appear to have a 

significant impact on the results of the experiment given that the cells exposed to 

branched PFHxS exhibited generally higher relative mean viability to the solvent control 

whereas those exposed to linear PFHxS displayed lower relative mean viability.   
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Figure 5: Cellular viability after exposure to linear and branched PFHxS. JEG-3 cells 
were exposed to five concentrations for 24 hours. The experiment was conducted using 
Thermo Fisher Scientific’s LIVE/DEAD® fluorescence-based cell viability assay. Results 
are presented as percent viability relative to control (untreated cells).  A 0.1% DMSO 
solution served as solvent control.  Kruskal-Wallis one-way ANOVA was used to 
compare all data (p < 0.05).  Mann-Whitney U tests were used to compare two data sets 
(p < 0.05). Means ± SD (n = 3). 

 

There are no studies that have specifically used Thermo Fischer’s LIVE/DEAD® 

assay to examine the effects of PFAS on human cell-lines.  However, Gorrochategui et al. 

(2014) evaluated the cellular viability of JEG-3 cells exposed to 500 μM of eight 

different linear PFAS using a similar two fluorescent dye assay (Alamar Blue, and         

5-carboxyfluorescein diacetate).  The authors did not notice any significant changes in 

cellular viability upon exposure to linear PFHxS at 500 μM.  The results obtained by 

Gorrochategui et al. (2014) are in line with those highlighted in this thesis and suggest 

that linear PFHxS at low concentrations is not cytotoxic to JEG-3 placental cells. 
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 Morphological differences in JEG-3 cells were visually examined under 

fluorescence microscopy.  Figure 6 presents representative images of cells exposed to 

different concentrations of linear PFHxS for 24 hours.   

 

 

 

Figure 6:  Morphological differences in JEG-3 cells exposed to linear PFHxS for 24 hours.  Images were 
captured at 10x magnification. 

 

The disappearance of oblong spindle shapes and the formation of small clusters of 

rounded cells was observed at exposures greater or equal to 2 μM.  Negligible cell lysis 

was noticed at exposures of 10 μM and above, though no significant amount of cell 

detachment was detected.  The solvent control in our experiment appeared to have a 

measurable impact on the cells, and induced cell lysis and similar cluster formations as 

linear PFHxS.  Changes in cell morphology in our experiment may therefore be the result 

of the solvent used (0.1% DMSO). 

Untreated Cells 2 μM 5 μM 

10 μM 20 μM Solvent Control 

200 μm 
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The effects of branched PFHxS on JEG3 cellular morphology were also 

investigated and are presented in figure 6.  

    

Figure 7:  Morphological differences in JEG-3 cells exposed to branched PFHxS for 24 hours.  Images 
were obtained at a 20x magnification.  

 

  There were no significant morphological changes detected in JEG-3 cells that 

were exposed to branched PFHxS isomers at any of the concentrations tested.  These 

observations are consistent with the higher relative cellular viability that was previously 

measured, but contradicts the cellular effects that were observed in the solvent control.  

Unfortunately, no research that was reviewed has examined the morphological effects of 

branched PFAS on human cell-lines. Consequently, our results cannot be compared or 

validated by other studies.  

4.2.3 Intracellular ROS Generation 

The results from the ROS generation assay are presented in Figure 8 as fold 

increases in fluorescence intensity with respect to the control (untreated cells).  

 

Untreated Cells 2 μM 20 μM 

200 μm 
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Figure 8: ROS generation in JEG-3 cells induced by linear and branched PFHxS. Cells 
were exposed to four concentration for 24 hours. ROS generation was subsequently 
measured using a carboxy-H2DCFDA based fluorescence assay. Results are presented as 
the fold ratio compared to untreated cells (control) and expressed as means ± SD 
(p<0.05). A 0.1% DMSO solution served as negative control. * Statistically significant 
differences between cells exposed to linear and branched PFHxS isomers at equal 
concentrations.  ° Statistically significant differences between cells exposed to linear or 
branched PFHxS and untreated cells. 

After a 24 hour exposure to both linear and branched PFHxS, we observe 

statistical differences in the production of ROS between linear and branched isomers 

(Mann-Whitney U tests, p <0.05) at 0.2 µM (p =0.0009), 2 µM (p = 0.0011), and 10 µM               

(p = < 0.0001).  Variations in mean fluorescence intensity were 31.7% greater for 

branched PFHxS at 0.2 µM, 43.4% greater at 2 µM, 7.3% greater at 5 µM, and 50.5% 

greater at 10 µM.  No statistical difference between linear and branched isomers were 

found at 5 µM (p = 0.6949).  Parametric analyses of the data resulted in similar outcomes.  

* 
* 

*° 

° 
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Results suggest that branched PFHxS generated higher rates of ROS generation than its 

linear counterpart at equal concentrations.  Mean fluorescence intensities of cells exposed 

to linear PFHxS were statistically lower than those from untreated cells (Mann-Whitney 

U tests, p < 0.05) at 0.2 µM (p =0.0471), 2 µM (p < 0.0001), 5 µM (p < 0.0001), and     

10 µM (p = 0.0417).  Results from this experiment suggest negligible ROS generation in 

JEG-3 cells after exposure to linear forms of PFHxS.  Representative images obtained 

during our experiment are presented in figures 8 through 13.    

  

Figure 8: Untreated cells (left) and solvent control (right).  Images were captured at 20x magnification.  

 

 

Figure 9: ROS generation for linear (left) vs branched (right) PFHxS at 0.2 μM.  Images were captured at 
20x magnification.  

 

200 μm 

200 μm 
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Figure 10: ROS generation for linear (left) vs branched (right) PFHxS at 2 μM.  Images were captured at 
20x magnification.  

 

 

Figure 11: ROS generation for linear (left) vs branched (right) PFHxS at 5 μM.  Images were captured at 
20x magnification.  

 

 

Figure 12: ROS generation for linear (left) vs branched (right) PFHxS at 10 μM.  Images were captured at 
20x magnification.  

 

200 μm 

200 μm 

200 μm 
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                  Figure 13: ROS generation for positive control (tBuOOH).  Images were captured at 20x 
magnification.  

Florentin et al. (2011) obtained similar results when exposing HepG2 human liver 

cells to linear forms of PFOS and PFOA at concentrations between 5 μM and 400 μM for 

a period of 24 hours, though the authors of this study employed a different procedure to 

detect ROS.  Under similar conditions, however, Eriksen et al. (2010) observed minor 

increases in ROS generation in HepG2 exposed to PFOA (1.52 fold) and PFOS (1.25 

fold) compared to untreated cells.  Florentin et al. (2011) suggested that the difference in 

results from these two studies was potentially due to differences in procedures; more 

specifically, Florentin et al. (2011) avoided re-suspending cells after trypsinization and 

pelleting so as not to induce further cellular stress.  Cells were not re-suspended after 

trypsinization and pelleting in our experiment.  A third study conducted by Wielsøe et al. 

(2015) exposed HepG2 cells to seven different linear PFAS at concentrations between  

0.2 μM to 200 μM, and reported an increase a ROS generation in six of them — PFOA, 

PFOS, PFHxS, PFNA, PFDA, and PFUnA.  Furthermore, the authors described an ROS 

production that was dose dependent for exposures to PFHxS and PFUnA.  Results from 

our study did not show a dose-dependent ROS generation for either linear or branched 

PFHxS. 

200 μm 
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There were no statistical differences that were observed between untreated cells 

and cells exposed to branched PFHxS at 0.2 μM, and 2 μM.  Nonetheless, statistically 

significant differences were measured between untreated cells and cells exposed to 

branched PFHxS at 5 μM (p = 0.0002) and 10 μM (p = 0.0023), though mean ROS 

generation was lower at 5 μM (-46.41%), and higher at 10 μM (40.71%). 

4.3 Synthesis 

The results from our research suggest negligible toxicological differences 

between linear and branched PFHxS isomers on JEG-3 cells at the concentrations 

investigated.  The MTT assay highlighted a slight concentration-dependent increase in 

cellular metabolic activity in JEG-3 cells exposed to linear PFHxS.  Conversely, the 

experiment indicated a potential decrease in cell proliferation upon exposure to branched 

PFHxS.  These results were statistically insignificant.  The LIVE/DEAD® assay, 

however, indicated slightly higher mean relative viability in JEG-3 cells exposed to 

branched PFHxS isomers, though the results were statistically insignificant.  

Additionally, observations of fluorescence images suggested dose-dependent 

morphological changes in JEG-3 cells exposed to linear PFHxS.  Finally, the ROS 

generation assay suggested a statistically higher ROS production in JEG-3 cells exposed 

to branched PFHxS than cells exposed to linear PFHxS at equivalent concentrations. 

The higher ROS production in cells exposed to branched PFHxS suggests greater 

cytotoxic and possibly genotoxic potential of this compound in comparison to its linear 

counterpart.  A possible explanation for the lower toxicity of branched isomers observed 

in previous studies could be a result of more effective branched isomer clearance rates.  



41 

Earlier studies such as the one performed by Zhang et al. (2013) noticed that branched 

isomers of PFOS and PFOA have mostly higher renal clearance rates in humans than 

their linear homologues.  Loveless et al. (2006) reached a similar conclusion by 

observing a decline in serum concentration levels of branched APFO in rats upon dosing 

disruptions.  This study however was not in-vivo and could not control for renal 

clearances.  Therefore, the toxicological differences between branched and linear PFAS 

at equal concentrations that were observed in the experiments were most likely the result 

of structural and steric effects.  An in vitro study performed by O’Brien et al. (2011) 

using chicken embryonic hepatocytes revealed that PFOS mixtures containing branched 

isomers had an effect on genes responsible for cell growth and proliferation.  The authors 

suggested oxidative stress response as one of the possible pathways for these effects.  

Results from this thesis appear to corroborate the authors’ conclusions given that 

branched PFAS isomers induced greater ROS production compared to their linear 

counterparts.  Nevertheless, the toxicological effects of PFAS vary among species and 

any correlations between the studies should be considered with caution.  The results from 

this study and those of similar research have been summarized and tabulated in Table 2. 

Table 2: Result comparison 

Author Chemical Model Dose Level/ 
Exposure time 

Biomarker 
Tested 

Effective 
Dose 

Observed 
Outcome 

Cantu, et al. 
(2017) 

Linear and 
Branched 
PFHxS 

In vitro: 
JEG-3 

Choriocarcinoma 

5, 10, and 50 
μM 48 hours 

Metabolic 
Activity/Cell 
Proliferation 

None No effect 

Buhrke et al. 
(2013) PFOA 

In vitro: 
HepG2 

Hepatocarcinoma 

0.1 to 2000 μM 
48 hours 

Metabolic 
Activity/Cell 
Proliferation 

47 μM IC50 

Cantu et al. 
(2017) 

Linear and 
Branched 
PFHxS 

J In vitro: 
EG-3 

Choriocarcinoma 

0.2 to 20 μM 
24 hours 

 
Cell viability 

 
None No effect 

Morphology 2 μM 

Morphological 
changes in cells 
exposed to linear 
PFHxS at  ≥ 2 μM 
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Author Chemical Model Dose Level/ 
Exposure time 

Biomarker 
Tested 

Effective 
Dose 

Observed 
Outcome 

Gorrochategui 
et al. (2014) PFHxS 

In vitro: 
JEG-3 

Choriocarcinoma 

500 μM 
24 hours Cell viability None 

No statistical 
difference between 
exposed cells and 
control 

Cantu et al. 
(2017) 

Linear and 
Branched 
PFHxS 

In vitro: 
JEG-3 

Choriocarcinoma 

0.2 to 10 μM 
24 hours 

ROS 
generation 

10 μM 
 (branched 

PFHxS) 

Higher ROS 
production in cells 
exposed to 
branched PFHxS 
compared to the 
linear form at all 
concentrations.   
 
Lower ROS 
production in cells 
exposed to linear 
PFHxS compared 
to untreated cells 
 
Higher ROS 
production in cells 
exposed to 10 μM 
of branched 
PFHxS compared 
to untreated cells 

Florentin et 
al. (2011) 

PFOA In vitro: 
HepG2 

Hepatocarcinoma 

5 to 400 μM 
1 and 48 hours 

ROS 
generation 

None 
No effect 

PFOS None 

Eriksen et al. 
(2010) 

PFOA 

In vitro: 
HepG2 

Hepatocarcinoma 

0.4 to 2000 μM 
3 hours 

ROS 
generation 

None Higher ROS 
generation in cells 
exposed to PFOA 
(1.52 fold) and 
PFOS (1.25 fold) 
compared to 
untreated cells 
 
No dose 
dependency was 
observed 

PFOS None 

PFBS None 

PFNA None 

PFHxA None 

Loveless et al. 
(2006) 

Linear/Branched 
APFO 

In-vivo: 
Rats 

0.3 to 30   
mg/kg/day 

14 days 

 
Body weight; 
Liver weight; 

Mortality; 
Serum lipids 

 

LOAEL: 
0.3 to 1      

mg/kg/day 

Weight loss; 
Decrease lipid 
levels 

 

LOAEL: 
0.3 

mg/kg/day 

Weight loss; 
Lower HDL and 
cholesterol; 
Increased 
triglycerides 

O’Brien et al. 
(2011) 

Linear/Branched 
PFOS 

In vitro: 
Chicken 

Embryonic 
Hepatocytes 

1 to 40 μM 
24 hours 

Transcriptional 
profiles; 

Gene 
functional 
analysis 

LOAEL: 
10 μM 

Altered expression 
of transcripts from 
genes regulating 
lipid metabolism, 
cell growth and 
proliferation, and 
liver development 
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V.  Conclusions and Recommendations 

5.1 Chapter Overview 

Chapter five presents the conclusion of the thesis and discusses the significance of 

the research, the limitations of the study, and the potential areas for future research 

related to the discussion topic. 

5.2 Review of Findings 

Both MTT and LIVE/DEAD® assays did not show statistical differences in 

cytotoxicity between linear and branched PFHxS; however, branched PFHxS isomers 

induced statistically greater intracellular ROS.   

The MTT assay indicated that a slight cellular proliferation was induced by the 

linear form of PFHxS with respect to untreated cells at concentrations up to 50 µM; 

however these results were not statistically significant.  Similar results have been 

discerned by other cell-line studies using hepatocytes.  Buhrke et al. (2013) suggested 

that linear forms of PFOA and PFOS can stimulate cell proliferation at concentrations 

below 50 µM prior to inducing cytotoxicity.  This study did not find any statistically 

significant cell proliferation induced by branched forms of PFHxS.   

Likewise, the LIVE/DEAD® fluorescence assay did not record any significant 

statistical differences in viability between JEG-3 cells exposed to linear and those 

exposed to branched PFHxS isomers at equivalent concentrations.  That said, mean 

cellular viability was greater in cells exposed to branched forms of PFHxS than in the 

cells exposed to their linear homologues.  Parametric analyses of the data under the 
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assumption of normality did indicate a statistically significant difference between the two 

isomers at 2 μM and 10 μM, but not at any of the other concentrations.  Fluorescence 

image observations suggest morphological changes in cells exposed to linear PFHxS at 

concentrations equal or greater than 2 μM.  Branched PFHxS isomers did not appear to 

alter the morphology of JEG-3 cells.  Although the cellular viability between cells 

exposed to linear and those exposed to branched PFHxS was statistically 

indistinguishable, morphological observations suggest a difference in effects between the 

two compounds.  

ROS production in JEG-3 cells was statistically greater for branched PFHxS 

isomers relative to their linear counterparts at equal concentrations.  Variations in mean 

fluorescence intensity were 31.7% greater for branched PFHxS at 0.2 µM (p = 0.0009), 

43.4% greater at 2 µM (p = 0.0011), 7.3% greater at 5 µM (p = 0.6949), and 50.5% 

greater at 10 µM (p = < 0.001).  Nevertheless, no dose-dependent effects were observed 

in cells exposed to either linear or branched PFHxS. To the best of our knowledge this is 

the first time that the ROS generation from exposures to branched PFAS isomers has 

been examined.  

5.3 Limitations 

The cell proliferation and viability assays were only repeated three times (n=3) 

due to the limited amount of PFHxS available and, therefore, do not guarantee the 

accuracy and reproducibility of the results.  Additional experiments may need to be 

conducted to reveal statistical differences between isomers.  Also, JEG-3 cells did not 

respond to EGF even though they possess corresponding receptors.  The lack of an 
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effective positive control for the MTT assay may have prevented an adequate assessment 

of cellular proliferation.  Fluorescence measurements were performed by hand using Fiji 

and may be prone to inconsistencies due to human error.  Evaluating cellular viability and 

ROS generation using flow cytometry or automated software may have improved the 

accuracy and precision of the results.  Lastly, the solvent control that was used for this 

experiment (0.1% DMSO) had observable effects on JEG-3 cells in both the 

LIVE/DEAD® and ROS generation assays that may have skewed the experimental 

results.  

5.4 Significance of Findings 

This study contributes to the overall understanding of PFAS toxicity and presents 

evidence that linear and branched PFAS isomers have different toxicological effects on 

human cell-lines.  Furthermore, the outcomes discussed in this thesis reveal that branched 

PFAS isomers may also have a negative effect on JEG-3 human placental cell-lines and 

may have the potential to induce developmental toxicity.   

5.5 Future Research 

 The continued use of AFFFs in the USAF and the potential for female personnel 

to be exposed to PFAS highlights the need to perform further toxicological studies on 

branched PFHxS isomers.  Future research should undertake additional cellular 

proliferation, cellular viability, and ROS generation assays at broader concentration 

ranges in order to determine the half maximal effective and half maximal inhibitory 

concentrations of branched PFHxS isomers on the JEG-3 cell-line.  Moreover, research 
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will have to investigate the different modes of action in which branched PFAS induce cell 

toxicity such as PPAR activation and DNA damage. 
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Appendix 

 

 Table A1:  MTT assay absorbance measurements (540 nm) 

 

 
L-PFHxS Concentration 

(µM) 
Br-PFHxS Concentration 

(µM)      

 

5 10 50 5 10 50 
Blank 
with 
Cells 

DMSO       
Negative 
Control 

EGF              
Positive 
Control 

Blank 
without 

Cells 

Sample 1 0.28 0.359 0.408 0.398 0.344 0.354 0.34 0.181 0.332 0.086 
Sample 2 0.348 0.353 0.284 0.196 0.203 0.239 0.232 0.119 0.186 0.059 
Sample 3 0.353 0.32 0.37 0.312 0.252 0.254 0.255 0.171 0.23 0.106 
Average 0.327 0.344 0.354 0.302 0.266 0.282 0.275 0.157 0.249 0.0836 
Standard 
Deviation 0.03329 0.0171 0.051 0.0827 0.0584 0.0510 0.0464 0.0271 0.0611 0.0192 

 

 

Table A2: MTT Kruskal-Wallis test with Dunn’s post hoc test analysis 

Table Analyzed Metabolic Activity     

   
Kruskal-Wallis test      
P value 0.0235    
Exact or approximate P value? Gaussian Approximation    
P value summary *    
Do the medians vary signif. (P < 0.05) Yes    
Number of groups 9    
Kruskal-Wallis statistic 17.71    
      

Dunn's Multiple Comparison Test Difference in rank sum 
Significant? P < 
0.05? Summary 

neg. control vs pos. control -4.667 No ns 
neg. control vs L-PFHxS - 5μM -16 No ns 
neg. control vs Br-PFHxS - 5μM -13.67 No ns 
neg. control vs L-PFHxS - 10μM -20.33 No ns 
neg. control vs Br-PFHxS - 10μM -9 No ns 
neg. control vs L-PFHxS - 50μM -20.67 No ns 
neg. control vs Br-PFHxS - 50μM -12.67 No ns 
neg. control vs control -11 No ns 
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pos. control vs L-PFHxS - 5μM -11.33 No ns 
pos. control vs Br-PFHxS - 5μM -9 No ns 
pos. control vs L-PFHxS - 10μM -15.67 No ns 
pos. control vs Br-PFHxS - 10μM -4.333 No ns 
pos. control vs L-PFHxS - 50μM -16 No ns 
pos. control vs Br-PFHxS - 50μM -8 No ns 
pos. control vs control -6.333 No ns 
L-PFHxS - 5μM vs Br-PFHxS - 5μM 2.333 No ns 
L-PFHxS - 5μM vs L-PFHxS - 10μM -4.333 No ns 
L-PFHxS - 5μM vs Br-PFHxS - 10μM 7 No ns 
L-PFHxS - 5μM vs L-PFHxS - 50μM -4.667 No ns 
L-PFHxS - 5μM vs Br-PFHxS - 50μM 3.333 No ns 
L-PFHxS - 5μM vs control 5 No ns 
Br-PFHxS - 5μM vs L-PFHxS - 10μM -6.667 No ns 
Br-PFHxS - 5μM vs Br-PFHxS - 10μM 4.667 No ns 
Br-PFHxS - 5μM vs L-PFHxS - 50μM -7 No ns 
Br-PFHxS - 5μM vs Br-PFHxS - 50μM 1 No ns 
Br-PFHxS - 5μM vs control 2.667 No ns 
L-PFHxS - 10μM vs Br-PFHxS - 10μM 11.33 No ns 
L-PFHxS - 10μM vs L-PFHxS - 50μM -0.3333 No ns 
L-PFHxS - 10μM vs Br-PFHxS - 50μM 7.667 No ns 
L-PFHxS - 10μM vs control 9.333 No ns 
Br-PFHxS - 10μM vs L-PFHxS - 50μM -11.67 No ns 
Br-PFHxS - 10μM vs Br-PFHxS - 50μM -3.667 No ns 
Br-PFHxS - 10μM vs control -2 No ns 
L-PFHxS - 50μM vs Br-PFHxS - 50μM 8 No ns 
L-PFHxS - 50μM vs control 9.667 No ns 
Br-PFHxS - 50μM vs control 1.667 No ns 
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Table A3:  MTT Mann-Whitney U tests 

 

 

 

Table A4:  LIVE/DEAD® assay - total percent viability 

 

 

 

Table A5:  LIVE/DEAD® assay – relative percent viability to untreated cells 

 

Table Analyzed Metabolic Activity Table Analyzed Metabolic Activity
Column C L-PFHxS - 5µM Column E L-PFHxS - 10µM
vs vs vs vs
Column D Br-PFHxS - 5µM Column F Br-PFHxS - 10µM

Mann Whitney test Mann Whitney test
P value 0.7 P value 0.1
Exact or approximate P value? Exact Exact or approximate P value? Exact
P value summary ns P value summary ns
Are medians signif. different? (P < 0.05) No Are medians signif. different? (P < 0.05) No
One- or two-tailed P value? Two-tailed One- or two-tailed P value? Two-tailed
Sum of ranks in column C,D 12 , 9 Sum of ranks in column E,F 15 , 6
Mann-Whitney U 3 Mann-Whitney U 0
Table Analyzed Metabolic Activity
Column G L-PFHxS - 50µM
vs vs
Column H Br-PFHxS - 50µM

Mann Whitney test
P value 0.1
Exact or approximate P value? Exact
P value summary ns
Are medians signif. different? (P < 0.05) No
One- or two-tailed P value? Two-tailed
Sum of ranks in column G,H 15 , 6
Mann-Whitney U 0

0 uM Solvent Positive L0.2 uMB0.2 uM L2 uM B2 uM L5 uM B5 uM L10 uMB10 uM L20 uM B20 uM
Experiment 1 99.159 96.999 0.057 93.322 98.276 94.150 96.589 95.480 95.715 94.127 97.747 93.573 95.277
Experiment 2 98.738 96.771 0.058 97.147 96.507 94.763 98.373 95.196 98.575 93.108 96.232 93.722 92.406
Experiment 3 98.324 94.389 0.045 92.139 98.381 93.812 98.478 95.270 97.741 93.366 96.203 92.104 94.750

Solvent Positive L0.2 uM B0.2 uM L2 uM B2 uM L5 uM B5 uM L10 uM B10 uM L20 uM B20 uM
97.822 0.058 94.113 99.110 94.948 97.408 96.290 96.527 94.925 98.575 94.366 96.085
98.007 0.059 98.389 97.740 95.974 99.630 96.413 99.835 94.298 97.462 94.920 93.586
95.999 0.046 93.710 100.059 95.411 100.157 96.894 99.407 94.958 97.843 93.674 96.366
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Table A6: LIVE/DEAD® Kruskal-Wallis with Dunn’s post hoc test analysis  

Kruskal-Wallis test       
P value 0.0047     

Exact or approximate P value? 
Gaussian 
Approximation     

P value summary **     
Do the medians vary signif. (P < 0.05) Yes     
Number of groups 13     
Kruskal-Wallis statistic 26.93     
        

Dunn's Multiple Comparison Test 
Difference in rank 
sum 

Significant? P < 
0.05? Summary 

Untreated Cells vs Solvent Control 13.33 No ns 
Untreated Cells vs Pos. Control 33.67 No ns 
Untreated Cells vs L-PFHxS at 0.2µM 22.67 No ns 
Untreated Cells vs Br-PFHxS at 0.2µM 6 No ns 
Untreated Cells vs L-PFHxS at 2µM 22.33 No ns 
Untreated Cells vs Br-PFHxS at 2µM 4.667 No ns 
Untreated Cells vs L-PFHxS at 5µM 17.33 No ns 
Untreated Cells vs Br-PFHxS at 5µM 7 No ns 
Untreated Cells vs L-PFHxS at 10µM 27 No ns 
Untreated Cells vs Br-PFHxS at 10µM 10.67 No ns 
Untreated Cells vs L-PFHxS at 20µM 28.33 No ns 
Untreated Cells vs Br-PFHxS at 20µM 22.67 No ns 
Solvent Control vs Pos. Control 20.33 No ns 
Solvent Control vs L-PFHxS at 0.2µM 9.333 No ns 
Solvent Control vs Br-PFHxS at 0.2µM -7.333 No ns 
Solvent Control vs L-PFHxS at 2µM 9 No ns 
Solvent Control vs Br-PFHxS at 2µM -8.667 No ns 
Solvent Control vs L-PFHxS at 5µM 4 No ns 
Solvent Control vs Br-PFHxS at 5µM -6.333 No ns 
Solvent Control vs L-PFHxS at 10µM 13.67 No ns 
Solvent Control vs Br-PFHxS at 10µM -2.667 No ns 
Solvent Control vs L-PFHxS at 20µM 15 No ns 
Solvent Control vs Br-PFHxS at 20µM 9.333 No ns 
Pos. Control vs L-PFHxS at 0.2µM -11 No ns 
Pos. Control vs Br-PFHxS at 0.2µM -27.67 No ns 
Pos. Control vs L-PFHxS at 2µM -11.33 No ns 
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Pos. Control vs Br-PFHxS at 2µM -29 No ns 
Pos. Control vs L-PFHxS at 5µM -16.33 No ns 
Pos. Control vs Br-PFHxS at 5µM -26.67 No ns 
Pos. Control vs L-PFHxS at 10µM -6.667 No ns 
Pos. Control vs Br-PFHxS at 10µM -23 No ns 
Pos. Control vs L-PFHxS at 20µM -5.333 No ns 
Pos. Control vs Br-PFHxS at 20µM -11 No ns 
L-PFHxS at 0.2µM vs Br-PFHxS at 
0.2µM -16.67 No ns 
L-PFHxS at 0.2µM vs L-PFHxS at 2µM -0.3333 No ns 
L-PFHxS at 0.2µM vs Br-PFHxS at 2µM -18 No ns 
L-PFHxS at 0.2µM vs L-PFHxS at 5µM -5.333 No ns 
L-PFHxS at 0.2µM vs Br-PFHxS at 5µM -15.67 No ns 
L-PFHxS at 0.2µM vs L-PFHxS at 10µM 4.333 No ns 
L-PFHxS at 0.2µM vs Br-PFHxS at 
10µM -12 No ns 
L-PFHxS at 0.2µM vs L-PFHxS at 20µM 5.667 No ns 
L-PFHxS at 0.2µM vs Br-PFHxS at 
20µM 0 No ns 
Br-PFHxS at 0.2µM vs L-PFHxS at 2µM 16.33 No ns 
Br-PFHxS at 0.2µM vs Br-PFHxS at 
2µM -1.333 No ns 
Br-PFHxS at 0.2µM vs L-PFHxS at 5µM 11.33 No ns 
Br-PFHxS at 0.2µM vs Br-PFHxS at 
5µM 1 No ns 
Br-PFHxS at 0.2µM vs L-PFHxS at 
10µM 21 No ns 
Br-PFHxS at 0.2µM vs Br-PFHxS at 
10µM 4.667 No ns 
Br-PFHxS at 0.2µM vs L-PFHxS at 
20µM 22.33 No ns 
Br-PFHxS at 0.2µM vs Br-PFHxS at 
20µM 16.67 No ns 
L-PFHxS at 2µM vs Br-PFHxS at 2µM -17.67 No ns 
L-PFHxS at 2µM vs L-PFHxS at 5µM -5 No ns 
L-PFHxS at 2µM vs Br-PFHxS at 5µM -15.33 No ns 
L-PFHxS at 2µM vs L-PFHxS at 10µM 4.667 No ns 
L-PFHxS at 2µM vs Br-PFHxS at 10µM -11.67 No ns 
L-PFHxS at 2µM vs L-PFHxS at 20µM 6 No ns 
L-PFHxS at 2µM vs Br-PFHxS at 20µM 0.3333 No ns 
Br-PFHxS at 2µM vs L-PFHxS at 5µM 12.67 No ns 
Br-PFHxS at 2µM vs Br-PFHxS at 5µM 2.333 No ns 
Br-PFHxS at 2µM vs L-PFHxS at 10µM 22.33 No ns 
Br-PFHxS at 2µM vs Br-PFHxS at 10µM 6 No ns 
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Br-PFHxS at 2µM vs L-PFHxS at 20µM 23.67 No ns 
Br-PFHxS at 2µM vs Br-PFHxS at 20µM 18 No ns 
L-PFHxS at 5µM vs Br-PFHxS at 5µM -10.33 No ns 
L-PFHxS at 5µM vs L-PFHxS at 10µM 9.667 No ns 
L-PFHxS at 5µM vs Br-PFHxS at 10µM -6.667 No ns 
L-PFHxS at 5µM vs L-PFHxS at 20µM 11 No ns 
L-PFHxS at 5µM vs Br-PFHxS at 20µM 5.333 No ns 
Br-PFHxS at 5µM vs L-PFHxS at 10µM 20 No ns 
Br-PFHxS at 5µM vs Br-PFHxS at 10µM 3.667 No ns 
Br-PFHxS at 5µM vs L-PFHxS at 20µM 21.33 No ns 
Br-PFHxS at 5µM vs Br-PFHxS at 20µM 15.67 No ns 
L-PFHxS at 10µM vs Br-PFHxS at 
10µM -16.33 No ns 
L-PFHxS at 10µM vs L-PFHxS at 20µM 1.333 No ns 
L-PFHxS at 10µM vs Br-PFHxS at 
20µM -4.333 No ns 
Br-PFHxS at 10µM vs L-PFHxS at 
20µM 17.67 No ns 
Br-PFHxS at 10µM vs Br-PFHxS at 
20µM 12 No ns 
L-PFHxS at 20µM vs Br-PFHxS at 
20µM -5.667 No ns 
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Table A7:  LIVE/DEAD® Mann-Whitney U tests 

Table Analyzed 
Live Dead Assay - 
Cell Viability (%) Table Analyzed 

Live Dead Assay - 
Cell Viability (%) 

Column D L-PFHxS at 0.2µM Column F L-PFHxS at 2µM 
vs vs vs vs 
Column E Br-PFHxS at 0.2µM Column G Br-PFHxS at 2µM 
        
Mann Whitney 
test   

Mann Whitney 
test   

P value 0.2 P value 0.1 
Exact or 
approximate P 
value? Exact 

Exact or 
approximate P 
value? Exact 

P value 
summary ns 

P value 
summary ns 

Are medians 
signif. different? 
(P < 0.05) No 

Are medians 
signif. different? 
(P < 0.05) No 

One- or two-
tailed P value? Two-tailed 

One- or two-
tailed P value? Two-tailed 

Sum of ranks in 
column D,E 7 , 14 

Sum of ranks in 
column F,G 6 , 15 

Mann-Whitney 
U 1 Mann-Whitney U 0 
        

Table Analyzed 
Live Dead Assay - 
Cell Viability (%) Table Analyzed 

Live Dead Assay - 
Cell Viability (%) 

Column H L-PFHxS at 5µM Column J L-PFHxS at 10µM 
vs vs vs vs 
Column I Br-PFHxS at 5µM Column K Br-PFHxS at 10µM 
        
Mann Whitney 
test   

Mann Whitney 
test   

P value 0.1 P value 0.1 
Exact or 
approximate P 
value? Exact 

Exact or 
approximate P 
value? Exact 

P value 
summary ns 

P value 
summary ns 

Are medians 
signif. different? 
(P < 0.05) No 

Are medians 
signif. different? 
(P < 0.05) No 

One- or two-
tailed P value? Two-tailed 

One- or two-
tailed P value? Two-tailed 

Sum of ranks in 
column H,I 6 , 15 

Sum of ranks in 
column J,K 6 , 15 

Mann-Whitney 
U 0 Mann-Whitney U 0 
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Table Analyzed 
Live Dead Assay - 
Cell Viability (%)    

Column L L-PFHxS at 20µM    
vs vs    
Column M Br-PFHxS at 20µM    
       
Mann Whitney 
test      
P value 0.4    
Exact or 
approximate P 
value? Exact    
P value 
summary ns    
Are medians 
signif. different? 
(P < 0.05) No    
One- or two-
tailed P value? Two-tailed    
Sum of ranks in 
column L,M 8 , 13    
Mann-Whitney 
U 2    
     

 

Table A8: LIVE/DEAD® one-way ANOVA with Bonferroni’s comparisons test 

Table Analyzed 

Live 
Dead 
Assay - 
Cell 
Viability 
(%)         

            
One-way analysis of variance           

P value 
< 
0.0001         

P value summary ***         
Are means signif. different? (P < 
0.05) Yes         
Number of groups 12         
F 7.263         
R squared 0.769         
            
ANOVA Table SS df MS     
Treatment (between columns) 119.6 11 10.87     
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Residual (within columns) 35.93 24 1.497     
Total 155.5 35       
            
Bonferroni's Multiple Comparison 
Test 

Mean 
Diff. t 

Significant? P < 
0.05? Summary 95% CI of diff 

Untreated Cells vs Solvent Control 2.687 2.69 No ns 
-1.231 to 
6.606 

Untreated Cells vs Pos. Control 98.74 0 No ns 
0.0000 to 
0.0000 

Untreated Cells vs L-PFHxS at 
0.2µM 4.538 4.542 Yes * 

0.6192 to 
8.456 

Untreated Cells vs Br-PFHxS at 
0.2µM 1.019 1.02 No ns 

-2.900 to 
4.938 

Untreated Cells vs L-PFHxS at 2µM 4.499 4.503 Yes * 
0.5802 to 
8.417 

Untreated Cells vs Br-PFHxS at 
2µM 0.927 0.9279 No ns 

-2.992 to 
4.846 

Untreated Cells vs L-PFHxS at 5µM 3.425 3.428 No ns 
-0.4935 to 
7.344 

Untreated Cells vs Br-PFHxS at 
5µM 1.397 1.398 No ns 

-2.522 to 
5.315 

Untreated Cells vs L-PFHxS at 
10µM 5.207 5.212 Yes ** 

1.288 to 
9.125 

Untreated Cells vs Br-PFHxS at 
10µM 2.013 2.015 No ns 

-1.906 to 
5.932 

Untreated Cells vs L-PFHxS at 
20µM 5.607 5.613 Yes *** 

1.689 to 
9.526 

Untreated Cells vs Br-PFHxS at 
20µM 4.596 4.6 Yes ** 

0.6775 to 
8.515 

Solvent Control vs Pos. Control 96.05 0 No ns 
0.0000 to 
0.0000 

Solvent Control vs L-PFHxS at 
0.2µM 1.85 1.852 No ns 

-2.068 to 
5.769 

Solvent Control vs Br-PFHxS at 
0.2µM -1.668 1.67 No ns 

-5.587 to 
2.250 

Solvent Control vs L-PFHxS at 2µM 1.811 1.813 No ns 
-2.107 to 
5.730 

Solvent Control vs Br-PFHxS at 
2µM -1.76 1.762 No ns 

-5.679 to 
2.158 

Solvent Control vs L-PFHxS at 5µM 0.7377 0.7384 No ns 
-3.181 to 
4.656 

Solvent Control vs Br-PFHxS at 
5µM -1.291 1.292 No ns 

-5.209 to 
2.628 

Solvent Control vs L-PFHxS at 
10µM 2.519 2.522 No ns 

-1.399 to 
6.438 

Solvent Control vs Br-PFHxS at 
10µM -0.6743 0.675 No ns 

-4.593 to 
3.244 

Solvent Control vs L-PFHxS at 
20µM 2.92 2.923 No ns 

-0.9985 to 
6.839 

Solvent Control vs Br-PFHxS at 
20µM 1.909 1.911 No ns 

-2.010 to 
5.827 
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Pos. Control vs L-PFHxS at 0.2µM -94.2 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs Br-PFHxS at 0.2µM -97.72 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs L-PFHxS at 2µM -94.24 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs Br-PFHxS at 2µM -97.81 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs L-PFHxS at 5µM -95.32 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs Br-PFHxS at 5µM -97.34 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs L-PFHxS at 10µM -93.53 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs Br-PFHxS at 10µM -96.73 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs L-PFHxS at 20µM -93.13 0 No ns 
0.0000 to 
0.0000 

Pos. Control vs Br-PFHxS at 20µM -94.14 0 No ns 
0.0000 to 
0.0000 

L-PFHxS at 0.2µM vs Br-PFHxS at 
0.2µM -3.519 3.522 No ns 

-7.437 to 
0.3998 

L-PFHxS at 0.2µM vs L-PFHxS at 
2µM -0.039 0.03904 No ns 

-3.958 to 
3.880 

L-PFHxS at 0.2µM vs Br-PFHxS at 
2µM -3.611 3.614 No ns 

-7.529 to 
0.3078 

L-PFHxS at 0.2µM vs L-PFHxS at 
5µM -1.113 1.114 No ns 

-5.031 to 
2.806 

L-PFHxS at 0.2µM vs Br-PFHxS at 
5µM -3.141 3.144 No ns 

-7.060 to 
0.7775 

L-PFHxS at 0.2µM vs L-PFHxS at 
10µM 0.669 0.6697 No ns 

-3.250 to 
4.588 

L-PFHxS at 0.2µM vs Br-PFHxS at 
10µM -2.525 2.527 No ns 

-6.443 to 
1.394 

L-PFHxS at 0.2µM vs L-PFHxS at 
20µM 1.07 1.071 No ns 

-2.849 to 
4.988 

L-PFHxS at 0.2µM vs Br-PFHxS at 
20µM 0.05833 0.05839 No ns 

-3.860 to 
3.977 

Br-PFHxS at 0.2µM vs L-PFHxS at 
2µM 3.48 3.483 No ns 

-0.4388 to 
7.398 

Br-PFHxS at 0.2µM vs Br-PFHxS at 
2µM -0.092 0.09208 No ns 

-4.011 to 
3.827 

Br-PFHxS at 0.2µM vs L-PFHxS at 
5µM 2.406 2.408 No ns 

-1.513 to 
6.325 

Br-PFHxS at 0.2µM vs Br-PFHxS at 
5µM 0.3777 0.378 No ns 

-3.541 to 
4.296 

Br-PFHxS at 0.2µM vs L-PFHxS at 
10µM 4.188 4.192 Yes * 

0.2692 to 
8.106 

Br-PFHxS at 0.2µM vs Br-PFHxS at 
10µM 0.994 0.995 No ns 

-2.925 to 
4.913 
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Br-PFHxS at 0.2µM vs L-PFHxS at 
20µM 4.588 4.593 Yes ** 

0.6698 to 
8.507 

Br-PFHxS at 0.2µM vs Br-PFHxS at 
20µM 3.577 3.58 No ns 

-0.3415 to 
7.496 

L-PFHxS at 2µM vs Br-PFHxS at 
2µM -3.572 3.575 No ns 

-7.490 to 
0.3468 

L-PFHxS at 2µM vs L-PFHxS at 
5µM -1.074 1.075 No ns 

-4.992 to 
2.845 

L-PFHxS at 2µM vs Br-PFHxS at 
5µM -3.102 3.105 No ns 

-7.021 to 
0.8165 

L-PFHxS at 2µM vs L-PFHxS at 
10µM 0.708 0.7087 No ns 

-3.211 to 
4.627 

L-PFHxS at 2µM vs Br-PFHxS at 
10µM -2.486 2.488 No ns 

-6.404 to 
1.433 

L-PFHxS at 2µM vs L-PFHxS at 
20µM 1.109 1.11 No ns 

-2.810 to 
5.027 

L-PFHxS at 2µM vs Br-PFHxS at 
20µM 0.09734 0.09743 No ns 

-3.821 to 
4.016 

Br-PFHxS at 2µM vs L-PFHxS at 
5µM 2.498 2.5 No ns 

-1.421 to 
6.417 

Br-PFHxS at 2µM vs Br-PFHxS at 
5µM 0.4697 0.4701 No ns 

-3.449 to 
4.388 

Br-PFHxS at 2µM vs L-PFHxS at 
10µM 4.28 4.284 Yes * 

0.3612 to 
8.198 

Br-PFHxS at 2µM vs Br-PFHxS at 
10µM 1.086 1.087 No ns 

-2.833 to 
5.005 

Br-PFHxS at 2µM vs L-PFHxS at 
20µM 4.68 4.685 Yes ** 

0.7618 to 
8.599 

Br-PFHxS at 2µM vs Br-PFHxS at 
20µM 3.669 3.673 No ns 

-0.2495 to 
7.588 

L-PFHxS at 5µM vs Br-PFHxS at 
5µM -2.028 2.03 No ns 

-5.947 to 
1.890 

L-PFHxS at 5µM vs L-PFHxS at 
10µM 1.782 1.783 No ns 

-2.137 to 
5.700 

L-PFHxS at 5µM vs Br-PFHxS at 
10µM -1.412 1.413 No ns 

-5.331 to 
2.507 

L-PFHxS at 5µM vs L-PFHxS at 
20µM 2.182 2.184 No ns 

-1.736 to 
6.101 

L-PFHxS at 5µM vs Br-PFHxS at 
20µM 1.171 1.172 No ns 

-2.748 to 
5.090 

Br-PFHxS at 5µM vs L-PFHxS at 
10µM 3.81 3.814 No ns 

-0.1085 to 
7.729 

Br-PFHxS at 5µM vs Br-PFHxS at 
10µM 0.6163 0.6169 No ns 

-3.302 to 
4.535 

Br-PFHxS at 5µM vs L-PFHxS at 
20µM 4.211 4.215 Yes * 

0.2922 to 
8.129 

Br-PFHxS at 5µM vs Br-PFHxS at 
20µM 3.199 3.202 No ns 

-0.7192 to 
7.118 

L-PFHxS at 10µM vs Br-PFHxS at 
10µM -3.194 3.197 No ns 

-7.112 to 
0.7248 
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L-PFHxS at 10µM vs L-PFHxS at 
20µM 0.4007 0.4011 No ns 

-3.518 to 
4.319 

L-PFHxS at 10µM vs Br-PFHxS at 
20µM -0.6107 0.6113 No ns 

-4.529 to 
3.308 

Br-PFHxS at 10µM vs L-PFHxS at 
20µM 3.594 3.598 No ns 

-0.3242 to 
7.513 

Br-PFHxS at 10µM vs Br-PFHxS at 
20µM 2.583 2.586 No ns 

-1.336 to 
6.502 

L-PFHxS at 20µM vs Br-PFHxS at 
20µM -1.011 1.012 No ns 

-4.930 to 
2.907 

 

Table A9:  LIVE/DEAD® unpaired t-tests  

Table Analyzed 

Live Dead 
Assay - Cell 
Viability (%) Table Analyzed 

Live Dead Assay - 
Cell Viability (%) 

Column D 
L-PFHxS at 
0.2µM Column F L-PFHxS at 2µM 

vs vs vs vs 

Column E 
Br-PFHxS at 
0.2µM Column G Br-PFHxS at 2µM 

        
Unpaired t test   Unpaired t test   
P value 0.0969 P value 0.0061 
P value summary ns P value summary ** 

Are means signif. 
different? (P < 0.05) No 

Are means signif. 
different? (P < 
0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

One- or two-
tailed P value? Two-tailed 

t, df t=2.160 df=4 t, df t=5.306 df=4 
        
How big is the 
difference?   

How big is the 
difference?   

Mean ± SEM of 
column D 

94.20 ± 1.511 
N=3 

Mean ± SEM of 
column F 94.24 ± 0.2783 N=3 

Mean ± SEM of 
column E 

97.72 ± 0.6079 
N=3 

Mean ± SEM of 
column G 97.81 ± 0.6129 N=3 

Difference between 
means -3.519 ± 1.629 

Difference 
between means -3.572 ± 0.6732 

95% confidence 
interval -8.041 to 1.003 

95% confidence 
interval -5.440 to -1.703 

R squared 0.5384 R squared 0.8756 
        
F test to compare 
variances   

F test to compare 
variances   

F,DFn, Dfd 6.180, 2, 2 F,DFn, Dfd 4.849, 2, 2 
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P value 0.2786 P value 0.3419 
P value summary ns P value summary ns 
Are variances 
significantly 
different? No 

Are variances 
significantly 
different? No 

    

Table Analyzed 

Live Dead 
Assay - Cell 
Viability (%) Table Analyzed 

Live Dead Assay - 
Cell Viability (%) 

Column H L-PFHxS at 5µM Column J L-PFHxS at 10µM 
vs vs vs vs 

Column I 
Br-PFHxS at 
5µM Column K Br-PFHxS at 10µM 

        
Unpaired t test with 
Welch's correction   Unpaired t test   
P value 0.1406 P value 0.0058 
P value summary ns P value summary ** 

Are means signif. 
different? (P < 0.05) No 

Are means signif. 
different? (P < 
0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

One- or two-
tailed P value? Two-tailed 

Welch-corrected t, 
df t=2.377 df=2 t, df t=5.371 df=4 
        
How big is the 
difference?   

How big is the 
difference?   

Mean ± SEM of 
column H 

95.32 ± 0.08506 
N=3 

Mean ± SEM of 
column J 93.53 ± 0.3059 N=3 

Mean ± SEM of 
column I 

97.34 ± 0.8492 
N=3 

Mean ± SEM of 
column K 96.73 ± 0.5099 N=3 

Difference between 
means -2.028 ± 0.8534 

Difference 
between means -3.194 ± 0.5946 

95% confidence 
interval -5.701 to 1.644 

95% confidence 
interval -4.844 to -1.543 

R squared 0.7385 R squared 0.8782 
        
F test to compare 
variances   

F test to compare 
variances   

F,DFn, Dfd 99.66, 2, 2 F,DFn, Dfd 2.779, 2, 2 
P value 0.0199 P value 0.5292 
P value summary * P value summary ns 
Are variances 
significantly 
different? Yes 

Are variances 
significantly 
different? No 
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Table Analyzed 

Live Dead 
Assay - Cell 
Viability (%)   

Column L 
L-PFHxS at 
20µM   

vs vs   

Column M 
Br-PFHxS at 
20µM   

      
Unpaired t test     
P value 0.3785   
P value summary ns   
Are means signif. 
different? (P < 0.05) No   
One- or two-tailed P 
value? Two-tailed   
t, df t=0.9892 df=4   
      
How big is the 
difference?     
Mean ± SEM of 
column L 

93.13 ± 0.5163 
N=3   

Mean ± SEM of 
column M 

94.14 ± 0.8824 
N=3   

Difference between 
means -1.011 ± 1.022   
95% confidence 
interval -3.849 to 1.827   
R squared 0.1966   
      
F test to compare 
variances     
F,DFn, Dfd 2.921, 2, 2   
P value 0.5101   
P value summary ns   
Are variances 
significantly 
different? No   

 

 



61 

Table A10:  ROS generation fluorescence measurements (normalized to untreated 

cells) 

L 0.2 uM B0.2 uM L2 uM B2 uM L5 uM B5 uM L10 uM B10 uM Positive Solvent 
1.106079 0.878175 0.265598 0.708099 0.45615 0.412995 0.508274 0.845686 4.295303 0.974644 
0.564781 1.081097 0.312238 0.37637 0.30138 0.70293 0.750188 1.388254 7.657951 0.388654 
0.318836 0.693065 0.213478 0.742176 0.609241 0.808794 0.750188 1.416256 3.418062 0.760892 
0.53828 0.855882 0.519651 0.51065 0.786741 0.447518 0.516907 1.811651 8.701681 0.511671 
0.623363 0.991587 0.677219 0.302314 0.319608 0.187145 0.435327 0.747003 11.25131 0.2959 
0.818691 0.73233 0.689641 0.765183 0.458495 0.643191 0.579223 1.049879 11.50349 0.534379 
0.711556 1.423214 0.268917 1.359548 0.436687 0.750996 0.821365 1.597424 10.3012 0.477338 
0.618925 1.430503 0.223497 1.224296 0.544703 1.020619 0.828789 1.665387 11.87792 0.420869 
1.541623 0.970441 0.297516 0.985783 0.340491 0.57684 0.664902 1.898219 6.600985 0.57894 
0.628616 0.732919 0.20569 0.667004 0.380192 0.208903 0.972844 0.615296 13.41031 0.826741 
0.462258 1.087644 0.523197 0.813994 0.55065 0.580344 0.691711 1.451101 13.42293 0.919793 
0.853875 1.377816 0.457399 1.145632 0.7624 0.540177 0.721714 1.379209 3.838649 1.014013 
0.945566 0.884229 0.726881 1.149244 0.456415 0.560756 0.699488 1.822648 6.5512 0.838456 
0.80954 1.500391 0.429764 0.827154 0.620152 0.275681 0.810955 1.505206 15.7898 0.904788 
0.634761   0.722694   0.239286 0.138745   2.154487 17.71175 0.737371 
0.562997   0.811722   0.584305 0.16196   1.464479 3.308274 0.542314 
    0.345525   0.770995 0.570165   1.428249 13.58754 0.366412 
    0.579646   0.425366 0.715162   1.10581 6.312169 0.744378 
    0.624776   0.407853 0.378307   1.478368 10.43895   
        0.486123 1.036778   1.317866 14.65764   
          0.909378     10.58312   
          0.589309     4.828789   
                14.29817   
                6.50153   
                25.61981   
                11.57253   
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Table A11:  ROS Kruskal-Wallis with Dunn’s post hoc test analysis 

Table Analyzed ROS Generation     
        
Kruskal-Wallis test       
P value < 0.0001     
Exact or approximate P 
value? 

Gaussian 
Approximation     

P value summary ***     
Do the medians vary 
signif. (P < 0.05) Yes     
Number of groups 10     
Kruskal-Wallis statistic 132.1     
        
Dunn's Multiple 
Comparison Test 

Difference in rank 
sum 

Significant? 
P < 0.05? Summary 

Untreated vs L-PFHxS - 
0.2µM 27.82 No ns 
Untreated vs Br-PFHxS 
- 0.2µM -17.52 No ns 
Untreated vs L-PFHxS - 
2µM 67.9 Yes ** 
Untreated vs Br-PFHxS 
- 2µM 14.38 No ns 
Untreated vs L-PFHxS - 
5µM 64.78 Yes ** 
Untreated vs Br-PFHxS 
- 5µM 56.78 Yes * 
Untreated vs L-PFHxS - 
10µM 29.16 No ns 
Untreated vs Br-PFHxS 
- 10µM -39.77 No ns 
Untreated vs Positive -82.12 Yes *** 
L-PFHxS - 0.2µM vs Br-
PFHxS - 0.2µM -45.33 No ns 
L-PFHxS - 0.2µM vs L-
PFHxS - 2µM 40.09 No ns 
L-PFHxS - 0.2µM vs Br-
PFHxS - 2µM -13.44 No ns 
L-PFHxS - 0.2µM vs L-
PFHxS - 5µM 36.96 No ns 
L-PFHxS - 0.2µM vs Br-
PFHxS - 5µM 28.96 No ns 
L-PFHxS - 0.2µM vs L-
PFHxS - 10µM 1.348 No ns 
L-PFHxS - 0.2µM vs Br-
PFHxS - 10µM -67.59 Yes * 
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L-PFHxS - 0.2µM vs 
Positive -109.9 Yes *** 
Br-PFHxS - 0.2µM vs L-
PFHxS - 2µM 85.42 Yes *** 
Br-PFHxS - 0.2µM vs 
Br-PFHxS - 2µM 31.89 No ns 
Br-PFHxS - 0.2µM vs L-
PFHxS - 5µM 82.29 Yes *** 
Br-PFHxS - 0.2µM vs 
Br-PFHxS - 5µM 74.29 Yes ** 
Br-PFHxS - 0.2µM vs L-
PFHxS - 10µM 46.68 No ns 
Br-PFHxS - 0.2µM vs 
Br-PFHxS - 10µM -22.26 No ns 
Br-PFHxS - 0.2µM vs 
Positive -64.61 Yes * 
L-PFHxS - 2µM vs Br-
PFHxS - 2µM -53.53 No ns 
L-PFHxS - 2µM vs L-
PFHxS - 5µM -3.126 No ns 
L-PFHxS - 2µM vs Br-
PFHxS - 5µM -11.13 No ns 
L-PFHxS - 2µM vs L-
PFHxS - 10µM -38.74 No ns 
L-PFHxS - 2µM vs Br-
PFHxS - 10µM -107.7 Yes *** 
L-PFHxS - 2µM vs 
Positive -150 Yes *** 
Br-PFHxS - 2µM vs L-
PFHxS - 5µM 50.4 No ns 
Br-PFHxS - 2µM vs Br-
PFHxS - 5µM 42.4 No ns 
Br-PFHxS - 2µM vs L-
PFHxS - 10µM 14.79 No ns 
Br-PFHxS - 2µM vs Br-
PFHxS - 10µM -54.15 No ns 
Br-PFHxS - 2µM vs 
Positive -96.5 Yes *** 
L-PFHxS - 5µM vs Br-
PFHxS - 5µM -8 No ns 
L-PFHxS - 5µM vs L-
PFHxS - 10µM -35.61 No ns 
L-PFHxS - 5µM vs Br-
PFHxS - 10µM -104.6 Yes *** 
L-PFHxS - 5µM vs 
Positive -146.9 Yes *** 
Br-PFHxS - 5µM vs L-
PFHxS - 10µM -27.61 No ns 
Br-PFHxS - 5µM vs Br-
PFHxS - 10µM -96.55 Yes *** 
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Br-PFHxS - 5µM vs 
Positive -138.9 Yes *** 
L-PFHxS - 10µM vs Br-
PFHxS - 10µM -68.94 Yes * 
L-PFHxS - 10µM vs 
Positive -111.3 Yes *** 
Br-PFHxS - 10µM vs 
Positive -42.35 No ns 

 

 

Table A12: ROS assay Mann-Whitney U tests  

Table Analyzed ROS Generation Table Analyzed ROS Generation 
Column B L-PFHxS - 0.2µM Column D L-PFHxS - 2µM 
vs vs vs vs 
Column C Br-PFHxS - 0.2µM Column E Br-PFHxS - 2µM 
        
Mann Whitney test   Mann Whitney test   
P value 0.0009 P value 0.0011 
Exact or approximate 
P value? 

Gaussian 
Approximation 

Exact or approximate 
P value? 

Gaussian 
Approximation 

P value summary *** P value summary ** 
Are medians signif. 
different? (P < 0.05) Yes 

Are medians signif. 
different? (P < 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

One- or two-tailed P 
value? Two-tailed 

Sum of ranks in 
column B,C 187 , 443 

Sum of ranks in 
column D,E 233 , 328 

Mann-Whitney U 51 Mann-Whitney U 43 
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 ROS Generation Table Analyzed ROS Generation 
Column F L-PFHxS - 5µM Column H L-PFHxS - 10µM 
vs vs vs vs 

Column G Br-PFHxS - 5µM Column I 
Br-PFHxS - 
10µM 

        
Mann Whitney test   Mann Whitney test   
P value 0.6949 P value < 0.0001 
Exact or approximate 
P value? 

Gaussian 
Approximation 

Exact or approximate 
P value? 

Gaussian 
Approximation 

P value summary ns P value summary *** 
Are medians signif. 
different? (P < 0.05) No 

Are medians signif. 
different? (P < 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

One- or two-tailed P 
value? Two-tailed 

Sum of ranks in 
column F,G 395 , 425 

Sum of ranks in 
column H,I 122 , 473 

Mann-Whitney U 185 Mann-Whitney U 17 
 
 
 
 
    

Table Analyzed ROS Generation Table Analyzed ROS Generation 
Column B L-PFHxS - 0.2µM Column F L-PFHxS - 5µM 
vs vs vs vs 
Column D L-PFHxS - 2µM Column H L-PFHxS - 10µM 
        
Mann Whitney test   Mann Whitney test   
P value 0.0057 P value 0.0025 
Exact or approximate 
P value? 

Gaussian 
Approximation 

Exact or approximate 
P value? 

Gaussian 
Approximation 

P value summary ** P value summary ** 
Are medians signif. 
different? (P < 0.05) Yes 

Are medians signif. 
different? (P < 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

One- or two-tailed P 
value? Two-tailed 

Sum of ranks in 
column B,D 372 , 258 

Sum of ranks in 
column F,H 263 , 332 

Mann-Whitney U 68 Mann-Whitney U 53 
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Table Analyzed ROS Generation Table Analyzed ROS Generation 

Column D L-PFHxS - 2µM Column C 
Br-PFHxS - 
0.2µM 

vs vs vs vs 
Column F L-PFHxS - 5µM Column E Br-PFHxS - 2µM 
        
Mann Whitney test   Mann Whitney test   
P value 0.5646 P value 0.0362 
Exact or approximate 
P value? 

Gaussian 
Approximation 

Exact or approximate 
P value? 

Gaussian 
Approximation 

P value summary ns P value summary * 
Are medians signif. 
different? (P < 0.05) No 

Are medians signif. 
different? (P < 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

One- or two-tailed P 
value? Two-tailed 

Sum of ranks in 
column D,F 359 , 421 

Sum of ranks in 
column C,E 381 , 180 

Mann-Whitney U 169 Mann-Whitney U 75 
 
 
 
    

Table Analyzed ROS Generation Table Analyzed ROS Generation 
Column E Br-PFHxS - 2µM Column G Br-PFHxS - 5µM 
vs vs vs vs 

Column G Br-PFHxS - 5µM Column I 
Br-PFHxS - 
10µM 

        
Mann Whitney test   Mann Whitney test   
P value 0.0101 P value < 0.0001 
Exact or approximate 
P value? 

Gaussian 
Approximation 

Exact or approximate 
P value? 

Gaussian 
Approximation 

P value summary * P value summary *** 
Are medians signif. 
different? (P < 0.05) Yes 

Are medians signif. 
different? (P < 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

One- or two-tailed P 
value? Two-tailed 

Sum of ranks in 
column E,G 319 , 276 

Sum of ranks in 
column G,I 223 , 597 

Mann-Whitney U 66 Mann-Whitney U 13 
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