
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2017

An Approximate Dynamic Programming
Approach for Comparing Firing Solutions in a
Networked Air Defense Environment
Daniel S. Summers

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Summers, Daniel S., "An Approximate Dynamic Programming Approach for Comparing Firing Solutions in a Networked Air Defense
Environment" (2017). Theses and Dissertations. 1650.
https://scholar.afit.edu/etd/1650

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277525058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1650?utm_source=scholar.afit.edu%2Fetd%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


An Approximate Dynamic Programming
Approach

For Comparing Firing Solutions in a Networked
Air Defense Environment

THESIS

MARCH 2017

Daniel S. Summers, Major, USA

AFIT-ENS-MS-17-M-159

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Army, the United States Air Force,
the United States Department of Defense or the United States Government. This
material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.



AFIT-ENS-MS-17-M-159

AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH

FOR COMPARING FIRING SOLUTIONS IN A NETWORKED AIR DEFENSE

ENVIRONMENT

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Daniel S. Summers, M.S. Engineering Management

Major, USA

MARCH 2017

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENS-MS-17-M-159

AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH

FOR COMPARING FIRING SOLUTIONS IN A NETWORKED AIR DEFENSE

ENVIRONMENT

THESIS

Daniel S. Summers, M.S. Engineering Management
Major, USA

Committee Membership:

Lt Col Matthew J. Robbins, PhD
Chair

Dr. Brian J. Lunday
Member



AFIT-ENS-MS-17-M-159

Abstract

The United States Army currently employs a shoot-shoot-look firing policy for

air defense. As the Army moves to a networked defense-in-depth strategy, this policy

will not provide optimal results for managing interceptor inventories in a conflict to

minimize the damage to defended assets. The objective for air and missile defense is

to identify the firing policy for interceptor allocation that minimizes expected total

cost of damage to defended assets. This dynamic weapon target assignment prob-

lem is formulated first as a Markov decision process (MDP) and then approximate

dynamic programming (ADP) is used to solve problem instances based on a represen-

tative scenario. Least squares policy evaluation (LSPE) and least squares temporal

difference (LSTD) algorithms are employed to determine the best approximate poli-

cies possible. An experimental design is conducted to investigate problem features

such as conflict duration, attacker and defender weapon sophistication, and defended

asset values. The LSPE and LSTD algorithm results are compared to two benchmark

policies (e.g., firing one or two interceptors at each incoming tactical ballistic missile

(TBM)). Results indicate that ADP policies outperform baseline polices when con-

flict duration is short and attacker weapons are sophisticated. Results also indicate

that firing one interceptor at each TBM (regardless of inventory status) outperforms

the tested ADP policies when conflict duration is long and attacker weapons are less

sophisticated.

Key words: air and missile defense, dynamic weapon target assignment problem,

Markov decision processes, approximate dynamic programming, approximate policy

iteration, least squares policy evaluation, least squares temporal difference
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AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH

FOR COMPARING FIRING SOLUTIONS IN A NETWORKED AIR DEFENSE

ENVIRONMENT

I. INTRODUCTION

Over 35 countries have theater ballistic missile (TBM) capabilities. Some TBMs

have ranges of up to 3000 kilometers and the ability to deliver payloads of 1000 kilo-

grams [1]. Some nations (e.g., North Korea and Iran) stockpile less sophisticated

versions while other nations (e.g., China) continue to advance their technology to

include faster moving missiles, missiles with multiple reentry vehicles, and maneuver-

able missiles capable of significantly altering their ballistic trajectory.

Throughout the first half of 2016 North Korea launched numerous TBMs to in-

clude a Musudan Intermediate Range Ballistic Missile in June that traveled almost

250 miles before crashing into the sea between North Korea and Japan [5]. Secretary

of Defense Ash Carter affirmed the United States commitment to TBM defense in

response to this launch [5]. North Korea then fired a KN-11 ballistic missile from a

submarine on July 9th, further provoking tensions in the region [14]. In response to

these launches, the United States and South Korea agreed to move a Terminal High

Altitude Air Defense (THAAD) battery to the peninsula on July 13th [13]. This move

has been highly criticized by Chinese and Russian officials as a destabilizing action

[12]. These events, as well as the continued military presence of the United States in

the Middle East, underscore a critical need for an intelligent TBM defense policy.

The United States divides its TBM defense into three segments: the boost defense

segment, the mid-course defense segment, and the terminal defense segment [1]. The
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Missile Defense Agency (MDA) has expended significant resources on boost segment

defense, yet it remains difficult to intercept TBMs with any level of accuracy when

they are in the boost phase of their trajectory. Therefore, the MDA limits efforts in

this segment mostly to providing early launch detection. This policy is underscored by

a 2012 National Research Council report that stated, “Boost-phase missile defense is

not practical or cost-effective under real-world conditions for the foreseeable future”

[7]. Budget cuts within the MDA have reduced its budget by 23 percent over the

past eight years from 11 billion dollars to 8.5 billion dollars. Former MDA director

Lt. Gen. Trey Obering (ret.) recently called for more aggressive research into boost

phase defense stating,

“Even if we’re only talking about North Korea and Iran, we have to invest
in this R&D to keep up with that limited threat, because those threats
are evolving and they’re becoming more mature, and then, of course, if
we’re talking about a very aggressive China or a more belligerent Russia,
we’ve got a long way to go to address that as well.”[23]

Unfortunately, the boost phase limitations reduce intercept opportunities to the mid-

course and terminal phase of the TBM’s trajectory.

The Aegis Ballistic Missile Defense system provides a mid-course defense with the

Standard Missile-3 (SM-3) interceptor. The United States Navy currently employs

33 Aegis capable platforms - five cruisers and 28 destroyers - and significant efforts

are underway to place the Aegis ashore variant in high risk areas. The Aegis began

development under the Reagan administration, performing its first successful flight

test intercept in 2002 and becoming fully operational in 2005 [1].

The terminal defense segment offers the highest probability of intercept by current

air and missile defense systems, but also portends the highest threat to the defended

assets. The United States currently relies on the Patriot air defense system, the

THAAD system, and the Aegis with its Standard Missile-2 (SM-2) interceptor for

2



terminal defense [1]. Raytheon designed the original Patriot in 1969 and it made

its first successful intercept in 1975 [1]. Although the system has undergone several

technological updates to include enhanced computing, new interceptors, and most re-

cently an update to the radar’s front end, it is still heavily reliant on 1960’s technology

[1]. Lockheed Martin designed the THAAD in 1987 and it successfully intercepted a

test target in 1999 [1].

These three systems indicate two major concerns with the United States missile

defense capabilities. Current systems are all based on thirty-year old or older tech-

nology, and there is at least a ten-year lag between system design and initial fielding

of the system. In 1999, the United States Army began to seek a replacement for the

Patriot with a greater detection range and a 360 degree radar capability. Lockheed

Martin won the contract for an international venture called the Medium Extended Air

Defense System (MEADS) in 2005. Though this program showed promise in detec-

tion range, networkability, and multi-function 360 degree capability, it was canceled

in 2015 after the Army expended over two billion dollars on the project [1].

The United States and its allies face not only an ever growing enemy arsenal of

TBMs, but also an ever improving TBM technology impelled by countries like China

and Iran. With the loss of the MEADS program, the United States must rely on

outdated technology to counter both mass attacks by unsophisticated TBMs and

pointed attacks by very technologically sophisticated TBMs. Moreover, the United

States will likely not experience a vast improvement in TBM defense capabilities for

a decade due to the long lag time required for the procurement process. This forces

the United States to rely more heavily upon the segmented defense-in-depth strategy

advocated by the MDA as it cannot rely solely on the Patriot or the THAAD to defend

assets in the terminal phase. Paramount to this strategy is the ability to network the

limited air and missile defense assets available together in order to provide a common

3



air picture, provide early detection, and allow for a larger and more tailored coverage

area. The United States Army is currently developing, under contract with Northrup

Grumman, the Integrated Air and Missile Defense Battle Command System (IBCS)

[1]. Once fielded, this networked command and control system will allow individual

systems like the Patriot and the THAAD to network together and truly provide an

integrated defense-in-depth.

Although a networked system of air defense assets improves the ability to detect,

identify, track, and engage an enemy TBM, it also creates the added burden of decid-

ing which air and missile defense system within the network should engage the TBMs

and with how many interceptors. A fundamental tension exists between the potential

catastrophic damage caused by TBMs and the extremely limited number of air and

missile defense system interceptors available. Given an air and missile defense battery

versus a single salvo of incoming missiles, formulating and solving a static weapon-

target assignment problem could determine the best firing solution to protect the

defended asset. Unfortunately, in a high intensity conflict, the air and missile defense

battery must expect numerous salvos of incoming TBMs. The defender must now

consider how many interceptors to fire at the current wave, while anticipating future

attacks. Addressing a multi-salvo missile defense situation changes the problem from

a static weapon-target assignment problem to a dynamic weapon-target assignment

problem. The problem is further complicated when considering multiple air and mis-

sile defense batteries with overlapping target coverage and the ability to engage the

same set of incoming TBMs with differing probabilities of kill.

Previous work examines situations concerning the location of integrated air and

missile defense systems assets (e.g., [9]) and the control of such assets in a multi-

salvo engagement (e.g., [6]). However, such work assumes the air and missile defense

systems operate in parallel (i.e., they are capable of engaging the same targets at the
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same time). This assumption is somewhat unrealistic due to the limited number of

air defense batteries available for asset coverage. There are very few assets, if any,

that would be defended by multiple air defense systems of the same type. However, it

is possible that an asset will be defended by multiple air defense systems at different

segments within the MDA’s defense strategy. This defense-in-depth strategy assumes

the individual air and missile defense systems operate in series when engaging TBMs.

For example, an Aegis may have the ability to engage during the mid-course segment

at one point in time, and a THAAD or Patriot system may have the ability to engage

during the terminal phase at a later point in time.

Due to the extremely high speed of TBMs, the air defense community generally

adopts a shoot-shoot-look policy in the terminal phase [1]. This policy allows air

defense assets to fire two interceptors at an incoming missile before it penetrates the

defended assets “keep out zone.” This shoot-shoot-look policy increases the probabil-

ity of a kill, but it is much more resource intensive than the policy of shoot-look-shoot

where the decision maker is able to fire one interceptor, assess the battle damage, and

then if need be, fire another interceptor [8]. Knowing that the defender will always

fire two interceptors in a shoot-shoot-look policy or only one in a shoot-look-shoot

policy can significantly decrease the action space for a dynamic program.

An appropriate set of research questions of interest to the missile defense com-

munity is as follows. Does a hybrid of these policies exist that performs closer to the

optimal policy and that can be more reasonably implemented in an actual combat

environment? Does a networked air and missile defense allow for better management

of resources and/or less expected cost to the defended assets? Is it better to have

a more effective air and missile defense system at the mid-course or in the terminal

phase? How do different types of incoming TBMs affect the firing policy? How does

a defended asset’s remaining value affect the firing policy?

5



This thesis provides two ways to address this networked, defense-in-depth, air

and missile defense problem and answer the research questions of note. First, a

Markov decision process (MDP) model is developed that allows sequential decisions

to be made as the defender encounters a salvo of incoming TBMs by the first air

and missile defense asset (during the mid-course segment), then at a later decision

epoch another air defense asset encounters the salvo (during the terminal segment).

This model allows the system to determine the optimal firing solution over an infinite

horizon of decision epochs. If the series of air defense assets fail to destroy all TBMs in

an incoming salvo, the TBMs will decrease the defended assets health with a specified

probability of hit. The system continues to evolve until it reaches an absorbing state

wherein all defended assets are destroyed. Although formulating and solving this

MDP provides the optimal solution, it may take hours to determine the solution for

practically-sized problem instances. Moreover, the solution is often too complicated

to be administered by air defense coordinators.

Therefore, we utilize approximate dynamic programming (ADP) to develop strate-

gies based on approximation algorithms. This allows for attaining solutions to larger

problem instances while handling dimensionality issues that might otherwise make

the problem computationally intractable. To answer our relevant research questions,

we employ a least squares policy evaluation (LSPE) and a least squares temporal

difference (LSTD) ADP approach. We compare these ADP solutions to three ‘closed

loop’ policies based on current doctrine. We investigate the ‘closed loop’ policy of

shooting one interceptor at each incoming TBM and the ‘closed loop’ policy of shoot-

ing two interceptors at each incoming TBM (as long as the inventory of interceptors

allow). We also investigate a hybrid of these two policies wherein the defender fires

one interceptor at traditional TBMs and two interceptors at MeRV TBMs at the mid-

course phase while shooting two interceptors at traditional TBMs and one interceptor

6



at the MeRV TBMs at the terminal phase. Although this hybrid ‘closed loop’ policy

requires some level of radar discrimination of the incoming TBMs, it has performed

the best in initial policy evaluation simulations.

The remainder of this thesis is organized as follows. Chapter 2 presents a literature

review for the dynamic weapon target assignment problem and ADP. Chapter 3

offers a more extensive description of the networked air and missile defense problem.

Chapter 4 presents the MDP model formulation as well as the ADP solution approach.

Chapter 5 describes the findings when applying the aforementioned methodology.

Chapter 6 provides conclusions and suggested future research efforts.

7



II. LITERATURE REVIEW

Two areas of literature inform the development and analysis of the networked air

defense in depth problem. The first area concerns the weapon-target assignment prob-

lem (WTAP). The second area involves approximate dynamic programming (ADP).

2.1 WTAP

The WTAP dates back to the 1950s when Manne [17] developed a linear pro-

gramming approximation to solve the problem. Even then he noted that for military

applications a simultaneous decision is unrealistic and should be modeled in a sequen-

tial manner. This distinction led to the development of two primary classes of the

WTAP, the static and the dynamic.

Xin et al. [27] describe the classes as follows. In a static WTAP, all targets are

known, and all weapons are assigned to the targets in a single stage. In a dynamic

WTAP, the decisions occur over many stages, so at one decision point weapons are

assigned to the currently known targets and then a new set of targets is presented.

2.2 Static WTAP

The static WTAP investigates the assignment of weapons to targets without re-

garding the impact of time. Consider the following situation as a motivating example.

Suppose there are 10 tanks and 15 anti-tank teams that represent the weapons. In

this class of WTAP, the battle manager selects the weapon-target assignment decision

that maximizes the expected value of the destroyed tanks based on each anti-tank

weapon’s associated probability of kill. Before the advent of modern computers,

problems like this proved difficult and time consuming to solve. Today large-scale

instances of static WTAP can be solved rather easily with linear programming and

8



heuristic algorithms. While interesting in some cases, this class of problem does not

achieve the level of detail required for realistic air defense related problems. Indeed,

very few situations exist in which an air defense battle manager would have the ability

to consider all incoming TBMs at one point in time and assign interceptors to maxi-

mize a selected optimality criterion. Instead, the battle manager will likely observe a

single incoming salvo of TBMs at a time and be forced to make the decision on how

many interceptors to fire at the incoming salvo while knowing that future salvos are

likely. The number and size of incoming salvos can be informed by knowing what

phase of a conflict the battle manager is in and by having intelligence on how many

threat TBMs the enemy has placed within range of the defended asset. Knowing this

information and seeking to formulate a more realistic problem class takes us to the

dynamic WTAP.

2.3 Dynamic WTAP

Similar to the static WTAP, the dynamic class seeks to assign weapons to targets

in the most effective manner to ensure the highest probability of a kill, the greatest

decremented value of the target, or the least decremented value of defended assets.

Different in this problem class, as compared to the static case, is that the decisions are

made in a sequential manner as more information presents itself. Consider the tank

example described in Section 2.2. In a dynamic WTAP, the battle manager does not

consider the simultaneous engagement of all 10 tanks. Instead, the battle manager

might observe a grouping of five tanks and be able to assign some number of the anti-

tank weapons to those five tanks, knowing that future tank sightings are likely. Once

assigned the battle manager then moves to the next decision epoch wherein another

grouping of tanks is presented, and the assignment decision must be made again.

The dynamic WTAP allows a much more realistic representation of combat decision
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making under uncertainty. However, it also makes the problem far more complex and

with each level of complexity the problem becomes more computationally intractable.

Uncertainty in an air defense related problem comes from several sources. The

battle manager may not know the number and types of the TBMs the enemy will

fire during any given salvo. The duration of the engagement, represented by the

number of incoming salvos, may be uncertain. The probability of detect for the

battle manager’s radar systems and the probability of kill for any fired interceptors

model inherent uncertainties present in the problem. The accuracy of any networked

capabilities may also be uncertain. Exploring just a few of these uncertainties creates

a very large problem instance. Due to the nature of air defense, the decisions of how

many interceptors to fire must be made in a matter of minutes, if not seconds, which

requires any solution method to be implemented quickly. Optimally solving large-

scale dynamic WTAPs instances can take computers several hours if not days. This

challenge suggests the appropriateness of using approximate dynamic programming

to implement algorithms that will provide high-quality solutions in very short periods

of time.

Leboucher et al.[16] ignore the general assumption in a dynamic WTAP that the

defender knows exactly what asset the TBM is targeting and instead only reveal a

particular region that the TBM is targeting. This feature adds realism to the air

defense problem in that even though radars can accurately predict a TBM’s general

path, they cannot truly assess what target the TBM will hit during the boost- or mid-

course phase. In this thesis this uncertainty is addressed by assigning a probability

that an incoming TBM hits each asset. Modeling this problem feature allows a TBM

to be ignored by all defending assets and still not destroy its target.

The dynamic WTAP can be solved through heuristic methods such as the work

done by Xin et al. [26] and Hoisen et al. [10]. Although these authors do not give
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the actual optimal solutions, this is common due to the complexity of the problem.

These problems can be solved using genetic algorithms such as the anytime algorithm

created by Wu et al. [25]. They developed an algorithm that evolved over time as

more information became available. This algorithm improved gradually but always

had a reasonable and feasible decision ready for implementation. The problem can

also be solved by formulating an integer linear program like the one designed by

Karasakal [11], and though this paper considered both point and area defense, it did

so by making the assumption of a shoot-look-shoot policy that severely limits the

action space and therefore the true optimal solution.

Bertsekas et al. [3] discuss a much more complex WTAP than that of the single

weapon static case. In this case the defender must decide how many weapons to

assign to each target in the current wave of attack and how many to hold for later

waves. Due to the curse of dimensionality, which denies the ability to find an exact

solution in medium- or large-scale problems, the authors use neuro-dynamic program-

ming approach to help handle the increased number of dimensions. This approach

determines a sub-optimal yet high-quality solution to the problem, and the authors

develop four policies to approximate the solution to the dynamic WTAP.

Davis et al. [6] discussed the dynamic WTAP from the defender’s perspective,

considering a smart attacker that knew the outcome of each salvo and fired appro-

priately at surviving targets. They allowed an overlapping of each air and missile

defense site’s coverage area so one asset could be defended by two SAM sites. This

allowed for the investigation of optimal firing policies when one SAM site was low on

interceptors and another was not, or when some defended assets had lower values and

others had higher values. Their problem instance was small enough to find an exact

solution; they also investigated the quality of ADP approaches.
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2.4 ADP

Assigning interceptors to missiles in a dynamic WTAP is a stochastic process that

must be performed under uncertainty. Formulation of an MDP model allows us to

determine the optimal decision now (i.e., for the current salvo) while accounting for

the uncertain future salvos. Unfortunately, because of the curse of dimensionality, we

are unable to quickly find an optimal solution to large-sized problems of this class.

Therefore, for the dynamic WTAP we employ ADP techniques. Powell [18] provides

a thorough starting point for ADP procedures. Earlier works include Bertsekas and

Tsitsiklis [2] and Sutton et al. [22].

We can achieve solutions through two different algorithmic approaches: approx-

imate value iteration (AVI) and approximate policy iteration (API). For the partic-

ular dynamic WTAP variant examined in this thesis, we utilize an API algorithmic

strategy to map the system state (i.e., incoming salvo make up, asset health, and in-

terceptor inventory) to the action (i.e., how many interceptors to fire at each missile)

in order to maximize the expected value of the defender’s surviving assets.

Powell [20] describes four different policies for solving an ADP. The first policy

he addressed was a myopic cost function wherein the defender attempts to minimize

damage for just one decision epoch. Next, he described a look-ahead policy wherein

the defender would start to plan over a set number of decision epochs, but only takes

the action for the current period. Some problems benefit from using policy function

approximations such as look-up-tables, neural networks, or linear regression. For the

DWTAP a defender might have the policy that when it is above a prescribed threshold

interceptor inventory it utilizes a shoot-shoot-look policy and when it is below that

inventory level it uses a shoot-look-shoot policy. The final policy discussed by Powell

[20] is based on value function approximations. For our problem, we utilize a value

function approximation scheme, adopting a basis function approach to determine the
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value of the post-decision state. Van Roy et al. [24] used a modified Bellman’s

equation with the post-decision decision state to reduce the outcome space making

large-scale problems more easily solved. As we conduct the policy evaluation part of

our API algorithm, we update the value function approximation using least squares

temporal difference (LSTD) learning. Bradtke and Barto [4] showed that LSTD was

an efficient algorithm to find an approximate solution to a fixed policy. Lagoudakis

and Parr [15] advanced this method as they investigated the interactions of state and

action pairs.
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III. Methodology

3.1 Problem Description

Theater ballistic missiles (TBMs) and cruise missiles (CMs) present an extremely

dangerous threat to United States forces in the early stages of combat. Although

efforts are made to destroy enemy TBM and CM stockpiles before moving friendly

forces into a protected area of interest, the United States cannot expect to completely

negate the enemy’s use of these weapons. While the United States has several options

for defending assets from TBMs and CMs, such protective systems are available in

relatively small quantities. This forces the United States to leave some assets unpro-

tected and nearly guarantees that assets will only be protected by one air defense

asset.

Over the past several years the Army has worked on developing a networked

air defense capability that will allow available air defense assets to work in concert,

providing defense in depth as a TBM or CM moves through a protected area. This

capability gives the defender several decisions to make when developing an air defense

plan. This includes determining which assets will be defended and by what type of

air defense system, how many interceptors to provide each air defense site, how many

interceptors to fire at a given salvo, and what firing policy to utilize.

In our problem instance of interest, the defender has two assets to protect, each

with a co-located air defense system (i.e., surface to air missile (SAM) site) providing

terminal phase protection. An air defense system is also located closer to the enemy

launch site, providing mid-course protection. Each friendly asset has an associated

value and health state. As asset’s health state is decremented if the asset is hit by

an incoming missile. Each SAM site has a predetermined number of interceptors

that is not replenished during the engagement. An asset, but not the co-located air
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defense asset, is destroyed if its health state decreases to zero. The attacker has

predetermined numbers of two types of TBMs that are fired in salvos. The number of

salvos is uncertain from the perspective of the defender. The attacker does not know if

its previous salvos successfully destroyed the defended asset so it could continue to fire

missiles at a completely destroyed asset. The two types of TBMs fired by the attacker

include a traditional TBM and a TBM with multiple reentry vehicles (MeRV). Once

the attack commences, the defender decides how many interceptors to fire from the

mid-course air defense system and, if it declines to fire or if the interceptors miss, it

must decide how many interceptors to fire from the terminal phase defense systems.

If the salvo contains a MeRV TBM and is not destroyed by the mid-course defense

system this TBM will split into three missiles (targets). The defender seeks a policy

that minimizes the expected value of the assets remaining after all incoming salvos.

3.2 Methodology

This section describes the MDP model formulation of the DWTAP and provides

the mathematical underpinning for the ADP algorithm discussed later in this chapter.

MDP Formulation

The MDP model is formulated in the following manner.

1. Let T = {1, 2, ..., T}, T ≤ ∞ be the set of decision epochs.

2. The state space consists of three components: the status of each asset, the

inventory of each SAM site, and the number of TBMs in each SAM’s area of

responsibility.

(a) The asset status component is defined as

At = (Ati)i∈A ≡ (At1, At2, ..., At|A|),
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whereA = {1, 2, ..., |A|} is the set of all assets, andAti ∈ {0, 0.25, 0.5, 0.75, 1}.

Ati is the health status of asset i ∈ A at decision epoch t and shows what

percentage of the asset remains.

(b) The SAM inventory status is defined as

Rt = (Rti)i∈A ≡ (Rt1, Rt2, ..., Rt|A|),

where Rti ∈ {0, 1, ..., ri}, and ri = initial inventory of interceptors at SAM

site i ∈ A. Rti is the number of interceptors at SAM site i ∈ A at decision

epoch t.

(c) Let M̂tj = {1, 2, ..., |M̂tj|} be the set of all fired attacker missiles of type

j ∈ J at decision epoch t, where J is the set of all TBM types that can

be fired by the attacker. For example, j ∈ J indicates whether the missile

is a traditional TBM or a MeRV and its location. M̂tj is the collection

of observed incoming TBMs of type j ∈ J that must be targeted by the

defense at time t. The attack salvo is expressed as

M̂t = (M̂tji)j∈J ,i∈A,

where M̂tji ⊆ M̂tj is the set of missiles of type j ∈ J ′ targeting asset

i ∈ A at decision epoch t. The information provided by M̂t is available to

the defender at time t.

Using these components, we define St = (At, Rt, M̂t) ∈ S as the state of the

system at decision epoch t, where S is the set of all possible states.

3. At each epoch t, the defender must decide how many to assign to each TBM

targeting an asset. The defender must make this choice from among the SAM

sites that have the given asset within their respective protection radii. We

can deduce a coverage matrix for the entire defended area from the a priori

16



placement of SAM sites relative to the cities. From this coverage matrix, we

can determine which SAM sites can intercept each incoming missile. Let xtijk ∈

N0 be the number of interceptors fired by SAM site i ∈ A against missile

k ∈ M̂A
tij at decision epoch t, where M̂A

tij is defined as the set of missiles of

type j ∈ J that can be intercepted by SAM site i at decision epoch t. Let

xt = (xtijk)i∈A,j∈J ,k∈M̂A
tij

denote our decision vector. We define the set of all

feasible defender actions (i.e., assignment of interceptors to missiles) as

XSt = {xt :
∑
j∈J

∑
k∈M̂A

tij

xtijk ≤ Rti, ∀ i ∈ A},

where the constraint
∑
j∈J

∑
k∈M̂A

tij

xtijk ≤ Rti ensures that each SAM site i ∈ A

cannot fire more interceptors than it has in inventory.

4. The transition functions explain how the the system evolves as new information

becomes known [19]. We define the asset status transition function as

At+1,i =


0 if Ati = 0,

Ât+1,i(xt) otherwise,

∀i ∈ A,

where Ât+1,i(xt) is a random variable representing the status of each asset i ∈ A

after salvo M̂t and the interceptor allocation decision xt. This information

depends on xt since the number of interceptors fired at the inbound TBMs affects

an asset’s health status. We define the inventory status transition function as

Rt+1,i = Rti −
∑
j∈J

∑
k∈M̂A

tij

xtijk, ∀ i ∈ A,

and note that the asset status transition function is stochastic whereas the

inventory status transition function is deterministic since there is no probability

associated with firing the interceptor —once the decision to fire the interceptor
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is made we reduce the inventory. Concerning the transition of the attacker

missiles status, let M̂t+1, j(xt) denote a random variable representing the status

of incoming TBMs of type j ∈ J ′ ⊂ J , where J ′ is the set of types with

terminal locations.

The state transition function is defined as St+1 = SM(St, xt,Wt+1), where

Wt+1 = Ât+1, M̂t+1. Wt+1 represents all the information (i.e., asset status and

attacker salvo) that becomes known at decision epoch t+ 1.

5. At each decision epoch t, the defender incurs an uncertain, immediate cost as a

result of its decision. We define this cost as Ĉ(St, xt, Ât+1,i) =
∑
i∈A

vi(Ati−Ât+1,i),

where vi is the value of asset i ∈ A. We rewrite the cost function in terms of

only the current state and decision by taking its expected value

C(St, xt) = E
{∑
i∈A

vi(Ati − Ât+1,i)|St, xt
}

.

We seek the policy that minimizes our expected total cost savings. That is,

we are trying to maintain as much value as possible in the assets. This optimal

policy is denoted as π∗, and our objective is denoted as

min
π∈Π

Eπ
{

T∑
t=0

γtC(St, X
π
t (St))

}
.

The notation Eπ shows that the expectation is dependent upon the defender’s

actions.

The parameter γ ∈ (0, 1) is a discount factor that implicitly models the

number of salvos or decision epochs T . We note the following relationship

E[T ] =
1

1− γ
. (1)
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The defender does not know how many salvos they need to defend against which

makes this case more difficult than a simple optimization problem. The infinite

time horizon requires the defender to make optimal decisions in the face of an

uncertain number of incoming salvos of TBMs. To determine the optimal policy,

we must find a solution to the Bellman equation

J(St) = min
xt∈XSt

(C(St, xt) + γE{J(St+1)|St, xt}). (2)

6. We define the decision function (i.e., policy) as

Xπ(St) = arg min
xt∈XSt

(C(St, xt) + γE{J(St+1)|St, xt}),

where π represents a policy.

ADP Formulation

Although this MDP model enables the determination of an exact solution to

the DWTAP, it is only computationally tractable for very small problems. In any

instance of interest to the air defense community, the problem quickly becomes too

large to solve optimally. For example, if we look at the size of the state space S,

where St = (At, Rt, M̂t) ∈ S is an arbitrary state. The tuples At, Rt, and M̂t

represent the status of each asset, the status of each SAM battery’s inventory, and

the attacker TBMs at decision epoch t, respectively. Since asset status can be from

0, .25, . . . , 1 there are 5|A| possibilities for At. The different SAM sites have different

max inventories, but if they each had a max of 12 interceptors then there are 13|R|

possibilities for Rt. If M is the maximum number of attacker missiles that can be

located in any SAM’s area of responsibility at any epoch t, then there are
(|A|+M

M

)
possibilities for M̂t. This means that an instance of this problem with three SAM sites,
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a max of 12 interceptors per site, and 12 points where missiles can be located creates

a state space of nearly one billion different states. Exhaustive enumeration of a state

space this size is computationally intractable to find the exact solution. Additionally,

the DWTAP air defense problem suffers from the curse of diminsionality in reference

to the action space as well as the state space. Since the defender can choose to fire

zero or up to two interceptors at every TBM in the corresponding SAM site’s area of

responsibility, the feasible actions can increase into the millions with only 14 available

firing points. Such a large action space makes solving this problem to the optimal

solution computationally intractable even if the state space did not.

ADP offers solution strategies to handle both of the issues described in the previ-

ous paragraph. The approximate policy iteration (API) algorithmic strategy approx-

imates solutions utilizing Equation (2). Therefore we rewrite the Bellman equation

and use the post-decision state variable convention. Letting Jx(Sxt ) be the value

of being in post-decision state Sxt , we can show the relationship between J(St) and

Jx(Sxt ) with the following equations

Jx(Sxt−1) = E{J(St)|Sxt−1}, (3)

J(St) = min
xt∈XSt

(C(St, xt) + γJx(Sxt )), (4)

Jx(Sxt ) = E{J(St+1)|Sxt }

By substituting Equation (4) into Equation (3), we obtain the Bellman equation

around the post-decision state variable

Jx(Sxt−1) = E
{

min
xt∈XSt

(C(St, xt) + γJx(Sxt ))
∣∣∣Sxt−1

}
.

Using the post-decision state form instead of the standard form of the Bellman equa-

tion requires the swapping of the expectation and minimum operators and allows

us to avoid approximating the expectation inside of the optimization problem. This
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allows us to control the structure and take advantage of approximation techniques.

With ADP we will step forward in time and solve the problem stochastically

instead of enumerating the entire state space and using techniques like backward

induction to solve the problem exactly. We are able to randomly choose a pre-decision

state St and make a decision xt to move to the post-decision state Sxt .

We can now handle large state spaces, but we still must contend with approxi-

mating the expectation. We can do this by constructing a post-decision state variable

which allows us to avoid this approximation. Van Roy et al. [24] first used this term,

and Powell and Van Roy [21] define the post-decision state variable as the state at

time t which is right after a decision xt is made, but before any new information Ŵt+1

arrives. Now the state transition function St+1 = SM(St, xt,Wt+1) can be broken into

two steps

Sxt = SM,x(St, xt),

and

St+1 = SM,W (Sxt ,Wt+1),

where Sxt is the post-decision state variable. For this DWTAP air defense problem, the

post-decision state is given by Sxt = (Axt , R
x
t ), where Axt = (Axti)i∈A is the component

concerning asset status and Rx
t = (Rx

ti)i∈A is the component concerning interceptor

inventory status.

Value Function Approximation

The value function is approximated using regression methods. Similar to linear

regression where we seek to find a vector using observations to fit a model that

will predict a new unknown observation using a set of variables, for value function

approximation we seek to find a parameter vector θ using observations that are created
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from a set of basis functions (φf (St))f∈F . The set F of basis functions reduces the size

of the state variable to those factors that we are most concerned with. For example,

a basis function f ∈ F for our problem might be the remaining value of a defended

asset. Using the post-decision state, we write our value function in a similar way from

linear regression

J̄x(Sxt ) =
∑
f∈F

θfφf (S
x
t ). (5)

Our Bellman equation is then expressed as follows

J̄x(Sxt−1) = E

{
min
xt∈XSt

(C(St, xt) + γ
∑
f∈F

θfφf (S
x
t ))
∣∣∣Sxt−1

}
.

Algorithmic Strategy

API uses a series of inner loops to evaluate a set policy. It then uses an outer

loop to improve the policy. For least squares temporal difference (LSTD), this is

done by updating the θ vector after each inner loop completes and using the updated

θ vector to better approximate the value function in the next outer loop iteration.

Each time the algorithm finishes an inner loop it updates the θ vector and performs

another iteration of the outer loop to seek further improvement. Algorithm 1 shows

API-LSTD modified to solve the air defense problem.

The algorithm consists of K policy evaluation loops and N policy improvement

loops. After initializing a θ vector as the representation of a base policy, the policy

evaluation loop begins by generating a random post-decision state. Once the value

φ(Sxt−1,k) is recorded, we simulate forward to the next pre-decision state and select

the best decision using exhaustive enumeration. We could also use a genetic algo-

rithm to increase time savings, but exhaustive enumeration allows us to investigate

a wider range of basis functions. We record the cost C(St,k, xt) and basis function
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evaluations of the post-decision state, φ(Sxt,k). We obtain K temporal difference sam-

ple realizations where the kth temporal difference given the parameter vector θn is

(C(St,k, xt) + γφ(Sxt,k)
T θn)− φ(Sxt,k−1)T θn.

The policy improvement loop occurs once the Kth temporal difference sample re-

alizations is collected. We can describe the basis function vectors and the cost vector

in the following manner. Let

Φt−1 ,


φ(Sxt−1,1)>

...

φ(Sxt−1,K)>

 , Φt ,


φ(Sxt,1)>

...

φ(Sxt,K)>

 , Ct ,


C(St,1)

...

C(St,K)

 ,

where matrices Φt−1 and Φt contain rows of basis function evaluations of the sampled

post-decision states, and Ct is the cost vector. We perform a least squares regression

of Φt−1 and Φt against Ct to ensure the sum of the K temporal differences equals zero

and calculate θ̂. We update our estimate of θ using αn = a
a+n−1

, a ∈ (0,∞) as our

smoothing function. The smoothing function manages the rate at which the function

converges. Higher values of a slow the rate that αn drops to zero, which allows later

N loop iterations to have more impact on the θ vector. Smoothing θ completes one

policy improvement step.

For least squares policy evaluation (LSPE), we obtain a collection of M value

and post-decision state pairs and use least squares regression to fit a linear model to

approximate our a value function. This is done by updating the θ vector after each

inner loop completes and using the updated θ vector to better approximate the value

function in the next outer loop iteration. Each time the algorithm finishes an inner

loop it updates the θ vector and performs another iteration of the outer loop to seek

further improvement. Algorithm 2 shows API-LSPE modified to solve the air defense

problem.
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Algorithm 1 LSTD-API Algorithm [19]

1: Step 0: Initialize θ0.
2: Step 1:
3: for n=1 to N (Policy Improvement Loop)
4: Step 2:
5: for m=1 to M (Policy Evaluation Loop)
6: Generate a random post-decision state, Sxt−1,m.
7: Record φ(Sxt−1,m).
8: Simulate transition to next pre-decision state, St,m.
9: Determine decision x = Xπ(St,m|θn−1) through exhaustive enumeration of

feasible actions.
10: Record cost C(St,m, x).
11: Record basis function evaluation φ(Sxt,m)
12: end for
13: End
14: Update θn and the policy:
15: θ̂ = [(Φt−1 − γΦt)

T (Φt−1 − γΦt)]
−1(Φt−1 − γΦt)

TCt
16: θn = αnθ̂ + (1− αn)θn−1

17: end for
18: Return Xπ(St|θN) and θN .
19: End

The algorithm consists of K policy evaluation loops and N policy improvement

loops. After initializing a θ vector as the representation of a base policy, the policy

evaluation loop begins by generating a random post-decision state. Once the value

φ(Sxt−1,k) is recorded, we simulate forward to the next pre-decision state and select

the best decision using exhaustive enumeration. We record the value V (St,k, xt) and

basis function evaluations of the post-decision state, φ(Sxt,k).

The policy improvement loop occurs once the Kth policy evaluation sample real-

izations is collected. We can describe the basis function vectors and the cost vector

in the following manner. Let

Φt−1 ,


φ(Sxt−1,1)>

...

φ(Sxt−1,K)>

 , Vt ,


V (St,1)

...

V (St,K)

 ,
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where matrix Φt−1 contains rows of basis function evaluations of the sampled post-

decision states, and Vt is the value vector. We perform a least squares regression of

Φt−1 against Vt. We update our estimate of θ using αn = a
a+n−1

, a ∈ (0,∞) as our

smoothing function. Smoothing θ completes one policy improvement step.

Algorithm 2 LSPE-API Algorithm [19]

1: Step 0: Initialize θ0.
2: Step 1:
3: for n=1 to N (Policy Improvement Loop)
4: Step 2:
5: for m=1 to M (Policy Evaluation Loop)
6: Generate a random post-decision state, Sxt−1,m.
7: Record φ(Sxt−1,m).
8: Simulate transition to next pre-decision state, St,m.
9: Determine decision x = Xπ(St,m|θn−1) through exhaustive enumeration of

feasible actions.
10: Record cost V (St,m, x).
11: end for
12: End
13: Update θn and the policy:
14: θ̂ = [(Φt−1)T (Φt−1)]−1(Φt−1)TVt
15: θn = αnθ̂ + (1− αn)θn−1

16: end for
17: Return Xπ(St|θN) and θN .
18: End
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IV. Results

4.1 Computational Results

In this chapter, we examine a problem of interest to the military and utilize the

approximate dynamic programming (APD) techniques described in Chapter 3 to seek

policy solutions to this problem. We compare policies found by our ADP algorithms

to current baseline policies used by the air defense community. We construct a theater

ballistic missile (TBM) defense scenario as the tactical underpinning for our analysis.

From this scenario, we create 32 test instances and, for each instance, determine

approximate solutions for each baseline policy using simulation techniques. We solve

each instance approximately by employing the ADP solution methodologies. A set

of designed experiments is conducted to identify which ADP algorithmic parameter-

values result in the best solution. We conduct computational experiments for both

least squares policy evaluation (LSPE) and least squares temporal difference (LSTD),

and compare the two ADP algorithms to each other to determine the best overall ADP

algorithm (and policy) for each of the 32 instances. We also compare the current air

defense policies and the acquired ADP policies using vignettes that are of interest

from earlier simulation-based experiments.

Representative Scenario.

We present a networked TBM defense utilizing the Missile Defense Agency’s

(MDA) defense-in-depth plan for a mid-course and terminal phase defense. For this

scenario the defender seeks to protect two assets. This scenario places an Aegis air

defense system at the mid-course point, a THAAD with the first defended asset, and

a Patriot with the second defended asset. See Figure 1 for a detailed diagram of this

scenario. All TBMs pass through the Aegis’ area of responsibility, and the Aegis has
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an opportunity to fire up to two interceptors at each TBM. We allocate 12 intercep-

tors to the Aegis, which constitutes half of the payload of the Aegis equipped ship

[1]. The THAAD and the Patriot can only fire at TBMs targeting their defended

asset, but they also have the opportunity to fire up to two interceptors at each TBM.

The attacker fires a combination of traditional TBMs and multiple reentry vehicle

(MeRV) TBMs. If the MeRV is missed (or not targeted) by the Aegis, it splits into

three missiles (targets) before the THAAD or Patriot have an opportunity to fire at it.

The TBMs, if missed or not fired at in the terminal phase, have a given probability of

hitting its intended target. This probability of hit models the technical sophistication

of the attacker’s weaponry (e.g., flight control, guidance, and warhead technology).

If the TBM hits its targeted defended asset, it decrements the asset by a preassigned

amount of one quarter of the asset’s total value. The defended asset can sustain up

to four hits before being completely destroyed. A discount factor is used to model

how many expected salvos the defender will encounter. See Davis et al. (2016) for a

description of this modeling approach.

Attacker

Mid-Course
Phase

Terminal
Phase

Aegis AOR

THAAD AOR Patriot AOR

Attacker 
TBM Course

Defender 
Mid-course

Defender 
Terminal

Defender

Figure 1. Scenario Diagram
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From this basic scenario, we develop 32 test instances by varying four of the

problem features. We first varied the number of salvos the defender can expect to

engage, or the duration of the attack, as indicated by γ. Exploratory simulations,

based on the number of available interceptors in each phase, allowed us to choose two

γ-values, 0.8 and 0.9, to investigate the impact the expected number of salvos had on

the ADP policy.

The second problem feature we varied was the enemy’s level of technological so-

phistication – that is, the enemy may have fairly accurate TBMs or inaccurate TBMs.

We chose a probability of hit of 0.8 for the technologically superior attacker and a

probability of hit of 0.5 for the technologically inferior attacker.

The third problem feature we varied was the defender’s level of technological

sophistication, seeking to capture the accuracy of the defender’s interceptors to suc-

cessfully engage the TBMs. We chose a probability of kill for the technologically

superior defender of 0.8, 0.9, and 0.85 for the Aegis, THAAD and Patriot, respec-

tively. We chose a probability of kill for the technologically inferior defender of 0.7,

0.8, and 0.75, for the Aegis, THAAD, and Patriot respectively.

The fourth problem feature we varied was the defended asset value. We wanted

to investigate how a higher, lower, or equal value of the defended assets protected by

the THAAD and Patriot would affect the ADP policy. We assigned equal values of

24 for both Asset 1 and Asset 2 for the Low/Low case, values of 48 for Asset 1 and 24

for Asset 2 for the High/Low case, values of 24 for Asset 1 and 48 for Asset 2 in the

Low/High case, and equal values of 48 for both Asset 1 and Asset 2 in the High/High

case. Table 1 shows the problem feature settings for each test instance.
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Table 1. Test Instances

Problem Features
Expected Conflict

Duration
Attacker’s Technological

Sophistication
Defender’s Technological

Sophistication
Defended Asset

Values
1 Short (E[T ] = 5) Low (pH = 0.5) Medium (pK = 0.7, 0.8, 0.75) Low/Low
2 Short (E[T ] = 5) Low (pH = 0.5) Medium (pK = 0.7, 0.8, 0.75) High/Low
3 Short (E[T ] = 5) Low (pH = 0.5) Medium (pK = 0.7, 0.8, 0.75) Low/High
4 Short (E[T ] = 5) Low (pH = 0.5) Medium (pK = 0.7, 0.8, 0.75) High/High
5 Short (E[T ] = 5) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) Low/Low
6 Short (E[T ] = 5) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) High/Low
7 Short (E[T ] = 5) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) Low/High
8 Short (E[T ] = 5) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) High/High
9 Short (E[T ] = 5) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) Low/Low
10 Short (E[T ] = 5) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) High/Low
11 Short (E[T ] = 5) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) Low/High
12 Short (E[T ] = 5) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) High/High
13 Short (E[T ] = 5) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) Low/Low
14 Short (E[T ] = 5) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) High/Low
15 Short (E[T ] = 5) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) Low/High
16 Short (E[T ] = 5) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) High/High
17 Long (E[T ] = 10) Low (pH = 0.5) Medium (pK =0.7, 0.8, 0.75) Low/Low
18 Long (E[T ] = 10) Low (pH = 0.5) Medium (pK =0.7, 0.8, 0.75) High/Low
19 Long (E[T ] = 10) Low (pH = 0.5) Medium (pK =0.7, 0.8, 0.75) Low/High
20 Long (E[T ] = 10) Low (pH = 0.5) Medium (pK = 0.7, 0.8, 0.75) High/High
21 Long (E[T ] = 10) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) Low/Low
22 Long (E[T ] = 10) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) High/Low
23 Long (E[T ] = 10) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) Low/High
24 Long (E[T ] = 10) Low (pH = 0.5) High (pK = 0.8, 0.9, 0.85) High/High
25 Long (E[T ] = 10) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) Low/Low
26 Long (E[T ] = 10) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) High/Low
27 Long (E[T ] = 10) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) Low/High
28 Long (E[T ] = 10) High (pH = 0.8) Medium (pK = 0.7, 0.8, 0.75) High/High
29 Long (E[T ] = 10) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) Low/Low
30 Long (E[T ] = 10) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) High/Low
31 Long (E[T ] = 10) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) Low/High
32 Long (E[T ] = 10) High (pH = 0.8) High (pK = 0.8, 0.9, 0.85) High/High
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Experimental Design.

For each of the 32 test instances, we wish to determine the best parameter settings

for Algorithms 1 and 2. We focus on parameters N,K, φ, a, and η. Table 2 shows

the 2-level, 5-factor experimental design, and Table 3 shows the set of features for

each design level of the φ factor. The levels for each factor were chosen based on

initial experimental runs of the model. These experimental runs also suggested that

the instrumental variables (IV) method for LSTD would not perform well for these

instances, and so the IV method was not utilized.

Experimental Results.

For each test instance, we ran a full factorial experiment for three random number

seeds (i.e., three replications) for a total of 96 runs. For each run, we recorded the

mean and standard deviation, and calculated the difference between the ADP policy

means and the means garnered from our two baseline policies. For each scenario, we

chose the ADP policy (and noted the attendant parameter settings) that provided

the largest difference between the baseline policies and the ADP policy.
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Table 2. Experimental Design for Algorithmic Features

N K φ a η
25 1000 1 10 10
50 1000 1 10 10
25 2000 1 10 10
50 2000 1 10 10
25 1000 2 10 10
50 1000 2 10 10
25 2000 2 10 10
50 2000 2 10 10
25 1000 1 100 10
50 1000 1 100 10
25 2000 1 100 10
50 2000 1 100 10
25 1000 2 100 10
50 1000 2 100 10
25 2000 2 100 10
50 2000 2 100 10
25 1000 1 10 100
50 1000 1 10 100
25 2000 1 10 100
50 2000 1 10 100
25 1000 2 10 100
50 1000 2 10 100
25 2000 2 10 100
50 2000 2 10 100
25 1000 1 100 100
50 1000 1 100 100
25 2000 1 100 100
50 2000 1 100 100
25 1000 2 100 100
50 1000 2 100 100
25 2000 2 100 100
50 2000 2 100 100

Table 3. Basis Function Features

φ φ0(S) φ1(S) φ2(S) φ3(S) φ4(S) φ5(S)
1 1 At Rx

t Axt
2 1 Rx

t Axt (Rx
t )

2 (Axt )
2 Rx

tA
x
t
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4.2 Least Squares Policy Evaluation

Using the problem features and experimental design described in Section 4.1, we

implemented the LSPE algorithm annotated in Algorithm 2. This required 3072 runs

to perform the full factorial experiment for all problem and algorithmic features with

three replications. The LSPE ADP algorithm provided a θ-vector for each of these

3072 runs. We then utilized a simulation to determine the mean performance and

standard deviation for each of those 3072 θ-vectors. We executed 2000 simulation

runs for each θ-vector in order to gain confidence that we found an accurate mean.

We compared the ADP results to the two baseline policies. The first baseline

policy (Baseline Policy 1) was to fire one interceptor at each incoming TBM (as long

as the SAM site inventory allowed), and the second baseline policy (Baseline Policy

2)was to fire two interceptors at each TBM (if the SAM site inventory did not allow

for firing two, only then would the SAM fire one). We executed 2000 simulation

runs for the two baseline policies. In exploratory runs of the simulation, we found

that firing one interceptor at each incoming TBM generally outperformed firing two

interceptors for the problem features being explored. We compared the means of the

policies found by our LSPE algorithms to the two baseline policies. The results for

the best ADP policy versus the baseline polices for each scenario are shown in Table

4.
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Table 4. LSPE Results - Quality of Solution Using Best θ-vector

Instance (γ, pH, pK, Asset Value) Best Algorithm Parameters (N,k,a,η, φ) ADP Policy 95% CI Baseline Policy 1 95% CI Baseline Policy 2 95% CI
1 (0.8, 0.5, 1, Low/Low) 25, 2000, 100, 1, 2 † † 5.75± 0.71 7.55± 0.64 7.59± 0.82
2 (0.8, 0.5, 1, High/Low) 25, 1000, 10, 10, 2 † † 5.68± 0.71 8.01± 0.68 7.97± 0.85
3 (0.8, 0.5, 1, Low/High) 25, 2000, 100, 10, 1 6.09± 0.73 7.42± 0.63 6.77± 0.78
4 (0.8, 0.5, 1, High/High) 25, 2000, 10, 1, 2 6.05± 0.72 7.55± 0.63 7.2± 0.8
5 (0.8, 0.5, 1, Low/Low) 25, 2000, 100, 1, 2 4.78± 0.67 4.29± 0.52 7.25± 0.84
6 (0.8, 0.5, 2, High/Low) 50, 2000, 100, 10, 2 4.71± 0.68 4.43± 0.51 7.41± 0.84
7 (0.8, 0.5, 2, Low/High) 25, 1000, 100, 1, 2 4.99± 0.7 4.13± 0.46 6.48± 0.78
8 (0.8, 0.5, 2, High/High) 50, 1000, 10, 10, 2 5.15± 0.71 4.18± 0.5 6.42± 0.78
9 (0.8, 0.8, 2, Low/Low) 50, 2000, 10, 1, 1 †7.11± 0.8 11.68± 0.84 8.53± 0.88
10 (0.8, 0.8, 1, High/Low) 25, 1000, 10, 1, 2 †7.68± 0.83 10.39± 0.77 9.15± 0.91
11 (0.8, 0.8, 1, Low/High) 50, 2000, 100, 10, 1 7.49± 0.81 10.8± 0.78 8.33± 0.85
12 (0.8, 0.8, 1, High/High) 25, 2000, 100, 1, 1 † † 7.37± 0.81 10.82± 0.79 9.36± 0.92
13 (0.8, 0.8, 2, Low/Low) 25, 2000, 10, 10, 2 6.07± 0.77 5.79± 0.58 7.98± 0.89
14 (0.8, 0.8, 2, High/Low) 50, 2000, 10, 10, 2 6.12± 0.79 5.69± 0.58 6.68± 0.81
15 (0.8, 0.8, 2, Low/High) 25, 1000, 10, 10, 1 5.97± 0.78 5.94± 0.6 8.65± 0.91
16 (0.8, 0.8, 2, High/High) 50, 2000, 100, 10, 2 6.02± 0.76 6.25± 0.62 7.31± 0.84
17 (0.9, 0.5, 1, Low/Low) 25, 1000, 100, 10, 1 21.11± 1.3 20.88± 1.13 24.46± 1.35
18 (0.9, 0.5, 1, High/Low) 25, 1000, 100, 10, 1 21.02± 1.29 19.9± 1.12 22.58± 1.32
19 (0.9, 0.5, 1, Low/High) 50, 1000, 100, 10, 2 20.27± 1.29 20.17± 1.12 23.6± 1.34
20 (0.9, 0.5, 1, High/High) 25, 2000, 100, 10, 1 21.16± 1.3 21.49± 1.15 23.4± 1.32
21 (0.9, 0.5, 1, Low/Low) 25, 1000, 100, 1, 2 19.46± 1.29 ? ? 15.22± 1.06 22.46± 1.34
22 (0.9, 0.5, 2, High/Low) 50, 2000, 10, 1, 1 19.55± 1.29 ? ? 14.33± 1.02 22.46± 1.35
23 (0.9, 0.5, 2, Low/High) 25, 2000, 10, 10, 2 19.6± 1.29 ? ? 14.44± 1.04 21.47± 1.31
24 (0.9, 0.5, 2, High/High) 25, 1000, 10, 1, 1 19.53± 1.28 ? ? 14.5± 1.03 21.6± 1.33
25 (0.9, 0.8, 2, Low/Low) 50, 1000, 10, 1, 2 †22.97± 1.34 25.83± 1.2 25.66± 1.38
26 (0.9, 0.8, 1, High/Low) 50, 1000, 100, 1, 1 †23.34± 1.35 26.98± 1.24 25.94± 1.38
27 (0.9, 0.8, 1, Low/High) 25, 2000, 100, 1, 1 †22.85± 1.34 25.16± 1.21 25.91± 1.38
28 (0.9, 0.8, 1, High/High) 50, 1000, 10, 1, 1 23.15± 1.33 25.76± 1.21 25± 1.37
29 (0.9, 0.8, 2, Low/Low) 25, 1000, 100, 10, 1 21.38± 1.34 ? ? 17.95± 1.11 24.19± 1.39
30 (0.9, 0.8, 2, High/Low) 50, 1000, 10, 10, 2 21.12± 1.32 19.64± 1.15 23.83± 1.38
31 (0.9, 0.8, 2, Low/High) 25, 1000, 10, 1, 2 20.88± 1.34 ? ? 18.01± 1.12 24.53± 1.4
32 (0.9, 0.8, 2, High/High) 50, 2000, 10, 1, 1 21.12± 1.34 19.42± 1.17 22.74± 1.36

†† denotes statistical significance (as compared to the next best policy) with 95% confidence
† denotes statistical significance (as compared to the next best policy) with 90% confidence
?? denotes statistical significance (as compared to the ADP policy) with 95% confidence
? denotes statistical significance (as compared to the ADP policy) with 90% confidence
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The LSPE policy achieves statistically significant improvement over the two base-

line policies in 8 of the 32 test instances. The instances that show LSPE policy

superiority at the 95% confidence level are 1, 2, and 12. Instances 9, 10, 25, 26, and

27 show statistical significance at the 90% confidence level. LSPE attains the best

mean result in 14 of the 32 instances. We see that LSPE outperforms the baseline

policies when the duration of the conflict is short or when the enemy has weapons

with a high probability of hit. It is not surprising that in circumstances where if

missed the incoming TBM has a high likelihood of damaging its targeted asset that

the LSPE policy outperforms the baseline policies, but it is interesting that in shorter

duration conflicts when the two baseline policies show very similar means that the

ADP is able to outperform at a statistically significant level.

Baseline Policy 1 outperforms LSPE in Instances 21, 22, 23, 24, 29, and 31 at the

95% confidence level. Examining these instances, we find common characteristics:

long duration conflict where the attacker had lower quality weapons and the defender

had higher quality weapons.

It is of further interest that Baseline Policy 2, which is currently the Army’s

implemented policy, is never significantly better than the LSPE policy or Baseline

Policy 1. This suggests that as the military moves to an integrated, defense-in-depth

strategy it needs to consider a different firing policy for networked air defense systems

with both mid-course and terminal systems.
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Figure 2. Cost Difference between High and Low Attacker Weapon Quality

Figure 2 highlights the cost difference between LSPE and Baseline Policy 1 when

we look at the two different levels of attacker weapon quality for short and long

duration conflicts. In this we observe that for high quality attacker weapons LSPE

performs better than the baseline policy regardless of conflict duration, but for low

quality attacker weapons Baseline Policy 1 is superior for long duration conflicts.

Note that this graphic implies a linear relationship that might not exist.

Figure 3. Cost Difference between High and Medium Defender Weapon Quality

Figure 3 highlights the cost difference between LSPE and Baseline Policy 1 when

we look at the two different levels of defender weapon quality for short and long

duration conflicts. In this we observe that for medium quality defender weapons
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LSPE performs better than the baseline policy regardless of conflict duration, but for

high quality defender weapons Baseline Policy 1 is always superior. Note that this

graphic implies a linear relationship that might not exist.

Table 5. LSPE Results - Robustness

Algorithm Parameters Run 1 Run 2 Run 3 Mean Best Difference
1 25, 2000, 100, 1, 2 5.75 6.62 6.23 6.20 5.75 0.45
2 25, 1000, 10, 10, 2 7.00 5.68 6.81 6.50 5.68 0.82
3 25, 2000, 100, 10, 1 6.09 6.52 6.27 6.29 6.09 0.20
4 25, 2000, 10, 1, 2 6.05 6.52 6.93 6.50 6.05 0.45
5 25, 2000, 100, 1, 2 5.69 4.78 6.03 5.50 4.78 0.72
6 50, 2000, 100, 10, 2 4.71 5.60 6.14 5.49 4.71 0.77
7 25, 1000, 100, 1, 2 6.04 4.99 5.85 5.63 4.99 0.64
8 50, 1000, 10, 10, 2 5.15 5.94 5.72 5.60 5.15 0.45
9 50, 2000, 10, 1, 1 8.27 9.43 7.11 8.27 7.11 1.16
10 25, 1000, 10, 1, 2 7.68 8.43 8.37 8.16 7.68 0.48
11 50, 2000, 100, 10, 1 8.59 7.49 8.33 8.13 7.49 0.65
12 25, 2000, 100, 1, 1 7.37 8.21 8.50 8.03 7.37 0.66
13 25, 2000, 10, 10, 2 6.07 7.07 7.47 6.87 6.07 0.80
14 50, 2000, 10, 10, 2 6.95 7.15 6.12 6.74 6.12 0.62
15 25, 1000, 10, 10, 1 7.00 5.97 7.35 6.77 5.97 0.80
16 50, 2000, 100, 10, 2 6.02 7.05 6.86 6.65 6.02 0.62
17 25, 1000, 100, 10, 1 22.46 21.11 22.85 22.14 21.11 1.03
18 25, 1000, 100, 10, 1 21.02 22.30 21.47 21.60 21.02 0.58
19 50, 1000, 100, 10, 2 21.77 20.27 22.24 21.42 20.27 1.15
20 25, 2000, 100, 10, 1 22.06 22.92 21.16 22.05 21.16 0.89
21 25, 1000, 100, 1, 2 20.90 21.27 19.46 20.54 19.46 1.09
22 50, 2000, 10, 1, 1 21.00 19.55 21.10 20.55 19.55 1.00
23 25, 2000, 10, 10, 2 19.60 21.19 20.17 20.32 19.6 0.72
24 25, 1000, 10, 1, 1 21.74 21.44 19.53 20.90 19.53 1.37
25 50, 1000, 10, 1, 2 23.56 25.45 22.97 23.99 22.97 1.02
26 50, 1000, 100, 1, 1 23.34 24.44 25.11 24.30 23.34 0.96
27 25, 2000, 100, 1, 1 25.92 22.85 25.10 24.62 22.85 1.78
28 50, 1000, 10, 1, 1 24.80 24.97 23.15 24.31 23.15 1.16
29 25, 1000, 100, 10, 1 21.38 22.06 23.68 22.37 21.38 0.99
30 50, 1000, 10, 10, 2 22.16 21.12 24.05 22.45 21.12 1.33
31 25, 1000, 10, 1, 2 23.06 20.88 22.07 22.00 20.88 1.12
32 50, 2000, 10, 1, 1 23.62 24.48 21.12 23.07 21.12 1.95

Table 5 shows the LSPE-determined three-run averages for the θ-vectors for each

replication of the 32 instances. These three-run averages show a general robustness
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across the θ-vectors garnered from the given parameter settings. For most of the

instances, we have a less than 1 point difference between the best mean and the aver-

age mean. Though this would impact the statistical significance of those parameter

settings versus the baseline policies, it does not indicate that any of the chosen best

θ-vectors were simply outliers. This result suggests an overall robustness with respect

to the consistency of performance of the LSPE algorithm.

Meta Analysis

Table 6. Parameter Estimates - LSPE

Estimate Standard Error t Ratio Probability < |t|
Intercept -120.26 0.22 -555.56 < 0.0001
N (outer loops) 0.00 0.00 -0.79 0.43
K (inner loops) 0.00 0.00 1.47 0.14
a (smoothing) 0.00 0.00 -2.05 0.04
η (regularization) 0.00 0.00 0.61 0.54
φ (basis function set) -0.01 0.02 -0.34 0.73
Conflict Duration 157.27 0.23 694.73 < 0.0001
Attacker Weapon Quality 5.74 0.08 76.05 < 0.0001
Defender Weapon Quality -1.44 0.02 -63.43 < 0.0001
Asset 1 Value 0.00 0.00 -1.61 0.11
Asset 2 Value 0.00 0.00 -0.37 0.71

R-Square Adj 0.99

When examining the parameter estimates in Table 6, we see that conflict duration,

attacker weapon quality, and defender weapon quality have the largest impact on the

change in the mean of the damage caused by the incoming TBMs. Although not

statistically significant at a 95% confidence level, the Asset 1 value factor appears to

explain more of the variation than the N, η, φ and the Asset 2 value factors. Recall

that Asset 1 is protected by the THAAD air defense system and the THAAD had

the highest pK across all scenarios. This suggests that having the more effective air

defense system co-located with the higher value asset could lead to more impact in

minimizing the mean damage incurred, an intuitive result.
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Examining the parameter settings for the ADP algorithm, we observe that the

smoothing component explains a significant portion of the variation (with a 0.04 p-

value). Although the number of inner loops (K) is not statistically significant, it does

explain more variation than the other parameter settings. It is likely that the number

of outer loops (N) did not have more impact on the mean because the smoothing

coefficient did have an impact, and new information garnered from a higher number

of outer loops received very little weight. We likely did not have a large enough

difference in the number of inner loops, and had we had time to perform 4000 inner

loops, we might have seen this coefficient become statistically significant. Since the

φ did not have an impact we might benefit from searching for other sets of basis

functions that perform better than the baseline policies.

4.3 Least Squares Temporal Difference

Using the problem features and experimental design described in Section 4.1 we

implemented the LSTD algorithm annotated in Algorithm 1. This required 3072 runs

to perform the full factorial experiment of all problem and algorithmic features with

three replications. The LSTD ADP algorithm provided a θ-vector for each of these

3072 runs. We then utilized a simulation to determine the performance in terms of

the mean and standard deviation for each of those 3072 θ-vectors. We executed 2000

simulation runs to ensure we had confidence in our garnered mean.

We compared these means to the means for the two baseline policies. We compared

the means of our LSTD algorithms to the two baseline policies. These results for the

best θ-vector versus the baseline for each scenario is shown on Table 7.
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Table 7. LSTD Results - Quality of Solution Using Best θ-vector

Instance (γ, pH, pK, Asset Value) Best Algorithm Parameters (N,k,a,η, φ) ADP Policy 95% CI Baseline Policy 1 95% CI Baseline Policy 2 95% CI
1 (0.8, 0.5, 1, Low/Low) 25, 2000, 10, 10, 2 †6.08± 0.74 7.55± 0.64 7.59± 0.82
2 (0.8, 0.5, 1, High/Low) 25, 2000, 10, 1, 2 † † 6.15± 0.73 8.01± 0.68 7.97± 0.85
3 (0.8, 0.5, 1, Low/High) 25, 2000, 100, 1, 2 6.17± 0.74 7.42± 0.63 6.77± 0.78
4 (0.8, 0.5, 1, High/High) 25, 2000, 100, 10, 2 6.05± 0.73 7.55± 0.63 7.2± 0.8
5 (0.8, 0.5, 1, Low/Low) 25, 1000, 10, 10, 2 4.83± 0.68 4.29± 0.52 7.25± 0.84
6 (0.8, 0.5, 2, High/Low) 50, 2000, 10, 10, 2 4.55± 0.66 4.43± 0.51 7.41± 0.84
7 (0.8, 0.5, 2, Low/High) 50, 1000, 100, 10, 1 4.9± 0.68 4.13± 0.46 6.48± 0.78
8 (0.8, 0.5, 2, High/High) 50, 2000, 100, 10, 2 4.88± 0.7 4.18± 0.5 6.42± 0.78
9 (0.8, 0.8, 2, Low/Low) 25, 1000, 100, 10, 2 7.29± 0.81 11.68± 0.84 8.53± 0.88
10 (0.8, 0.8, 1, High/Low) 50, 1000, 10, 1, 2 † † 7.16± 0.79 10.39± 0.77 9.15± 0.91
11 (0.8, 0.8, 1, Low/High) 50, 2000, 100, 10, 1 7.58± 0.83 10.8± 0.78 8.33± 0.85
12 (0.8, 0.8, 1, High/High) 25, 2000, 10, 10, 1 † † 7.31± 0.8 10.82± 0.79 9.36± 0.92
13 (0.8, 0.8, 2, Low/Low) 25, 1000, 100, 10, 1 6.23± 0.79 5.79± 0.58 7.98± 0.89
14 (0.8, 0.8, 2, High/Low) 25, 1000, 10, 1, 1 6.3± 0.79 5.69± 0.58 6.68± 0.81
15 (0.8, 0.8, 2, Low/High) 25, 2000, 10, 10, 2 5.98± 0.77 5.94± 0.6 8.65± 0.91
16 (0.8, 0.8, 2, High/High) 25, 1000, 10, 10, 1 6.14± 0.79 6.25± 0.62 7.31± 0.84
17 (0.9, 0.5, 1, Low/Low) 25, 1000, 100, 1, 2 20.69± 1.29 20.88± 1.13 24.46± 1.35
18 (0.9, 0.5, 1, High/Low) 25, 1000, 100, 10, 2 21.02± 1.29 19.9± 1.12 22.58± 1.32
19 (0.9, 0.5, 1, Low/High) 25, 2000, 10, 1, 1 21.11± 1.29 20.17± 1.12 23.6± 1.34
20 (0.9, 0.5, 1, High/High) 50, 2000, 10, 10, 2 20.78± 1.3 21.49± 1.15 23.4± 1.32
21 (0.9, 0.5, 1, Low/Low) 25, 2000, 10, 1, 1 19.75± 1.29 ? ? 15.22± 1.06 22.46± 1.34
22 (0.9, 0.5, 2, High/Low) 25, 1000, 10, 10, 1 19.4± 1.28 ? ? 14.33± 1.02 22.46± 1.35
23 (0.9, 0.5, 2, Low/High) 25, 1000, 100, 1, 1 19.62± 1.3 ? ? 14.44± 1.04 21.47± 1.31
24 (0.9, 0.5, 2, High/High) 50, 1000, 100, 10, 2 19.67± 1.29 ? ? 14.5± 1.03 21.6± 1.33
25 (0.9, 0.8, 2, Low/Low) 50, 1000, 10, 10, 1 †23± 1.34 25.83± 1.2 25.66± 1.38
26 (0.9, 0.8, 1, High/Low) 50, 2000, 10, 10, 2 †23.53± 1.36 26.98± 1.24 25.94± 1.38
27 (0.9, 0.8, 1, Low/High) 25, 1000, 10, 1, 2 23.27± 1.36 25.16± 1.21 25.91± 1.38
28 (0.9, 0.8, 1, High/High) 25, 1000, 100, 10, 2 23.25± 1.35 25.76± 1.21 25± 1.37
29 (0.9, 0.8, 2, Low/Low) 50, 1000, 10, 1, 2 21.22± 1.34 ? ? 17.95± 1.11 24.19± 1.39
30 (0.9, 0.8, 2, High/Low) 25, 1000, 10, 1, 2 21.01± 1.34 19.64± 1.15 23.83± 1.38
31 (0.9, 0.8, 2, Low/High) 25, 1000, 100, 10, 2 21.19± 1.35 ? ? 18.01± 1.12 24.53± 1.4
32 (0.9, 0.8, 2, High/High) 50, 1000, 100, 1, 1 21± 1.34 19.42± 1.17 22.74± 1.36

†† denotes statistical significance (as compared to the next best policy) with 95% confidence
† denotes statistical significance (as compared to the next best policy) with 90% confidence
?? denotes statistical significance (as compared to the ADP policy) with 95% confidence
? denotes statistical significance (as compared to the ADP policy) with 90% confidence
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The LSTD policy achieves statistically significant improvement over the two base-

line policies in 6 of the 32 test instances. The instances that show LSTD policy

superiority at the 95% confidence level are 2, 10, and 12. Instances 1, 25, and 26

show statistical significance at the 90% confidence level. LSTD attains the best mean

result in 15 of the 32 instances. We see that LSTD outperforms the baseline policies

when the duration of the conflict is short or when the enemy has weapons with a

high probability of hit. It is not surprising that in circumstances where if missed the

incoming TBM has a high likelihood of damaging its targeted asset that the LSPE

policy outperforms the baseline policies, but it is interesting that in shorter duration

conflicts when the two baseline policies show very similar means that the ADP is able

to outperform at a statistically significant level.

Figure 4. Cost Difference between High and Low Attacker Weapon Quality
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Figure 4 highlights the cost difference between LSTD and Baseline Policy 1 when

we look at the two different levels of attacker weapon quality for short and long

duration conflicts. In this we observe that for high quality attacker weapons LSTD

performs better than the baseline policy regardless of conflict duration, but for low

quality attacker weapons Baseline Policy 1 is superior for long duration conflicts.

Note that this graphic implies a linear relationship that might not exist.

Figure 5. Cost Difference between High and Medium Defender Weapon Quality

Figure 5 highlights the cost difference between LSTD and Baseline Policy 1 when

we look at the two different levels of defender weapon quality for short and long

duration conflicts. In this we observe that for medium quality defender weapons

LSTD performs better than the baseline policy regardless of conflict duration, but for

high quality defender weapons Baseline Policy 1 is always superior. Note that this

graphic implies a linear relationship that might not exist.

Table 8 shows the three-run average for the best θ-vector for each scenario. Similar

to LSPE we see robustness in our best θ-vectors with the difference between the best

and the mean damage value being around one point. Additionally, those instances

with greater than a one point difference were not the same instances that performed

significantly better than the baseline policies, suggesting that even with a different

θ-vector LSTD would still perform better for those test instances.
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Table 8. LSTD Results - Robustness

Algorithm Parameters Run 1 Run 2 Run 3 Mean Best Difference
1 25, 2000, 10, 10, 2 7.28 6.08 7.16 6.84 6.08 0.76
2 25, 2000, 10, 1, 2 6.56 6.92 6.15 6.55 6.15 0.40
3 25, 2000, 100, 1, 2 7.50 6.17 7.22 6.96 6.17 0.80
4 25, 2000, 100, 10, 2 6.71 6.05 7.01 6.59 6.05 0.54
5 25, 1000, 10, 10, 2 4.83 6.45 5.88 5.72 4.83 0.89
6 50, 2000, 10, 10, 2 5.99 5.33 4.55 5.29 4.55 0.74
7 50, 1000, 100, 10, 1 5.87 4.90 5.57 5.45 4.90 0.55
8 50, 2000, 100, 10, 2 4.88 5.19 5.41 5.16 4.88 0.28
9 25, 1000, 100, 10, 2 8.46 7.29 8.54 8.10 7.29 0.81
10 50, 1000, 10, 1, 2 8.34 9.50 7.16 8.33 7.16 1.17
11 50, 2000, 100, 10, 1 7.58 8.44 7.64 7.89 7.58 0.30
12 25, 2000, 10, 10, 1 8.51 7.31 8.50 8.10 7.31 0.80
13 25, 1000, 100, 10, 1 6.66 7.30 6.23 6.73 6.23 0.50
14 25, 1000, 10, 1, 1 6.71 7.61 6.30 6.88 6.30 0.57
15 25, 2000, 10, 10, 2 7.08 5.98 6.90 6.65 5.98 0.67
16 25, 1000, 10, 10, 1 6.14 7.02 7.13 6.76 6.14 0.63
17 25, 1000, 100, 1, 2 20.69 21.59 21.53 21.27 20.69 0.58
18 25, 1000, 100, 10, 2 21.02 22.69 22.35 22.02 21.02 1.00
19 25, 2000, 10, 1, 1 22.70 22.49 21.11 22.10 21.11 0.99
20 50, 2000, 10, 10, 2 20.78 21.86 22.28 21.64 20.78 0.86
21 25, 2000, 10, 1, 1 20.51 19.75 20.62 20.29 19.75 0.55
22 25, 1000, 10, 10, 1 20.58 19.40 20.73 20.24 19.40 0.83
23 25, 1000, 100, 1, 1 21.20 19.62 21.29 20.70 19.62 1.08
24 50, 1000, 100, 10, 2 20.91 19.67 20.85 20.48 19.67 0.81
25 50, 1000, 10, 10, 1 24.69 24.85 23.00 24.18 23.00 1.18
26 50, 2000, 10, 10, 2 26.31 23.53 24.24 24.69 23.53 1.17
27 25, 1000, 10, 1, 2 25.32 23.90 23.27 24.16 23.27 0.90
28 25, 1000, 100, 10, 2 23.43 23.89 23.25 23.52 23.25 0.27
29 50, 1000, 10, 1, 2 22.94 23.36 21.22 22.51 21.22 1.29
30 25, 1000, 10, 1, 2 21.01 22.24 23.05 22.10 21.01 1.09
31 25, 1000, 100, 10, 2 22.68 22.88 21.19 22.25 21.19 1.06
32 50, 1000, 100, 1, 1 21.00 24.84 22.60 22.81 21.00 1.81
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Meta Analysis

Table 9. Parameter Estimates - LSTD

Estimate Standard Error t Ratio Probability < |t|
Intercept -122.76 0.21 -584.40 < 0.0001
N (outer loops) 0.00 0.00 0.57 0.57
k (inner loops) 0.00 0.00 0.1 0.92
a (smoothing) 0.00 0.00 -0.34 0.73
η (regularization) 0.00 0.00 -0.53 0.60
φ (basis function set) 0.00 0.01 -0.32 0.75
Conflict Duration 157.50 0.23 699.06 < 0.0001
Attacker Weapon Quality 5.84 0.08 77.8 < 0.0001
Defender Weapon Quality 0.73 0.01 64.44 < 0.0001
Asset 1 Value 0.00 0.00 -0.27 0.78
Asset 2 Value 0.00 0.00 0.56 0.58

R-Square Adj 0.99

Unlike the meta analysis conducted for LSPE, when we look at the parameter

estimates in Table 9 for the LSTD policy performance, we find that only conflict

duration, attacker weapon quality, and defender weapon quality have a significant

impact on the mean damage incurred. In fact, with the LSTD algorithm, none of

the other terms had values anywhere close to statistical significance. The LSTD

algorithm performed nearly as well as LSPE against the two baseline policies, so

this might show that the LSTD algorithm performs well, regardless of parameter

settings. However, it also suggests that better parameter settings might exist that

would allow LSTD to perform better. Future research should include an expanded

region of experimentation with respect to the LSTD algorithmic feature space.

4.4 ADP Algorithm Comparison

When comparing LSPE to LSTD we see in Table 10 that LSPE proves superior

in 19 of the 32 scenarios. LSTD appears to perform better when duration is short,

attacker weapon quality is low, and defender weapon quality is high. Alternately,
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when duration is long, attacker weapon quality is low, and defender weapon quality

is high LSTD also performs better. In most of the other problem instances LSPE is

either superior or equal to LSTD.

Table 10. Algorithm Comparison

Best ADP Algorithm
Best # of Scenarios

LSPE 19
LSTD 11
Tie 2

4.5 Focused Analysis for Selected Instances

To explore why LSTD performed statistically better than the baseline policies

in Instance 12, why LSPE performed statistically better in Instance 10, and why

Baseline Policy 1 performed statistically better in Instance 24, we conducted a series

of sensitivity analyses where we varied the surface to air missile (SAM) site inventories.

We investigated when the SAM site was low (25% of its starting inventory) and when

it was high (75% of its starting inventory). We looked at what actions the ADP

algorithm took versus the baseline for different inventory combinations of the Aegis,

THAAD, and Patriot systems having a low or high starting condition.

Instance 12, LSPE Focused Analysis

Instance 12 from Section 4.2 is a shorter duration conflict with high quality at-

tacker weapons, medium quality defender weapons, a high-valued Asset 1, and a

low-valued Asset 2. Table 11 shows the results of running 2000 simulations starting

at the different inventory levels. Looking at when the Aegis, THAAD, and Patriot

all have low inventories we see that LSPE no longer performs statistically better than

the Baseline Policy 1. In fact LSPE only performs better when at least two of the
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SAM sites have high inventory statuses. Recall from Table 4 that Baseline Policy 2

(firing two interceptors each) outperformed Baseline Policy 1 (firing one interceptor)

in Instance 12, albeit at a non-significant level. Now in this Low/Low/Low inventory

vignette we see that Baseline Policy 2 performs significantly worse than LSPE and

Baseline Policy 1. In fact as we look across all the investigated inventories for In-

stance 12, we observe that Baseline Policy 2 performs significantly worse, even with

a High/High/High inventory status. This observation suggests that only when the

SAM sites are fully stocked with interceptors does Baseline Policy 2 perform well.

LSPE performs better at a statistically significant level when all SAM site inventory

statuses are at 75%, suggesting little sensitivity in the starting inventory for this

problem instance.
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Table 11. Instance 12 Policy Performance at Different SAM Inventories
(Aegis/THAAD/Patriot)

Instance 12
Low / Low / Low

Policy 95% CI

LSPE 30.95 ± 1.35
Baseline 1 27.14 ± 1.20
Baseline 2 43.44 ± 1.78

High / Low / Low
Policy 95% CI

LSPE 21.99 ± 1.27
Baseline 1 21.53 ± 1.08
Baseline 2 40.82 ± 1.78

Low / High / High
Policy 95% CI

LSPE 19.64 ± 1.20
Baseline 1 21.95 ± 0.97
Baseline 2 29.37 ± 1.66

High / Low / High
Policy 95% CI

LSPE 19.14 ± 1.19
Baseline 1 21.32 ± 1.03
Baseline 2 34.03 ± 1.73

High / High / High
Policy 95% CI

LSPE 14.84 ± 1.08
Baseline 1 18.23 ± 0.89
Baseline 2 29.74 ± 1.65

46



Instance 10, LSTD Focused Analysis

Instance 12 from Section 4.3 is a shorter duration conflict with high quality at-

tacker weapons, medium quality defender weapons, a high-valued Asset 1, and a

high-valued Asset 2. Table 12 shows the results of running 2000 simulations start-

ing at the different inventory levels. Unlike in Instance 10 with LSPE, LSTD only

performed statistically better than Baseline Policy 1 when all SAM site inventories

were at 75%. This suggests more sensitivity to starting inventory conditions. We also

see Baseline Policy 1 outperform LSPE when at least two of the SAM sites inventory

statuses are low. With this starting condition, Baseline Policy 2 performed better

than in Instance 10 since the value of Asset 2 was high and a multiple reentry vehicle

(MeRV) TBM had split into three targets for the SAM protecting Asset 2.
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Table 12. Instance 10 Policy Performance at Different SAM Inventories
(Aegis/THAAD/Patriot)

Instance 10
Low / Low / Low

Policy 95% CI

LSTD 29.87 ± 1.34
Baseline 1 27.62 ± 1.18
Baseline 2 31.56 ± 1.37

High / Low / Low
Policy Decision 95% CI

LSTD 25.67 ± 1.33
Baseline 1 23.2 ± 1.12
Baseline 2 28.36 ± 1.34

Low / High / High
Policy Decision 95% CI

LSTD 20.39 ± 1.21
Baseline 1 22.32 ± 0.98
Baseline 2 20.4 ± 1.21

High / Low / High
Policy Decision 95% CI

LSTD 20.58 ± 1.22
Baseline 1 22.29 ± 1.09
Baseline 2 25.53 ± 1.30

High / High / High
Policy Decision 95% CI

LSTD 14.27 ± 1.07
Baseline 1 17.69 ± 0.90
Baseline 2 21.61 ± 1.24
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Instance 24, Baseline Policy 1 Focused Analysis

Instance 24 from Section 4.2 and Section 4.3 is a long duration conflict with low

quality attacker weapons, high quality defender weapons, a high valued Asset 1, and

a high valued Asset 2. Table 12 shows the results of running 2000 simulations start-

ing at the different inventory levels. We observe no statistical difference between the

performance of LSPE and LSTD in this vignette suggesting that these two algorithms

perform the same for Instance 24. In all of the investigated initial SAM site inven-

tories, we find that Baseline Policy 1 significantly outperforms the ADP algorithms.

We find through these vignettes that even when the two terminal SAM sites have low

interceptor inventories that the APD algorithms continue to fire two interceptors at

each incoming TBM. This shows a lack of value placed on interceptor inventory. The

basis function could be modified to a traditional inventory control problem by adding

an indicator variable to find the right interceptor inventory to switch from firing two

interceptors at each TBM to firing just one interceptor.
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Table 13. Instance 24 Policy Performance at Different SAM Inventories
(Aegis/THAAD/Patriot)

Instance 24
High / Low / Low

Policy 95% CI

Baseline 1 30.31 ± 1.36
LSPE 36.94 ± 1.42
LSTD 36.23 ± 1.43

Low / High / High
Policy Decision 95% CI

Baseline 1 25.02 ± 1.24
LSPE 32.63 ± 1.40
LSTD 32.02 ± 1.40

High / Low / High
Policy Decision 95% CI

Baseline 1 24.13 ± 1.19
LSPE 31.25 ± 1.37
LSTD 30.21 ± 1.36

High / High / Low
Policy Decision 95% CI

Baseline 1 26.52 ± 1.30
LSPE 33.07 ± 1.41
LSTD 32.6 ± 1.42
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V. Conclusions, Recommendations, and Future Research

As tactical ballistic missiles (TBMs) become more readily accessible to threat

nations around the world and as near-peer threats continue to develop more techno-

logically advanced TBMs, the United States must maintain superiority with advanced

air defense systems. However, many of the current systems the United States and

its allies employ are decades old, and there are not significant improvement on the

immediate horizon. This situation requires the United States to employ a networked

defense-in-depth to best utilize the air defense systems in the current inventory. As

the integrated air and missile defense (IAMD) system becomes operational, the air

defense community must reconsider what the best firing strategy is for the limited

interceptor inventory.

The Markov decision process (MDP) allows us to look at the dynamic weapon

target assignment problem (WTAP) in an elegant manner and obtain optimal firing

decisions given small instances. This allows a starting point for comparing the ad-

equacy of other heuristics that can then be used in larger models that are of more

interest to the air defense community.

One option for moving to those larger problem instances is the use of approximate

dynamic programming (ADP). We utilized both the Least Squares Policy Evaluation

(LSPE) and Least Squares Temporal Difference (LSTD) algorithms. We looked at

the current policy of firing two interceptors at each incoming TBM and an additional

policy of only firing one interceptor. We conducted 2000 runs of each of the 32 problem

instances for the two baseline policies and all of the LSPE and LSTD parameter

settings.

The large number of simulations gave us the best chance of finding statistical

significance in an acceptable amount of time. Had we run closer to 10,000 runs, we

likely would have found statistical significance for most of the problem instances.
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LSPE outperformed both baseline policies in 3 of the 32 problem instances at

the 95% confidence level and an additional 5 instances at the 90% confidence level.

Though not at a level of statistical significance, LSPE outperformed the baseline

policies in an additional 6 problem instances and was only outperformed by Baseline

Policy 1 in 6 problem instances.

With little change between the 3 replications of each algorithmic parameter setting

investigated, we found that the best parameter setting for each problem instance

showed robustness, and we found through focused analysis that the algorithms were

not sensitive to starting inventory levels, which is not desirable.

Similarly, LSTD outperformed both baseline policies in 3 of the 32 problem in-

stances at the 95% confidence level and an additional 3 instances at the 90% confi-

dence level. Though not to a level of statistical significance, LSTD outperformed the

baseline policies in an additional 10 problem instances and was only outperformed by

Baseline Policy 1 in 6 problem instances.

With little change between the 3 replications of each algorithmic parameter setting

investigated, we found that the best parameter setting for each problem instance

showed robustness, and we found through focused analysis that the algorithms were

not sensitive to starting inventory levels, which is not desirable.

Baseline Policy 1 outperformed both ADP algorithms in 6 of the 32 instances

and performed statistically the same as them in 16 of the investigated instances. We

found that when conflict duration was short or when defender weapon quality was

lower that Baseline Policy 1 did not perform well, but when the duration was long

and the defender weapon quality was high, this policy performed as well if not better

than the ADP algorithms.

As the IAMD network is employed in the field and the full host of air defense assets

are integrated, the air defense community must consider a movement to either an ADP
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policy, Baseline Policy 1, or some mix of its current policy, Baseline Policy 2, and

Baseline Policy 1. Our analysis indicates that the current policy does not outperform

the ADP policies to a statistically significant level in any of the problem instances.

Though it does outperform Baseline Policy 1 in short-duration, low-defender-quality

weapon instances, this could be easily corrected with a static policy directing when

to change from firing one interceptor to firing two interceptors based on the expected

number of salvos, interceptor inventory, and the interceptors probability of kill

This work assumed the attacker would not know what battle damage (BDA)

occurred from the TBMs they fired and would therefore continue to fire interceptors at

destroyed targets or targets with lower remaining values than other available targets.

This could be made more realistic if we assume the attacker would have visibility of

their BDA by having the attacker fire based on the remaining asset value.

Based on the problem instances where the ADP algorithms performed poorly

against Baseline Policy 1, we might consider a new basis function set that includes an

indicator function that allows the firing decision to change from firing two interceptors

to one based on interceptor inventory. This would allow the ADP policy to continue

to outperform Baseline Policy 1 in the instances it already does, but also perform at

least as well in the instances where Baseline Policy 1 currently outperforms.

This work assumed that the traditional TBM and the TBM with multiple reentry

vehicles (MeRV) caused the same amount of damage. It is unlikely that the smaller

MeRV warheads would cause as much damage as a traditional warhead. Therefore,

another change to enhance the realism would be to investigate how different damage

levels from the warhead impacts the decisions. It is likely that with a lower damage

level for the MeRV, the ADP policy might ignore MeRVs in the terminal phase when

interceptor inventory levels are low.

Due to computational constraints for this work, we only allowed the opportunity
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to fire one wave of interceptors at the mid-course and one wave at the terminal

phase. To truly investigate the firing solution of shoot-shoot-look or shoot-look-shoot

problem, we might allow two waves of interceptors at the mid-course and two at the

terminal phase. This works off the assumption that there is time during those phases

to fire one set of interceptors at incoming TBMs, assess which were destroyed, and

then if any TBMs remain, fire another set of interceptors. This, however, increases

the size of the state space substantially since instead of the 12 current points in space

where a TBM could exist it would be 24.
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