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Abstract 
 

 An experimental study was conducted on continuous wave and pulsed laser 

interaction with graphite, Al, and Ti.  The spectroscopy and plume dynamics from the 

heating and ablation of these materials was examined to characterize laser weapons effects, 

develop graphite response for thermal protection systems, and provide optical diagnostics 

for materials processing.  Tactical missions for laser weapons include a wide variety of 

targets, increasing the demands on the laser lethality community. New approaches to 

reducing the dimensionality of laser and materials interactions are necessary to increase 

predictive capability.  

 Porous graphite samples were irradiated with up to 3.5 kW/cm2 and 1 MJ deposited 

energy from a continuous wave ytterbium 1.07 µm fiber laser.  Visible emission 

spectroscopy reveals C2 Swan (d3Πg -a3Πu) Δv=2, 1, and 0 sequences, CN red (A2Π -

X2Σ+) Δv=-4, -3 sequences, CN violet (B2Σ+-X2Σ+) Δv=+1, 0 sequences and Li, Na, and K 

2P3/2,1/2 – 2S1/2 doublets.  Surface temperatures increased from ~2,500 K at 0.7 kW/cm2 to 

~4,000 K at 3.5 kW/cm2.  Spectral emissivity at 3.9 µm ranging from 0.74-0.93 increases 

by ~8% after laser irradiation.  Spectral simulations demonstrate that the ratio of C2(d) and 

CN(A) column densities are independent of sample porosity.  Column densities increase 

from 0.00093 to 1.6x1012 molecules/cm2 for CN(A) and 0.00014 to 1.4x109 molecules/cm2 

for C2(d) as laser intensities increases from 1.4 to 3.5 kW/cm2. Surface temperatures 

increase by 134 K and CN(A) and C2 (d) emission increase by 100% and 4,200%, 

respectively, in stagnation air flow of 5 m/s. 
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 Emissive plumes from pulsed laser ablation of bulk Ti and Al from KrF laser 

irradiation at laser fluence up to 3.5 J/cm2 and argon background pressures of 0-1 Torr have 

been observed using gated ICCD imagery.  Mass loss for Ti increases from 0.1 – 0.8 

µg/pulse as pulse energy increase from 174 – 282 mJ/pulse (35 -170 photons/atom) and 

decreases by ~30 % as pressure increases from vacuum to 1 Torr.  Early plume energies 

are described by free expansion velocities of 1.57  0.02 and of 1.81  0.07 cm/µs for Ti 

and Al, respectively and up to 90% of the incoming laser energy can be attributed to the Al 

shock front in the mid-field.  The ablation thresholds of 90  27 mJ (1.12  0.34 J/cm2) for 

Ti and 126  13 mJ (1.58  0.16 J/cm2) for Al also represent 30–70 % of the incident laser 

energy.  The decrease in mass loss at higher pressures is attributed to plasma shielding of 

the target surface. 

 Emissive plumes resulting from pulsed ablation of titanium targets have been 

observed using a gated ICCD camera to characterize the evolution of velocity distributions 

as the plume expands into vacuum, Ar and He backgrounds. Shifted Maxwell Boltzmann 

distributions with flow speeds of u > 0.1 cm/µs are adequate only for neutral Ti expansion 

into vacuum. Ionized Ti velocity distribution shows deviation from a conventional shifted 

Maxwell-Boltzmann distribution.  Near the target, the time of flight data clearly indicates 

several distinct distributions for the neutral Ti, with faster component consistent with the 

ionized Ti velocity distribution.  Expansion into He and Ar are clearly non-Maxwellian, 

with the highest velocity groups suffering collisions in the shock front. Leading edge 

velocities decrease more rapidly for Ar, consistent with momentum conservation. 

Expansion into He maintains the appearance of the vacuum distribution at low velocities 
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but shows a decrease in the leading-edge velocity and an enhancement of the intensity of 

the highest-velocity groups at farther target distances. Determination of velocity 

distributions from time of flight data is complicated by translation-to-electronic excitation 

rates, intraplume collisional dynamics, and non-hydrodynamic conditions. 
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LASER HEATING OF GRAPHITE AND PULSED LASER ABLATION OF 

TITANIUM AND ALUMINUM 

 
 

I.  Introduction 
 

Since the first laser system was created in 1960, the US DoD has been interested in 

high power laser systems for defense related applications [1].  Laser weapon systems such 

as the USAF Airborne Laser have traditionally been developed for strategic, long-range 

missions.  These missions require atmospheric beam propagation over long distances, 

something most suitable for a continuous wave laser due to its relatively low irradiance, 1-

10 kW/cm2 [1], [2].  Recently, interest in tactical mission uses for laser weapons has risen, 

with systems like the USAF Advanced Tactical Laser (ATL), the US Navy’s Laser Weapon 

System (LAWS), the US Marine Corps Ground Based Air Defense System (GBAD), and 

the US Army’s High-Energy Laser Mobile Systems being developed [3]–[5].  Instead of 

targeting strategic defense targets such as intercontinental ballistic missiles, tactical laser 

weapon systems might be utilized to engage closer targets such as a remotely piloted 

aircraft (RPA) or for force protection missions such as counter-rocket or counter-mortar 

[3].  Furthermore, pulsed lasers may be employed for counter sensor, lidar, beacon, and 

illuminator missions [1], [6]–[8]. 

Materials with high strength to weight ratios such as Al and Ti are traditionally 

utilized as aircraft components.  Understanding laser effects on these metals is of interest 

for defense related applications [9].  Carbon composite materials offer superior weight 

advantages, superior formability to complex shapes, and the ability to tailor the stiffness of 
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the material [10].  With these advantages, the development of carbon composite materials 

has led to large carbon composite material percentages of military aircraft (~40% of the F-

22) [11] and commercial aircraft (~50% of the Boeing 787 Dreamliner) [12].  The current 

study explores continuous wave (cw) laser irradiated carbon and pulsed ablation of metal 

targets. 

Prior study of laser interaction with carbon composite is rather limited.  The 

complexity of the heating of the many components and layers of carbon composites makes 

the study of even thermal conduction challenging [13].  Graphite is studied here as a 

surrogate material for the effects of laser heating on the carbon in carbon composite 

materials without the added complications of the polymer matrix.  Pulsed laser ablation of 

graphite has been studied extensively for the purposes of making carbon-containing thin 

films, carbon nanotubes, or basic combustion research [14]–[22].  Comparatively little 

research on cw irradiation of graphite has been conducted [23], with the majority objectives 

to find basic thermodynamic properties of carbon such as the sublimation temperature and 

the triple point.  

While pulsed laser systems are not traditionally desirable for long range weapons 

missions, they may be more suited to tactical missions in certain environments.  Pulsed 

laser systems are utilized in many non-military applications, to include production of thin 

films [15], material manufacturing [24], and scientific investigation using laser induced 

breakdown spectroscopy (LIBS) [25].  An extensive body of literature exists on laser 

heating and ablation of Al to include sources with pulse durations of > 1 ns [26]–[30], laser 

ablation with Nd:YAG laser systems at 1.06 µm [31]–[34], and sources with < 1 ns pulse 

duration [35], but the study of UV ablation of Al is rather underdeveloped.  Comparatively, 
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less investigation into Ti ablation has been conducted, with studies mainly limited to 

determining electron density [36], [37], electronic temperatures [38], and TOF 

distributions [39], [40] in air and vacuum but providing little insight into the evolving 

plume dynamics at different ambient conditions.   

 The expansion of laser ablated plumes is a complex process that must account for 

laser plume interaction, intraplume constituent interactions, plume background 

interactions, plasma recombination, and excited species radiation [15], [41], [42].  

Currently, there is no model that can account for all of the processes that occur from 

beginning when the initial photon interacts with the surface to the end of the plume 

expansion resulting in thermalization of the plume constituents.  Experimental knowledge 

of the plume expansion physics will aid in development of models to predict laser-target 

effects by informing the physics and serving as model verification benchmarks.   

Chapter III of this work studies the thermal effects of laser heating of porous 

graphite with a cw Yb 1.07 µm fiber laser depositing up to 1 MJ of energy on target.  

Temporally resolved visible emission spectroscopy is used to monitor gas temperatures 

and column densities of molecular products C2 and CN and compared to temporally 

resolved surface temperature measurements under various laser fluence conditions.  C2 and 

CN spectra are compared for buoyant and stagnation flow conditions.  This work was 

published in Optical Engineering in 2016 [43].     

Chapter IV of this study characterizes the plume dynamics of Al and Ti from KrF 

laser (248 nm, 25 ns pulse duration) pulsed laser ablation through analysis of expanding 

plume shock fronts and plume emissive constituents.  This study examines the influence 

of low pressure (< 1 Torr) Ar environment on plume slowing, and compares the 
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dependence of mass removal on laser fluence and background pressure with the plume 

energy.  Some of the preliminary conclusions from this chapter were published in the SPIE 

Conference Proceedings in 2016 [44] and the whole is being submitted for journal 

publication. 

 Chapter V of this work analyzes the velocity distribution dynamics of a common 

aircraft component metal – Ti – from KrF ablation in various ambient conditions.  Plume 

constituent distributions are traditionally modeled as shifted Maxwell Boltzmann (SMB) 

distributions.  However, empirical application of SMB distribution to data reveals non-

physical parameters such as negative flow speeds [45] and spatially defined (transverse 

and longitudinal) plume temperatures [46].  Time-of-flight data obtained from gated 

emissions imaging of Ti ablation in vacuum, Ar, and He environment is compared to 

discuss the appropriateness of the use of a SMB distribution for laser ablated plumes under 

various conditions.  This work is being prepared for journal submission. 

This work was accomplished in partial collaboration with the Laser Hardened 

Materials Evaluation Laboratory (AFRL/RXAP) and the Air Force Research Laboratory 

(AFRL) Aerospace Systems Directorate (AFRL/RQQM) at Wright-Patterson Air Force 

Base (WPAFB), OH.  The RXAP HEL facility provided and operated the cw laser beam 

for the laser heating of graphite experiments.  The Aerospace Systems Directorate AFRL 

provided the KrF ablation system to include laser, chamber and pumps, optics, and 

consumable gases for pulsed experiments on Ti and Al and personnel support for 

experimental setup.    
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II. Background 

 Laser heating and pulsed laser ablation (PLA) of materials is an active area of 

science that incorporates many disciplines to include statistical mechanics, gas 

dynamics/kinetics, plasma physics, solid state theory, atomic and molecular spectroscopy, 

fluid dynamics, and shock theory.  This section will attempt to summarize some of the 

knowledge required to better understand the problem that exists and the solutions proposed 

in this work.  Additional chapter-specific background information is included in Chapters 

3, 4, and 5. 

2.1 Laser Material (Solid) Interactions 

Light absorption in a material is governed by the Beer-Lambert law (assuming 

monochromatic light, an isotropic medium, and a plane wave) 

𝐼(𝑧) = (1 − 𝑅)𝐼 𝑒  (1) 

where 𝐼  is the laser intensity incident on the target surface, z is the distance into the 

material traveled by the photon, and R is the reflectivity of the material [41].  The target 

reflectivity is directly dependent on the incoming laser irradiation wavelength and angle of 

incidence [47] and a function of material temperature that can change drastically during 

laser irradiation [48].    The absorption coefficient 𝛼 is defined by 

𝛼 =
4𝜋𝜅

𝜆
 

(2) 

where, 𝜅  is the wavelength dependent material specific attenuation coefficient and 𝜆  is 

the vacuum wavelength [41].  Inversion of the absorption coefficient results in the optical 

penetration depth, 
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𝑙 = 𝛼 = . (3) 

The optical penetration depth is the depth into a material in which a photon of a particular 

wavelength will extend before being absorbed [41]. 

As light is absorbed into a material for > ns pulse durations, the absorbed energy is 

transferred to the phonons of the material, increasing the lattice vibrations resulting in a 

heating of the material.  The heat diffusion length or the characteristic length associated 

with the transfer of heat to the material is defined by  

𝑙 ≈ 𝐷𝜏  (4) 

where D is the material heat diffusivity and 𝜏  is the laser pulse duration [41].  If the heating 

of the vibrational lattice becomes large enough to begin to break bonds (i.e., reaches the 

enthalphy of melting, ΔHm), the material will reach a transition phase where all of the 

incoming energy is devoted to converting the solid material into the liquid material.  After 

the material has completely changed to the new liquid phase, it begins to increase in 

temperature again with the incoming energy.  Again, the atoms reach a point where they 

have so much energy that they break the liquid bonds (the energy has reached the enthalpy 

of vaporization, ΔHv, for the material) and the material strongly transitions into a vapor 

phase.  In addition to melting and vaporization, a material may sublimate or transition 

directly from a solid to a vapor without transitioning to the liquid phase.  For the materials 

of interest under the ablation conditions in this study, sublimation due to laser heating is 

only applicable to graphite while melting and vaporization are the thermal phase changes 

applicable to Al and Ti.     
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Al and Ti thermal properties are well known [47], however those of graphite are 

active areas of research as is reflected by the large error bars in Table 1 [23].  Commercially 

produced graphite has varying degrees of porosity dependent on the heating and extrusion 

processes utilized in production.  Porous graphite is comprised of binder material, 

complicating knowledge of “graphite” thermal properties [49]. 

Table 1. Al, Ti, and Graphite thermal property compare at 1 atm pressure [41], [50] 

 
Al Ti Graphite (single crystal) 

Melting Temperature, Tm (K) 933 1,943 -- 

Vaporization Temperature, Tv (K) 2,792 3,560 -- 

Sublimation Temperature, Ts (K) -- -- 3957.5 (62.5) 

*Error bars are in parenthesis (error bars < 1 K are not displayed) 

For high irradiance lasers, laser interaction with the surface can create free electrons 

either due to photoionization, multi-photon ionization or thermionic emission.  The two-

photon ionization rate is proportional to the square of the intensity, making higher intensity 

lasers more effective at multi-photon ionization [51].  According to the Richardson-

Dushman equation, the current density emitted from a metal is proportional to the negative 

of the exponential of the work function divided by the thermal energy [52] 

𝑗 ∝ 𝑇 𝑒
 

 
(5) 

where Φ is the work function of the metal.  Therefore, higher temperatures in the metal 

lead exponentially to an increased thermal emission of electrons. 

The laser-material interaction described above is the traditional picture of laser 

solid interaction via thermal mechanism and is applicable for pulse durations greater than 



8 

picoseconds.  Evidence exists in the literature of nonequilibrium thermal processes in 

which much larger ablation yields are achieved than can be explained through simple 

thermal considerations as discussed above.  This phenomena has been called phase 

explosion and is theorized to occur when the temperature of the material nears the critical 

temperature, thereby creating a gas-liquid metaphase that is ejected resulting in larger 

ablation yields [53].  Phase explosion threshold for Ni and Al in air has been measured to 

be ~ 5 J/cm2 [54], [55].  The phase explosion phenomena exists for relatively long pulse 

durations (> ns); below the nanosecond time scales, where 𝑙  becomes smaller than 𝑙  [41], 

the pulse duration can become shorter than the thermal relaxation time of the material (for 

metals, this is on the order of 10s of picoseconds [56]), requiring other ablation mechanism 

explanations such as electronic (coulombic) ablation [15].      

2.2 Laser Plume Interactions (Pulsed) 

Once the material is vaporized from the surface and while the laser is still on, the 

vaporized plume can be further excited through interactions of the laser with free and bound 

electrons [57].  Free electron-free electron interactions known as inverse Bremsstrahlung 

(IB) are described by the acceleration of free electrons by the incoming laser radiation in 

the presence of ions or neutrals.  These accelerated electrons then collide with atoms either 

ionizing them and/or exciting them in processes called electron impact ionization.  Bound 

electron-free electron interactions commonly known as photoionization involve direct 

photon absorption by a neutral (or ion), thereby exciting an electron to potentially above 

the ionization threshold for the species.   In addition to laser-electron interaction, UV laser 

irradiation of metals has shown a dependence of laser transmission on vaporized plume 
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cluster characteristics [58], interpreted as condensed cluster laser light interaction theories 

such as Rayleigh Scatter [58] or Mie Scatter [59].   

Laser-plume interaction studies have shown that the IB absorption mechanism 

typically dominates at IR wavelengths due to the λ3 dependence of its absorption 

coefficient but that PI and Mie theory tend to dominate more at UV wavelengths [60], [61].  

Additionally, Mie scattering was shown to be a less important (but not-negligible) 

mechanism than Mie absorption [59].  Increased laser absorption by the plume results in 

increased plume speeds [60].  Comparatively, laser scattering processes would either more 

slowly increase the laser energy in the plume or not contribute to the energy of the plume 

at all (depending on the nature of the scattered light).  Both mechanisms would shield the 

target surface from the incoming laser radiation.      

Absorption of the laser energy leads to the formation of a highly ionized plasma 

through processes like electron-impact ionization or photoionization.  Nanosecond pulsed 

laser ablation of Al, Ti, and graphite in Ar background gas for many different laser 

wavelengths and conditions have shown the following atomic species to be present in 

ablation:  Al I, Al II, Ti I, Ti II, C I, C II, Ar I, and Ar II [17], [62]–[65].  Emission 

spectroscopy can be used to determine the electron density and excitation temperature of 

the plume [66], [67].  De Giacomo irradiated Ti with a KrF laser (248 nm) in vacuum and 

used Ti I and Ti II emissions to determine an electron density ne > 9x1017 cm-3 in vacuum 

and Ti temperatures of up to 11,800 K [36].  Nd:YAG ablation of Al with the third 

harmonic wavelength (355 nm) utilized Al I and Al II emissions to determine ne = 2.75 

x1018 cm-3 and Al temperatures of ~8750 K [63].  Pulsed laser ablation of graphite with an 
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Nd:YAG laser (1064 nm) in vacuum, He, Ar, and air backgrounds has yielded electron 

densities of 4x1017 cm-3 in vacuum and 1.4x1017 cm-3 for other background gases and 

electron temperatures of ~41,000 K in vacuum, ~27,000 K in 2.25 mTorr of He, 30,000 K 

in 2.25 mTorr of Ar, and 26,000 K in 0.75 mTorr of air [17], [64].  After the laser is turned 

off, ionization may still occur due to electron impact ionization, but photoionization will 

not occur [68]. 

As is noted in the title, this section is mostly applicable to pulsed lasers and not 

continuous wave (cw) lasers due to the high irradiances achieved by pulsed lasers that can 

create free electrons (>100 kW/cm2) [69].  In this work the maximum cw irradiance 

achieved is 3.5 kW/cm2, orders of magnitude below what is theoretically necessary to 

create a plasma.  

2.3 Pulsed laser ablation plume expansion 

After the initial laser ablation and laser interaction with the ablated material in the 

plume, the laser turns off and the plume expands into the ambient environment.  Fast 

emissions imaging and TOF measurements have shown plume expansion speeds of on 

order 1 cm/µs for vacuum conditions [15].  Comparatively, Phelps et al showed 

YBa2Cu3O7-x plume expansion into various O2 background pressures is slowed 

dramatically due to collisions with the background gas, showing decreasing plume speeds 

recorded for corresponding increasing background pressure resulting in stopping distances 

ranging from ~86 mm in 50 mTorr O2 to ~ 55 mm in 1 Torr O2 [70].  Collisions between 

the expanding plume and background gas cause excitation and emission radiation for both 

the vapor species and the background gas along the contact front [71].  Intraplume 
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collisions between the plume constituents can also lead to enhanced excitation within the 

plume. The kinetic energy of the plume at the contact front has been recorded up to 50 

eV/atom, easily sufficient to ionize and excite the plume constituents and/or the 

background gas [45].  The ionization potentials for Al, Ti, Ar, and He are 6.0, 6.8, 15.8, 

and 24.6 eV, respectively [72].   

Laser induced plume velocity distributions have been described by Maxwell-

Boltzmann distributions superimposed on flow speeds u according to  

𝑓(𝑣) = 𝐴𝑣 𝑒
( )

 (6) 

where T is a temperature parameter describing the range of velocities and A is a collection 

of constants [15], [45].  Various theories have been developed to describe the form of the 

distribution.  Zheng et al theorized that laser induced plumes could be described by the 

theory of isentropic supersonic expansion (which leads to emitted particles with velocities 

of the form of Eq. 6 [73], [74]) and successfully applied this theory to describing the plume 

expansion of superconductors [75], [76].  Others have theorized that the initial vapor plume 

distributions are altered due to the presence of a Knudsen layer - a solid vapor interface 

only a few mean free paths wide in which intraplume collisions convert the initial vapor 

distribution to a shifted Maxwell Boltzmann distribution of the form of Eq. 6 [77], [78].  

2.4 C2 and CN Spectroscopy 

The oxidation of graphite is rapid beginning at surface temperature of ~ 1800K, and 

has recently been studied under cw fiber laser irradiation at 1-4 kW/cm2 [49], [79].  When 

heated to high temperatures, graphite creates molecular species C2 and CN (CN is only 
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produced if in nitrogen environment while C2 is readily produced in numerous ambient 

environments) [14]-[18].  C2 has many transitions that populate the electromagnetic 

spectrum in the ultraviolet (UV), visible (VIS) and near infrared (NIR); however, the only 

transitions that are generally observed in PLA of graphite are those of the Swan bands.  

These bands have an upper electronic state, d3Πg, that is 19,306 cm-1 above the lower 

electronic a3Πu energy level [80]–[82].  CN also produces many transitions in the UV-VIS-

NIR.  The strongest of these are: CN violet (B2Σ+-X2Σ+), with the upper electronic energy 

level 25,753 cm-1 above the X2Σ+ ground state and CN red (A2Π-X2Σ+) with the upper 

electronic sate 9243 cm-1 above the ground state [83]–[85].  This work will concentrate 

primarily on the C2 and CN red transitions. 

The observed visible emissions for C2 Swan and CN red originate and end on 

energy levels that are comprised of rotational energy, vibrational energy, and electronic 

energy according to  

𝐸 = 𝑇 + 𝐺(𝑣) + 𝐹(𝐽) (7) 

where Tk is the electronic energy, G(v) is the vibrational energy, and F(J) is the rotational 

energy.  The electronic energy is a value that describes the lowest level of that particular 

electronic state.   The vibrational energy is dependent on a particular vibrational level, v 

according to  

𝐺(𝑣) = 𝜔 𝑣 +
1

2
− 𝜔 𝜒 𝑣 +

1

2
+ 𝜔 𝑦 𝑣 +

1

2
 (8) 

where 𝜔 , 𝜔 𝜒 , and 𝜔 𝑦  are constants specific to a particular molecule and electronic 

state [81].  The rotational energy for states that contain electronic angular momentum 
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(applicable to C2 and CN) is complex and the next few sections will detail calculation of 

the rotational energy levels. 

Figure 1 shows the potential energy surfaces for C2 Swan and CN red.  Vibrational 

levels for the C2(d) (upper) state have been identified for v=0-10 and CN(A) vibrational 

levels for v=0-22 [80], [83].  Consideration of various coupling schemes between the 

electronic and nuclear angular momentum results in nine different rotational transitions for 

the 3Π-3Π energy levels (Q1, Q2, Q3, R1, R2, R3, P1, P2, P3) and 12 different rotational 

transition for the 2Π-2Σ energy levels (Q1, Q2, R1, R2, P1, P2, RQ21, PQ12, QP21, QR12, OP12, 

SR21) [81].   

Figure 1. (a) C2 Swan band potential energy curves (recreated from [80]) and (b) CN 
potential energy curves (recreated from [86]).   

Common spectroscopic notation Fx describes energy levels based on the total 

angular momentum, J, and an angular momentum, N , that accounts for coupling between 

the nuclear angular momentum and the orbital angular momentum [86], [81].  For the C2 

Swan 3Π states, F1, F2, and F3 represent levels with J=N+1, J=N, and J=N-1, respectively. 

The rotational energy levels for C2 3Π can be calculated according to [81] 
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𝐹 (𝐽) = 𝐵 𝐽(𝐽 + 1) − 𝑍 − 2𝑍 − 𝐷 𝐽 −
1

2
 (9) 

𝐹 (𝐽) = 𝐵 [𝐽(𝐽 + 1) + 4𝑍 ] − 𝐷 𝐽 +
1

2
 (10) 

𝐹 (𝐽) = 𝐵 𝐽(𝐽 + 1) + 𝑍 − 2𝑍 − 𝐷 𝐽 +
3

2
 (11) 

Z = 𝛬 𝑌(𝑌 − 4) +
4

3
+ 4𝐽(𝐽 + 1) (12) 

𝑍 =
1

3𝑍
[𝛬 𝑌(𝑌 − 1) −

4

9
− 2𝐽(𝐽 + 1)] (13) 

𝑌 =
𝐴

𝐵
 (14) 

where 𝐴 is the spin-orbit coupling constant, and 𝐵  and 𝐷  are first and second order 

centrifugal motion correction constants.  Similarly to above, the rotational levels F1 and F2  

for the CN 2Π and 2Σ states represent levels with J=N+1/2 and J=N-1/2, respectively, and 

can be calculated according to [81] 

𝐹 (𝐽) = 𝐵 𝑁(𝑁 + 1) − 𝐷 𝑁 (𝑁 + 1) + 𝐻 𝑁 (𝑁 + 1) +
1

2
𝛾𝑁                           (15) 

𝐹 (𝐽) = 𝐵 𝑁(𝑁 + 1) − 𝐷 𝑁 (𝑁 + 1) + 𝐻 𝑁 (𝑁 + 1)

−
1

2
𝛾(𝑁 + 1)                           

(16) 

where 𝐻  is the third order centrifugal motion correction constants and 𝛾 is the spin rotation 

angular momentum coupling constant.  The spectroscopy of the C2 Swan bands and CN 

red bands has been covered extensively and the corresponding spectroscopic constants 
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have been published in the literature (see Appendix A. Molecular Spectroscopy Constants) 

[80], [83], [84], [87].  

 Spectral simulations can be accomplished using the energy level equations above 

with appropriate spectroscopic constants and the following equation 

𝐼 =
ℎ𝑐𝐴 𝑛 𝑙

𝜆
= 𝑛 𝑙 =

ℎ𝑐𝐴 𝑛′𝑙

𝜆

(2𝐽 + 1)𝑒
 

𝑒
 

( )

∑ ∑ (2𝐽 + 1) 𝑒
 

( )

𝑒
 

( )
 (17) 

where 𝐴  is the Einstein A coefficient (s-1), 𝑛  is the concentration of the species of interest 

in the upper state i, l is the optical path length (cm),  λ  is the wavelength of a species 

transition from upper state i to lower state j, 𝑇  is the vibrational temperature (K), and 𝑇  

the rotational temperature (K).  Eq. 17 assumes an optically thin plume [86]. 

Figure 2 shows a simulation of the C2 Swan v=0 sequence and the CN red v=-3 

sequence.  The line shapes are assumed to be Gaussian and a spectral resolution of Δλ=0.75 

nm has been selected.  The selected resolution here is too large to resolve the individual C2 

Swan band rotational transitions but the vibrational sequence heads at 516.5 nm (v’=0 to 

v’’=0), 512.9 nm (v’=1 to v”=1), 509.8 nm (v’=2 to v”=2), and 507.1 nm (v’=3 to v”=3) are 

readily observed.  More transitions are observed for CN red; the sequence heads can be 

found at 691.4 nm (v’=3 to v’’=0), 707.6 nm (v’=4 to v”=1), 724.7 nm (v’=5 to v”=2), 742.4 

nm (v’=6 to v”=3) and 761.1 nm (v’=7 to v”=4).  Gas parameters of Tr=4,800 K and Tv = 

4,800 K were selected arbitrarily for the displayed fits.  Changes in Tv significantly affect 

the relative amplitudes of the observed vibrational sequence heads while changes in Tr 

would significantly affect the intensity location in between the sequence heads. 
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Figure 2. (a) C2 Swan v=0 simulation and (b) CN red v=-3 simulation for Tr = 4800, Tv 
= 4,800, and Δλ=0.75 nm.  

2.5 Laser Heating of Graphite 

Extensive research has been conducted on pulsed laser ablation of graphite for 

purposes of making carbon-containing thin films, carbon nanotubes, and basic research. 

[14]–[22], [88].  In these experiments, high gas temperatures (20,000K) and dense plasmas 

form (1x1017 cm-3 electron density) resulting in fast shock fronts [17], [18], [88].  

Emissions from neutral and singly ionize C, C2 Swan bands, and CN violet are observed 

[19].  The triple point of graphite has been investigated under pulsed laser conditions and 

was found to range from 4050-4950 K at 110 to 2500 atm [23], [89], [90]. 

Comparatively little research has been accomplished for cw laser heating of 

graphite [23].  Typical dwell times of 1-100 s results in more energy transferred to the 

target relative to pulsed irradiation of graphite but significantly lower irradiance does not 

result in a plasma.  The graphite sublimation temperature and triple point have been studied 

utilizing cw laser heating at pressures ranging up to 1000 atm resulting in recorded surface 

temperatures from 3130 to 6940 K [91]–[94].  The triple point of graphite was determined 

to be 4130±30 K at 120±10 atm [92].   
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Spectral emissions from laser heating of graphite reveal details about the chemical 

kinetics occurring at the surface.  Acosta et al analyzed combustion from graphite laser 

irradiation and determined that column densities for CO and CO2 are on the order of 1017 

molecules/cm2 for 777 W/cm2 irradiation and that the density ratios show discrepancies 

from expected equilibrium ratios [79].  Limited analysis of C2 and CN spectral emissions 

from cw laser graphite heating products have been conducted [91], [95].  Analysis of C2 

and CN emissions is complimentary to that of the combustion emissions.  Furthermore, the 

coupling of time-resolved C2 and CN emissions data with time-resolved surface 

temperatures could lead to refined thermodynamic constants.  
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III.  Visible emission from C2 and CN during cw laser-irradiated graphite 

Porous graphite samples were irradiated with up to 3.5 kW/cm2 and 1 MJ deposited 

energy from a continuous wave (cw) ytterbium 1.07 µm fiber laser.  Visible emission 

spectroscopy reveals C2 Swan (d3Πg -a3Πu) Δv=2, 1, and 0 sequences, CN red (A2Π -

X2Σ+) Δv =-4, -3 sequences, CN violet (B2Σ+-X2Σ+) Δv=+1, 0 sequences and Li, Na, and K 

2P3/2,1/2 – 2S1/2 doublets.  Surface temperatures increased from ~2,500 K at 0.7 kW/cm2 to 

~4,000 K at 3.5 kW/cm2.  Spectral emissivity at 3.9 µm ranging from 0.74-0.93 increases 

by ~8% after laser irradiation.  Spectral simulations demonstrate that the ratio of C2(d) and 

CN(A) column densities are independent of sample porosity.  Column densities increase 

from 0.00093 to 1.6x1012 molecules/cm2 for CN(A) and 0.00014 to 1.4x109 molecules/cm2 

for C2(d) as laser intensities increases from 1.4 to 3.5 kW/cm2. Surface temperatures 

increase by 134 K and CN(A) and C2(d) emission increase by 100% and 4,200%, 

respectively, in stagnation air flow of 5 m/s. 

3.1  Introduction 

The effects of high power, cw laser irradiation on carbon composite materials is 

critical to the performance of emerging laser weapon systems, particularly for tactical 

missions [1], [96].  Oxidation and sublimation of graphite surfaces are a key step in 

characterizing the degradation of carbon fibers.  Mass loss, combustion, thermal response, 

and material properties of laser irradiated graphite have been investigated as part of a larger 

study of laser effects on carbon fiber reinforced polymers [49], [79]. In this study, the 

visible spectra from these plumes are examined. 
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A significant study has been conducted regarding the pulsed laser ablation of 

graphite for the purposes of making carbon nanotubes, carbon-containing thin films, or 

basic combustion research of carbon [14]–[22], [88].  In these experiments, very high gas 

temperatures are achieved (20,000 K) and dense plasmas are formed (electron density of 

1×1017 cm-3 and electron temperature of 30,000 K) in fast shock fronts [17], [18], [88]. 

Excited species observed spectroscopically include neutral and singly ionized C, C2 Swan 

bands (d3Πg-a3Πu) and CN violet (B2Σ+-X2Σ+) when N2 gas is present. Most spectroscopic 

data show a maximum in C2 intensity very close to the surface and then a quick decrease 

in C2 Swan bands intensity away from the laser-irradiated surface [19].  Under the same 

conditions (10 J∕cm2, 30 ns XeCl irradiation of graphite at 100 Pa), the intensity of CN 

violet emission increases from the surface to a distance of ∼6 mm before rapidly decreasing 

[19].  Many mechanisms of formation have been described in the literature for both C2 and 

CN to include formation of C2 by dissociation of ejected large Cn clusters and atomic 

neutral and ionic C recombination, [18], [20]–[22], [97] and formation of CN through both 

atomic and molecular nitrogen reactions with atomic or diatomic carbon, [18], [21], [22], 

[88], [97], [98] or through direct surface nitridation reaction [21].  The reaction pathways 

appear to be dependent on laser fluence, with relatively higher laser fluence favoring C2 

production via recombination over dissociation [20] and relatively higher fluence favoring 

CN production via atomic carbon reaction versus C2 gas-phase reaction [21].  All of the 

studies mentioned earlier were conducted in the absence of oxygen, thereby ignoring 

combustion reactions. Finally, the triple point of graphite has been investigated under 

pulsed laser conditions and has been found to range from 4050 to 4950 K at pressure of 

∼110 to 2500 atm [23], [89], [90].  



20 

Compared to pulsed laser ablation of graphite, little research has been conducted 

with cw irradiation of graphite [23].  The cw laser irradiance is significantly lower 

(kW∕cm2) and no plasma is formed.  However, the amount of energy transferred to the 

target material is higher with typical dwell times of 1 to 100 s. The sublimation temperature 

and triple point of graphite were studied by cw laser irradiation at pressures from 0.003 to 

1000 atm, laser intensities of 10 to 50 kW∕cm2, and dwell times of ∼2 to 5 s, revealing 

surface temperatures ranging from 3130 to 6940 K [91]–[94].  Whittaker et al. irradiated 

various porosity graphite samples with a CO2 laser at 50 kW∕cm2 and 0.003 to 1 atm of 

either Ar or Ar + O2 mixture; analysis of optical pyrometry surface temperature 

measurements led to a conclusion that the triple point of graphite is ∼3800 K at ∼0.2 atm, 

which does not seem to be consistent with other findings [23], [91]–[94].  Visible emission 

spectroscopy of the C2 Swan bands revealed gas temperatures from 3050 to 4120 K [91].  

Gokcen et al. heated graphite utilizing an HF laser at ∼50 kW∕cm2 in 120 to 215 atm of 

various background gases (Ar, Ne, and/or Kr) [92].  Optical pyrometry with constant 

emissivity provided surface temperatures while monitoring the vessel pressure. Post-test, 

microscopy was used to determine the presence of liquid graphite. The triple point of 

graphite was determined at 4130 + 30 K and 120 + 10 atm [92].  No visible emissions 

spectroscopy was performed in this study. Kirillin et al. performed more recent 

experiments, irradiating graphite with an Nd:YAG laser in Ar, Ne, and He at pressures up 

to 1000 atm [93], [94].  Visible emission spectroscopy confirmed the presence of C2 but 

no further analysis was completed.  Optical pyrometry predicts the triple point to be 5000 

+ 200 K at 100 atm when undergoing cw irradiation [93], [94].  Gosse et al. irradiated 

graphite using a fiber laser at irradiances of 1 to 4 kW∕cm2 under a 204 m∕s shear flow to 
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investigate equilibrium and kinetic rates of sublimation of graphite [95].  Surface 

temperatures of up to ∼4000 K were observed with optical pyrometry at 1 atm. Visible 

emission spectroscopy of the plume was performed and CN violet bands were identified. 

Detailed spectroscopic analysis was hindered due to large black body emissions generated 

by the surface of the graphite.  

The spectroscopy of the major molecular products created during laser irradiation 

of graphite – C2 and CN – has been extensively studied in pulsed laser ablation 

experiments, stellar spectroscopy, and flames from hydrocarbons [80], [14], [18], [81]–

[85], [87], [99]–[104]. Extensive line lists with accompanying Einstein-A coefficients are 

available [80], [83]–[85], [87], [99], [100].  The upper triplet state of the C2 Swan bands 

(d3Πg) sits 19,306 cm−1 above the lower a3Πu state with electronic energy ~720 cm-1 above 

the ground state [80]–[82].  The strongest transitions for C2 Swan bands are the Δv=0 

sequence at 490 to 516.5 nm. CN has two main electronic bands: CN violet (B2Σ+-X2Σ+) 

and CN red (A2Π -X2Σ+). The upper state of the CN violet transition, B2Σ+, is 25,753 cm-1 

above the ground X2Σ+ state, and its strongest transitions are the Δv=0 bands in the near 

UV (378 to 390 nm) [83], [85].  The CN red bands have an upper state 9,243 cm-1 above 

CN X2Σ+ and their strongest transition is in the near-infrared (1087 to 1350 nm) [83], [84].  

Finally, ablation of graphite and carbon-based materials from shock front 

turbulence and plasma flow conditions has been investigated for research into hypersonic 

flight [105], [106].  In studies conducted by Lewis et al., the shock from an 8.6 km/s flight-

speed equivalent airflow ablated a preheated graphite sample [105].  Surface temperatures 

of ∼2000 K were recorded by optical pyrometry and CN violet spectral radiances of up to 
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750 
  

 are reported from visible emission spectroscopy.  Asma et al. investigated 

ablation of carbon resin composite and cork utilizing an inductively coupled plasma wind 

tunnel capable of creating plasma flow with up to 10 MW∕m2 heat fluxes in pure nitrogen 

and air environments [106].  Surface temperatures of up to ∼2700 K were recorded with 

optical pyrometry.  Visible emission spectroscopy of the ablated plumes identified CN 

violet, CN red, C2 Swan, Na, Li, K, O, and N species.  No detailed spectroscopic analysis 

was conducted in either study.   

A detailed study of the spectroscopy of cw graphite irradiation products is 

complimentary to prior spectroscopic studies of hypersonic and pulsed graphite ablation 

studies.  In this study, a detailed visible emission spectroscopic analysis is used to monitor 

C2 Swan and CN red column densities and plume temperatures arising from irradiation of 

different porosities of graphite with a cw Yb 1.07 μm fiber laser with deposited energies 

as high as 1 MJ.  Spatially resolved surface temperatures are monitored using observed 

emissivity from post-irradiated samples.  The spectra for buoyant and stagnation flow 

conditions are compared.  This study is a part of a larger program to determine the chemical 

kinetics during laser irradiation of graphite at deposited energies as high as 1 MJ. 

3.2  Experiment 

A schematic of the experimental apparatus is shown in Figure 3.  This study is part 

of a larger program and further details of experimental setup have been provided previously 

[49].   Briefly, graphite samples of differing porosity (coarse, medium, fine, and isomolded, 

purchased at the Graphitestore.com) were irradiated with an IPG Photonics YLS series 10 

kW ytterbium 1.07 μm fiber laser with irradiances ranging up to 3.5 kW∕cm2 for typical 
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durations of 120 s.  The laser beam had a flat-top profile with 86% of the power in a 2.5 

cm2 spot.  Stagnation flow conditions were varied by forcing air on the sample through a 

nozzle located perpendicular to the laser-irradiated surface.  The laser traveled through the 

center of the hollow nozzle and onto the target.  However, the majority of irradiations was 

performed under buoyant (no flow) conditions.  

 

Figure 3. Experiment Apparatus. 

Visible emissions were collected at an angle parallel to the graphite sample surface 

using a fiber optic equipped HR4000 Ocean Optics visible spectrometer.  The spectrometer 

had a spectral resolution of 0.75 nm, 18 mm diameter field of view, and frame rate of up 

to 14 Hz.  A collimating lens on the front of the fiber optic was located 0.3 m from the 

sample and centered on a spot 1.75 cm above the center of the laser spot.  A shortpass filter 

(𝜆 = 400-775 nm) was utilized to ensure that scattered laser radiation was not allowed into 

the detector and various optical density filters were utilized to eliminate detector saturation.  

Spectral calibrations were conducted daily utilizing an Hg lamp and absolute radiometric 

calibrations were accomplished posttest using an NIST- certified tungsten filament.  At the 

peak wavelength of detector detectivity (λ = 625.71 nm), the absolute radiometric 
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calibration factor for the smallest integration time utilized (1 ms) was 2.153 x 10-4 

 
/𝑐𝑜𝑢𝑛𝑡. 

Fast visible imagery was captured with a Phantom V12 camera with an 800 × 1280 

pixel complementary metal oxide semiconductor focal plane array. The visible camera was 

positioned at a horizontal distance of 1.62 m from the laser spot center, aligned parallel to 

the target surface.  A lens with a variable focus f = 50-150 mm was utilized to view an area 

as small as 35 × 80 mm.  Various combinations of neutral density filters, and integration 

times were utilized to reduce detector saturation.  The imagery was recorded at 1300 

frames∕s with a 208 × 480 window size.  

Surface temperatures were monitored with an FLIR SC6000 InSb mid-infrared 

(λ =  3-5 μm) camera positioned 40 cm from the laser irradiation point at an angle 30 deg 

from the sample surface normal.  The 640 × 512 pixel FPA was equipped with a 25-mm 

focal length lens yielding spatial a resolution of 513 × 703 μm per pixel.  A framing rate 

of up to 350 Hz was achieved by narrowing the field of view to 320 × 256 pixels.  Four 

integration times ranging from 0.03 to 1.5 ms were utilized to extend the temperature 

dynamic range.  The FLIR was calibrated pretest for absolute irradiance and detector 

linearity using a blackbody at temperatures of 323 - 873 K and longer integration times. In 

between laser irradiations, calibration for minor offset/gain corrections was accomplished 

using a cavity blackbody.  A 3.9 ± 0.1-μm filter was placed in front of the camera to limit 

the wavelength of the incoming emissions and an OD 2.0 neutral density filter was used to 

limit detector saturation. 
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Hemispherical reflectance measurements were conducted on a Surface Optics 

Corp. 100 Hemispherical Directional Reflectometer using a 30-deg angle of reflection and 

radiation from a 500°C blackbody to determine the emissivity of the irradiated samples, 

thereby allowing for calculation of the surface temperatures.  A polarization filter was 

inserted into the path of the reflected emissions before entering the spectrometer to create 

either plane polarized or perpendicular polarized radiation.  Un-irradiated samples cut into 

1” x 1” x 0.25” squares of each porosity type were analyzed under 30°C, 250°C, and 500°C 

conditions.  Post-experiment irradiated samples were cut to similar specifications from 

locations slightly below the laser spot to obtain reflectance (emissivity) data from as close 

to hottest laser spot as possible without having to account for the emissivity of redeposited 

material above the laser spot.  Emissivities are reported as averages of perpendicular and 

plane polarized emissivity. 

3.3  Results and discussion 

3.3.1 Plume Visible Spectra. 

Figure 4 shows a typical visible emission spectrum.  Molecular emission is 

dominated by the C2 Swan (d3g -a3u) v=2, 1, and 0 sequences, CN red (A2Π -X2Σ+) 

v=-4, -3 sequences, and the CN violet (B2Σ+-X2Σ+) v=+1, 0 sequences.  Atomic 

emissions from Li, Na, and K 2P3∕2 − 2S1∕2 doublets were observed for nearly all samples.  

The atomic emission is strongly optically trapped, as evidenced by the intensities ratios for 

the doublet emission. 
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Figure 4. Typical spectrum observed for 1.9 kW/cm2 irradiation of coarse graphite. 

Spectral simulations of C2 Swan v=0 sequence and the CN red band v=-3 

sequence were created to extract ro-vibrational plume temperatures and molecular column 

densities utilizing the optically thin approximation: 

𝐼  𝑑𝜈 = ℎ𝜈 𝐴 𝑛 𝑙 𝑑𝜈 = 𝐼  𝑑𝜆 =
ℎ𝑐𝐴 𝑛 𝑙

𝜆
 𝑑𝜆 (18) 

where 𝐴  is the Einstein A coefficient (s-1), 𝑛  is the concentration of the species of interest 

in the upper state i, l is the optical path length (cm), and 𝜈 , λ  is the frequency or 

wavelength of a species transition from upper state i to lower state j.  In this paper, we 

focus on the column densities (𝑛 𝑙) and vibrational and rotational temperatures (𝑇  and 𝑇 , 
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respectively) of the excited states.  The density in a specific 𝑛 𝑙, is related to the total 

density in the excited electronic state, 𝑛′𝑙, by the rotational vibrational partition functions 

𝑛 𝑙 = 𝑛′𝑙
(2𝐽 + 1)𝑒

 
𝑒

 
( )

∑ ∑ (2𝐽 + 1) 𝑒
 

( )

𝑒
 

( )
 (19) 

where J’ is the upper state total angular momentum quantum number, v’ is the upper state 

vibrational quantum number, G(v’) is the upper state vibrational energy, F(J’) is the upper 

state rotational energy, 𝑙 is the plume width.  The concentration of all ro-vibrational levels 

in the upper electronic state, n’, is related to the total species concentration, 

𝑛′𝑙 = 𝑛𝑙
(2𝑆 + 1) 2 − 𝛿 , 𝑒

 
 

∑ (2𝑆 + 1)(2 − 𝛿 , ) 𝑒
 

 (20) 

where S is the state spin quantum number, Λ is the projection of the orbital angular 

momentum onto the body axis, Tk is the electronic energy of the upper electronic state k, 

and Te is the electronic temperature.  We also use the notation, n’ = [C2(d)] or [CN(A)] to 

represent the concentrations of the excited electronic states and n = [C2] or [CN] to 

represent the total concentration of the respective species.  Electronic temperatures, Tk, 

might be estimated from the atomic lines in Figure 4.  However, the alkali atomic lines are 

optically trapped and thus, do not linearly reflects the population ratios. 

Rotational energy levels F(J) were calculated in the manner of Herzberg [81] for 

the C2 Swan bands and the CN red bands for the intermediate between (a) Hund’s case and 

(b) Hund’s case.  Spectroscopic constants and Einstein A-coefficients were obtained from 
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the recent works of Brooke et al [80], [83].  Simulations were benchmarked against the 

commercial code SPECAIR with residuals of less than 2.7% on average. 

Figure 5 and Figure 6 show typical fits for visible emission spectra.  The quality of 

the spectral fits is acceptable, with typical residuals of less than 2.6% on average.  

Noticeable differences are observed in fitting the C2 Swan v’=1 v’’=1 band, particularly at 

higher laser irradiance.  It is possible that some minor spectral emission is not accounted 

for near 513 nm.  The current spectral resolution is insufficient to further evaluate the 

spectral residuals.  Because of this, the C2 Swan vibrational temperatures were considered 

less reliable.  The CN violet bands were observed for some conditions.  However, detector 

sensitivity in this region did not permit quantitative analysis of CN violet bands. 

 

Figure 5. Typical fit of C2 d3Πg-a3Πu Δv=0 sequence for: (top) 3.5 kW/cm2 and medium 
porosity with rotational temperature Tr=4885 ± 320 K, vibrational temperature Tv = 4787 
± 852 K, and column density n’l = 8.1 ± 0.8 x 108 molecules/cm2, (middle) 3 kW/cm2 and 
medium porosity with Tr=4679 ± 372 K, Tv= 3811 ± 742 K, and n’l = 5.8 ± 0.6 x 108 
molecules/cm2, and (bottom) 1.4 kW/cm2 and course porosity with Tr=3568 ± 161 K, 
Tv=3276 ± 345 K, and n’l = 4.9 ± 0.2 x 106 molecules/cm2. The intensity for the bottom 
spectrum is scaled by a factor of 30, reflecting the low column density. 
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Figure 6. Typical fit of CN A2Π-X2Σ+ Δv=-3 sequence for: (top) 3.5 kW/cm2 and medium 
porosity with Tr=4300 ± 295 K, Tv= 3989 ± 170 K, and n’l = 1.2 ± 0.1 x 1012 molecules/cm2, 
(middle) 3kW/cm2 and medium porosity with Tr=4150 ± 249 K, Tv= 3799 ± 142 K, and n’l 
= 1.1 ± 0.09 x 1012 molecules/cm2, and (bottom) 1.4 kW/cm2 and course porosity with 
Tr=3217 ± 92 K, Tv=3661 ± 73 K, and n’l = 2.7 ± 0.1 x 1010 molecules/cm2. The intensity 
for the bottom spectrum is scaled by a factor of 30, reflecting the low column density. 

The column densities (for both [C2(d)] and [CN(A)]) and plume temperatures, Tr 

and Tv, increase with irradiance.  Minimal visible emission is observed for laser irradiances 

less than 1.4 kW∕cm2.  The CN(A) column densities are 1.5 to 5.5 × 103 times higher than 

the C2 (d) densities, reflecting the lower electronic energy for CN(A).  Optical depths 𝜎 𝑛 𝑙, 

where 𝜎 is the absorption transition cross section, were on the order of 10-8 for C2(a) and 

10-7 for CN(X), justifying the optically thin approximation of Eq. 18.  Column densities in 

an oxyacetylene torch are shown in Table 1 against typical measurements obtained in this 

study [107].  Total CN and C2 column densities from this study in Table 2 were determined 

by assuming that the electronic plume temperature is equal to the CN(A) rotational plume 

temperature.  At high irradiances, similar (order of magnitude) C2 and CN column densities 

are recorded.  However, contrary to the results from the oxyacetylene torch, for irradiated 
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graphite, the column density of CN is always higher than that of C2.  Recall, CN violet 

emission has been observed when ablating graphite in a supersonic air flow with a spectral 

radiance of a maximum of 750  
  

 [105].  When converted to irradiance, this yields 

∼2 
 

, very similar to the current results of Figure 4. 

Table 2. Comparison of cw graphite irradiation with oxyacetylene torch. 
 

[CN(A)] 
* 𝑙 (cm-2) 

[C2(d)] * 𝑙 
(cm-2) 

[CN] * 𝑙 
(cm-2)

[C2] * 𝑙 
(cm-2) 

This study (1.4 kW/cm2, 
coarse porosity) 

2.7 x 1010 4.9 x 106 6.0 x 1011 6.3 x 109 

This study (3.0 kW/cm2, 
medium porosity) 

1.1 x 1012 5.8 x 108 2.0 x 1013 2.9 x 1011 

This study (3.5 kW/cm2, 
medium porosity) 

1.2 x 1012 8.1 x 108 3.7 x 1013 1.1 x 1012 

Oxyacetylene Torch [107] -- -- 1012 1013 

 

Spectral simulations for the C2 Swan and CN red bands became difficult when 

ejected material had re-solidified on the surface of the sample directly in viewing volume 

of the spectrometers.  As material was removed from the laser-irradiated area, a crater was 

formed.  Nearly all of the test results discussed in this paper were conducted under buoyant 

conditions, resulting in ejected material lofted vertically up and then redeposited on the top 

of the crater.  Figure 7 shows the formation of ejected material on the graphite surface for 

a typical 3 kW∕cm2 medium porosity irradiation.  Figure 7(a) shows ejected material rising 

due to buoyant flow conditions 9 s after the start of laser irradiation.  Figure 7(b) shows the 

beginning of re-solidification of material onto the top part of the crater after only 10 s.  

Figure 7(c) shows the re-solidified material nearly fully formed at 40 s after laser 
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irradiation began.  This ejected material was observed only for irradiances of 1.4 to 3.5 

kW∕cm2 for all porosities.  In addition to the ejected material, the intensity observed by the 

spectrometer decreased due to the reaction occurring inside the sample as a crater is 

formed.  Figure 7(c) shows the decrease in observed intensity as the reaction is occurring 

further inside the sample.  The decrease in intensity as the chemical reactions began 

occurring spatially inside the sample made it difficult to spectroscopically observe C2 Swan 

and CN red at long irradiation times. 

 

Figure 7. Re-solidification of ejected material from a medium porosity sample irradiated 
at 3 kW/cm2 after (a) 9 s, (b) 10 s, and (c) 40 s. 

3.3.2 Surface Temperatures. 

Evolving maps of the surface temperature were monitored with the FLIR camera 

and 3.9 μm band pass filter.  Extraction of surface temperature requires knowledge of the 

sample emissivity, which may be evolving with temperature and surface condition.  The 

spectral emissivity was characterized for both preirradiated and post-irradiated samples as 

described in the experimental section, and the results are summarized in Table 3.  The 

posttest sample spectral emissivity is most indicative of the thermal steady-state spectral 

emissivity achieved for the sample.  Each measurement included 12 perpendicular 
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polarized and 12 parallel polarized measurements and averaged to form one emissivity 

measurement.  At least three average emissivity measurements were combined to obtain a 

final average emissivity.  The resulting statistical error was 3.9% for isomolded and less 

than 2.5% for all other porosities.  The largest variation seen between the plane and 

perpendicular polarized irradiated spectral emissivities was 4.3% observed for coarse 

porosity graphite; irradiated emissivity variations for all other graphite porosities were less 

than 1.6%.  Using a 3.9% error in the emissivity and assuming a temperature of 3500 K, 

the standard deviation in the temperature due to emissivity is ∼ ±90 K.  The error in the 

FLIR temperatures under uniform illumination without emissivity error is <1 K [104], 

resulting in the obvious conclusion that the largest source of error in the temperature 

measurements is in the emissivity measurements not the detector.  

Table 3. Average emissivity, ε, at λ=3.9 µm. 
 

Coarse Porosity Medium Porosity 
Fine 

Porosity
Isomolded 
Porosity 

Un-irradiated 0.735 ± 0.004 0.818 ± 0.007 0.871 ± 0.006 0.852 ± 0.007 

Irradiated 0.809 ± 0.020 0.899 ± 0.017 0.925 ± 0.012 0.899 ± 0.035 

 

Figure 8 shows the emissivity-corrected temperature at the center of the laser 

irradiated spot as a function of time for a medium porosity sample at four irradiance levels.  

The initial heating rates increase from ∼200 to ∼1000 K∕s as the laser irradiance increases 

from 1.4 to 3.5 kW∕cm2.  Steady-state conditions are achieved after 84 s at Ts = 3500 K and 

13 s at Ts = 3800 K for 1.4 and 3.5 kW∕cm2 laser irradiances, respectively.  The sublimation 

temperature of graphite at low pressure is still controversial, but Abrahamson provides 

3895 to 4020 K at 1 atm [50].  The increase in surface temperatures with irradiance plateaus 
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at Ts ∼3800 K, at the lower range of Abrahamson’s measured the sublimation temperature.  

Figure 8 also shows the ratio of the [C2(d)] and [CN(A)] column densities.  The C2(d) 

emission intensity increases more rapidly than CN(A) as temperature increases. The visible 

emission is very weak for surface temperatures below 3500 K for all cases except for 3.5 

kW∕cm2 laser irradiance, where visible emissions are recorded for surface temperatures as 

low as 2600 K.  For the lower irradiances, most of the spectra are recorded near the steady-

state conditions.  Only for the 3.5 kW∕cm2 case, the surface temperature evolving strongly 

when visible spectra are observed. 

 

Figure 8. Evolving ratio for C2 Swan and CN red column densities at ( ) 1.4 kW/cm2, ( ) 
1.9 kW/cm2, (x) 3 kW/cm2 and ( ) 3.5 kW/cm2 for medium porosity graphite.  The 
corresponding temporally evolving surface temperature (Ts) is shown in the bottom plot. 
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Figure 9 shows the dependence of the sample surface temperature and the column 

densities of C2 Swan and CN red on laser irradiance.  Both the surface temperature and the 

C2 Swan and CN red column densities generally increase with increasing irradiance.  

However, the steady-state temperature for laser irradiances of 3 and 3.5 kW∕cm2 are similar.  

Phillips et al. showed that sample mass loss continues to increase with increasing energy 

[49], even though the surface temperature has stopped increasing.  Comparing thermal 

losses due to radiation between a 3 kW∕cm2 at 4000 K and a 3.5 kW∕cm2 at 4000 K for an 

irradiated medium sample with spectral emissivity of 0.90 reveals that the fraction of 

energy radiated versus absorbed for the 3.5 kW∕cm2 case is 37% while the fraction of 

energy radiated versus absorbed for the 3 kW∕cm2 case is 44%.  Presumably the extra 

energy is consumed in sublimation and mass removal.  The steady-state temperature for 

the 3 and 3.5 kW∕cm2 irradiances appear to agree well with the sublimation temperature 

given by Abrahamson [50]. 
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Figure 9. (a) Dependence of surface temperature on laser irradiance for: ( ) medium, ( ) 
coarse, (x) fine, and () isomolded graphite and (b) Dependence of column density on laser 
irradiance for ( ) C2 Swan and ( ) CN red. The C2 Swan densities are increased by a factor 
of 103 to share a common axis. 
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3.3.3 Plume Temperatures 

Figure 10 shows the gas plume temperatures derived from the spectral simulation 

fits and the corresponding graphite surface temperatures.  The 2σ statistical error bounds 

are on average + 240 K for the rotational temperature of CN red, + 300 K for the rotational 

temperature of C2 Swan bands, and + 150 K for the vibrational temperature of CN red.  A 

reference line for equal surface and gas temperatures are also shown in Figure 10.  Gas 

temperatures range from ∼2400 to ∼5100 K with an average of 3834 + 224 K.  While the 

scatter is large, the CN rotational temperatures are generally lower than CN vibrational 

temperatures by 343 + 55 K.  The accuracy of the data does not support any conclusion 

regarding nonequilibrium conditions. 

 

Figure 10. Surface temperatures, Ts and plume temperatures: ( ) Tr from CN red, ( ) Tr 
from C2 Swan, ( ) Tv from CN red, for all graphite porosities and laser irradiances.  Prior 
results for Tr from C2 Swan bands reported in [20] ( ).  A reference line for equal surface 
and plume temperatures is also provided (--). 
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Temperatures from the Whittaker et al. CO2 laser study [91] are also compared with 

the present results in Figure 10.  No error bounds were given with the Whittaker et al. data, 

but the results also appear to track the surface temperature fairly well [91].  The rotational 

temperatures derived by Whittaker et al. also use the C2 Swan Δv=0 bands.  Nearly all of 

the C2 rotational temperatures in the present study are higher than the corresponding 

surface temperatures while nearly all Whittaker et al. rotational temperatures are lower than 

the corresponding surface temperatures.  The majority of the Whittaker et al. study was 

conducted in Ar background whereas all of the experiments in this paper were conducted 

in air.  Indeed, Whittaker et al. noted that their rotational temperature is higher than the 

surface temperature only for conditions in which 20% O2 was added into the vacuum 

chamber.  Whittaker et al. attributed the increased observed gas temperature to oxidation 

reactions. 

3.3.4 Column Density 

The temperature dependence of the relative excited column density, 

[C2(d)]/[CN(A)], for all graphite samples and laser irradiances is shown in Figure 11(a).  

At all but the highest irradiance, the only spectra observed are for steady-state surface 

temperatures (as seen in Figure 8) and each data point in Figure 11(a) represents a different 

test.  The C2(d) Swan band column density increases more rapidly with surface temperature 

than the CN(A) red band column density (see Figure 9(b)).  However, the C2(d) column 

density is much lower than for CN(A).  The C2 d3Πg state lies well above the ground state 

with an electronic energy of 20,026 cm-1, whereas the CN A2Π state has an electronic 
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energy of 9243 cm-1.  At surface temperatures of 3400 to 3900 K (or corresponding energies 

of 2350 to 2700 cm-1), the lower lying CN(A) state is more accessible. 

 

Figure 11. (a) [C2(d)]/[CN(A)] density ratio vs surface temperature and (b) [C2]/[CN] 
density ratio vs plume temperature compared with (–) analysis from NASA’s Chemical 
Equilibrium Analysis (CEA) code.  The C2 and CN densities were calculated with an 
electronic temperature equal to the CN(A) rotational temperature and the error bounds for 
[C2]/[CN] values in (b) were on average 13%. 

As a basis for comparison with the observed reaction dynamics, an equilibrium 

analysis was performed using NASA’s Chemical Equilibrium Analysis (CEA) code, 

analyzing for N2, O2, NO, N, O, CO, CO2, NO2, CN, C, C2, C3, C4, and C5 for temperatures 

ranging from 100 to 8000 K at 1 atm pressure.  In this analysis, the total C2 and CN mass 

fractions are computed assuming equilibrium conditions; the results are reported as a ratio 

in Figure 11(b).  The CEA results reveal for temperatures greater than 3000 K, that an 

increase in the C2 mass fraction is accompanied by a corresponding smaller increase in the 

CN mass fraction, resulting in the upward curvature in the [C2]/[CN] ratio.  To compare, 

the column densities for C2 Swan and CN red bands observed from the laser irradiation 
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experiments described in this paper were converted to total column densities for C2 and 

CN by assuming an electronic state Boltzmann distribution defined by an electronic 

temperature equal to the CN(A) rotational temperature (see Eq. 20).  A partition function 

was then calculated for all of the lowest levels from the ground state to electronic states of 

∼25,000 cm-1 and applied to the ground states to determine the total C2 and CN column 

densities.  In Figure 11(b), the total [C2]/[CN] ratio is dramatically less than the CEA 

prediction.  To achieve [C2]/[CN] similar to what is calculated by CEA, electronic 

temperatures of on average 2500 K were required for experimental laser irradiances from 

1.4 to 3.5 kW/cm2, which is in general ~1300K lower than what is observed for the gas 

temperatures.  

There is considerable error introduced in extrapolating to total C2 and CN 

concentrations from the observed excited state column densities, even though the 2σ 

statistical error bounds for [C2(d)] and [CN(A)] are in general less than 10%.  The 

correlation of column density with temperature is minimal, as the concentrations reflect the 

area under the spectral features, whereas the shape of the band defines rotational 

temperatures.  Therefore, large variation in rotational and vibrational temperatures does 

not significantly affect fit values for [C2] and [CN].  However, the large variance in plume 

temperatures reported in Figure 10 and the lack of experimental evidence for the electronic 

temperature limits our ability to predict total concentrations. 

Acosta et al. performed similar graphite laser irradiation experiments with the goal 

of analyzing graphite oxidation and combustion [79].  Their results show column densities 

for carbon oxidation products CO and CO2 on the order of 1017 molecules/cm2 for laser 
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irradiation of similar graphite samples at 777 W/cm2.  As was mentioned previously, C2 

and CN were not observed for irradiances less than 1.4 kW/cm2 in this paper.  At 1.4 

kW/cm2, average column densities were on the order of 109 and 1011 molecules/cm2 and at 

3.5 kW/cm2 on the order of 1012 and 1013 molecules/cm2 for C2 and CN and, respectively, 

assuming an electronic temperature equal to the CN(A) rotational plume temperature.  The 

results given by Acosta et al. are at least six orders of magnitude higher than observed 

column densities for CN and C2 for laser irradiation of graphite at 1.4 kW/cm2, indicating 

that oxidation is a more important process in reactions of graphite due to laser heating than 

nitridation, especially at lower irradiances.       

Acosta et al. also compared the experimentally determined CO and CO2 column 

density ratios to those from an equilibrium analysis and showed discrepancies [79].  Acosta 

et al. theorized that oxygen in the reaction boundary layer might be depleted and that the 

deviation from equilibrium would be from diffusion-limited oxygen.  While the production 

mechanisms of C2 and CN from cw laser irradiation are not known, the fact that the graphite 

oxidation kinetics is not consistent with an equilibrium analysis would indicate that C2 and 

CN would likely not be consistent with an equilibrium analysis either, confirming the 

discrepancy between the CEA analysis and experimental data observed in this study.  

Further detailed study needs to be accomplished to determine just how influential the 

oxidation kinetics are on the C2 and CN production from cw laser irradiation of graphite. 

3.3.5 Buoyant Versus Stagnant Flow 

A comparison between a sample irradiated at 1.4 kW∕cm2 under buoyant and 

stagnating flow (5 m∕s air flow) conditions revealed that the buoyant sample results in a 
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∼21 times lower [C2(d)]/[CN(A)] ratio than the sample under flowing air conditions due 

to a factor of ∼43 decrease in [C2(d)].  The vibrational temperature of CN is the same for 

the test shots under buoyant flow and with 5 m∕s flow, which is higher than the rotational 

CN temperature in both cases.  The C2 rotational temperature is higher, and the CN red 

rotational temperature is lower for the sample irradiated under flow conditions.  The 

surface temperature of the sample under stagnating flow conditions showed 134 K higher 

surface temperature than the sample under buoyant conditions.  Phillips et al. recorded a 

significantly larger mass loss with increased flow conditions, in particular an ∼2× mass 

loss increase with increasing deposited energy for a 5 m∕s flow for fine porosity graphite 

[49].  There is a direct correlation between an increased amount of C2 present and an 

increase in mass loss for a sample irradiated under stagnating flow. 

3.4  Conclusion 

 Graphite laser heating under high irradiance, cw conditions with deposited energies 

as high as 1 MJ has been analyzed utilizing visible emission spectroscopy, surface 

temperature measurements, and fast visible photography.  C2 Swan and CN red bands have 

been analyzed to determine gas temperatures ranging up to 5140380 K and column 

densities ranging up to 1.6  0.1×1012 molecules∕cm2 for CN(A) and 1.4  0.2×109 

molecules∕cm2 for C2(d) at the highest laser irradiances of 3.5 kW∕cm2.  No C2(d) or CN(A) 

is observed at irradiances less than 1.4 kW∕cm2.  The ratio of molecular products C2 Swan 

and CN red is insensitive to porosity of graphite but increases with laser irradiance and 

surface temperature.  Thermal steady-state conditions in the samples are reached at less 

than 20 s for high irradiance cases (3 to 3.5 kW∕cm2), at which point [C2(d)]/[CN(A)] is 
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constant.  Increased air flow on the sample leads to 21 times higher [C2(d)]/[CN(A)] 

concentration ratio despite surface temperatures that remain within 3.8% of buoyant flow 

surface temperatures.  Low column densities relative to oxidation products CO and CO2 

(106 times less) suggest that C2 and CN forming reactions are relatively insignificant.  The 

ratio of C2 and CN total column densities extrapolated from the observed excited states is 

less than an equilibrium analysis predicts using the surface or plume temperatures.  A 

detailed computational study of the kinetics and diffusion during irradiation is required to 

further interpret the experimental findings.  The impact of carbon nitridation (CN(A) 

production) on laser penetration of graphite appears minimal. 
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IV.  Comparison of plume dynamics for laser ablated metals: Al and Ti 

 Emissive plumes from pulsed laser ablation of bulk Ti and Al from KrF laser 

irradiation at laser fluence up to 3.5 J/cm2 and argon background pressures of 0-1 Torr have 

been observed using gated ICCD imagery.  Mass loss for Ti increases from 0.1–0.8 

µg/pulse as pulse energy increases from 174–282 mJ/pulse (35-170 photons/atom) and 

decreases by ~30 % as pressure increases from vacuum to 1 Torr.  Early plume energies 

are described by free expansion velocities of 1.57  0.02 and of 1.81  0.07 cm/µs for Ti 

and Al, respectively and up to 90% of the incoming laser energy can be attributed to the Al 

shock front in the mid-field.  The ablation thresholds of 90  27 mJ (1.12  0.34 J/cm2) for 

Ti and 126  13 mJ (1.58  0.16 J/cm2) for Al also represent 30–70 % of the incident laser 

energy.  The decrease is mass loss at higher pressures is attributed to plasma shielding of 

the target surface. 

4.1  Introduction 

The laser ablation and emissions plume creation process is complex, encompassing 

melting and vaporization of the target surface, generation of a plasma from the established 

vapor plume, laser absorption of the incoming laser radiation by the plume, and expansion 

of the plume away from the target surface [15], [41].  These laser induced plasmas are 

highly ionized [68], expand into the background gas with shock speeds of  > 1 cm/µs [108], 

[109],  and exhibit  hydrodynamic phenomena such as plume splitting and Rayleigh-Taylor 

instabilities [40], [70], [110]–[113].  

Knowledge of the plume dynamics is essential to the pulsed laser deposition (PLD) 

of thin films where a substrate is typically placed 1-20 cm from the target in a background 
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pressure of 0.1-1.0 Torr [15].  Pulsed laser deposition of titanium is increasingly utilized 

to create nitonol coatings for orthopedic implants [110], nitrogen doped titanium oxide for 

photocatalysts [111], and TiN layers for diffusion barriers in microelectronics and 

tribological coatings for high speed tools [112].  The production of molecular constituents 

and nanoparticles [40], [70], [113]–[115] usually requires slowing the plume by 

incorporating rare gas, nitrogen or oxygen background gases, with plume stopping 

distances located near the substrate.  Laser induced breakdown spectroscopy (LIBS) 

produces similar plumes, but propagate shorter distances and evolve more rapidly, due to 

the higher, atmospheric pressure conditions [25].  In the present study we compare the 

plume dynamics for pulsed laser ablation of two common aerospace metals, Al and Ti [1], 

[24].  Laser cutting, welding and additive manufacturing using Al or Ti depend on 

understanding the laser material interaction, typically at lower irradiance [24].  The 

response of these metals to high power laser radiation is also important to the effectiveness 

of emerging laser weapon systems [1]. 

Experimental characterization of laser ablated plumes and corresponding 

shockwaves have been conducted using shadowgraphy [31], [116], optical emission 

spectroscopy [36], [63], [117], charge collection devices [39], [108], [118], [119], and laser 

induced fluorescence [109], [120].  These techniques offer insights into the plume 

expansion process and its constituents but provide limited information regarding structure 

of the emissive plume.  Fast visible emissions imaging through the use of ICCD arrays has 

been extensively utilized to image laser ablation plumes [15], [33], [71], [121], [122].  

ICCD imaging offers the advantage of being able to record the structure of the emissive 

plumes in a 2D image with ~ 1 ns temporal resolution and ~ 100 µm spatial resolution.  
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The pulsed ablation of aluminum has been studied in some detail, including Nd:YAG 

sources at 1.06 µm [31], [33], [34], [121], sources with greater than 1 ns duration at shorter 

wavelengths [27]–[30], [115], and short pulse (fs) sources [35].  Background gases of air, 

rare gases, and nitrogen at pressures up to atmosphere have been examined, with plume 

stopping distance reported for low pressure nitrogen backgrounds [33], and expansion 

dynamics characterized at atmospheric pressures [31], [32], [121].  The scaling of Al plume 

dynamics and mass loss for UV laser sources is largely unstudied.  Pulse laser ablation of 

titanium has received considerably less attention, with the studies limited to short pulse 

effects in vacuum [112], deposition of nitonol films in vacuum [110], and LIBS at 532 nm 

[123].  In the present study, we seek to compare the plume dynamics for Al and Ti targets 

irradiated at 248 nm to examine the influence of atomic momentum on plume thickness 

and plume slowing, and resolve plume structure for low argon background pressures.  In 

addition, we compare the dependence of mass removal on laser fluence and background 

pressure with the plume energy driving shock formation.  This systematic study of ablated 

mass and plume dynamics will be used to better understand the implications of background 

pressure scaling relationships.  By defining the background pressure conditions for well-

formed plume fronts, future studies of evolving velocity distributions, shock front 

instabilities, and translational-to-electronic excitation rates is enabled. 

4.2  Experiment 

A schematic of the experimental apparatus is presented in Figure 12; further details 

of the experiment have been reported previously [44].  Briefly, a Lambda Physik LPX 305 

KrF laser at λ=248 nm delivered up to 282 mJ/pulse on the target in an 8 x 1 mm rectangular 
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spot with a repetition rate of 1 Hz.  The plume propagates normal to the target in the z-

direction and the gated camera observes the plume from above, integrating along the y-

direction.  The pulse exhibits a FWHM of 25 ns and a rise time of 5 ns, yielding an intensity 

of 141 MW/cm2.  The damaged area as observed by optical microscopy is similar to the 

laser footprint, as seen in Figure 13.  The laser beam is focused onto the target inside the 

10” vacuum chamber through a 300 mm focal length plano-convex fused silica 2” lens at 

an angle of incidence of ~45 degrees to the target normal.  The chamber was evacuated to 

a base pressure of 10-6 Torr with a turbomolecular pump before being backfilled with the 

desired pressure of 99.999% Ar (50, 250, 500, and 1000 mTorr).  Pressures were monitored 

by an MKS capacitance manometer with a 1-1000 mTorr range (±0.5% of reading) and an 

ionization gauge for near vacuum conditions.  

 

Figure 12. Experiment apparatus in (a) x-y plane (b) and x-z plane (dimensions specific to 
50 mm lens imaging system) and (c) laser pulse shape for (.) 282 mJ/pulse, (--) 240 
mJ/pulse, and (-) 174 mJ/pulse. 
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Figure 13. (a) Laser spot at target from thermal paper burn pattern, (b) optical microscope 
image of Ti damage, and (c) Ti 224 mJ/pulse ablation plume in 500 mTorr Ar at 141 ns 
delay. 

The targets were Kurt Lesker 1” diameter by 0.25” thick sputtering targets typically 

of either 99.99% Al or 99.7% Ti.  Targets were mounted onto a carousel allowing up to 6 

targets into the chamber at one time.  Each of the targets is rotated at 10 rpm about the z-

axis during laser irradiation to reduce surface cratering.  Laser energy delivered to the target 

was measured by utilizing a Coherent LMP10I detector calibrated to a wavelength of 248 

nm positioned inside the target chamber.  Images suffer from <5% pulse-to-pulse laser 

flicker and < 10 ns pulse-to-pulse laser timing jitter.  Typical thermal and optical properties 

of Al and Ti are provided in Table 4. 
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Table 4. Ti and Al Material Properties [41], [47] 
 

Al Ti 

Molar Mass, M (g/mol) 26.98 47.87 

Density, ρ (g/cm3)  2.7 4.506 

Melting Temperature, Tm (K) 933 1,943 

Vaporization Temperature, Tv (K) 2,792 3,560 

Enthalpy of Melting, ΔHm (J/g) 397 295.6 

Enthalpy of Vaporization, ΔHv (J/g) 10,896 8,800 

Spectral Reflectance, R (λ=248 nm, φi=0º) 0.9244 0.236 

Heat Capacity, Cp (J/g*K) (T=300K) 0.9 0.52 

Thermal Diffusivity, D (cm2/s) (T=300K) 0.98 0.093 

Absorption Coefficient, α (cm-1) (λ=248 nm) 1.49x106 6.13x105 

Ionization Potential, I (eV) 5.99 6.83 

                    φi is the angle of incidence. 

Fast visible emissions images were captured utilizing a Princeton Instruments 

PIMAX I intensified charged-coupled device (ICCD).  The 512 x 512 array PIMAX I was 

equipped to image early delays and short plume distance emissions with a Nikon AF 

Nikkor 60 mm micro f/2.8 lens that provided a field of view (FOV) of 5.24 x 5.24 cm 

(0.102 mm per pixel) or to image longer time/farther spatial distance plume details when 

equipped with a Nikon AF Nikkor 50 mm f/1.4 lens that provided a FOV of 8.28 x 8.28 

cm (0.162 mm per pixel).  The point spread function has been characterized and is 

somewhat larger, 0.5 mm for the 60 mm imaging system and 1.1 mm for the 50 mm 

imaging system [44].  The camera was gated with integration times ranging from 2-150 ns 

and delays of up to ~12 µs after the onset of irradiation.  Both the widths and delays were 

varied nonlinearly over 100 shots and the laser electronics were utilized to trigger the 

camera.  For the initial plume speeds of ~2 cm/μs presented below, the 2 ns integration 
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time implies a 40 μm or 0.39 pixel motion during image capture.  The plume slows and 

decreases in intensity at later times, allowing for the longer integration times to improve 

the signal to noise ratio, with < 4 pixel motion during the image capture.  The 16 bit camera 

saturates at 65,536 counts with a dark signal of 68 counts. The PIMAX camera quantum 

efficiency is above 20% from 410-890 nm, with a maximum quantum efficiency of ~40% 

at approximately 700 nm.  Band pass filters were employed to isolate the emission from 

neutral and ion atomic species [44].  The broadband emissions include < 10 lines for Ti 

and two lines for Al, with the dominant lines exhibiting radiative rates of > 7x107 s-1 [72].  

Plume motion during a radiative lifetime for the faster emitters is < 0.3 mm, resulting in 

the conclusion that emission is produced locally (within 3 pixels).   

An example plume image shortly after the laser pulse is provided in Figure 13(c).  

The plume lateral extent at the target matches the laser footprint.  The plume has expanded 

to z = 2.4 mm in 141 ns, yielding an initial velocity of ~ 1.7 cm/µs.  At the end of the laser 

pulse, t = 25 ns, the plume volume is ~ 3.4 mm3. 

Mass loss experiments were performed with a Mettler Toledo XP26 microbalance 

(minimum resolution of 0.001 mg) as functions of pressure and laser energy. The ~ 14.5 g 

Ti and ~ 8.8 g Al samples were received from the vendor sealed in Ar.  They were opened 

under atmospheric conditions and allowed to oxidize and hydrolyze until stable (~30 min) 

with mass increases of 44 μg and 56 μg for Ti and Al, respectively.  Samples were weighed 

on the XP26 before being placed into the chamber for irradiation.  The chamber was 

evacuated to base pressure for at least 12 hours before being backfilled with the desired 

amount of Ar.  Samples were irradiated for 600 shots at 1 Hz with the sample rotating about 
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the z-axis before being removed and then re-weighed on the XP-26.  Samples were 

measured a minimum of 5 times on the XP-26 before and after irradiation with a variance 

of < 1%. All results were averaged equally over the 600 shots to determine the amount of 

mass loss per pulse. 

4.3  Results and discussion 

4.3.1 Mass Loss 

The amount of material ablated per pulse as a function of laser energy and 

background pressure for both Al and Ti targets is summarized in Figure 14 and Table 5.  

Generally, more material was ablated from both targets with increasing laser energy. The 

maximum Ti mass removed of 0.80 μg/pulse (~482 μg in 600 pulses) occurs at the greatest 

delivered energy of 282 mJ, corresponding to 35 laser photons (175 eV) per ablated atom. 

The amount of mass ablated from a typical Ti target was on average 49% higher than the 

amount ablated for Al.  However, due to its higher molar mass, 26% fewer Ti atoms are 

produced than Al, consistent with the lower melting and vaporization temperatures of Al. 
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Figure 14. (a) Dependence of mass loss on laser energy ( ) Ti vacuum, ( ) Ti 50 mTorr,  
( ) Ti 500 mTorr, ( ) Ti 1000 mTorr, ( ) Al vacuum, ( ) Al 50 mTorr,  ( ) Al 500 
mTorr, ( ) Al 1000 mTorr, and (b) dependence of mass loss on background pressure ( ) 
Ti 174 mJ/pulse, ( ) Ti 224 mJ/pulse, ( ) Al 174 mJ/pulse, ( ) Al 224 mJ/pulse, and ( ) 
Al 282 mJ/pulse. 

The mass removal reported in Figure 14 is similar to previous results, although the 

exact conditions of the experiments in this study are not replicated elsewhere.  Sdorra et al 

reported Al mass loss of 0.5 µg per pulse from the 4th harmonic of an Nd:YAG laser (λ=266 

nm) at 3.2 GW/cm2 for an Al target in 100 Torr of Ar using optical microscopy [124].  Iida 

reported Al mass loss of 0.33 µg per pulse from the 1st harmonic of an Nd:YAG laser 

(λ=1064 nm) at 9.5GW/cm2 in 0.1 Torr Ar using a microbalance [125].  Torrisi et al ablated 

Al with the second harmonic of an Nd:YAG laser (λ=532 nm) in vacuum and recorded 

results of 0.28 µg at 170 mJ/pulse laser energy [126].  Timm et al reported mass loss for 

the closest conditions to those of this work.  KrF ablation of Al and Ti at 0.12-1.6 GW/cm2 

at vacuum pressure was performed and mass losses of  ~0.02 µg of Al and ~0.1 µg of Ti at 

0.19 GW/cm2 were recorded using a gravimetric balance and averaging over multiple shots 

[127].  Their results appear to be lower than those recorded in this study and the results of 

the other two studies.    
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Figure 14(b) generally illustrates less mass ablated at higher background pressure.  

This observation is further supported through a determination of Ti mass removal rates 

using linear fits of mass removed as a function of laser energy for varying background 

pressures (Table 5).  The average increase in Ti mass removal with laser fluence is 5.3  

0.67 μg/J, with pressure specific results provided.  Error bounds in Table 5 and the 

remainder of this paper reflect the statistical 1σ error in the fit parameter.  While the mass 

loss results in Figure 14(b) generally decreased with increasing background pressure, one 

exception to this trend is the Ti ablation mass loss results at 282 mJ/pulse, which is not 

displayed.  In this case, a mass loss of 0.78 ± 0.03 µg is observed, independent of 

background pressure.   

Extrapolations of the linear response of ablated mass with laser energy to zero mass 

reveal ablation thresholds of Φth =1-2 J/cm2.  Ablation thresholds are often calculated using 

the energy required to bring a volume of target material to a specified temperature [41], 

[128], [129] 

𝐸 =
𝐴𝜌(Δ𝐻)(𝛼 + 𝐷𝜏 )

(1 − 𝑅)
  (21) 

where the material properties are defined in Table I and the enthalpy change may include 

heat capacity and latent heats for melting and vaporization.  The details for the evolving 

reflectivity at elevated temperatures and the temporal evolution of the ablated mass are not 

addressed in Eq. 21, but the result is an adequate approximation that correlated the 

thresholds for many metals [130].  Using the heat of vaporization only and excluding 

reflection yields thresholds of 1.98 and 4.7 J/cm2 for Ti and Al, respectively. Observed 
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thresholds for ns ablation sources at various wavelengths range from 2 to 2.4 J/cm2 for Ti 

[40], [127], and 2.3 to 3.6 J/cm2 for Al [30], [127], [130]. 

Table 5. Mass removal parameters. 

Metal Ar Pressure 
(Torr) 

Em 
(mJ/g) 

Eth (mJ) Φth (J/cm2) 

Ti    0 239  44   90  27 1.12  0.34 

Ti 0.5 190  32 138  17 1.73  0.21 

Ti 1.0 158  3.1 156  1.6 1.95  0.20 

Al    0 204  25 126  13 1.58  0.16 

Al 1.0 292  68 144 21 1.80  0.26 

 

As the Ti background pressure increases from vacuum to 1 Torr, the apparent 

fluence threshold increases by 66 mJ.  Prior studies attributed a significant decrease in mass 

loss at higher background pressure to plume confinement and increased laser shielding of 

the target [125], [131].  Assuming negligible particle re-deposition (see discussion below), 

the 66  27 mJ increase in the apparent fluence threshold represents a 28  11% increase 

in shielding of the target surface.   

It has been observed that particle re-deposition increases with increasing 

background pressure during UV metal laser ablation, offering a second explanation of the 

results of Figure 14(b) [132].  Visible inspection of post-irradiated samples show that 

samples irradiated in vacuum exhibit deeper looking ablated laser spots than do samples at 

higher pressure, indicating a higher rate of ablation at lower pressure. Optical microscopy 

of the post-irradiated samples do not exhibit obvious re-deposited material.  Furthermore, 

the samples were swabbed to determine qualitatively if re-deposition was present.  Very 
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faint amounts of debris were observed on some Ti and Al sample swabs, with no apparent 

trend due to pressure or laser energy.  Finally, the analysis of the plume dynamics from the 

imaging discussed in Section 4.3.3 below provides additional insights into this topic. It will 

be observed that the plume accelerates during the laser pulse, the initial plume kinetic 

energy declines at higher background pressures, and the shock front expansion does not 

properly scale with a constant plume mass. Eventually it will be concluded that plume 

shielding rather is more significant than mass re-deposition. 

4.3.2 Plume Imagery 

Gated imagery reveals key information regarding the shock development, plume 

kinetic energy and evolution of velocity distributions. The qualitative features of the plume 

imagery are now examined. Typical fast visible imaging contour plots of KrF ablation of 

Ti at 1000 mTorr are presented in Figure 15.  The intensities in each frame are normalized 

to the maximum observed for that individual gate to highlight the relative features.  The 

initial plume size matches the laser spot and damage area.  The Ti emissions expand into 

the Ar background at an initial velocity of ~1.6 cm/µs.  At ~ 10 µs, the plume has reached 

its stopping distance of 2.8 cm. 
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Figure 15. Intensity contour images of Ti ablation at 224 mJ 1000 mTorr Ar at (a) 97 ns, 
(b) 295 ns, (c) 684 ns, (d) 1.13 μs, (e) 2.8 μs, and (f) 9.85 μs delay times. 

The Al ablation plume follows the same general plume dynamics as Ti.  However, 

Al slows more rapidly because it loses relatively more momentum per collision due to its 

lower molar mass (assuming both Al and Ti plumes expand at comparable speeds).  In 

Figure 16, the plume comes to shorter stopping distance, 2.1 cm, at earlier time despite the 

lower pressure.  Hydrodynamic vortices are readily observed as the plume slows due to 

collisions with the background gas and circles around towards the lower pressure edges of 

the plume.  The rotational rate was estimated to be 8.3x105 rad/s at a radius of 

approximately 1.7 cm measured from the target surface. 
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Figure 16. Intensity contours of 224 mJ Al ablation in 500 mTorr Ar at 6.1 μs delay 
showing vortices as plume slows.   

Filtered ICCD images allow for capturing spectrally resolved images and 

monitoring the evolution of selected emitters [45], [70].  Spectral data from 300-800 nm 

was previously recorded using the present apparatus, identifying neutral and singly ionized 

species [44].  Narrow band pass filters (< 10 nm bandwidth) with center wavelengths of 

500 nm, 375 nm, 394 nm, and 560 nm were utilized to isolated emission from neutral and 

singly ionized Ti and Al [44].  Figure 17 illustrates intensities along the centerline of the 

plume for both Ti and Al ablation detailing the location of the neutral and ionized species.  

Also shown are the unfiltered, broadband intensities, which decrease for longer delays.  

The filtered data intensity is lower than the broadband signal, reflecting the narrow spectral 

bandwidth and the low detector sensitivity at wavelengths below 400 nm.  Data in each 

figure were scaled to the broadband signal with average scaling factors provided in each 

figure.   
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At early times, the ion and neutral distributions evolve quite differently.  Most 

striking is the earliest time distributions for Ti in Figure 17(a) where the broadband 

emission extends much farther from the target than both the neutral and ion images.  

Because the filters cover a small fraction of the emission particularly for the dense Ti 

visible spectrum, it is possible that this intensity is due to other excited electronic states 

[44].  Additionally, a broad-spectrum continuum emission – Bremsstrahlung radiation – is 

produced via free-free transitions in the plasma and exists for the first 1-2 mm of expansion 

[15], [57], [62].  At 350 ns (Figure 17(b)), the broadband and Ti I species share a common 

contact front, but the neutral emission is highest near the target.  At times > 0.5 µs (Figure 

17(c),(f)), the neutral, ion, and broadband profiles for both Ti and Al share a common 

spatial distribution.  The Al intensity sequence (Figure 17 (d)-(f)) also shows the neutral 

species (Al I) dwelling at the surface while the ionized species (Al II) peaks at the 

broadband contact front at earlier delays.  At times > 240 ns, the Al I species appears to 

have reached the contact front and joined the Al II signal.   
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Figure 17. Centerline intensity for 224 mJ 1000 mTorr Ti ablation at (a) 145 ns, (b) 350 
ns, and (c) 940 ns and for 224 mJ 1000 mTorr Al ablation at delays of (d) 135 ns, (e) 160 
ns, and (f) 390 ns.  Solid lines represent broadband signals, dashed lines represent the 
excited neutral species (Ti I or Al I), and dotted lines represent the excited ionized species 
(Ti II or Al II).  

Filtered imaging intensity data reveal that the ion signal persists longer in ambient 

pressure than in vacuum.  Figure 18 shows that the Ti II signal lasted for ~1 μs under 

expansion into vacuum where no shock front is established.  Conversely, the Ti II signal 

lasted for >5 μs during expansion into 500 mTorr and 1000 mTorr of Ar.  The Al II signal 

showed the same trend but at different delays.  There is sufficient kinetic energy in the 

shock front (> 100 eV, see discussion below) to produce ionization.  The ionization 

potential for Ti is higher than for Al, possibly explaining the higher Al II signal far from 

the target at short delays [47].  Optical emission and ion probe studies have observed that 

ions generally precede the neutral species in the emissive plume [133].   
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Figure 18. Filtered imaging intensity dependence on time for Ti II in ( ) vacuum, ( ) 500 
mTorr, and ( ) 1000 mTorr and for Al II in (  ) vacuum and (  ) 1000 mTorr. 

The ablated plume shapes are significantly affected by background pressure.  

Figure 19 shows images of Ti ablation plumes under varying background pressures at 1.1 

µs delay.  The corresponding intensity profiles along the centerline of the plume in the z-

direction are also provided.  At vacuum background pressure, a well-established contact 

front is not observed for either Ti or Al ablation due to the lack of background gas atoms 

to excite and slow the leading edge of the plume. Strong shock fronts are clearly observed 

in the higher background pressure cases.  Since the radiative rates are rapid, 107-108 s-1, the 

emission largely occurs in the same pixel that the excitation originated.  That is, excited 

states are not propagated in the z-direction and the emission is produced locally.  As 

pressure increases, more background gas is displaced, a stronger contact front develops 

and the plume slows.   
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Figure 19. Ti ablation intensity contour images and intensity along the centerline of the 
plume at 240 mJ/pulse laser energy and Ar pressures of (a-b) vacuum, (c-d) 50 mTorr, (e-
f) 500 mTorr, and (g-h) 1 Torr at 1.2 μs delay.  Contact front thickness (δ) is defined as the 
distance between the 25% and 75% of maximum intensity (Imax) at the plume leading edge.   

At 500 mTorr, the thickness of the contact front is δ=0.4 mm, nearly the same as 

the mean free path.  The speed of sound in Ar, 𝑣 , at 294 K is 319 m/s.  The corresponding 

contact front location, z=1.3 cm, for the 1.2 µs delay established a velocity of 1.08 cm/µs 

or a local Mach number of M=34.  Figure 19(g)-(h) reveal that the contact front in 1 Torr 

has slowed to 0.95 cm/µs, while the front thickness is approximately the same as 500 mTorr 

(δ=0.5 mm).  At these higher pressure conditions, the plume has suffered sufficient 

collisions to begin to dissipate the over-pressure and the plume is quickly slowing.  

Figure 20 shows the Ti emissive plume dependence on laser energy.  The leading 

edge distance traveled by the plume increases with increasing laser energy.  The intensity 
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of the plume increases by >400% when increasing laser energy by 108 mJ/pulse.  The 

shape of the plume appears to be approximately equivalent. 

 

Figure 20. Ti ablation intensity contour images and intensity along the centerline of the 
plume at 500 mTorr Ar at (a-b) 174 mJ/pulse, (c-d) 224 mJ/pulse, and (e-f) 282 mJ/pulse 
at 2.8 μs delay. 

4.3.3 Dependence of plume dynamics on pressure and laser energy 

The kinetic energy of the expanding plume depends on metal surface, laser energy 

and background pressure, and can be characterized from the plume imagery.  The trajectory 

of the shock front, z(t), defined by the location of the emissive front at 10% of the maximum 

intensity, is illustrated during the time when the laser pulse is on in Figure 21 and for a few 

cases after the laser pulse in Figure 22.  

The plume expansion during the laser excitation shown in Figure 21 clearly 

indicates interaction of the plume with the laser radiation. The plume initially expands in a 
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manner consistent with the ~40 ns temporal energy distribution of the laser pulse.  A fit of 

the linear portion of the trajectory from 10 ns to 30 ns results in a velocity of 5.8 cm/μs.  

When coupled with the mass loss results from Section 4.3.1, kinetic energies ranging from 

0.6-1 J are calculated, 3-4 times the incoming laser energy.  Clearly the mass involved in 

the earliest expansion of the plume, during the laser pulse, is significantly less than the total 

mass given in Figure 14.  That is, the mass ejection rate is highest late in the ablation 

process and these atoms receive less kinetic energy. Indeed, the free expansion velocity for 

the full plume is much lower, ~ 1.6 cm/µs, as discussed below.  Laser-plume coupling 

mechanisms such as inverse-Bremsstrahlung and photoionization are well established in 

literature [41], [57].  Furthermore, early plume expansion mechanisms have been 

postulated describing the rapid acceleration of ions due to a coulombic attractive force from 

electrons that have been accelerated away from the plume [129], [133], [134].  A thorough 

determination of a laser plume coupling mechanism responsible for the observed laser-

plume expansion is beyond the scope of this work, and the experimental findings are simply 

noted here. 
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Figure 21. Ti (filled markers) and Al (unfilled markers) plume trajectories reflecting the 
240 mJ laser pulse temporal distribution (-) at ( ) vacuum, ( ) 50 mTorr, ( ) 250 mTorr, 
(  ) 500 mTorr, and (  ) 1000 mTorr Ar. 

At the conclusion of the laser pulse, the front expands freely with a velocity, vo, 

defined by a linear trajectory (see Region I of Figure 22(a)).  The plume begins to slow as 

the highest velocity components contact the background gas.  Under vacuum conditions, 

the plume intensity is relatively weak, lacks a well-defined contact front, and the front 

continues to propagate as a free expansion with constant velocity. The mean free path 

between collisions is 0.2 – 4 mm for pressures of 50 – 1000 mTorr and this contact front 

between the expanding plume and the background gas quickly becomes apparent.  The 

expanding plume acts as a mechanical piston, compressing the background gas resulting in 

the formation of a shock front towards the end of this region.   Region II marks the 

trajectory of a well-developed shock front.  The shock dynamics can be described by the 

Sedov Taylor theory [57] during this period when the shock is strong.  At longer times 

(Region III), the emissive plume approaches a stopping distance of 3 cm and separates 

from the weakened shock which approaches M =1.  Three approaches to defining the plume 

energy dynamics are now pursued using free expansion, blast theory, and a drag model. 
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A free expansion model is adequate for characterizing the ablation data in vacuum 

throughout the entire expansion (Figure 22(b)).  At higher background pressures, a linear 

trajectory is observed for only the first ~200 ns after which collisions begin to slow the 

plume.  The free expansion velocity for Al in Figure 22(a) is 1.81  .07 cm/µs and for Ti 

in Figure 22(b) of 1.57  .02 cm/µs.  These initial free expansion velocities are independent 

of pressure, varying by 3% and exhibiting no systematic trends.  The free expansion 

velocities correspond to 61.1 eV per Ti atom and 45.8 eV per Al atom.  Considering the 

mass results from section 4.3.1, the plume kinetic energies range from 46-78 mJ for Ti 

ablation and 51-69 mJ for Al ablation for Ar pressures ranging from 1-0 Torr.  The result 

that the pressure dependence for total kinetic energy scales directly with the ablated mass, 

leads to a primary conclusion:  the fraction of the incident laser energy coupled to both the 

target and plume decreases at higher background pressures. 

If it is assumed that the available energy above the threshold energy and not 

observed as kinetic energy is portioned to internal energy, maximum temperatures of ~41 

eV/atom for Ti and ~ 31 eV/atom for Al can be extracted.  The internal energy (electronic 

excitation) is certainly less, due to incomplete coupling of the laser energy to both the target 

and plume.   
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Figure 22. (a)Trajectory of Al plume from 240 mJ/pulse ablation in 500 mTorr Ar.  
Region I is the trajectory in which free expansion occurs and the shock wave is forming.  
Region II is the trajectory in which the shock wave is fully formed and Sedov-Taylor 
theory is applicable. Region III is the trajectory in which the contact front slows and the 
shock wave moves ahead of the contact front, (b) Ti blast model (--) and drag model (-) 
fits to broadband signal as a function of background pressure at ( ) vacuum, ( ) 50 
mTorr, ( ) 250 mTorr, ( ) 500 mTorr, and ( ) 1000 mTorr and a laser energy of 240 
mJ/pulse.  A linear, free expansion model (-.) fit to the vacuum data is provided for 
reference and residuals for the 1000 mTorr Sedov-Taylor and drag model fits are 
provided in the bottom window, and (c) dependence of plume trajectory on laser pulse 
energy for ( ) Al 174 mJ/pulse, ( ) Al 282 mJ/pulse, ( ) Ti 174 mJ/pulse, and ( ) Ti 
282 mJ/pulse at a background pressure of 500 mTorr. 

Figure 22(c) indicates that the Al and Ti plumes for 500 mTorr argon background 

travel nearly the same distances for the first 800 ns for 282 mJ/pulse and for the first 400 

ns for 174 mJ/pulse.  The plume velocity of both species increases with laser energy.  The 

free expansion velocity increases by 14% for both species as the laser energy increases 

from 174 to 282 mJ/pulse.  

A model based on a classical linear drag force is often used to determine the contact 

front location at which the expanding plume stops, 𝑧  [15]:   

𝑧 = 𝑧 (1 − 𝑒 )      (22) 
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where the deceleration is characterized with a drag decay constant, k. The drag model also 

provides another estimate of the initial velocity, 𝑣 , = 𝑘𝑧 .  A fit of Eq. 22 to the data in 

Figure 22(a) yields a stopping distance of zf = 2.86 ± 0.04 cm for Al in 500 mTorr of argon.  

The dependence of the drag parameters on background pressure and laser energy is further 

detailed in Figure 23.  The initial velocity of the plume increases with increasing laser 

energy, reflecting the fact that more energy is available to the expanding plume.  The initial 

velocity at the lowest pressure (50 mTorr) for Ti is 2.12 ± 0.04 cm/µs, greater than that of 

the Ti free expansion value in Figure 22.  Contrary to the initial velocity dependence 

determined using the free-expansion model, as the pressure is increased, the velocities of 

Ti and Al decrease from 1.6 cm/µs at 250 mTorr to 1.3 cm/μs at 1000 mTorr.   One might 

not expect the initial drag velocity to depend on the background pressure, but instead to be 

equivalent to the free-expansion values reported earlier.  Drag model fitting to emission 

images is common [15], [71], [121] and in the case of YBa2Cu3O7-x, also show a decrease 

in drag fitted initial velocity with increasing background pressure [70].   Based on the 

experimental trajectory evidence, we prefer the early free expansion fits for estimating the 

plume initial velocity.  Constraining the fit of Eq. 22 using the measured free expansion 

velocity produces unacceptably large residuals.  The drag model fits are heavily weighted 

for longer times where significant collisions occur and is best suited for estimating stopping 

distances.  The stopping distances, zf, are larger for Ti on average by 0.5 cm, consistent 

with the greater Ti momentum.  Stopping distance are shorter at higher pressure due to the 

increase collision frequency.  The stopping distances also generally increase with higher 

laser energy due to the higher initial velocity.  An evaluation of the shock energy in Region 

II of Figure 22(a) using the blast model is now accomplished. 
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Figure 23. Dependence of stopping distance, zf, for ( ) Ti and ( ) Al and dependence of 
initial velocity, vo,D, for ( ) Ti and ( ) Al on (a) background pressure, Pb, at 240 mJ/pulse 
and (b) laser energy, Ql, at 500 mTorr. 

The emissive plume front trajectories may be further interpreted through the use of 

a Sedov-Taylor point blast model.  The Sedov-Taylor model (Eq. 23) describes a shock 

wave produced after an instantaneous point detonation, relating the shock energy, 𝐸 , the 

background gas density, 𝜌, the plume dimensionality, n (n=1 for planar expansion, n=2 for 

cylindrical, and n=3 for spherical), a constant factor dependent on the ratio of specific heats 

(𝜉 = 1.49 (𝑛 = 1), 𝜉 = 1.77 (𝑛 = 2), and 𝜉 = 1.15 (𝑛 = 3)), and time, t, to the shock 

front location at a distance from the target z [57], [135]:  

𝑧 = 𝜉 𝑡 .     (23) 

This model is relevant when the amount of mass displaced by the expanding shock front is 

larger than the amount of mass in the expanding shockwave and when the pressure behind 

the shock front is larger than the pressure of the background gas [57], [136]: 



68 

𝑧 =
3𝑚

2𝜋𝜌
≪ 𝑧 ≪

2𝐸

𝑃
= 𝑧  (24) 

where 𝑚  is the amount of mass ablated from the surface, 𝜌 is the background gas density, 

𝐸  is the initial ablation energy (laser energy), and 𝑃  is the background gas pressure.  The 

lower bound limit is estimated from the ablated mass reported in Section 4.3.1 and is 

typically 0.3 – 1.4 cm. For the Al 500 mTorr example in Figure 22(a), this limit is achieved 

for t > 0.255 µs. At earlier times, the blast theory unrealistically predicts velocities that 

exceed the free expansion and become very large at t=0.  Fits of the blast model are 

illustrated in Figure 22(b), and do not include data below the lower bounds of 1.4 cm for 

50 mTorr, 0.76 cm for 250 mTorr, and 0.5 cm for 500 and 1000 mTorr. 

The high limit of Eq. 24 ranges from 14-44 cm, well beyond the observed stopping 

distances.  Apparently, the emissive plume detaches from the shock front propagating in 

the background gas well before the upper bound.  The ICCD images observe the visible 

emissions only from excited constituents and any non-excited constituents cannot be 

observed.  At atmospheric pressures, the emissive plume exhibits a stopping distance, 

where shadowgraphy indicates the non-emissive shock front separates from the emissive 

plume and continues to propagate in accordance with the blast model [31], [116].  Because 

the location of the shock front as it breaks away from the emissive plume is not observed 

in this study, the upper bound described in Eq. 24 must be further limited.  Harilal et al 

determined a breakaway time of ~400 ns from ablation of Al in argon at atmospheric 

pressure [31].  This breakaway time is converted to a non-dimensional time according to 

𝜏 = 𝑣 𝑡, and used to determine the corresponding limiting times and locations for 
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the studied laser energy and background pressure conditions.  Breakaway locations, 𝑧 , of 

6.20, 3.76, 2.99, and 2.30 cm for Ti ablation in 50, 250, 500, and 1000 mTorr argon, 

respectively, and of 3.03, 2.40, and 1.80 cm for Al ablation in 250, 500, and 1000 mTorr 

argon, respectively, were determined using this scaling.  These calculated values for 𝑧  

served as the upper bound for fitting Eq. 23 to the emissive plume trajectories. 

Typical fits to the blast and drag models are compared in Figure 22(b).  In general, 

the drag model fits are marginally superior to the blast model for Ti while the blast model 

fits are superior for Al trajectories.  The largest residual root mean square error (RMSE) of 

0.185 cm was calculated for 50 mTorr Ti ablation fit with the blast model while the largest 

RMSE for Al was 0.152 cm for 250 mTorr fit to the drag model.  As others have observed, 

the drag model fit residuals show smaller residuals for lower background pressure [15].  

Structure above the noise in the data is present for both the blast and drag fits, indicating 

systematic problems with both models. 

A comparison of the blast fit parameters as functions of laser energy and pressure 

is observed in Figure 24.  Analysis of the optimal plume dimensionality reveals the Ti and 

Al plume dimensionalities are less than spherical for all pressures, ranging from 1.7 ± 0.1 

to 2.9 ± 0.1.  Furthermore, plume dimensionality changes very little with changing fluence, 

with the Al plume dimensionality higher on average (n=2.3 ± 0.1) than the Ti average 

plume dimensionality (n=1.9 ± 0.1).  Deviations from spherical expansion are likely due 

in part to the absence of a point source. 
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Figure 24. Dependence of plume dimensionality, n, for ( ) Ti and ( ) Al and dependence 
of plume front energy, EST, for ( ) Ti and ( ) Al on (a) background pressure, Pb, at 240 
mJ/pulse and (b) laser energy, Ql, at 500 mTorr.  EST was determined using n=3. 

The fits for the shock front energy, EST, using n=3, for Ti at 240 mJ/pulse decrease 

from 528 ± 10 mJ at 50 mTorr to 247 ± 10 mJ at 1 Torr. Due to the target plane, the laser 

plume is only a hemispherical expansion whereas the blast theory assumes expansion in 

both ±z directions.  Therefore the blast theory fit parameter for energy are reduced by a 

factor of two to characterize the shock energy [137].  The resulting Ti energies from the 

blast model, EST/2, are 51-100% of the incident laser energy.  For aluminum the shock front 

coupling is somewhat less, 27–38%. If we account for the threshold energies listed in Table 

5, the Sedov-Taylor model overestimates the Ti energy in the plume, predicting 120% of 

the available energy in the shock front for 500 mTorr Ar ablation while Sedov-Taylor 

estimates ~90% of the available energy in the Al shock front for 1000 mTorr Ar ablation.  

Conservation of energy does not allow the Sedov-Taylor energy to be above 100% of the 

available energy.   

A powerful concept of self-similarity that comprises the Sedov-Taylor model 

enables the trajectories to be scaled for comparison between various energies and 

background pressures using the Sedov-Taylor limits from Eq. 24.  Figure 25 shows the 
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trajectory data from Figure 22(b) scaled using these limits.  The similarity between various 

background pressures is only modest and a single trajectory for all conditions is not 

achieved.  This scaling assumes a constant n=3 spherical expansion, but the fits of Figure 

24 yield n <3 with a significant dependence on pressure.  The different degree of curvature 

in the trajectories at various pressures reflects this change in expansion dimensionality.  

Furthermore, the variation in EST with pressure conflicts with the pressure similarity. The 

decrease in initial ablation energy released at higher pressure is consistent with the decrease 

in plume kinetic energy derived from the free expansion velocity and mass measurements 

and supports the conclusion that laser coupling to both the target and plume decreases at 

higher pressure. 

 

Figure 25. Ti trajectory data for ( ) 50 mTorr, ( ) 250 mTorr, ( ) 500 mTorr, and ( ) 
1000 mTorr and a laser energy of 240 mJ/pulse scaled using (a) the lower limit of Eq. 24, 
and (b) using the upper limit of Eq. 24.   

The overpressure and temperature behind the shock front at a particular plume 

distance z can be calculated utilizing the results from the Sedov-Taylor model assuming a 
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spherical expansion (n=3) and a constant ratio of specific heats (γ=5/3 for monoatomic 

gas), according to  

𝑝 =
2

𝛾 + 1
𝜉

2

5

𝐸

𝑧
 (25) 
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𝜉

2

5

𝐸

𝑧
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where p1 is the pressure behind the shock front, p0 is the ambient pressure, T1 is the 

temperature behind the shock front, and T0 is the ambient temperature. Figure 26 shows 

that the pressure and temperature are highest at the shortest z distance for which the shock 

wave has developed and then decrease with increasing z.  The highest T1 and p1 are shown 

to correspond to the lowest displayed argon pressure p0 (T1=26 eV and p0=2x106 mTorr) 

and decrease with increasing background pressure.  The temperatures displayed in Figure 

26 are less than the internal energy temperatures calculated in Region I.  

 

Figure 26. Ti ablation dependence of shock pressure, p1, for ( ) 500 and (  ) 1000 mTorr 
and temperature, T1, for ( ) 500 and (  ) 1000 mTorr. 
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The plume expansion energy partitioning may be best summarized by a discussion 

of the regions labeled in Figure 22(a).  Threshold energies determined in Section 4.3.1 

reveal that < 48% and < 63% of the original 240 mJ are available to produce and drive the 

observed Al and Ti ablated plumes, respectively.  In Region I after termination of the laser 

pulse, free expansion velocities yield vacuum kinetic energies of 61 + 11% and 52 + 12% 

of the available Al and Ti energy (for the remainder of this discussion, “available energy” 

will refer to energy above the threshold values given in Section 4.3.1, respectively, with 

the remaining energy going into the internal energy of the plume.  With increasing 

background pressure, the laser is partially shielded from the target and the plume interacts 

with the ambient gas through collisions slowing the expansion of the plume and 

transferring kinetic energy into internal energy, with only 61 + 3% and 58 + 17% of the 

available energy going into kinetic energy in 1 Torr of argon for Ti and Al, respectively.  

As the plume continues to expand, it piles up at the contact front and compresses the 

background gas further, forming a strong shock wave as Region I transitions to Region II.  

Application of the Sedov-Taylor blast model to the trajectory in Region II reveals that up 

to 90% of the available energy goes into the Al shock front.  With more accurate locations 

of the contact front – shock front breakaway, it is likely that nearly all of the available 

energy is located in the Ti shock front as well.  Transition from Region II to Region III is 

described by a decrease in velocity of the emissive plume due to further collisions with the 

background gas while the shockwave breaks away and propagates at a higher velocity.  We 

can only observe the emissive plume in this region and so no quantitative measure of the 

available energy can be made. 
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4.4  Conclusion 

The plume dynamics of Al and Ti under UV, 25 ns ablation at up to 3.5 J/cm2 have 

been compared by measuring the mass ablated and imaging the plume dynamics.  Mass 

loss results are consistent with modest ablation thresholds of 90 and 126 mJ/pulse for Ti 

and Al, respectively.  The highly ionized plume partially shields the surface, allowing 

additional atoms to be ablated at higher laser fluence but shielding the surface more at 

higher background pressure. The plume kinetic energy is very high, 45-61 eV/atom, 

corresponding to 10 - 13 laser photons per ablated atom. The Sedov-Taylor point blast 

model shows laser-shock wave coupling of up to 40% of the incoming energy for Al 

ablation.  The lighter mass aluminum exhibits a slightly higher expansion velocity than Ti 

but approximately the same initial kinetic energy.  The Al plumes also decelerate more 

quickly due to the lower momentum.  Further experimental studies need to be performed 

to better determine the location of contact front shock front breakaway and to better 

determine the actual amount of re-deposited material back onto the surface for the 

conditions present in this paper.  The present survey of plume dynamics is necessary for a 

detailed study of shock strength and shock front instabilities, and for characterizing the 

evolution of forward directed speed distributions. 

  



75 

V.  Laser ablated Ti velocity distribution dynamics 

Emissive plumes resulting from pulsed ablation of titanium targets have been 

observed using a gated ICCD camera to characterize the evolution of velocity distributions 

as the plume expands into vacuum, Ar and He backgrounds. Shifted Maxwell Boltzmann 

distributions with flow speeds of u > 0.1 cm/µs are adequate only for neutral Ti expansion 

into vacuum. Ionized Ti velocity distribution shows deviation from a conventional shifted 

Maxwell-Boltzmann distribution.  Near the target, the time of flight data clearly indicates 

several distinct distributions for the neutral Ti, with faster component consistent with the 

ionized Ti velocity distribution.  Expansion into He and Ar are clearly non-Maxwellian, 

with the highest velocity groups suffering collisions in the shock front. Leading edge 

velocities decrease more rapidly for Ar, consistent with momentum conservation. 

Expansion into He maintains the appearance of the vacuum distribution at low velocities 

but shows a decrease in the leading-edge velocity and an enhancement of the intensity of 

the highest-velocity groups at farther target distances. Determination of velocity 

distributions from time of flight data is complicated by translation-to-electronic excitation 

rates, intraplume collisional dynamics, and non-hydrodynamic conditions. 

5.1  Introduction 

Pulsed laser deposition is a common method for creating thin films using pulsed 

UV wavelength lasers in background pressures of 0.1-1.0 Torr [15].  Placement of the 

substrate in reference to the ablated target is crucial to achieving homogenous films 

requiring characterization of the evolution of the ablated plume.  The plume dynamics of 

Ti and Al under KrF irradiation in vacuum and Ar background have recently been studied 
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experimentally, detailing plume trajectories, stopping distances and kinetic energies and 

applying simple models to determine the energy, pressure, and temperature in the shock 

front [44], [138].  This discussion is continued by focusing on the velocity distribution of 

Ti in Ar and He background environments. 

Fast emissions imaging has been extensively utilized in the literature to determine 

the location of the contact and shock front and view hydrodynamic phenomena in the 

plume expansion such as plume sharpening, plume splitting, and Rayleigh Taylor 

Instability [31], [71], [119], [121].  Velocity distributions and time-of flight spectra during 

pulsed ablation are typically observed using electrostatic analyzer [27], [139]–[141], 

emission sensors [121], [141]–[143], and fast imagery [70], [144].  Fast plume imagery 

using gated intensified charged coupled devices (ICCD) offer time of flight spectra 

recorded simultaneously at many target distances with excellent spatial, spectral, and 

temporal resolution [45].  Velocity distributions from laser induced plumes are typically 

described by modified Maxwell Boltzmann distributions with a forward directed flow 

speed, here defined as shifted Maxwell Boltzmann (SMB) distributions [15], [45].  

Isentropic supersonic expansion or evolution of Maxwell Boltzmann distribution into a 

SMB due to Knudsen layer effects have been described to explain these distributions [74], 

[75], [78].  However, application of SMB distributions to expanding plumes of  

YBa2Cu3O7-x have revealed non-physical parameters such as negative flow speeds [45]. 

Others have noticed that application of SMB distribution to Cu time-of-flight (TOF) data 

revealed angle dependent fit parameters, requiring further modification of the SMB 

distribution to include transverse and longitudinal temperatures [46]. Zhiglei et al used 

molecular dynamics simulations to determine that the physical depth of the particle from 
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within the target surface directly influenced the distribution observed and they proposed 

an analytical modified Maxwell-Boltzmann distribution that accounted for a range of flow 

speeds [145]. Their distribution showed good results with their simulated data but 

expansion into a background gas would likely change the distribution.  Pulsed ablation of 

Ti targets is less studied [120], [138], with velocity distributions in vacuum examined by 

electrostatic analyzer [39], [146] and optical emission spectroscopy [36], [109].  In the 

present work, the gated ICCD technique is applied to experimentally investigate the 

spatially evolving plume velocity distribution function of Ti in vacuum and various Ar and 

He pressures.     

5.2  Experiment 

Details of the experiment have been reported previously [44]. Briefly, a Lambda 

Physik LPX 305 KrF laser at λ=248 nm delivered up to 282 mJ/pulse on the target in an 8 

x 1 mm rectangular spot with a repetition rate of 1 Hz.  The plume propagates normal to 

the target in the z-direction and the gated camera observes the plume from above, 

integrating along the y-direction.  The pulse exhibits a FWHM of 25 ns and a rise time of 

5 ns, yielding a maximum intensity of 141 MW/cm2
.
  The laser beam is focused onto the 

target inside the 10” vacuum chamber through a 300 mm focal length plano-convex fused 

silica 2” lens at an angle of incidence of ~45 degrees to the target normal.  The chamber 

was evacuated to a base pressure of 10-6 Torr before being filled with the desired pressure 

of 99.999% Ar or 99.999% He (250, 500, and 1000 mTorr).  The Kurt Lesker ~99.7% Ti 

1” diameter by 0.25” thick sputtering targets were mounted onto a 10 rpm rotating carousel 
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during laser irradiation to reduce significant surface etching.  Images contain <5% pulse-

to-pulse laser flicker and < 10 ns pulse-to-pulse laser timing jitter.   

Fast visible emissions images were captured utilizing a Princeton Instruments 

PIMAX I intensified charged-coupled device (ICCD).  The 512 x 512 array PIMAX I was 

equipped to image early delays and short plume distance emissions with a Nikon AF 

Nikkor 60 mm micro f/2.8 lens that provided a field of view (FOV) of 5.24 x 5.24 cm 

(0.102 mm per pixel).  The point spread function is 0.5 mm.  The camera was gated with 

integration times ranging from 2-100 ns and delays of up to ~12 µs after the onset of 

irradiation.  Both the widths and delays were varied nonlinearly over 100 shots and the 

laser electronics were utilized to trigger the camera.  For the initial plume speeds of ~2 

cm/μs presented below, the 2 ns integration time implies a 40 μm or 0.39 pixel motion 

during image capture.  The PIMAX camera quantum efficiency is above 20% from 410-

890 nm, with a maximum quantum efficiency of ~40% at approximately 700 nm.  Narrow 

band pass filters (Δλ < 11 nm) centered at 502 nm and 376 nm were employed to isolate 

the emission from neutral and singly ionized Ti.  Optical emission spectroscopy performed 

on expanding Ti plumes verified that the 376 nm filter isolated the Ti II z2F0-a2F transitions 

(375.9 and 376.1 nm) and the y2D0-b2D2 transition (374.2 nm), and the 502 nm filter 

isolated the following Ti I emissions: y5G0-a5F (498.2, 499.1, 499.95, 501.4, 501.6 nm), 

z3d0-a3F (500.96 and 506.5 nm), and w3G0-b3F (503.6, 503.8, and 507.1 nm) [44], [72]. 

The broadband emissions include many transitions, with the dominant lines exhibiting 

radiative rates of > 7x107 s-1.  Plume motion during a radiative lifetime for the faster 

emitters is < 0.3 mm, resulting in the conclusion that emission is produced locally (within 

3 pixels).   
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Ti ablation for typical thin film deposition conditions has recently been described 

in detail [138].  Ti ablation threshold of 1.12  0.34 J/cm2 at laser wavelength 248 nm was 

determined.  The mass removed is < 8 µg/pulse corresponding to ~ 35-100 laser photons 

per ablated atom.  Plume kinetic energies as high as 175 eV are observed with stopping 

distances of 2-6 cm at Ar background pressure of up to 1 Torr. 

5.3 Results and Discussion 

5.3.1 Velocity Distributions from Emission Images 

The intensity observed from excited state emissions is proportional to the number 

of emitters: 

𝐼 = 𝐷(𝜈 )ℎ𝜈 𝐴 𝑛 𝑙  
Ω

4𝜋
   (27) 

where 𝐴  is the Einstein A coefficient (s-1), 𝑛  is the concentration of the species of interest 

in the upper state i, l is the optical path length (cm), and 𝜈  is the frequency of a species 

transition from upper state i to lower state j.  The solid angle viewed by the detection 

system, Ω, and the spectral detectivity, D, yield intensity on the ICCD camera.   The 

intensity is temporally averaged over a short integration time, < 100 ns, and may be 

spectrally filtered to limit emission to specific excited state.  Eq. 27 assumes an optically 

thin plume.  Electronically excited Ti states are produced by collisional excitation 

(translation-to-electronic (T-E) energy transfer) both in the shock front upon collision with 

the background gas and interior to the plume by collision with other ablated material.   At 

these modest pressures, the decay is dominated by radiative processes: 
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𝑑𝑛

𝑑𝑡
= 𝑘 𝑛 𝑚 − 𝐴 𝑛 = 0   (28) 

where 𝑛  and 𝑚 are the densities of the species of interest in the pre-collision energy state 

and the colliding partner, respectively.  The reaction rate coefficient 𝑘  is equal to the 

product of the velocity dependent collision cross-section and the relative velocity of the 

collision partners, 𝜎 (𝑣 )𝑣 .  Here we assume steady state as the Ti major emitters have 

radiative rates of > 1x107 s-1 and most emission is produced locally [72].  Combining Eqs. 

(27) and (28) shows that the intensity is proportional to the velocity distribution: 

𝐼(𝑣) = 𝐶𝜎 (𝑣 )𝑣 𝑛 , 𝑓 𝑣 𝑚  (29) 

where C represents the constants, 𝑓 𝑣  is the velocity distribution function, and 𝑛 ,  is the 

total Ti ground state density.   

The T-E cross section, 𝜎 (𝑣 ), has a threshold energy equivalent to that of the 

electronic excitation of the Ti species ~ 2 eV [44].  Above threshold, the cross-section 

likely decreases proportionally to 𝑣 , where q is unknown.  The velocity distribution for 

the background gas is narrow and slow, so that the relative velocity for colliding particles 

from the expanding plume and the background gas are nearly those of the expanding plume 

particles (~100 cm/µs [138]). Excitation in the contact front occurs when the highest 

velocity group in the plume encounters the background gas.  When the shock front is well 

developed, its thickness is reduced to a few mean free paths.  The mean free path is defined 

by the density of the background gas and is rather long, ~ 102 um at ~100 Torr.  In contrast, 

the pressure behind the shock front is much higher, the mean free path is dramatically 

reduced, and the collision frequency is significantly increased. The relative speed for 
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collisions in the interior of the plume is less, as most of the flow is forward directed.  If the 

excitation rate 𝑘 = 𝜎 (𝑣 )𝑣  is assumed to be independent of velocity (equivalent to 

assuming a hard-sphere cross section with no threshold and q=0), then the properly 

normalized intensity represents the velocity distribution.  Otherwise, the observed 

intensities are influenced by both the velocity distribution and the excitation rate. 

TOF spectra are created by recording the intensity at a point along the centerline 

for frames taken at increasing time delays (centerline is defined here to be the average of 

the center 5 pixels for broadband and Ti I emissions and the center 21 pixels for Ti II 

emissions to account for low intensity and eliminate any pulse to pulse variation and 

turbulent front phenomena) (see Figure 27).  Exposure times are typically increased at 

longer plume propagation times and the intensities are normalized accordingly.  By 

knowing the distance of the detector pixel from the target, z, and the timing delay from 

each frame, t, a velocity (forward directed speed) can be determined, v=z/t.  This 

transformation is accurate for the contact front, where the plume is encountering its first 

collision with the background gas. In the interior of the plume the slowed products after 

the initial interaction with the background gas are rapidly relaxed to a new distribution. To 

convert the observed images at various delays, I(x,z;t), to intensity along the centerline 

(x=0) as a function of velocity at various target distances, I(v=z/t, z), requires multiple 

images. The velocity distribution must account for the non-linear relationship for changes 

in velocity and time, 𝑑𝑣 = 𝑑𝑡 = 𝑑𝑡 so that 𝐼(𝑣; 𝑧) = 𝐼(𝑧; 𝑡) .  The 𝑣  

transformation weights intensity data at low velocity (long time) relatively high.     
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Figure 27. (a) 240 mJ Ti ablation into vacuum intensity contours for time delay of 1630 
ns where zd is the “detector” pixel location at 0.49 cm, (b) the corresponding time 
distribution formed by recording the intensity at a particular z for a series of spectra or 
times, and (c) the corresponding velocity distribution.  

 The advantage to the imaging TOF approach versus a typical TOF setup by 

monitoring particle flux is that every pixel in the frame can be used as a detector location.  

Thus, we can simultaneously monitor the velocity distribution at different spatial locations.  

Furthermore, this technique is passive so as not to disturb the plume expansion.  While fast 

emissions imaging has its advantages, one clear disadvantage is the inability to observe 

particles that are not excited.  Geohegan et al utilized absorption spectroscopy to show that 

non-excited plume constituents from UV ablation of YBa2Cu3O7-x  show an additional 

slower velocity distribution than the excited particles [143].   

5.3.2. Velocity Distribution in Vacuum 

Ti velocity distributions were constructed at various detector locations in vacuum 

as shown in Figure 28.  Observed emissions in vacuum can only be attributed to intraplume 

collisions due to a lack of background gas and the fact that emissions occur in 

approximately the same geographic location in which they are created.  At z=0.31 cm, the 

observed distribution appears to be comprised of three components described by most 

probable velocities of ~1, ~0.5, and 0.1 cm/µs, respectively, with the middle distribution 

showing the highest relative intensity.  The intensity of the entire distribution decreases 
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with increasing detector distance z, and can be attributed primarily to the decreasing 

intraplume pressure as the plume propagates.  The fast distribution intensity decreases more 

rapidly than the two slower distributions with increasing distance from the target due to 

decreasing density at the leading edge of the plume.  The fast distribution becomes difficult 

to discern at z > 0.82 cm.  The most probable velocity of the middle distribution increases 

to ~1.1 cm/µs at 1.43 cm and the slowest distribution increases to ~0.8 cm/µs at 2.87 cm.  

This apparent acceleration phenomenon is discussed further below.   

 

 

Figure 28. Broadband Ti velocity distribution from 240 mJ ablation in vacuum at various 
distances, z, from the target. 

Singly ionized Ti (Ti II) and neutral Ti (Ti I) excited species are observed in 

emissive plumes from Ti ablation under these experimental conditions [138].  It has been 

shown that 61 eV/atom kinetic energy exists in Ti ablated plumes, significantly higher than 

electronic excitation associated with the observed Ti emissions (~ 2-5 eV) or the ionization 

potential (6.83 eV) [72]. Narrow bandpass filters were utilized to limit the emissions to Ti 

I and Ti II species revealing that the multimode broadband signal can be attributed to 
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distinct Ti I and Ti II distributions (Figure 29).  Further analysis of the vacuum filtered 

emissions imaging revealed that Ti I is comprised of three distributions while Ti II is 

comprised of only a single distribution.  Here for ease of discussion, we define the Ti I 

slow, medium, and fast distributions as 1, 2, and 3, respectively.   Multicomponent velocity 

distributions have been observed for expanding plumes from KrF ablation of YBa2C3O7 in 

vacuum and KrF ablation of Si3N4 in vacuum [142], [147].  Furthermore, investigation of 

Ti II from KrF ablation of Ti showed a single distribution only, in agreement with the work 

here [146].  Distinct velocity distributions likely indicate the existence of multiple ablation 

mechanisms.  Kelly et al have theorized that combinations of vaporization, phase explosion 

and/or coulombic attraction from escaping electrons might lead to the appearance of 

particles with distinct speed distributions [148].         

 

Figure 29. Velocity distribution of 224 mJ Ti ablation in vacuum at a distance, z, of 0.38 
cm from the target (a) showing the ( ) broadband signal comprised of the Ti I (--) and Ti 
II (.) data and (b) the Ti I signal defining the multimode distributions for reference.   

Shifted Maxwell Boltzmann (SMB) distributions were fit to the Ti I and Ti II 

intensities:  
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𝑓(𝑣) 𝑑𝑣 = 𝐴𝑣 𝑒
( )

𝑑𝑣 (30) 

where u is the forward directed flow speed in the +z direction (note a 1D flow has been 

assumed due to the selection of distances from the target along the centerline), T is a 

temperature parameter describing the width of the distribution (range of forward directed 

speeds),  A is a collection of constants, and n typically equal to three [15], [45], [76].    The 

best fit criterion was based upon a comparison of the SMB fit root mean square error 

averaged over various TOF spectra fits or averaged RMSE (aRMSE).  There is some 

discrepancy regarding the velocity exponent n from Eq. 30, with values ranging from n=-

2 to 4 being reported in the literature [45], possibly reflecting the velocity dependence of 

the excitation rates.  The importance of comparing multiple TOF spectra in making a 

determination of distribution parameters to ensure a comprehensive analysis is 

emphasized.  TOF data obtained from ICCD images contains an inherent advantage in 

compiling this data over typical non-array (point detector) TOF methods.  Intensity data 

for Ti II became poor after 1.02 cm, limiting Ti II analysis to distances closer to the target.  

Ti II fitting was performed for integer values of n ranging from -2 to 4.  Unconstrained 

fitting resulted in physically impossible (negative) flow velocities obtained for Ti II fits 

with n > 2 and flow speeds of u > 1x104 m/s for n = -2, -1, 0, and 1.  The apparent 

discrepancy for the Ti II distribution between a theoretical SMB with n = 3 is not fully 

understood but the results might indicate that the reaction rate coefficient 𝑘  has an inverse 

dependence on the velocity as discussed above.    

Due to the overlapping of the three Ti I distributions, application of a combined 

triple SMB fit to the data was difficult.  At close distances to the target (<0.7 cm), the Ti I 
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distribution 1 intensity is insignificant and the Ti I distribution 3 is significant, whereas at 

long distances (>1.02 cm) the opposite is true.  Thus, a more manageable two modal SMB 

distribution is fit to the data in these limiting regions.  Similar to the Ti II, SMB fits were 

performed for integer values of n ranging from 0 to 6 and negative u values were obtained 

for n > 3.  Ti I distribution 3 was difficult to fit with a SMB distribution of any n.  Ti I 

distribution 3 and Ti II distribution exist at similar velocity groups.  

Figure 30 displays the results for Ti I distribution 1 and Ti II aRMSE and flow 

speed as a function of SMB exponent.  The u error bounds reflect the 2σ uncertainty in the 

corresponding fit parameter and the aRMSE error is the standard deviation of the averaged 

RMSE values.  Average RMSEs for both Ti I and Ti II fits show nearly constant errors for 

fits across all n values.  Increasing Ti II n from -2 to 1 results in a decrease in flow speed 

of 60% yet a change in aRMSE of less than 1%.  Similar results are observed for changes 

in Ti I n.  Martin et al analyzed Ti II TOF data obtained from absorption spectroscopy of 

KrF irradiated Ti in vacuum and obtained flow speeds for fits to a single theoretical SMB 

(n=3) that ranged from -0.81 to 0.58 cm/µs [146].  Because of the seemingly unphysical 

values, he concluded that Ti II distribution should be described by a Maxwell-Boltzmann 

velocity distribution with u=0.   Furthermore, Maul et al have experimentally observed 

both theoretical and non-theoretical SMB components to multimode velocity distribution 

from UV ablation of gadolinium in vacuum [140].  Because varying combinations of u and 

n result in similar aRMSE values, a unique determination of the nature of the velocity 
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distribution is difficult.        

  

Figure 30. Dependence of Ti I distribution 1 ( ) average RMSE x10 and ( ) flow speed, 
u, and Ti II ( ) average RMSE x11 and ( ) flow speed, u, on SMB exponent n.   

Ti I and Ti II fit parameters are now compared in Figure 31 for best fits of select n.   

A Ti II SMB distribution with n=0 is selected because it contains the lowest value of the 

aRMSE and SMB distributions with n=3 for Ti I distributions 1 and 2 are chosen to be 

consistent with theoretical (n=3) SMB distributions.  Unconstrained fits of Ti I distribution 

2 and 3 at < 0.7 cm resulted in negative flow speeds for the Ti I distribution 2, in contrast 

to the positive flow speed observed for distribution 2 at longer distances.  Because of this 

discrepancy, Ti I distribution 2 and 3 fit parameters at <0.7 cm were obtained through an 

assumption of a constant Ti I distribution 2 flow speed – 0.18 cm/µs – equal to the average 

of the flow speed values from distributions 1 and 2 in the region where both were 

statistically equivalent (0.8 to 1.02 cm) and relatively constant.  
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Figure 31. 224 mJ Ti ablation in vacuum showing SMB (a) A vs distance, (b) flow speed 
vs distance, and (c) temperature vs distance for n=0 ( ) Ti II and ( ) Ti distribution 3 
and n=3 for ( ) distribution 1 and ( ) distribution 2.  Error bounds are 2σ.  

In Figure 31(a), the Ti II and Ti I distribution 3 intensities decrease quickly at 

locations close to the target.  The Ti I distribution 2 intensity decreases while the Ti I 

distribution 1 intensity correspondingly increases until ~1.3 cm.  After 1.3 cm, Ti I 

distribution 2 begins to disappear.  Flow speeds for Ti I increase over a range from 0.1 to 

1.2 cm/µs, reflecting kinetic energies of up to 36 eV.  From 0.82 cm to 1.02 cm, the Ti I 

distributions 1 and 2 have nearly equivalent flow speeds of on average 0.18 cm/µs.  At 

distances >1.5 cm, the error bars on the Ti I distribution 2 flow speed increase to >100%, 
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reflecting the inability to uniquely resolve this distribution well as it disappears.  The Ti I 

distribution 3 and Ti II flow speeds are significantly higher than those of the two slow Ti I 

distributions ranging from 0.9 to 1.1 cm/µs.  The fit temperatures are large, T = 0.05 - 3 x 

105 K or 0.4 – 26 eV.  These temperatures reflect the width of the distribution and the range 

of forward directed speeds.  The widths of these distributions are comparable with the 

average values.  The temperatures of the Ti I distributions 1 and 2 increase mildly, with the 

temperature of the Ti I distribution 2 consistently greater than that of the Ti I distribution 

1 by approximately 1.4 x 105 K until the point at which the Ti I distribution 2 begins to 

disappear (~1.3 cm).  Ti II and Ti I distribution 3 display temperatures of ~ 1.5 x 105 at 

0.31 cm and appear to increase similarly with distance despite large error bounds on both 

with increasing distance. The Ti II temperature appears to be above that of the Ti I 

distribution 1 and distribution 2 despite the large error bars in the explicit region of data 

overlap (>0.8 cm). 

The similarity of the Ti I distribution 3 and the Ti II distribution suggests that the 

species may be produced by a common mechanism.  Ions may be created early in the laser 

pulse due to multi-photon ionization, thermionic emission, and/or photoelectric effect of 

the surface or with the early expanding plume [56].  Additionally, sufficient energy exists 

in the leading edge of the plume (~60 eV/atom) to ionize Ti by collisional impact with an 

existing background gas [138].  Ions created from laser interaction with early ablated 

neutrals would likely result in similar velocity distributions between the ions and parent 

neutrals.  Free electrons that have obtained high kinetic energies due to laser absorption 

expand out of the plume, possibly accelerating ions via coulombic attraction to high 

velocities [134].  Neutrals may be produced via recombination of the ions, resulting in 
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distributions that are likely similar to those of the ions.  Material ejected later in the pulse 

may be produced by a different mechanism, is less ionized, and has less opportunity to be 

further excited once produced.   

Four TOF distributions from Figure 28 and the corresponding trimodal-SMB fits 

from Eq. 30 are provided in Figure 32. The fits in Figure 32(a) are constrained with 

u=1.0x103 m/s and n=3 for all three distributions.  These fits adequately represent the data 

with an aRSME of 8.44x10-10.  All three temperature parameters increase as the plume 

propagates, with Ti distribution 1 varying from T = 1,412 – 14,820 K as z increases from 

0.41 – 1.02 cm.  Thus, the apparent acceleration in Figure 31 is not required to adequately 

characterize the data and is unphysical. Furthermore a flow speed u=0 also provides an 

adequate fit, as seen in Figure 32(b).   The u=0 distribution is nearly indistinguishable from 

the u=1.0x103 m/s, but requires a higher Ti distribution 1 temperature, T = 3,642 – 19,585 

K for z = 0.41-1.02 cm.  The SMB fit parameters are clearly not unique. 

 

Figure 32. Ti I TOF data and combined SMB distribution fits for distance z= ( ) 0.41 cm, 
( ) 0.61 cm, ( ) 0.82 cm, and ( ) 1.02 cm.  All three SMB fits utilized n=3 and (a) 
u=1x103 m/s and (b) u=0 m/s.  
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5.3.3. Pressure Dependent Velocity Distribution  

Velocity distributions in various pressures of Ar and He were obtained and prepared 

in the same manner as in the vacuum case.  Figure 33 displays Ti expansion in 1000 mTorr 

Ar and He.  The plume distributions in He and Ar are dramatically different, decidedly 

non-Maxwellian, multi-modal, and lead to the key results of the present study.  

   

 

Figure 33. Broadband velocity distributions at different z locations from 240 mJ Ti 
ablation in (a) 1000 mTorr Ar and (b) 1000 mTorr He. 

For Ti expansion in Ar (Figure 33(a)), the peak intensity near the leading edge for 

z=0.41 cm is observed at ~1.6 cm/µs, quite similar to the previously observed free 

expansion velocity of 1.57 cm/µs [138].  Near the target, the intensity declines rather slowly 

towards low velocities until increasing at thermal speeds and is clearly non-Maxwellian.  

Low intensity TOF data at long delays result in fictitiously large intensities of low velocity 

components due to the 𝐼(𝑣; 𝑧) conversion.  The intensity of the leading edge of the 

distribution (> 1.6 cm/µs) abruptly falls to zero at ~2 cm/µs in a manner inconsistent with 

a SMB distribution.  As the distance from the target, z, is increased, the leading-edge 
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velocity, vLE, decreases and the intensity from 0.2 - 0.5 cm/µs begins to increase.  At z = 

1.33 cm, the intensity of the peak forming from 0.2 - 0.5 cm/µs is equivalent to that of the 

intensity in the fast distribution and the fast distribution has decreased in velocity enough 

to form essentially one low velocity distribution.     

Ti expansion into He yields far different results than in Ar (Figure 33(b)).  At z = 

0.41 cm, the Ti velocity distribution displays fast and slow distributions described by most 

probable velocities of ~ 0.6 and ~ 1.2 cm/µs.  The slow distribution has a higher intensity 

than that of the fast distribution.  As the distance from the target is increased, the intensity 

of the entire distribution decreases.  The most probable velocity of the slow distribution 

appears to increase to ~ 1 cm/µs as the distance from the target increases to 1.43 cm.  The 

leading-edge velocity of the entire distribution decreases gradually with increasing distance 

from the target with a velocity of ~ 1.6 cm/µs at z = 1.43 cm.  As the leading-edge velocity 

decreases, the intensity near the leading edge beings to build.  The fast distribution 

decreases in intensity and then ceases to be distinguishable from the increased leading-

edge intensity at z = 0.72 cm.   

The key features from the Ti distribution expansion into vacuum in Figure 28 

cannot be distinguished in the distribution of Ti expansion in Ar in Figure 33(a).  Instead, 

Ti expansion into Ar shows a sharp reduction in the leading-edge velocity, an increase in 

the intensity with increasing z, and an enhancement of slow-velocity components of the 

distribution with increase z.  Comparatively, expansion into He in Figure 33(b) shows many 

of the key features of the vacuum distribution, initially displaying a distribution almost 

identical to that of the early Ti vacuum distribution with the exception of a clear low 
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velocity component similar to the Ti I distribution 1.  As z increases, He maintains the 

appearance of the vacuum distribution at low velocities but shows a decrease in the leading-

edge velocity and an enhancement of the intensity of the highest-velocity groups.  Ti 

velocity distribution for expansion into Ar and He is not indicative of a SMB, with 

expansion into Ar showing most significant deviation from SMB.   

To further assess the differences in the distributions into He and Ar, we now 

examine the rate of plume slowing.  Figure 34 displays the velocity corresponding to the 

50% intensity maximum on the leading edge of the distribution, vLE, at different detector 

distances for various pressures of Ar and He.  The rate at which vLE decreases with distance 

is greater at higher background pressures, due to the greater collision frequency.  The vLE 

in Ar is initially higher than He at distances near the target (< 0.4 cm).  At longer distances, 

the vLE in Ar decreases to values lower than the He vLEs, reflecting the large difference in 

mass between the two background gases.  The vLE is similar for all pressures of Ar until 

~0.4 cm, at which point the leading-edge velocity begins to decrease at increasing rates 

with increasing background pressure Ar.  While the vLE values in Ar differ, with the 

smallest decrease in vLE observed for 250 mTorr and the largest observed for 1000 mTorr, 

after ~1.2 cm all of the pressures show similar decreases in vLE at rates of ~0.41 to 0.48 

cm/µs per cm.  
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Figure 34. Broadband Ti velocity distribution leading-edge velocity for ( ) 250 mTorr 
Ar, ( ) 500 mTorr Ar, ( ) 1000 mTorr Ar, ( ) 250 mTorr He, ( ) 500 mTorr He, and    
( ) 1000 mTorr He.   

The He vLE begin by increasing over a small range of distances before decreasing.  

The vLE from Ti expansion into 1000 mTorr of He increases slightly from 0.3 to 0.4 cm 

before decreasing at a constant rate of 0.476 ± .004 cm/µs per cm, approximately the same 

rate at which the vLE from Ti expansion into 1000 mTorr of Ar decreases at long times. The 

vLE in both 250 and 500 mTorr increase at equivalent rates until approximately 0.55 cm, at 

which point the 500 mTorr vLE begins to slow and decreases at 0.7 cm and the increase in 

the 250 mTorr vLE begins to slow and then finally decrease at ~ 1 cm.   

Hydrodynamic calculations by Wood et al have calculated a background density of 

approximately 1 order of magnitude higher than the expanding plume for Si ablation into 

175 mTorr He due to momentum transfer from the plume to the background gas [149].  

Due to the large mass difference between He and Ti, He atoms are initially easily scattered 

out of the path oncoming plume, resulting in increasing leading edge velocities despite the 
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collisions.  Only after the He background has had a chance to build up pressure in front of 

the Ti plume does the vLE begin to slow. 

Consideration of conservation of momentum and energy (assuming a collision 

impact factor of b=0) results in plume speed after a collision with the background gas [150]  

𝑣 =
𝑚 − 𝑚 ∗ 𝑣 + 2𝑚 𝑣

𝑚 + 𝑚
 

(31) 

where the Ti mass, mTi, is comparable to the background gas mass, mb, only for Ar.   

Assuming a head-on elastic collision between Ti at a velocity of 1 cm/µs in the +z direction 

and an Ar atom at a velocity indicative of a thermal temperature of 294 K in the same 

direction (~3.5x10-2 cm/µs) results in the Ti atom traveling at a speed of 0.122 cm/µs in 

the original direction or a decrease of 88% in velocity.  So long as the background gas and 

the Ti atoms are moving in the same direction (+z), the Ti atom can never be backscattered 

[149].  A comparative analysis under the same collision circumstances but with a He atom 

results in only a 14% decrease in Ti velocity.  The largest Ti atom scatter angle after the 

collision is sin (𝑚 /𝑚 ) or 56° and 5° for collisions with Ar and He, 

respectively [150]. 

Fits of the SMB distribution (Eq. 30) were applied to higher pressure distribution 

data of Figure 33.  In comparison to the fair agreement between the vacuum velocity 

distribution data and the SMB distributions, generally poor agreement was observed for 

the higher background pressure distributions, as the rather abrupt decrease of the 

distribution at higher velocity results in structured residuals (see Figure 35).  The peak 

residuals in vacuum for similar distance from the target were 10% less than those in Figure 

35 and were unstructured, indicating a more quality fit.   
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Figure 35. SMB fit and residuals to Ti II velocity distribution for 240 mJ in 1000 mTorr 
Ar at z=0.89 cm (fit parameters T=33821 ± 7534 K, u=7985 ± 248 cm/µs, n=0.) 

Comparison of the mechanics analysis above with the experimental results from 

Figure 33 show a considerable difference in the velocity distribution of Ti lost due to a 

collision.  Figure 33 shows that the fastest velocity group for Ti expansion into Ar (~1.8 

cm/µs) at a detector location of 0.4 cm is removed.  The next velocity group shown to be 

scattered is at ~ 1.7 cm/µs at z=0.5 cm, however this velocity group appears with an 

apparent 13% increase in maximum intensity.  Similar apparent discrepancies with 

classical mechanics exist for the dynamics of the velocity distribution into He background 

along the leading edge, making interpretation of the data difficult.   

In creating conventional TOF profiles (in the manner presented here), it is assumed 

that the observed intensity is from plume constituents that traveled a distance z(t) with a 

constant velocity v=z(t)/t.  This assumption is valid under vacuum plume expansion 

conditions, in which it is unlikely that intraplume collisions significantly alter the velocity 

of the particles, and construction of the corresponding velocity distributions is 

straightforward.  Plume expansion into pressure environment, comparatively, is dominated 
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by collisions with the background gas, resulting in plume slowing with increasing 

background pressure [138] and scattering of the largest velocity groups.  The velocity 

group at which a detected scattered atom is registered might then correspond to an incorrect 

velocity group, making interpretation of the data difficult.  Additionally, the pressure and 

temperature behind the Ti expanding plume shock front in 1 Torr Ar have been estimated 

to be ~1.7 x 106 mTorr and 10 eV, respectively, at a distance of 0.5 cm from the target 

[138], resulting in intraplume mean free paths of ~0.03 mm assuming a velocity 

independent cross section [151] (for reference, the mean free path of a Ti atom expanding 

into 1 Torr Ar is ~0.2 mm [151]).  Because the mean free path is a fraction of a pixel, it is 

implied that multiple collisions occur within one pixel.  The high intraplume pressures 

might quickly result in altered nascent product velocity distributions due to intraplume 

collisions, producing seemingly unexplainable velocity distributions and adding a further 

complexity to data interpretation.   

It is of interest to determine conditions at which the Ti distribution in vacuum might 

be used as an approximation for a distribution at pressure.  Similar trajectory data between 

expansion into vacuum and expansion into pressure background can be used to reveal 

regions where it might be appropriate to utilize the vacuum distribution as a surrogate for 

the distribution into pressure background. Figure 36 shows the trajectory of Ti expansion 

into various He backgrounds.  The Ti front is defined by the location of the emissive front 

at 10% of the maximum intensity.  At delays up to 180 ns, the expanding plume into all 

pressures shares the same trajectory with a velocity of ~1.57 cm/µs.  As the He pressure is 

increased, collisions between the expanding plume and the background gas slow the plume.  

The Ti trajectory into 250 and 500 mTorr He is similar to the trajectory in vacuum for 
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distances up to ~1.2 cm; comparatively, the trajectory into 1000 mTorr He is only similar 

to the vacuum trajectory for distances up to ~0.2 cm from the target.   An approximate 

stopping distance of 3 cm is shown for expansion into 1000 mTorr He; the imaging system 

field of view limited observation of the stopping distances of the lower He pressures.  We 

have previously shown stopping distances for expanding Ti plume in various Ar pressures 

ranging from ~6 cm for expansion into 50 mTorr Ar to 2.7 cm for expansion into 1000 

mTorr Ar [138].   

 

Figure 36. Ti plume trajectories for 240 mJ irradiation expansion into ( ) vacuum, ( ) 
250 mTorr, ( ) 500 mTorr, and ( ) 1000 mTorr He. 

Figure 37 shows the differences between the plume expansion distribution into 

vacuum and 250 mTorr He and Ar.  Here the Ti distribution into 250 mTorr He displays a 

clear low velocity distribution similar to the Ti I distribution 1, in contrast to the lack of 

such a clear distribution in the 1000 mTorr He distribution in Figure 33(b).  The leading 

edge of the distribution in 250 mTorr is similar to that of the distribution into vacuum and 

the three distribution peak intensities appear to be in similar velocity groups to those 



99 

observed in the distribution into vacuum.  The intensities from 0.7 to 1.3 cm/µs and < 0.3 

cm/µs are decreased some relative to the distribution into vacuum but overall agreement is 

found between the two distributions within the region of similar trajectories for expansion 

into vacuum and 250 mTorr He.   

 

Figure 37. Velocity distribution differences between Ti expansion into ( ) vacuum and 
250 mTorr (a) ( ) He at 0.5 cm and (b) ( ) Ar at 0.12 cm. 

Figure 37(b) now compares the Ti velocity distribution in vacuum with that into 

250 mTorr Ar at 0.12 cm from the target.  In contrast to the general agreement observed 

between the distribution into vacuum and into 250 mTorr He, large disagreement is 

observed between the Ti velocity distribution into vacuum and into 250 mTorr Ar, 

particularly at the low velocity groups.   Bauer et al have shown that trajectory data from 

Ti ablation in various Ar pressures up to 1000 mTorr are similar to that of Ti ablation in 

vacuum for distances up to 0.15 cm away from the target [138].  However, the large 

discrepancies between the observed velocity distributions at similar early distances make 

it appear that substitution of the distribution into vacuum for distribution into Ar is not 

practical at pressures > 250 mTorr.  Additionally, the large differences observed between 

the distributions into He and Ar further highlight that the mass of the background gas is a 

significant factor in understanding of the plume expansion dynamics.  
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A summary of the key findings and issues is now warranted.  Highly spatially 

resolved Ti TOF distributions obtained from ICCD images reveals complex evolution of 

the expanding plume.  Multi-modal distributions are observed for expansions into vacuum, 

He, and Ar and are partially attributed to the presence of neutral and ionized plume species.  

Combined SMB distribution appears to describe the expanding plume distribution in 

vacuum; however, the ability to fit the data with various combinations of fit parameters 

questions the appropriateness of this distribution for the data.  At elevated pressure a SMB 

distribution is completely inadequate to describe the existing distribution.  The change in 

the expanding plume velocity distribution is highly dependent on the ambient 

environmental parameters leading to the conclusion that velocity distributions are 

dynamically controlled and statistical analysis arguments are inadequate. 

 Extracting velocity distributions from the emission TOF data utilized in this work 

is difficult due to many factors.  The evolution of the emissive plumes depends on both the 

velocity distribution and unknown translation-to-electronic excitation rates.  

Transformation of evolving intensities to velocity distributions utilizes the linear 

relationship v=z/t, obscuring the product velocities and size of the velocity change.  

Collisions with the ambient environment significantly affect the plume expansion 

characteristics.  Excitation and speed distributions of the background gas would 

complement the plume dynamics.  Ar emissions were not observed for Ti expansion in 

these experiments so further diagnostic development is required. 

 The emissions TOF technique utilized in this work may be adaptable to obtaining 

high energy collision information that is difficult to determine through conventional 
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methods.  Translational-electronic collision cross section data at the high kinetic energies 

obtained in expanding laser ablation plumes might be determined through the coupling of 

laser absorption diagnostics and the emissions TOF experimental techniques and non-

hydrodynamic simulations.  These cross sections are required for a full description of the 

evolving velocity distributions and kinetics observed in the expansion of laser ablated 

plumes. 

5.4  Conclusion 

Fast emissions imaging has been utilized to construct Ti velocity distributions for 

different spatial locations along the plume centerline for vacuum and Ar and He 

background gases at various pressures.  Vacuum Ti I velocity distributions appear to be 

generally consistent with shifted Maxwell Boltzmann velocity distributions.  Trimodal 

distributions are observed for Ti I species but only single distributions are observed for Ti 

II.  The Ti I species fast and distribution displays characteristics strongly indicative of the 

Ti II distribution.  Ti velocity distributions in > 250 mTorr Ar and He are not consistent 

with shifted Maxwell Boltzmann distributions, reflecting strong velocity changing 

collisions to the high-velocity groups of the velocity distribution with the background gas.  

TOF measurements of laser ablated plumes into background pressure are inherently 

troubled and interpretation of the results should be coupled with strong computational 

analysis tools to extract the true velocity distribution. 
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VII. Conclusions 

 Increased interest in tactical laser weapon use demands a deeper understanding of 

laser-material interaction to better predict engagement outcomes. The use of target folders 

from empirical characterization for all tactical scenarios is unrealistic.  This work has 

aimed to accomplish parts of this over-arching goal by focusing on components of two 

tactical aerospace defense scenarios: characterization of molecular products C2 and CN 

from continuous wave (cw) laser heating of graphite and pulsed laser ablation plume 

dynamics of Al and Ti.  Experimental data has been analyzed to not only describe the 

heating and ablation conditions for the specific laser material interactions in this research 

but to provide insights into the broader physics occurring during laser lethality engagement.  

Furthermore, the experimental data sets detailed in this work can serve as high-fidelity 

benchmark data for laser-material interaction simulations.  Non-defense communities such 

as thin film production, laser welding manufacturing, and laser induced breakdown 

spectroscopy will also find this data useful to help guide understanding and experimental 

lab efforts.  After summarizing the key conclusions from this dissertation, follow-on 

research suggestions will highlight areas of laser lethality that are poorly understood and 

require investigation.   

6.1 Visible emission from C2 and CN during cw laser-irradiated graphite 

Investigation of the visible emissions of graphite molecular products C2 and CN 

and corresponding surface temperatures from laser heating of graphite with a high 

irradiance (<3.5 kW/cm2) cw laser have been accomplished.  The dependence of the ratio 

of C2 Swan and CN red emission intensities on laser irradiance, surface temperature, and 
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sample porosity has been characterized for various graphite samples.  Thermal steady-state 

conditions are reached at less than 20 s for high irradiance cases (< 3.5 kW∕cm2).  An 

approximately 20 times higher [C2(d)]/[CN(A)] concentration ratio is recorded with 

modest air flow over the surface at 5 m/s. The corresponding surface temperatures of ~ 

3500 K at 1.4 kW/cm2 increase by < 5% relative to buoyant flow conditions. Surface 

nitridation kinetics are revealed and are of interest in the development of thermal protection 

systems for reentry vehicles and for predicting degradation during counter-air laser 

interaction with carbon containing materials.  Significantly lower column densities relative 

to oxidation products CO and CO2 suggest that C2 and CN forming reactions are relatively 

insignificant, even at elevated surface temperatures. The modeling of carbon composite 

laser engagements should emphasize combustion over sublimation and nitridation kinetics.  

The ratio of C2 and CN total column densities extrapolated from the observed excited states 

is inconsistent with an equilibrium analysis, suggesting that laser ablation models consider 

partitioning of energy into electronic, vibrational, and rotational energy.  Graphite surface 

emissivity increases with temperature by about 8% and must be better characterized to 

more accurately determine the thermal properties of graphite.  The sublimation temperature 

is key to understanding degradation of graphite containing materials like thermal protection 

systems and carbon fiber skins for aircraft.  Furthermore, understanding the emissivity 

evolution with temperature and phase transition is a more general problem for optical 

pyrometery and the remote sensing community.  

6.2 Comparison of plume dynamics for laser ablated metals: Al and Ti  

A self-contained systematic characterization and analysis (relative to other reported 

studies) of bulk Ti and Al plume expansion dynamics from up to 3.5 J/cm2 UV pulsed laser 
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ablation in vacuum and Ar gas environment was accomplished via temporally and spatially 

resolved emissions imaging and gravimetric analysis.  The joint utilization of these 

techniques provides unique information on the plume dynamics and laser-plume coupling.  

Ablation thresholds of 1.12 J/cm2 and 1.73 J/cm2 for KrF 248 nm irradiation of Ti and Al 

respectively were determined from gravimetric measurements and less than 0.8 µg material 

was ablated for either metal.  Highly energetic vapor plumes (up to 61 eV/atom) are 

formed, presenting extreme momentum transfer conditions that must be considered for 

either targeting or laser hardening of system components in tactical lethality scenarios.  

Vapor plasmas containing singly ionized species of Al and Ti are observed and the 

relationship between vapor plasma shielding of the surface, mass removed, and background 

pressure is characterized.  Mass loss for Ti increases from 0.1 – 0.8 µg/pulse as pulse 

energy increases from 174 – 282 mJ/pulse and decreases by ~30 % as pressure increases 

from vacuum to 1 Torr.  Benchmarking data for pulsed laser ablation of metals is provided 

for development of laser lethality codes that may then be applied to pulsed laser ablation 

of other materials of interest (such as those used in optical systems).  Optical signatures 

such as the plume stopping distance are provided to aid in lab design for material 

manufacturing. 

6.3 Laser ablated Ti velocity distribution dynamics 

 KrF Ti ablated plume velocity distributions were constructed from fast gated 

emissions imaging time-of-flight data, offering the advantage over other TOF methods in 

that the spatial evolution of the distribution was easily recorded.  Multi-modal velocity 

distributions are observed, revealing complex laser-target and laser-plume phenomena.  
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Application of the conventional shifted Maxwell-Boltzmann distribution is inadequate, 

particularly for expansion into pressure environment. The highest velocity components of 

the distribution are scattered by collisions with the background gas in a manner inconsistent 

with a shifted Maxwell-Boltzmann distribution.  The distribution dynamics strongly 

depend on the mass of the background gas, as higher momentum transfer from collisions 

of the expanding laser plume with heavier background gases resulted in significant 

differences in the characteristics of the leading-edge velocity components. It is identified 

that conventional application of TOF technique to laser ablated plumes expanding into 

pressure environment is hindered by velocity changing collisions of the particles, making 

interpretation of the results difficult without significant consideration of translation-to-

electronic excitation rates, intraplume collisions, and non-hydrodynamic conditions.  

Finally, a possible method for determining high-energy translation-to-excitation cross 

sections is identified due to the extreme expansion conditions inherent in laser induced 

plumes.  However, significant computational aid is required to detangle the impact of 

velocity changing collisions on the recorded data before the cross sections can be 

recovered. 

6.4 Recommendations for Future Work 

This work provides a significant contribution to the existing knowledge of laser 

heating of graphite and laser ablation of metals.  However, there remain a large number of 

related issues that are poorly understood. Additional experimental data (suggested below) 

can help clarify some of the experimental observations contained in this work and provide 

further insights into understanding of laser material interaction.  Significant theoretical 
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investigation of plume expansion is also required and additional experimental data may 

serve as benchmarks to simulations currently available or being developed.  

Accurate knowledge of evolving gas temperatures and molecular species 

concentrations during laser heating of graphite would provide more accurate benchmarks 

for predictive modeling of carbon composite laser heating.  A fair amount of scatter was 

observed in the gas temperatures derived from the spectroscopy of C2 and CN due to the 

moderate spectral resolution of the spectrometer used in the analysis.  Graphite laser 

heating studies utilizing higher spectral resolution instruments would allow for calculating 

more accurate rovibronic temperatures and a clearer comparison of C2 and CN excitation 

temperatures.  Furthermore, inclusion of additional electronic states in spectroscopic 

analysis such as CN violet would allow for determination of the species electronic 

temperature and total concentration in the plume.   

 The sublimation temperature of graphite is a key material parameter that is only 

known to within ~+63 K [50].  The error bounds established in this work for the 

sublimation temperature (+91 K) were limited by post-shot emissivity measurements 

recorded using hemispherical reflectance.  Temperature determination via remote thermal 

emissions collection is hindered by inadequate knowledge of the emissivity dynamics 

regardless of material.  A detailed study of the evolution of graphite emissivity with 

temperature would lead to a better estimate of the graphite surface temperature (and 

sublimation temperature) and significant contribution to the remote collections community 

at large.  A start to such a study might be accomplished through the use of a Fourier 
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transform spectrometer observing a graphite sample of known temperature to extract 

temperature dependent emissivity information.    

 A thorough understanding of the partitioning of laser energy into the material and 

plume is required for predictive laser lethality simulations.  Sedov-Taylor blast model is 

shown to adequately determine the laser-shock front coupling.  However, it was noted that 

the use of gated ICCD can only observe the excited plume constituents, and that the 

literature has shown that the shock front breaks away from the vapor plume as the contact 

front slows down due to collisions with the background gas.  A study comparing the results 

from emissions and a technique to observe the actual shock front such as Schlieren imaging 

for Al and Ti ablation conditions utilized in this work would provide the shock front 

breakaway location, allowing for more accurate determination of shock energy via Sedov-

Taylor model.  

Paramount to the understanding of laser plume dynamics is knowledge of the 

velocity distributions of the ablated species.  This research has displayed multi-mode 

distributions that appear in part to be characterized by a shifted Maxwell Boltzmann 

distribution.  However, deviations from this distribution also appear for both expansion in 

vacuum and into pressure background.  Because this research only observed the excited 

(emitting) atoms, it is possible that the deviation from theory is based on the excitation rate 

details.  A study of the non-emissive plume constituents through the use of an active 

probing technique like absorption spectroscopy would allow for comparison of the emitting 

and non-emitting plume velocity distributions to determine the effect of excitation 

production.  Additionally, a comparative study between the emission and absorption 
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spectroscopy might allow for development of a method to calculate excitation cross 

sections of the ablated species, which could then be applied to the larger problem of 

determining high energy excitation cross sections. 
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Appendix A. Molecular Spectroscopy Constants 
 

Table 6. Molecular constants for C2 Swan system (d3Πg) (cm-1) [80] 

v A AD Bv Dv 

0 -14.00139 0.0005068 1.7455663 6.8205x10-6 

1 -13.87513 0.0005740 1.7254062 7.0194 x10-6 

2 -13.8205 0.000600 1.704516 7.308 x10-6 

3 -13.5361 0.000775 1.681437 7.438 x10-6 

4 -13.3892 0.001451 1.656859 7.684 x10-6 

5 -13.0324 0.000723 1.630205 8.573 x10-6 

6 -12.820 0.001203 1.599876 8.998 x10-6 

7 -12.3458 0.000814 1.566047 1.0044 x10-5 

8 -12.107 0.00076 1.52675 9.60 x10-6 

9 -11.698 0.00076 1.485755 1.185 x10-5 

10 -11.297 0.00076 1.441138 1.2837 x10-5 

 

Table 7. Vibrational constants for C2 Swan system (d3Πg) and CN Red system (A2Π) 

(cm-1) [80], [83] 

Constant d3Πg A2Π 

ωe 1788.45 1813.28845 

ωexe 16.87 12.77789 

ωeye -0.259 -0.001775 

ωeze -0.0396 -- 
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Table 8. Molecular constants for CN Red system (A2Π) (cm-1) [83] 

v Av ADv (x104) AHv (x109) Bv Dv (x106) Hv (x1012) 

0 -52.65443 -2.1998 4.959 1.70713832 6.14473 3.921 

1 -52.58078 -2.1979 5.826 1.68986156 6.15575 3.552 

2 -52.50526 -2.211 7.96 1.67254021 6.16910 3.418 

3 -52.43236 -1.9577 4.650 1.65516963 6.18175 2.734 

4 -52.35628 -1.862 4.307 1.63775143 6.19839 2.424 

5 -52.28969 -1.416 -5.88 1.62028792 6.22247 2.878 

6 -52.24814 -0.77 -1.02 1.60279825 6.25696 3.575 

7 -52.3431 -5.46 469 1.5851663 5.629 -- 

8 -50.6597 1.43 -992 1.5676896 5.167 -1.228 

9 -51.4574 -3.725 20.2 1.5497799 6.3091 3.640 

10 -51.4287 -3.515 35.2 1.5319138 6.3134 -- 

11 -51.3129 -2.54 -143 1.513983 6.208 -- 

12 -51.1664 -3.9 0 1.496057 6.372 -- 

13 -51.0043 -2.73 0 1.477919 6.311 -- 

14 -50.8025 -4.46 0 1.459615 6.329 -- 

15 -50.6074 -3.251 0 1.4412985 6.390 -- 

16 -50.3830 -2.443 0 1.4229173 6.556 -- 

17 -50.5251 -12.26 0 1.404828 5.65 -- 

18 -49.8632 -3.412 0 1.3853108 6.572 -- 

19 -49.4910 -2.591 0 1.366389 6.663 -- 

20 -49.1747 -6.14 2800 1.347266 4.855 -- 

21 -48.7582 -5.76 0 1.327242 6.211 -- 

22 -48.3969 0 0 1.307745 7.211 -- 
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