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Abstract

Defending critical infrastructure assets is an important but extremely difficult and

expensive task. Historically, decoys have been used very effectively to distract attack-

ers and in some cases convince an attacker to reveal their attack strategy. Several

researchers have proposed the use of honeypots to protect programmable logic con-

trollers, specifically those used to support critical infrastructure. However, most of

these honeypot designs are static systems that wait for a would-be attacker. To be

effective, honeypot decoys need to be as realistic as possible. This thesis introduces

a proof-of-concept honeypot network traffic generator that mimics genuine control

systems. Experiments are conducted using a Siemens APOGEE building automation

system to provide experimental inputs using single and dual subnet instantiations.

A custom designed Distributed Network Traffic Generator is used to generate traffic

on a decoy network. Output traces from multiple experimental trials are compared

against controlled input traces. Analyzing the results indicate that the proposed

traffic generator is successfully able to generate control system network traffic that

originate and terminate with the honeypot systems. The generated traffic matched

the same number of packets, content, and ordering of the original trace. The tri-

als demonstrated that using a network traffic generator along with honeypots can

generate and route control system traffic within a decoy network.
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FRAMEWORK FOR INDUSTRIAL CONTROL SYSTEM HONEYPOT

NETWORK TRAFFIC GENERATION

I. Introduction

1.1 Background

The United States Ghost Army conducted deception operations in France, Bel-

gium, Luxembourg and Germany during World War II [1]. The military unit’s mission

was to deceive the enemy and lure German units away from Allied combat units. En-

gineers set up inflatable armored tanks, aircraft, airfields, tents and motor pools.

Other tactics such as looping convoy traffic, deploying military police and posting

General and Staff Officers in public places were used to distract Axis resources (e.g.,

intelligence gathering and combat power) away from real targets. The Ghost Army

also played recordings of actual armored and infantry units over loud speakers. Decep-

tive radio transmissions were broadcast on fabricated networks called “Spoof Radio”.

Through these actions, the Ghost Army achieved a comprehensive deployment of de-

coys and deception techniques to overload enemy sensors and intelligence gathering

capabilities.

Deception techniques and decoy technologies are employed in cyberspace in the

form of honeypots. These systems may be simple (e.g., virtual machine) or complex

(e.g., full scale replicas of industrial control systems). Non-full scale Industrial Control

Systems (ICS) honeypots do not generate traffic to truly represent a control system.

As such, attackers with the ability to passively monitor a target may be able to

differentiate an operational system from a honeypot. Network traffic generators may
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help with this problem, but they are geared for traditional network performance

testing on Information Technology (IT) systems.

1.2 Motivation

This research details some of Operational Technology (OT) challenges, security

concerns, threats and vulnerabilities. It highlights threat mitigation through the use

of honeypots, similar to the decoys used by the Ghost Army. The implementation of

honeypots themselves are often hindered by their own challenges. High-interaction

honeypots often have a high financial and managerial cost associated with them,

while low-interaction honeypots have reduced authenticity due to the limited amount

of services that are emulated [7].

The effectiveness of honeypots often require that they are the target of attacks.

OT differ from IT systems in that operations occur on a routine basis even without

user interaction. Because of this, an attacker capable of passively monitoring a control

network can identify honeypots that lack authentic network traffic. Thus, there is a

need for network traffic generators on honeypots, to make these decoy systems look,

act and communicate like real control systems.

1.3 Research Goals

The goal of this research is to assess the capability of a network traffic generator to

replay trace traffic on honeypot systems. In doing the research, commercial and open-

source network traffic generators are reviewed with the following questions asked:

• Does the generated traffic maintain the characteristics of the original trace (traf-

fic matching)?

• Does the generated traffic appear to originate and terminate with the honeypot
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systems (honeypot integration)?

• Does the generated traffic traverse the designed network (network routing)?

• Can the network traffic generator send network traffic to and from multiple

systems using a single trace input file and without C2 traffic during generation

(scalability)?

• Achieving the above four goals, does the use of a network traffic generator on

honeypots show control system activity during passive monitoring?

Achieving these goals, it is hypothesized that generating traffic using network

traces (modified with honeypot characteristics) can create decoys that mimic real

control systems on a network.

1.4 Approach

A framework is developed that consists of both honeypot and network traffic gen-

erator platforms. Targetable decoy systems on a network are provided using a hon-

eypot platform (e.g., Honeyd). Deception is provided with network traffic generated

through the use of a network traffic generator (e.g., commercial, open-source or cus-

tom made Distributed Network Traffic Generator (DNTG)). By combining these two

platforms, the framework provides decoy systems with deception capabilities during

both active network scans and passive network monitoring.

1.4.1 Protocol Emulation.

Protocol emulation is provided through the use of network traces, which alleviates

the need for priori knowledge of protocols and operational configuration of control

systems. For this research, network traces are captured from a test environment
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consisting of an APOGEE building automation system platform. This trace contains

the control systems’ routine network activity.

1.4.2 Honeypot Integration.

To meet the purpose of providing network activity for honeypots, a collected trace

is used during network traffic generation. However, an unmodified trace contains the

characteristics of the control systems as originally captured. A sub-function tool

of DNTG is used to search for control system characteristics (e.g., Internet Protocol

and Media Access Control addresses) within the Open Systems Interconnection model

Layer 2 and Layer 3 packet headers. Matching results are replaced with correspond-

ing honeypot characteristics. The end result is network traffic that bears honeypot

characteristics derived from real control systems.

1.4.3 Network Traffic Generation.

A sub-function tool of DNTG provides network traffic replay using network traces

and is designed to complement existing honeypot solutions. This tool is run on each

instance of honeypot so that network traffic traverses from each decoy system through

each connected point in the network. With this distributed design, each honeypot

instance generates and receives network traffic.

1.4.4 Experimentation.

All experimental network traffic in this research is generated using DNTG in-

stances on three Honeyd honeypot instances. Each one of these systems represent

the corresponding control system devices from the APOGEE platform. An experi-

ment is developed to test network traffic generation of each honeypot using a reference

trace. The experiment consists of replaying all the packets within the trace and re-
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capturing the generated traffic to be used as a comparison against the original trace.

The reference and generated trace are then compared to validate and assess criteria

measurements for honeypot-network traffic generation.

1.5 Assumptions and Limitations

This research provides a proof-of-concept framework for generating network traffic

on honeypots using network traces.

1.5.1 Limitations of Network Trace-Based Approaches.

Trace-based approaches have limitations in that traffic generation is limited to

what was previously recorded. The data contained within the trace packets represent

the state of control system devices when the capture was originally made. Replayed

data can contradict subsequent system state changes. Additionally, a network traffic

generator is only as effective as the duration of the trace recorded. When used in 24/7

operations, the network traffic generator may replay the same trace multiple times

resulting in repeated identical packets. A longer duration in the trace will result in

fewer repeated packets over a certain period of time.

1.5.2 Network Protocols Involved.

While DNTG was designed to work with any network trace, only traces containing

P2 and BACnet protocols were tested. Additionally, DNTG is limited to supporting

Transmission Control Protocol (TCP), User Datagram Protocol (UDP) and Internet

Protocol version 4 (IPv4) traffic.
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1.5.3 Limited Configuration Setup.

This research tests network traces based on three control systems (i.e., one hu-

man machine interface and two programmable controller modular devices) on two

network topologies (i.e., single-subnet and dual-subnet). A production environment

may consist of a multitude of varying control systems operating in many different

network topologies. Note that proof-of-concept does not simulate these complex en-

vironments.

1.5.4 Timing.

Control system operations are based on timed intervals which generate network

traffic based on system configurations. Trace timing are based on the timestamps

as recorded by a capture device. It is not possible to generate exact packet timing

based on the network trace alone without specific knowledge of protocols and control

system configurations. This research does not address timing delays added by network

devices (e.g., router, switches and network interface cards). As a result the delays

added during capture and network traffic generation may create a difference between

experimental and original control system timing.

1.5.5 Network Exploitation.

This research covers network exploitation and access, however, the technical de-

tails and steps are not discussed. For this research an assumption is made that

attackers are capable of exploiting a network and monitoring the traffic.

1.6 Thesis Overview

Chapter II contains background and related research on ICS threats, honeypot

technology and network traffic generator products. Chapter III provides a detailed
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description of the developed Distributed Network Traffic Generator. Chapter IV

explains the experimental design with the results covered in Chapter V. Chapter VI

presents research conclusions and future work.
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II. Background and Related Research

2.1 Overview

This chapter provides a background on the vulnerabilities and threats that affect

industrial control systems. A brief background on previous honeypot research is

provided. Criteria for network traffic generation is established and a review of several

available commercial and open-source network traffic generators is made.

2.2 Background

Critical infrastructure systems have long been considered immune to network at-

tacks that have plagued traditional IT systems. Historically, process control and

Supervisory Control and Data Acquisition (SCADA) systems relied on proprietary

hardware, software and isolation for security. A convergence between IT and OT is

pushing a move towards open standards based on technologies and protocols such as

Ethernet, TCP/Internet Protocol (IP) and other web technologies [4]. According to

Gartner, OT is becoming more like IT systems (including their vulnerabilities) [16].

There are many challenges in the OT/IT convergence that make mitigating secu-

rity issues difficult. OT systems often run the software as installed without updates

for 15-20 years, compared to the 3-5 year rigorous life cycle of IT systems [24]. Trends

in the evolution of system architecture of SCADA systems since the 1960s show a dras-

tic decline in use of proprietary hardware (from 60% to 2%) and software (from 100%

to 30%) [18]. As a result, security policies such as “security through obscurity” used

for older-generation OT platforms are no longer applicable to these newer systems

[16].

Resource constraints pose a big challenge to control systems. Compared to IT

where systems are designed to handle multiple functions and have resources available
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to support addition of third-party security applications, OT systems are designed to

support specific industrial processes. Adding resources or features may not be possible

and these systems often lack the memory or computing resources to support the

addition of security. Implementing traditional IT security practices on control systems

may cause timing disruptions, negatively impacting performance and availability [24].

Trend Micro [27] published a study covering attacks on external-facing ICS devices

and honeypot technology developed to capture threat actors and motivations behind

attacks. The document highlighted five tasks conducted by attackers: (i) reconnais-

sance using free and open sources (e.g., ShodanHQ); (ii) port scanning of an intended

IP target and surrounding subnets; (iii) fingerprinting of devices for Operating Sys-

tem (OS) and other identifiable information; (iv) persistence and lateral movement;

and (v) data exfiltration.

A report by Idaho National Laboratory [8] highlights security challenges that are

often associated with IT networks that are applicable to OT systems through conver-

gence. Critical cyber security issues that need to be addressed in OT include those

related to: (i) backdoors and holes in network perimeter; (ii) protocol vulnerabilities;

(iii) attacks on field devices; (iv) database attacks; and (v) communications hijacking

and ‘man-in-the-middle’ attacks. The report recommends and provides guidance for

developing defense-in-depth strategies as a best practice for controls systems in multi-

tier information architecture. In building defense-in-depth for OT, time sensitive re-

quirements (e.g., clock cycles on PLCs) may make proven IT security technologies

inappropriate for control systems. Another recommendation is the use of an Intrusion

Detection System (IDS), capable of watching traffic and network activity passively

without impacting traffic. It functions by comparing data against pre-defined rule

sets and attack signatures. While the use of contemporary IDS signatures works for

a wide range of attacks, for control networks they are inadequate, and modern IDS
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may be blind to attacks on control systems.

2.3 Related Research

2.3.1 Honeypots as Defense-in-Depth Security Measure.

Honeypots can help mitigate the control system threats mentioned earlier. A

honeypot is a decoy based intrusion detection technology that attracts hackers and

provides the ability to study attacker actions and behaviors [5, 11]. Honeypots can

be broken down in two type of systems: (i) low-interaction; and (ii) high-interaction.

Low-interaction honeypots emulate services and operating systems, provide limited

activity and are generally easy to deploy. High-interaction honeypots use real operat-

ing systems, applications and hardware to provide a more realistic environment but

are far more difficult to deploy [7].

Prior research demonstrated applications of honeypot emulators and proxy tech-

nologies to create hybrid honeypots capable of being used to protect ICS systems.

Winn et al. [28] showed that honeypots could be combined with a PLC proxy to

provide multiple instances of systems. Winn et al. also provided a means to create

low-cost ICS honeypots that are authentic and targetable by using data from the

a programmable logic controller (PLC) while maintaining authenticity with unique

network identities (e.g., IP address and media access control (MAC) address) that

match corresponding honeypot devices. Warner’s [26] research focused on developing

a framework that automatically configured the emulation behavior by building proto-

col trees from networked PLC traces (captured network data). Girtz et al. [6] further

extended Warner’s work by forwarding unknown requests to a PLC proxy to provide

a response and update to the protocol tree. The research bolstered the targetability

and authenticity of ICS honeypots and the ability to emulate the characteristics and

interactions of a PLC.
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Successful implementation of honeypot technology could aid existing cyber secu-

rity by adding defense-in-depth measures to mitigate vulnerabilities. Compliment-

ing conventional security technologies (e.g., firewalls, IDS/intrusion prevention sys-

tem (IPS) and defense-in-depth techniques) with honeypots can provide early in-

trusion detection, threat intelligence collection against unknown vectors and provide

defenders valuable knowledge and time to address security concerns [22]. However,

by design, honeypots do not have authorized activity and are never meant for op-

erational use. As such, any activity on these systems can be considered suspicious

[11]. Honeypots function as a litmus test to detect unauthorized access. The down-

side to the current approach is that honeypots do not actively engage in autonomous

network communication. Instead, they rely on interaction with an attacker to gen-

erate network activity. This poses an issue because real OT networks have non-stop

and recurring traffic flow. Unlike traditional IT systems, where servers may only re-

quire interaction with users and can sit idle until requests are made, OT systems are

automated and perform operations in the absence of connected users. OT systems

communicate status continually. If an attacker were to target a honeypot system, the

absence of this OT network traffic would indicate that it was not part of a real control

system. As a result, the honeypot would no longer entice the attacker, prompting a

new attack target. This reduces the overall effectiveness of a honeypot as a security

measure.

2.3.2 Network Traffic Generation.

Some understanding of network architecture is necessary as network traffic visi-

bility depends on the level of compromise. In a switched network, an attacker may

only be able to map the network using broadcast messages. The segregation of traffic

on a switched network would normally prohibit an attacker from seeing all control
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system traffic. Traffic collected would be restricted to the packets originating from

(or destined for) a compromised host. For a more skilled attacker, network device

exploitation can offer different vantage points that allow for all traffic to be visible.

Using Figure 1 as an example, compromising the switch on Subnet 2 could reveal all

traffic within that particular subnet. Layer 3 traffic can be seen when compromising

the router. Exploiting the Subnet 1 switch or human-machine interface (HMI) would

reveal traffic from all control systems that communicate with the HMI. An attacker

may be able to isolate active systems from non-active systems (e.g., honeypots) by

passively monitoring the traffic after compromising key nodes on the network.

The study of network activity is important for an attacker as it can increase the

odds of a successful attack. If an attacker were to focus her resources at the wrong

target (e.g., honeypot), the cost of revealing attack information would be detrimental.

As such, more vigorous network discovery, reconnaissance and network enumeration

actions would most likely occur prior to any actual attack, especially when using a

zero-day exploit. At the system level, an attacker could collect traffic data going to

and from the compromised host. This would reveal the identity and function of the

machine to an attacker. At the network level, a compromised network device provides

traffic data from connected systems. With this data, an attacker would be able to

identify control systems by observing traffic patterns and packet contents. This would

also identify false targets (honeypots) due to lack of any traffic originating from said

devices.

It becomes important that honeypots designed for ICS reflect the same data traffic

and patterns as the systems they are trying to emulate. The implementation of full

network traffic generation would then make honeypots more effective as decoys. This

research introduces the use of network traffic generators in conjunction with low-

interaction and hybrid honeypots.
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Figure 1. APOGEE platform dual-subnet network design.

To meet the requirements for ICS honeypot-network traffic generation, the criteria

in Table 1 were formulated to assess viable network traffic generators.

2.3.3 Network Traffic Generators.

Several commercial off-the-shelf and open-source network testing products were

selected as candidates to provide honeypot-network traffic generation. They were

evaluated based on product literature review against the criteria from Table 1.

2.3.3.1 Commercial Network Traffic Generators.

Several commercial products were considered including: (i) SolarWinds WAN

Killer: Network Traffic Generator; (ii) NetLoad Inc. Stateful Traffic Mix Tester So-

lution; and (iii) Ixia IxLoad.

SolarWinds WAN Killer: Network Traffic Generator is one of the over 60 network
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Table 1. Honeypot-network traffic generator evaluation criteria.

Traffic Matching
Content Matching: Generated traffic should match the
packet data of the control system the honeypot is emulating.
Extraneous Packets: Packets that do not match con-
trol systems must be avoided during generation (e.g., net-
work traffic generator command and control and synchro-
nization).
Packet Ordering: Generated traffic should not have out
of sequence packets.
Timing Consistency: Generated traffic should replicate
timing from trace data as accurately as possible.

Honeypot Integration
Honeypot Pairing: Generated traffic must be received by
and sent from the corresponding honeypot.
Honeypot Header Matching: IP and MAC addresses
in generated packet headers should reflect corresponding
honeypot systems.

Network Routing
Distributed Operation: Traffic generation should origi-
nate from multiple points within a network.
Layer 2 Forwarding: Generated traffic which shares the
same characteristics as its corresponding honeypots must
not cause network addressing issues (e.g., MAC table con-
flicts).
Layer 3 Routing: Generated network traffic must be
routable in multi-subnet environments.

Scalability
Cost: ICS may consist of systems that are distributed both
physically and logically on a network requiring a large num-
ber of honeypot instances. A high cost for each network
traffic generator instance will make it cost prohibitive to
replicate a full control system.
Flexibility: ICS may consist of many diverse components,
often distributed across geographically dispersed environ-
ments. To accurately generate control system traffic, net-
work traffic generator instances may need to be installed in
multiple locations. The network traffic generator must be
configurable to accommodate a large variety of ICS appli-
cations.
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management tools that comes as part of Engineer’s Toolset (priced starting at 1,495

dollars) [23]. TheWAN Killer tool lets network administrators generate random traffic

on a Wide Area Network. The tool can manipulate packet size, circuit bandwidth

and percent of bandwidth utilization with randomly generated data. The tool was

designed to simulate network traffic primarily for load testing and does not generate

the specific protocols traffic required for ICS honeypots.

NetLoad Inc. Stateful Traffic Mix Tester Solution provides off-the-shelf network

processing hardware and software as a single package (5,000 dollars for the 1 Gbps

model and 25,000 dollars for the 80 Gbps model) [12, 14]. It provides network testing

using TCP/Hypertext Transfer Protocol (HTTP), UDP network traffic generation

and packet capture file (PCAP) replay. A particular feature of interest is the PCAP

replay. With this PCAP replay feature, packets are generated using PCAP data.

It can use packet time stamps mimicking the timing of the original PCAP. NetLoad

advertises inter-packet timing within one microsecond [13]. The software identifies bi-

directional traffic when using PCAP replay and allows directed traffic from two ports.

Other features allows the PCAP replay load to be distributed among the four ports.

While the PCAP replay would serve the purpose of replaying captured ICS traffic, the

appliance was meant for network testing and does not implement honeypot integration

features. The documentation did not indicate a way to load custom software (e.g.,

honeypot) on the appliance nor does it feature a way to modify PCAP data to match

honeypot characteristics.

Ixia IxLoad is a suite of software and hardware that provides network perfor-

mance testing [9]. Pricing for IxLoad starts at 3,500 dollars per subscription license

and 33,750 dollars per perpetual license. The software can be used in a virtual envi-

ronment loaded on a server or used in conjunction with Ixia’s proprietary appliance

products. IxLoad delivers a wide variety of fully stateful IT protocols to emulate
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web, video, voice, storage, VPN, wireless, infrastructure and encapsulation/security

protocols. For unsupported or propriety protocols, it provides TCP/UDP replay

traffic options through its Application Replay feature [10]. This feature replays net-

work packet captures and has the ability to create bidirectional traffic flows through

unique ports. Options include modifying IP headers and using inter-packet timing

from traces. Of the evaluated commercial solutions, IxLoad would best meet the net-

work traffic generator requirement based on product literature and vendor contact.

However, IxLoad was designed for network performance testing and not honeypot-

network traffic generation. Multiple licenses may be required for implementation on

large scale networks, making it cost prohibitive. Further evaluation is needed to de-

termine if it meets all the required criteria for honeypot-network traffic generation

(e.g., honeypot integration, traffic matching, network routing and network routing).

2.3.3.2 Open-source Network Traffic Generators.

Three open-source traffic generators were considered: (i) Ostinato; (ii) Distributed

Internet Traffic Generator; and (iii) Tcpreplay.

Ostinato is a packet crafter, network traffic generator and analyzer with both

graphical user interface (GUI) and Python application programming interface (API)

implementations. The software operates in a controller-agent architecture, where the

controller performs the command and control (C2) operations and the agents perform

the network traffic generation [15]. The software generates traffic on the network using

crafted packets or replay data from PCAPs. For the controller-agent architecture to

function, Ostinato transmits trace data and device configurations from the controller

to the agents during initialization. There were limitations observed during testing

in timing implementation. During testing, it was observed that packet transmission

was based on packets per second and burst modes. As a result, the generated traffic
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did not maintain the original timing of the trace. This limitation was identified

using WireShark analysis tools. A final implementation of honeypot-network traffic

generator using Ostinato would require modifications to how timing is handled in the

software. Another limitation was found in the software’s handling of command and

control (C2) operations. These operations (e.g., synchronization and state status) are

continuously present on the network between the controller and agents. The presence

of these identifiable packets on the network would likely alert an attacker that an

Ostinato network traffic generator is running.

Distributed Internet Traffic Generator (D-ITG) is a platform capable of produc-

ing IPv4 and Internet Protocol version 6 (IPv6) traffic by replicating the workload of

current Internet applications [2]. D-ITG generates traffic following stochastic models

for packet size and inter-packet timing that mimic supported application-level pro-

tocol behavior. Packet size and inter-packet timing can also be loaded from capture

files. Network traffic generation is performed between ITGSend (sender component of

the platform) and ITGRecv (receiver component of the platform). A C2 connection

exists between these two components which controls the traffic generation process for

each traffic flow (e.g., port assignments). For large-scale distributed environments,

multiple ITGSend instances can be remotely controlled by an D-ITG API. The re-

view of D-ITG indicated that it did not meet the honeypot integration and traffic

matching criteria. The platform offered no method to modify the header data to

match honeypot characteristics. Traffic is generated one way from the ITGSend to

ITGRecv instances. To establish two way traffic generation, multiple instances of

ITGSend and ITGRecv are required on each pair of honeypots to perform conver-

sational traffic flow. On large scale implementations, this can be an overwhelming

task. Additionally, application layer payload data is ignored and only packet size and

inter-packet timing from trace data is used. As such, it was determined that D-ITG
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did not meet the honeypot integration and traffic matching criteria.

Tcpreplay, written by Aaron Turner and licensed under GNU General Public

License version 3 (GPLv3), is a suite of tools that allows for previously captured traffic

to be replayed through various network devices [25]. Tcpreply possesses the ability to

generate trace data using recorded timestamps. It also supports bi-directional traffic

flow through the use of two interfaces. The software suite also includes a tool to

modify packet header information. Tcpreplay was selected as a candidate for a pilot

study.

2.4 Chapter Summary

This chapter shows that ICS are vulnerable to attacks, especially more so through

the OT/IT convergence. Attacks vectors include network-based attacks that compro-

mise control networks and systems. One method of mitigating threats on OT systems

is through the use of honeypots as a defense-in-depth security measure. Strides have

been made to bridge the gap between low-interaction and high-interaction honeypots,

and provide authentic user interaction with these systems. However, these honeypots

still lack the capability to mimic OT systems in autonomous operation. Network

traffic generation criteria were defined that highlight what generated control system

traffic should emulate. Using these criteria, several commercial and open-source net-

work traffic generators were reviewed.
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III. Research Design

3.1 Overview

This chapter provides the considerations for network traffic generation and estab-

lishes the test environment to create the network trace needed for the traffic gener-

ation. Pilot studies on network traffic (i.e., APOGEE platform), honeypot systems

(i.e., Honeyd), and network traffic generation (i.e., Tcpreplay) are made. The results

of the pilot studies are used in the design of the honeypot-network traffic generator

framework.

3.2 Test Environment

The test environment chosen for this research is based on building automation

system (BAS) technology, specifically Siemens APOGEE. While this test environment

may not fully replicate complex production environments, it provides the required

network traffic traces from operational control systems. The components listed below

were used in the test environment:

• Siemens Insight software which provides HMI and engineering workstation func-

tionality.

• Ubuntu VM with Honeyd honeypot and network traffic generator software

(Tcpreplay and a custom Distributed Network Traffic Generator).

• Ubiquiti EdgeRouter X router.

• Two Netgear ProSafe Plus switches.

• Two Siemens APOGEE PXC100 programmable controller modulars (PXCM)

with input/output modules.
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• Field level network (FLN) devices (e.g., sensors, lights and fans).

3.2.1 Design Consideration.

The environment was designed to replicate the APOGEE platform that provides

BAS functionality on a single field panel as shown in Figure 2. Each PXCM was

mounted side-by-side with wired connections to the FLN devices using the input/out-

put expansion modules. Separate serial connections were made to a Siemens Simatic

S7-200 PLC and Siemens 550-833 TEC unit conditioner circuit board. User feedback

was provided through liquid-crystal display panels, physical lights and HMI.

3.2.2 Network Topology.

The APOGEE platform consists of three networks: (i) Management Level Net-

work (MLN); (ii) Automation Level Network (ALN); and (iii) FLN. The MLN

has servers and client workstations that provide the management controls for the

APOGEE automation system [20, 21]. Hardware systems at this level consist of

servers and workstations running Siemens Insight or InfoCenter software suites, web

accessible terminals, mobile devices and PXCM with MLN functionalities. Communi-

cation integration between systems is provided using proprietary and open-standard

protocols (e.g., P2, TCP/IP and BACnet). The ALN provides field panel to field panel

as well as MLN to FLN communication. Hardware components found at this level

consists of PXCM supervisory field panels. These panels can operate in networked or

stand-alone configurations and provide control, monitoring and energy management

functions to FLN devices. The FLN is the lowest level of the APOGEE building

automation network. All end point devices reside at this level and vary depending on

application (e.g., terminal equipment controllers and sensor units).

Network implementation for the test environment platform was based on the
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Figure 2. APOGEE platform.

recommended Ethernet single-subnet and multi-subnet configurations from Siemens’

APOGEE technical specification sheet (see [19]). The two network topology scenarios

considered were: (i) single-subnet; and (ii) dual-subnet. Due to equipment availabil-

ity, a dual-subnet configuration was used to test the multi-subnet environment. The

same P2 PXCM was used for both single-subnet and dual-subnet configurations with

minimal wiring (e.g., connection to Subnet 1 or Subnet 2) and configuration changes

(e.g., IP reassignment).

Figure 1 shows the APOGEE platform network design used for the test envi-

ronment. The figure depicts a dual-subnet environment with two different Siemens

PXCMs: (i) P2 protocol over TCP/IP; and (ii) BACnet protocol over UDP. A

network sniffer was added to a mirrored port on Subnet 1 for network capture and

analysis functionality. The single-subnet design represents BAS infrastructure for a

single building campus. Within this infrastructure, the three APOGEE network lay-

ers belong to a single control system network. The multi-subnet design represents a
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multi-building campus infrastructure consisting of BAS sites at multiple buildings.

The control networks are distributed with network connectivity provided by individ-

ual switches. In this setup, a central router connects the multiple buildings (e.g.,

switches) to form the BAS network infrastructure.

Honeypots and network traffic generators were used to replicate the APOGEE

platform (see Figure 3). A single honeypot/network traffic generator was used to

replicate the HMI on Subnet 1. A network sniffer/C2 workstation was added to

Subnet 1 and provides: (i) network capture and analysis functionality on one network

interface card (NIC) connected to a mirrored port on the switch; and (ii) experimental

C2 automation on a second NIC.

A third workstation (containing the PXCM honeypots/network traffic generators)

was added and connected to both subnets. A total of three NICs were used to pro-

vide: (i) BACnet PXCM honeypot connection to Subnet 1; (ii) P2 PXCM honeypot

connection to Subnet 1; and (iii) an additional P2 PXCM honeypot with connection

to Subnet 2. Having connections to both subnets for the P2 PXCM/network traffic

generator allowed multiple experiments to be conducted without significant changes

between runs.

3.3 Pilot Studies

This section highlights the results of the pilot studies.

3.3.1 APOGEE Network Traffic Analysis.

Network communication between the PXCMs and the HMI workstation was an-

alyzed to better understand what an attacker might see on the network. Traffic

collection was performed on a Windows based client with open source software (e.g.,

Wireshark). Multiple collections were made with different settings on each switch
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Figure 3. Test platform single and dual-subnet network design.

(e.g., switched and mirrored port configurations). In addition to the switch config-

urations, network traffic was collected with the control system devices running in

normal operation and failed states.

The captures represent traffic that can be observed by an attacker at various levels

of network compromise. The switched ports represent what an attacker capable of

compromising a node within a network would see on that particular host. While the

attacker may be able to see traffic traversing the compromised node, traffic destined

for other nodes would not be seen. The mirrored port configuration replicates the

access a more skilled attacker may be able gain through various exploits (e.g., media

access control address flooding, administrative credential compromise, switch vulner-

ability exploit and switch misconfiguration). A successful network compromise could

reveal all traffic traversing the subnet to an attacker.

Capturing traffic with the sniffer connected to a switched port collected no control

traffic between the PXCMs and the Insight HMI workstation. This was expected as
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unicast traffic would normally be restricted between the intended source and desti-

nation by the switch. When alternating the PXCM and the HMI workstation into

failed states, Address Resolution Protocol (ARP) and BACnet/IP Broadcast Manage-

ment Device (BBMD) broadcast message requests were seen. The analysis confirmed

that the system uses unicast traffic for normal operations and broadcast messages to

discover nodes. Since the broadcast message are visible without compromising the

network, it does provide some information for an attacker to map a control system

network.

The next set of traffic collected was conducted using a mirrored port. This re-

sulted in the sniffer capturing all unicast traffic between the PXCMs and the HMI

workstation. The capture included the C2 data for the APOGEE platform, to in-

clude periodic polling and manual requests. By alternating the PXCM and the HMI

workstations into failed states, unicast TCP 3-Way handshake and BBMD messages

were observed in addition to the broadcast requests found previously.

3.3.2 Identifying Honeypots.

The honeypots were built using Honeyd Virtual Honeypot [17]. Honeyd is a small

daemon that creates virtual hosts running arbitrary services and configurable to ap-

pear as though it is running specific operating systems. It is capable of simulating

multiple addresses from a single host. Building the honeypot configuration profile

included retrieving identity data (e.g., OS fingerprint, MAC address and services)

from the control systems using NMAP. The key information gathered was then trans-

ferred to the honeypot configuration profile for Honeyd. Note that the efficiency of

honeypot software was not tested, it was only tasked with providing targetable nodes

on the network. Final implementation of the network traffic generator should work

with any other honeypot platform.
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For each control system an equal number of honeypot systems were created. The

resulting network topology from an active NMAP scan is shown in Figure 4. A

honeypot system was created for each control system and provided with a unique

IP and MAC address. For experimentation purposes, the honeypots were configured

to drop packets from the network traffic generator. In final implementation, non-

replay traffic and replay traffic can be segregated and handled by the appropriate

honeypot/network traffic generator platform.

A pilot study was performed to demonstrate that the lack of OT traffic on the

network can give away the identity of honeypots. NMAP was used to perform an

active scan of the test network, which verified the honeypot systems along with the

control systems were active and detectable on the network (see Figure 4). It was also

used to validate that the characteristics of the honeypots created matched the corre-

sponding APOGEE system. The resulting network topology shown in Figure 4 shows

three real control systems (i.e., 10.1.3.2, 10.1.3.3 and 10.1.3.5) and three honeypot

systems (i.e., 10.1.3.111, 10.1.3.112 and 10.1.3.104) for a single-subnet configuration.

Note that a separate honeypot (i.e., 10.1.4.104) is used on Subnet 2 in a dual-subnet

configuration. From an active scan standpoint, the introduction of the three honey-

pots into the experiment potentially decreases an attacker’s target selection success

by half (three real control systems out of six control systems). This target selection

success rate can be further decreased by introducing additional sets of honeypots.

Since a more skilled attack may involve passive network monitoring, an assess-

ment of the traffic data is required. To simulate the highest level of compromise on

the network, a Wireshark sniffer was placed on a mirrored port of the switch ser-

vicing the HMI. With only one-minute worth of traffic data, the three real control

systems were identified using Wireshark’s endpoints statistics tool (see Figure 5). An

attacker capable of viewing network traffic can conclude that the targets of interest
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Figure 4. Test network implementation.

have IP addresses 10.1.3.3, 10.1.3.5 and 10.1.4.2 as these are the only systems that

are actively transmitting on the network. With this additional reconnaissance, an

attacker’s target selection success returns to one-hundred percent. While the initial

implementation of honeypot systems into the control network looked promising, this

pilot study demonstrates that a skilled attacker can easily detect an OT honeypot

through passive monitoring.

3.3.3 Tcpreplay.

For the purpose of this pilot study, network captures (single and dual-subnet con-

figurations) were taken from the APOGEE platform. These PCAP files are referenced

as the Production Trace. The Tcpreplay suite contains a variety of tools including:
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Figure 5. Pre-network traffic generation passive monitoring.

(i) tcpprep; (ii) tcprewrite; and (iii) tcpreplay [25].

Tcpprep is a PCAP pre-processor for tcpreplay and tcprewrite. It identifies and

“splits” traffic into two sides within a conversation and assigns a network interface

to each packet. It allows tcpreplay to generate network traffic through two NICs

(primary/secondary and client/server). While it can emulate two-way traffic through

two unique ports, network traffic generation is still limited to a single workstation

and two interfaces. This would become a limitation in simulating an ICS environment

which would normally involve a significant number of devices that are physically and

logically distributed on a network.

Tcprewrite is a PCAP file editor which rewrites TCP/IP and Layer 2 packet

headers. It replaces Layer 2 source and destination addresses of packets so they can

be processed by the correct device. Operational tests found that while the tool was

able to re-write packets it was dependent on tcpprep being able to properly identify

conversations. Using a sample capture from the APOGEE platform, the tool failed

to modify source and destination addressing of all packets found within.

Tcpreplay was used to generate traffic on the network using the original timing

recorded in the Production Trace. A sample capture consisting of one minute of net-

work traffic data was recorded by the sniffer. The results of this capture are shown
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using Wireshark endpoints statistics tool in Figure 6. The figure shows that an at-

tacker capable of monitoring the network would see traffic between all six systems

(maintaining fifty-percent target selection success probability – three real control sys-

tems out of six total systems). Because the real and honeypot systems are generating

traffic, an attacker would then have to perform a deeper analysis to determine the

targets of interest. This requires more steps, which allows defenders time to detect

and mitigate. This demonstrates that by adding decoys (with corresponding network

traffic), the chance of target selection failure is also increased.

Once the initial test showed that Tcpreplay was capable of deception in passive

scans, a full hour of traffic was generated on Subnet 1. Wireshark was used to re-

capture the generated traffic for data collection and analysis on both Subnet 1 and

Subnet 2. Various statistical tools found in Wireshark were used to compare the

original capture and re-captured packets (referred to as Generated Trace).

Analysis of the traffic capture from Subnet 1 was made first. Using Wireshark’s

conversation statistics, which displays a list of conversations (traffic between two end-

points), it showed that there were four pairs of conversations. Conversation statistics

for the Production Trace are shown in Figure 7 and the Generated Trace in Figure 8.

Between the Production Trace and Generated Trace, the number of packets trans-

mitted and total size of the conversations matched. However, there was an average

delay of 11.12 ms before the start of a conversation and an increase of 113.65 ms in

the duration of the conversations. Tcpreplay timing measurements (using methods

described in Section 4.3) showed the difference in the packet interval (inter-packet

timing) between the Production Trace and Generated Trace had a mean of 0.07 ms.

Overall there was an increase of 132 ms in the total hour duration of the replay.

The input/output graph statistics in Wireshark shows the number of packets

transmitted per unit of time over the course of the capture. Visually reviewing the
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Figure 6. Post-network traffic generation passive monitoring.
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Figure 7. Tcpreplay conversation statistics (Production Trace).
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Figure 8. Tcpreplay conversation statistics (Generated Trace).

patterns shows transmission occurs nearly the same. Figure 9 shows a graph of the

packet transmission rates found in sample Production Trace and Generated Trace.
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The two graphs are transposed over each other to show that they follow a similar

network traffic pattern. Some minor variations in the number of packets sent was

observed within the 22-28 minute mark due to possible processing or networking

delays. However, it would be difficult for an attacker to determine which pattern

represents the real system from this visual representation.

While Tcpreplay statistics looked appealing initially, some limitations were dis-

covered over the course of the pilot study. Sniffing on Subnet 2 revealed that only a

limited number of packets destined for the P2 PXCM honeypot were received. This

was attributed to port assignments made by the switch in its MAC address table and

the way Tcpreplay operates. Since Tcpreplay transmits the generated traffic via an

interface on Subnet 1, all the MAC addresses from the Production Trace are entered

into the switch’s address table and assigned to a particular port on Subnet 1. All

network communications (including those outside of the generated traffic) destined

for P2 PXCM honeypot would then be sent to this specific port. Occasionally, the

MAC tables would refresh with the actual location of the honeypot (via router MAC

address). During these periods, packets are forwarded correctly to the router and

routed to the correct subnet. This demonstrated a limitation in using Tcpreplay for

distributed systems in multi-subnet environments.

If a network topology consists of a single subnet then implementation of Tcpreplay

would be a viable solution. It would also require that the honeypots be collocated on

the same workstation with Tcpreplay, otherwise multiple associations of non-unique

MAC addresses would occur. If any particular honeypot is placed separately from

the network traffic generator, an attacker would not see any replayed traffic on that

particular host. This also creates a hardware limitation for designs requiring multiple

honeypots on the same workstation. The pilot study revealed that Tcpreplay did not

meet the honeypot integration, network routing and scalability criteria as detailed in
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Table 1.

3.4 Honeypot-Network Traffic Generator Framework

While authentic network traffic can be generated through the use of full scale

systems, it is often associated with a very high cost [28]. Low-interaction and hybrid

honeypot systems can be used to emulate ICS for a much lower cost. To provide

authenticity for these honeypot systems, using protocol specific traffic generation

requires significant knowledge base, time and resources to authentically replicate the

operations of a genuine system.

An alternate solution involves using packet captures for network traffic generation.

Using this method, authenticity is maintained as the data and patterns are derived

from real systems. Note that, by using this solution, confidentiality of the traffic

is not maintained. Justification for this, however, is that a capable attacker would

most likely be able to view the same traffic from real systems in the absence of

honeypots. One way to mitigate this and maintain some form of confidentiality is

the use of multiple sets of false captures. These false captures could be generated by
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real systems running in a fake operational environment. The traffic, while it would

appear real, would otherwise be useless operationally. In this scenario, the honeypots

and real systems would have distinct traffic, yet they would still present themselves

as targets of opportunity for attackers, functioning as decoys.

Design of the honeypot-network traffic generator framework is divided into five

sections: (i) production network; (ii) honeypot platform; (iii) honeypot integration;

(iv) distributed network traffic generation; and (v) decoy network. A block diagram

of this design is shown in Figure 10. The production network provides system char-

acteristics (e.g., OS fingerprint, network addresses and trace data). The honeypot

platform provides targetable honeypot systems to a decoy network with matching

characteristics and emulated services from the control systems found in a produc-

tion network. The honeypot platform used was discussed in Section 3.3. Honeypot

integration, involves taking trace data (captured from a production network) and

modifying headers to match corresponding honeypot system. With honeypot inte-

gration completed, the trace data is used by network traffic generators to provide

replayed ICS traffic into a decoy network or back into a production network. The

replay function is broken down into two different sub-functions to: (i) match trace

timing and packet ordering; and (ii) route packets on the network appropriately.

3.5 Distributed Network Traffic Generator

Due to commercial off-the-shelf (COTS) and open-source product limitations, a

custom network traffic generator solution was designed. A DNTG platform was cre-

ated using Python and Scapy following the design criteria from Table 1 with some

design characteristics taken from D-ITG (see [3]). DNTG consists of two main func-

tions: (i) DNTG Prep; and (ii) DNTG Replay.

DNTG Prep is a PCAP tool used to modify packet header information to match
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Figure 10. Honeypot-network traffic generator framework.

honeypot characteristics (e.g., IP and MAC addresses). The entire code for DNTG

Prep can be found in Appendix 1.1. These characteristics are passed as parameters to

DNTG Prep which locates corresponding control system packet data. These packets

are then modified with honeypot information.

DNTG Replay was designed to be run on a honeypot device and is intended to

operate in a distributed environment. The entire code for DNTG Replay can be found

in Appendix 2.1. DNTG Replay operates in two modes: (i) listen mode; and (ii) send

mode. In the listening mode, the network traffic generator performs no actions until

a packet arrives. Once a packet arrives, it performs a check to see if it is a part of the

Production Trace. If a match is found, the appropriate response packet is placed in

a queue for network traffic generation. The queued packet is then transmitted based

on the inter-packet timing from the Production Trace.
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3.5.1 DNTG Prep: Honeypot Integration.

Recall from Figure 1 that main traffic collection occurs on Subnet 1. This is of

particular importance because all control systems communicate with the HMI and the

control system network traffic would be visible on this subnet. For an attacker, this

would be the best collection point for network traffic and ideal target (e.g., HMI or

network switch) to compromise. The network traffic was collected using Wireshark on

a mirrored port with a duration window of 10 minutes. Wireshark IP filters were used

to filter out all traffic except for the APOGEE platform. For the single-subnet, the

following IPs were filtered 10.1.3.2, 10.1.3.3 and 10.1.3.5. For the dual-subnet setup,

the following IPs were filtered 10.1.4.2, 10.1.3.3 and 10.1.3.5. A separate capture file

was made for each subnet configuration.

The Production Trace used for traffic generation contains characteristics of the

real control systems. However, the honeypot integration criteria requires that the

generated traffic match the honeypot characteristics (e.g., IP and MAC addresses).

To meet this criteria, the trace must be modified prior to generation. Preparation of

the Production Trace using DNTG Prep was chosen rather than altering these values

during traffic generation. This reduces impact to DNTG Replay performance during

runtime. Each packet in the capture was overwritten with the desired replacement

IP and MAC address of the corresponding control system-honeypot pair. Checksum

values were also corrected to maintain packet validity.

Figure 11 depicts the original Production Trace (on top) with addresses reflect-

ing the real control systems. It also depicts the modified Production Trace (bottom

portion) with the replacement addresses of the honeypot systems. DNTG Prep tool

is used to perform this modification of network traces. The tool is run using com-

mand line arguments to pass in the IP and MAC addresses of a control system (CS)-

honeypot (HP) pair. Multiple pairs of IP and MAC can be passed in as an argument
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Figure 11. Production Trace modification.

in a single run (shown in Listing III.1).

Listing III.1. DNTG Prep: Command line arguments.

DNTG−Prep . py <input . pcap> <output . pcap> <CS1 IP> <HP1 IP> <CS1 MAC> <HP1

MAC> <CS2 IP> <HP2 IP> <CS2 MAC> <HP2 MAC>

The tool processes each packet by performing a search and replace of the Layer 2

and Layer 3 header fields (shown in Listing III.2). The entire code for DNTG Prep

can be found in Appendix 1.1. The Bash script used for the experiment can be found

in Appendix 1.2. After the modification of the header fields, Wireshark statistical

tools are used to validate that the values were changed properly.

Listing III.2. DNTG Prep: Find and replace.

i f p . ha s l aye r ( IP ) :

f o r i in range (0 , num argv ) :

i f i % 4 == 0 :

i f p [ IP ] . s r c == sys . argv [ i +3] :

p [ IP ] . s r c = sys . argv [ i +4]

i f p . s r c == sys . argv [ i +5] :

p . s r c = sys . argv [ i +6]

i f p [ IP ] . ds t == sys . argv [ i +3] :

p [ IP ] . ds t = sys . argv [ i +4]
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i f p . ds t == sys . argv [ i +5] :

p . ds t = sys . argv [ i +6]

de l p [ IP ] . chksum

i f p . ha s l aye r (TCP) :

de l p [TCP] . chksum

i f p . ha s l aye r (UDP) :

de l p [UDP] . chksum

3.5.2 DNTG Replay: Distributed Operation.

DNTG Replay is designed to run on each honeypot. The tool requires arguments

to be passed when run to identify the: (i) IP and MAC address of the honeypot

(used to match relevant packets in the Production Trace); (ii) gateway router MAC

address (used for correction of routed packets); and (iii) interface to use for listening

and transmit operations. The command line argument used to run the tool is shown

in Listing III.3. During operation, each DNTG instance is responsible for handling

network traffic generation for its particular honeypot.

Listing III.3. DNTG Replay: Command line arguments.

DNTG−Replay . py <Production Trace> <HP IP> <HP MAC> <GW MAC> < i n t e r f a c e >

3.5.3 DNTG Replay: Traffic Matching.

Synchronization is important for multiple DNTG instances to operate in a dis-

tributed environment. However, no extraneous packets are allowed during network

traffic generation per criteria from Table 1. Without C2 traffic, synchronization is

dependent on the generated packets. If a receiving network traffic generator is not in

the correct listening state, it may inadvertently miss incoming packets. It is especially

crucial during initialization that each DNTG is in the correct state. To perform the
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initial synchronization, a master DNTG is selected based on the first packet within

the Production Trace and the honeypot IP (shown in Listing III.4).

Listing III.4. DNTG Replay: Master node selection.

master = pkts [ 0 ] [ IP ] . s r c

i am master = ( master == sys . argv [ 2 ] )

The DNTG that possesses the first packet’s originating IP source becomes the

master and all others enter an immediate listening mode upon initialization. The

master DNTG creates a list (e.g., nodes) of all non-master DNTG instances which is

later used for initial syncronization (shown in Listing III.5).

Listing III.5. DNTG Replay: Non-master nodes list.

i f i am master :

i f not p [ IP ] . s r c == master and not p [ IP ] . s r c in nodes :

nodes . append (p [ IP ] . s r c )

The master DNTG sends a periodic UDP packet as a heartbeat to the other DNTG

instances. When this heartbeat is received, a response is sent back to the master to

indicate that the receiving DNTG is active and ready. That specific DNTG is then

removed from the list (e.g., nodes) and added to another list (e.g., nodes ready). The

master DNTG sends out a UDP start packet once it receives heartbeat responses

from all DNTG instances. The start packet signals each network traffic generator to

enter the appropriate state to transmit (or listen) based on the Production Trace. No

additional or future synchronization packets are required outside this initial period.

The code that handles the transmission of the heartbeat and start packets is shown

in Listing III.6. The code that handles the receipt and response to these two packets

are shown in Listing III.7.

Listing III.6. DNTG Replay: Initial syncronization request.

37



i f i am master :

whi l e not synced :

f o r ip in nodes :

syncpkt=IP ( s r c=sys . argv [ 2 ] , ds t=ip ) /UDP( spo r t

=10000 ,dport=10000)/Raw( load=’HEARTBEAT’ )

send ( syncpkt , i f a c e=sys . argv [ 5 ] ) # send L3

packet

time . s l e e p ( . 1 )

i f l en ( nodes ) == 0 :

synced = True

break

f o r ip in nodes ready :

syncpkt=IP ( s r c=sys . argv [ 2 ] , ds t=ip ) /UDP( spo r t=10000 ,dport

=10000)/Raw( load=’START’ )

send ( syncpkt , i f a c e=sys . argv [ 5 ] ) # send L3 packet

time . s l e e p ( . 1 )

time . s l e e p (1 )

ha s s t a r t ed = True

s t a r t c o n v e r s a t i o n s ( conve r sa t i ons )

Listing III.7. DNTG Replay: Initial syncronization response.

i f not ha s s t a r t ed :

i f pkt . ha s l aye r (UDP) and pkt . ha s l aye r ( IP ) and sys . argv [2]==pkt [

IP ] . ds t :

i f pkt [UDP] . dport == 10000 :

i f pkt [Raw ] . load == ’HEARTBEAT’ :

syncpkt=IP ( s r c=pkt [ IP ] . dst , ds t=pkt [ IP ] .

s r c ) /UDP( spo r t=10000 , dport=10000)/

Raw( load=’TAEBTRAEH’ )

send ( syncpkt , i f a c e=sys . argv [ 5 ] )

e l i f pkt [Raw ] . load == ’TAEBTRAEH’ :

i f pkt [ IP ] . s r c in nodes :
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nodes . remove ( pkt [ IP ] . s r c )

i f not pkt [ IP ] . s r c in nodes ready :

nodes ready . append ( pkt [ IP ] . s r c )

i f pkt [Raw ] . load == ’START’ :

ha s s t a r t ed = True

s t a r t c o n v e r s a t i o n s (

conve r sa t i ons )

Each DNTG uses an identical Production Trace and operates in an asynchronous

nature. By removing control traffic during generation each DNTG is responsible for

keeping track of the current location in the Production Trace and re-synchronizing

based on received packets. As each DNTG receive and send replay packets, it resyn-

chronizes index location within the Production Trace. To an attacker these C2 oper-

ations are transparent as they are performed locally and not on the network. Only

Production Trace data is transmitted by each DNTG during network traffic genera-

tion. In addition, because no separate C2 data is sent during generation operations,

traffic which might impact network performance is avoided.

DNTG achieves synchronization using a sniff handler which listens and tracks

incoming packets (shown in Listing III.8). Relevant packets are identified by a condi-

tion statement using the passed-in arguments when DNTG Replay was run (e.g., elif

pkt.haslayer(IP) and sys.argv[2]==pkt[IP].dst). This check ensures that the received

packet’s destination IP matches that of the honeypot. DNTG then checks if that

packet belongs to any conversations from the Production Trace (e.g., if not c.finished

and c.belongs(pkt)). If the packet does belong to a conversation, it generates a call

to a function (e.g., c.get responses(pkt)) that searches for a matching request packet

and its corresponding response packets from the Production Trace.

Listing III.8. DNTG Replay: Listen mode.

e l i f pkt . ha s l aye r ( IP ) and sys . argv [2]==pkt [ IP ] . ds t :
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n = time . time ( )

send t ime = n

f o r c in conve r sa t i ons :

i f not c . f i n i s h e d and c . be longs ( pkt ) :

index , r e sp s = c . g e t r e s pon s e s ( pkt )

i f not index i s None :

req = c . g e t packe t ( index )

t = req . time

de lay = 0

f o r resp in r e sps :

de lay += ( resp . time − t − t c a l )

send t ime = n + de lay

send q . put ( ( send time ,

P i ck l ab l ePacket ( r esp ) ) )

t = resp . time

# I f we made i t here , there ’ s no po int

check ing the other conve r sa t i ons

break

Consistency is required to replicate the original system as accurately as possible.

Autonomous ICS network traffic consists of routine/polling messages that are sent

and received on timed intervals. The DNTG should replicate these intervals (inter-

packet timing from Production Trace) and not use transmission methods such as

packets per second or burst modes. Two methods were considered to handle the

timing: (i) calculate the time between the current queued packet and the first packet

of the conversation; and (ii) use the inter-packet timing. The first method implements

a catch up algorithm to ensure that processing and network delays do not add to

the overall length of the Production Trace generation (start to finish). However,

significant changes in inter-packet timing were observed. A second method uses inter-

packet timing to generate packets without a catch up algorithm. This second method
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was chosen for implementation and as a result, the overall length of a Generated

Trace is longer than the Production Trace.

Timing calculations are performed using the sniff handler (see Listing III.8). The

timestamp of a matched packet from the Production Trace (i.e., t = req.time) and

the system time (i.e., n = time.time) is stored. For each response a delay is calculated

(i.e., delay += (resp.time - t - t cal)). This takes the difference between the times-

tamps of the response and request packets (inter-packet time). A calibration variable

(i.e., t cal) is present in the code which allows for adjustments to be made in this cal-

culation. The send time (i.e., send time = n + delay) for each response packet is cal-

culated using the original system time and adds the inter-packet time. The response

packets are then queued for network traffic generation (i.e., send q.put((send time,

PicklablePakcet(resp)))).

The second portion of the synchronization code is found in Conversation.py which

provides the Conversation class (the code in its entirety can be found in Appendix

2.2). Synchronization of the Production Trace is performed whenever a packet is

received and responses are queried (i.e., get response). To check if a received packet

passed-in by the sniff handler matches the Production Trace packets, the: (i) time to

live; (ii) checksum; and (iii) padding are set the same (shown in Listing III.9). Modifi-

cation of these three fields are required to account for network induced changes to the

generated packets. A comparison is then made between the received packet and pack-

ets from the Production Trace conversation (i.e., if self.packets[i][IP] == packet[IP]).

Synchronization is then completed by setting a index variable (i.e., self.last pkt = i)

to the index of the matching packet. By setting this index variable ensures that as

each subsequent packet in a conversation is received, the DNTG Replay tool does

not have to search from the start and instead continues from the last recorded index.

This function is also responsible for finding subsequent response packets from the
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Production Trace to be returned to the sniff handler.

Listing III.9. DNTG Replay: Conversation class synchronization.

de f g e t r e s pon s e s ( s e l f , packet ) : # re turns index o f r eques t , and l i s t o f

r e sponse packets

r esp = [ ]

index = None

i = ( s e l f . l a s t p k t + 1) % len ( s e l f . packets )

whi l e not i == s e l f . l a s t p k t :

packet [ IP ] . t t l = s e l f . packets [ i ] [ IP ] . t t l

packet [ IP ] . chksum = s e l f . packets [ i ] [ IP ] . chksum

i f packet . ha s l aye r ( Padding ) and s e l f . packets [ i ] . ha s l aye r

( Padding ) :

packet [ Padding ] = s e l f . packets [ i ] [ Padding ]

i f s e l f . packets [ i ] [ IP ] == packet [ IP ] :

index = i

s e l f . l a s t p k t = i

i = ( i + 1) % len ( s e l f . packets )

s e l f . f i n i s h e d = s e l f . l a s t p k t == ( l en ( s e l f .

packets ) − 1) # check at r e c e i p t

whi l e s e l f . packets [ i ] [ IP ] . s r c == packet [ IP ] . ds t

and not s e l f . f i n i s h e d :

r e sp . append ( s e l f . packets [ i ] )

s e l f . l a s t p k t = i

i = ( i + 1) % len ( s e l f . packets )

s e l f . f i n i s h e d = s e l f . l a s t p k t == ( l en ( s e l f .

packets ) − 1) # check at send

return index , r e sp

e l s e :

i = ( i + 1) % len ( s e l f . packets )

# resp i s [ ] i f t h i s happens

return index , r e sp
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To meet the packet ordering criteria, DNTG was designed to handle multiple

conversations simultaneously. DNTG parses the Production Trace and separates the

packets into conversations. All traffic that occur to (and from) an IP pair are iden-

tified as a single conversation to limit the amount of data that need to be processed

by each DNTG. As such, a conversation is defined as traffic flow between two unique

IP source and destination pair. Using multi-threading, each conversation is processed

independently without waiting on one another. By allowing a system pair to commu-

nicate independently from the entire Production Trace packet order, it allows unique

conversations to intermingle. This adds variability to the overall capture while main-

taining packet ordering within each conversation. Figure 12 shows packets from a

Production Trace, and Figure 13 shows how those packets would be segmented into

conversations.

Conversations are created when DNTG Replay is first initialized and packets are

read in the from Production Trace (shown in Listing III.10)

Listing III.10. DNTG Replay: Conversation creation.

f o r p in pkts :

found = False

f o r c in conve r sa t i ons :

i f c . be longs (p ) :

found = True

c . add packet (p )

i f not found :

con = Conversat ion (p , sys . argv [ 2 ] , sys . argv [ 3 ] , sys . argv

[ 4 ] )

conve r sa t i ons . append ( con )
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Figure 12. Production Trace sample.

&RQYHUVDWLRQ��������������!�����������

&RQYHUVDWLRQ��������������!�����������

Figure 13. Sample conversations.

3.5.4 DNTG Replay: Network Routing.

The network routing criteria focuses on DNTG instances ability to operate in a

distributed environment (e.g., network and physical locations). Each DNTG must be

able to use real network connections and relay the generated traffic just as real control

systems. Achieving this requires proper Layer 2 forwarding and Layer 3 routing of

generated traffic.

The Layer 2 forwarding requires that the traffic generated (which shares MAC

addresses from corresponding honeypots) must not cause network addressing issues.

To ensure that no Layer 2 networking issues occur, network traffic generators that

share IP and MAC address with a honeypot are collocated on the same workstation.

Proper Layer 3 routing ensures that DNTG instances can operate in a multi-
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subnet environment (Figure 14 shows an example dual-subnet topology). Recall that

6XEQHW��

6ZLWFK��

,3������������

5RXWHU�HWK�

,3����������

0$&������D�D���G������

5RXWHU�HWK�

,3����������

0$&������D�D���G������

6XEQHW��

6ZLWFK��

,3������������

+RQH\SRW���17*��

,3������������

0$&��������������GG���

+RQH\SRW���17*��

,3������������

0$&��������������HH��D

Figure 14. Example dual-subnet environment.

the Production Trace was captured on Subnet 1 and all traffic from outside subnets

would have recorded the MAC address of the Router eth1 as the source (shown in

Figures 14 and 15). Problems can arise in traffic generation when trying to gener-

ate traffic from devices on Subnet 2 with trace data captured on Subnet 1. Using

packet seven from Figure 15 as an example, the header contains incorrect address

values: (i) source is MAC of Router eth1 (80:2a:a8:1d:42:30); and (ii) destination

is MAC of network traffic generator (NTG) 1 (00:22:19:53:dd:48). DNTG identi-

fies these instances and modifies the header with the correct values: (i) new source

is MAC of NTG 2 (00:22:19:64:ee:5a); and (ii) new destination is MAC of Router

eth2 (80:2a:a8:1d:42:31). These corrections are performed during runtime to avoid

customizing the Production Trace for each individual DNTG instance.

The Conversation class found in Conversation.py handles the correction of routed

packets (shown in Listing III.11). The DNTG command line arguments of honeypot
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Figure 15. Example MAC addressing issue.

IP, honeypot MAC and router gateway MAC address are used when creating conver-

sations from the Production Trace. These arguments are set to the following variables

my ip, my mac and gw mac respectfully. When adding packets to the conversation,

the function fixPacket is called. Routed packets and their associated gateway MAC

addresses need modification for proper network traffic generation. A check is made

to verify if the IP addresses matches between the honeypot and receive packet (i.e.,

if(packet[IP].src == self.my ip and packet.src !=self.my mac)). This also identifies if

the MAC address is different. For packets that meet this criteria, the remainder of the

code sets the correct MAC addresses (i.e., packet.dst = self.gw mac and packet.src =

self.my mac) and resets the checksums.

Listing III.11. DNTG Replay: Conversation class - MAC address correction.

de f i n i t ( s e l f , packet , my ip , my mac , gw mac) :

s e l f . packets = [ ]

s e l f . l a s t p k t = −1

s e l f . my ip = my ip

s e l f . my mac = my mac

s e l f . gw mac = gw mac

s e l f . s r c = packet [ IP ] . s r c

s e l f . ds t = packet [ IP ] . ds t
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s e l f . add packet ( packet )

s e l f . f i n i s h e d = False

de f add packet ( s e l f , packet ) :

p = s e l f . f i xPacke t ( packet )

s e l f . packets . append (p)

de f f i xPacke t ( s e l f , packet ) :

i f packet . ha s l aye r ( IP ) :

i f ( packet [ IP ] . s r c == s e l f . my ip and packet . s r c != s e l f .

my mac) :

packet . ds t = s e l f . gw mac

packet . s r c = s e l f .my mac

de l packet [ IP ] . chksum # Reset IP checksum

i f packet . ha s l aye r (TCP) : # put check , o the rw i s e

may e r r o r

de l packet [TCP] . chksum # Reset TCP

checksum

i f packet . ha s l aye r (UDP) : # put check , o the rw i s e

may e r r o r

de l packet [UDP] . chksum # Reset UDP

checksum

return packet

3.6 Design Summary

This chapter details the APOGEE test environment that generates the trace used

for experimentation. An analysis of this trace is made. A pilot study using Tcpreplay

highlights some design considerations needed for a network traffic generator. The

honeypot-network traffic generator framework and the Distributed Network Traffic
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Generator is introduced. New features added with DNTG over other network traffic

generators include:

• A prep tool used to modify the Production Trace with honeypot characteristics.

• A replay tool that runs asynchronously from each instance in a distributed

configuration.

• Transmission of synchronization packets only during initialization.

• Network traffic generation without control traffic in a distributed environment.

• Hardware address correction for routed packets.
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IV. Research Methodology

4.1 Goals

This chapter focuses on evaluating the developed DNTG. The evaluation goals

are derived from the honeypot-network traffic generator criteria set in Table 1 and

discussed in Section 2.3. The following questions are addressed during experimenta-

tion:

• Does the generated traffic maintain the characteristics of the original trace (traf-

fic matching)?

• Does the generated traffic appear to originate and terminate with the honeypot

systems (honeypot integration)?

• Does the generated traffic traverse the designed network (network routing)?

• Can the network traffic generator send network traffic to and from multiple

systems using a single trace input file and without C2 traffic during generation

(scalability)?

• Achieving the above four goals, does the use of a network traffic generator show

control system activity on honeypots during passive monitoring?

4.2 Approach

Multiple experimental trials are conducted to evaluate the DNTG implementa-

tion’s ability to meet the network traffic generation criteria from Table 1. Each

experimental trial consist of generating network traffic from a 10 minute Production

Trace. The different trials are conducted using an automated script that alternates

the operating environments (single and dual-subnet).
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4.3 System Parameters

This section discusses the system parameters of the experiment (see Figure 16).

The system under test (SUT) is the overarching honeypot-network traffic generator

framework, with specific focus on the Distributed Network Traffic Generator. The

component under test (CUT) are the individual honeypot-DNTG instances within

the system. A combination of two workstations containing three CUT instances: (i)

HMI; (ii) BACnet PXCM; and (iii) P2 PXCM are used in the experiment to emulate

the APOGEE platform. Each CUT instance generates the Generated Trace which

provides the metrics for evaluating the system.

4.3.1 Computing Parameters.

While the computing parameters differ for each CUT instance, the same hardware

is used for all experimental trials. Note that the PXCM CUT workstation has three

instances: (i) P2 PXCM on Subnet 1; (ii) P2 PXCM on Subnet 2; and (iii) BACnet

on Subnet 1. To maintain consistency the same brand and model NIC is used for

the two P2 PXCM instances. The first P2 PXCM instance establishes a connection

to Subnet 1. The second P2 PXCM instance establishes a connection to Subnet 2

using a different NIC, IP and MAC address configurations. The experiment network

topology is shown in Figure 17.

The workstation configuration and software information for the HMI CUT is listed

in Table 2, PXCM CUT in Table 3, sniffer and experiment C2 system in Table 4 and

network devices and their connections in Table 5.

4.3.2 Workload Parameters.

The workload parameters for the SUT are the Production Trace and Network

Configuration. Using the APOGEE platform, two set of production captures are
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Table 2. HMI CUT workstation.

Dell Latitude E6320
4 processor cores Ubuntu 16.04 LTS
4 GB RAM Honeyd V1.6d
Intel 82579LM NIC Python 2.7.12

Scapy 2.20
DNTG Replay

Table 3. PXCM CUT workstation.

Dell Latitude E6520
8 processor cores Ubuntu 16.04 LTS
8 GB RAM Honeyd V1.6d
Intel 82579LM NIC Python 2.7.12
plugable USB2-E100 USB Ethernet adapter Scapy 2.20
plugable USB2-E100 USB Ethernet adapter DNTG Replay

Table 4. Sniffer and experiment C2 workstation.

Dell Precision M4500
4 processor cores Ubuntu 16.04 LTS
8 GB RAM Python 2.7.12
Intel 82577LM NIC Scapy 2.20
SMC 2209 USB Ethernet adapter tcpdump

Table 5. Experiment network.

Hardware and associated connections (from Figure 17)
Ubiquiti EdgeRouter X router eth0: Netgear ProSafe 108E

eth1: Netgear ProSafe GS108E
Netgear ProSafe GS108E eth0: HMI HP/DNTG

eth1: PXCM HP/DNTG
eth2: PXCM HP/DNTG
eth3: Experiment C2
eth7 (mirrored): Sniffer

Netgear ProSafe 108E eth0: PXCM HP/DNTG

performed for the single-subnet and dual-subnet configurations. The two Produc-

tion Traces contain different IP and MAC addresses for the two P2 PXCM CUT

instances. The same IP and MAC addresses are provided for the HMI CUT work-

station and BACnet PXCM CUT instance. The packets contained in the two traces
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differ as capture is performed at different periods of time. For experimentation, the

network configuration is alternated between single-subnet and dual-subnet using the

appropriate Production Trace.

4.3.3 Metrics.

This section outlines the metrics used to validate the SUT against the criteria

from Table 1.

4.3.3.1 Traffic matching.

Table 6. Traffic matching metrics.

Content Matching
Packet Bytes: Generated packets match Production
Trace.

Extraneous Packets
Quantity of Packets: The number of generated pack-
ets match Production Trace.

Packet Ordering
Packet Order: Generated conversations match Pro-
duction Trace conversations.

Timing Consistency
∆ Inter-Packet Time: Generated traffic timing pat-
terns match Production Trace.

Table 6 describes the metrics used to evaluate DNTG against the traffic matching

criteria. Content matching is evaluated based on a direct comparison of correspond-

ing packets between the Generated Trace and Production Trace. Two packets are

determined to match if both packets contain the same bytes. A trial is considered

successful if every packet in the Generated Trace matches the corresponding packet

in the Production Trace.
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The Generated Trace is determined to have no extraneous packets if it contains

the same quantity of packets as the Production Trace. A trial is considered successful

if the quantity and content of packets in the Generated Trace matches the Production

Trace.

Packet ordering is determined to match if the packet order of a Generated Trace

conversations matches the packet order of the corresponding Production Trace con-

versations. A trial is considered successful if every packet in the Generated Trace and

the Production Trace is in the correct order.

Timing consistency is measured by comparing the inter-packet timing of packets

from the Generated Trace to the inter-packet timing of packets from the Production

Trace. The inter-packet time from the Generated Trace (GIPT
n
) is

GIPT
n
= GT

n
−GT

n−1 (1)

where GT
n
is the time of packet n from the Generated Trace.

The inter-packet time from the Production Trace (PIPT
n
) is

PIPT
n
= PT

n
− PT

n−1 (2)

where PT
n
is the time of packet n from the Production Trace.

The difference in the inter-packet time (∆IPT
n
) between corresponding packets

within the two traces is calculated using

∆IPT
n
= ABS(GIPT

n
− PIPT

n
) (3)

A Wilcoxon rank-sum test is a non-parametric statistical test used to compare the

distribution of GIPT values to the distribution of PIPT values for each Generated
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Trace. A significance level of 0.05 is used to determine if the two distributions are

statistically similar. The trial is considered a success if the Wilcoxon rank-sum test

returns a p-value greater than 0.05.

4.3.3.2 Honeypot integration.

Honeypot pairing is evaluated based on a direct comparison of corresponding pack-

ets between the Generated Trace and Production Trace. DNTG was designed to only

generate traffic if it starts a conversation or is responding to a received packet. In ad-

dition, DNTG is hosted on the same honeypot workstation and uses matching IP and

MAC addresses in the trace headers. Honeypot pairing is determined to be a match

if packets are sent and received from each honeypot workstation. The experiment

is considered successful if every packet in the Generated Trace and corresponding

Production Trace passes the content matching and extraneous packets criteria.

To validate the honeypot header matching, an NMAP scan is used to obtain the

IP and MAC address of each honeypot. This information is then compared to the

Production Trace and Generated Traces to validate that the generated traffic matches

the honeypots. A trial is considered successful if every packet header matches the

intended honeypot information.

4.3.3.3 Network routing.

Multiple DNTG instances can be run at various locations in a network. A trial

is considered successful if every packet in the Generated Trace and corresponding

Production Trace passes the traffic matching criteria. The ability to successfully pass

the content matching, extraneous packets and packet ordering criteria in a single-

subnet environment demonstrates that the experiment successfully met the Layer 2

forwarding criteria. The ability to successfully pass the content matching, extraneous
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packets and packet order criteria in a dual-subnet environment demonstrates that

the experiment successfully met the Layer 3 routing criteria. Passing both Layer 2

forwarding and Layer 3 routing criteria demonstrates that the experiment successfully

met the distributed operation criteria.

4.3.3.4 Scalability.

The scalability of a network traffic generator is based primarily on the design,

implementation and pricing of a final implementation. The author of this research did

not consider the actual costs (in terms of dollars), considering that most instantiations

would require at least some engineering effort to determine proper placement of the

traffic generators. While the DNTG is designed to be as flexible as possible, the

experiment is limited to the Siemens APOGEE system and different implementations

are left for future work.

4.4 Experimental Setup

Experimental trials are conducted using automated scripts from a C2 workstation.

Each CUT is configured on the network and provided a copy of: (i) DNTG Replay

tool; and (ii) two Production Traces. The usage of the DNTG Replay tool was

discussed in Section 3.5.

4.4.1 Production Trace Preparation.

A Bash script (i.e., Prep-PCAP.sh) is used to prepare the production trace for

network traffic generation (note that the entire script is found in Appendix 1.2). This

script requires modification of the honeypot characteristics (shown in Listing IV.1).

The script simplifies the command line argument structure that is used to run DNTG

Prep. It executes DNTG Prep for the two Production Traces (i.e., single-subnet and
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dual-subnet). The modified values are then copied over to a Bash script (i.e., Run-

Experiments.sh) and sets the workload parameters for the experimental trials.

Listing IV.1. Prep-PCAP.sh: Honeypot characteristic modification.

# Change va lue s based on HP c h a r a c t e r i s t i c s (Copy to Run−Experiments . sh )

PXCM2IP3SUB= ’10 .1 . 3 . 2 ’ # P2 PXCM s ing l e−subnet

PXCM2MAC= ’00: a0 : 0 3 : 0 4 : d9 : d0 ’

HP20IP3SUB= ’10 .1 . 3 . 20 ’

HP20MAC3SUB= ’00: a0 : 0 3 : 1 7 : 8 1 : 9 4 ’

PXCM2IP4SUB= ’10 .1 . 4 . 2 ’ # P2 PXCM dual−subnet

HP20IP4SUB= ’10 .1 . 4 . 20 ’

HP20MAC4SUB= ’00: a0 : 0 3 : 3 e : 5 9 : 6 f ’

PXCM3IP= ’10 .1 . 3 . 3 ’ # BACnet PXCM

PXCM3MAC= ’00: a0 : 0 3 : 0 5 : 1 4 : 5b ’

HP30IP= ’10 .1 . 3 . 30 ’

HP30MAC= ’00: a0 : 0 3 : bb : 3 f : 1 0 ’

APGSVR5IP= ’10 .1 . 3 . 5 ’ # HMI

APGSVR5MAC= ’00 :22 : 19 : 57 : 9 d : 3 8 ’

HP50IP= ’10 .1 . 3 . 50 ’

HP50MAC= ’00 :22 : 19 : ce : 9 5 : 7 b ’

4.4.2 Command and Control.

The sniffer and C2 workstation provides the centralized control for all experimental

trials. This is accomplished through the use of SSH. A SSH certificate is created on

each CUT workstation and provides the C2 system the ability to connect without

login and password authentication.

A Bash script (i.e., Run-Experiments.sh) is used to automate the multiple exper-
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imental trials (the entire script is found in Appendix 3.1). The script is run with

command line arguments containing a folder for trial results storage and a comma-

separated values file to track trial runs. The output can be piped into a log file if

desired. The command line execution for the script is shown in Listing IV.2.

Listing IV.2. Run-Experiments.sh: Command line arguments.

Run−Experiments . sh f o l d e r t r a c k e r . csv >> Log . txt

The workload parameters (i.e., single-subnet, dual-subnet and Production Trace)

are alternated in between trial runs (shown in Listing IV.3). This is accomplished by

using a list of values (i.e., EXP LIST). An appropriate call to the experiment function

(i.e., Call-Exp) is made based on the list value. Each iteration of an experimental

trial is logged into a file.

Listing IV.3. Run-Experiments.sh: Workload parameter selection.

whi le [ $COUNTER2 − l e ${#EXP LIST [@]} ]

do

RUNINDEX=$ ( ($COUNTER2−1) )

( (COUNTER2++))

TEST=${EXP LIST [$RUNINDEX]}

i f [ $TEST == 0 ]

then

TEST TYPE=’Apogee−1−Subnet ’

Cal l−Exp $COUNTER $ApogeePCAP1SUB $HP20IP3SUB

$HP20MAC3SUB $SUB3GW enx8cae4cfe406d

e l i f [ $TEST == 1 ]

then

TEST TYPE=’Apogee−2−Subnet ’

Cal l−Exp $COUNTER $ApogeePCAP2SUB $HP20IP4SUB

$HP20MAC4SUB $SUB4GW enx8cae4c f e51 f6
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f i

# Next

( (COUNTER++))

done

On the C2 workstation a function (i.e., Call-Exp) runs tcpdump to capture the

generated network traffic. For experimental purposes, only CUT generated network

traffic is of interest and all others are ignored. Filters are used to isolate the honey-

pot IP addresses, remove network generated packets (i.e., broadcast, multicast and

ARP) and ignore pre-generation packets (i.e., heartbeat and start). The initial syn-

chronization is ignored as the metrics comparison is made on network traffic during

generation.

Listing IV.4. Run-Experiments.sh: Call-Exp function - Generated Trace output.

sudo tcpdump − i eno1 −nnvvXSs 0 −w ˜/Desktop /Experiment/$FOLDER/Exp−$1 .

pcap −U ip host $HP20IP3SUB or $HP20IP4SUB or $HP30IP or $HP50IP and

not dst port 10000 and not broadcast and not mu l t i ca s t and not arp>

/dev/ nu l l &

tdpid=$ !

For the PXCM CUT instances, the function (i.e., Call-Exp) receives the single or

dual-subnet values (i.e., P2 PXCM HP IP, HP MAC, GW MAC address and NIC)

after the workload parameter selection. The values for the BACnet and HMI CUT

instances are pulled from the honeypot configuration for these two systems. DNTG-

Replay is executed on the P2 PXCM, BACnet PXCM and HMI honeypots using SSH

connection from the C2 workstation. Each SSH connection’s process identification

number (PID) is stored to track DNTG-Replay completion. Listing IV.5 shows an

example SSH command issued to the PXCM CUT (P2 PXCM instance).
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Listing IV.5. Run-Experiments.sh: Call-Exp function - DNTG Replay run on PXCM

CUT.

COMMAND=”sudo python ˜/Desktop /Experiment/DNTG−Replay . py ˜/Desktop /

Experiment/$2 $3 $4 $5 $6”

ssh $C2HP2030IP ”$COMMAND” > $FOLDER/Exp−$1−HP20−Log . txt &

ntg20=$ !

The SSH connection is terminated when each CUT reaches the end of the Pro-

duction Trace and completes the execution of DNTG Replay. This results in the

removal of the SSH PID. Once all SSH PIDs are terminated, the experimental trial

is concluded and the next iteration is run.

During an experimental trial, if a CUT fails to generate traffic then all other

CUTs will also stop generating traffic. This is due to DNTG’s intended design and its

reliance on received packets to find responses to transmit. Given that the Production

Trace is 10 minutes in length, a 12 minutes timeout is set for each trial. Any trial

that reaches this threshold is marked as a failed experiment.

The two checks made to conclude an experimental trial is shown in Listing IV.6.

Listing IV.6. Run-Experiments.sh: Call-Exp function - end of experimental trial.

whi le true

do

# Check f o r hanged exper iments

CURRENTTIME=$ ( date +”%s ”)

ELAPSEDTIME=$ ( ($CURRENTTIME − $STARTTIME) )

i f [ $ELAPSEDTIME −gt $TIMEOUT ] # put a timer on experiment , i f

exceeds timeout , k i l l

then

sudo k i l l −9 $ntg20 $ntg30 $ntg50

TEST STATUS=’FAILED’

f i
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# Stop TCPDump cond i t i on : a l l NTGs are not running

i f ! ps −p $ntg20 $ntg30 $ntg50 > /dev/ nu l l

then

sudo p k i l l −TERM −P $tdpid

break

f i

done

4.4.3 Analysis.

The outputs (i.e., Generated Traces from the trials) of the SUT are captured on

the experiment network and provide the sample points used as a comparison against

the reference inputs (i.e., Production Traces of the single-subnet and dual-subnet

configurations). The analysis of the research focuses on answering the questions:

• Does the generated traffic maintain the characteristics of the original trace (traf-

fic matching)?

• Does the generated traffic appear to originate and terminate with the honeypot

systems (honeypot integration)?

• Does the generated traffic traverse the designed network (network routing)?

• Can the Distributed Network Traffic Generator send network traffic to and from

multiple systems using a single trace input file and without C2 traffic during

generation (scalability)?

• Achieving the above four goals, does the use of a network traffic generator show

control system activity on honeypots during passive monitoring?
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4.4.3.1 Computational Analysis.

To answer the traffic matching question, computations on the outputs of the SUT

are made. Each Generated Trace is compared against the reference Production Trace

using an analysis tool designed to find differences between the two traces. The tool

consists of three components: (i) an analysis tool; (ii) a class file (i.e., Analysis.py)

that supports the tool; and (iii) Bash script used to run the tool.

The analysis tool (i.e., Analyze.py) performs a comparison of two input traces

(i.e., Production Trace and Generated Trace). This tool makes a comparison of the

trace lengths to determine experimental failures and timing calculations. The entire

code for the tool is found in Appendix 4.1. The code for the class is found in Appendix

4.2.

The analysis tool first verifies that the number of packets, packet data and order

within the Production Trace and Generated Trace match (shown in Listing IV.7 and

IV.8). This check is done by: (i) breaking down the trace into conversations; (ii)

verifying the number of conversations match; and (iii) packets in the conversations

match to include packet order and byte data.

Listing IV.7. Analyze.py: Packet match validation.

i f not l en ( t r a i n i ng c onvo s ) == len ( sample convos ) :

t e s t p a s s = Fa lse

f o r t convo in t r a i n i ng c onvo s :

p = t convo . g e t packe t (0 )

found = False

f o r s convo in sample convos :

i f s convo . be longs (p ) :

found = True

i f not s convo . equa l s ( t convo ) :

t e s t p a s s = Fa lse
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break

i f not found :

t e s t p a s s = Fa lse

Listing IV.8. Analysis.py: Packet match validation.

de f be longs ( s e l f , packet ) :

i f packet . ha s l aye r ( IP ) :

i f s e l f . s r c == packet [ IP ] . s r c :

r e turn s e l f . ds t == packet [ IP ] . ds t

e l i f s e l f . s r c == packet [ IP ] . ds t :

r e turn s e l f . ds t == packet [ IP ] . s r c

r e turn Fa l se

de f p equa l s ( s e l f , p1 , p2 ) :

p1 . t t l = p2 . t t l

p1 . chksum = p2 . chksum

i f p1 . ha s l aye r ( Padding ) and p2 . ha s l aye r ( Padding ) :

p1 [ Padding ] = p2 [ Padding ]

r e turn p2 [ IP ] == p1 [ IP ]

de f equa l s ( s e l f , convo ) :

pcks1 = convo . packets

pcks2 = s e l f . packets

i s e q u a l = True

i f not l en ( pcks1 ) == len ( pcks2 ) :

i s e q u a l = Fa lse

e l s e :

f o r i in range (0 , l en ( pcks1 ) ) :

i f not s e l f . p equa l s ( pcks1 [ i ] , pcks2 [ i ] ) :

i s e q u a l = Fa lse

return i s e q u a l
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Once content of the traces (i.e., Production Trace and Generated Trace) are vali-

dated as being identical, calculations on the timing are made (shown in Listings IV.9

and IV.10). The analysis tool takes each inter-packet timestamps from the Produc-

tion Trace (i.e., control), Generated Trace (i.e., sample) and calculates the difference

between the two (i.e., delta). The values are returned as a list and written to an

output file.

Listing IV.9. Analyze.py: Timing calculations.

f o r t convo in t r a i n i ng c onvo s :

p = t convo . g e t packe t (0 )

f o r s convo in sample convos :

i f s convo . be longs (p ) :

c t r l i n t , sample int , i n t d e l t a = s convo .

d e l t a t ime ( t convo )

c s v f i l e = a name+”−DPI . csv ”

with open ( c s v f i l e , ”a ”) as output :

f o r i in range (0 , l en ( c t r l i n t ) ) :

output . wr i t e ( s t r ( c t r l i n t [ i ] ) + ” ,” + s t r ( s amp l e in t [ i

] ) + ” ,” + s t r ( i n t d e l t a [ i ] ) + ”\n”)

time . s l e e p ( . 0 2 )

Listing IV.10. Analysis.py: Timing calculations.

de f d e l t a t ime ( s e l f , convo ) :

pcks1 = convo . packets

pcks2 = s e l f . packets

c t r l i n t = [ ]

s amp l e in t = [ ]

i n t d e l t a = [ ]

i f l en ( pcks1 ) == len ( pcks2 ) :

f o r i in range (0 , l en ( pcks1 )−1) :

c t r l = pcks1 [ i +1] . time − pcks1 [ i ] . t ime
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sample = pcks2 [ i +1] . time − pcks2 [ i ] . t ime

de l t a = sample − c t r l

c t r l i n t . append ( c t r l )

s amp l e in t . append ( sample )

i n t d e l t a . append ( d e l t a )

re turn c t r l i n t , sample int , i n t d e l t a

To help automate the analysis of the multiple experimental trace outputs, a Bash

script (i.e., Run-Analyze.sh) is used. The entire script can be found in Appendix 4.3

and sample shown in Listing IV.11.

Listing IV.11. Run-Analyze.sh: Running analysis on experimental outputs.

f o r ( ( i =1; i <178; i+=1))

do

python Analyze . py 1Sub1/Production . pcap 1Sub/Exp\ \( $ i \) . pcap 1

Sub >> 1Sub . l o g

s l e ep 10

done

4.4.3.2 Observational Analysis.

Observational analysis is used to measure the four criteria: (i) honeypot integra-

tion; (ii) network routing; (iii) scalability; and (iv) network traffic generation during

passive monitoring. Each CUT is a combination pair of honeypot and network traffic

generator. Honeypot modified Production Traces are provided as inputs and tested

within a defined experiment network designed to replicate a real control system net-

work (i.e., APOGEE platform). By design, the successful operation of the DNTG

Replay tool on each CUT within the SUT validates whether if the outputs pass or

fail the chapter questions.
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4.5 Chapter Summary

In summary, this chapter describes the methodology used to measure the honeypot-

network traffic generator framework. The system parameters establish the inputs and

outputs used to test DNTG CUT. An experiment is developed for this research using

automated and remote scripts. Experimental trials are developed with the objective

of answering the chapter questions. The C2 workstation reiterates multiple experi-

mental trials on each CUT to create the Generated Traces. The Generated Traces

are then used against the reference Production Traces for metrics analysis.
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V. Results and Analysis

5.1 Overview

Experimental trials were conducted over a 65 hour time period. 177 iterations

were conducted for each environment for a total of 354 experimental trials. Outputs

provided over 375,000 sample packets for analysis and were evaluated against the

specified criteria from Table 1.

5.2 Traffic Matching

All 354 trials achieved a 100% match between the Production Trace and Generated

Trace for the following metrics: (i) packet bytes; (ii) quantity of packets; and (iii)

packet ordering. The success rate for the criteria determined by these metrics is

shown in Table 7.

Table 7. Traffic matching criteria success rate.

Trials Single-Subnet Dual-Subnet

Content Matching 354 100% 100%

Extraneous Packets 354 100% 100%

Packet Ordering 354 100% 100%

Timing Consistency 354 0% 0%

Timing consistency was evaluated by using a Wilcoxon rank-sum test. This test

compares the distribution of GIPT from each of the 354 Generated Traces to the

distribution of PIPT from the Production Trace. The Wilcoxon rank-sum test re-

turned a p-value less than 0.05, for all 354 Generated Trace distributions. Therefore,

the generated traffic timing did not match the production traffic.

Table 8 shows the ∆IPT summary for all 354 trials. There was a mean difference

of 2.07 ms (single-subnet) and 2.26 ms (dual-subnet) between the Production Trace

and generated traffic. Further examination shows that the generated traffic timing
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Table 8. ∆IPT (ms) summary.

Mean Min Max SD

Single-Subnet 2.07 0.00 95.78 1.59

Dual-Subnet 2.26 0.00 98.93 1.68

was consistent between trials (Wilcoxon rank-sum test). While the generated traf-

fic timing did not match the Production Trace, the generated traffic for each trial

maintained consistency between trials.

Figure 18 shows a boxplot of the two subnet configurations with similar timing.

Figure 19 shows an overlay of both the Production Trace (line) and a sample Gener-

ated Trace (points). It is scaled to show a more detailed view for intervals between

packets 800 and 820 in Figure 20. Visually, it is difficult to distinguish between the

real system and the honeypot system.

5.3 Honeypot Integration

All 354 trials resulted in a 100% match between the Production Trace and Gen-

erated Trace for the following criteria: (i) content matching; (ii) extraneous packets;

and (iii) packet ordering. Meeting these three criteria demonstrates that traffic was

generated to (and from) the honeypot-network traffic generator pair. In addition,

because the generated traffic matched the Production Trace (validated against hon-

eypots using NMAP), the honeypot header matching criteria is also met. The results

of the criteria are shown in Table 9. Figure 21, shows an NMAP active scan and a

Wireshark passive monitoring of the decoy network used for the experiments.

Table 9. Honeypot integration criteria pass rate.

Trials Single-Subnet Dual-Subnet

Honeypot Pairing 354 100% 100%

Honeypot Header Matching 354 100% 100%
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Figure 18. Difference in timing between Production Trace and Generated Trace inter-
vals.
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Figure 19. Traffic timing pattern.

5.4 Network Routing

All 354 trials achieved a 100% match between the Production Trace and Gener-

ated trace for the following criteria: (i) content matching; (ii) extraneous packets;

and (iii) packet ordering. Meeting these three criteria demonstrates that traffic was

generated to and from multiple instances of DNTG located in two different network

configurations. It demonstrates that Layer 2 forwarding and Layer 3 routing was

successfully accomplished and validates that DNTG met the distributed operation

69



3DFNHW�,QGH[

,Q
WH
U�
3
D
F
N
H
W�
7
LP
H
��
V
H
F
R
Q
G
V
�

��� ��� ��� ���

�

�

�

�

�

�� *HQHUDWHG�7UDFH

3URGXFWLRQ�7UDFH

Figure 20. Detailed traffic timing pattern.

���������

���������

���������

10$3�$FWLYH�6FDQ :LUHVKDUN�3DVVLYH�0RQLWRULQJ

Figure 21. Active and passive network mapping.

criteria. The results for the network routing criteria are shown in Table 10.

Table 10. Network routing criteria pass rate.

Trials Single-Subnet Dual-Subnet

Distributed Operation 354 100% 100%

Layer 2 Forwarding 354 100% 100%

Layer 3 Routing 354 100% 100%

5.5 Scalability

The DNTG was designed to be cost effective and flexible, however, future work

is required to evaluate this criteria for commercial implementation. The research did
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show that under the given experiment environment, all trials were able to complete

the network traffic generation objective successfully.

5.6 Chapter Summary

The results of the experiment showed that the use of DNTG in the honeypot-

network traffic generator framework met some of goals set as part of this research:

• Does the generated traffic maintain the characteristics of the original trace (traf-

fic matching)? Packet order and byte data of the trace were maintained in the

generated traffic. The results, however, did show that there were differences in

the timing of the generated traffic from the reference input trace.

• Does the generated traffic appear to originate and terminate with the honeypot

systems (honeypot integration)? The generated traffic headers contained the

characteristics of the honeypot systems and network traffic generation origi-

nated and terminated with each honeypot system.

• Does the generated traffic traverse the designed network (network routing)? The

SUT was able successfully generate and route all trace packets between multiple

CUTs. All generated traffic was observed on the network devices concerned.

• Can the network traffic generator send network traffic to and from multiple

systems using a single trace input file and without C2 traffic during generation

(scalability)? The SUT was able to successfully generate traffic on multiple

CUTs within the experimental network topologies.

• Achieving the above four goals, does the use of a network traffic generator show

control system activity on honeypots during passive monitoring? The SUT

demonstrated that through the use of a honeypot-network traffic generation

71



framework, both system and network traffic were detected during active scans

and passive network monitoring activities.
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VI. Conclusions and Recommendations

6.1 Research Conclusions

For this research, a framework consisting of a honeypot platform and a network

traffic generator platform was introduced. To accomplish network traffic generation,

a custom made Distributed Network Traffic Generator was developed. A DNTG

Prep tool was developed to modify Production Trace with honeypot characteristics to

integrate with the honeypot platform. A DNTG Replay tool was created, distributed,

and operated asynchronously on each honeypot system. Network traffic generation

was accomplished through this tool by monitoring for trace data and transmitting

subsequent packets from trace.

Experimentation was conducted to validate the framework and DNTG using the

following metrics: (i) traffic matching; (ii) honeypot integration; (iii) network rout-

ing; and (iv) scalability. While packet data and order matched between the reference

inputs (i.e., Production Trace) and the experiment outputs (i.e., Generated Trace),

there were timing discrepancies (mean difference of 2.07 ms for single-subnet and

2.26 ms for dual-subnet experiments). Despite the discrepancy in timing, the results

showed that DNTG was able to successfully replicate control system traffic on honey-

pots and route through two different network topologies. Visually, it was difficult to

distinguish between the real and generated traffic patterns without detailed analysis.

Honeypot integration and network routing were successfully demonstrated through

100 percent successful trial runs. While DNTG was designed for scalability, in the

context of this research, it was only tested using inputs provided from the APOGEE

platform. Testing for complex network environments and other control systems were

left for future work.
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6.2 Research Contributions

This research showed that a honeypot-network traffic generation framework can

be used as defense-in-depth security measure to protect ICS. While high-interaction

honeypots can replicate whole systems, they often come with high cost and man-

agement requirements. Different solutions using low-interaction and hybrid designs

offer authenticity when interactions are made. However for OT systems, autonomous

and continuous network traffic is required. Using the developed DNTG tools provide

control system traffic on honeypot systems. This was demonstrated during passive

network monitoring and in the experimental trials. The presence of this traffic helps

ensure that honeypot systems are not easily identified during network discovery, enu-

meration and attack.

New features added with DNTG over other network traffic generators include:

(i) modification of trace data; (ii) asynchronously operation in a distributed config-

uration; (iii) transmission of synchronization packets only during initialization; (iv)

synchronization during network traffic generation using only trace data; and (v) hard-

ware address correction for network routing.

6.3 Recommendations for Future Work

6.3.1 Timing.

The DNTG tool, showed promise by successfully replicating control system traffic

in a distributed environment. While the results indicated that the Production Trace

and Generated Trace did not have the same timing, multiple runs showed consistency

in DNTG outputs. This indicated that optimization of the software code with the

objective to reduce the delta in the timing is possible. While a calibration variable

(i.e., t cal) was added to the code, it was not used during experimentation. This

74



calibration variable allows adjustment to the delay before a packet is transmitted

during network traffic generation. Further study of network topologies, configuration

and network device performance is needed to effectively implement this calibration

value.

Improvements on the design of DNTG Replay could produce better timing results.

Currently, DNTG Replay performs operations (e.g., trace search for matching packets

and packet queuing for generation) only when a packet is received. Modifications to

the code could include pre-processing trace packets for the listening and transmit

operations. This would reduce processing delays incurred during runtime and lessen

the timing delta of subsequent packets transmitted.

6.3.2 Limitations of Using a Trace-based Approach.

The duration of trace data impacts the effectiveness of network traffic genera-

tion and its ability to provide authenticity for honeypot systems. For the timespan

of a trace, network traffic may look authentic. However, past this time period, the

same packets are be generated if a different trace is not used for reiterated runs of

DNTG. Repeated traffic (e.g., TCP) is automatically highlighted as retransmissions

by tools like Wireshark. Future work may include implementing the ability to al-

ternate Production Traces or modify packet data and values to maintain uniqueness

during multiple iterations.

In addition, the use of trace data does not account for real-time system changes.

State changes made during operation may contradict traffic data generated by DNTG.

This would be a challenging task to implement, as it would involve knowledge of

protocol specifics for different control systems. One possible method is to use live

production data to update the network traffic generator. Future work is required to

evaluate possible solutions to this challenge.
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6.4 Concluding Thoughts

Honeypots can be used as a security measure to protect industrial control systems.

The effectiveness of a honeypot is dependent on the ability to entice an attacker to se-

lect it as a target. Using network traffic generators as a deception technique is similar

to the concept employed by Ghost Army using realistic sound recordings, operational

movements and signal transmissions. The addition of network traffic on honeypots

helps build a realistic decoy control system environment. This research demonstrated

that honeypot identification during target selection can be made difficult by intro-

ducing network traffic generation.
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Appendix A. DNTG Prep

1.1 DNTG-Prep.py

DNTG tool used to prepare a trace file by modifying Layer 2 and Layer 3 header

values. This tool is run on the C2 workstation.

#!/ usr /bin/env python

# PCAP Re−Write

# Author : Htein Lin

# Function : Re−wr i t e s the IP and MAC addr e s s e s based on matching

parameters passed to the program as arguments . Handles UDP, TCP,

and ARP packets .

# Usage example : sudo python PCAP−PREP. py input . pcap output . pcap

1 0 . 1 . 3 . 5 1 0 . 1 . 3 . 2 0 5 0 0 : 2 2 : 1 9 : 5 7 : 9d :38 0 0 : 2 2 : 1 9 : 1 e : a3 : 25 1 0 . 1 . 3 . 3

1 0 . 1 . 3 . 2 0 1 00 : a0 : 0 3 : 0 5 : 1 4 : 5b 00 : a0 : 0 3 : f 8 : 6 2 : 9 f 1 0 . 1 . 4 . 2 1 0 . 1 . 4 . 2 0 1

00 : a0 : 0 3 : 0 4 : d9 : d0 00 : a0 : 0 3 : 2 a : 7 e : 5 f

import logg ing , sys , time

logg ing . getLogger (” scapy . runtime ”) . s e tL ev e l ( l o gg ing .ERROR)

from scapy . a l l import ∗

num argv = ( l en ( sys . argv ) − 3) # c a l c u l a t e the number o f arguments

i f ( l en ( sys . argv ) < 7) or ( num argv % 4 != 0) : # check to make sure a

minimum se t o f IP and MAC addr e s s e s are entered and that i t i s a 4

argument pa i r

p r in t ’ Usage : sudo python pcap−r ew r i t e . py <input . pcap> <output .

pcap> <o ld ip> <new ip> <o ld mac> <new mac> . . . <o ld ip> <

new ip> <o ld mac> <new mac>’

sys . e x i t (1 )

s t a r t t ime = time . time ( ) # Mark s t a r t time

pr in t ’ [+ ] Proces s s t a r t ed at : ’ + time . ctime ( )

i n f i l e = sys . argv [ 1 ] # Read the packets from input PCAP f i l e

pkts = rdpcap ( i n f i l e )
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f o r i in range (0 , num argv ) : # Prompt the arguments that w i l l be

pro ce s s ed

i f i % 4 == 0 : # s e t index at s t a r t o f each 4 pa i r s e t o f

addr e s s e s

p r in t ’ [ ! ] The IP : ’ + sys . argv [ i +3] + ’ & MAC: ’ + sys .

argv [ i +5] + ’ w i l l be ove rwr i t t en with IP : ’ + sys .

argv [ i +4] + ’ & MAC: ’ + sys . argv [ i +6]

# Rewrite the packets with the new addr e s s e s

# Delete the IP , UDP, and TCP checksums so that they are r e c a l c u l a t e d

# F i r s t IP pa i r arguments s t a r t at index 3 + 4 , MAC pa i r s t a r t s at index

5 + 6 and so f o r th

f o r p in pkts :

i f p . ha s l aye r ( IP ) : # Handle packets with IP

f o r i in range (0 , num argv ) :

i f i % 4 == 0 : # check at s t a r t o f each 4 pa i r

s e t o f addr e s s e s

i f p [ IP ] . s r c == sys . argv [ i +3] : # Replace

SRC IP

p [ IP ] . s r c = sys . argv [ i +4]

i f p . s r c == sys . argv [ i +5] : # Replace SRC

MAC

p . s r c = sys . argv [ i +6]

i f p [ IP ] . ds t == sys . argv [ i +3] : # Replace

DST IP

p [ IP ] . ds t = sys . argv [ i +4]

i f p . ds t == sys . argv [ i +5] : # Replace DST

MAC

p . dst = sys . argv [ i +6]

de l p [ IP ] . chksum # Reset IP checksum

i f p . ha s l aye r (TCP) : # put check , o the rw i s e may e r r o r

de l p [TCP] . chksum # Reset TCP checksum

i f p . ha s l aye r (UDP) : # put check , o the rw i s e may e r r o r
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de l p [UDP] . chksum # Reset UDP checksum

o u t f i l e = sys . argv [ 2 ] # Write the packets out to a new PCAP f i l e

wrpcap ( o u t f i l e , pkts )

s top t ime = time . time ( ) # Mark stop time

pr in t ’ [+ ] Proce s s ing completed at : ’ + time . ctime ( )

pr in t ’ [+ ] Total time to f i n i s h : ’ + s t r ( s top t ime − s t a r t t ime ) + ’

seconds ’

1.2 Prep-PCAP.sh

Bash script is used to call DNTG-Prep.py and run on the C2 workstation. This

script requires modification with honeypot characteristics.

#!/bin/bash

# Change va lue s based on HP c h a r a c t e r i s t i c s (Copy to Run−Experiments . sh )

PXCM2IP3SUB= ’10 .1 . 3 . 2 ’ # P2 PXCM s ing l e−subnet

PXCM2MAC= ’00: a0 : 0 3 : 0 4 : d9 : d0 ’

HP20IP3SUB= ’10 .1 . 3 . 20 ’

HP20MAC3SUB= ’00: a0 : 0 3 : 1 7 : 8 1 : 9 4 ’

PXCM2IP4SUB= ’10 .1 . 4 . 2 ’ # P2 PXCM dual−subnet

HP20IP4SUB= ’10 .1 . 4 . 20 ’

HP20MAC4SUB= ’00: a0 : 0 3 : 3 e : 5 9 : 6 f ’

PXCM3IP= ’10 .1 . 3 . 3 ’ # BACnet PXCM

PXCM3MAC= ’00: a0 : 0 3 : 0 5 : 1 4 : 5b ’

HP30IP= ’10 .1 . 3 . 30 ’

HP30MAC= ’00: a0 : 0 3 : bb : 3 f : 1 0 ’

APGSVR5IP= ’10 .1 . 3 . 5 ’ # HMI

APGSVR5MAC= ’00 :22 : 19 : 57 : 9 d : 3 8 ’
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HP50IP= ’10 .1 . 3 . 50 ’

HP50MAC= ’00 :22 : 19 : ce : 9 5 : 7 b ’

# Apogee

python DNTG−Prep . py CS−Apogee−3Sub−Raw. pcap NTG−Apogee−3Sub . pcap

$APGSVR5IP $HP50IP $APGSVR5MAC $HP50MAC $PXCM3IP $HP30IP $PXCM3MAC

$HP30MAC $PXCM2IP3SUB $HP20IP3SUB $PXCM2MAC $HP20MAC3SUB

python DNTG−Prep . py CS−Apogee−4Sub−Raw. pcap NTG−Apogee−4Sub . pcap

$APGSVR5IP $HP50IP $APGSVR5MAC $HP50MAC $PXCM3IP $HP30IP $PXCM3MAC

$HP30MAC $PXCM2IP4SUB $HP20IP4SUB $PXCM2MAC $HP20MAC4SUB
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Appendix B. DNTG Replay

2.1 DNTG-Replay.py

DNTG tool used to generate network traffic using a trace file. This tool is run on

CUT workstations.

#!/ usr /bin/env python

import logg ing , sys

l ogg ing . getLogger (” scapy . runtime ”) . s e tL ev e l ( l o gg ing .ERROR)

from scapy . a l l import ∗

from Conversat ion import Conversat ion

from thread ing import Thread

from mul t ip r o ce s s ing import Pool , Process , Queue

from sys import e x i t

t c a l = 0 .0 # Of f s e t to subt r a c t from a l l t imes be fo r e sending

conve r sa t i ons = [ ]

f i r s t p k t t im e = None

send q = Queue ( )

nodes = [ ]

nodes ready = [ ]

synced = False

ha s s t a r t ed = False

c l a s s P i ck l ab l ePacket :

”””A conta ine r f o r scapy packets that can be p i c k l e d ( in

cont r a s t

to scapy packets themse lves ) .”””

de f i n i t ( s e l f , pkt ) :

s e l f . contents = bytes ( pkt )

s e l f . t ime = pkt . time
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de f c a l l ( s e l f ) :

”””Get the o r i g i n a l scapy packet .”””

pkt = Ether ( s e l f . contents )

pkt . time = s e l f . time

return pkt

de f main ( ) :

g l o ba l ha s s ta r t ed , conve r sa t i ons , f i r s t p k t t ime , nodes ,

nodes ready , synced #, send q

# check to make sure the arguments are c o r r e c t

# sys . argv [ 0 ] = NTG. py

# sys . argv [ 1 ] = <input . pcap>

# sys . argv [ 2 ] = <HP IP>

# sys . argv [ 3 ] = <HP MAc>

# sys . argv [ 4 ] = <GW MAC>

# sys . argv [ 5 ] = < i f a c e>

i f ( l en ( sys . argv ) < 6) :

p r in t ’ Usage : python NTG. py <input . pcap> <HP IP> <HP MAC

> <GW MAC> < i f a c e >’

sys . e x i t (1 )

pkts = rdpcap ( sys . argv [ 1 ] ) # read PCAP f i l e

f i r s t p k t t im e = pkts [ 0 ] . time # Set i n i t i a l capture time

master = pkts [ 0 ] [ IP ] . s r c

i am master = (master == sys . argv [ 2 ] )

# Ass ign a l l packets to i nd i v i dua l conve r sa t i ons

f o r p in pkts :

found = False

f o r c in conve r sa t i ons :

i f c . be longs (p ) :

found = True

c . add packet (p )

i f not found :
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con = Conversat ion (p , sys . argv [ 2 ] , sys . argv [ 3 ] ,

sys . argv [ 4 ] )

conve r sa t i ons . append ( con )

i f i am master :

i f not p [ IP ] . s r c == master and not p [ IP ] . s r c in

nodes :

nodes . append (p [ IP ] . s r c )

i f i am master :

whi l e not synced :

f o r ip in nodes :

p r in t ’ Sending HEARTBEAT to ’ , ip

syncpkt=IP ( s r c=sys . argv [ 2 ] , ds t=ip ) /UDP(

spo r t=10000 ,dport=10000)/Raw( load=’

HEARTBEAT’ )

send ( syncpkt , i f a c e=sys . argv [ 5 ] ) # send

L3 packet

time . s l e e p ( . 1 )

i f l en ( nodes ) == 0 :

synced = True

break

f o r ip in nodes ready :

p r in t ’ Sending START to ’ , ip

syncpkt=IP ( s r c=sys . argv [ 2 ] , ds t=ip ) /UDP( spo r t

=10000 ,dport=10000)/Raw( load=’START’ )

send ( syncpkt , i f a c e=sys . argv [ 5 ] ) # send L3

packet

time . s l e e p ( . 1 )

time . s l e e p (1 )

ha s s t a r t ed = True

pr in t ’ S ta r t ing conve r sa t i ons ’

s t a r t c o n v e r s a t i o n s ( conve r sa t i ons )
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de f s t a r t c o n v e r s a t i o n s ( conve r sa t i ons ) :

#TODO: move t h i s

# Delay 10 seconds be fo r e f i r s t send packet

de lay = 10 .0

s t = time . time ( ) + de lay

# Check each conve r sa t i on to s e e i f i t needs s t a r t ed ( s r c == sys

. argv [ 2 ] )

f o r c in conve r sa t i ons :

pckts = c . g e t r e s pon s e s i nd ex (0 )

f o r p in pckts :

# I f I am the c l i e n t

i f p [ IP ] . s r c == sys . argv [ 2 ] :

pt = (p . time − f i r s t p k t t im e )

send q . put ( ( s t + pt , P i ck l ab l ePacke t (p ) )

)

de f s n i f f h n d l ( pkt ) :

g l o ba l ha s s ta r t ed , nodes , nodes ready

# This check i s f o r s l a v e s

i f not ha s s t a r t ed :

i f pkt . ha s l aye r (UDP) and pkt . ha s l aye r ( IP ) and sys . argv

[2]==pkt [ IP ] . ds t :

i f pkt [UDP] . dport == 10000 :

i f pkt [Raw ] . load == ’HEARTBEAT’ :

p r in t ’ Rece ived HEARTBEAT from ’ ,

pkt [ IP ] . s r c

syncpkt=IP ( s r c=pkt [ IP ] . dst , ds t=

pkt [ IP ] . s r c ) /UDP( spo r t

=10000 ,dport=10000)/Raw( load

=’TAEBTRAEH’ )

pr in t ’ Sent TAEBTRAEH to ’ , pkt [
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IP ] . ds t

send ( syncpkt , i f a c e=sys . argv [ 5 ] )

e l i f pkt [Raw ] . load == ’TAEBTRAEH’ :

p r in t ’ Rece ived TAEBTRAEH from ’ ,

pkt [ IP ] . s r c

i f pkt [ IP ] . s r c in nodes :

nodes . remove ( pkt [ IP ] . s r c

)

i f not pkt [ IP ] . s r c in

nodes ready :

nodes ready . append ( pkt [

IP ] . s r c )

i f pkt [Raw ] . load == ’START’ :

p r in t ’ Rece ived START from ’ , pkt

[ IP ] . s r c

ha s s t a r t ed = True

s t a r t c o n v e r s a t i o n s (

conve r sa t i ons )

e l i f pkt . ha s l aye r ( IP ) and sys . argv [2]==pkt [ IP ] . ds t :

n = time . time ( )

send t ime = n

f o r c in conve r sa t i ons :

i f not c . f i n i s h e d and c . be longs ( pkt ) :

p r in t ”RECEIVED packet from : %s with id :

%s ” % ( pkt [ IP ] . src , pkt [ IP ] . id )

index , r e sp s = c . g e t r e s pon s e s ( pkt )

i f not index i s None :

req = c . g e t packe t ( index )

t = req . time

de lay = 0

f o r resp in r e sps :

de lay += ( resp . time − t
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− t c a l )

send t ime = n + de lay

send q . put ( ( send time ,

P i ck l ab l ePacket ( r esp

) ) )

t = resp . time

# I f we made i t here , there ’ s no po int

check ing the other conve r sa t i ons

break

f i n i s h e d = True

f o r c in conve r sa t i ons :

i f not c . f i n i s h e d and c . HPbelongs ( sys . argv [ 2 ] ) :

f i n i s h e d = False

i f f i n i s h e d :

i f time . time ( ) <= send t ime :

time . s l e e p ( send time−time . time ( )+1)

e x i t (0 )

de f sendPacket ( responsePkt , s o cke t=None ) : # Transmit packet

i f s o cke t i s None :

sendp ( responsePkt , i f a c e=sys . argv [ 5 ] ) # send packet

e l s e :

s o cke t . send ( responsePkt )

pr in t ”SENT packet to : %s with id : %s ” %(responsePkt [ IP ] . dst ,

responsePkt [ IP ] . id )

de f pa ck e t s ende r t ( send q ) :

s pa ck e t s = [ ]

s o cke t = conf . L2socket ( i f a c e=sys . argv [ 5 ] )

whi l e True :

i f not send q . empty ( ) :

p = send q . get ( )
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s pa ck e t s . append (p)

curt ime = time . time ( )

f o r t , p i c k l e in s pa ck e t s :

p = p i c k l e ( )

i f curt ime >= t :

sendPacket (p , s o cke t )

s pa ck e t s . remove ( ( t , p i c k l e ) )

break

de f s t a r t s n i f f ( ) :

s n i f f ( prn=sn i f f h nd l , s t o r e =0, i f a c e=sys . argv [ 5 ] )

i f name == ’ main ’ :

send p = Pool (1 , packe t s ende r t , ( send q , ) )

m thread = Thread ( t a r g e t=main , a rgs=() )

s n i f f t h r e a d = Thread ( t a r g e t=s t a r t s n i f f )

m thread . s t a r t ( )

s n i f f t h r e a d . s t a r t ( )

m thread . j o i n ( )

s n i f f t h r e a d . j o i n ( )

2.2 Conversation.py

Conversation.py contains the class Conversation and is called by DNTG-Replay.py.

This is part of the DNTG Replay tool and is run on CUT workstations.

from scapy . a l l import ∗

import time

c l a s s Conversat ion :

de f i n i t ( s e l f , packet , my ip , my mac , gw mac) :

s e l f . packets = [ ]
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s e l f . l a s t p k t = −1

s e l f . my ip = my ip

s e l f .my mac = my mac

s e l f . gw mac = gw mac

s e l f . s r c = packet [ IP ] . s r c

s e l f . ds t = packet [ IP ] . ds t

s e l f . add packet ( packet )

s e l f . f i n i s h e d = False

de f add packet ( s e l f , packet ) :

p = s e l f . f i xPacke t ( packet )

s e l f . packets . append (p)

de f f i xPacke t ( s e l f , packet ) :

i f packet . ha s l aye r ( IP ) :

i f ( packet [ IP ] . s r c == s e l f . my ip and packet . s r c

!= s e l f .my mac) :

packet . ds t = s e l f . gw mac

packet . s r c = s e l f . my mac

de l packet [ IP ] . chksum # Reset IP

checksum

i f packet . ha s l aye r (TCP) : # put check ,

o the rw i s e may e r r o r

de l packet [TCP] . chksum # Reset

TCP checksum

i f packet . ha s l aye r (UDP) : # put check ,

o the rw i s e may e r r o r

de l packet [UDP] . chksum # Reset

UDP checksum

return packet

de f g e t packe t ( s e l f , index ) :
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i f index < l en ( s e l f . packets ) :

r e turn s e l f . packets [ index ]

r e turn None

de f g e t f i r s t t i m e ( s e l f ) :

r e turn s e l f . packets [ 0 ] . time

de f HPbelongs ( s e l f , IP ) :

i f s e l f . s r c == IP or s e l f . ds t == IP :

return True

e l s e :

r e turn Fa l se

de f be longs ( s e l f , packet ) :

i f packet . ha s l aye r ( IP ) :

i f s e l f . s r c == packet [ IP ] . s r c :

r e turn s e l f . ds t == packet [ IP ] . ds t

e l i f s e l f . s r c == packet [ IP ] . ds t :

r e turn s e l f . ds t == packet [ IP ] . s r c

r e turn Fa l se

de f p r i n t pa ck e t s ( s e l f ) :

index = 0

f o r p in s e l f . packets :

p r in t index , ’ : ’ , p [Raw ] . load . encode ( ’ hex ’ )

index += 1

def g e t r e s pon s e s ( s e l f , packet ) : # re turns index o f r eques t , and

l i s t o f r e sponse packets

r esp = [ ]

index = None

i = ( s e l f . l a s t p k t + 1) % len ( s e l f . packets )
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whi le not i == s e l f . l a s t p k t :

packet [ IP ] . t t l = s e l f . packets [ i ] [ IP ] . t t l

packet [ IP ] . chksum = s e l f . packets [ i ] [ IP ] . chksum

i f packet . ha s l aye r ( Padding ) and s e l f . packets [ i ] .

ha s l aye r ( Padding ) :

packet [ Padding ] = s e l f . packets [ i ] [

Padding ]

i f s e l f . packets [ i ] [ IP ] == packet [ IP ] :

index = i

s e l f . l a s t p k t = i

pr in t ’ Po inter moved to packet : ’ , s e l f .

l a s t p k t+1 # debug

i = ( i + 1) % len ( s e l f . packets )

s e l f . f i n i s h e d = s e l f . l a s t p k t == ( l en (

s e l f . packets ) − 1) # check at

r e c e i p t

whi l e s e l f . packets [ i ] [ IP ] . s r c == packet [

IP ] . ds t and not s e l f . f i n i s h e d :

p r in t ”QUEUED packet to : %s with

id : %s” %( s e l f . packets [ i ] [

IP ] . dst , s e l f . packets [ i ] [ IP ] .

id ) # debug

resp . append ( s e l f . packets [ i ] )

s e l f . l a s t p k t = i

i = ( i + 1) % len ( s e l f . packets )

p r in t ’ Po inter moved to packet : ’ , s e l f .

l a s t p k t+1 # debug

s e l f . f i n i s h e d = s e l f . l a s t p k t == ( l en (

s e l f . packets ) − 1) # check at send

pr in t ’End o f conve r sa t i on ? ’ , s e l f .

f i n i s h ed , ’\n ’ # debug

return index , r e sp
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e l s e :

i = ( i + 1) % len ( s e l f . packets )

# resp i s [ ] i f t h i s happens

return index , r e sp

de f g e t r e s pon s e s i nd ex ( s e l f , index ) : # re turns index o f r eques t

, and l i s t o f r e sponse packets

r esp = [ ]

r e sp . append ( s e l f . packets [ index ] ) # put in f i r s t packet

in response

i = ( index + 1) % len ( s e l f . packets ) # check f o r next

packets

p r in t ’ Po inter moved to packet : ’ , index+1 # debug

s e l f . f i n i s h e d = s e l f . l a s t p k t == ( l en ( s e l f . packets ) − 1)

# check at r e c e i p t

whi l e s e l f . packets [ i ] [ IP ] . s r c == s e l f . packets [ index ] [ IP

] . s r c and not s e l f . f i n i s h e d : # whi le the next packet

i s same source

pr in t ”QUEUED packet to : %s with id : %s” %( s e l f .

packets [ i ] [ IP ] . dst , s e l f . packets [ i ] [ IP ] . id )

r esp . append ( s e l f . packets [ i ] )

s e l f . l a s t p k t = i

i = ( i + 1) % len ( s e l f . packets )

p r in t ’ Po inter moved to packet : ’ , s e l f . l a s t p k t+1 #

debug

s e l f . f i n i s h e d = s e l f . l a s t p k t == ( l en ( s e l f . packets ) − 1)

# check at send

pr in t ’End o f conve r sa t i on ? ’ , s e l f . f i n i s h ed , ’\n ’ #

debug

return resp
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Appendix C. Experiment

3.1 Run-Experiments.sh

Bash script is used to automate the experimental trials. This script requires

modification with honeypot characteristics and is run on the C2 workstation.

#!/bin/bash

# Usage : . /Run−Experiments . sh f o l d e r ( $1 ) t r a c k e r . csv ( $2 ) >> Log . txt

# $1 i s the f o l d e r f o r the t r i a l outputs

# $2 i s csv f i l e f o r the t r i a l t r a c k e r

TIMEOUT=720 # Timeout t imer in seconds , i f exper iment exceeds t h i s t imer

then something went wrong

# Change va lue s based on HP c h a r a c t e r i s t i c s (Copy to Run−Experiments . sh )

PXCM2IP3SUB= ’10 .1 . 3 . 2 ’ # P2 PXCM s ing l e−subnet

PXCM2MAC= ’00: a0 : 0 3 : 0 4 : d9 : d0 ’

HP20IP3SUB= ’10 .1 . 3 . 20 ’

HP20MAC3SUB= ’00: a0 : 0 3 : 1 7 : 8 1 : 9 4 ’

PXCM2IP4SUB= ’10 .1 . 4 . 2 ’ # P2 PXCM dual−subnet

HP20IP4SUB= ’10 .1 . 4 . 20 ’

HP20MAC4SUB= ’00: a0 : 0 3 : 3 e : 5 9 : 6 f ’

PXCM3IP= ’10 .1 . 3 . 3 ’ # BACnet PXCM

PXCM3MAC= ’00: a0 : 0 3 : 0 5 : 1 4 : 5b ’

HP30IP= ’10 .1 . 3 . 30 ’

HP30MAC= ’00: a0 : 0 3 : bb : 3 f : 1 0 ’

APGSVR5IP= ’10 .1 . 3 . 5 ’ # HMI

APGSVR5MAC= ’00 :22 : 19 : 57 : 9 d : 3 8 ’

HP50IP= ’10 .1 . 3 . 50 ’
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HP50MAC= ’00 :22 : 19 : ce : 9 5 : 7 b ’

# IP addr e s s e s o f HP hos t s f o r C2 workstat ion to SSH into

C2HP2030IP= ’10 .1 . 3 . 119 ’

C2HP50IP= ’10 .1 . 3 . 120 ’

# Change va lue s based on input PCAP f i l e s

# Apogee

ApogeePCAP1SUB=’NTG−Apogee−3Sub . pcap ’

ApogeePCAP2SUB=’NTG−Apogee−4Sub . pcap ’

# DO NOT CHANGE VALUES BELOW

SUB3GW= ’80:2a : a8 : 1 d : 4 2 : 3 0 ’ # GWMAC of 1 0 . 1 . 3 . 0 / 2 4

SUB4GW= ’80:2a : a8 : 1 d : 4 2 : 3 1 ’ # GWMAC of 1 0 . 1 . 4 . 0 / 2 4

FOLDER=$1

TEST LOG=”$1 ” ’/ ’” $2”

func t i on Cal l−Exp {

# I n i t i a l i z e exper iment

STARTTIME=$( date +”%s ”)

TEST STATUS=’Success ’

# Sta r t capture

echo ”sudo tcpdump − i eno1 −nnvvXSs 0 −w ˜/Desktop /Experiment/$FOLDER/

Exp−$1 . pcap −U ip host $HP20IP3SUB or $HP20IP4SUB or $HP30IP or

$HP50IP and not dst port 10000 and not broadcast and not mu l t i ca s t

and not arp> /dev/ nu l l ”

sudo tcpdump − i eno1 −nnvvXSs 0 −w ˜/Desktop /Experiment/$FOLDER/Exp−$1

. pcap −U ip host $HP20IP3SUB or $HP20IP4SUB or $HP30IP or $HP50IP

and not dst port 10000 and not broadcast and not mu l t i ca s t and not

arp> /dev/ nu l l &
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tdpid=$ !

echo TCPDump PID i s $tdpid

# Sta r t NTG ( 1 0 . 1 . 3 . 2 0 / 1 0 . 1 . 4 . 2 0 )

# $1 i s exper iment number

# $2 i s input pcap f i l e

# $3 i s NTG IP ( 1 0 . 1 . 3 . 2 0 or 1 0 . 1 . 4 . 2 0 )

# $4 i s 1 0 . 1 . 3 . 2 0 MAC ( honeyd ) or 1 0 . 1 . 4 . 2 0 MAC ( honeyd )

# $5 i s 1 0 . 1 . 3 . 0 / 2 4 GWMAC (80 : 2 a : a8 : 1 d : 4 2 : 3 0 ) or 1 0 . 1 . 4 . 0 / 2 4 GWMAC

(80 : 2 a : a8 : 1 d : 4 2 : 3 1 )

# $6 i s 1 0 . 1 . 3 . 2 0 i n t e r f a c e ( enx8cae4cfe406d ) or 1 0 . 1 . 4 . 2 0 i n t e r f a c e (

enx8cae4c f e51 f6 )

COMMAND=”sudo python ˜/Desktop /Experiment/NTG−Replay . py ˜/Desktop /

Experiment/$2 $3 $4 $5 $6”

echo ” ssh $C2HP2030IP $COMMAND > $FOLDER/Exp−$1−HP20−Log . txt ”

ssh $C2HP2030IP ”$COMMAND” > $FOLDER/Exp−$1−HP20−Log . txt &

ntg20=$ !

echo HP20 PID i s $ntg20

# Sta r t NTG ( 1 0 . 1 . 3 . 3 0 )

COMMAND=”sudo python ˜/Desktop /Experiment/NTG−Replay . py ˜/Desktop /

Experiment/$2 $HP30IP $HP30MAC $SUB3GW eno1”

echo ” ssh $C2HP2030IP $COMMAND > $FOLDER/Exp−$1−HP30−Log . txt ”

ssh $C2HP2030IP ”$COMMAND” > $FOLDER/Exp−$1−HP30−Log . txt &

ntg30=$ !

echo HP30 PID i s $ntg30

# Sta r t NTG ( 1 0 . 1 . 3 . 5 0 )

COMMAND=”sudo python ˜/Desktop /Experiment/NTG−Replay . py ˜/Desktop /

Experiment/$2 $HP50IP $HP50MAC $SUB3GW eno1”

echo ” ssh $C2HP50IP $COMMAND > $FOLDER/Exp−$1−HP50−Log . txt ”

ssh $C2HP50IP ”$COMMAND” > $FOLDER/Exp−$1−HP50−Log . txt &
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ntg50=$ !

echo HP50 PID i s $ntg50

# While TCPDump i s running

whi l e t rue

do

# Check f o r hanged exper iments

CURRENTTIME=$ ( date +”%s ”)

ELAPSEDTIME=$ ( ($CURRENTTIME − $STARTTIME) )

i f [ $ELAPSEDTIME −gt $TIMEOUT ] # put a timer on experiment , i f

exceeds timeout , k i l l

then

echo ”TEST FAILED −−− SOMETIME WENT WRONG −−− KILLING PROCESSES”

sudo k i l l −9 $ntg20 $ntg30 $ntg50

TEST STATUS=’FAILED’

f i

# Stop TCPDump cond i t i on : a l l NTGs are not running

i f ! ps −p $ntg20 $ntg30 $ntg50 > /dev/ nu l l

then

echo ”KILLING TCPDump”

echo ””

sudo p k i l l −TERM −P $tdpid

break

f i

done

s l e ep 30 # Wait 30 seconds in between exper iments to l e t network

s e t t l e

}

# I n i t i a l i z e program

OLDIFS=$IFS
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IFS=, # Set i n t e r n a l f i e l d s epa ra to r to comma

[ ! −f $TEST LOG ] && { echo ”$TEST LOG f i l e not found ” ; e x i t 99 ; } #

Experiments l og : e r r o r cond

COUNTER=1

whi le read TESTNUM TESTNAME TEST TYPE TEST STATUS TEST TIME # Find

l a s t entry in l og

do

( (COUNTER++))

done < $TEST LOG

# Run exper iments un t i l l im i t i s reached

COUNTER2=$COUNTER

echo ”COUNTER IS AT” $COUNTER2

EXP LIST=(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1)

whi l e [ $COUNTER2 − l e ${#EXP LIST [@]} ]

do

echo ”RUNNING EXPERIMENT $COUNTER2”

RUNINDEX=$ ( ($COUNTER2−1) )
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( (COUNTER2++))

# Run exper iments

# $1 i s exper iment number

# $2 i s input pcap f i l e

# $3 i s NTG IP ( 1 0 . 1 . 3 . 2 0 or 1 0 . 1 . 4 . 2 0 )

# $4 i s 1 0 . 1 . 3 . 2 0 MAC ( honeyd ) or 1 0 . 1 . 4 . 2 0 MAC ( honeyd )

# $5 i s 1 0 . 1 . 3 . 0 / 2 4 GWMAC (80 : 2 a : a8 : 1 d : 4 2 : 3 0 ) or 1 0 . 1 . 4 . 0 / 2 4 GWMAC

(80 : 2 a : a8 : 1 d : 4 2 : 3 1 )

# $6 i s 1 0 . 1 . 3 . 2 0 i n t e r f a c e ( enx8cae4cfe406d ) or 1 0 . 1 . 4 . 2 0 i n t e r f a c e (

enx8cae4c f e51 f6 )

TEST=${EXP LIST [$RUNINDEX]}

i f [ $TEST == 0 ]

then

TEST TYPE=’Apogee−1−Subnet ’

echo ”−−− Apogee−1−Subnet Experiment : Test Type 0”

Cal l−Exp $COUNTER $ApogeePCAP1SUB $HP20IP3SUB $HP20MAC3SUB $SUB3GW

enx8cae4c fe406d

e l i f [ $TEST == 1 ]

then

TEST TYPE=’Apogee−2−Subnet ’

echo ”−−− Apogee−2−Subnet Experiment : Test Type 1”

Cal l−Exp $COUNTER $ApogeePCAP2SUB $HP20IP4SUB $HP20MAC4SUB $SUB4GW

enx8cae4c f e51 f6

e l s e

echo ”Exp−Out−Of−Bounds”

echo ”−−− Experiment out o f bounds”

f i

# Write entry in to exper iments l og

echo ”$COUNTER, Experiment−$COUNTER. pcap , $TEST STATUS, $TEST TYPE,
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$TEST TIME” >> $TEST LOG

# Next

( (COUNTER++))

done

IFS=$OLDIFS # Reset i n t e r n a l f i e l d s epa ra to r
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Appendix D. Analysis

4.1 Analyze.py

Analysis tool used to analyze two input traces. This script is run on the C2

workstation.

#!/ usr /bin/env python

import logg ing , sys , csv

l ogg ing . getLogger (” scapy . runtime ”) . s e tL ev e l ( l o gg ing .ERROR)

from scapy . a l l import ∗

from Ana lys i s import Ana lys i s

from sys import e x i t

t r a i n i ng c onvo s = [ ]

sample convos = [ ]

de f main ( ) :

g l o ba l t r a in ing convo s , sample convos

c t r l i n t = [ ]

s amp l e in t = [ ]

i n t d e l t a = [ ]

o u t p u t l i s t = [ ]

# check to make sure the arguments are c o r r e c t

i f ( l en ( sys . argv ) < 3) :

p r in t ’ Usage : python <t r a i n i ng . pcap> <sample . pcap> <

a n a l y s i s name>’

sys . e x i t (1 )

a name = sys . argv [ 3 ]
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c t r l p k t s = rdpcap ( sys . argv [ 1 ] ) # read con t r o l PCAP f i l e

# Ass ign a l l packets to i nd i v i dua l conve r sa t i ons

f o r p in c t r l p k t s :

found = False

f o r c in t r a i n i ng c onvo s :

i f c . be longs (p ) :

found = True

c . add packet (p )

i f not found :

con = Ana lys i s (p)

t r a i n i ng c onvo s . append ( con )

sample pkts = rdpcap ( sys . argv [ 2 ] ) # read sample PCAP f i l e

# Ass ign a l l packets to i nd i v i dua l conve r sa t i ons

f o r p in sample pkts :

found = False

f o r c in sample convos :

i f c . be longs (p ) :

found = True

c . add packet (p )

i f not found :

con = Ana lys i s (p)

sample convos . append ( con )

t e s t p a s s = True

i f not l en ( t r a i n i ng c onvo s ) == len ( sample convos ) :

t e s t p a s s = Fa lse
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pr in t ’ Unequal number o f conve r sa t i ons \n ’

p r in t ”\n−−−=== Running Packet Match Ana lys i s ===−−−”

f o r t convo in t r a i n i ng c onvo s :

p = t convo . g e t packe t (0 )

pr in t ” Proce s s ing conve r sa t i on : %s > %s” %(p [ IP ] . src , p [

IP ] . ds t )

found = False

f o r s convo in sample convos :

i f s convo . be longs (p ) :

found = True

i f not s convo . equa l s ( t convo ) :

p r in t ’ Conver sat ions are not

equal ’

t e s t p a s s = Fa lse

break

i f not found :

p r in t ’ Contro l conve r sa t i on i s not in Sample

conve r sa t i ons ’

t e s t p a s s = Fa lse

i f t e s t p a s s :

p r in t ”Al l Contro l and Sample conve r sa t i ons match . ”

pr in t ”\n−−−=== Running Packet I n t e r v a l Ana lys i s ===−−−”

f o r t convo in t r a i n i ng c onvo s :

p = t convo . g e t packe t (0 )

f o r s convo in sample convos :

i f s convo . be longs (p ) :

c t r l i n t , sample int , i n t d e l t a =

s convo . d e l t a t ime ( t convo )

c s v f i l e = a name+”−DPI . csv ”

with open ( c s v f i l e , ”a ”) as output :
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f o r i in range (0 , l en ( c t r l i n t ) ) :

#pr in t ” Index : %d , Contro l : %.6 f , Sample

: %.6 f , Delta : %.6 f ” % ( i , c t r l i n t [

i ] , s amp l e in t [ i ] , i n t d e l t a [ i ] )

output . wr i t e ( s t r ( c t r l i n t [ i ] ) + ” ,” +

s t r ( s amp l e in t [ i ] ) + ” ,” + s t r (

i n t d e l t a [ i ] ) + ”\n”)

time . s l e e p ( . 0 2 )

pr in t ”Resu l t s outputted to ”+ c s v f i l e

p r in t ”\n−−−=== Running Delta Response I n t e r v a l Ana lys i s ===−−−”

f o r t convo in t r a i n i ng c onvo s :

p = t convo . g e t packe t (0 )

f o r s convo in sample convos :

i f s convo . be longs (p ) :

c t r l i n t , sample int , i n t d e l t a =

s convo . d e l t a r e s pon s e ( t convo )

c s v f i l e = a name+”−DResp . csv ”

with open ( c s v f i l e , ”a ”) as output :

f o r i in range (0 , l en ( c t r l i n t ) ) :

#pr in t ” Index : %d , Contro l : %.6 f , Sample

: %.6 f , Delta : %.6 f ” % ( i , c t r l i n t [

i ] , s amp l e in t [ i ] , i n t d e l t a [ i ] )

output . wr i t e ( s t r ( c t r l i n t [ i ] ) + ” ,” +

s t r ( s amp l e in t [ i ] ) + ” ,” + s t r (

i n t d e l t a [ i ] ) + ”\n”)

time . s l e e p ( . 0 2 )

pr in t ”Resu l t s outputted to ”+ c s v f i l e

p r in t ”\n−−−=== Running Delta Request I n t e r v a l Ana lys i s ===−−−”

f o r t convo in t r a i n i ng c onvo s :

p = t convo . g e t packe t (0 )
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f o r s convo in sample convos :

i f s convo . be longs (p ) :

c t r l i n t , sample int , i n t d e l t a =

s convo . d e l t a r e q u e s t ( t convo )

c s v f i l e = a name+”−DReq . csv ”

with open ( c s v f i l e , ”a ”) as output :

f o r i in range (0 , l en ( c t r l i n t ) ) :

#pr in t ” Index : %d , Contro l : %.6 f , Sample

: %.6 f , Delta : %.6 f ” % ( i , c t r l i n t [

i ] , s amp l e in t [ i ] , i n t d e l t a [ i ] )

output . wr i t e ( s t r ( c t r l i n t [ i ] ) + ” ,” +

s t r ( s amp l e in t [ i ] ) + ” ,” + s t r (

i n t d e l t a [ i ] ) + ”\n”)

time . s l e e p ( . 0 2 )

pr in t ”Resu l t s outputted to ”+ c s v f i l e

c s v f i l e = a name+”−CLength . csv ”

with open ( c s v f i l e , ”a ”) as output :

p r in t ”\n−−−=== Running Conversat ion Length Ana lys i s

===−−−”

f o r t convo in t r a i n i ng c onvo s :

p = t convo . g e t packe t (0 )

f o r s convo in sample convos :

i f s convo . be longs (p ) :

c t r l , sample , d e l t a = s convo .

convo length ( t convo )

pr in t ”Length o f c o v e r s a t i o n : %s

<> %s” %(p [ IP ] . src , p [ IP ] .

ds t )

p r in t ”Contro l : %.6 f , Sample :

%.6 f , Delta : %.6 f \n” % ( c t r l

, sample , d e l t a )
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output . wr i t e ( s t r ( c t r l ) + ” ,” +

s t r ( sample ) + ” ,” + s t r (

d e l t a ) + ”\n”)

time . s l e e p ( . 0 2 )

c s v f i l e = a name+”−PLength . csv ”

with open ( c s v f i l e , ”a ”) as output :

p r in t ”Overa l l PCAP Length”

c t r l e n d = c t r l p k t s [ l en ( c t r l p k t s ) −1]. time

c t r l s t a r t = c t r l p k t s [ 0 ] . time

c t r l = c t r l end−c t r l s t a r t

sample end = sample pkts [ l en ( sample pkts ) −1]. time

sample s ta r t = sample pkts [ 0 ] . time

sample = sample end−s amp l e s ta r t

d e l t a = sample−c t r l

p r in t ”Contro l : %s , Sample : %s , Delta : %s ” % ( c t r l ,

sample , d e l t a )

#pr in t c t r l p k t s . show ( )

output . wr i t e ( s t r ( c t r l ) + ” ,” + s t r ( sample ) + ” ,” + s t r (

d e l t a ) + ”\n”)

time . s l e e p ( . 0 2 )

pr in t ”\n−−−=== Analys i s Summary ===−−−”

i f t e s t p a s s :

p r in t ’ALL TESTS PASSED! ’

e l s e :

p r in t ’FAILED: NOT ALL TESTS COMPLETED SUCCESSFULLY! ’

i f name == ’ main ’ :

main ( )

104



4.2 Analysis.py

Analysis.py contains the class Analysis and is called by Analyze.py. This is part

of the Analysis tool and is run on the C2 workstation.

from scapy . a l l import ∗

import time

c l a s s Ana lys i s :

de f i n i t ( s e l f , packet ) :

s e l f . packets = [ ]

s e l f . l a s t p k t = 0

s e l f . s r c = packet [ IP ] . s r c

s e l f . ds t = packet [ IP ] . ds t

s e l f . add packet ( packet )

s e l f . f i n i s h e d = False

de f add packet ( s e l f , packet ) :

s e l f . packets . append ( packet )

de f g e t packe t ( s e l f , index ) :

i f index < l en ( s e l f . packets ) :

r e turn s e l f . packets [ index ]

r e turn None

de f be longs ( s e l f , packet ) :

i f packet . ha s l aye r ( IP ) :

i f s e l f . s r c == packet [ IP ] . s r c :

r e turn s e l f . ds t == packet [ IP ] . ds t

e l i f s e l f . s r c == packet [ IP ] . ds t :

r e turn s e l f . ds t == packet [ IP ] . s r c

r e turn Fa l se
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de f p equa l s ( s e l f , p1 , p2 ) :

p1 . t t l = p2 . t t l

p1 . chksum = p2 . chksum

i f p1 . ha s l aye r ( Padding ) and p2 . ha s l aye r ( Padding ) :

p1 [ Padding ] = p2 [ Padding ]

r e turn p2 [ IP ] == p1 [ IP ]

de f equa l s ( s e l f , convo ) :

pcks1 = convo . packets

pcks2 = s e l f . packets

i s e q u a l = True

i f not l en ( pcks1 ) == len ( pcks2 ) :

p r in t ’The number o f packets does not match . ’

i s e q u a l = Fa lse

e l s e :

f o r i in range (0 , l en ( pcks1 ) ) :

i f not s e l f . p equa l s ( pcks1 [ i ] , pcks2 [ i ] )

:

i s e q u a l = Fa lse

pr in t ’ Packet ’ , i +1, ’ does not

match . ’

r e turn i s e q u a l

de f d e l t a t ime ( s e l f , convo ) :

pcks1 = convo . packets

pcks2 = s e l f . packets

c t r l i n t = [ ]

s amp l e in t = [ ]

i n t d e l t a = [ ]

i f not l en ( pcks1 ) == len ( pcks2 ) :

p r in t ’The number o f packets between Contro l and

Sample does not match ’
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e l s e :

f o r i in range (0 , l en ( pcks1 )−1) :

c t r l = pcks1 [ i +1] . time − pcks1 [ i

] . t ime

sample = pcks2 [ i +1] . time − pcks2

[ i ] . t ime

de l t a = sample − c t r l

c t r l i n t . append ( c t r l )

s amp l e in t . append ( sample )

i n t d e l t a . append ( d e l t a )

re turn c t r l i n t , sample int , i n t d e l t a

de f d e l t a r e s pon s e ( s e l f , convo ) :

t pck s = convo . packets

s pck s = s e l f . packets

c t r l i n t = [ ]

s amp l e in t = [ ]

i n t d e l t a = [ ]

debug = 0

i f not l en ( s pck s ) == len ( t pck s ) :

p r in t ’The number o f packets between Contro l and

Sample does not match ’

e l s e :

f o r i in range (0 , l en ( t pck s ) ) :

i f s e l f . i s r e q ( t pck s [ i ] ) :

f o r j in range ( i +1, l en ( t pck s ) )

:

i f s e l f . i s r e s p ( t pck s [ i

] , t pck s [ j ] ) :

c t r l = t pck s [ j

] . t ime −

t pck s [ i ] .
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time

sample = s pck s [

j ] . t ime −

s pck s [ i ] .

t ime

de l t a = sample −

c t r l

c t r l i n t . append (

c t r l )

s amp l e in t .

append (

sample )

i n t d e l t a . append

( d e l t a )

debug += 1

break

return c t r l i n t , sample int , i n t d e l t a

de f d e l t a r e q u e s t ( s e l f , convo ) :

t pck s = convo . packets

s pck s = s e l f . packets

c t r l i n t = [ ]

s amp l e in t = [ ]

i n t d e l t a = [ ]

debug = 0

i f not l en ( s pck s ) == len ( t pck s ) :

p r in t ’The number o f packets between Contro l and

Sample does not match ’

e l s e :

f o r i in range (0 , l en ( t pck s ) ) :

i f s e l f . i s r e q ( t pck s [ i ] ) :

f o r j in range ( i +1, l en ( t pck s ) )
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:

i f s e l f . i s n e x t r e q (

t pck s [ i ] , t pck s [ j

] ) :

c t r l = t pck s [ j

] . t ime −

t pck s [ i ] .

t ime

sample = s pck s [

j ] . t ime −

s pck s [ i ] .

t ime

de l t a = sample −

c t r l

c t r l i n t . append (

c t r l )

s amp l e in t .

append (

sample )

i n t d e l t a . append

( d e l t a )

debug += 1

break

return c t r l i n t , sample int , i n t d e l t a

de f convo length ( s e l f , convo ) :

pcks1 = convo . packets

pcks2 = s e l f . packets

c t r l = 0

sample = 0

de l t a = 0

i f not l en ( pcks1 ) == len ( pcks2 ) :
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pr in t ’The number o f packets between Contro l and

Sample does not match ’

e l s e :

c t r l = pcks1 [ ( l en ( pcks1 )−1) ] . time − pcks1 [ 0 ] .

time

sample = pcks2 [ ( l en ( pcks2 )−1) ] . time − pcks2 [ 0 ] .

time

de l t a = sample − c t r l

r e turn c t r l , sample , d e l t a

4.3 Run-Analyze.sh

Bash script is used to automate the analysis of the Generated Traces. This script

is run on the C2 workstation.

#!/bin/bash

f o r ( ( i =1; i <178; i+=1))

do

echo ”python Analyze . py 1Sub/Production . pcap 1Sub/Exp\ \( $ i \) . pcap 1

Sub >> 1Sub . l o g ”

python Analyze . py 1Sub1/Production . pcap 1Sub/Exp\ \( $ i \) . pcap 1Sub >>

1Sub . l o g

s l e ep 10

done

f o r ( ( i =1; i <178; i+=1))

do

echo ”python Analyze . py 2Sub/Production . pcap 2Sub/Exp\ \( $ i \) . pcap 2

Sub >> 2Sub . l o g ”

python Analyze . py 2Sub/Production . pcap 2Sub/Exp\ \( $ i \) . pcap 2Sub >> 2

Sub . l o g

s l e ep 10
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done
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those used to support critical infrastructure. However, most of these honeypot designs are static systems that wait for a
would-be attacker. To be effective, honeypot decoys need to be as realistic as possible. This paper introduces a
proof-of-concept honeypot network traffic generator that mimics genuine control systems. Experiments are conducted
using a Siemens APOGEE building automation system for single and dual subnet instantiations. Results indicate that
the proposed traffic generator is capable of honeypot integration, traffic matching and routing within the decoy building
automation network.
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