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Abstract

The lack of aerial refueling is a fundamental shortcoming of current Unmanned Aerial

Vehicles (UAVs). UAV deployment continues to increase but the corresponding operational

capabilities are limited by an inability to conduct extended operations. To alleviate this

limitation and achieve the Air Forces global mobility and global strike missions, UAV must

procure the capability to perform Automated Aerial Refueling (AAR). Such capability

requires computing the precise relative attitude and separation (pose) between the tanker

and unmanned receiver. This relative pose is fundamentally required to hold the receiver

within the tankers refueling envelope throughout the duration of the refueling procedure.

The Global Positioning System (GPS) is one viable data source from which this relative

navigation solution may be computed; however, GPS signals may be degraded or denied

within an operational environment. Other sensors, such as Light Detection and Ranging

(LiDAR), Machine Vision (MV), and Stereo Machine Vision (SMV), are also viable candi-

dates. Other work has utilized different combinations of these sensors utilizing a Kalman

Filter (KF) to compensate for individual weaknesses.

This work presents an integrated SMV / Inertial Navigation System (INS) as a method to

compute the relative pose solution; optionally, GPS may be also integrated, if it is available.

This integration is accomplished through design of an Extended Kalman Filter (EKF) used

to bolster the SMV via INS/GPS. SMV errors caused by noise and processing are reduced by

the EKF and the SMV prevents the INS from drifting. The INS/GPS/SMV EKF solution

was generated and tested in a virtual simulation employing a stereo camera pair observing

an approaching C12 aircraft in a custom 3D Virtual World (3DVW). Experimental results

demonstrate that the EKF is able to combine SMV and GPS with INS individually or in

tandem to achieve Root Mean Squared Error (RMSE) less than 2 cm when both sensors

are available. When GPS is denied or lost the EKF with SMV achieves RMSE less than 10

cm at distances greater than 20 m from the stereo camera system.
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COMBINED STEREO VISION AND INERTIAL NAVIGATION FOR AUTOMATED

AERIAL REFUELING

I. Introduction

Since the Berlin Airlift, it has been no secret that the United States Air Force (USAF)

is capable of rapidly responding to any situation at any necessary scale. The Berlin Airlift

required a mission to be flown every 90 seconds delivering 2,323,738 tons of supplies to

West Berlin [9]. It was this venture that set the stage for the Allies resisting future Soviet

advances and growth. Since then Global Mobility and Global Strike have been cemented as

two of the Core Missions of the Air force. For both of theses Missions, in-flight-refueling is

a key capability requirement. Aerial refueling enables increased range and increased flight

time for extended missions enabling the USAF to meet its Core Missions [10]. However,

there is currently no system in place that allows Unmanned Aerial Vehicles (UAVs) to take

advantage of this capability. UAV use in the last decade and a half has risen significantly.

Between 2002 and 2010 the Department of Defense (DoD) increased the number of UAVs

by a factor of 40 [11] and, in 2010, the USAF procured more unmanned than manned

aircraft [12]. As UAV use increases the USAF is looking for ways to bring aerial refueling

to UAVs. In order to do this, the process must be automated leading to Automated Aerial

Refueling (AAR). The DoD is heavily researching ways to make AAR for UAVs possible.

Many different technologies have already been evaluated for their effectiveness in AAR

use. GPS was looked at early on and found to be capable of achieving cm level accuracy

[13,14]. However, GPS may not be robust enough. It is susceptible to denial and degradation

or blockage from the tanker while refueling [15]. To rectify this, other technologies have

also been tested. Optics have been a strong field of study in the last decade. Areas such

as LiDAR [1], Monocular Machine Vision (MV) [16, 17], and SMV [8, 18, 19] have all been

explored. Specifically for MV and GPS, research has been conducted to combine multiple
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sensors to minimize the weaknesses in each. Initially this was as simple as using GPS while

it is available, and using the MV as soon as the receiver is too close to the tanker for the

GPS to be effective [5, 20]. A more effective approach has been to combine the MV and

GPS with INS through the use of a KF [6,21,22].

Currently, none of this work has explored combining SMV with other sensors in the

same fashion. Additionally, the majority of the work combining sensors have two key issues

that can not be ignored. First, most of the optical approaches involve the receiver aircraft

looking up at the aircraft, with the exception of [22,23]. This potentially requires impossibly

expensive and impractical modification to receiver platforms. The upcoming KC-46 Pegasus

refueling tanker already has a stereo camera system in place for the boom operators which

could be utilized to perform SMV [24]. Additionally, many of the vision algorithms used rely

on markers or beacons to assist the MV systems [6,22,23,25] which may require additional

expensive modifications to all receiver aircraft. Combining SMV, GPS, and INS through a

KF will allow the system to make the best use of all three sensors and take advantage of

the existing KC-46 technology.

1.1 Problem Statement

The goal of this research is to demonstrate the effectiveness of combining SMV pose

estimation with GPS/INS data for AAR utilizing a realistic simulated aerial refueling tra-

jectory. Both a tanker and a receiver aircraft will be represented in the simulated refueling

trajectory. The SMV estimate from the refueling tanker, the relative position estimate

generated by the INS from both aircraft, and DGPS will be combined through the use of

the EKF. This research will test different combinations of SMV, DGPS, and INS sensors

with the EKF to compare their performance in estimating the relative position of the two

aircraft. Quantitative analysis will be conducted on the accuracy and reliability of each ap-

proach to determine the effectiveness of adding SMV estimates as well as the effectiveness

of the individual approaches.
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1.2 Scope and Assumptions

This research specifically looks at combining the SMV, GPS, and INS in an EKF within

a simulated environment. The EKF will be designed to handle all necessary measurements.

Multiple filters designs are not evaluated though variations on tuning parameters are ex-

plored. All sensor data is simulated. The INS data is generated from navigation grade IMU

specifications. Because of this, the attitude measurements of the SMV system will not be

incorporated or evaluated. For the duration of this simulation, the INS attitude calculations

are more accurate than what the SMV system can provide.

While the research uses actual computed SMV measurements from a 3D Virtual World

(3DVW) [26,27], the development of the algorithm to calculate those measurements is not

a part of this work. Instead, this research uses the algorithm implemented by [28,29]. The

simulated cameras used to generate the SMV measurements are considered ideal, without

distortion effects.

The SMV algorithm will be run in the 3DVW on a realistic AAR flight path in order to

test it as accurately as possible. This simulated receiver will follow a direct approach from

the rear of the tanker. Approaches from formation will not be evaluated. The flight path

will be generated with flight dynamics software to ensure the aircrafts’ relative poses align

with realistic flight [30]. No additional noise will be injected into the virtual world. There

are accurate flight dynamics, but no additional turbulence, wind, or wake effects.

1.3 Overview

This thesis is organized into five chapters: Introduction (I), Background and Previous

Work (II), Methodology (III), Results and Analysis (IV), and Conclusion (V). Chapter I,

provides a brief overview of the motivation behind this research and what makes it necessary

and useful. It also bounds what is going to be explained and studied through this research.

This will include some brief background and history, but the majority of that will be covered

in Chapter II.

Chapter II really consists of two different sections. The first is the theory overview.
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Some of the concepts used later in the research require explanation of the basic background

and mathematical theory behind their operation to set up more detailed, research specific

explanations in Chapter III. The second section is the background. This covers the concepts

and ideas that have been implemented or studied previously that are relevant, included, or

built upon in this research. Topics include the GPS, LiDAR, MV, and SMV measurement

techniques as well as the Fuzzy Filter and EKF sensor fusion techniques.

Chapter III explains the specific approach used to perform the experiment. It further

develops some of the theory from Chapter II into the specific designs such as the development

of the error state filter model and the relative filter. All aspects of the simulation are

explained as well, beginning with simulated flight paths and sensor generation through

implementation of the filter software. It also contains some results of preliminary work

required to successfully implement the filter. However, the major results of the research are

contained in Chapter IV.

Chapter IV presents the experimental findings. Filter performance is displayed for the

different scenarios and tuning parameters used in the experiment. Following presentation

of the data, the different implementations are compared and evaluated. Finally, the impact

of the results will be discussed.

Chapter V summarizes what was accomplished in this research. This will highlight

important take-aways from the results and discuss what could be done to fix or improve

them. This chapter will provide recommendations for future work that could improve or

build upon the work that was accomplished here.

4



II. Background and Previous Work

This chapter provides the necessary background on the theories and techniques used to

perform this research. Critical topics include KFs, INSs, and SMV. A presentation of past

research work is also outlined.

2.1 Reference Frames

The information obtained in navigation is only useful when the frame of reference is

known. While there are a many different reference frames commonly used to determine

navigation solutions, this section explains the basic definitions for the frames used in this

specific research.

2.1.1 Earth-Centered Inertial Frame.

The Earth-Centered Inertial Frame (ECI) is a reference frame aligned with the center

of the earth, the earth’s spin axis, and the stars. The earth’s center is the center of the

ellipsoidal representation of the earth’s surface. The inertial label indicates that the frame

does not rotate with the earth’s rotation. Any object stationary on the earth has motion

within ECI to match the rotation of the earth. A complete definition requires identifying

a point at which the ECI and the Earth-Centered Earth Fixed (ECEF) align. Although

other definitions exist, the scientific community achieves this point by directing the x-axis

to point from the earth to the sun at the vernal equinox. The ECI is notated with the

symbol i [31].

2.1.2 Earth-Centered Earth-Fixed.

The ECEF frame is similar to the ECI frame except, as the name suggests, it is fixed

to the earth and rotates with it. It shares the same origin as the ECI frame, and the z-axis

is also aligned with the earth’s spin axis pointing toward the true North Pole. The x-axis

points from the origin to the meridian defining 0◦ longitude and the y-axis points from

the origin to the 90◦ east meridian. Because position is often needed relative to the earth,
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the ECEF frame is necessary for an absolute representation of such a position. The ECEF

frame is notated with the symbol e [31].

2.1.3 Local Navigation Frame.

The Local Navigation (Nav) frame is different from the previous two frames due to its

use of a moving origin. The origin of the Nav frame is the object described by a navigation

solution. One common Nav frame definition is North-East-Down (NED). The z-axis is the

line from the origin down to the point normal to the surface of the ellipsoidal representation

of the earth’s surface. The x-axis points from the origin to the North Pole but is maintained

orthogonal to the z-axis. The y-axis is defined to be the line pointing from the origin to the

east, and it is also orthogonal to z- and x-axes. This research will use the NED frame. The

NED frame is notated with the symbol n [31]. The NED frame is in Figure 2.

2.1.4 Body Frame.

The Body frame shares its origin with the Nav frame. The primary purpose of the Body

frame is to notate the origin and orientation of the object of interest. The z-axis points

down from the bottom of the object. The x-axis points forward, often in the direction of

travel. The y-axis points out the right side of the object. The three axes are orthogonal to

each other like the other reference frames. The Body frame is most useful for describing the

angular motion of an object. Common methods for describing the rotations about the z-,

x-, and y-axes in aircraft are roll, pitch, and yaw. Many of the sensors used to determine

navigation solution reside in the Body frame [31]. The Body frame is notated with the

symbol b. The Body frame is in Figure 1.
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Figure 1. 3DVW Setup and Reference Frames

2.1.5 Geodetic Frame.

The World Geodetic System 1984 (WGS-84) is a Conventional Terrestrial Reference

System (CTRS). WGS-84 works with the understanding that spherical models of the earth

are inadequate, and the earth is best represented as an ellipsoid of equal gravitational

potential. The geodetic coordinate system is based off of the surface of this ellipsoid while

the origin is the center of the ellipsoid. The z-axis points from the origin to the International

Earth Rotation and Reference System Service (IERS) Reference Pole. The x-axis points

from the origin to the Bureau International del’Heure (BIH) Zero Meridian orthogonal

to the z-axis. The y-axis is defined as orthogonal to both the x-axis and the z-axis in a

right-handed coordinate system. However, Geodetic frame coordinates are not expressed

relative to x-, y-, and z-axes. Instead, they are expressed in latitude, longitude, and height.

Latitude is the angle from the equator, the x-,y-plane, to the North Pole. Longitude is the

angle between the Zero Meridian plane and the plane formed by the meridian of the object

location. Height is defined as the orthogonal distance from the ellipsoid surface. Geodetic

coordinates can also be used to track the location of the origin for navigation solutions.

When an object is traveling along the surface of the earth, its motion is easiest to define

relative to the earth. Geodetic coordinates easily make this reference at any point on the

surface by representing each point as two rotations and a height above the ellipsoid [32].
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Figure 2. NED and Geodetic frames

2.2 Notation

This section explains some of the notation that will be used throughout this document.

Scalar: represented by upper or lower case letters

ex: A or a

Vector: represented by bold lower case letters

ex: a

Matrix: represented by bold upper case letters

ex: A

DCM: subscripts indicate starting reference frame, superscripts represent ending

reference frame

ex: xbCb
ax

a rotates vector x from frame a to frame b
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Rotations: subscripts represent relative rotations from one frame to another, super-

scripts represent frame of reference

ex: Ωc
ba is the rotation of a relative to b expressed in frame c

Time: represented as a function of t or a subscript of another variable

ex: xi and x(ti) both represent the vector x at time i

2.3 Kalman Filters

The KF is a recursive algorithm used to combine data for reduced estimation error. KFs

are commonly used to estimate information such as position, speed, and attitude required

for navigation. These values are the system states. The KF performs estimation by de-

termining the statistical mean of the states and their associated covariance or uncertainty.

Each KF performs two basic actions: propagate and update. The propagate stage utilizes

the known system dynamics to predict future states when measurements are not available.

As the system propagates with no known measurements, the covariance continues growing to

accurately represent the knowledge of the system. The update stage incorporates measure-

ments and utilizes their known mean and covariances to correct the propagated estimate.

The effectiveness of the KF lies in its ability to utilize all information given to it regard-

less of the quality. The update state uses the measurements and their known covariances

to correct the system estimates. While all measurements improve the system uncertainty,

measurements with large uncertainty impact the system less than measurements with low

uncertainty. The KF and EKF are discussed in this section.

2.3.1 Kalman Filter.

The basic KF, or Linear KF, forms the structure that the EKF also utilizes. However,

the KF requires the system and measurement dynamics to be linear. This limitation is

discussed further in Section 2.3.2. The KF dynamics are defined by

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (1)
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which represents the derivative ẋ(t) of the states, x(t). In Equation (1), F(t) models the

state dynamics, B(t) is the input matrix, and G(t) is the noise matrix while u(t) represents

the known control inputs and w(t) represents the white, zero-mean, Gaussian system noises.

Likewise, the measurement dynamics are defined in the same fashion. The measurement

dynamics for a measurement z(ti) at a given time ti are defined by

z(ti) = H(ti)x(ti) + v(ti) (2)

where H(ti) is the measurement matrix relating the measurement to the states and v(ti) is

the white, zero-mean, Gaussian measurement noise. Equation (1) forms the basis of a filter

in continuous time while Equation (2) shows measurements can only be taken in a discrete

time (ti). To account for this Equation (1) is modified to

x(ti+1) = Φ(ti)x(ti) + Bd(ti)u(ti) + wd(ti) (3)

where wd(ti) is the discrete noise realization, Bd(ti) is the discrete input matrix, and Φ(ti)

is the discrete state transition matrix defined by

Φ = eF∆t (4)

For this research there are no known control inputs to the system so the B term is ignored

for all future equations [33].

2.3.1.1 KF Propagate.

The propagate equation with the inputs removed for the KF estimate to a discrete point

in time i is

x̂−
i = Φi−1x̂

+
i−1 (5)

where x̂+
i−1 is the state estimate of x(ti−1) after any measurements have been incorporated,

and x̂−
i is the state estimate at the next time step before any measurements are incorporated.
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A − denotes the a priori estimate before a measurement is incorporated at that time. A

+ denotes the a posteriori estimate after the measurement is incorporated. The state’s

covariance propagation equation for P is

P−
i = Φi−1P

+
i−1Φ

T
i−1 + Qd (6)

where Qd is the discretized noise covariance defined by

Qd =

∫ ti

ti−1

Φ(ti − τ)GQ(τ)GTΦ(ti − τ)Tdτ (7)

Adding Qd incorporates the new process noise being added to the system at each step [33].

2.3.1.2 KF Update.

The measurement dynamics model was defined in Equation (2) but the update equations

define how the filter will incorporate the new measurements. Before updating the state

estimate or covariance, the Kalman gain K is calculated by

Ki = P−
i HT

[
HP−

i HT + Ri

]−1
(8)

where Ri is the measurement noise covariance matrix. Once K is calculated the new state

estimate is

x̂+
i = x̂−

i + Ki

[
zi −Hx̂−

i

]
(9)

where zi is the measurement at time i. The covariance is calculated by

P+
i = P−

i −KiHP−
i (10)

Once updated, the new post measurement estimate and covariance are fed back into the

propagate equations to continue the estimation for future times [33].
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2.3.2 Extended Kalman Filter.

The EKF utilizes the same basic principles as the KF but slightly modifies the approach

to help account for nonlinear system and measurement dynamics. Thus, the dynamics

defined in Equation (1) change to account for the nonlinearity. The dynamics representing

how x(t) change over time are now

ẋ(t) = f [x(t),u(t), t] + G(t)w(t) (11)

and are a function of the current state, inputs and time with noise. The measurement

equation is also modified in the same way giving

z(t) = h [x(t), t] + v(t) (12)

where it is a function of the current state and time with noise. To account for the new

dynamics, the EKF linearizes about a nominal estimate. Modifying the system dynamics

again provides

ẋn(t) = f [xn(t),u(t), t] (13)

and

zn(t) = h [xn(t), t] (14)

for the measurement dynamics, where ẋn(t) is the nominal state and zn(t) is the nominal

measurement. Because the nominal state does not perfectly match the true state, there is

a difference between the two values called the perturbation defined by

[x(t)− xn(t)] (15)

resulting in the perturbation equation

δẋ(t) = F [t; xn(t)] δx(t) + G(t)w(t) (16)
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where F is determined by finding the Jacobian of f

F [t; xn(t)] =
∂f [x,u(t), t]

∂x

∣∣∣∣
x=xn(t)

(17)

at the nominal value of x. A similar perturbation model is defined for the measurements

δz(ti) = H [t; xn(t)] δx(ti) + v(ti) (18)

where the Jacobian is also used such that

H [ti; xn(t)] =
∂h [x, ti]

∂x

∣∣∣∣
x=xn(ti)

(19)

The EKF estimates the perturbation of the nominal instead of measuring the estimate

states. Thus, the resulting output of the filter is the best estimate of the perturbation

about the nominal. To obtain the best estimate of the states, x̂(t) is determined by

x̂(t) , xn(t) + δ̂x(t) (20)

where the best estimate of the perturbations, δ̂x(t) is added to the nominal value. Once

a measurement is incorporated and the system is re-linearized, the best estimate of the

perturbation δ̂x(t) is now 0 giving

xn(ti) = x̂(t+i ) (21)

for the new nominal value [33].

2.3.2.1 EKF Propagate.

Since the EKF is estimating the perturbation, x̂ is propagated by integrating the lin-

earized state dynamics according to

x̂−
ti+1

= x̂+
i +

∫ ti+1

ti

f
[
x̂+
i ,u, ti

]
dt (22)
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The propagation of the state covariances is found by

P−
i+1 = ΦiP

+
i ΦT

i + Qdi (23)

which appears identical to Equation (6). However, Φ is calculated using Equation (4) and

F found in Equation (17) [33].

2.3.2.2 EKF Update.

The measurement update portion of the EKF, like most of the EKF, is similar to the

process in Section 2.3.1.2 while still maintaining some differences. The Kalman gain K can

be found by

Ki+1 = P−
i+1H

T
[
ti+1; x̂−

i+1

] {
H
[
ti+1; x̂−

i+1

]
P−

i+1H
T
[
ti+1; x̂−

i+1

]
+ Ri+1

}−1
(24)

where H comes from Equation (19). The resulting update equation for the perturbation

estimate is

δ̂x
+

i+1 = δ̂x
−
i+1 + Ki+1

{
zi+1 − zn(ti)−Hi+1δ̂x

−
i+1

}
(25)

Recall that δ̂x
−
i+1 becomes 0 after the update and re-linearizion. Propagating this pertur-

bation will simply propagate 0 meaning that δ̂x
−
i+1 = 0 and the update equation for the

perturbation now becomes

δ̂x
+

i+1 = Ki+1 {zi+1 − h [xn,t+1, ti+1]} (26)

Utilizing Equation (20) and Equation (26) the updated state estimate becomes

x̂+
i+1 = x̂−

i+1 + Ki+1 {zi+1 − h [xn,i+1, ti+1]} (27)

and the updated covariance matrix becomes

P+
i+1 = P−

i+1 −Ki+1H
[
ti+1; x̂−

i+1

]
P−

i+1 (28)

14



Once the measurements have received an update, the filter will re-linearize, zero out the

perturbation estimate, and repeat the process of propagating and updating. By repeatedly

performing this process, the EKF will approximate the nonlinear dynamics as a first order

linear system provided the nominal estimate does not drift too far from the truth [33].

2.4 Inertial Navigation System

The IMU is the core sensor for the filter used in this research. It provides both the

mechanized positions for each aircraft and the error models used as the basis for the EKF

propagation. This research uses a simulated strapdown IMU producing three dimension

accelerations and rotational rates. An INS is a self-contained system capable of determining

a vehicles navigation state. Unlike most other navigation techniques, an INS does not

require any external inputs or measurements from the environment once initialized. The

system drift over time makes it unlikely to be the sole source of measurement, but the

self-contained system makes it a critical component of many navigation systems.

2.4.1 INS Basic Operation.

The INS contains two basic components, an IMU and a processor, although the IMU

and processor may be different components of a larger system [34]. Each IMU contains three

rate gyroscopes and three accelerometers. Each gyro is capable of measuring the angular

rate about a single axis. Thus, three gyros are placed orthogonally in the IMU to allow it

to measure angular rates about all three axes. Like the gyro, each accelerometer is able to

measure in a single axis, requiring three orthogonally placed units. However, accelerometers

measure the specific force along that axis. Therefore, the accelerometers measure both the

forces acting on the vehicle due to its acceleration and the forces acting on the vehicle due

to gravity. The accelerometer is unable to differentiate between the acceleration forces and

the gravitational forces. To accurately calculate the inertial accelerations, the measured

effects of gravity must be removed before being integrated. The integration is performed

by the processor in the INS or by the part of the IMU found in the larger system [31]. This

process is discussed more in Section 2.4.2.
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2.4.2 Inertial Navigation System Equations.

The mechanization of IMU measurements within an INS is a well-developed set of equa-

tions. This paper uses the equations and methods from Titterton and Weston [34].

The current state, x, of each aircraft is stored as navigation data. pw is the current

position in Geodetic coordinates consisting of the latitude L, the longitude ` and the Height

Above Ellipsoid (HAE) h. The term vn is the velocity in the NED frame. The term Cn
b is

the Direction Cosine Matrix (DCM) representing the rotation from the body frame to the

NED frame.

The state is updated by mechanizing the local navigation frame strapdown inertial

navigation equations shown in Equations (29) to (31) [34]. The position navigation equation

is

ṗn = vn (29)

where ṗn is the derivative of the NED position. The NED velocity vector, vn, will be

discussed further in Equation (34). The velocity navigation equation is

v̇n = Cn
b f b − (2ωn

ie + ωn
en)× vn + gn

l (30)

where v̇n is the derivative of the NED velocity, f b is the specific force vector measured by

the IMU, ωn
ie is the earth rotation rate in the NED frame, ωn

en is the rotation of the NED

frame relative to the earth in the NED frame, also called the transport rate, and gn
l is the

local gravity expressed in the NED frame. The rotation navigation equation is

Ċn
b = Cn

b Ωb
nb (31)

where Ċn
b is the derivative of the body to NED rotation and Ωb

nb is the matrix form of the

body rate. The matrix form of the body rate is defined as

Ωb
nb =

[
ωb
nb

]
×

(32)
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where ωb
nb is the body rate with respect to the NED frame expressed in the body frame,

and the [ ]× places that vector into a skew symmetric cross product matrix. The IMU

measures all of the rates, not just the rates in the NED frame. To calculate the rates in

the NED frame, the components not caused by the direct motion of the aircraft must be

removed. Thus, the body rate with respect to the NED frame can be found by differencing

the measured body rates and the navigation frame rates expressed in the body frame. This

is broken down by

ωb
nb = ωb

ib −Cb
n [ωn

ie + ωn
en] (33)

where ωb
ib represents the measured body rates provided by the IMU and Cb

n = [Cn
b ]T . The

earth’s rotation and the the frame’s transport rate are both summed and rotated into the

body frame before differencing with the measured rates.

One additional step is required because Equation (29) is expressed in the NED frame

while the current position is expressed in Geodetic coordinates. The rate of change for the

position in the Geodetic frame is defined as

ṗw =


L̇

˙̀

ḣ

 =


vN

RN + h
vE secL

RE + h

−vD

 ; vn =


vN

vE

vD

 . (34)

where L̇ is the rate of change in the latitude, ˙̀ is the rate of change in the longitude, ḣ

is the rate of change in the height, RN is the meridian radius of curvature and RE is the

transverse radius of curvature. The velocity vector vn is broken into vN , vE , and vD, the

north, east, and down velocities respectively. The final Geodetic position can be determined

by integrating the Geodetic rates for the given time increment [34].

2.4.3 Inertial Measurement Unit Error Model.

Like any measurement devices, the gyro and accelerometer contained in the IMU are

imperfect. This results in measurements containing some noise. The noise model for the

IMU is used as a basis for the propagation of the EKF covariance. By knowing the behavior
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of the gyro and accelerometer noise parameters, the uncertainty in their integrated solution

can also be calculated. Both the accelerometer and the gyro contained in the IMU can be

modeled in a similar fashion. This paper uses a simplified gyro model from [35] without the

static bias, which can be seen in Equation (35):

fb = g + bg + wgw (35)

The measured specific forces fb consist of the true gyro rates g, a First-Order Gauss-Markov

(FOGM) bias bg, and a zero-mean, Gaussian, white noise parameter wgw defined by the

process noise covariance matrix Qgw where

Qgw = σ2
gwI3×3 (36)

The term σ2
gw is the variance of wgw. The FOGM gyro bias term is defined as

ḃg = −bg

τg
+ wgb (37)

where τg is the FOGM time constant, and wgb is a white noise term defined by the process

noise covariance matrix Qgb where

Qgb =
2σ2

gb

τg
I3×3 (38)

The term σ2
gb is the variance of the gyro bias. The values of the gyro parameters are in

Table 2.

The accelerometer is modeled in the same way as the gyro model. The simplified ac-

celerometer model is defined as

ωb
ib = a + ba + waw (39)

The measured angular rates ωb
ib consist of the true accelerometer rates a, a FOGM bias

ba, and a zero-mean, Gaussian, white noise parameter waw defined by the process noise
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covariance matrix Qaw where

Qaw = σ2
awI3×3 (40)

The term σ2
aw is the variance of the accelerometer random walk. The FOGM accelerometer

bias term is defined as

ḃa = −ba

τa
+ wab (41)

where ḃa is the derivative of the accelerometer bias, τa is the accelerometer FOGM time con-

stant and wab is the accelerometer white noise term defined by the process noise covariance

matrix Qab where

Qab =
2σ2

ab

τa
I3×3 (42)

The term σ2
ab is the variance of the accelerometer bias. For both the gyro and accelerometer

errors, it is assumed the variance values given in the IMU specifications are the same for

all three axes.

2.5 Previous Work

Vision aided navigation and its application in AAR is well researched. Unlike most

vision aided navigation, AAR is interested in the relative positioning of two aircraft during

the refueling process rather than the absolute position of a single aircraft over a given flight

path. The selected research summarized below highlights the progression of vision aided

navigation and AAR.

2.5.1 GPS.

The U.S. DoD created the GPS to provide accurate position, velocity, and timing.

Initially such accuracy was only specified to 10 m for military users and 100 m for civilian

users. Improvements in GPS technology and changes in policy led to a significantly higher
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accuracy for all users, including civilians. A user can now obtain theoretical relative position

accuracies in the mm range. DGPS and carrier-phase measurements achieve that accuracy

by working together. DGPS uses two receivers and subtracts their solutions from one

another. This subtraction removes errors common to both receivers such as satellite clock,

ephemeris, and atmospheric error. However, DGPS alone will only achieve approximately

0.5 m accuracy without the carrier-phase measurements. Code measurements are the most

common method of calculating position in GPS. Code measurements simply calculate the

difference between the satellite transmission time and the reception time. Because the signal

is traveling at the speed of light, even small differences in time can amount to large errors. To

obtain higher levels of accuracy, carrier-phase measurements determine the phase difference

between the transmitted signal and the receiver signal. These differences are expressed in

cycles which can be translated to distance with wavelength. These wavelengths can be 19

cm or 24 cm depending on which signal is being used. This is a much smaller scale of error

leading to more accurate measurements [36].

DGPS accuracy is ideal for relative navigation and AAR. Major Christopher Spinelli at

the Air Force Institute of Technology (AFIT) tested DGPS for the relative navigation of

two aircraft. Each aircraft was given a GPS receiver. The lead aircraft reference receiver

had a combined INS/GPS unit which provided roll, pitch, yaw, and roll rate as well as

the unadjusted GPS measurements. The wing aircraft was treated as the mobile receiver

referenced from the lead. Maj Spinelli conducted eight separate flight tests with two data

sets per test. After 11 hours of test time, he achieved Mean Radial Spherical Error (MRSE)

of 3.3 cm, though the total average MRSE for all flight tests was 9.5 cm [13].

While this work demonstrates GPS to be an effective relative navigation tool, there are

other factors that prevent it from being the sole source of relative navigation estimation for

AAR. First, AAR requires a receiver to fly in close proximity to the tanker from which it is

refueling. This results in sky blockage where the proximity of the tanker blocks the receiver’s

line of sight to the satellites needed for its solution [15]. Second, GPS is susceptible to

interference. The Air Force Research Lab (AFRL) specifically targets the use of additional

sensors to allow the AAR system to function where GPS is ”denied or degraded” [37].
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2.5.2 LiDAR.

Once such avenue that has been explored is to use LiDAR. LiDAR uses light or lasers

to measure object distance. By shining a laser at the target and measuring the return, a

LiDAR system can obtain a distance from the target. Second Lieutenant Joseph Curro at

AFIT explored this application. He utilized a scanning LiDAR which projects the lasers in

a grid or pattern which allow for a measurement over an area and, thus, calculate more of

the aircraft in Figure 3. Lt Curro installed the LiDAR on the receiving vehicle looking up

at the representation of the tanker. Utilizing this approach, Lt Curro was able to obtain

MRSE of 33-42 cm, dependent on the flight measured [1]. While this level of accuracy is

desired, the use of LiDAR requires modification to either all receiver aircraft or all tankers

to incorporate the new system. LiDAR is also an active sensor, sending bursts of energy out

from the originating aircraft. This research focuses on utilizing capabilities and equipment

already present on the KC-46 tanker and existing receiver aircraft while using a more passive

approach.

Figure 3. Snapshot of LiDAR scan [1].

2.5.3 Monocular Vision.

Monocular Vision (MV) is another approach used to support or even replace GPS.

Unlike LiDAR, MV is entirely passive. MV utilizes a single camera to estimate an object’s
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location. Mammarella et al. utilize a MV approach to estimate a receiver’s position in

a refueling scenario. They place a camera on the receiver looking up at the tanker in

Figure 4. The camera takes pictures of the tanker and utilizes known algorithms to identify

and track features. The algorithm takes the previous estimate, from the MV system or

the GPS, and uses it to translate feature pixel coordinates to a 3D estimate of the receiver

location. They achieved mean errors of 4-10 cm in the x, y, and z dimensions with a total

distance error inside the refueling window of 19.4 cm and a 1-σ of 9.2 cm [2]. Using the

same approach with different feature matching algorithms, Fravolini et. al. achieved similar

results with total mean error of 15.7 cm and 1-σ of 4.9 cm [3]. Experiments with feature

detection and tracking have been done in in numerous other AAR tests and experiments

seen in [2, 4, 20,21,38–40].

Figure 4. Experimental set up for simulation from [2–7].

There are many different configurations that have been used to test MV estimation.

Some experiments add passive optical markers to the viewed aircraft or identify specific

features to aid the detection and tracking as seen in [5–7, 16, 20, 23, 41–43]. Instead of

markers, some add active beacon configurations. Rather than simply placing a symbol on

the viewed aircraft, a form of light is placed where the MV system can see it broadcasting at
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specific frequencies and patterns seen in [16,17,44,45]. Ding, Wei, and Wang implemented

a beacon-based experiment and achieved accuracies in the mm range within 10 m of the

tanker [46]. Variations are also seen in the camera placement with some receiver-based

MV systems as in [2–7, 16, 20, 21, 38–43] and some tanker-based as in [22, 23]. Much of the

work done with MV has been virtual due to the complexities and cost associated with live

flight tests, though there have been multiple experiments that tested MV in a non-virtual

setting [38–40]. Howard and Veth implemented a MV approach with predictive rendering

in a non-virtual experiment. The mean errors for the entire flight were 54 cm, 26 cm, and 9,

cm in the x-, y-, and z-axes at distances of up to 40 m from the tanker [38]. Calhoun, Curro,

and Raquet implemented a MV image rendering approach that achieved mean relative error

of 17 cm with 9 cm 1-σ in a live flight test [40].

Unfortunately, MV is limited in its capable range and lacks depth information due to

its use of a single camera. MV is a close range estimation technique requiring a different

measurement method when the receiver is at a greater distances from the tanker [20]. When

using the MV approach, a 3D scenario is represented in a single 2D image. To alleviate

this shortfall most approaches utilize the known markers or specific features on the aircraft.

Markers require modification to existing platforms and specific features are more easily

obscured and provide a less robust solution [47]. This research focuses on a similar technique

using two cameras. While this does not fix the range shortfall, it does allow the system

to obtain the depth lost in a MV system which reduces the need for beacons, markers, or

specific features.

2.5.4 Stereo Machine Vision.

Stereo Machine Vision (SMV) incorporates depth information the MV approach could

not obtain. While not extensively explored in the AAR realm, SMV has been utilized in

terrestrial applications. Nedevschi et al. demonstrated the use of stereo vision for obstacle

detection and horizontal ranging in traffic. The SMV system creates a full 3D reconstruction

of the scene. 3D points are grouped into objects as it becomes apparent that they share the

same trajectory. A KF is used to predict object location to help the algorithm maintain
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the same object frame to frame. When a new set of stereo images are taken, the prediction

is used as a threshold to search for objects. Objects inside the threshold with similar

trajectories are grouped as the same object. Once the object identifies, its new 3D location

is used to update the KF. The system was tested in urban, highway, and country road traffic

conditions. The final result was less than 10 cm error at a 10 m baseline distance up to 2

m error at 95 m. This scenario is simpler than AAR by effectively removing one dimension

and ignoring attitude, but it clearly demonstrates the effectiveness of stereo image position

estimation [48]. SMV applications can also be seen in robotics [49, 50] and in many small

UAV navigation approaches utilizing SMV as part of a visual odometry algorithm [51–53].

AFIT’s Lt Kyle Werner investigated the effectiveness of a stereo positioning approach

where only MV had been tested previously. To accomplish this he utilized a simulated

AAR environment with an F-15 approaching a tanker fitted with a stereo camera system.

He used the stereo vision system to generate disparity maps of the F-15. A speckle filter

application was used to remove high-disparity noise by eliminating matches which were not

surrounded by enough similar-disparity matches for a given filter window size. Once filtered,

the disparity maps were used to generate the point cloud representation of the aircraft seen

in Figure 5.

Figure 5. Filtered SMV point cloud generated from stereo image pair [8].

To obtain the desired position and attitude estimates, a variant of the Iterative Closest

Point (ICP) algorithm was implemented on the generated point cloud with the stored F-15
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model. To ensure the feasibility of a real world application, the algorithm was also tested

on a disparity map created from a physical 1:7 scale F-15 model with a stereo vision system.

To test the full scenario, stereo estimates were created throughout a 25 second simulation of

the F-15 approaching the tanker. The results showed the effectiveness of the stereo estimate

for AAR. As the aircraft moved to within 14 m of the tanker, the error in all three axes

dropped under 10 cm and all three rotation errors dropped below 1◦ [8].

AFIT students, Brad Denby and Capt Kevin Colson, have since explored a non-virtual

application of SMV to AAR. They utilized the same physical model as Lt Werner. Instead

of simply using it to validate their algorithm, they used it to simulate the end of a refueling

approach vector. The camera was attached to a guide cable between a large and a small

truss with the F-15E model located at the small truss. The camera took stereo image pairs

as it slid down the cable to simulate the F15 approaching the tanker [18, 19]. From here

their work diverged from each other.

Denby explored three different stereo algorithms focusing on real-time application. He

looked at semi-global block matching on a CPU, block matching on a CPU, and block

matching on a Graphics Processing Unit (GPU). He utilized the stereo algorithms to gener-

ate disparity maps. The disparity maps were then filtered, used to reconstruct the 3D point

cloud and then matched to a virtual F15 model to determine the translation and rotation of

the F15 and, ultimately, the position estimate. The setup was unable to achieve sufficient

accuracy for AAR due to camera calibration issues. Errors were as large as 1.85 m in the

1:7 scaled down environment. However, he was able to achieve near real-time operation

with 28.4 Hz operation of the GPU algorithm [19].

Capt Colson explored structure from motion, block matching stereo reprojection, and

simulated stereo reprojection to generate point clouds rather than disparity maps. This

relies on multiple viewpoints to create a 3D point cloud of the object. Once the point cloud

was generated, Capt Colson used a number of different techniques to match the point cloud

to the model. He used Principle Component Analysis, Singular Value Decomposition, and

ICP with varied numbers of iterations. These processes determined his F15 translation

and rotation allowing him to calculate the relative position. Each method of point cloud
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generation and point cloud alignment were looked at for speed and accuracy. Like Denby,

every approach had relatively high errors in the position, though he was able to identify

which algorithms tended to perform more quickly.

2.6 Sensor Fusion

This section explores two of the most common methods used to fuse different sensor

types for improved estimation in AAR. One early method was the fuzzy filter, while more

recently the EKF has been the method of choice.

2.6.1 Fuzzy Filter.

Research in recent years has shifted from looking at any single sensor to provide the

needed data to combinations of sensors or sensor fusion to utilize each sensor’s advantages

while using other sensors to minimize the disadvantages. Many different sensors are tested

but the work outlined below will most commonly use GPS, INS, and vision sensors. The

simplest sensor combination is called a fuzzy filter.

A fuzzy filter uses a linear function to adjust the weights of the GPS and MV measure-

ments. When the receiver aircraft is far enough from the tanker to avoid the distortion

the filter only uses GPS. As the receiver closes the distance to the tanker, the weights are

adjusted until the receiver reaches the point at which the system switches entirely to MV

based on the linear distance from the tanker. In one example, 40 m from the tanker began

the transition and 23 m from the tanker was completely MV. This system measured the

distance from the receiver to the tanker at 20 m with RMS values of 8 cm, 4 cm, and 7 cm

in the x, y, and z directions respectively [20]. Because this is a linear combination only, the

fuzzy filters combine only two separate measurement types, allowing GPS, MV or a mix.

Similar approaches can be seen in [5, 20,41,42]. Sensor fusion has since been accomplished

primarily with the more robust KF.
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2.6.2 Extended Kalman Filter.

An EKF is used in this research instead of a KF due to the nonlinear nature of aircraft,

and the majority of the AAR work is done in the virtual realm. Mammarella et al. exploited

the simulation environment and experimental setup used in [5] to test the fusion of MV and

GPS/INS data through the use of an EKF. The EKF calculated the covariance and gain

like the standard KF. However, the EKF propagated the system states and determined the

output vector using nonlinear state dynamics equations. The EKF received the command

vector, the output vector (calculated from the states), and the number of corners from the

Pose Estimation algorithm to ensure the MV measurement was valid. The EKF fusion

resulted in errors with two orders of magnitude less than either the GPS or MV solutions

individually. The fusion also resulted in errors with an order of magnitude better than the

authors’ previous work with a fuzzy sensor fusion strategy [4].

Williamson et al. utilized a similar approach by implementing a Global Extended

Kalman filter to combine differential carrier-phase GPS, INS, and Electro-Optic (EO) sen-

sors for relative position estimation. However, experimental setup placed the EO sensor on

a simulated tanker near where the boom operator is located instead of the receiver. Infrared

beacons were placed on the trailing aircraft for the EO system to identify and derive position

and attitude. Three different combinations of GPS, INS, and EO were tested to compare

functionality. The GPS/INS/EO, INS/EO, and GPS/INS all performed with less than a

10 cm position error in all three axes. The experiment also revealed relative attitude errors

of less than 2◦. The determined positions and attitudes were fed the outputs of the relative

estimate to the boom controller. Using only the provided data, the boom controller auto-

matically connected to the receiver [22]. The combinations of GPS, INS, and MV utilizing

an EKF in a virtual environment for relative navigation are also in [6, 21,23,45,54].

While there is a significant amount of work done in AAR applying EKFs to MV sensor

fusion, the same application has not been applied to SMV. However, there have been a

number of terrestrial applications utilizing SMV as part of their sensor fusion strategy.

SMV is a more popular resource in UAV stereo odometry. Stereo odometry utilizes the
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distances to known features to track changes in position between sets of measurements.

Rather than measuring the distance from the camera to an object, it tracks the motion

of the camera from those object measurements. Kelly, Saripalli, and Sukhatme tested a

UAV navigation system combining stereo visual odometry and IMU data in [53]. The

Kanade-Lucas-Tomasi algorithm was used to identify feature points which were matched

to the corresponding point in the right image with normalized cross-correlation. The 3D

positions of the matched feature points were calculated with stereo triangulation. The

stereo positioning was combined with the IMU data through the EKF. The EKF took the

100 Hz IMU measurements and combined it with the slower updating visual system. The

system clearly demonstrates the effectiveness of combining the stereo vision with the inertial

measurements in actual UAV flight. The UAV position estimate tracks the GPS and IMU

trajectory for the duration of the entire flight. The final position was only 0.6% off for a

total 405 m flight distance utilizing only stereo vision and IMU data [53]. SMV odometry

fusion with GPS and/or INS information is also in [51–53,55,56].

This background shows the significant amount of work in simulation, AAR, MV, SMV,

and sensor fusion. This chapter provides the needed theory used to form the methodology

in the next chapter. The purpose is to examine the performance of an EKF combining a

stereo vision algorithm with an INS data in a realistic refueling scenario. The trajectory is

generated with flight dynamics software to represent an authentic refueling trajectory. The

stereo cameras are placed on the simulated tanker facing the approaching receiver below.

Utilizing a stereo camera system on the tanker takes advantage of the next generation

KC-46 and avoids having to install new camera systems, markers, or beacons on existing

platforms. While the primary purpose is to examine the filter performance in a GPS denied

environment, this system is able to incorporate the GPS measurements when available.

Thus, this simulation looks at measurements both when GPS is available and when it is not.

This work presents a novel EKF combining SMV, INS, and optional GPS to provide precise

relative navigation throughout an aerial refueling maneuver. The next chapter explains how

this research uniquely combines the previously researched theories and techniques in a way

that demonstrates an effective AAR solution utilizing and EKF, GPS, INS, and SMV.
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III. Methodology

This chapter discusses the process to design an experiment to test the SMV and EKF

fusion. Figure 6 depicts the flow of the different components required for the research.

Figure 6. Research Flowchart

3.1 Extended Kalman Filter Design

The EKF used in this paper is an error state EKF, or perturbation filter, implemented

within the filtering software Scorpion [57]. The actual states described in Section 2.4.2 are

mechanized outside of the EKF while the EKF is used to track the current navigation errors.

The relationship between the truth, estimate, and errors are defined by Equations (43), (45)

and (46). The Geodetic truth position is defined by

pw ≡ p̄w + Aw
n δp

n (43)

where pw is the Geodetic true position, p̄w is the a priori solution or INS solution, δpn is

the NED error, and Aw
n is a matrix that converts from meters to radians defined as

Aw
n =


1

RN+h 0 0

0 secL
RE+h 0

0 0 −1

 (44)
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The other two components, velocity and rotation, are defined similarly. The truth velocity

is defined by

vn ≡ v̄n + δvn (45)

where vn is the true NED velocity, v̄n is the a priori solution or INS solution, and δvn is

the NED velocity error [34]. The rotation error is defined by

C̄n
b ≡ [I−Φ] Cn

b (46)

where Cn
b is the true rotation, C̄n

b is the a priori or INS rotation solution, and Φ is the

skew-symmetric matrix of the tilt errors [34]. According to this definition, the tilt errors

are assumed to be small angles. The tilt errors are related to the Psi-Angle model by

φ = ψ + δθ (47)

where φ is the vector form of Φ, ψ is the vector of errors in the inertial maintained navigation

frame or the attitude error, and δθ is the misalignment error of the computed navigation

frame against the true navigation frame defined by

δθ̇ = −ωn
en × δθ + δωn

en (48)

where δθ̇ is the derivative of the misalignment error, ωn
en is the rotation of the NED frame to

the earth, also called the transport rate, and δωn
en is the error in the transport rate [58,59].

3.1.1 Pinson 15 Model.

This filter instead uses a error state model, identified in this research as the Pinson 15

error state model. Unlike the traditional EKF described in Section 2.3.2, the Pinson model

does not utilize the Jacobian to linearize the state dynamics matrix F. Instead, a set of

linearized dynamics are used to relinearized at each point in time as seen in [34]. For this

research, the Psi-Angle model dynamics were used and taken from [58,59]. These errors are

represented in the computed navigation frame, still referenced with the superscript n. The
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position error is derived to be

δṗn = −ωn
en × δpn + δvn (49)

where δṗn is the derivative of the NED position error, δpn is the NED position error, and

δvn is the NED velocity error. The velocity error is derived to be

δv̇ = fn ×ψ + Cn
b δf

b − (ωn
en + 2ωn

ie)× δvn + δgn (50)

where δv̇ is the derivative of the velocity error, fn is the measured specific forces in the NED

frame, Cn
b is the DCM from the body to the NED frame, δf b are the errors in the measured

specific forces, ωn
ie is the earth rotation rate in the NED frame, δvn are the velocity errors

in the NED frame, and δgn is the local gravity vector in the NED frame. The attitude error

is derived to be

ψ̇ = −ωn
in ×ψ −Cn

b δω
b
ib (51)

where ψ̇ is the derivative of the attitude error, ωn
in = ωn

ie + ωn
en, and δωb

ib are the errors in

the measured body rates.

The filter model is represented by Equations (52) to (54) and (56). The growth of the

error is expressed in its basic state space form by

δẋ = Fδx + Dw (52)

where δẋ is the derivative of the error state δx, F is the dynamics matrix, D is the noise

sensitivity matrix defined to be identity, and w is the noise vector. The Pinson 15 error

state δx is defined by

δx =



δpn

δvn

ψ

δba

δbg


(53)
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This differs slightly from typical derivations [21,22] by also incorporating the accelerometer

and gyro bias states, δba and δbg as seen in [25]. This addition of the 6 bias states makes

it a Pinson 15 versus the typical Pinson 9 model. The accelerometer bias term δba is δf b

from Equation (50) and the gyro bias term δbg is δωb
ib from Equation (51). Equations (49)

to (51) are used to create the dynamics matrix F defined as

F =



− [ωn
en]× I 0 0 0

G − [2ωn
ie + ωn

en]× [fn]× Cn
b 0

0 0 − [ωn
ie + ωn

en]× 0 −Cn
b

0 0 0 −(1/τa)I 0

0 0 0 0 −(1/τg)I


(54)

where element in this matrix represents a 3x3 matrix of its own. The gravity gradient matrix

G represents the gravity gradient expressed in the NED frame [34]. The NED specific forces

fn defined as

fn = Cn
b f b (55)

The current nominal estimates of the states are provided to the filter to re-linearize Equa-

tion (54) as the filter propagates forward. The noise vector w is defined by

w =



0

waw

wgw

wab

wgb


(56)

The process noise matrix associated with the noise vector w by E
[
wwt

]
= Q is defined in
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Equation (57).

Q =



0 0 0 0 0

0 σ2
awI 0 0 0

0 0 σ2
gwI 0 0

0 0 0
2σ2

ab

τa
I 0

0 0 0 0
2σ2

gb

τg
I


(57)

Each element in the Q matrix represents its own 3x3 matrix. The process noise matrix

is created with the given IMU specifications The values of the gyro and accelerometer

parameters are seen in Table 2. The actual propagation performed in Scorpion uses a

discretized noise matrix Qd which is defined as [33]:

Qd(ti−i) =

∫ ti

ti−1

Φ(ti, τ)D(τ)Q(τ)DT (τ)ΦT (ti, τ)dτ (58)

The state transition matrix Φ is defined as

Φ = eF∆t (59)

By multiplying out the identity terms and performing trapezoidal integration Equation (58)

can be simplified to

Qd(ti−1) =
1

2

[
Φ(ti, ti−1)Q(ti−1)ΦT (ti, ti−1) + Q(ti−1)

]
∆t (60)

3.1.2 Relative Navigation Filter.

To appropriately determine relative navigation states and uncertainties, each aircraft

has its own set of Pinson 15 states from Equation (53), dynamics from Equation (54), and

noise parameters from Equation (57). The two sets of states are combined together into a
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single error dynamics equation defined as

δẋT

δẋR

 =

 FT 015×15

015×15 FR


δxT

δxR

+

wT

wR

 (61)

The error state is now defined as the combination of the tanker Pinson 15 error state δẋT

and the receiver Pinson 15 error state δẋR. As defined, the tanker state dynamics matrix

FT and the receiver state dynamics matrix FR have no impact on each other. The tanker

noise vector wT and the receiver noise vector wR are also combined into a single vector.

3.2 Measurement Models

This section develops the measurement processors designed to allow Scorpion to incor-

porate the different measurement types. Processors were design for both SMV and DGPS

measurements.

3.2.1 Stereo Vision.

The stereo vision system returns both a position and an attitude or rotation measure-

ment to be fed to the filter. Both measurements are given in the tanker’s reference frame.

Measurement processors have been designed for both; however, for this application the po-

sition measurement is more useful than attitude. With a navigation grade IMU, the small

attitude drift results in a more accurate INS attitude estimate than the stereo vision system,

so it is not shown here.

The basic stereo algorithm returns the translation and rotation relative to the left camera

acquiring the images. The SMV measurement output is converted into the tanker’s reference

frame, prior to being fed into the filter. Since both aircraft are in close proximity and

the errors are tracked in the NED frame, incorporating the measurement only requires

calculating the measurement error relative to the INS solution and rotating it into the

appropriate frame. The stereo position measurement is defined by

p̃bK
R = CbK

n An
w (pw

R − pw
T ) + bs + νs (62)
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p̃bK
R is the raw measurement of the receiver position in the tanker frame, CbK

n is the DCM

rotating from the NED frame to the tanker body frame, An
w is the matrix converting from

Geodetic radians to NED meters equal to (Aw
n )T , pw

R is the Geodetic position of the receiver,

pw
T is the Geodetic position of the tanker, bs is the SMV measurement FOGM bias, and νs

is the SMV measurement noise.

The measurement noise is defined as

νp =

[
νN νE νD

]T
(63)

where νN , νE , and νD are zero-mean, white, Gaussian noise in the north, east, and down di-

rections. The σN , σE , and σD accuracy for each measurement is determined experimentally

and is explained in Section 3.3.3.3. Error in the stereo measurements can vary depending

upon the specific scenario being implemented and non-modeled errors may appear, causing

issues in the EKF if not accounted for. In order to best account for uncharacterized errors

in the stereo measurement, a FOGM bias bs is also incorporated into the measurement

equation and defined as

bs =

[
bN bE bD

]T
(64)

The individual FOGM biases are bN , bE , and bD in the north, east, and down directions

respectively. The values used for the FOGM bias τ ’s and σ’s are defined and discussed

further in Section 3.3.3.3.3. Inserting Equation (43) into Equation (62) gives

p̃bK
R = CbK

n (∆p̄n
RT + δpn

R − δpn
T ) + bs + νs (65)

∆p̄n
RT is the NED difference between the receiver and tanker INS solutions, δpn

R is the NED

receiver position error, and δpn
T is the NED tanker position error. Rearranging the terms

give the final measurement equation

p̃bK
R −CbK

n ∆p̄n
RT = CbK

n (δpn
R − δpn

T ) + bs + νs (66)
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From Equation (66), the measurement matrix Hs is calculated and defined as

Hs =

[
−CbK

n 0 0 0 0 CbK
n 0 0 0 0 I3×3

]
(67)

Each term is its own 3x3 matrix. The SMV measurement zs is defined as

zs = p̃bK
R −CbK

n ∆p̄n
RT (68)

The measurement equation is now rewritten as the linear update

zs = Hs


δxT

δxR

bs

+ νs (69)

The addition of the measurement bias requires that the states be added to EKF equa-

tions defined in Equation (61) resulting in


δẋT

δẋR

δḃs

 =


FT 015×15 015×3

015×15 FR 015×3

03×15 03×15 Fs



δxT

δxR

δbs

+


wT

wR

ws

 (70)

δḃp is the derivative of SMV bias error state

bs =

[
bx by bz

]T
(71)

where bx, by, and bz are the SMV FOGM bias states in the tanker body frame x, y, and

z. The FOGM white noise term ws is represented by the process noise covariance matrix

Qs defined as

Qs =


2σ2

x

τx
I 0 0

0
2σ2

y

τy
I 0

0 0
2σ2

z

τz
I

 (72)
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where σx, σy, and σz are the σ values for the SMV FOGM bias state. The bias state matrix

Fs is defined as

Fs =


− 1

τx
0 0

0 − 1

τy
0

0 0 − 1

τz

 (73)

τx, τy, and τz are the time constants for the SMV FOGM bias states in the tanker body

frame x, y, and z. While the filter tracks the error states of each aircraft separately, this

research is primarily interested in the relative position of the two aircraft. In order to

display the relative position and uncertainty of the two aircraft, the uncertainty matrix P

must by transformed by the difference of the two aircraft positions. The resulting similarity

transformation matrix Ap is

Ap =

[
−I 0 0 0 0 I 0 0 0 0 0

]
(74)

where each term is its own 3x3 matrix. This transformation is applied to the uncertainty

matrix by

Pp = ApPAT
p (75)

yielding Pp, the relative position covariance matrix. The measurements received by this

filter are relative measurements only and have little impact on the individual states of each

aircraft. It is only by incorporating the cross covariances through the transformation of

P to Ppos that the filter’s effects are seen. Likewise the relative velocity transformation

matrix Av is

Av =

[
0 −I 0 0 0 0 I 0 0 0 0

]
(76)

the relative velocity covariance matrix Pv is

Pv = AvPAT
v (77)
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the relative attitude transformation matrix Aa is

Aa =

[
0 0 −I 0 0 0 0 I 0 0 0

]
(78)

and the relative attitude covariance matrix Pa is

Pa = AaPAT
a (79)

3.2.2 Differential Global Positioning System.

The DGPS measurements are modeled in the Geodetic frame giving

p̃w
TR = (pw

R − pw
T ) + νd (80)

p̃w
TR is the measured position of the receiver relative to the tanker in Geodetic radians and

νd is the zero-mean Gaussian DGPS measurement noise. Converting both sides into NED

results in

An
wp̃w

TR = An
w (pw

R − pw
T ) + An

wνd (81)

σd is 2 cm in all three axes. Equation (81) further simplifies to

An
w (p̃w

TR −∆p̄w
RT ) = (δpn

R − δpn
T ) + An

wνd (82)

∆p̄w
RT is the Geodetic difference between the receiver and tanker INS solutions. From

Equation (82), the DGPS measurement matrix Hd is calculated and defined as

Hd =

[
−I 0 0 0 0 I 0 0 0 0 0

]
(83)

where each term is its own 3x3 matrix. The DGPS measurement zd is defined in Equa-

tion (84):

zd = An
w (p̃w

TR −∆p̄w
RT ) (84)
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The measurement equation is now rewritten as the linear update

zd = Hd


δxT

δxR

bs

+ νd (85)

3.3 Building the Simulation

This section describes the steps necessary to generate the synthetic data required to

implement the filter. Because there is no real-world data available for SMV AAR, this

experiment is entirely simulated. The following subsections will explain the process used to

create the simulated flight path, 3DVW, and the IMU, GPS, and SMV sensor data.

3.3.1 Simulated Flight Path.

The flight path is simulated specifically to mimic a real refueling maneuver with authen-

tic aircraft flight dynamics. To achieve this end, the flight path is generated using BlueMax6

flight dynamics software [30]. Using existing profiles, the tanker is simulated with a model

similar in size and specifications to existing tanker aircraft and the receiver is modeled as

a smaller aircraft similar in size to a typical receiver. The KC-135 is used for the tanker

and the F15 is used for the receiver. The flight path for the aircraft adheres to the AAR

requirements for relative positions and velocities. This section is in ft and n.m. for the

sake of comparison to the AAR requirements. Both aircraft are flying due north with the

receiver 1.2 nm behind and 1000 ft below the contact point. The simulated contact point is

29.18 m behind and 13.53 m below the tanker center. Figure 7 shows the receiver approach

within 2000 ft. The vertical jumps represent points where the receiver stops to stabilize.

This is a byproduct of BlueMax which can overshoot an altitude, requiring a moment for

the receiver to settle. In simulation this is not an extreme motion and the flight appears

smooth. Figure 8 is a plot of the relative velocity between the two aircraft over the same

distance. By the time the receiver is approaching contact, its relative velocity under 1 ft/s.
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Figure 7. Relative Altitude Plotted Against Relative Horizontal Position for the Last a)
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Figure 8. Relative Velocity Plotted Against Relative Horizontal Position for the Last a) 2000 ft
and b) 60 ft

3.3.2 Simulation Environment.

This paper uses a 3DVW developed by Dr. Scott Nykl [26–28] in order to best simulate

the stereo vision system.

3.3.2.1 Aircraft Models.

Each aircraft is modeled in the simulated environment in a geometrically accurate man-

ner. To utilize existing models, the tanker is modeled as a KC-46 and the receiver is modeled

as a C12. These differ from the models used in the flight path generation due to model

availability in the flight simulation software. These models are sufficient for performing the

experiment. The flight path is still representative of a possible AAR flight path even if the
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dynamics of the aircraft are slightly altered. The C12 is used for the receiver model for

two primary reasons. First, ICP requires a point cloud model to match. Second, a real-life

flight test to obtain real-world data for the the SMV system will be performed by Captain

Stuart in Fall of 2017 using a C12 as the receiver aircraft. Both the KC-46 and the C12 are

represented in the virtual world according to near real-life dimensions as seen in Figure 1.

To mimic refueling flight accurately, a simulated refueling boom is toggled on or off and

placed at the rear of the tanker close to where a boom is located.

Figure 9. View of the 3DVW Showing the Tanker and the Receiver in Formation Flight Above
Terrain Generated from Satellite Imagery

3.3.2.2 World Model.

Implementing the research in this virtual world provides numerous avenues for studying

SMV. The 3DVW naturally operates in a open space navigation frame but is also capable of

incorporating flight paths generated with a world model. The open space navigation frame

allows the receiver to be placed anywhere in the world relative to the tanker. This allows

a more general characterization of the stereo algorithm behavior. However, the 3DVW

can also take two separate WGS-84 flight paths and place them in the virtual world with

the correct relative motion between them. In order to aid in simulation observability, one

aircraft is held stationary while the other is placed in an accurate relative position. The

tanker origin is also treated as the origin of the 3DVW for each time epoch. From the
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perspective of the 3DVW, the tanker is stationary while other objects move around it.

The 3DVW can also include terrain profiles. Like the tanker, the terrain is stationary

though it rotates according to the tanker’s motion around the earth. This ensures the correct

relative position to the tanker for its altitude and orientation to the surface. Figure 9 shows

the aircraft in flight above a terrain profile. The terrain also incorporates local elevation

data from [60] to provide depth to the satellite imagery [61]. The aircraft can be placed

at any altitude above this terrain, though for this simulation the tanker is placed at 3900

m. The terrain is large enough for the entire view of the camera system to fall within

the terrain in Figure 12. In 3DVW the absolute truth for instant error measurement is

always given. This ensures that the measurements and their times line up. The real

system has transmission delays making it a challenge to precisely timestamp images and

measurements. Unfortunately, because the terrain is stationary, any terrain characteristics

affecting the algorithm will be present for the entire simulation. This affect is observed

clearly in one of the original simulations. The aircraft, placed at 2000 m, identified a

building with a parallel roof structure by the SMV algorithm as a set of features much

closer to the aircraft. Figure 10 shows this from two different angles.

(a) Points on Roof (b) Points Near Aircraft

Figure 10. Example of Ground Features Causing Point Point Cloud Error. In a), the 3D
Points are Aligned with the Roof Structure. However, in b) the Points are Reconstructed
Closer to the Stereo Cameras and the Receiver

While point cloud filtering through a median filter helps to ignore erroneous 3D points,

these features appear close enough to the receiver point cloud to be missed by the filter.

The resulting ICP error is seen in Figure 11. The presence of the points cause a sharp

increase in the position error which gradually decreases as the aircraft progresses.
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Figure 11. ICP Position Translation Error Caused by Ground Features

As the aircraft moves above the terrain, the feature, causing it to line up geometrically

at the precise moment, quickly fades. Higher altitudes and blurring from the fixed focal

length camera may potentially help prevent similar errors in operation.

3.3.2.3 Stereo Camera System Model.

The key capability in the 3DVW is the ability to simulate the stereo imagery. This

allows for the implementation of the SMV algorithm. SMV parameters, including field of

view and intrinsic and extrinsic camera calibration, generate high fidelity synthetic SMV

data. This approximates the stereo parameters of the KC-46 vision system offering these

images in a deterministic simulation environment. A pair of virtual cameras are affixed to

the tanker just behind the location of the boom in Figure 1. The cameras are oriented at 30

degree downward angle from the tanker xy-plane. A sample stereo pair in this simulation

environment are captured in Figure 12.
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(a) Left Image (b) Right Image

Figure 12. A Stereo Image Pair Collected by the Virtual Stereo Cameras

The Horizontal Field of View (HFOV), focal length, resolution, and baseline parameters

for the stereo camera system are in Section 3.3.2.3.

Table 1. Stereo Camera Parameters

Focal Length 16.44 mm

HFOV 56 deg

Resolution 1024x768 pixels

Baseline 0.5 m

The cameras’ orientations and fields of view are in Figure 13. The red lines represent

the edge of the cameras’ field of view as they extend out. The blue and green lines box in

the image captured by the camera.
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Figure 13. Capture from the 3DVW Showing the Camera Field of View

3.3.3 Simulated Sensor Data.

Beside the stereo vision measurements, the simulated sensor data used in this research

is generated through the use of FLY. FLY is an in-house software developed by the AFIT

Autonomy and Navigation Technology (ANT) center to generate different forms of simu-

lated sensor data such as IMU, INS, GPS, position, and velocity measurements with real-

istic errors [62]. Where possible, simulated measurements’ specifications are based on the

Geodetics RelNAV system which will be used in future AFIT flight tests [63].

3.3.3.1 Inertial Measurement Unit.

In order to generate simulated IMU data, FLY requires the truth Geodetic data for

each aircraft and the corresponding accelerometer and gyro parameters shown in Table 2,

respectively.

Table 2. IMU Parameters

Bias 1-σ Bias τ Random Walk 1-σ

Accelerometer 0.05 mg 3600 s 0.07 (m/s)/
√

hr

Gyro 0.05◦/hr 3600 s 0.012◦/
√

hr

The IMU specifications are taken from the specifications for the KVH 1750 Laser Ring

45



Gyro used by the Geodetics system [64]. With the truth values and the IMU specifications,

FLY generates the simulated ∆v and ∆θ values with the specified error characteristics [62].

The IMUs are assumed to be colocated and aligned with the body frame of the aircraft in

which they reside. The results of the IMU simulation will be discussed later in Section 4.1

and in Figures 24 to 26

3.3.3.2 DGPS.

The DGPS simulated measurements are also generated using FLY [62]. Like the IMUs,

the accuracy for the DGPS are taken from the Geodetics system which lists accuracy of 2

cm for its DGPS measurements [63]. To generate the specific relative DGPS measurements,

FLY added 2 cm of Gaussian random noise to the receiver position truth data in Geodetic

coordinates. The tanker truth Geodetic data is subtracted from the noisy receiver data

resulting in a relative measurement in radians with 2 cm accuracy. Figure 14 shows the

plot of the DGPS simulated measurement error. The DGPS measurements were simulated

500 times. The resulting mean oscillates at an error of 0 cm while the ensemble 1-σ value

is at the expected 2 cm line. The RMSE of the x-, y-, and z-axes are 2.00 cm, 2.02 cm, and

1.99 cm respectively.
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3.3.3.3 Stereo Vision.

This section explains the work accomplished to obtain SMV measurements. The first

section explains the basics of the algorithm used to generate measurements. The second

section explains the process used to characterize and model the measurements.

3.3.3.3.1 Algorithms. The stereo vision measurements are generated using the

3DVWs simulated stereo cameras and processed with OpenCV [65] and Matlab [66] from

the works of 2nd Lieutenant Parsons and Captain Stuart [28,67]. Within the 3DVW, each

stereo pair is used by OpenCV to create a disparity map. The disparity map was generated

with OpenCV’s StereoBM function using numDisparities value of 48, and a Sum of Absolute

Differences (SAD) window size of 9. A speckle filter with a maximum speckle size of 144

and a maximum distance between neighbors of 4 was used to reduce noise in the disparity

map. The ideal camera reprojection matrix Qstereo is

Qstereo =



1 0 0 −5.115e2

0 1 0 −3.835e2

0 0 0 9.629e2

0 0 2.000e−3 0


(86)

The reprojection matrix is used to create the 3D point cloud, which were were passed

to Matlab to be processed. The point clouds were run through a median filter. The filter

eliminated any points that were greater than 20 m total distance from the median point in

the cloud and greater than 12 m, 12 m, and 2.4 m away from the median in the x, y, and

z of the sensed point cloud frame. ICP was conducted with Matlab’s pcregrigid function

[68]. Subsequently, an implementation of ICP is used to obtain the position measurements

between the sensed point cloud and the point cloud model colocated with the tanker [29,69].

The median point was used to seed the pcregrigid function with 20 maximum iterations and

with the point to point minimization function. The pcregrigid function was iterated once,

seeding it with the previously calculated translation. Once ICP was completed, the position

estimate was rotated into the Tanker’s body frame [29,69].
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3.3.3.3.2 Characterization. To use the measurements in the EKF, the noise

covariance matrix, R, is required. Utilizing the 3DVW, the error of the stereo vision imple-

mentation is characterized by randomly placing the aircraft in the cameras’ field of view at

specific ranges and calculating the statistics of the error. The aircraft is characterized every

0.5 m from 30 m to 250 m away from the tanker. At each range, the aircraft was randomly

placed 200 times between an elevation of 11 degrees and 34 degrees and an azimuth of -2 and

2 degrees while maintaining the set range. Elevation is defined as the angle down from the

tanker xy-plane and the azimuth is the angle from the tanker xz-plane. These boundaries

are determined based on the projected flight path of the aircraft. At each iteration, the

aircraft is also placed at a random attitude with a max roll, pitch, and yaw of 1, 3, and 1

degrees respectively. These values are also determined by the anticipated flight path which

contains very small aircraft attitude deviations. This random sampling was performed with

and without a terrain background. The results combine in order to obtain a more general

characterization. The errors in the position estimates by the stereo algorithm for the 200

realizations at each range were matched to a normal fit to provide the mean and covariance,

as shown in Figure 15.

Figure 15. Combined Terrain and No Terrain Characterization of the SMV Measurement
Error
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3.3.3.3.3 Final Measurements. The characterization in Paragraph 3.3.3.3.2

does the final processing on the measurement according to one of two cases. In both cases

measurements are only used within 100 m of the tanker. While the SMV system obtains

measurements as far out as 250 m, it is more important to look at measurements when

the two aircraft are closer. Incorporating the measurements beyond this distance makes it

harder to characterize them and thus harder to effectively incorporate them into the filter.

The accuracy associated with each measurement does not change between cases since it is

based on the standard deviation of the characterization. However,the measurement itself is

different for each case.

Case 1. In Case 1, bias corrections are not applied to the incoming SMV

measurements. It is intended to be the general case applicable to more than this specific

simulation. It assumes the characterization is only a general characterization and is unable

to correct for the specific bias present in the measurement. Thus the measurements are taken

as the stereo algorithm calculates them. The result is in Figure 16. Ideally, measurements

given to a filter are zero-mean. However, with no correction, the measurement error is not

zero-mean. This bias is evident in the x-axis which aligns most with the camera z-axis or

depth. The depth is the hardest dimension for the camera to estimate so the greatest error

should reflect along the x-axis.
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Figure 16. SMV Measurement Error with No Bias Correction. The 1-σ Calculated from the
Error Characterization is Plotted over the Uncorrected Measurements.

The specific case also impacts the filter design. The FOGM bias built into the EKF

parameters change depending on how measurements are processed. Since Case 1 is a general

case, the FOGM bias is designed to incorporate a larger bias in the SMV measurements.

The σ and τ values for each axis are determined from the characterized mean error from

Figure 15. Figure 17 shows the 2nd order polynomial fit of the characterized mean.
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Figure 17. Plot of the Mean SMV Error with the 2nd Order Polynomial Best Fit
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The polynomial fit is a function of the range between the tanker and the receiver. The

mean error equations follow the form

µe = ar2 + br + c (87)

µe is the mean error, r is the range between the tanker and the receiver and a, b, and c are

the coefficients shown in Table 3 for the x-, y-, and z-axes, respectively.

Table 3. Characterized Mean Error Fit Function Parameters

a b c

X 4.312e−5 −2.046e−3 3.909e−1

Y 1.368e−5 −5.534e−5 −4.909e−3

Z 1.937e−5 −3.252e−3 7.046e−2

Because no correction is done on the SMV measurements in this case, the mean error

fit is also used as the FOGM bias 1-σ value. The standard deviation of the FOGM bias is

calculated the same as Equation (87):

σb = ar2 + br + c (88)

where σb is the standard deviation of the FOGM bias. The parameters for the Case 1 σ

polynomial functions are in Table 4.

In order to properly model the FOGM bias, the associated time constant must also be

determined. However, the SMV bias is not correlated in time but is based on the range

between the tanker and the receiver. To determine the time constant for each axis, a new

function is defined as

τ =
τr
v̄

(89)

where τ is the time constant, τr is the range constant, and v̄ is the current estimated relative

velocity. This is developed from the concept that the time constant represents how long it

will take two time-based processes to decorrelate. This describes how much the distance

51



between the receiver and the tanker needs to change before the bias value decorrelates.

Dividing this range constant by the current velocity then calculates how long it will take

the bias to decorrelate at the current velocity.

This effectively allows the range constant to be represented as a time constant in the

time-based KF. The range constant is determined by performing an autocorrelation on the

characterized mean errors in Figure 17. The resulting normalized autocorrelation functions

and range constants are in Figure 18. The range constants are also in Table 3. The

autocorrelation was plotted against half meter steps. Mistakenly, these were applied as full

meter steps resulting in time constants twice as large as calculated from the autocorrelation

function. It was determined that the larger time constant resulted in lower filter error and

the larger value was used.
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Figure 18. Plot of the Case 1 autocorrelation function of the Characterized Error Bias Mean
with Calculated Range Constant
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Table 4. Case 1 FOGM polynomial parameters and range constants

a b c τr

X 4.312e−5 −2.046e−3 3.909e−1 84.436

Y 1.368e−5 −5.534e−5 −4.909e−3 57.4239

Z 1.937e−5 −3.252e−3 7.046e−2 67.8276

Case 2. In Case 2, bias corrections are applied to the incoming SMV measure-

ments. Case 2 is intended to be the specific case applicable to this simulation. It assumes

the characterization is well known for this scenario and is able to use the characterized

mean to adjust the measurements. The polynomial fit from Figure 17 and table 3 is used

to correct each measurement as a model of the bias.

To correct the SMV measurements, the SMV measurement is used to calculate the range.

This range is then fed to each of the polynomial fit equations to generate the characterized

mean error at that distance. The characterized mean error is then subtracted from the

SMV measurement to obtain the corrected measurement. Applying this correction to the

same measurements from Figure 16 results in the errors seen in Figure 19.
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Figure 19. SMV Measurement Error with Bias Correction. The 1-σ Calculated from the Error
Characterization is Plotted over the Corrected Measurements
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The corrected measurements have a smaller bias as evidenced by the Position Error

Mean line dropping much closer to zero. However, some bias still remains. Table 5 shows

the mean error for both cases.

Table 5. SMV Mean Error within 100 m

X Y Z

Case 1 46.91 cm 4.987 cm -3.612 cm

Case 2 7.836 cm 2.926 cm -0.6155 cm

There is a clear improvement when the measurements are corrected based on the error

characterization. It is important to note that the characterization used is specific to this

simulation. Different approaches, aircraft, and conditions may affect the SMV behavior,

stressing the importance of looking at both cases.

The remainder is used to determine the FOGM bias parameters. Figure 20 shows the

characterized mean error after the modeled mean is removed.
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Figure 20. Plot of the Remaining Characterized Error Bias after the Modeled Mean Error
is Removed. The 1-σ Approximation to be used for the FOGM Bias is also Plotted over the
Remaining Error Bias

The plots appear to oscillate about zero with the error growing as the range between

the aircraft increases. Another 2nd order polynomial fit is generated for the remaining
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characterized stereo error in each axis. Approximately 68% of the remaining error bias falls

within the bounds of the 1-σ approximation. The 2nd order polynomial parameters for

calculating the FOGM σ values can be seen in Table 6. As discussed in Section 3.3.3.3.3,

Filter tuning determined a more conservative bias σ estimate. The more conservative 3-

σ was used instead. A minimum FOGM σ was set to 5 cm to account for additional

uncharacterized biases.

The same process is used to determine the range constant for Case 2. The autocorrela-

tion function and range constants are in Figure 21. The range constants are also in Table 6.

Like Case 1, the range constant is twice the calculated size.
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Figure 21. Plot of the Case 2 Autocorrelation Function of the Characterized Error Bias once
the Modeled Error Bias has been Removed with Calculated Range Constant

Table 6. Case 2 FOGM polynomial parameters and range constants

a b c τr

X 2.642e−5 −1.624e−3 4.432e−2 4.5954

Y 3.593e−6 −2.812e−4 8.970e−3 0.6634

Z 1.224e−5 −9.520e−4 2.760e−2 4.2066
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3.3.4 Filter Software.

The filter is implemented using Scorpion [57]. Scorpion is a soon-to-be-released modular

environment for constructing and running filters developed by the AFIT ANT Center. The

data flow in Scorpion is seen in Figure 22. The simulated IMU data is fed to the Scorpion

mechanization function producing the INS solution. This estimate is given to the EKF to

use as a linearization point. The state dynamics defined in Section 3.1 and the measurement

processors defined in Sections 3.3.3.2 and 3.3.3.3 are both fed to the EKF initially to tell it

how to propagate and update. The EKF then takes in the DGPS and stereo measurements

and uses them with the INS solution to calculate the current error state. The EKF produces

the error state as well as the covariance matrix, in Figure 22. Both the error state and

the INS solution are given to the Scorpion MasterNav class which time-aligns them to

generate the corrected solution at any requested time. Note that for this research, the

SMV processing time delay was not incorporated into the system, so measurements are

incorporated at the time the images are taken.

Figure 22. Error State EKF Flow in Scorpion
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IV. Results and Analysis

This chapter contains the results of the EKF simulations. The results indicate that SMV

can be used in a simulated environment to estimate a receiver aircraft’s relative position at

refueling distances with AAR accuracy. For this paper, the required AAR level accuracy is

less than 1 m. The results from the EKF display according to time. However, in Figures 15

and 19, the stereo error depends on range. To compare filter results with corresponding

stereo error, Figure 23 is provided to show the true range of the receiver relative to the

tanker while the system receives measurements.

100 120 140 160 180 200 220 240 260
Time (s)

30

40

50

60

70

80

90

100

R
an

ge
 (

m
)

Figure 23. Receiver True Range from Tanker Plotted Against Time

This chapter is divided into 8 sections. The first six sections displays filter results for

each of the six individual scenarios. The six different scenarios are:

I. EKF with INS

IS. EKF with INS and SMV

S. SMV with no EKF or other measurements

IG. EKF with INS and GPS measurements where GPS is lost within 50 m of the

tanker
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IGS. EKF with INS, GPS, and SMV where GPS is lost within 50 m of the tanker

IGS/NL. EKF with INS, GPS, and SMV where GPS is not lost

The seventh section graphically compares the six scenarios to show the strengths of

the scenarios. The final section compares the six different scenarios for two different Cases

defined is Section 3.3.3.3.3

Scenarios I and IG do not incorporate SMV measurements; therefore, they are identical

between the two cases. They are shown to compare filter behavior between scenarios.

Attitude plots are only displayed in Scenario I and IS to demonstrate a valid model and a

functioning filter. Attitude plots are not displayed in any of the other results. No attitude

measurements are taken, so the different scenarios have little influence on the filter attitude

output. Additionally, Figure 26 demonstrates the navigation grade IMU has negligible

error for this simulation. Each scenario is discussed, though to demonstrate general filter

behavior, filter ensemble results are only displayed for scenarios I and IGS. To highlight

filter behavior, combinations of the various scenarios are evaluated. It is important to note

that the error states of the EKF are never directly evaluated. Evaluation is made on the

complete solution by combining the INS solution with the EKF estimated error states. The

SMV bias states are the only states discussed directly. It is important to note that the

tanker’s roll, pitch, and yaw are at a magnitude of 10−15, 10−7, and 10−16 rad, respectively.

Thus, results displayed in the tanker body frame and in the NED frame can be interpreted

as the same frame for this simulation. Besides Scenario I, all scenarios are evaluated as

100 iteration Monte Carlo simulations due to computational restrictions. The Monte Carlo

does not apply to the SMV measurements. A single set of SMV was incorporated for each

run, while the available IMU andDGPS measurements change for each run.

4.1 Scenario I - INS Only

Running the filter with only the INS does not provide additional accuracy, but it is

necessary to see that the model generating the IMU data and the noise model in the filter

align with each other. The filter’s state estimation and covariances do not match reality
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if these two do not align. Figures 24 to 26 show the results of the filter for its position,

velocity, and attitude respectively. Each set of INS results is the compilation of a 500 run

Monte Carlo simulation. The figures display both the error between the filter mechanized

estimate and the true value for each of the runs. It also presents the filter’s covariance

bounds (represented by the 1-σ value). The ensemble calculated error mean and calculated

1-σ are also present. When the two models match, the mean is zero. The 1-σ bounds for

both the filter and the ensemble should also align. The two align very closely in Figure 24.

There is a small mean value by the end of the run most likely caused by a known error in

the calculation of the IMU bias values. The final mean error values for position, velocity

and attitude can be seen in Table 7. However, as Figures 24 to 26 show, the simulated data

is a close enough match of the filter model to perform the needed sensor combinations.

Table 7. Mean Error Bias of Ensemble Position Error between the Tanker and the Receiver
based on INS Only Filter Input. Results are Displayed in NED Frame

Position (m) Velocity (m/s) Attitude (rad)

North 1.79 0.0119 −3.40e−6

East -0.928 -0.0077 3.97e−6

Down 1.16 0.0086 7.62e−6
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Figure 24. Scenario I Filter Position Results. Displaying Error between Filter Estimated
Relative Position and True Relative Position for 500 Iteration Monte Carlo Simulation. The
Plot Contains 500 Individual Runs with the Filter Estimated 1-σ, the Ensemble 1-σ, and the
Ensemble Mean.

Figure 25. Scenario I Filter Velocity Results. Displaying Error between Filter Estimated
Relative Velocity and True Relative Velocity for 500 Iteration Monte Carlo Simulation. The
Plot Contains 500 Individual Runs with the Filter Estimated 1-σ, the Ensemble 1-σ, and the
Ensemble Mean.
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Figure 26. Scenario I Filter Attitude Results. Displaying Error between Filter Estimated
Relative Attitude and True Relative Attitude for 500 Iteration Monte Carlo Simulation. The
Plot Contains All 500 Individual Runs with the Filter Estimated 1-σ, the Ensemble 1-σ, and
the Ensemble Mean.

4.2 Scenario IS - INS and SMV Combined

Scenario IS is the core scenario of this research. The goal is to successfully combine SMV

and INS data in an EKF to achieve AAR level accuracy. To highlight the performance of

the filter, the full filter ensemble results for Scenario IS are displayed. Each ensemble plot

displays the error in the filter’s estimated relative state, position, velocity, or attitude. It

also displays the calculated ensemble mean of those errors, the calculated ensemble 1-σ of

the errors, and the filter estimated 1-σ.

4.2.1 Position.

This section displays the results of the filter Case 1 and Case 2 positions for Scenario IS.

All positions are relative positions between the tanker and the receiver in the NED frame.

All covariances (1-σ values) are, likewise, transformed into representations of the relative

states as calculated in Equations (75), (77) and (79).
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4.2.1.1 Case 1.

Recall that Case 1 takes the measurements as provided and does not remove the char-

acterized mean through preprocessing the measurements. Case 1 is a general, conservative

approach. Rather than compensating for biases present in the measurements, the filter is

tuned with larger parameters for the stereo bias state σ and τ . The general approach is an

attempt for greater flexibility in other scenarios that do not share similarities in the aircraft,

terrain, or flight paths with this simulation.

Figure 27 displays the error for each of the 100 runs in Case 1 for the filter’s estimated

relative position in the NED frame for the full duration of the simulation. Figure 27 clearly

shows that the filter estimated relative position drifts until the SMV snap to a smaller

error and covariance to small to observe in this figure. This is expected since the SMV

measurements come with approximately half-meter accuracy in Figure 16 and feed into a

filter with covariance that has grown to a 6 meter 1-σ. Little else can be observed due to

the scale of the figure.

To better observe the filter behavior, Figure 28 focuses on the last 120 s of the sim-

ulation. An important filter behavior to observe is the bump in ensemble mean error at

the 180 s mark. This is due to a large bias in the SMV measurements unaccounted for in

the characterization and is due to the aircraft approach in the simulation. At this point in

the simulation, the accuracy of the ICP algorithm drops because the aircraft’s tail leaves

the camera Field of View (FOV), a real world problem that is ever present. This is an

error in the SMV measurements; therefore, it is present in every case and scenario. Most of

the iterations fall within the filter 1-σ instead of the expected 68% due to the conservative

nature of the design. The filter is intentionally designed to be more conservative while still

predicting good 1-σ values at the end of the simulation with 50 cm, 8 cm, and 6 cm in the

North, East, and Down, respectively. The variance of the bias states largely dictate these

accuracies. Since, the measurement equation incorporates both the measurement noise and

the bias, the filter has to incorporate both components. Thus the larger 1-σ of the bias states

prevents the filter covariance from shrinking too quickly. The resulting filter covariance is
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higher since larger variances in the biases are also present in Case 1.

The bias states do not just limit the covariance, they also absorb and correctly estimate

some of the bias. In Figure 29, the filter estimates of the SMV bias are plotted against the

SMV error. While this plot is not useful for a quantitative comparison of the bias state

against the actual stereo bias, it does show how closely the bias state is able to absorb error

in the stereo measurement. For this particular scenario the SMV measurement is the only

measurement the filter incorporates. As a result, it does not efficiently determine the bias

in the measurement and the correct measurement. Therefore, it only absorbs a portion and

poorly estimates the bias in Figure 29.
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Figure 27. Case 1 Scenario IS Error between Filter Estimated Position and True Position for
Full Simulation with 100 Iterations including Ensemble Error Mean, Ensemble Error 1-σ, and
Filter 1-σ in the NED Frame
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Figure 28. Case 1 Scenario IS Error between Filter Estimated Position and True Position
within 50 m with 100 Iterations, Including Ensemble Error Mean, Ensemble Error 1-σ, and
Filter 1-σ in the NED Frame
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Figure 29. Case 1 Scenario IS Estimated Stereo Bias Against SMV Error

4.2.1.2 Case 2.

Recall that Case 2 preprocesses the measurements by first removing the characterized

mean. As discussed in Section 3.3.3.3.3, the SMV measurements are preprocessed to remove

the characterized bias from the data. When implementing Case 2, the original parameters
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are changed during filter tuning. The σ function developed in Section 3.3.3.3.3 is scaled

by a factor of 3 to account for uncharacterized errors and to insure the filter functions

properly. Without the increase, the filter covariance shrinks and errors grow to result in a

filter estimate outside its predicted covariance.

Figure 30 focuses on the last 120 seconds of the simulation to observe the filter function-

ality. At first, the filter appears to perform poorly with portions of the simulation outside

the 1-σ bounds. However, the filter is more finely tuned, and uncharacterized errors, like

the large jump at 180 seconds, are not covered by the covariance. When no uncharacterized

errors are present, the filter covariance bounds encompass the entire ensemble. This means

the filter is over conservative. Rather than approximately 68% of the estimates falling

within in the covariances bounds, 100% of the estimates fall within the 1-σ covariance. It

was not possible to completely characterize the SMV biases. Thus the filter was designed

to be more conservative to account for the uncharacterized errors. It is better for the filter

to be more accurate than it thinks it is than for it to be less accurate than it is estimating.

The filter covariance bounds (1-σ) at the end of the simulation are 8 cm, 5 cm, and 5 cm

in the North, East, and Down, respectively. These improve bounds over Case 1, especially

in the North direction. With the decreased bounds, the filter can still accurately estimate

the relative positions.

The offset in the East plot in Figure 30 presents the same bias in the SMV measurements,

but the filter no longer has the increased bias state covariance to account for it. The Case

2 decreased ability to estimate the SMV bias is another factor in the “increased” bias.

Figure 31 shows the comparison of the filter bias state against the SMV measurement errors.

The characterized mean function removes approximately only 0.5 cm at close distances. In

Case 2, almost the same amount of SMV bias is present, but now it has a FOGM bias with

a smaller 1-σ value and a smaller time constant. This combination causes any previously

estimated and stored bias to be lost and the filter has a hard time estimating any of the

bias value near the end of the simulation. For Case 2, it actually estimates a slight bias in

the wrong direction, increasing the total estimation error.
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Figure 30. Case 2 Scenario IS Error between Filter Estimated Position and True Position
within 50 m with 100 Iterations, Including Ensemble Error Mean, Ensemble Error 1-σ, and
Filter 1-σ in the NED Frame
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Figure 31. Case 2 Scenario IS Estimated Stereo Bias against Actual SMV Error

Table 8 provides a direct comparison of the Case 1 and Case 2 relative positions results.

Instead of looking at the RMSE for specific times, Table 8 looks at the RMSE for a portion

of the simulation. The Mean Squared Errors (MSEs) was calculated for each iteration

in the ensemble and all values that fell within the desired range were summed together.
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The square root was taken to obtain the RMSE. Table 8 confirms what Figures 28 and 30

indicate. Case 2 outperforms Case 1 under the conditions of Scenario IS.

Table 8. Comparison of RMSE for Scenario IS Case 1 and Case 2 Filter Estimated Relative
Position Errors when Receiver Is within 100 m and 47 m of Tanker

100 m 47 m

Scenario North (m) East (m) Down (m) North (m) East (m) Down (m)

Case 1 0.398 0.0497 0.0619 0.375 0.0313 0.0458

Case 2 0.0945 0.0371 0.0454 0.082 0.0382 0.0238

4.2.2 Velocity.

This section displays the results of the filter Case 1 and Case 2 velocities for Scenario

IS. All velocities are relative between the tanker and the receiver in the NED frame. All

covariances, likewise, transform into representing the relative states.

4.2.2.1 Case 1.

Figure 32 observes the last 120 seconds of the simulation. It is clear the velocity states

are observable with only receiver SMV measurements. Ultimately the bias does not reflect

much in the velocity because the common error is differenced out. As a result, velocity

ensemble covariance closely matches the filter estimated covariance. The ensemble mean

does vary as a result of the SMV measurements.

67



140 160 180 200 220 240 260 280
-0.02

0

0.02

0.04

N
or

th
 (

m
/s

) Filter 1-σ
Ensemble Mean
Ensemble 1-σ

140 160 180 200 220 240 260 280
-0.01

0

0.01

E
as

t (
m

/s
)

140 160 180 200 220 240 260 280
Time (s)

-0.02

-0.01

0

0.01

D
ow

n 
(m

/s
)

Figure 32. Case 1 Scenario IS Error between Filter Estimated Velocity and True Velocity
within 50 m with 100 Iterations, Including Ensemble Error Mean, Ensemble Error 1-σ, and
Filter 1-σ in the NED Frame

4.2.2.2 Case 2.

The zoomed in plot of the last 120 s of the simulation in Figure 33 highlight the filter

behavior for Case 2. The behavior is similar to Case 1 but with slightly smaller covariance.

This is observed by comparing the sections of the simulation that have larger error, such as

the section at 180 s.
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Figure 33. Case 2 Scenario IS Error between Filter Estimated Velocity and True Velocity
within 50 m with 100 Iterations, Including Ensemble Error Mean, Ensemble Error 1-σ, and
Filter 1-σ in the NED Frame

4.2.3 Attitude.

This section displays the results of the filter Case 1 and Case 2 attitudes for Scenario IS.

All attitudes are relative rotations between the tanker and the receiver in the NED frame.

All covariances, likewise, transform into representing the relative states.

4.2.3.1 Case 1.

Figure 34 displays the relative attitude estimation error for Scenario IS for Case 1. The

filter clearly has observability into the Roll and Pitch with only relative position measure-

ments. Based on these results, the filter is correctly estimating the attitude errors and the

relative position measurements are enough to prevent the continued drift of the roll and

pitch. However, without observability into the yaw the covariance will continue to grow.

When performing observability analysis on the filter for each time step of the simulation,

the typical observability was 16 states (up to 19). Because the measurements are relative,

each observable state actually corresponds to the relative states. The 16 observable states

consist of the three relative position states, the three relative velocity states, two of the

relative attitude states, the three relative accelerometer bias states, two of the relative gyro
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bias states, and all three stereo bias states.
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Figure 34. Case 1 Scenario IS Error between Filter Estimated Attitude and True Attitude for
Full Simulation with 100 Iterations, Including Ensemble Mean, Ensemble 1-σ, and Filter 1-σ
in the NED Frame

4.2.3.2 Case 2.

Figure 35 displays the relative attitude estimation error for Case 2. There is very little

change from Case 1. The ensemble mean and 1-σ behave as respected within the filter

covariance bounds and the resulting errors are comparable to the errors seen in Case 1.
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Figure 35. Case 2 Scenario IS Error between Filter Estimated Attitude and True Attitude
with 100 Iterations, Including Ensemble Error Mean, Ensemble Error 1-σ, and Filter 1-σ in
the NED Frame

The attitude estimates represent one of two different types of states that are unobserv-

able. The attitude error will not be evaluated directly for any of the other scenarios. It was

provided to show overall filter performance and displaying attitude for all scenarios will pro-

vide no added benefit since the only measurements received are position measurements and

the error is of such a small magnitude due to the navigation grade IMU. Filter performance

was consistent between scenarios.

4.2.4 SMV Bias.

The SMV bias has been discussed briefly as part of the analysis on the relative position

results. However, this section will look at the values of the states themselves as well as the

filter predicted covariance and actual ensemble covariance.

4.2.4.1 Case 1.

Figure 36 displays the error in the stereo bias state estimate for Case 1. As expected,

the error in the bias estimation falls within the covariance bounds estimated by the filter,

which are designed to be conservative. There is a burst of error in the down direction when
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measurements first begin. This is ultimately due to poor modeling of the error at this

point. The stereo FOGM bias state has a lower modeled noise value than is reflected in

the measurements. Because of the distance and speed of the approaching aircraft, this only

occurs for a few measurements before it falls within the filter estimated covariance bounds.

The behavior observed for this scenario is consistent with the filter behavior in the rest of

the scenarios.
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Figure 36. Case 1 Scenario IS SMV Bias State Ensemble Mean, Ensemble 1-σ, and Filter
Estimated 1-σ in the NED Frame

4.2.4.2 Case 2.

Figure 37 displays the error in the stereo bias state estimate for Case 2. The covariance

is smaller for Case 2 due to the preprocessing and reduced FOGM noise. Case 2 also has

the error spike in the down direction at the beginning of measurements. This is indicative

that the combined model for the down direction is not a tightly fitting model at larger

distances. Like Case 1, the error quickly falls within the filter covariance. The East error

pushes the edges of the filter covariance which matches what was seen in the position error

discussion in Section 4.2.1.2. The behavior observed for this scenario is consistent with the

filter behavior in the rest of the scenarios.
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Figure 37. Case 2 Scenario IS SMV Bias State Ensemble Mean, Ensemble 1-σ, and Filter
Estimated 1-σ in the NED Frame

The stereo bias states will not be discussed or evaluated for the rest of the scenarios.

The filter performance in these states is consistent and there is no benefit to discussing

them further.

4.2.5 Accelerometer Bias.

This section will look at the results for the filter’s accelerometer bias estimation. Results

are displayed as an error in the relative bias state estimation between the tanker and the

receiver. The bias errors for each aircraft only correspond to that aircraft, but because of

the extremely small attitude changes in this simulation it is a close enough approximation

to treat them as a relative measurement.

4.2.5.1 Case 1.

Figure 38 displays the error in the filter’s estimation of the accelerometer bias states

for Case 1. The filter performs as expected. The ensemble mean and ensemble 1-σ align

closely with the filter estimates. The relative position measurements actually improve the

accuracy of the filter, dropping the uncertainty by a factor of 2.
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Figure 38. Case 1 Scenario IS SMV Relative Accelerometer Bias State Ensemble Mean,
Ensemble 1-σ, and Filter Estimated 1-σ in the Tanker Body Frame

4.2.5.2 Case 2.

Figure 39 displays the error in the filter’s estimation of the accelerometer bias states for

Case 2. The behavior is consistent with that observed in Case 1. The mean error is slightly

smaller, but the scale of these estimates is such a small magnitude that the difference is

negligible.
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Figure 39. Case 1 Scenario IS SMV Relative Accelerometer Bias State Ensemble Mean,
Ensemble 1-σ, and Filter Estimated 1-σ in the Tanker Body Frame
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The accelerometer bias states will not be discussed or evaluated for the rest of the

scenarios. The filter performance in these states is consistent and there is no benefit to

discussing them further.

4.2.6 Gyro Bias.

This section will look at the results for the filter’s gyro bias estimation. Like in Sec-

tion 4.2.5, results are displayed as an error in the relative bias state estimation between the

tanker and the receiver.

4.2.6.1 Case 1.

Figure 40 displays the error in the filter estimated relative gyro bias states for Case 1.

The relative position measurements do not provide much insight into the gyro bias states.

There is observability into the X and Y, but the measurements only have a slight impact

on the estimation of the Gyro biases. The Z bias state is not observable at all leaving the

error in the bias state estimate equal to the values of the actual biases themselves. The key

observation is that the filter is behaving properly. The error ensemble mean and 1-σ align

with the filter’s estimated 1-σ.
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Figure 40. Case 1 Scenario IS SMV Relative Gyro Bias State Ensemble Mean, Ensemble 1-σ,
and Filter Estimated 1-σ in the Tanker Body Frame
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4.2.6.2 Case 2.

Figure 41 displays the error in the filter estimated relative gyro bias states for Case 2.

There is little difference in the filter’s behavior between the two cases. As in Case 1, the

X and Y receive some improved estimation with no observation at all into the Z. The filter

performance is consistent with the filter estimated 1-σ aligning with the ensemble error

mean and ensemble error 1-σ.
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Figure 41. Case 2 Scenario IS SMV Relative Gyro Bias State Ensemble Mean, Ensemble 1-σ,
and Filter Estimated 1-σ in the Tanker Body Frame

The gyro bias states will not be discussed or evaluated for the rest of the scenarios. The

filter performance in these states is consistent and there is no benefit to discussing them

further.

4.3 Scenario S

Recall that Scenario S refers to the SMV measurements alone. Scenario S is not evalu-

ated in detail here. It is primarily discussed in Section 3.3.3.3.3 and is also seen in Figures 16

and 29 for Case 1 and Figures 19 and 31 for Case 2.
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4.4 Scenario IG

Recall that Scenario IG refers to the combination of INS and DGPS when GPS is lost

50 m from the tanker. Scenario IG is not discussed independently. It exists to show the

drift in the EKF solution following the loss of DGPS. This effect is seen in both Figures 58

and 59. The DGPS signal keeps the RMSE low until it is lost. At that point the drift of the

INS begins again causing the RMSE to grow large enough to cause problems in an AAR

maneuver.

4.5 Scenario IGS

Recall that Scenario IG refers to the combination of INS, DGPS, and SMV when GPS

is lost 50 m from the tanker. While the integration of the SMV is the primary design

goal for the EKF, integrating DGPS into the EKF is essential. This gives the EKF the

advantage of reliable and accurate measurements when available. The DGPS also improves

the estimation of the SMV bias, thus improving the EKF solution when DGPS is lost.

4.5.1 Position.

This section displays the results of the filter Case 1 and Case 2 positions for Scenario

IGS. All positions are relative positions between the tanker and the receiver in the NED

frame. All covariances (and 1-σ values) are, likewise, transformed into representing the

relative states.

4.5.1.1 Case 1.

Figure 42 displays the error for each of the 100 runs in Case 1 for the filter’s estimated

relative position in the NED frame. Unlike Scenarios I and IS, there is no sudden drop in

the EKF solution error. This allows the entire run to be observed in one figure.

The DGPS signal integrates well into the EKF. For the first 147 s of the simulation

both the filter and the DGPS bring the filter covariance down to a 1σ of 1.5 cm, 1.2 cm,

and 1.4 cm in the North, East, and Down, respectively. The ensemble covariance closely
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follows the EKF estimated covariance at this point. Once the DGPS ensemble mean drifts

to follow the SMV measurements and the covariance grows to 19 cm, 3.7 cm, and 3.5 cm

in the North, East and Down, respectively. The EKF is clearly able to maintain accurate

estimation, even once DGPS is lost.

Another benefit of using the DGPS is the improved estimation of the SMV bias. Fig-

ure 43 shows the EKF estimated SMV bias state plotted against the smoothed SMV error

for Case 1. Because of the additional DGPS measurements, the EKF better estimates the

bias state. The DGPS reduces the covariance so when the SMV measurements come in, the

filter knows the correct state to correctly bring the information into the bias state. Because

the time constant is higher in Case 1, the information is stored longer in the bias state even

after the DGPS is lost.
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Figure 42. Case 1 Scenario IGS Error between Filter Estimated Position and True Position
for Full Simulation with 100 Iterations Including Ensemble Error Mean, Ensemble Error 1-σ,
and Filter 1-σ in the NED Frame
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Figure 43. Case 1 Scenario IGS Estimated Stereo Bias Against Actual SMV Error

4.5.1.2 Case 2.

Figure 44 displays the error for each of the 100 runs in Case 1 for the filter’s estimated

relative position in the NED frame. For the first 147 s of the simulation, Case 2 is identical

to Case 1 where the covariance is maintained to a 1σ of 1.5 cm, 1.2 cm, and 1.4 cm in the

North, East, and Down, respectively. Once DGPS is lost, the covariance grows to 7.1 cm,

4.6 cm, and 4.7 cm. The slightly higher covariance in the East and Down directions is due

to the smaller time constant associated with the SMV bias state. In Case 2 the bias quickly

decorrelates, and the covariance rises to it’s steady state. In Case 1, the SMV bias state

decorrelates more slowly which prevents the bias from growing as quickly. Even though the

SMV bias information is lost more quickly in this case, Figure 45 demonstrates the EKF

more accurately estimates the SMV bias state while the DGPS is active. Long DGPS losses

will ultimately decorrelate until the EKF operates as if it only has SMV. This capability

will help the system to overcome short periods of DGPS unavailability.
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Figure 44. Case 2 Scenario IGS Error between Filter Estimated Position and True Position
for Full Simulation with 100 Iterations Including Ensemble Error Mean, Ensemble Error 1-σ,
and Filter 1-σ in the NED Frame
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Figure 45. Case 2 Scenario IGS Estimated Stereo Bias Against Actual SMV Error

Table 9 shows the RMSE values for the relative position EKF solution when the receiver

is within 100 m and 47 m of the tanker. The values follow the same trend as Table 8 where

Case 1 has better values in some sections due to a better estimation of the SMV bias

states. The most notable difference is the drop in the gap between the Case 1 and Case 2
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North RMSE values. Because Case 1 more accurately estimates the bias due to the DGPS

measurements, the EKF solution with only the SMV is much better than in Scenario 1.

Table 9. Comparison of RMSE for Scenario IGS Case 1 and Case 2 Filter Estimated Relative
Position Errors when Receiver Is within 100 m and 47 m of Tanker

100 m 47 m

Scenario North (m) East (m) Down (m) North (m) East (m) Down (m)

Case 1 0.0712 0.0190 0.0257 0.0851 0.0210 0.0295

Case 2 0.0659 0.0324 0.0222 0.0783 0.0381 0.0245

4.5.2 Velocity.

This section displays the results of the filter Case 1 and Case 2 velocities for Scenario

IGS. All velocities are relative between the tanker and the receiver in the NED frame. All

covariances are transformed into representations of the relative states.

4.5.3 Case 1.

Figure 46 displays the error for each of the 100 runs in Case 1 for the filter’s estimated

relative velocity in the NED frame. Beside some covariance growth in the North direction,

the SMV measurements closely maintain the filter estimated covariance. The covariance

is maintained at 0.39 cm/s, 0.39 cm/s, and 0.36 cm/s in the North, East, and Down di-

rections, respectively. till 147 s into the simulation. The DGPS loss at 147 s allows the

covariance to drift to 0.66 cm/s, 0.38 cm/s, and 0.32 cm/s in the North, East and Down,

respectively. While the drift in the North is noticeable, the final East and Down covariances

are comparable to when DGPS is integrated. The velocity mean varies more without the

DGPS because the ensemble mean error fluctuates, but the velocity maintains the same

level of uncertainty.

81



0 50 100 150 200 250 300
-0.02

0

0.02

N
or

th
 (

m
/s

) Filter 1-σ
Ensemble Mean
Ensemble 1-σ

0 50 100 150 200 250 300
-0.01

0

0.01

E
as

t (
m

/s
)

0 50 100 150 200 250 300
Time (s)

-0.02

-0.01

0

0.01

D
ow

n 
(m

/s
)

Figure 46. Case 1 Scenario IGS Error between Filter Estimated Velocity and True Velocity
for Full Simulation with 100 Iterations, Including Ensemble Mean, Ensemble 1-σ, and Filter
1-σ in the NED Frame

4.5.4 Case 2.

Figure 47 displays the error for each of the 100 runs in Case 2 for the filter’s estimated

relative velocity in the NED frame. Similar to Case 1, the covariance is maintained at 0.39

cm/s, 0.39 cm/s, and 0.36 cm/s in the North, East, and Down directions, respectively, up

to 147 s into the simulation. The DGPS loss at 147 s allows the covariance 1-σ to drift to

0.63 cm/s, 0.44 cm/s, and 0.34 cm/s in the North, East and Down, respectively, by the end

of the simulation. These values are comparable to those in Case 1. The RMSE values are

small that a discussion of them has no benefit, as observed in Section 4.8.2 in Tables 14

to 16.
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Figure 47. Case 2 Scenario IGS Error between Filter Estimated Velocity and True Velocity
for Full Simulation with 100 Iterations, Including Ensemble Mean, Ensemble 1-σ, and Filter
1-σ in the NED Frame

4.6 Scenario IGS/NL

Scenario IGS/NL will not be discussed in detail, but the results are displayed for com-

pleteness. The filter is designed to be able to take the DGPS measurements when they are

available. In the situation where the DGPS is never lost, the filter will continue to receive

the updates.

4.6.1 Position.

This section will show the filter results for when DGPS is never lost. As expected, the

filter performs even better when the DGPS measurements are never lost.

4.6.1.1 Case 1.

Figure 48 displays the error for each of the 100 runs in Case 1 for the filter’s estimated

relative position in the NED frame. The ensemble covariance and mean remain stable

for the majority of the simulation, closely matching the filter estimated covariance. The

introduction of the SMV measurements causes the mean to vary more than with DGPS
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alone, but the filter still provides an accurate solution. Without the loss of the DGPS the

filter continues to accurately estimate the SMV bias as seen in Figure 49.
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Figure 48. Case 2 Scenario IGS/NL Error between Filter Estimated Velocity and True Velocity
for Full Simulation with 100 Iterations, Including Ensemble Mean, Ensemble 1-σ, and Filter
1-σ in the NED Frame
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Figure 49. Case 2 Scenario IGS/NL Estimated Stereo Bias Against Actual SMV Error
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4.6.1.2 Case 2.

Figure 50 displays the error for each of the 100 runs in Case 2 for the filter’s estimated

relative position in the NED frame. With the 2 cm accurate DGPS signal, the performance

of Case 2 is effectively the same as Case 1. Figure 51 shows that Case 2 can also estimate

the SMV bias more accurately when the DGPS continues.
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Figure 50. Case 2 Scenario IGS/NL Error between Filter Estimated Velocity and True Velocity
for Full Simulation with 100 Iterations, Including Ensemble Mean, Ensemble 1-σ, and Filter
1-σ in the NED Frame
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Figure 51. Case 2 Scenario IGS/NL Estimated Stereo Bias Against Actual SMV Error

4.6.2 Velocity.

Like with position, the velocity performs better when the DGPS measurements are not

lost. Figures 52 and 53 display the error for each of the 100 runs in Case 1 and Case 2,

respectively, for the filter’s estimated relative velocity in the NED frame. The performance

is consistent with the behavior observed in position.
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Figure 52. Case 1 Scenario IGS/NL Error between Filter Estimated Velocity and True Velocity
for Full Simulation with 100 Iterations, Including Ensemble Mean, Ensemble 1-σ, and Filter
1-σ in the NED Frame
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Figure 53. Case 2 Scenario IGS/NL Error between Filter Estimated Velocity and True Velocity
for Full Simulation with 100 Iterations, Including Ensemble Mean, Ensemble 1-σ, and Filter
1-σ in the NED Frame

4.7 Scenario Comparisons

To best highlight the filter behavior in a concise manner, most of the results displayed

are different combinations of the six scenarios. For clarity, the RMSE calculated for the
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ensemble at every time step is used in Figures 54 to 61. This allows for the general behavior

of the error to be viewed more simply by removing the full ensemble plots and covariance

bounds.

4.7.1 Scenarios I, IS, S.

The comparison of scenarios I, IS, and S show the significant improvement in relative

position RMSE using either SMV or the EKF with SMV. Figures 54 and 55 show the growth

of RMSE for both Scenario I and Scenario IS until the SMV measurements are introduced.

At that point, both Scenario IS and S have significantly lower RMSE than Scenario I as it

continues to drift, which causes the MRSE to continue growing as well.

0 50 100 150 200 250 300
0

10

20

30

N
or

th
 (

m
) IS S I

0 50 100 150 200 250 300
0

10

20

30

E
as

t (
m

)

0 50 100 150 200 250 300
Time (s)

0

10

20

30

D
ow

n 
(m

)

Figure 54. RMSE from Case 1, Scenarios I, IS, and S. RMSE Calculated at Each Time Step
for All 100 Iterations
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Figure 55. RMSE from Case 2, Scenarios I, IS, and S. RMSE Calculated at Each Time Step
for All 100 Iterations

4.7.2 Scenarios IS and S.

Figures 56 and 57 show the plots of Scenario IS and S for the last 120 s of the simulations

in Case 1 and 2 respectively. Note the axis are different scales in the North. This is to

ensure the individual behavior of each case is still visible. In both plots the combination of

INS and SMV in the EKF results in a smoother plot with lower RMSE. The spike in the

North error at 180 s is seen in these plots. As discussed, this is due to the tail of the receiver

aircraft leaving the FOV of the camera. The higher error from 140 s to 180 s is a factor

of the specific trajectory the receiver aircraft takes. As the aircraft comes in at a higher

angle, the SMV bias in the North direction increases. Overall, the Case 2 RMSE is lower

in total because the SMV measurements have lower total error due to the preprocessing

performed prior to incorporating the measurements into the filter. However, Scenario IS in

Figure 56 reduces the SMV error more than Scenario IS in Figure 57. This is visible in the

lower INS/SMV line following the SMV line.
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Figure 56. RMSE from Case 1, Scenarios IS and S. RMSE Calculated at Each Time Step for
All 100 Iterations
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Figure 57. RMSE from Case 2, Scenarios IS and S. RMSE Calculated at Each Time Step for
All 100 Iterations

4.7.3 Scenarios IS, IG, and IGS.

This section takes a closer look at the behavior of the filter when GPS measurements are

included in Figures 58 and 59. A comparison of Scenarios IS, IG, and IGS is made. In both
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figures, Scenario IS RMSE grows until SMV measurements are available, and then it drops

sharply. During this period both Scenario IG and Scenario IGS RMSE are significantly

lower and hover close to 0. Once the GPS is lost, Scenario IG begins to drift again allowing

the RMSE to grow quickly. Both Scenario IS and Scenario IGS remain close to 0. The next

section looks closely at these two scenarios.
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Figure 58. RMSE from Case 1, Scenarios IS, IG, and IGS. RMSE Calculated at Each Time
Step for All 100 Iterations
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Figure 59. RMSE from Case 2, Scenarios IS, IG, and IGS. RMSE Calculated at Each Time
Step for All 100 Iterations

4.7.4 Scenarios IS, IGS, and IGS/NL.

This section observes the last 120 s of Scenarios IS and IGS from Figures 58 and 59,

adding in Scenario IGS/NL to observe the difference in EKF performance when DGPS is

never lost. Note the axis are different scales in the North. This is to ensure the individual

behavior of each case is still visible. Figures 60 and 61 show the combination of these three

scenarios starting just before the DGPS solution is lost. Prior to DGPS loss, Scenario IGS

and IGS/NL align so closely they cannot be distinguished from one another. However, when

the DGPS signal is lost, Scenario IGS begins to drift towards Scenario IS.

In Case 1, the two lines never meet. Again, the longer time constant in Case 1 allows

it to retain the bias values longer. As time progresses and the bias decorrelates over time,

the Scenario IGS solution RMSE continues to approach the Scenario IS solution. In Case 2,

the shorter time constant allows the SMV bias to decorrelate quickly causing Scenario IGS

to quickly merge with Scenario IS. There is a period of time when it retains some of the

stored SMV bias, but it is almost completely gone after 35 s. Previously in Section 4.5.1.2,

this is still useful in situations where GPS is intermittent or not completely lost. The SMV

bias state provides some correction for a short period of time.
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Figure 60. RMSE from Case 1, Scenarios IS, IGS, and IGS/NL. RMSE Calculated at Each
Time Step for All 100 Iterations
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Figure 61. RMSE from Case 2, Scenarios IS, IGS, and IGS/NL. RMSE Calculated at Each
Time Step for All 100 Iterations

4.8 Comparison

This final section compares all of the scenarios and cases in one set of tables. For both

position and velocity, there are three tables. Each table displays the RMSE for a period
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of the simulation to see general performance of the scenario. The first table looks at the

entirety of the simulation. The second table looks at when the receiver is within 100 m

of the tanker, when SMV measurements begin. The third table looks at when it is within

47 m. This is long enough in time, after the loss of GPS, to prevent the immediate influence

of DGPS from affecting the RMSE. The last table looks at the contact point. Some of the

information in the tables are presented in previous sections but it is repeated for ease of

comparison.

4.8.1 Position.

This section compares the accuracy of the different scenarios and cases for position

estimation. Table 10 displays the RMSE errors for the entire simulation. Scenario S, SMV

only, has no values due to SMV measurements starting when the receiver is within 100 m

of the tanker. As expected, Scenarios I, IS, and IG have high RMSE due to the portions

of their simulations with a drifting solution. Scenarios I and IG are not discussed directly,

though they are present in the tables for comparison. Both Scenario IGS and IGS/NL

maintain measurements for the duration of the simulation resulting in lower RMSE values.

Due to DGPS complete availability, Scenario IGS/NL had the best RMSE values. Case 1

had better RMSE than Case 2 due to its capability to estimate the SMV bias state. With

the DGPS and SMV combination, it is able to continually estimate the SMV bias.

Table 10. Ensemble Relative Position RMSE for Full Trajectory in meters

Case 1 Case 2

Scenario North East Down North East Down

I 11.9 12.0 10.7 11.9 12.0 10.7

IS 1.68 1.77 1.59 1.65 1.77 1.59

S N/A N/A N/A N/A N/A N/A

IG 0.924 0.995 0.559 0.924 0.995 0.559

IGS 0.0549 0.0202 0.0207 0.0486 0.0252 0.0183

IGS/NL 0.0133 0.0119 0.0115 0.0133 0.0129 0.0120
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Tables 11 and 12 perform the same comparison but with Scenario S values as well.

These show the benefit of utilizing an EKF rather than the SMV alone. Table 11 shows

RMSE values within 100 m. SMV with INS perform better than SMV alone in both cases.

Case 2 outperformed Case 1 for the full duration due to the preprocessed measurements.

As in Table 10, Scenario IGS and IGS/NL outperformed Scenario IS with Case 1. Scenario

IGS/NL provides the best values due to SMV bias estimation. Scenario IGS/NL improves

slightly between Tables 10 and 11. This is not a significant improvement, but it does show

that combining the DGPS and the SMV results in better values than DGPS alone since

Table 10 has portions of the trajectory with no SMV, while Table 11 has the SMV measure-

ments. Specifically looking at filter performance, The total magnitude of error is reduced

18-33% when SMV measurements are combined with INS in the filter. Preprocessing the

measurements by removing the characterized mean prior to adding them to the filter results

in an 73% reduction in the estimation error.

Table 11. Ensemble Relative Position RMSE Within 100 m in meters

Case 1 Case 2

Scenario North East Down North East Down

I 16.3 16.3 14.6 16.3 16.3 14.6

IS 0.398 0.0497 0.0619 0.0945 0.0371 0.0454

S 0.487 0.0666 0.0622 0.148 0.0500 0.0532

IG 1.28 1.37 0.772 1.28 1.37 0.72

IGS 0.0712 0.0190 0.0257 0.0659 0.0324 0.0222

IGS/NL 0.0134 0.0106 0.0103 0.0133 0.0126 0.0112

Table 12 shows RMSE values within 47 m of the tanker. The relationship between

the different scenarios and cases remains similar to within 100 m. Both Scenario IS and

S improve slightly due to improved SMV measurements. The benefit of the filter is seen

in the North direction. There are notable improvements in RMSE from the SMV alone in

Scenario S to combining the SMV with the INS in Scenario IS.
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Two minor inconsistencies appear as the RMSE is confined to the closer distance. The

error in the Down direction increases from Scenario S to Scenario IS for Case 1. The

error in the East direction also increases from Scenario S to Scenario IS for Case 1. In

both inconsistencies, the difference is due to the bias state estimating biases in the wrong

direction, effectively adding in additional error to each measurement. However, the change

in error for both values is negligible and has little impact on overall filter performance. The

total magnitude of error is reduced 16-24% when SMV measurements are combined with

INS in the filter. Preprocessing the measurements prior to adding them to the filter results

in an 75% reduction in the estimation error.

The Scenario IGS error increases as the range decreases. While the SMV measurements

are increasing in accuracy, the bias stored during DGPS operation is decorrelating. This

results in poorer bias estimation and increased error.

Table 12. Ensemble Relative Position RMSE Within 47 m in meters

Case 1 Case 2

Scenario North East Down North East Down

I 19.5 19.5 17.4 19.5 19.5 17.4

IS 0.375 0.0313 0.0458 0.082 0.0382 0.0238

S 0.445 0.0457 0.0431 0.114 0.0378 0.0271

IG 1.61 1.74 0.974 1.61 1.74 0.974

IGS 0.0851 0.0210 0.0295 0.0783 0.0381 0.0245

IGS/NL 0.0136 0.0101 0.0093 0.0135 0.0126 0.0107

Table 13 shows RMSE values within within 33 m or at the contact point. This table is

displayed to show the continued improvement of the SMV system as the aircraft relative

distance shrinks. For both cases the error in the East is slightly larger than in Table 12

due to an increase in the SMV bias. However, the drop in error in the North axis is much

more significant. The east error increases less than 1 cm while the error in the SMV North

measurements decreases by 6-8 cm. This decrease is also reflected when the measurements
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are incorporated into the filter with the INS, reducing the total magnitude of the error.

Looking at the IS and S results displayed, both preprocessing measurements and adding

them to the filter greatly reduces the estimation error. The total magnitude of error is

reduced 8-17% when SMV measurements are combined with INS in the filter. Preprocessing

the measurements prior to adding them to the filter results in an 83% reduction in the

estimation error.

Table 13. Ensemble Relative Position RMSE at Contact Point in meters

Case 1 Case 2

Scenario North East Down North East Down

I 23.8 23.8 21.0 23.8 23.8 21.0

IS 0.316 0.0335 0.0329 0.0273 0.0439 0.0162

S 0.379 0.0526 0.0290 0.0334 0.0457 0.0169

IG 2.33 2.50 1.37 2.33 2.50 1.37

IGS 0.0821 0.0242 0.0177 0.0284 0.0438 0.0165

IGS/NL 0.0132 0.00906 0.00785 0.0131 0.0118 0.00896

4.8.2 Velocity.

The velocity RMSE values are not discussed in much detail. Tables 14 to 17 display

the velocity RMSE for the same ranges displayed for positions. Note that the units are

in cm/s instead of m/s. The small RMSE for the velocities made it difficult to analyze

and compare values when the larger units were used. In all cases where measurements are

incorporated (SMV or DGPS), the RMSE error is less than 1 cm/s. In general, the solution

improves when DGPS is added in and further improves if the DGPS is never lost. There

is little difference between the two cases as the estimation of the bias does not significantly

impact the velocity estimation. The levels of error observed are small enough that specific

comparisons have little benefit.
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Table 14. Ensemble Relative Velocity RMSE for Full Trajectory in cm/s

Case 1 Case 2

Scenario North East Down North East Down

I 12.8 12.5 10.8 12.8 12.5 10.8

IS 3.64 3.78 3.35 3.63 3.79 3.35

S N/A N/A N/A N/A N/A N/A

IG 2.23 2.38 1.26 2.23 2.38 1.26

IGS 0.539 0.390 0.369 0.558 0.432 0.381

IGS/NL 0.399 0.383 0.360 0.399 0.398 0.366

Table 15. Ensemble Relative Velocity RMSE Within 100 m in cm/s

Case 1 Case 2

Scenario North East Down North East Down

I 16.9 16.5 14.0 16.9 16.5 14.0

IS 0.997 0.559 0.515 0.962 0.585 0.512

S N/A N/A N/A N/A N/A N/A

IG 3.06 3.26 1.70 3.06 3.26 1.70

IGS 0.638 0.377 0.351 0.669 0.456 0.375

IGS/NL 0.400 0.415 0.376 0.396 0.393 0.344
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Table 16. Ensemble Relative Velocity RMSE Within 47 m in cm/s

Case 1 Case 2

Scenario North East Down East Down

I 18.1 18.4 14.6 18.1 18.4 14.6

IS 0.751 0.373 0.335 0.753 0.473 0.378

S N/A N/A N/A N/A N/A N/A

IG 3.82 4.08 2.09 3.82 4.08 2.09

IGS 0.706 0.373 0.336 0.752 0.475 0.372

IGS/NL 0.402 0.361 0.315 0.402 0.398 0.332

Table 17. Ensemble Relative Velocity RMSE at Contact in cm/s

Case 1 Case 2

Scenario North East Down North East Down

I 21.9 21.1 17.4 21.9 21.1 17.4

IS 0.579 0.371 0.299 0.563 0.449 0.317

S N/A N/A N/A N/A N/A N/A

IG 4.99 5.39 2.56 4.99 5.39 2.56

IGS 0.580 0.371 0.298 0.563 0.449 0.317

IGS/NL 0.393 0.362 0.293 0.393 0.389 0.309

4.9 Summary

In summary, many different combinations of sensors obtain less than 1 m accuracy. SMV

alone, INS combined with SMV and INS combined with SMV and DGPS when DGPS is lost

or maintained, all fall under the necessary accuracy. This chapter demonstrates a filter that

successfully combines SMV with an INS but also utilizes additional DGPS measurements

when available for continued, improved accuracy. SMV is best used when combined with

additional sensors when available. This improves filter accuracy and also its ability to
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estimate the SMV bias states. The filter can be tuned to specifically address this refueling

simulation for improved SMV accuracy, and it can be tuned for a more generic simulation

with comparable or slightly improved results.
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V. Conclusion

This thesis presents a design for an EKF able to incorporate INS, SMV, and DGPS

measurements to estimate the relative position of a receiver and a tanker flying a refueling

trajectory. This chapter discusses the final conclusions determined from this research as

well as recommendations for future research.

5.1 Conclusions

This research found it possible to design an EKF capable of fusing the SMV measure-

ments with INS and DGPS measurements. SMV measurements were simulated with the

use of 3D reprojection and ICP in a 3DVW. The simulated measurements accounted for

observed biases and were broken into two types of measurements or two cases. The first uses

the SMV measurements without any correction. The second incorporates the knowledge of

the biases to correct for them. The EKF estimates the biases present in SMV measurements

and tunes them separately for each case.

Without preprocessing, within 100 m, the SMV measurements had NED RMSE of

48.7 cm, 6.66 cm, and 6.22 cm. Incorporated into the tuned EKF and combined with

the INS, the error became NED RMSE of 39.8 cm, 4.97 cm, and 6.19 cm. Fusing available

DGPS measurements reduced the error further, bringing it down to NED RMSE of 7.12 cm,

1.9 cm, and 2.57 cm. With preprocessing, within 100 m, the SMV measurement NED RMSE

is 14.8 cm, 5 cm, and 5.32 cm. Incorporating these measurements into the EKF tuned for

preprocessed measurements with the INS reduces the error to NED RMSE of 9.45 cm,

4.14 cm, and 4.54 cm. Bringing the DGPS measurements into the EKF further reduces

the error to NED RMSE of 6.59 cm, 3.24 cm, and 2.22 cm. These RMSE values reflect

the trend seen in this filter design. As measurements are incorporated, relative position

estimation improves, up to 18% without preprocessing and up to 33% with preprocessing,

for incorporating SMV into the filter!

The SMV bias states were able to successfully estimate some of the bias values and

prevent the filter covariance from collapsing When only combining the SMV and INS they
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drove a more conservative filter than would be ideal with most of the filter estimates falling

within the estimated covariance. Fusing additional sensors with the SMV only increased the

filter accuracy and even improved the SMV inputs by enabling the filters to better estimate

the SMV bias states. In all Scenarios and Cases, the EKF had no trouble estimating relative

position with the required sub meter accuracy and were able to provide sub 50 cm accuracy.

5.2 Recommendations

This section outlines how this work can be improved, expanded, or further explored.

SMV and AAR are relatively untouched in combination so there are many ways to improve

estimation for AAR.

5.2.1 Attitude Measurements.

This work assumes a navigation grade IMU and a well known starting position and

attitude. Combined with the knowledge the SMV attitude measurements lack accuracy the

decision was made to leave them out of this simulation. Practically, a receiver’s navigation

system operates for a period of time prior to rendezvousing with the tanker. Even with a

navigation grade IMU attitude errors impacting estimation may still exist. Implementing

and testing an attitude measurement processor allows future simulations and flight tests

to examine how SMV can be used to bring in attitude measurements as well as position

measurements for a complete solution. To accomplish this with the current model, a com-

mercial grade IMU with significant drift could be used to incorporate the current attitude

measurements.

5.2.2 Adaptive Filtering.

An issue in designing this filter was characterizing the SMV behavior in a way that

provided measurement accuracies. The current characterization is inherently simulation

specific and may not be representative of complete SMV behavior. Adaptive filtering pro-

vides a possible avenue to avoid having to characterize the error in that fashion. While it
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may not directly deal with the bias’, adaptive filtering could provide a flexible solution for

incorporating SMV measurements under a wide range of scenarios.

5.2.3 Unscented Kalman Filter.

This filter utilizes a set of linearized INS error equations for the filter system dynamics.

Fully modeling the dynamics decreases the magnitude of any linearizion errors. Executing

the non-linear dynamics as an Unscented kalman Filter (UKF) may improve the solution.

The dynamics in this filter are well-developed, so it is possible a UKF solution would not

provide much improvement.

5.2.4 Residual Monitoring.

Residual monitoring may help protect the system against uncharacterized errors. Ideally,

the SMV algorithm is robust and able to filter out potential sources of error. However, if

a measurement slips through containing a larger than expected error, a method may be

necessary to protect the filter from incorporating the error. A residual monitor may identify

these measurements. While it may not protect against the gradually moving bias observed

in the measurements, it may protect against a sudden change in error such as when the tail

of the aircraft leaves the FOV.

5.2.5 Robust SMV.

The majority of the filter design for this research is done to incorporate the SMV data

that was previously unknown, but not necessarily to improve upon it. Through simulation

the behavior of the algorithm was approximated to allow design choices to be made to help

the filter read the data. Exploration in three different areas could benefit this work. First,

simply improving the SMV algorithm could greatly improve the filter’s function. Reductions

in the SMV bias and magnitude of error will make it easier to design the filter to incorporate

the measurements.

Second, better characterizing the SMV behavior could provide a more robust filter

design. Currently it is not know exactly how the SMV will operate in different situations.
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Obtaining more data on the sensors behavior in different situations will aid in designing

filters to incorporate the data. Specifically, obtaining a large real-world data set will enable

study of SMV algorithms behaviors. It is hard to tell currently if behaviors are due to the

algorithm in general, or to the specific simulation it was run through.

Third, better modeling the SMV system directly influences the filter’s ability to incor-

porate the data. This is closely related to characterizing the behavior but can be different.

It may be necessary to more accurately characterize the data in order to better model it.

One of the weaknesses of this filter design is the relatively inflexible FOGM bias state used

to model the SMV system. If the bias or other behaviors can be accurately modeled, the

filter will incorporate the SMV measurements with less error.

5.2.6 Boom Modeling.

This research did not evaluate the SMV performance with the simulated boom. The

boom location places it directly in the middle of the stereo camera system view blocking a

significant portion of the receiver aircraft. While some initial testing was done to design a

mask for the boom and generate initial measurements, the measurements were not charac-

terized or run through the filter. In order to implement a vision based system in AAR, it

will need to function even when the boom obstructs the view.
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