
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2017

Multi-PLC Exercise Environments for Training ICS
First Responders
Joseph K. Daoud

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Industrial Technology Commons, and the Other Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Daoud, Joseph K., "Multi-PLC Exercise Environments for Training ICS First Responders" (2017). Theses and Dissertations. 1568.
https://scholar.afit.edu/etd/1568

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1062?utm_source=scholar.afit.edu%2Fetd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.afit.edu%2Fetd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1568?utm_source=scholar.afit.edu%2Fetd%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

MULTI-PLC EXERCISE ENVIRONMENTS
FOR TRAINING CYBER FIRST

RESPONDERS FOR INDUSTRIAL CONTROL
SYSTEMS

THESIS

Joseph K. Daoud, 2LT, USA

AFIT-ENG-MS-17-M-020

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Army,
the United States Department of Defense or the United States Government. This
material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-MS-17-M-020

MULTI-PLC EXERCISE ENVIRONMENTS FOR

TRAINING CYBER FIRST RESPONDERS FOR INDUSTRIAL CONTROL

SYSTEMS

THESIS

Presented to the Faculty

Department of Computer and Electrical Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Joseph K. Daoud, B.S.C.S.

2LT, USA

March 2017

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-17-M-020

MULTI-PLC EXERCISE ENVIRONMENTS FOR

TRAINING CYBER FIRST RESPONDERS FOR INDUSTRIAL CONTROL

SYSTEMS

THESIS

Joseph K. Daoud, B.S.C.S.
2LT, USA

Committee Membership:

LTC Mason Rice, PhD
Chair

Lt Col John Pecarina, PhD
Member

Mr. Stephen Dunlap
Member

AFIT-ENG-MS-17-M-020

Abstract

When systems are targeted by cyber attacks, cyber first responders must be able

to react effectively, especially when dealing with critical infrastructure. Training for

cyber first responders is lacking and most existing exercise platforms are expensive,

inaccessible or ineffective. This paper presents a mobile training platform which in-

corporates a variety of programmable logic controllers into a single system which

facilitates the development of the unique skills required of cyber first responders op-

erating in the realm of industrial control systems. The platform is modeled after a

jail in the northeastern United States and was developed to maximize realism. Exam-

ple training scenarios are provided to address specific skills and techniques. Results

show that the platform is robust enough to conduct sustained training exercises that

address a curriculum that has been proposed for cyber first responders.

iv

Table of Contents

Page

Abstract . iv

List of Figures . vii

List of Tables . viii

I. Introduction . 1

1.1 Motivation . 1
1.2 Research Goals and Hypothesis . 2
1.3 Thesis Layout . 3

II. Background . 4

2.1 Training Platforms for ICS First Response . 4
2.1.1 Differences Between IT and OT Systems . 4
2.1.2 Challenges of Constructing Effective OT Exercise

Environments . 5
2.1.3 Existing Platforms . 6

2.2 Recommended Curriculum . 8
2.2.1 Industrial Control System Principles . 8
2.2.2 Cyber Manipulation . 8
2.2.3 Response Coordination . 9

2.3 Training Scenario Criteria . 9

III. Multi-PLC Training Platform . 11

3.1 Design Considerations . 11
3.1.1 Requirements . 11
3.1.2 Components . 12
3.1.3 Wiring . 13
3.1.4 PLC Selection . 14

3.2 Exercise Layout . 16
3.2.1 White Cell Table . 16
3.2.2 Platform Table . 17
3.2.3 Exercise Participant Table . 18

IV. Training Scenario - Segmentation of an ICS Network . 20

4.1 Segmentation Using a CompactLogix PLC . 21
4.2 Segmentation Using a Siemens PLC. 22
4.3 Segmentation Using a ControlLogix PLC . 24
4.4 Scenario Selection and Alternate Scenario Possibilities 25

v

Page

4.4.1 Analysis of Malicious Implant in PLC Firmware 26
4.4.2 Digital Forensics of a Malfunctioning PLC . 27

V. Results . 29

5.1 Hardware Verification . 29
5.2 Reliability Test . 29
5.3 Timing. 31
5.4 Functional Analysis Criteria . 32
5.5 Limitations . 33

VI. Conclusion . 35

6.1 Conclusions of Research . 35
6.2 Research Hypotheses . 35
6.3 Significance of Research . 36

A. Live Exercise Scenarios . 37

A.1 Narrative . 37
A.2 Reconnaissance and Enumeration of the Prison’s

Corporate Network . 38
A.3 Gain Access to the Prison’s ICS Network . 38
A.4 Reconnaissance and Enumeration of the Prison’s ICS

Network . 39
A.5 Exploit Planning . 40
A.6 Exploit Execution and Exfiltration . 41

B. Appendix B. Software Code. 42

B.1 Y-Box . 42
B.2 Main . 42
B.3 Guardstation . 71
B.4 Ybox . 78

B.5 Ladder Logic . 81
B.6 CompactLogix . 81
B.7 Siemens S7-300 . 93
B.8 ControlLogix . 98

Bibliography . 109

vi

List of Figures

Figure Page

1 Completed training platform. 13

2 Wiring diagram for lights. 14

3 Wiring diagram for pushbuttons. 15

4 Wiring diagram for locks. 15

5 Wiring diagram for PLC inputs and outputs. 17

6 Wiring diagram for PLC selection. 17

7 Exercise layout. 19

8 White cell view. 19

9 Updating the IP field in the RSLogix5000 software for
the CompactLogix PLC. 22

10 Updating the IP field in the SIMATIC software for the
S7-300 PLC. 23

11 Setting the target IP for the S7-300. 24

12 Updating the IP field from the ControlLogix
administrative page. 25

13 Box plots of PLC timing results. 32

vii

List of Tables

Table Page

1 Components. 12

2 Reliability test results. 29

3 PLC startup times (in seconds). 31

viii

MULTI-PLC EXERCISE ENVIRONMENTS FOR

TRAINING CYBER FIRST RESPONDERS FOR INDUSTRIAL CONTROL

SYSTEMS

I. Introduction

1.1 Motivation

The importance of cyber security in today’s Industrial Control Systems (ICS) is

widely known and has been demonstrated through several experiments and real-world

attacks such as the attack on the Ukrainian power grid in December 2015 which

leveraged BlackEnergy malware [10]. Those trusted to react to cyber-related ICS

events, cyber first responders, must be adequately prepared for the task. In medical

emergency situations, first responders are relied on to perform triage operations and

stabilize victims until the victims can be transported to a dedicated medical facility.

Once a victim arrives at the medical facility, physicians take over and conduct their

own assessments of symptoms and diagnose the extent of the victim’s injuries. Be-

cause various symptoms could have a number of underlying causes, medical students

go through rigorous education and training programs which include practical exer-

cises, clinical rotations, internships and eventually residency before they are trusted

to perform these diagnoses as licensed physicians [13].

In ICS incident response, a similar process is conducted. Usually when an event

occurs, the asset owner will perform initial triage-like operations to stabilize the

ICS and restore operation. Asset owners will often handle initial response actions

themselves because ICS malfunctions can very quickly lead to safety risks depending

1

on the physical process being controlled. These initial response actions often involve

reverting the ICS to a semi-automated or even manually controlled state. If there is

a possibility that the event is related to a cyber attack, cyber first responders from

organizations like ICS-CERT should be called in to perform an assessment of the

symptoms and diagnose the attack similar to physicians at a medical facility. Given

the similarities between diagnosing patients in a hospital and diagnosing computer

networks, it is intuitive that cyber first responders should receive similar types of

hands-on training that medical students receive during their journey to becoming

licensed physicians.

1.2 Research Goals and Hypothesis

As a proof of concept, this thesis presents a portable, realistic and self-contained

training platform which was built at relatively low cost. This platform contains three

PLCs which interact with a single set of real lights and locks to represent jail cells and

a functioning mantrap. Each of the three Programmable Logic Controllers (PLCs)

can be activated and deactivated via software leveraging Y-Box technology (for a

detailed description of the Y-Box, see [22]).

The research goals are:

1. Integrate multiple PLCs into a mobile training platform at relatively low cost.

2. Incorporate realistic physical components into a training platform that facili-

tates scenarios which address training requirements for cyber first responders.

The research hypotheses are:

1. A platform like this can implement scenarios designed to address training re-

quirements for cyber first responders.

2. Multiple PLCs can control a single set of components without interference.

2

3. All required components can fit into a transportable briefcase-sized platform.

1.3 Thesis Layout

The first chapter of the thesis introduces the reader to the role of cyber first

responders and the type of training they should receive. Chapter two presents back-

ground information about the current state of cyber first responder training, current

training environments and the framework proposed by Yoon et al. for developing

effective training and evaluation scenarios. Chapter three gives details about the

training platform. Chapter four gives example training scenarios that can be imple-

mented on the training platform. Chapter five presents the results of various tests

that were performed and the achievements and limitations of the research, some of

which has been left for future work.

3

II. Background

To address the need for cyber security in today’s ICS, several organizations have

been created which can provide first response capabilities for assessing and reacting

to cyber incidents. For these organizations to optimally perform their activities, an

effective training curriculum must be in place. The following sections of this chapter

discuss existing training platforms, the current state of cyber first responder training

and the training and evaluation scenario framework proposed by Yoon et al.

2.1 Training Platforms for ICS First Response

The following subsections describe the challenges associated with creating ICS

exercise environments and currently existing exercise environments.

2.1.1 Differences Between IT and OT Systems.

Academic institutions, government organizations and businesses emphasize cyber

security by offering a variety of certifications, training courses and degree programs

[16, 1, 11]. These programs can provide a cyber first responder with the skills they

need to become proficient with information security. Unfortunately, many of these

courses focus only on traditional information technology (IT) systems, often neglect-

ing the realm of operations technology (OT). While there is overlap between these

types of systems with regards to security, ICSs have significant differences and addi-

tional considerations that a cyber first responder should be aware of when responding

to an ICS-based incident.

One of the largest distinctions between IT and OT systems are the protocols used

for network communications. Shodan lists fifteen of the most common protocols that

are unique to ICSs, but many more exist [18]. Each of these protocols use different

4

sets of parameters and operation codes which may not be compatible with any given

PLC. If a cyber first responder is to be effective, she must be familiar with these

unique ICS protocols, or be able to learn new protocols quickly upon encountering

them.

In addition to the unique protocols, almost every PLC vendor has their own

proprietary software applications used for interacting with their PLCs. This software

is not typically compatible with another vendor’s PLC. While there are similarities

among different vendors’ software, many of the intricate details are different. The

differences between the software can be compared to the differences between operating

systems. While Windows and Mac provide generally similar functionality, many

features are implemented differently and some features may not be implemented at

all. The ability to navigate the proprietary software applications that manage PLCs

is a skill that cyber first responders must have.

The final difference between IT and OT systems that will be discussed here is

simply the nature of the systems themselves. That is, OT systems control physical

processes whereas IT systems do not. This means that if something goes wrong,

a physical process can be interrupted which could quickly cascade to a safety risk.

Cyber first responders must be cognizant of this fact while conducting their activities.

Furthermore, cyber first responders should be able to understand the underlying

physical process of the ICS to effectively evaluate the incident.

2.1.2 Challenges of Constructing Effective OT Exercise Environments.

Attempts to create hands-on exercises for ICS have been made, but often lack re-

alism because some components are simulated. Even with deliberate efforts to make

these simulations accurate, they ultimately cannot account for every possible scenario

that a real piece of equipment could encounter and only provide a limited portrayal of

5

a real piece of equipment [4]. The task of creating realistic exercises is relatively easy

for IT systems because the software and hardware that cyber first responders would

interact with during their work already exist in classroom environments. Further-

more, these IT systems can be easily virtualized with nearly identical configurations

for low cost. This capability does not exist in the OT environment. This fact, along

with limitations resulting from the cost of acquiring equipment, means that quality,

hands-on exercises for ICS are far less common. It should be noted that while virtu-

alized environments still have value, an ideal hands-on exercise for training cyber first

responders would incorporate a real PLC with other genuine hardware that mimic

live systems. Furthermore, because cyber first responders will probably need to work

with many different models of PLCs over time, experiencing a variety of PLCs during

training would be beneficial.

2.1.3 Existing Platforms.

Several ICS test platforms exist, but many of them are primarily for research and

development purposes and only some are available for training. This paper does not

attempt to enumerate every testbed, however some examples are highlighted in the

following paragraphs. Additional information about existing platforms can be found

in Holm et al.[7].

Sandia National Laboratories. Sandia National Laboratories has several

testbed facilities in New Mexico including the Distributed Energy Technology Lab-

oratory (DETL), Network Laboratory, Cryptographic Research Facility, Red Team

Facility and Advanced Information Systems Lab [15]. Each of these labs contain some

real and some simulated Supervisory Control and Data Acquisition (SCADA) assets

for research and development purposes in various domains. For example, DETL has

several electrical generation and distribution capabilities which incorporate PLCs,

6

however the PLCs and their security are not necessarily the primary focus of research

[14].

Idaho National Laboratories (INL). Idaho National Laboratories has

their own facilities in Idaho Falls [8]. Their Cyber Security testbed is eventually

going to be able to connect to any of their currently existing critical infrastructure

testbeds including the SCADA testbed, power grid testbed, mock chemical mixing

facility, wireless testbed, and physical security testbed. These testbeds comprise a

full-scale critical infrastructure test range which sits on an isolated, 890 square mile

location which could make for a valuable training environment. Unfortunately, most

INL learning opportunities are limited to internships for students who work alongside

researchers with ongoing projects [9].

National Institute of Standards and Technology (NIST). NIST pro-

poses guidelines and recommended practices for many fields, including cybersecurity.

To evaluate their own recommendations, an ICS testbed was developed [5]. The

testbed attempts to emulate real ICSs so that ICS components can be evaluated with

appropriate security mechanisms in place.

SANS CyberCity. One of the only physical ICS platforms built with se-

curity training in mind is the SANS CyberCity platform. The CyberCity platform

is part of the SANS SEC562 course which is geared towards penetration testers and

kinetic cyber effects [17]. It is a 1:87 scale city with hands-on exercises involving rail-

way switching junctions, a water reservoir and a power grid system. While some of

the systems in CyberCity are simulated, real hardware was built into the power grid

system including Allen-Bradley, Siemens and Phoenix Contact PLCs [19]. All these

components make CyberCity an effective training platform, but it was also very ex-

7

pensive to develop. Furthermore, it is not a mobile platform. While it can be accessed

remotely for training, remote training denies the participant physical interaction with

components and can make troubleshooting of any potential hardware failures more

difficult.

2.2 Recommended Curriculum

Butts and Glover [4] propose three core areas that should be covered in an ICS

training course: (i) Industrial Control System Principles; (ii) Cyber Manipulation;

and (iii) Response Coordination. Each core area has recommended blocks of instruc-

tion which covers the necessary information for proficiency.

2.2.1 Industrial Control System Principles.

The first core area provides an introduction to common components of ICSs, the

cyber-physical interactions of these components, communications protocols and real-

world configurations. This knowledge provides the ability to communicate effectively

with ICS asset owners and operators. Knowledge of these topics will enhance the

trainee’s ability to identify the critical components of the ICS which may be the

intended targets of attack.

2.2.2 Cyber Manipulation.

The cyber manipulation core is meant to educate trainees on ICS attacking tech-

niques. Many of these techniques are similar to what can be found in traditional IT

systems, but they are framed for ICS networks and components. By framing the ac-

tivities this way, techniques which have a higher precedence in ICSs are emphasized,

such as pivoting. One specific, noteworthy topic in this core is the side effects that

specific tools can have on ICSs. For example, network scanning tools that are gener-

8

ally safe to use on IT networks may cause errant behavior to certain ICS components

[20].

2.2.3 Response Coordination.

The response coordination core is primarily focused on the processes of responding

to a specific incident. These include coordination of internal and external responses,

identification and prioritization of critical system components, identifying the severity

of the incident, steps for minimizing the severity of the incident, root cause analysis

and recovery. It is recommended that these concepts be taught through immersion

of trainees with realistic scenarios on genuine control systems [4].

2.3 Training Scenario Criteria

Even the best training platforms have no value unless they are used appropri-

ately. Developing realistic training scenarios is an important, but difficult task to do

well. Many training courses (see [16]) rightfully place a heavy emphasis on hands-on

exercises as teaching mechanisms. As with physicians, hands-on exercises with real-

istic scenarios are an effective technique for teaching the additional skills required for

responding to ICS-related incidents.

In addition to creating realistic scenarios, it is equally important to ensure that

the participants can be effectively evaluated. This is a difficult task that does not

have a generally accepted right answer. In fact, most evaluations of information

security professionals are performed on a case-by-case basis through activities like

cyber defense competitions. These competitions are almost entirely comprised of

“capture the flag” events where participants are required to gain access to a file and

retrieve or plant information [21, 12]. These evaluations are fundamentally inadequate

for ICSs. In IT systems, confidentiality is most often the primary concern while

9

integrity and availability are usually secondary. In an ICS, it is rare for confidentiality

to be the primary concern. Instead, the emphasis is almost always on integrity and

availability. Because capturing a flag is a compromise of confidentiality, it is generally

not an adequate criterion for evaluating ICS-based activities. In ICSs, what the

attacker does after capturing the flag is much more interesting. An effective evaluation

of an ICS-based scenario must incorporate the physical process being controlled in

some way.

Yoon et al. [23] takes advantage of the NFPA 1410 format which is used by

firefighters to develop an effective framework for evaluating the readiness of cyber

first responders. This framework contains specific objectives, descriptions, evaluation

criteria and accompanying references for each individual scenario that is created. Fur-

thermore, each scenario contains a designator which describes what type of scenario

it is and the skills addressed by the scenario. The framework proposed by Yoon et al.

is leveraged by this research to develop training scenarios with measurable evaluation

criteria.

10

III. Multi-PLC Training Platform

This section describes the design considerations and implementation details of the

platform.

3.1 Design Considerations

The purpose of this platform is to incorporate multiple models of PLCs into a

single ICS platform thereby emphasizing the differences between individual PLCs.

3.1.1 Requirements.

The platform is intended to be reasonably inexpensive and mobile so that training

can be conducted at any location. Using genuine components, as well as realistic

programming, a replica of a jail was created within a 55.32 cm x 42.39 cm x 26.97 cm

Pelican 1610 case. To enhance realism, components were selected according to the

design of an actual jail in the northeastern United States. Furthermore, the PLCs’

ladder logic is modeled to provide identical operation to the controller in the real jail.

Any one of the three PLCs can be selected by the training administrator to be active

at any given time. In summary, the multi-PLC training platform attempts to meet

the following criteria:

1. incorporates of physical components.

2. incorporates of cyber manipulation principles.

3. incorporates of response coordination techniques.

4. Provides hands-on experience.

5. Implements effective training scenarios with measurable evaluation metrics for

training.

11

Figure 1 shows the completed platform.

3.1.2 Components.

The majority of the components in the platform were ordered from online distrib-

utors. A semi-complete list of end-components is shown in Table 1. The list does

not include Velcro tape, wires, screws, terminal blocks, din rail, 3-D printed compo-

nents (e.g., pushbutton mounts, turnkey mount and Y-Box housing) and cables used

to connect and mount components. The pushbuttons, indicator lights and turnkey

replicate components that would be found on the control panel at a guard station

within a real jail. Indicator lights are controlled in real jails based on inputs from a

sensor on the cell door which detects whether or not the cell door is secure. Because

the exercise platform does not have actual doors, this sensor is simulated in the Y-Box

code allowing the Y-Box to send the PLC signals which are identical to a real sensor.

This is the only simulated component in the platform.

Table 1. Components.

Component Quantity Component Quantity
Cabinet Lock 5 Pushbutton 5

Relay (Electromechanical) 5 Red LED 4
Relay (Solid State) 3 Peg Board 2
Power Supply (12V) 1 Power Supply (24V) 1
Network Switch 1 Router 1

Circuit Breaker (10A) 1 Turnkey 1
Power Strip 1 CompactLogix 1

Siemens S7-300 1 ControlLogix 1
Y-Box 1

The first PLC is a CompactLogix model L23E. Second is the Siemens S7-300

with one digital input module and one digital output module. The third PLC is

a ControlLogix PLC which also contains one digital input and one digital output

module. Additionally, the ControlLogix PLC does not have a built-in Ethernet or

12

Figure 1. Completed training platform.

CPU module, therefore a Logix5555 CPU module and an EWEB Ethernet module

are included in the seven-slot chassis. The Y-Box consists of a CPU module with one

digital input and one digital output module. The five electromechanical relays are

implemented using a Micrologix PLC.

3.1.3 Wiring.

To take full advantage of the Y-Box technology, the physical components are not

wired directly to the PLC. Instead, different wiring schemes are adopted. For some

applications, the Y-Box can be thought of as the “man-in-the-middle” which receives

electrical signals from PLCs and other components and forwards the signals onto their

destination. This wiring scheme is used for the lights and the pushbuttons, illustrated

13

Figure 2. Wiring diagram for lights.

in Figures 2 and 3 respectively. The cabinet locks are wired differently because the

Y-Box cannot provide sufficient electrical current to disengage the lock. In this case,

the Y-Box is used to simply monitor the signal on the wire between the PLC and the

relay which ultimately powers the lock. This is accomplished by daisy chaining the

PLC outputs from the relay to the Y-Box. Figure 4 illustrates this technique.

The other wiring challenge includes connecting all three PLCs to a single set of

components. This required the inputs and outputs of the three PLCs to be synchro-

nized and wired together. Figure 5 illustrates this process for an indicator light. It

shows the outputs of all three PLCs tied together, ultimately leading to a single wire

which is connected the Y-Box input module.

3.1.4 PLC Selection.

The value of having three PLCs in a single platform is lost if they cannot all assume

full control over the components. Once again leveraging the Y-Box technology, it is

possible to control the flow of electricity into an individual PLC while denying power

to the other PLCs. This task is accomplished using solid state relays controlled by

14

Figure 3. Wiring diagram for pushbuttons.

Figure 4. Wiring diagram for locks.

a Y-Box digital output. When the solid state relay receives the control signal from

the Y-Box, power is allowed to flow through the relay to its corresponding PLC

subsequently activating that PLC. This is the case for the ControlLogix and Siemens

S7-300 PLCs. The CompactLogix PLC is slightly different from the other two because

it operates on 24V direct current. In this case, the relay instead controls power to a

15

24V power supply which in turn powers the CompaactLogix PLC. The wiring of the

relays is illustrated in Figure 6. Note that Figure 6 is simplified for the CompactLogix

PLC and does not show the 24V power supply.

3.2 Exercise Layout

One possible layout for an exercise is shown in Figure 7. The following is a

description of the functions of each segment of the tables in Figure 7.

3.2.1 White Cell Table.

An effective white cell should be aware of all activities performed by the training

participants. The simulation terminal is a machine running Y-Box software imple-

mented in Python. The monitoring terminal runs network monitoring software and

is connected to a mirrored port on the switch to capture all traffic during the exer-

cise. During the exercise, the white cell should watch the engineering workstation,

the human-machine interface, the network traffic and the participants themselves.

Furthermore, the white cell should watch the Y-Box software. If a training scenario

involved malware which fooled the human-machine interface, it would be difficult for

the white cell to maintain awareness of the state of the physical system during the

participant’s activities. The Y-Box overcomes this issue and is aware of the true state

of the locks, lights and pushbuttons. Figure 8 shows the Y-Box software view of the

system with the physical reality of the system as well as the PLC’s perspective of

the system. Figure 8 also shows the PLC selection buttons which dictate which PLC

is active at any given time. It should be noted that the buttons in the software are

capable of overriding the physical components in the case, providing the white cell

with the ability to manage all aspects of the exercise at all times.

16

Figure 5. Wiring diagram for PLC inputs and outputs.

Figure 6. Wiring diagram for PLC selection.

3.2.2 Platform Table.

An engineering workstation and a human-machine interface are running beside

the platform. The training platform is contained in a Pelican 1610 case. Within the

17

case is a fully-functioning replica of a guard station panel that closely mimics what

would be found in an actual jail. Additionally, the case contains five cabinet locks,

three of which represent jail cells and two of which serve as a mantrap. Each of the

jail cells has a corresponding light indicating whether or not the cell is secure. The

mantrap has only one light indicating its state and is secure if and only if both of its

doors are closed and locked. The PLCs are connected to a network switch housed

within the base of the Pelican case.

3.2.3 Exercise Participant Table.

Training participants are seated at the exercise participant table within sight

of the training platform as shown in Figure 7. Laptops are provided with standard

security tools (e.g., Kali Linux and Security Onion virtual machines), as well as virtual

machines containing the necessary proprietary software applications to interact with

the PLCs. Participants may also bring any tools which they feel are appropriate for

the exercise. From their table, they are connected to a network switch within the

Pelican case and are free to interact with the platform to complete their assigned task.

Note that the layout can be rearranged to accommodate different rooms or table sizes,

and additional network switches can be added to accommodate more participants.

18

Figure 7. Exercise layout.

Figure 8. White cell view.

19

IV. Training Scenario - Segmentation of an ICS Network

One of the most important steps in securing an ICS is to properly segment the

ICS network [20]. This simple task is an effective example for demonstrating different

implementations of similar features among various PLCs. For this reason, a beginner-

level scenario was designed for the multi-PLC training platform.

Because this scenario is meant to demonstrate differences between the PLCs’ im-

plementations, the scenario is simplified in several ways. First, the initial IP addresses

of all three PLCs are the same (192.168.108.205). The new IP addresses that the par-

ticipants are meant to load onto the PLCs are also the same (10.1.4.205). Next, the

participants need not concern themselves with whether the changing of the IP ad-

dress will impact functionality of other components in the ICS. For this scenario, it is

assumed that all other issues regarding components that are dependent on the PLC’s

IP address have already been addressed. More difficult scenarios can be developed to

demonstrate second and third order effects that can occur from this process.

The final simplification of the scenario is that there are no password protections

on any of the files. In a real-world environment, it is reasonable to expect that a cyber

first responder would be provided the necessary access by the asset owner to perform

her duties. While there are required credentials in the ControlLogix administrative

web server, they have been reset to the factory default credentials for demonstration

purposes.

The scenario is implemented using the framework proposed by Yoon et al. which

was briefly described at the end of Chapter Two [23].

• Objective: Isolate a PLC that is located on an improperly segregated network.

• Description: The participant uses the necessary software and techniques to

change a PLC IP address from 192.168.108.205 to a new IP address of 10.1.4.205.

20

• Type: Network reconfiguration.

• Evaluation Criteria:

– Identify relevant software within five minutes.

– Identify appropriate technique for updating IP address within ten minutes.

– Update and confirm the new IP address within fifteen minutes.

– Perform all activities with minimal PLC downtime.

• Reference: NIST SP 800-82, Rockwell Automation EWEB module documenta-

tion, Siemens S7-300 documentation and Rockwell Automation CompactLogix

documentation.

4.1 Segmentation Using a CompactLogix PLC

The first PLC that the participant interacts with is the CompactLogix PLC.

Updating the IP address for this PLC is completed using the following steps:

1. Open the appropriate RSLogix5000 project file and access the Ethernet module

properties.

2. Under the “Port Configuration” tab, enter the new IP address into the appro-

priate field and click “set.” Confirm the update in the dialogue windows that

appear.

3. Ensure connectivity to the new IP address (this may require routing or changing

the IP address of the engineering workstation).

Step one requires the identification of the RSLogix5000 software. The second

step demonstrates the technique to identify and update the IP address. The final

step ensures that the PLC is available. The CompactLogix is capable of having its

21

Figure 9. Updating the IP field in the RSLogix5000 software for the CompactLogix
PLC.

IP address updated without downtime, thus the participant should receive a lower

evaluation if the PLC resets or faults. Figure 9 shows the relevant dialogue window

for updating the IP address.

4.2 Segmentation Using a Siemens PLC

After completing the assigned task on the CompactLogix PLC, control of the

platform is switched to the Siemens PLC by the instructor. Once the PLC has

finished booting, the participant must again perform the task of changing the PLC’s

IP address to an isolated subnet. This is the first time that the participant is truly

exposed to the differences between the PLCs. The programming environment for the

Siemens PLC is different from the CompactLogix. The steps required to complete

the task on the Siemens PLC are outlined below:

1. Open the SIMATIC project file.

2. Access the “HW Config” in the SIMATIC software and navigate to the “object

properties” of the PN-IO module.

22

Figure 10. Updating the IP field in the SIMATIC software for the S7-300 PLC.

3. Under the “General” tab, select “Properties” and enter the new IP address as

shown in Figure 10.

4. Download the new configuration to the PLC using the old IP address as the

target station as shown in Figure 11.

5. Ensure connectivity to the new IP address (this may require routing or changing

the IP address of the engineering workstation).

Step one requires the identification of the SIMATIC software. Steps two through

four involve identifying the appropriate technique to update the IP address. Step five

ensures that the PLC completed the download successfully with minimal downtime.

23

Figure 11. Setting the target IP for the S7-300.

4.3 Segmentation Using a ControlLogix PLC

The participant now performs the required tasks using an implementation that is

unique to the ControlLogix PLC. The ControlLogix PLC is equipped with a 1756-

EWEB Enhanced Web Server Module which provides an administrative web interface

to manage the PLC. The necessary steps for completion are as follows:

1. Open a web browser and navigate to the IP address of the PLC.

2. Open the network configuration tab, input the new IP address to the appropri-

ate field and apply the changes.

3. Confirm that the new address is correct. Upon completion, a message will be

displayed notifying the participant of the new IP address.

4. Ensure connectivity to the new IP address (this may require routing or changing

the IP address of the engineering workstation).

Step one requires that the participant to identify the web interface provided by

24

Figure 12. Updating the IP field from the ControlLogix administrative page.

the EWEB module. Step two identifies the appropriate technique and performs the

update. Steps three and four confirm that the change was successful. There should

be no downtime in the completion of this task with the ControlLogix PLC.

4.4 Scenario Selection and Alternate Scenario Possibilities

The network segmentation scenario was chosen because it effectively demonstrates

how different PLCs will often require different techniques to perform the same task.

These differences emphasize the value of a cyber first responder having experience on

a variety of PLCs. The scenario incorporates several of the training curricula pro-

posed by Butts and Glover in a proven format as described by Yoon et al. It should

be noted that segmenting a network is only one of a variety of tasks that a cyber

first responder may need to complete in their line of work and it is not necessarily

intended to be a particularly difficult example. Other examples such as modifying

ladder logic, updating firmware and applying patches will also have processes unique

to different PLCs and vendors with varying levels of difficulty. Because the platform

incorporates real PLCs, each of these scenarios, as well as other scenarios involving

25

more advanced topics, could be implemented with minimal reconfiguration of the

platform. The following scenarios showcase the flexibility of the multi-PLC platform:

4.4.1 Analysis of Malicious Implant in PLC Firmware.

• Objective: Reverse engineer firmware to identify and analyze malicious implant

• Description: The participant uses the necessary software and techniques to

extract PLC firmware from the device and identifies malicious code given a

correct version of the firmware. The participant then determines the exact

functionality and purpose of the malicious code.

• Type: Reverse engineering.

• Evaluation Criteria:

– Identify malicious code within 45 minutes.

– Restore the PLC firmware within 20 minutes.

– Analyze malicious code within 90 minutes.

• Reference: Rockwell Automation ControlLogix documentation, Siemens S7-300

documentation, Rockwell Automation CompactLogix documentation.

The reverse engineering scenario further emphasizes the differences between the

PLCs by requiring participants to extract and analyze firmware from the device (see

[2] for details on the reverse engineering process for ICSs). It also brings up an equally

important point that there are often similarities between some PLCs. Specifically,

the CompactLogix and ControlLogix PLCs have very similar firmware, despite being

different PLC models. The reverse engineering scenario can be implemented with

26

different malware of varying levels of complexity to accommodate participants’ capa-

bilities.

4.4.2 Digital Forensics of a Malfunctioning PLC.

• Objective: Determine the cause of a malfunctioning PLC’s behavior.

• Description: The participant uses the necessary software and techniques to

identify the root cause of the PLC’s behavior.

• Type: Digital forensics.

• Evaluation Criteria:

– Collect sufficient data to perform forensics within 30 minutes.

– Identify the cause of the malfunction within 45 minutes.

– Identify corrective action within 60 minutes.

• Reference: Rockwell Automation ControlLogix documentation, Siemens S7-300

documentation, Rockwell Automation CompactLogix documentation.

The digital forensics scenario accomplishes similar tasks to the reverse engineer-

ing scenario by showing that the process for conducting digital forensics on ICSs is

identical for different PLCs (see [6] for details on this process). Despite using the

same process, the data being analyzed (e.g., Ladder Logic code, network traffic and

log files) will still be different because of operational differences between the PLCs.

These operational differences mean that a cyber first responder in a real-world situa-

tion will have to focus on specific, contextualized pieces of information to effectively

analyze the root cause of a malfunctioning PLC’s behavior. The difficulty of this

scenario can be modulated by inducing different types of PLC malfunctions ranging

27

from simple faults to advanced malware infections. The scenario can also be repeated

multiple times with different malfunctions to increase the training participant’s ex-

posure to various malfunctions.

28

V. Results

The following subsections describe the results of the platform development.

5.1 Hardware Verification

Initial debugging of the wiring, Y-Box code and PLC code involved interacting

with the physical components mounted in the Pelican case and confirming that the

Y-Box and the PLC behaved as intended. This process revealed that some of the

variables had been coded incorrectly into the Ladder Logic. These variables needed

their memory addresses reassigned to correct their mapping to the PLC inputs and

outputs. The Y-Box software was also verified, confirming the behavior of the physical

components and that the software was capable of overriding the physical components

to control the case autonomously.

5.2 Reliability Test

Table 2. Reliability test results.

Controller Trials Failures
CompactLogix 50 0
Siemens S7-300 50 0
ControlLogix 50 0

Totals 150 0

After confirming that the components were behaving correctly, an automated

Python script tested the reliability of the platform. This test attempts the following

steps:

1. Select PLC.

2. Power up selected PLC.

29

3. Wait 25 seconds for PLC to activate.

4. Test all buttons, locks and lights for functionality.

5. Shut down PLC.

6. Reset Y-Box parameters.

Initial runs of the test encountered failures because the Python test code sent

commands too quickly. This denied the Y-Box adequate time to update its inputs and

outputs. The resolution of this issue was to include “wait” commands of 25 seconds

for the PLC to boot and varying amounts of time between 0.4 and 2.0 seconds for

other functions (e.g., button presses, indicator light updates and lock status updates).

Step four is the key component to this test. This step starts with the first jail cell and

simulates a button press. The script then checks that the PLC responds appropriately

before repeating the process for the other two cells. Next, the test code evaluates

the mantrap by testing every possible combination of button presses and confirming

the responses. Finally, it simulates a button press on cell one again with the panel

disabled. In this situation, the lock should not disengage and the test is considered

a failure if it does. The implemented wiring scheme with the Y-Box allows electrical

signals to be sent to the PLC without having to receive signals from the buttons.

Furthermore, the state of the panel’s turnkey can be overridden by the Y-Box itself.

These capabilities allow each of the functions to be simulated by the Y-Box alone.

Subsequently, the tests can be fully automated in a manner that is transparent to the

PLC since the PLC receives the same signals as it would under normal operation. To

prevent failures during one iteration from impacting the results of the next iteration,

all Y-Box values are reset to a default value in step six. 150 total iterations were

completed, testing each PLC 50 times. The results of the test are shown in Table 2.

30

5.3 Timing

Table 3. PLC startup times (in seconds).

Controller Min Max Mean Std Dev
CompactLogix 19.547 19.688 19.629 0.030
Siemens S7-300 14.782 15.172 15.060 0.062
ControlLogix 4.797 4.843 4.816 0.010

Incorporating multiple PLCs into one single platform is useless if switching be-

tween PLCs takes a prohibitively long amount of time. Ideally, control of the system

should be able to be switched from one PLC to another within the amount of time

that it takes for the participant to be prepared for the next task. To evaluate this

metric, the time required for each PLC to fully power up was measured and recorded

by an automated Python script which performed the following steps:

1. Select PLC.

2. Send power to PLC and begin timer.

3. Send input command to PLC.

4. Wait for PLC to react to input, stop timer upon completion.

5. Shut down PLC.

6. Reset Y-Box parameters.

For this test, it is only necessary to examine the amount of time that it takes for

the PLC to become responsive to an input. Table 3 and Figure 13 present the results

of this test which were also determined over the course of 150 trials (50 per PLC).

The results show that the PLCs had significantly different boot times, but were very

consistent across all iterations. Note that Figure 13 has different Y-axis scales for

each subfigure.

31

(a) CompactLogix
PLC.

(b) Siemens S7-300
PLC.

(c) ControlLogix PLC.

Figure 13. Box plots of PLC timing results.

5.4 Functional Analysis Criteria

The multi-PLC training platform attempts to meet the following criteria:

1. incorporates of physical components.

2. incorporates of cyber manipulation principles.

3. incorporates of response coordination techniques.

4. Provides hands-on experience.

5. Implements effective scenarios with measurable evaluation metrics for training.

The replication of the jail system, including the PLC running realistic Ladder

Logic, pushbuttons, locks, lights and the turnkey, provides the training participant

with a view of some of the physical components involved in a real-world system. This

addresses the need for cyber first responders to understand the underlying physical

processes involved in ICS.

32

By creating scenarios which incorporate concepts such as reverse engineering and

digital forensics, cyber manipulation principles can be effectively taught to cyber first

responders. Training participants will be exposed to topics like access vectors, vulner-

ability analysis, implanting malware, manipulating physical processes and defensive

mechanisms, all of which are considered cyber manipulation principles by Butts and

Glover [4].

Skills involved in response coordination include the ability to prioritize system

components, knowing how to identify attacks and understanding the steps required

to appropriately defend and restore. Each of these skills are practiced in some way

by the scenarios described in this work, and can be enhanced by designing alternate

scenarios using the existing platform.

The entire training platform is self-contained, and all relevant software is contained

within easily recoverable virtual machines. This provides the opportunity for training

participants to have full access to the system for hands-on exercises without being

concerned with causing damage to an existing system. Cyber first responders will

benefit most from hands-on exercises where they can gain experience with realistic

systems that incorporate real hardware.

Using the framework proposed by Yoon et al., training scenarios can be created

that include specific, measurable evaluation criteria. The scenarios provided in this

paper would be easy to expand to accommodate different skill levels. Furthermore,

entirely new scenarios could be created relatively easily to achieve different training

goals without the need for significant modification to the training platform.

5.5 Limitations

The multi-PLC platform does have some limitations. First, the jail system plat-

form does not incorporate analog components. Analog signals are more complicated

33

than digital signals from a programming perspective and may enhance the experience

for training participants. Another limitation of the platform is the scale of the replica

system. In a full-sized jail, there are more components such as additional doors and

alarms. This design choice leads to the trade-off between the cost and scale of the

platform. Finally, the platform is limited to the use of one PLC at any given time.

34

VI. Conclusion

This chapter summarizes the conclusions made by the research.

6.1 Conclusions of Research

Effective ICS platforms are necessary for cyber first responder training. Unfor-

tunately, most test beds today are meant for research and development and are not

available for training purposes. Furthermore, test beds that have been built for train-

ing tend to be very expensive and often substitute simulations in place of genuine

components. Ideal test beds contain full-scale, fully operational ICS with effective

training scenarios that address the unique skills required for cyber first responders to

operate in these environments. The cost of such a test bed is prohibitively high; how-

ever, the multi-PLC training platform presented in this thesis is capable of addressing

many of these unique skills at a fraction of the cost. Furthermore, the multi-PLC

training platform is capable of supporting any number of scenarios ranging from ba-

sic examples such as changing an IP address to advanced scenarios involving digital

forensics and reverse engineering. The variety of PLCs in the platform provides op-

portunities to experience different protocols and programming environments. Much

akin to the education techniques of the medical profession, the hands-on exercises

provided by the multi-PLC training platform allow cyber first responders to gain a

variety of experience to help them in their future work.

6.2 Research Hypotheses

The first research hypothesis was that a platform could be built which implements

scenarios designed to address training requirements for cyber first responders. As

shown by chapter four as well as section 5.4, the platform built for this research

35

confirms the first hypothesis.

The second hypothesis was that multiple PLCs can control a single set of compo-

nents without interference. By cleverly wiring the components in the system together

as described in section 3.1.3, this hypothesis is also confirmed.

The final hypothesis was that all required components can fit into a transportable

briefcase-sized platform. While more complex systems could be implemented in larger

platforms, the platform created for this research was able to incorporate an ICS with

three PLCs as well as other physical components into a briefcase-sized Pelican case

thereby confirming the third hypothesis.

6.3 Significance of Research

The value of this research is primarily in the proof of concept where three PLCs

are tied into a single set of components for training purposes. This technique can be

used in future platforms to save money on components and diversify training with

different brands or even generations of PLCs. Being able to run a single ICS on a

selectable generation of PLC is valuable because PLCs are built to be reliable for

many years before they need replaced. The long life cycle of PLCs dictates that

cyber first responders must be able to interact with PLCs from any generation, thus

demonstrating the value of this technique.

36

MULTI-PLC EXERCISE ENVIRONMENTS FOR

TRAINING CYBER FIRST RESPONDERS FOR INDUSTRIAL CONTROL

SYSTEMS

A. Live Exercise Scenarios

A live exercise was conducted at Fort Gordon with members of the Cyber Pro-

tection Brigade using a previous version of the training platform. The following

offense-oriented scenarios were completed by the participants. Note that the scenario

format was adapted to include completion requirements as opposed to evaluation

criteria. Furthermore, references were not provided to the participants.

A.1 Narrative

To help guide the activities of the participants through their completion of the

scenarios, the following narrative was provided:

An asset to the intelligence community is being held in a jail in a foreign nation.

The location of the jail prohibits US forces from conducting a raid to retrieve the

asset and therefore cyber is the best option. An informant within the prison claims

that the asset is being held in cell 2, and that in order to reach the exit, the asset

will also have to navigate a mantrap. The informant has also stated that while he

is willing to perform certain actions on our behalf, he will not perform any actions

for us that will lead him to become compromised. Once the imprisoned asset reaches

the exit, a team of friendly forces will be there to retrieve him. In this operation, we

are not concerned with the victims ability to attribute the attack to the US, and the

37

timing of the exploit is not important since the team outside will remain in place to

retrieve the asset for as long as needed. We do care however about protecting our

exploits for use in the future and thus careful bookkeeping should be performed for

cleaning up and making digital forensics more difficult after the attack is complete.

A.2 Reconnaissance and Enumeration of the Prison’s Corporate Network

• Objective: Gather as much intelligence as possible about the prison and its

networks.

• Description: Through reconnaissance, the team discovers the types of systems

used by the prison. This information is compared with the results of the network

enumeration to discover that some components are hidden from the corporate

network.

• Type: Intelligence gathering.

• Completion Requirements :

– Team completes system reconnaissance

– Team completes network enumeration

– Team appropriately manages team members

– Team performs activities without alerting system administrators.

– Documentation of results found during recon and enumeration.

A.3 Gain Access to the Prison’s ICS Network

• Objective: Gain access to the ICS network by bridging the networks using a

raspberry pi.

38

• Description: A team of attackers finds access to a foreign prisons corporate net-

work. While conducting reconnaissance, it became clear that a bridge between

the corporate and ICS networks did not exist and that one would need to be

created. The team has available an informant inside the prison who is capable

of planting a tool that will connect the networks for them. The team must en-

sure that the raspberry pi provided to them is correctly configured to connect

to the networks. Furthermore, the team must generate clear instructions for

the informant, who is not tech savvy, which leads to the proper configuration

inside the prison to provide the team access.

• Type: Gaining unauthorized access.

• Completion Requirements :

– Team completes system reconnaissance.

– Team completes network enumeration.

– Team appropriately manages team members.

– Team performs activities without alerting system administrators.

– Documentation of results found during recon and enumeration.

A.4 Reconnaissance and Enumeration of the Prison’s ICS Network

• Objective: Discover all relevant programmable logic controllers and other inter-

esting devices.

• Description: The team of attackers uses network mapping tools and other in-

formation sources in order to determine which machines on the network are

relevant for the attack.

39

• Type: Intelligence gathering.

• Completion Requirements :

– Discover and Identify PLC.

– Discover and Identify HMI workstation.

– Discover and Identify Engineering workstation.

– Discover potential vulnerabilities.

– Team appropriately manages team members.

– Team performs activities without alerting system administrators.

– Documentation of results found during recon and enumeration.

A.5 Exploit Planning

• Objective: Research the vulnerabilities found in the previous phase, then de-

velop and test exploits prior to deployment.

• Description: Using information found in the previous phase, the team will

develop an exploit that can free the imprisoned asset quickly. The team does

not need to concern itself with attribution or covertness while developing this

exploit since the guards have been paid off to allow the asset and only the asset

to escape. If any other prisoners are freed, the guards will not allow anyone to

escape an1d the mission will be a failure.

• Type: Exploit development.

• Completion Requirements :

– Fully develop and test the exploit

40

– Effectiveness of exploit

– Team appropriately manages team members

– Team performs activities without alerting system administrators

– Documentation of results found during recon and enumeration

A.6 Exploit Execution and Exfiltration

• Objective: Deploy the exploit developed in the previous step and reset the

system to its pre-exploitation state.

• Description: The team downloads the malware to the PLC or the HMI or

both resulting in the asset escaping from the prison. The team also performs

whatever activities needed to cover its tracks in the system in order to make

digital forensics as difficult as possible, protecting any exploits for future use.

• Type: Exploitation and exfiltration.

• Completion Requirements :

– Attack complete

– Exfiltration complete

– Degree to which system is cleaned

– Manner in which system is cleaned

– Team efficiently manages resources

41

B. Software Code

Some example code for the Y-Box and the PLCs is included in the following

sections. Note that not all code that was used is included in this work.

B.1 Y-Box

The following subsections provide the code implementing most of the functionality

of the Y-Box. This code is all written in Python.

B.1.1 Main.

The following code is the main program.

import pygame

from pygame . locals import ∗

import gua rd s ta t i on

import p r i s o n c e l l

import time

import thread

import Ybox

import mantrap

import i n d i c a t o r

import time

#

##

Authors : Evan Plumley , Joseph Daoud and J e f f Guion

42

#

This programruns the pr i son c e l l s imu la t i on d i s p l a y i n g the

va lue

of the PLC outpu t s and prov id ing the PLC inpu t s

#

#

#

##

class PrisonSim :

def i n i t (s e l f) :

s e l f . running = True

s e l f . s c r e en = None

s e l f . s i z e = s e l f . width , s e l f . he ight = 1400 , 950

s e l f . ybox = Ybox . Ybox ()

s e l f . bu t tonc l i ck1 = Fal se

s e l f . bu t tonc l i ck2 = Fal se

s e l f . bu t tonc l i ck3 = Fal se

s e l f . bu t tonc l i ck4 = Fal se

s e l f . bu t tonc l i ck5 = Fal se

s e l f . bu t tonc l i ck6 = Fal se

s e l f . bu t tonc l i ck7 = Fal se

s e l f . bu t tonc l i ck8 = Fal se

s e l f . but tontogg le1 = Fal se

s e l f . but tontogg le2 = Fal se

43

s e l f . but tontogg le3 = Fal se

s e l f . but tontogg le4 = Fal se

s e l f . but tontogg le5 = Fal se

s e l f . but tontogg le6 = Fal se

s e l f . but tontogg le7 = Fal se

s e l f . but tontogg le8 = Fal se

s e l f . PLC1power = Fal se

s e l f . PLC2power = Fal se

s e l f . PLC3power = Fal se

def o n i n i t (s e l f) :

#I n i t i a l i z e screen

pygame . i n i t ()

s e l f . f on t = pygame . f on t . SysFont (’ Times ’ , 25)

pygame . d i sp l a y . s e t c a p t i o n (’Ybox Simulat ion ’)

s e l f . s c r e en = pygame . d i sp l a y . set mode (s e l f . s i z e ,

pygame .HWSURFACE | pygame .DOUBLEBUF)

s e l f . s c r e en . f i l l ((b lack))

x padding = 42 .5

y padding = 95

c e l l p a n e l w i d t h = 325

c e l l p a n e l h e i g h t = 300

#crea te the guard s t a t i o n pane l wi th number o f c e l l s

44

s e l f . g ua rd s t a t i on pane l = guard s ta t i on . GuardStation

(s e l f , 5 , 50 , 575)

#crea te each c e l l a t g i ven l o c a t i o n

c e l l o n e p a n e l = p r i s o n c e l l . Pr i sonCe l l (s e l f , 1 ,

x padding , y padding)

c e l l two pan e l = p r i s o n c e l l . Pr i sonCe l l (s e l f , 2 , 5∗

x padding+ce l l p ane l w id th , y padding)

c e l l t h r e e p a n e l = p r i s o n c e l l . Pr i sonCe l l (s e l f , 3 , 9∗

x padding+2∗ c e l l p ane l w id th , y padding)

#add a l l c e l l s to l i s t

s e l f . c e l l d o o r p a n e l s = [c e l l o n e p an e l ,

c e l l two pane l , c e l l t h r e e p a n e l]

#add mantrap d i s p l a y

s e l f . mantrap = mantrap .ManTrap(s e l f , 3∗ x padding+2∗

c e l l p ane l w id th , (2 . 2 ∗ y padding) +

c e l l p a n e l h e i g h t)

#add the t i t l e o f the program

ma in t i t l e d imen s i on s = ((615 , 70))

ma i n t i t l e i c o n = pygame . image . load (” images / t i t l e .

png”)

ma i n t i t l e i c o n 2 = pygame . image . load (” images / t i t l e .

png”)

45

ma i n t i t l e i c o n s = [ma i n t i t l e i c o n , ma i n t i t l e i c o n 2

]

ma i n t i t l e = i nd i c a t o r . I nd i c a t o r (s e l f , 390 , 10 ,

ma i n t i t l e i c o n s , ma in t i t l e d imen s i on s)

se t the i n i t a l s t a t e s

s e l f . ybox . sendWrite (1 , 0 , 1) #l i g h t i n d i c a t o r s green

s e l f . ybox . sendWrite (1 , 1 , 0)

s e l f . ybox . sendWrite (1 , 2 , 1)

s e l f . ybox . sendWrite (1 , 3 , 0)

s e l f . ybox . sendWrite (1 , 4 , 1)

s e l f . ybox . sendWrite (1 , 5 , 0)

s e l f . ybox . sendWrite (1 , 6 , 0)

s e l f . ybox . sendWrite (1 , 7 , 0)

s e l f . ybox . sendWrite (1 , 8 , 0)

s e l f . ybox . sendWrite (1 , 9 , 1) #panel enab led

s e l f . ybox . sendWrite (1 , 10 , 1)

s e l f . ybox . sendWrite (1 , 11 , 1)

s e l f . ybox . sendWrite (1 , 12 , 1) #t e s t

s e l f . ybox . sendWrite (1 , 13 , 0)

s e l f . ybox . sendWrite (1 , 14 , 0)

s e l f . ybox . sendWrite (1 , 15 , 0)

pygame . d i sp l a y . update ()

try :

46

thread . s t a r t new thread (timedReads , (s e l f ,))

except Exception as e :

print (e)

s e l f . running = True

#Handle a l l e v en t s

def on event (s e l f , event) :

i f event . type == pygame .QUIT:

s e l f . running = Fal se

else : #Determine i f but ton was c l i c k e d

for i , c e l l b t n in enumerate (s e l f .

g ua rd s t a t i on pane l . c e l l b t n s) :

i f ’ c l i c k ’ in c e l l b t n . handleEvent (event) :

try :

c l i ckButton (s e l f , i)

except Exception as e :

print (e)

for i , c e l l in enumerate (s e l f . c e l l d o o r p a n e l s) :

i f ’ c l i c k ’ in c e l l . key btn . handleEvent (event)

:

try :

openDoor (s e l f , i)

except Exception as e :

print (e)

47

i f ’ c l i c k ’ in s e l f . g ua rd s t a t i on pane l .

d i s ab l e b tn . handleEvent (event) :

s e l f . g ua rd s t a t i on pane l . d i s a b l e c l i c k e d =

True

i f ’ c l i c k ’ in s e l f . g ua rd s t a t i on pane l .PLC1 BTN.

handleEvent (event) :

s e l f . g ua rd s t a t i on pane l . PLC1 cl icked = True

i f ’ c l i c k ’ in s e l f . g ua rd s t a t i on pane l .PLC2 BTN.

handleEvent (event) :

s e l f . g ua rd s t a t i on pane l . PLC2 cl icked = True

i f ’ c l i c k ’ in s e l f . g ua rd s t a t i on pane l .PLC3 BTN.

handleEvent (event) :

s e l f . g ua rd s t a t i on pane l . PLC3 cl icked = True

pygame . d i sp l a y . update ()

def on loop (s e l f) :

pass

def on render (s e l f) :

pass

def on cleanup (s e l f) :

48

s e l f . ybox . sendWrite (1 , 0 , 0)

s e l f . ybox . sendWrite (1 , 1 , 0)

s e l f . ybox . sendWrite (1 , 2 , 0)

s e l f . ybox . sendWrite (1 , 3 , 0)

s e l f . ybox . sendWrite (1 , 4 , 0)

s e l f . ybox . sendWrite (1 , 5 , 0)

s e l f . ybox . sendWrite (1 , 6 , 0)

s e l f . ybox . sendWrite (1 , 7 , 0)

s e l f . ybox . sendWrite (1 , 8 , 0)

s e l f . ybox . sendWrite (1 , 9 , 0)

s e l f . ybox . sendWrite (1 , 10 , 0)

s e l f . ybox . sendWrite (1 , 11 , 0)

s e l f . ybox . sendWrite (1 , 13 , 0)

s e l f . ybox . sendWrite (1 , 14 , 0)

s e l f . ybox . sendWrite (1 , 15 , 0)

pygame . qu i t ()

s e l f . ybox . c l o s ePor t ()

#s t a r t program

def on execute (s e l f) :

i f s e l f . o n i n i t () == False :

s e l f . running = Fal se

while (s e l f . running) :

for event in pygame . event . get () :

49

s e l f . on event (event)

s e l f . on loop ()

s e l f . on render ()

s e l f . on cleanup ()

#pushes but ton f o r two seconds then r e l e a s e s i t

def c l i ckButton (s e l f , i) :

#door one but ton

i f i == 0 and s e l f . bu t tonc l i ck1 == False :

s e l f . bu t tonc l i ck1 = True

s e l f . but tontogg le1 = True

e l i f i == 0 and s e l f . bu t tonc l i ck1 == True :

s e l f . bu t tonc l i ck1 = Fal se

s e l f . but tontogg le1 = True

#door two but ton

e l i f i == 1 and s e l f . bu t tonc l i ck2 == False :

s e l f . bu t tonc l i ck2 = True

s e l f . but tontogg le2 = True

e l i f i == 1 and s e l f . bu t tonc l i ck2 == True :

s e l f . bu t tonc l i ck2 = Fal se

s e l f . but tontogg le2 = True

#door th ree but ton

e l i f i == 2 and s e l f . bu t tonc l i ck3 == False :

s e l f . bu t tonc l i ck3 = True

50

s e l f . but tontogg le3 = True

e l i f i == 2 and s e l f . bu t tonc l i ck3 == True :

s e l f . bu t tonc l i ck3 = Fal se

s e l f . but tontogg le3 = True

#door four but ton

e l i f i == 3 and s e l f . bu t tonc l i ck4 == False :

s e l f . bu t tonc l i ck4 = True

s e l f . but tontogg le4 = True

e l i f i == 3 and s e l f . bu t tonc l i ck4 == True :

s e l f . bu t tonc l i ck4 = Fal se

s e l f . but tontogg le4 = True

#door f i v e but ton

e l i f i == 4 and s e l f . bu t tonc l i ck5 == False :

s e l f . bu t tonc l i ck5 = True

s e l f . but tontogg le5 = True

e l i f i == 4 and s e l f . bu t tonc l i ck5 == True :

s e l f . bu t tonc l i ck5 = Fal se

s e l f . but tontogg le5 = True

#PLC 1 Button

e l i f i == 5 and s e l f . bu t tonc l i ck6 == False :

s e l f . bu t tonc l i ck6 = True

s e l f . but tontogg le6 = True

e l i f i == 5 and s e l f . bu t tonc l i ck6 == True :

51

s e l f . bu t tonc l i ck6 = Fal se

s e l f . but tontogg le6 = True

#PLC 2 Button

e l i f i == 6 and s e l f . bu t tonc l i ck7 == False :

s e l f . bu t tonc l i ck7 = True

s e l f . but tontogg le7 = True

e l i f i == 6 and s e l f . bu t tonc l i ck7 == True :

s e l f . bu t tonc l i ck7 = Fal se

s e l f . but tontogg le7 = True

#PLC 3 Button

e l i f i == 7 and s e l f . bu t tonc l i ck8 == False :

s e l f . bu t tonc l i ck8 = True

s e l f . but tontogg le8 = True

e l i f i == 7 and s e l f . bu t tonc l i ck8 == True :

s e l f . bu t tonc l i ck8 = Fal se

s e l f . but tontogg le8 = True

else :

print (”Something went wrong in the l o ck reads1 ”)

#method to open the door v i a the manual key but ton

52

def openDoor (s e l f , i) :

i f s e l f . c e l l d o o r p a n e l s [i] . doorClosed == True :

s e l f . c e l l d o o r p a n e l s [i] . c e l l d o o r . change s ta t e ()

s e l f . c e l l d o o r p a n e l s [i] . doorClosed = Fal se

e l i f s e l f . c e l l d o o r p a n e l s [i] . doorClosed == False :

s e l f . c e l l d o o r p a n e l s [i] . c e l l d o o r . change s ta t e ()

s e l f . c e l l d o o r p a n e l s [i] . doorClosed = True

#method to monitor the PLC and chnage the d i s p l a y accord ing l y

def timedReads (s e l f) :

past = int (round(time . time () ∗ 1000)) #g e t t i n g s t a r t i n g

mi l i second time to execu te reads from the ybox

while True :

p r e sen t = int (round(time . time () ∗ 1000)) #g e t t i n g

pre s en t time to comapre to pas t

#check to see i f 100 m i l l i s e c o n d s have passed

i f pre sent − past >= 100 :

past = pre sent

###

#se t but ton c l i k c v a l u e s and wr i t e accord ing l y

#

###

53

i f s e l f . bu t tonc l i ck1 == True and s e l f .

but tontogg le1 == True :

s e l f . ybox . sendWrite (1 , 1 , 1)

s e l f . but tontogg le1 = Fal se

e l i f s e l f . bu t tonc l i ck1 == False and s e l f .

but tontogg le1 == True :

s e l f . ybox . sendWrite (1 , 1 , 0)

s e l f . but tontogg le1 = Fal se

i f s e l f . bu t tonc l i ck2 == True and s e l f .

but tontogg le2 == True :

s e l f . ybox . sendWrite (1 , 3 , 1)

s e l f . but tontogg le2 = Fal se

e l i f s e l f . bu t tonc l i ck2 == False and s e l f .

but tontogg le2 == True :

s e l f . ybox . sendWrite (1 , 3 , 0)

s e l f . but tontogg le2 = Fal se

i f s e l f . bu t tonc l i ck3 == True and s e l f .

but tontogg le3 == True :

s e l f . ybox . sendWrite (1 , 5 , 1)

s e l f . but tontogg le3 = Fal se

e l i f s e l f . bu t tonc l i ck3 == False and s e l f .

but tontogg le3 == True :

s e l f . ybox . sendWrite (1 , 5 , 0)

s e l f . but tontogg le3 = Fal se

54

i f s e l f . bu t tonc l i ck4 == True and s e l f .

but tontogg le4 == True :

print (” here99”)

s e l f . ybox . sendWrite (1 , 8 , 1)

s e l f . but tontogg le4 = Fal se

e l i f s e l f . bu t tonc l i ck4 == False and s e l f .

but tontogg le4 == True :

s e l f . ybox . sendWrite (1 , 8 , 0)

s e l f . but tontogg le4 = Fal se

i f s e l f . bu t tonc l i ck5 == True and s e l f .

but tontogg le5 == True :

s e l f . ybox . sendWrite (1 , 7 , 1)

s e l f . but tontogg le5 = Fal se

e l i f s e l f . bu t tonc l i ck5 == False and s e l f .

but tontogg le5 == True :

s e l f . ybox . sendWrite (1 , 7 , 0)

s e l f . but tontogg le5 = Fal se

###

#read the l o c k va lue f o r a l l doors from the PLC

and then reac t

##

for i in range (0 , len (s e l f . c e l l d o o r p a n e l s)) :

#aqcu i r ing the a c tua l channe l number

55

i f i == 0 :

readnum = 0

e l i f i == 1 :

readnum = 3

e l i f i == 2 :

readnum = 7

else :

print (”Something went wrong in the l o ck

reads2 ”)

resp = s e l f . ybox . sendRead (0 , readnum)

readnum = str (readnum)

i f resp == (”r0 , ” + readnum + ” ,1 ”) and s e l f .

c e l l d o o r p a n e l s [i] . l o ckClosed == True : #

checks f o r a l o c k s t a t e change

s e l f . c e l l d o o r p a n e l s [i] . l o c k i n d i c a t o r .

change s ta t e () #open l o c k

s e l f . c e l l d o o r p a n e l s [i] . l o ckClosed =

Fal se #loc k open s t a t e f l a g

#make sure I dont un e c e s a r i i l y change the

s t a t e due to the manual key

i f s e l f . c e l l d o o r p a n e l s [i] . doorClosed ==

True :

56

s e l f . c e l l d o o r p a n e l s [i] . c e l l d o o r .

change s ta t e ()

s e l f . c e l l d o o r p a n e l s [i] . doorClosed =

Fal se

pygame . d i sp l a y . update ()

e l i f resp == (”r0 , ”+ readnum +” ,0 ”) and s e l f .

c e l l d o o r p a n e l s [i] . l o ckClosed == False :

s e l f . c e l l d o o r p a n e l s [i] . l o c k i n d i c a t o r .

change s ta t e () #open l o c k

s e l f . c e l l d o o r p a n e l s [i] . l o ckClosed =

True #loc k open s t a t e f l a g

#make sure I dont un e c e s a r i i l y change the

s t a t e due to the manual key

i f s e l f . c e l l d o o r p a n e l s [i] . doorClosed ==

False :

s e l f . c e l l d o o r p a n e l s [i] . c e l l d o o r .

change s ta t e ()

s e l f . c e l l d o o r p a n e l s [i] . doorClosed

= True

pygame . d i sp l a y . update ()

#Checking f o r changes f o r the i nd i c a t o r l i g h t (

Door secure sensor ou tpu t s)

for i in range (0 , 3) :

57

#mapping to secure l i g h t s f o r the p l c

i f i == 0 :

writenum = 0

e l i f i == 1 :

writenum = 2

e l i f i == 2 :

writenum = 4

i f (s e l f . c e l l d o o r p a n e l s [i] . doorClosed ==

False or s e l f . c e l l d o o r p a n e l s [i] .

l o ckClosed == False) and s e l f .

c e l l d o o r p a n e l s [i] . i nd i c a t o rL i gh t == True

:

s e l f . c e l l d o o r p a n e l s [i] .

c e l l d o o r i n d i c a t o r . change s ta t e ()#

change to red

s e l f . c e l l d o o r p a n e l s [i] . i nd i c a t o rL i gh t =

Fal se

s e l f . ybox . sendWrite (1 , writenum , 0) # turn

the PLC l i g h t

pygame . d i sp l a y . update ()

e l i f (s e l f . c e l l d o o r p a n e l s [i] . doorClosed ==

True and s e l f . c e l l d o o r p a n e l s [i] .

l o ckClosed == True) and s e l f .

c e l l d o o r p a n e l s [i] . i nd i c a t o rL i gh t ==

58

False :

s e l f . c e l l d o o r p a n e l s [i] .

c e l l d o o r i n d i c a t o r . change s ta t e ()#

change to green

s e l f . c e l l d o o r p a n e l s [i] . i nd i c a t o rL i gh t =

True

s e l f . ybox . sendWrite (1 , writenum , 1) # turn

the PLC l i g h t

pygame . d i sp l a y . update ()

###

read pr i son guard but ton s t a t u s e s j u s t f o r c e l l

doors and mantrap

###

for i in range (0 , len (s e l f . g ua rd s t a t i on pane l .

button pushed)) :

#aqcu i r ing the a c tua l channe l number

i f i == 0 :

readnum = 1

writenum = 1

e l i f i == 1 :

readnum = 4

writenum = 3

e l i f i == 2 :

readnum = 6

59

writenum = 5

e l i f i == 3 :

readnum = 10

writenum = 8

e l i f i == 4 :

readnum = 12

writenum = 7

else :

print (”Something went wrong in the button

reads3 ”)

resp2 = s e l f . ybox . sendRead (0 , readnum)

readnum = str (readnum)

i f resp2 == (”r0 , ”+ readnum +” ,1 ”) and s e l f .

g ua rd s t a t i on pane l . button pushed [i] ==

False :

s e l f . g ua rd s t a t i on pane l . b tn s t a tu s e s [i] .

change s ta t e ()

s e l f . g ua rd s t a t i on pane l . button pushed [i]

= True

s e l f . ybox . sendWrite (1 , writenum , 1)

pygame . d i sp l a y . update ()

e l i f resp2 == (”r0 , ”+ readnum + ” ,0 ”) and

s e l f . g ua rd s t a t i on pane l . button pushed [i]

== True :

60

s e l f . g ua rd s t a t i on pane l . b tn s t a tu s e s [i] .

change s ta t e ()

s e l f . g ua rd s t a t i on pane l . button pushed [i]

= Fa l se

s e l f . ybox . sendWrite (1 , writenum , 0)

pygame . d i sp l a y . update ()

###

#Read guard s t a t i o n l i g h t s t a t u s e s

##

for i in range (0 , 4) :

#aqcu i r ing the a c tua l channe l number

i f i == 0 :

readnum = 2

e l i f i == 1 :

readnum = 5

e l i f i == 2 :

readnum = 8

e l i f i == 3 :

readnum = 13

else :

print (”Something went wrong in the button

reads4 ”)

61

resp3 = s e l f . ybox . sendRead (0 , readnum)

readnum = str (readnum)

i f resp3 == (”r0 , ”+ readnum +” ,1 ”) and s e l f .

g ua rd s t a t i on pane l . l i g h t g r e e n [i] ==

False :

s e l f . g ua rd s t a t i on pane l . l i g h t s [i] .

change s ta t e ()

s e l f . g ua rd s t a t i on pane l . l i g h t g r e e n [i] =

True

pygame . d i sp l a y . update ()

e l i f resp3 == (”r0 , ”+ readnum +” ,0 ”) and s e l f

. g ua rd s t a t i on pane l . l i g h t g r e e n [i] ==

True :

s e l f . g ua rd s t a t i on pane l . l i g h t s [i] .

change s ta t e ()

s e l f . g ua rd s t a t i on pane l . l i g h t g r e e n [i] =

Fa l se

pygame . d i sp l a y . update ()

##

Read the l o c k s f o r the man trap and reac t

a pp rop r i a t l e y

##

62

#loc k reads f o r trap door one

##############################

readnum = 9

writenum = 10

readnum 2 = 11

writenum 2 = 11

resp4 = s e l f . ybox . sendRead (0 , readnum)

resp5 = s e l f . ybox . sendRead (0 , readnum 2)

readnum = str (readnum)

readnum 2 = str (readnum 2)

#a l l reads done f o r both above

i f resp4 == (”r0 , ” + readnum + ” ,1 ”) and s e l f .

mantrap . lock1Closed == True : #checks f o r a

l o c k s t a t e change

s e l f . mantrap . l o c k i nd i c a t o r 1 . change s ta t e () #

open l o c k

s e l f . mantrap . lock1Closed = Fal se #loc k open

s t a t e f l a g

s e l f . mantrap . t rap door1 . change s ta t e ()

s e l f . mantrap . door1Closed = Fal se

s e l f . ybox . sendWrite (1 , writenum , 0) # trap door

in unsecure

i f s e l f . mantrap . i nd i c a t o rL i gh t == True :

s e l f . mantrap . i nd i c a t o rL i gh t = Fal se

63

s e l f . mantrap . s e c u r e i n d i c a t o r .

change s ta t e ()

pygame . d i sp l a y . update ()

e l i f resp4 == (”r0 , ” + readnum + ” ,0 ”) and s e l f .

mantrap . lock1Closed == False : #checks f o r a

l o c k s t a t e change

s e l f . mantrap . l o c k i nd i c a t o r 1 . change s ta t e () #

open l o c k

s e l f . mantrap . lock1Closed = True #loc k open

s t a t e f l a g

s e l f . mantrap . t rap door1 . change s ta t e ()

s e l f . mantrap . door1Closed = True

s e l f . ybox . sendWrite (1 , writenum , 1) # trap door

in unsecure

i f resp5 == ”r0 , 11 , 0 ” and s e l f . mantrap .

i nd i c a t o rL i gh t == False :

s e l f . mantrap . i nd i c a t o rL i gh t = True

s e l f . mantrap . s e c u r e i n d i c a t o r .

change s ta t e ()

pygame . d i sp l a y . update ()

#loc k reads f o r trap door 2

##############################

64

i f resp5 == (”r0 , ” + readnum 2 + ” ,1 ”) and s e l f .

mantrap . lock2Closed == True : #checks f o r a

l o c k s t a t e change

s e l f . mantrap . l o c k i nd i c a t o r 2 . change s ta t e () #

open l o c k

s e l f . mantrap . lock2Closed = Fal se #loc k open

s t a t e f l a g

s e l f . mantrap . t rap door2 . change s ta t e ()

s e l f . mantrap . door2Closed = Fal se

s e l f . ybox . sendWrite (1 , writenum 2 , 0) # trap

door in unsecure

i f s e l f . mantrap . i nd i c a t o rL i gh t == True :

s e l f . mantrap . i nd i c a t o rL i gh t = Fal se

s e l f . mantrap . s e c u r e i n d i c a t o r .

change s ta t e ()

pygame . d i sp l a y . update ()

e l i f resp5 == (”r0 , ” + readnum 2 + ” ,0 ”) and s e l f

. mantrap . lock2Closed == False : #checks f o r a

l o c k s t a t e change

s e l f . mantrap . l o c k i nd i c a t o r 2 . change s ta t e () #

open l o c k

s e l f . mantrap . lock2Closed = True #loc k open

s t a t e f l a g

s e l f . mantrap . t rap door2 . change s ta t e ()

s e l f . mantrap . door2Closed = True

65

s e l f . ybox . sendWrite (1 , writenum 2 , 1) # trap

door secure

i f resp4 == ”r0 , 9 , 0 ” and s e l f . mantrap .

i nd i c a t o rL i gh t == False :

s e l f . mantrap . i nd i c a t o rL i gh t = True

s e l f . mantrap . s e c u r e i n d i c a t o r .

change s ta t e ()

pygame . d i sp l a y . update ()

#read the key and execu te only i f the key ho l d s

the power to do so

resp6 = s e l f . ybox . sendRead (0 , 14)

i f resp6 == (”r0 , 14 , 1 ”) and s e l f .

g ua rd s t a t i on pane l . pane l enab led == False and

s e l f . g ua rd s t a t i on pane l . pane l keyContro l ==

True :

s e l f . ybox . sendWrite (1 , 9 , 1)

s e l f . g ua rd s t a t i on pane l . enablePanel ()

pygame . d i sp l a y . update ()

i f resp6 == (”r0 , 14 , 0 ”) and s e l f .

g ua rd s t a t i on pane l . pane l enab led == True and

s e l f . g ua rd s t a t i on pane l . pane l keyContro l ==

True :

66

s e l f . ybox . sendWrite (1 , 9 , 0)

s e l f . g ua rd s t a t i on pane l . d i sab l ePane l ()

pygame . d i sp l a y . update ()

#read the s imu la t i on d i s a b l e bu t t t on and take

con t r o l power form the key

i f s e l f . g ua rd s t a t i on pane l . d i s a b l e c l i c k e d ==

True and s e l f . g ua rd s t a t i on pane l .

pane l enab led == False :

s e l f . g ua rd s t a t i on pane l . pane l keyContro l =

Fa l se

s e l f . g ua rd s t a t i on pane l . d i s a b l e c l i c k e d =

Fal se

s e l f . ybox . sendWrite (1 , 9 , 1)

s e l f . g ua rd s t a t i on pane l . enablePanel ()

pygame . d i sp l a y . update ()

i f s e l f . g ua rd s t a t i on pane l . d i s a b l e c l i c k e d ==

True and s e l f . g ua rd s t a t i on pane l .

pane l enab led == True :

s e l f . g ua rd s t a t i on pane l . pane l keyContro l =

Fa l se

s e l f . g ua rd s t a t i on pane l . d i s a b l e c l i c k e d =

Fal se

s e l f . ybox . sendWrite (1 , 9 , 0)

s e l f . g ua rd s t a t i on pane l . d i sab l ePane l ()

67

pygame . d i sp l a y . update ()

#return con t r o l power to the key i f the sim and

key match

i f s e l f . g ua rd s t a t i on pane l . pane l keyContro l ==

False and resp6 == (”r0 , 14 , 1 ”) and s e l f .

g ua rd s t a t i on pane l . pane l enab led == True :

s e l f . g ua rd s t a t i on pane l . pane l keyContro l =

True

i f s e l f . g ua rd s t a t i on pane l . pane l keyContro l ==

False and resp6 == (”r0 , 14 , 0 ”) and s e l f .

g ua rd s t a t i on pane l . pane l enab led == False :

s e l f . g ua rd s t a t i on pane l . pane l keyContro l =

True

#PLC power sw i t c h i n g

i f s e l f . g ua rd s t a t i on pane l . PLC1 cl icked == True

and not s e l f . PLC1power :

i f s e l f . PLC2power == True :

s e l f . ybox . sendWrite (1 , 14 , 0)

s e l f . PLC2power = Fal se

i f s e l f . PLC3power == True :

s e l f . ybox . sendWrite (1 , 15 , 0)

s e l f . PLC3power = Fal se

time . s l e ep (1)

68

s e l f . ybox . sendWrite (1 , 13 , 1)

s e l f . PLC1power = True

s e l f . g ua rd s t a t i on pane l . enablePLC1 ()

pygame . d i sp l a y . update ()

s e l f . g ua rd s t a t i on pane l . PLC1 cl icked = Fal se

e l i f s e l f . g ua rd s t a t i on pane l . PLC1 cl icked ==

True and s e l f . PLC1power :

s e l f . ybox . sendWrite (1 , 13 , 0)

s e l f . PLC1power = Fal se

s e l f . g ua rd s t a t i on pane l . disablePLC ()

pygame . d i sp l a y . update ()

s e l f . g ua rd s t a t i on pane l . PLC1 cl icked = Fal se

i f s e l f . g ua rd s t a t i on pane l . PLC2 cl icked == True

and not s e l f . PLC2power :

i f s e l f . PLC1power == True :

s e l f . ybox . sendWrite (1 , 13 , 0)

s e l f . PLC1power = Fal se

i f s e l f . PLC3power == True :

s e l f . ybox . sendWrite (1 , 15 , 0)

s e l f . PLC3power = Fal se

time . s l e ep (1)

s e l f . ybox . sendWrite (1 , 14 , 1)

s e l f . PLC2power = True

s e l f . g ua rd s t a t i on pane l . enablePLC2 ()

s e l f . g ua rd s t a t i on pane l . PLC2 cl icked = Fal se

69

e l i f s e l f . g ua rd s t a t i on pane l . PLC2 cl icked ==

True and s e l f . PLC2power :

s e l f . ybox . sendWrite (1 , 14 , 0)

s e l f . PLC2power = Fal se

s e l f . g ua rd s t a t i on pane l . disablePLC ()

pygame . d i sp l a y . update ()

s e l f . g ua rd s t a t i on pane l . PLC2 cl icked = Fal se

i f s e l f . g ua rd s t a t i on pane l . PLC3 cl icked == True

and not s e l f . PLC3power :

i f s e l f . PLC1power :

s e l f . ybox . sendWrite (1 , 13 , 0)

s e l f . PLC1power = Fal se

i f s e l f . PLC2power :

s e l f . ybox . sendWrite (1 , 14 , 0)

s e l f . PLC2power = Fal se

time . s l e ep (1)

s e l f . ybox . sendWrite (1 , 15 , 1)

s e l f . PLC3power = True

s e l f . g ua rd s t a t i on pane l . enablePLC3 ()

s e l f . g ua rd s t a t i on pane l . PLC3 cl icked = Fal se

e l i f s e l f . g ua rd s t a t i on pane l . PLC3 cl icked ==

True and s e l f . PLC3power :

s e l f . ybox . sendWrite (1 , 15 , 0)

s e l f . PLC3power = Fal se

s e l f . g ua rd s t a t i on pane l . disablePLC ()

70

pygame . d i sp l a y . update ()

s e l f . g ua rd s t a t i on pane l . PLC3 cl icked = Fal se

i f name == ” ma in ” :

green = (200 , 0 , 0)

white = (255 , 255 , 255)

black = (0 ,0 , 0)

grey = (200 , 200 , 200)

dark grey = (140 , 140 , 140)

l i g h t b l u e = (0 , 0 , 255)

dark b lue = (0 , 0 , 150)

prisonSim = PrisonSim ()

prisonSim . on execute ()

B.1.2 Guardstation.

The following code handles the interactions with the buttons in the guard station

panel.

import pygame

from pygame . locals import ∗

import i n d i c a t o r

71

import pygbutton

class GuardStation :

def i n i t (s e l f , sim=None , num ce l l s =0, x=0, y=0):

i f sim :

s c r een = sim . sc r een

f ont = sim . f ont

s e l f . c e l l b t n s = []

s e l f . l i g h t s = []

s e l f . PLC l ights = []

s e l f . b t n s t a tu s e s = []

s e l f . button pushed = []

s e l f . l i g h t g r e e n = []

s e l f . pane l enab led = True

s e l f . pane l keyContro l = True #enab l e s the key o be over idden

s e l f . d i s a b l e c l i c k e d = Fal se

s e l f . PLC1 cl icked = Fal se

s e l f . PLC2 cl icked = Fal se

s e l f . PLC3 cl icked = Fal se

b tn he i ght = 40 ;

btn width = 100 ;

c e l l p add ing x = 25

ce l l p add ing y = 60

grey = (200 , 200 , 200)

dark grey = (140 , 140 , 140)

72

white = (255 , 255 , 255)

black = (0 ,0 , 0)

t i t l e h e i g h t = 25

l i g h t h e i g h t = 35

l i g h t w id th = 35

panel width = btn width ∗ num ce l l s + (num ce l l s +1)∗ c e l l p add in

pane l he i ght = btn he i ght + 2∗ c e l l p add ing y + t i t l e h e i g h t + l

gua rd d i sp l ay pane l = pygame . draw . r e c t (screen , (grey) , (x , y , p

#f l a g f o r c e l l bu t ton t o g g l e

for i in range (0 , num ce l l s) :

s e l f . button pushed . append (Fa l se)

#f l a g f o r l i g h t to t o g g l e

for i in range (0 , 4) :

s e l f . l i g h t g r e e n . append (True)

#Ti t l e

#screen . b l i t (f on t . render (’Guard S ta t i on Panel ’ , True , (b l a c k)) ,

#guard s t a t i o n image l oad ing

g r e en i c on = pygame . image . load (” images / greenLightAlt . png”)

r ed i c on = pygame . image . load (” images / redLightAlt . png”)

73

p r e s s ed i c on = pygame . image . load (” images / pressed . png”)

no tPre s s ed i con = pygame . image . load (” images / notpressed . png”)

panelEnabled = pygame . image . load (” images / pane lenab led . png”)

pane lD i sab led = pygame . image . load (” images / pane lD i sab led . png”)

c e l l s t a r t x = x + ce l l p add ing x

c e l l s t a r t y = y + ce l l p add ing y+t i t l e h e i g h t+ (0 . 5 ∗ l i g h t h e

l i g h t s t a r t x = x + ce l l p add ing x + (btn width ∗0 . 5) − (l i g h t w

l i g h t s t a r t y = y + ce l l p add ing y

s t a t u s s t a r t x = x + ce l l p add ing x

s t a t u s s t a r t y = y + ce l l p add ing y + t i t l e h e i g h t+ (0 . 5 ∗ l i g h

#d i s a b l e but ton to the r i g h t o f the pane l

s e l f . d i s ab l e b tn = pygbutton . PygButton ((c e l l s t a r t x + (panel w

s e l f . d i s ab l e b tn . draw(sc r een)

#crea te enab led / d i s b a l e d i nd i c a t o r

pane l i c on s = [panelEnabled , pane lD i sab led]

i con d imens i ons = ((4 00 , 4 5))

s e l f . e n a b l e l a b e l = i nd i c a t o r . I nd i c a t o r (sim , x + (0 . 1 8 ∗ panel

for i in range (0 , num ce l l s) :

ce l l num = i+1

i f ce l l num == num cel l s −1:

74

but ton t ext = ”Trap 1”

e l i f ce l l num == num ce l l s :

but ton t ext = ”Trap 2”

else :

bu t ton t ext = ”Ce l l %s ” % cel l num

c e l l b t n = pygbutton . PygButton ((c e l l s t a r t x , c e l l s t a r t y ,

c e l l b t n . draw(sc r een)

#Door l i g h t

i f i == num ce l l s − 2 :

l i g h t i c o n s = [green icon , r ed i c on]

l i g h t d imen s i on s = ((3 5 , 3 5))

l i g h t = i nd i c a t o r . I nd i c a t o r (sim , l i g h t s t a r t x + (0 . 6 3

s e l f . l i g h t s . append (l i g h t)

e l i f i == num ce l l s −1:

pass

else :

l i g h t i c o n s = [green icon , r ed i c on]

l i g h t d imen s i on s = ((3 5 , 3 5))

l i g h t = i nd i c a t o r . I nd i c a t o r (sim , l i g h t s t a r t x , l i g h t s

s e l f . l i g h t s . append (l i g h t)

#but ton ind i c a t o r

s t a t u s i c o n s = [notPressed icon , p r e s s ed i c on]

s t a tu s d imens i ons = ((100 , 20))

75

s t a tu s = i nd i c a t o r . I nd i c a t o r (sim , s t a t u s s t a r t x , s t a t u s s t

#adding a l l o b j e c t s to r e s p e c t i v e l i s t s

s e l f . c e l l b t n s . append (c e l l b t n)

s e l f . b t n s t a tu s e s . append (s t a tu s)

#ad ju s t i n g p lacements f o r next i t e r a t i o n o f icon and but ton

l i g h t s t a r t x += btn width + ce l l p add ing x

c e l l s t a r t x += btn width + ce l l p add ing x

s t a t u s s t a r t x += btn width + ce l l p add ing x

#Ligh t i n d i c a t o r s f o r PLC but tons

l i g h t i c o n s = [red icon , g r e en i c on]

l i g h t d imen s i on s = ((3 5 , 3 5))

s e l f . l i g h t 1 = i nd i c a t o r . I nd i c a t o r (sim , 150 , 770 , l i g h t i c o n s , l

s e l f . l i g h t 2 = i nd i c a t o r . I nd i c a t o r (sim , 350 , 770 , l i g h t i c o n s , l

s e l f . l i g h t 3 = i nd i c a t o r . I nd i c a t o r (sim , 550 , 770 , l i g h t i c o n s , l

#New but tons f o r PLC sw i t c h i n g

s e l f .PLC1 BTN = pygbutton . PygButton ((100 , y − c e l l p add ing y +

s e l f .PLC1 BTN. draw(sc r een)

s e l f .PLC2 BTN = pygbutton . PygButton ((300 , y − c e l l p add ing y +

s e l f .PLC2 BTN. draw(sc r een)

s e l f .PLC3 BTN = pygbutton . PygButton ((500 , y − c e l l p add ing y +

76

s e l f .PLC3 BTN. draw(sc r een)

def d i sab l ePane l (s e l f) :

i f s e l f . pane l enab led == True :

s e l f . pane l enab led = Fal se

s e l f . e n a b l e l a b e l . change s ta t e ()

def enablePanel (s e l f) :

i f s e l f . pane l enab led == False :

s e l f . pane l enab led = True

s e l f . e n a b l e l a b e l . change s ta t e ()

def enablePLC1 (s e l f) :

s e l f . l i g h t 1 . change s ta t e (1)

s e l f . l i g h t 2 . change s ta t e (0)

s e l f . l i g h t 3 . change s ta t e (0)

pygame . d i sp l a y . update ()

def enablePLC2 (s e l f) :

s e l f . l i g h t 1 . change s ta t e (0)

s e l f . l i g h t 2 . change s ta t e (1)

s e l f . l i g h t 3 . change s ta t e (0)

pygame . d i sp l a y . update ()

77

def enablePLC3 (s e l f) :

s e l f . l i g h t 1 . change s ta t e (0)

s e l f . l i g h t 2 . change s ta t e (0)

s e l f . l i g h t 3 . change s ta t e (1)

pygame . d i sp l a y . update ()

def disablePLC (s e l f) :

s e l f . l i g h t 1 . change s ta t e (0)

s e l f . l i g h t 2 . change s ta t e (0)

s e l f . l i g h t 3 . change s ta t e (0)

pygame . d i sp l a y . update ()

B.1.3 Ybox.

The following code handles communications with the Y-Box

import time

import msvcrt

from pygame . locals import ∗

import s e r i a l

import thread

###

Author : Evan Plumley and Joseph Daoud

Date : 6/20/2016

ver s i on : 1 .0

78

#

#The Ybox c l a s s

dependencies : pygame , p y s e r i a l

###

class Ybox(object) :

def i n i t (s e l f) :

s e l f . comMap = { ’ r10 ’ : ’R1,0\n ’ , ’ r11 ’ : ’R1,1\n ’ , ’ r12 ’ : ’R1,2\n ’ , ’ r13

’ r15 ’ : ’R1,5\n ’ , ’ r16 ’ : ’R1,6\n ’ , ’ r17 ’ : ’R1,7\n ’ , ’ r18 ’ : ’R1,

’ r111 ’ : ’R1,11\n ’ , ’ r111 ’ : ’R1,11\n ’ , ’ r112 ’ : ’R1,12\n ’ , ’

’ r115 ’ : ’R1,15\n ’ , ’ r00 ’ : ’R0,0\n ’ , ’ r01 ’ : ’R0,1\n ’ , ’ r02 ’

’ r05 ’ : ’R0,5\n ’ , ’ r06 ’ : ’R0,6\n ’ , ’ r07 ’ : ’R0,7\n ’ , ’ r08 ’ : ’R0,

’ r010 ’ : ’R0,10\n ’ , ’ r011 ’ : ’R0,11\n ’ , ’ r012 ’ : ’R0,12\n ’ , ’

’ r015 ’ : ’R0,15\n ’ , ’w100 ’ : ’W1,0 , 0\n ’ , ’w101 ’ : ’W1,0 , 1\n ’ ,

’w120 ’ : ’W1,2 , 0\n ’ , ’w121 ’ : ’W1,2 , 1\n ’ , ’w130 ’ : ’W1,3 , 0\n ’

’w141 ’ : ’W1,4 , 1\n ’ , ’w150 ’ : ’W1,5 , 0\n ’ , ’w151 ’ : ’W1,5 , 1\n ’

’w170 ’ : ’W1,7 , 0\n ’ , ’w171 ’ : ’W1,7 , 1\n ’ , ’w180 ’ : ’W1,8 , 0\n ’

’w1100 ’ : ’W1,10 , 0\n ’ , ’w1101 ’ : ’W1,10 , 1\n ’ , ’w1110 ’ : ’W1,1

’w1121 ’ : ’W1,12 , 1\n ’ , ’w1130 ’ : ’W1,13 , 0\n ’ , ’w1131 ’ : ’W1,1

’w1150 ’ : ’W1,15 , 0\n ’ , ’w1151 ’ : ’W1,15 , 1\n ’ }

s e l f . s e r = s e r i a l . S e r i a l (

port= ’COM4’ ,

baudrate=115200 ,

pa r i ty=s e r i a l .PARITY NONE,

s t o pb i t s=s e r i a l . STOPBITS ONE,

79

by t e s i z e=s e r i a l .EIGHTBITS,

t imeout = 1

)

time . s l e ep (1)

print (” I n i t i a l i z e Complete”)

def readLine (s e l f) :

l i n e = s e l f . s e r . r e a d l i n e () . decode ()

l i n e = l i n e . s t r i p ()

return l i n e

def sendRead (s e l f , s l o t , channel) :

msg = s e l f . comMap [’ r ’ + str (s l o t) + str (channel)]

s e l f . s e r . wr i t e (msg . encode ())

l i n e = s e l f . s e r . r e a d l i n e () . decode ()

l i n e = l i n e . s t r i p ()

return l i n e

def sendWrite (s e l f , s l o t , channel , va lue) :

#g e t t e r = ’w ’ + s t r (s l o t) + s t r (channe l) + s t r (va lue)

msg = ”W” + str (s l o t) + ” , ” + str (channel) + ” , ” + str (va lue) + ”\n

s e l f . s e r . wr i t e (msg . encode ())

l i n e = s e l f . s e r . r e a d l i n e () . decode ()

l i n e = l i n e . s t r i p ()

80

return l i n e

def readAl l (s e l f , s l o t) :

s l o t s t r = str (s l o t)

msg = ’R0 ’ + s l o t s t r + ’A ’

s e l f . s e r . wr i t e (msg . encode ())

l i n e = s e l f . s e r . r e a d l i n e () . decode ()

l i n e = l i n e . s t r i p ()

return l i n e

def c l o s ePor t (s e l f) :

s e l f . s e r . c l o s e ()

print (” s e r i a l port c l o s ed ”)

B.2 Ladder Logic

The following subsections contain the logic files for each of the PLCs.

B.2.1 CompactLogix.

The following code is running in the CompactLogix PLC.

(∗∗∗

Import−Export

Vers ion := RSLogix 5000 v19 .01

Owner := user ,

Exported := Tue Feb 14 14 :53 : 53 2017

81

Note : F i l e encoded in UTF−8. Only ed i t f i l e in a program

which support s UTF−8 (l i k e Notepad , not Wordpad) .

∗∗)

IE VER := 2 . 1 0 ;

CONTROLLER Prison (ProcessorType := ”1769−L23E−QBFC1” ,

Major := 19 ,

TimeSl ice := 20 ,

ShareUnusedTimeSlice := 1 ,

RedundancyEnabled := 0 ,

KeepTestEditsOnSwitchOver := 0 ,

DataTablePadPercentage := 50 ,

SecurityCode := 0 ,

SFCExecutionControl := ”CurrentAct ive ” ,

SFCRestartPosit ion := ”MostRecent ” ,

SFCLastScan := ”DontScan” ,

SerialNumber := 16#c01d 8398 ,

MatchProjectToContro l ler := No ,

CanUseRPIFromProducer := No ,

InhibitAutomaticFirmwareUpdate := 0)

MODULE Cont r o l l e r (Parent := ”Con t r o l l e r ” ,

ParentModPortId := 1 ,

CatalogNumber := ”1769−L23E−QBFC1” ,

Vendor := 1 ,

ProductType := 14 ,

82

ProductCode := 89 ,

Major := 19 ,

Minor := 13 ,

PortLabel := ”RxBACKPLANE” ,

Chass i sS i z e := 4 ,

S l o t := 0 ,

Mode := 2#0000 0000 0000 0001 ,

CompatibleModule := 0 ,

KeyMask := 2#0000 0000 0001 1111)

ENDMODULE

MODULE LocalENB (Parent := ” Con t r o l l e r ” ,

ParentModPortId := 1 ,

CatalogNumber := ”1769−L23E−QBFC1 Ethernet Port ” ,

Vendor := 1 ,

ProductType := 12 ,

ProductCode := 191 ,

Major := 19 ,

Minor := 11 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 1 ,

NodeAddress := ”192 .168 . 108 . 203” ,

Mode := 2#0000 0000 0000 0000 ,

CompatibleModule := 0 ,

KeyMask := 2#0000 0000 0000 0000)

ENDMODULE

83

MODULE Local (Parent := ”Con t r o l l e r ” ,

ParentModPortId := 1 ,

CatalogNumber := ”CompactBus” ,

Vendor := 1 ,

ProductType := 12 ,

ProductCode := 71 ,

Major := 19 ,

Minor := 11 ,

PortLabel := ”RxBACKPLANE” ,

Chass i sS i z e := 7 ,

S l o t := 3 ,

CommMethod := 805306369 ,

Mode := 2#0000 0000 0000 0001 ,

CompatibleModule := 0 ,

KeyMask := 2#0000 0000 0001 1111)

ExtendedProp := [[[<publ ic><ConfigID>901</Config

ENDMODULE

MODULE Di s c r e t e Inpu t s (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”Embedded IQ16F” ,

Vendor := 1 ,

ProductType := 7 ,

ProductCode := 320 ,

Major := 3 ,

84

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 1 ,

Mode := 2#0000 0000 0000 0001 ,

CompatibleModule := 1 ,

KeyMask := 2#0000 0000 0001 1111)

ExtendedProp := [[[<publ ic><ConfigID>240</Config

ConfigData := [1 6 , 1 0 2 , 1 , 3 4 , 3 4 , 0 , 0 , 0] ;

CONNECTION Input (Rate := 5000 ,

EventID := 0)

InputData := [0 , 3 2 5 6] ;

InputForceData := [0 , 0 , 0 , 0 , −72 , 12 ,

END CONNECTION

ENDMODULE

MODULE Discrete Outputs (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”Embedded OB16” ,

Vendor := 1 ,

ProductType := 7 ,

ProductCode := 322 ,

Major := 3 ,

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 2 ,

85

Mode := 2#0000 0000 0000 0001 ,

CompatibleModule := 1 ,

KeyMask := 2#0000 0000 0001 1111)

ExtendedProp := [[[<publ ic><ConfigID>150</Config

ConfigData := [1 8 , 1 0 2 , 1 , 0 , 0 , 0 , 0 , 0] ;

CONNECTION Output (Rate := 5000 ,

EventID := 0)

InputData := [0 , 0] ;

InputForceData := [0 , 0 , 0 , 0 , 0 , 0 , −72

OutputData := [8 1 0] ;

OutputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

END CONNECTION

ENDMODULE

MODULE Analog IO (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”Embedded IF4XOF2” ,

Vendor := 1 ,

ProductType := 10 ,

ProductCode := 120 ,

Major := 1 ,

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 3 ,

Mode := 2#0000 0000 0000 0001 ,

86

CompatibleModule := 1 ,

KeyMask := 2#0000 0000 0001 1111)

ExtendedProp := [[[<publ ic><ConfigID>350</Config

ConfigData := [2 4 , 1 0 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ;

CONNECTION Output (Rate := 5000 ,

EventID := 0)

InputData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ;

InputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

OutputData := [0 , 0] ;

OutputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

END CONNECTION

ENDMODULE

MODULE Counters (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”Embedded HSC” ,

Vendor := 1 ,

ProductType := 109 ,

ProductCode := 70 ,

Major := 1 ,

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 4 ,

Mode := 2#0000 0000 0000 0001 ,

CompatibleModule := 1 ,

87

KeyMask := 2#0000 0000 0001 1111)

ExtendedProp := [[[<publ ic><ConfigID>100</Config

ConfigData := [100 ,102 ,1 ,256 ,0 ,0 ,0 ,0 ,0 ,2147483647 ,

, 0 , 0] ;

CONNECTION Output (Rate := 5000 ,

EventID := 0)

InputData := [0 , 0 , 0 , 0 , 32 , −4096 , 0 ,

InputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

, 0 , 0

, 0 , 0

OutputData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

OutputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

, 0 , 0

, 0 , 0

END CONNECTION

ENDMODULE

TAG

DOOR1 SECURE OF Local : 2 :O. Data . 1 (RADIX := Decimal) ;

DOOR1UNLOCK OF Local : 2 :O. Data . 0 (RADIX := Decimal) ;

DOOR2 SECURE OF Local : 2 :O. Data . 3 (RADIX := Decimal) ;

DOOR2UNLOCK OF Local : 2 :O. Data . 2 (RADIX := Decimal) ;

DOOR3 SECURE OF Local : 2 :O. Data . 5 (RADIX := Decimal) ;

DOOR3UNLOCK OF Local : 2 :O. Data . 4 (RADIX := Decimal) ;

HMI : BOOL[3 2] (RADIX := Decimal) := [2#0,2#0,2#0,2#0,2#0,2

88

,2#0 ,2#0 ,2#0 ,2#0 ,2#0];

IN DOOR1 SECURE SENSOR OF Local : 1 : I . Data . 3 (RADIX := Decim

IN DOOR2 SECURE SENSOR OF Local : 1 : I . Data . 4 (RADIX := Decim

IN DOOR3 SECURE SENSOR OF Local : 1 : I . Data . 5 (RADIX := Decim

IN INNER DOOR SECURE SENSOR OF Local : 1 : I . Data . 10 (RADIX :=

INLOCKDOWN OF Local : 1 : I . Data . 6 (RADIX := Decimal) ;

IN OPEN INSIDE BTN OF Local : 1 : I . Data . 8 (RADIX := Decimal) ;

IN OPEN OUTSIDE BTN OF Local : 1 : I . Data . 9 (RADIX := Decimal) ;

IN OUTER DOOR SECURE SENSOR OF Local : 1 : I . Data . 11 (RADIX :=

IN UNLOCK DOOR1 BTN OF Local : 1 : I . Data . 0 (RADIX := Decimal) ;

IN UNLOCK DOOR2 BTN OF Local : 1 : I . Data . 1 (RADIX := Decimal) ;

IN UNLOCK DOOR3 BTN OF Local : 1 : I . Data . 2 (RADIX := Decimal) ;

KEYON OF Local : 1 : I . Data . 7 (RADIX := Decimal) ;

MANTRAP SECURE OF Local : 2 :O. Data . 8 (RADIX := Decimal) ;

PANEL ENABLE OF Local : 2 :O. Data . 9 (RADIX := Decimal) ;

UNLOCK INSIDE OF Local : 2 :O. Data . 6 (RADIX := Decimal) ;

UNLOCKOUTSIDE OF Local : 2 :O. Data . 7 (RADIX := Decimal) ;

ENDTAG

PROGRAM MainProgram (MAIN := ”MainRoutine ” ,

MODE := 0 ,

Disab leF lag := 0)

TAG

ENDTAG

ROUTINE MainRoutine

89

N: [XIC(IN UNLOCK DOOR1 BTN) XIC(KE

N: XIC(IN DOOR1 SECURE SENSOR)OTL(D

N: [XIC(IN UNLOCK DOOR2 BTN) XIC(KE

N: XIC(IN DOOR2 SECURE SENSOR)OTL(D

N: [XIC(IN UNLOCK DOOR3 BTN) XIC(KE

N: XIC(IN DOOR3 SECURE SENSOR)OTL(D

N: [XIC(IN OPEN INSIDE BTN) XIC(KEY

N: [XIC(IN OPEN OUTSIDE BTN) XIC(KE

N: XIC(IN INNER DOOR SECURE SENSOR)

N: XIC(KEY ON)OTE(PANEL ENABLE) ;

END ROUTINE

ENDPROGRAM

TASK MainTask (Type := CONTINUOUS,

Rate := 10 ,

P r i o r i t y := 10 ,

Watchdog := 500 ,

DisableUpdateOutputs := No ,

Inh ib i tTask := No)

MainProgram ;

END TASK

CONFIG ASCII (XONXOFFEnable := 0 ,

DeleteMode := 0 ,

EchoMode := 0 ,

90

TerminationChars := 65293 ,

AppendChars := 2573 ,

Bu f f e r S i z e := 82) END CONFIG

CONFIG Cont ro l l e rDev i c e END CONFIG

CONFIG CST(SystemTimeMasterID := 0) END CONFIG

CONFIG DF1(Dupl i ca teDetect ion := 1 ,

ErrorDetect ion := BCC Error ,

EmbeddedResponseEnable := 0 ,

DF1Mode := Pt to Pt ,

ACKTimeout := 50 ,

NAKReceiveLimit := 3 ,

ENQTransmitLimit := 3 ,

TransmitRetr ie s := 3 ,

Stat ionAddress := 0 ,

ReplyMessageWait := 5 ,

Poll ingMode := 1 ,

MasterMessageTransmit := 0 ,

NormalPol lNodeFile := ”<NA>”,

NormalPollGroupSize := 0 ,

P r i o r i t yPo l lNodeF i l e := ”<NA>”,

Ac t i v eS t a t i onF i l e := ”<NA>”,

SlavePol lTimeout := 3000 ,

EOTSuppression := 0 ,

91

MaxStationAddress := 31 ,

TokenHoldFactor := 1 ,

EnableStoreFwd := 0 ,

StoreFwdFile := ”<NA>”) END CONFIG

CONFIG ExtendedDevice END CONFIG

CONFIG FaultLog END CONFIG

CONFIG FileManager END CONFIG

CONFIG ICP END CONFIG

CONFIG PCCC END CONFIG

CONFIG Redundancy END CONFIG

CONFIG Se r i a lPo r t (BaudRate := 19200 ,

Par i ty := No Parity ,

DataBits := 8 Bit s o f Data ,

StopBits := 1 Stop Bit ,

ComDriverId := DF1,

PendingComDriverId := DF1,

RTSOffDelay := 0 ,

RTSSendDelay := 0 ,

Contro lLine := No Handshake ,

92

PendingControlLine := No Handshake ,

RemoteModeChangeFlag := 0 ,

PendingRemoteModeChangeFlag := 0 ,

ModeChangeAttentionChar := 27 ,

PendingModeChangeAttentionChar := 27 ,

SystemModeCharacter := 83 ,

PendingSystemModeCharacter := 83 ,

UserModeCharacter := 85 ,

PendingUserModeCharacter := 85 ,

DCDWaitDelay := 0) END CONFIG

CONFIG TimeSynchronize (Pr i o r i t y1 := 128 ,

P r i o r i t y2 := 128 ,

PTPEnable := 0) END CONFIG

CONFIG UserMemory END CONFIG

CONFIG WallClockTime (LocalTimeAdjustment := 0 ,

TimeZone := 0) END CONFIG

ENDCONTROLLER

B.2.2 Siemens S7-300.

The following code is running in the S7-300 PLC.

ORGANIZATION BLOCK OB 1

TITLE = ”Main Program Sweep (Cycle)”

93

VERSION : 0 . 1

VARTEMP

OB1 EV CLASS : BYTE ; // Bit s 0−3 = 1 (Coming event) , B i t s 4−7 = 1 (Event

OB1 SCAN 1 : BYTE ; //1 (Cold r e s t a r t scan 1 o f OB 1) , 3 (Scan 2−n o f O

OB1 PRIORITY : BYTE ; // P r i o r i t y o f OB Execution

OB1 OB NUMBR : BYTE ; //1 (Organ izat ion block 1 , OB1)

OB1 RESERVED 1 : BYTE ; //Reserved f o r system

OB1 RESERVED 2 : BYTE ; //Reserved f o r system

OB1 PREV CYCLE : INT ; //Cycle time o f p r ev i ous OB1 scan (m i l l i s e c

OB1 MIN CYCLE : INT ; //Minimum cyc l e time o f OB1 (m i l l i s e c o nd s)

OB1 MAX CYCLE : INT ; //Maximum cyc l e time o f OB1 (m i l l i s e c o nd s)

OB1 DATE TIME : DATE AND TIME ; //Date and time OB1 s t a r t ed

ENDVAR

BEGIN

NETWORK

TITLE =

A ”IN UNLOCK DOOR1 BTN” ;

A ”KEY ON” ;

O ”HMI OPEN DOOR1” ;

O ”HMI OPEN ALL” ;

= L 20 . 0 ;

A L 2 0 . 0 ;

AN ”INLOCKDOWN” ;

94

= ”DOOR1UNLOCK” ;

A L 20 . 0 ;

BLD 102 ;

R ”DOOR1 SECURE” ;

NETWORK

TITLE =

A ”IN DOOR1 SECURE SENSOR” ;

S ”DOOR1 SECURE” ;

NETWORK

TITLE =

A ”IN UNLOCK DOOR2 BTN” ;

A ”KEY ON” ;

O ”HMI OPEN DOOR2” ;

O ”HMI OPEN ALL” ;

= L 20 . 0 ;

A L 2 0 . 0 ;

AN ”INLOCKDOWN” ;

= ”DOOR2UNLOCK” ;

A L 20 . 0 ;

BLD 102 ;

R ”DOOR2 SECURE” ;

NETWORK

TITLE =

95

A ”IN DOOR2 SECURE SENSOR” ;

S ”DOOR2 SECURE” ;

NETWORK

TITLE =

A(;

A ”IN UNLOCK DOOR3 BTN” ;

A ”KEY ON” ;

O ”HMI OPEN DOOR3” ;

) ;

AN ”INLOCKDOWN” ;

O ”HMI OPEN ALL” ;

= ”DOOR3UNLOCK” ;

R ”DOOR3 SECURE” ;

NETWORK

TITLE =

A ”IN DOOR3 SECURE SENSOR” ;

S ”DOOR3 SECURE” ;

NETWORK

TITLE =

A(;

A ”IN OPEN OUTSIDE BTN” ;

A ”KEY ON” ;

O ”HMI OPEN MANTRAP INNER” ;

96

) ;

A ”IN INNER DR SEC SENSOR” ;

AN ”IN OPEN INSIDE BTN” ;

= ”UNLOCKOUTSIDE” ;

R ”MANTRAPSECURE” ;

NETWORK

TITLE =

A(;

A ”IN OPEN INSIDE BTN” ;

A ”KEY ON” ;

O ”HMI OPENMANTRAPOUTER” ;

) ;

A ”IN OUTER DR SEC SENSOR” ;

AN ”IN OPEN OUTSIDE BTN” ;

= ”UNLOCK INSIDE” ;

R ”MANTRAPSECURE” ;

NETWORK

TITLE =

A ”IN OUTER DR SEC SENSOR” ;

A ”IN INNER DR SEC SENSOR” ;

S ”MANTRAPSECURE” ;

NETWORK

TITLE =

97

A ”KEYON” ;

= ”ENABLE PANEL” ;

END ORGANIZATION BLOCK

B.2.3 ControlLogix.

The following code is running in the ControlLogix PLC.

(∗∗∗

Import−Export

Vers ion := RSLogix 5000 v16 .04

Owner := user ,

Exported := Tue Feb 14 14 :50 : 57 2017

∗∗)

IE VER := 2 . 7 ;

CONTROLLER Prison (ProcessorType := ”1756−L55” ,

Major := 16 ,

TimeSl ice := 20 ,

ShareUnusedTimeSlice := 1 ,

RedundancyEnabled := 0 ,

KeepTestEditsOnSwitchOver := 0 ,

DataTablePadPercentage := 50 ,

SecurityCode := 0 ,

SFCExecutionControl := ”CurrentAct ive ” ,

SFCRestartPosit ion := ”MostRecent ” ,

SFCLastScan := ”DontScan” ,

98

SerialNumber := 16#0049 e688 ,

MatchProjectToContro l ler := No ,

InhibitAutomaticFirmwareUpdate := 0)

MODULE Local (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”1756−L55 ” ,

Vendor := 1 ,

ProductType := 14 ,

ProductCode := 51 ,

Major := 16 ,

Minor := 3 ,

PortLabel := ”RxBACKPLANE” ,

Chass i sS i z e := 7 ,

S l o t := 0 ,

Mode := 2#0000 0000 0000 0000 ,

CompatibleModule := 0 ,

KeyMask := 2#0000 0000 0001 1111)

ENDMODULE

MODULE EthernetIP (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”1756−ENBT/A” ,

Vendor := 1 ,

ProductType := 12 ,

ProductCode := 58 ,

Major := 4 ,

99

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 1 ,

NodeAddress := ”192 .168 . 108 . 205” ,

Mode := 2#0000 0000 0000 0000 ,

CompatibleModule := 1 ,

KeyMask := 2#0000 0000 0001 1111)

ENDMODULE

MODULE DI 1 (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”1756−IB16 ” ,

Vendor := 1 ,

ProductType := 7 ,

ProductCode := 11 ,

Major := 3 ,

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 2 ,

CommMethod := 536870913 ,

ConfigMethod := 8388609 ,

Mode := 2#0000 0000 0000 0000 ,

CompatibleModule := 1 ,

KeyMask := 2#0000 0000 0001 1111)

ConfigData := [2 8 , 1 6 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 6 5 535

CONNECTION StandardInput (Rate := 20000 ,

100

EventID := 0)

InputData := [0 , 0] ;

InputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

END CONNECTION

ENDMODULE

MODULE DO 1 (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”1756−OB8” ,

Vendor := 1 ,

ProductType := 7 ,

ProductCode := 18 ,

Major := 3 ,

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 3 ,

CommMethod := 536870913 ,

ConfigMethod := 8388609 ,

Mode := 2#0000 0000 0000 0000 ,

CompatibleModule := 1 ,

KeyMask := 2#0000 0000 0001 1111)

ConfigData := [2 8 , 1 8 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ;

CONNECTION Standard (Rate := 20000 ,

EventID := 0)

InputData := [0 , 0] ;

101

InputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

OutputData := [0] ;

OutputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

END CONNECTION

ENDMODULE

MODULE DO 2 (Parent := ”Local ” ,

ParentModPortId := 1 ,

CatalogNumber := ”1756−OB8” ,

Vendor := 1 ,

ProductType := 7 ,

ProductCode := 18 ,

Major := 3 ,

Minor := 1 ,

PortLabel := ”RxBACKPLANE” ,

S l o t := 4 ,

CommMethod := 536870913 ,

ConfigMethod := 8388609 ,

Mode := 2#0000 0000 0000 0000 ,

CompatibleModule := 1 ,

KeyMask := 2#0000 0000 0001 1111)

ConfigData := [2 8 , 1 8 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ;

CONNECTION Standard (Rate := 20000 ,

EventID := 0)

InputData := [0 , 0] ;

102

InputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

OutputData := [0] ;

OutputForceData := [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

END CONNECTION

ENDMODULE

TAG

DOOR1 SECURE OF Local : 3 :O. Data . 1 (RADIX := Decimal) ;

DOOR1UNLOCK OF Local : 3 :O. Data . 0 (RADIX := Decimal) ;

DOOR2 SECURE OF Local : 3 :O. Data . 3 (RADIX := Decimal) ;

DOOR2UNLOCK OF Local : 3 :O. Data . 2 (RADIX := Decimal) ;

DOOR3 SECURE OF Local : 3 :O. Data . 5 (RADIX := Decimal) ;

DOOR3UNLOCK OF Local : 3 :O. Data . 4 (RADIX := Decimal) ;

ENABLE PANEL OF Local : 4 :O. Data . 1 (RADIX := Decimal) ;

HMI : BOOL[3 2] (RADIX := Decimal) := [2#0,2#0,2#0,2#0,2#0,2

,2#0 ,2#0 ,2#0 ,2#0 ,2#0];

IN DOOR1 SECURE SENSOR OF Local : 2 : I . Data . 3 (RADIX := Decim

IN DOOR2 SECURE SENSOR OF Local : 2 : I . Data . 4 (RADIX := Decim

IN DOOR3 SECURE SENSOR OF Local : 2 : I . Data . 5 (RADIX := Decim

IN INNER DOOR SECURE SENSOR OF Local : 2 : I . Data . 10 (RADIX :=

INLOCKDOWN OF Local : 2 : I . Data . 6 (RADIX := Decimal) ;

IN OPEN INSIDE BTN OF Local : 2 : I . Data . 8 (RADIX := Decimal) ;

IN OPEN OUTSIDE BTN OF Local : 2 : I . Data . 9 (RADIX := Decimal) ;

IN OUTER DOOR SECURE SENSOR OF Local : 2 : I . Data . 11 (RADIX :=

IN UNLOCK DOOR1 BTN OF Local : 2 : I . Data . 0 (RADIX := Decimal) ;

103

IN UNLOCK DOOR2 BTN OF Local : 2 : I . Data . 1 (RADIX := Decimal) ;

IN UNLOCK DOOR3 BTN OF Local : 2 : I . Data . 2 (RADIX := Decimal) ;

KEYON OF Local : 2 : I . Data . 7 (RADIX := Decimal) ;

MANTRAP SECURE OF Local : 3 :O. Data . 7 (RADIX := Decimal) ;

UNLOCK INSIDE OF Local : 4 :O. Data . 0 (RADIX := Decimal) ;

UNLOCKOUTSIDE OF Local : 3 :O. Data . 6 (RADIX := Decimal) ;

ENDTAG

PROGRAM MainProgram (MAIN := ”MainRoutine ” ,

MODE := 0 ,

Disab leF lag := 0)

TAG

ENDTAG

ROUTINE MainRoutine

N: [XIC(IN UNLOCK DOOR1 BTN) XIC(KE

N: XIC(IN DOOR1 SECURE SENSOR)OTL(D

N: [XIC(IN UNLOCK DOOR2 BTN) XIC(KE

N: XIC(IN DOOR2 SECURE SENSOR)OTL(D

N: [XIC(IN UNLOCK DOOR3 BTN) XIC(KE

N: XIC(IN DOOR3 SECURE SENSOR)OTL(D

N: [XIC(IN OPEN INSIDE BTN) XIC(KEY

N: [XIC(IN OPEN OUTSIDE BTN) XIC(KE

N: XIC(IN INNER DOOR SECURE SENSOR)

N: XIC(KEY ON)OTE(ENABLE PANEL) ;

END ROUTINE

104

ENDPROGRAM

TASK MainTask (Type := CONTINUOUS,

Rate := 10 ,

P r i o r i t y := 10 ,

Watchdog := 500 ,

DisableUpdateOutputs := No ,

Inh ib i tTask := No)

MainProgram ;

END TASK

CONFIG ASCII (XONXOFFEnable := 0 ,

DeleteMode := 0 ,

EchoMode := 0 ,

TerminationChars := 65293 ,

AppendChars := 2573 ,

Bu f f e r S i z e := 82) END CONFIG

CONFIG Cont ro l l e rDev i c e END CONFIG

CONFIG CST(SystemTimeMasterID := 0) END CONFIG

CONFIG DF1(Dupl i ca teDetect ion := 1 ,

ErrorDetect ion := BCC Error ,

EmbeddedResponseEnable := 0 ,

105

DF1Mode := Pt to Pt ,

ACKTimeout := 50 ,

NAKReceiveLimit := 3 ,

ENQTransmitLimit := 3 ,

TransmitRetr ie s := 3 ,

Stat ionAddress := 0 ,

ReplyMessageWait := 5 ,

Poll ingMode := 1 ,

MasterMessageTransmit := 0 ,

NormalPol lNodeFile := ”<NA>”,

NormalPollGroupSize := 0 ,

P r i o r i t yPo l lNodeF i l e := ”<NA>”,

Ac t i v eS t a t i onF i l e := ”<NA>”,

SlavePol lTimeout := 3000 ,

EOTSuppression := 0 ,

MaxStationAddress := 31 ,

TokenHoldFactor := 1 ,

EnableStoreFwd := 0 ,

StoreFwdFile := ”<NA>”) END CONFIG

CONFIG ExtendedDevice END CONFIG

CONFIG FaultLog END CONFIG

CONFIG FileManager END CONFIG

106

CONFIG ICP END CONFIG

CONFIG PCCC END CONFIG

CONFIG Redundancy END CONFIG

CONFIG Se r i a lPo r t (BaudRate := 19200 ,

Par i ty := No Parity ,

DataBits := 8 Bit s o f Data ,

StopBits := 1 Stop Bit ,

ComDriverId := DF1,

PendingComDriverId := DF1,

RTSOffDelay := 0 ,

RTSSendDelay := 0 ,

Contro lLine := No Handshake ,

PendingControlLine := No Handshake ,

RemoteModeChangeFlag := 0 ,

PendingRemoteModeChangeFlag := 0 ,

ModeChangeAttentionChar := 27 ,

PendingModeChangeAttentionChar := 27 ,

SystemModeCharacter := 83 ,

PendingSystemModeCharacter := 83 ,

UserModeCharacter := 85 ,

PendingUserModeCharacter := 85 ,

DCDWaitDelay := 0) END CONFIG

107

CONFIG UserMemory END CONFIG

CONFIG WallClockTime (LocalTimeAdjustment := 0 ,

TimeZone := 0) END CONFIG

ENDCONTROLLER

108

Bibliography

1. Air Force Institute of Technology, Cyber Operations Program Description, De-

partment of Electrical and Computer Engineering, Graduate School of Engineer-

ing and Management, Wright-Patterson Air Force Base, Ohio (www.afit.edu/

ENG/programs.cfm?p=4&a=pd), 2014.

2. Z. Basnight, J. Butts, J. Lopez and T. Dube, Firmware Counterfeiting and Modi-

fication Attacks on Programmable Logic Controllers, M.S. Thesis, Department of

Electrical and Computer Engineering, Air Force Institute of Technology, Wright–

Patterson Air Force Base, Ohio, 2013.

3. A. Bauer and I. Byock, Talking with Your Doctor about Prognosis, American

Society of Clinical Oncology, San Diego, California (www.cancer.net/blog/

2014-08/talking-your-doctor-about-prognosis), 2014.

4. J. Butts and M. Glover, How industrial control system security training is falling

short, in Critical Infrastructure Protection IX, M. Rice and S. Shenoi (Eds.),

Springer, Heidelberg, Germany, pp. 135–149, 2015.

5. R. Candell, T. Zimmerman and K. Stouffer, An Industrial Control System Cy-

bersecurity Performance testbed, NISTIR 8089, National Institute of Standards

and Technology, Gaithersburg, Maryland, 2015.

6. L. Folkerth, Forensic Analysis of Industrial Control Systems,

InfoSec Reading Room, SANS Institute, Bethesda, Mary-

land (www.sans.org/reading-room/whitepapers/forensics/

forensic-analysis-industrial-control-systems-36277), 2015.

7. H. Holm, M. Karresand, A. Vidstrom and E. Westring, A Survey of In-

dustrial Control System testbeds, Swedish Defense Research Agency (FOI),

109

Sweden (www.springer.com/cda/content/document/cda_downloaddocument/

9783319265018-c2.pdf?SGWID=0-0-45-1532903-p177788982), 2015.

8. Idaho National Laboratory, INL Cyber Security Research: Defending the

Network Against Hackers, Idaho Falls, Idaho (www4vip.inl.gov/research/

inl-cyber-security-research), 2016.

9. Idaho National Laboratory, University Partnerships, Idaho Falls, Idaho (www.

inl.gov/inl-initiatives/education/), 2016.

10. Industrial Control Systems Cyber Emergency Response Team, Cyber-Attack

Against Ukrainian Critical Infrastructure, Alert (IR-ALERT-H-16-056-01), U.S.

Department of Homeland Security, Washington, DC, 2016.

11. International Information System Security Certification Consortium, Informa-

tion Security Certification Programs, Clearwater, Florida (www.isc2.org/

credentials/default.aspx), 2016.

12. National Collegiate Cyber Defense Competition, 2016 Rules, San Anto-

nio, Texas (www.nationalccdc.org/index.php/competition/competitors/

rules), 2016.

13. M. Poag, Medical Student Education Program in Psychiatry, New York Univer-

sity School of Medicine, New York University, New York (www.med.nyu.edu/

psych/education/medical-student-education), 2016.

14. Sandia National Laboratories, Distributed Energy Technology Laboratory, Al-

buquerque, New Mexico (energy.sandia.gov/wp-content/gallery/uploads/

DETL_Factsheet_SAND2010-3643_Aug2011.pdf), 2016.

15. Sandia National Laboratories, SCADA Testbeds, Albuquerque,

New Mexico (energy.sandia.gov/energy/ssrei/gridmod/

110

cyber-security-for-electric-infrastructure/scada-systems/testbeds/

), 2016.

16. SANS Institute, ICS Training Courses, Bethesda, Maryland (ics.sans.org/

training/courses), 2016.

17. SANS Institute, SEC562: CyberCity Hands-On Kinetic Cy-

ber Range Exercise, Bethesda, Maryland (www.sans.org/course/

cybercity-hands-on-kinetic-cyber-range-exercise), 2016.

18. Shodan, Industrial Control Systems (www.shodan.io/explore/category/

industrial-control-systems), 2016.

19. E. Skoudis, How to build a completely hackable city in five steps: And why you

should build your skills in this arena, presented at Sans Pen Test Hackfest, 2013.

20. K. Stouffer, J. Falco and K. Scarfone, Guide to Industrial Control Systems (ICS)

Security, NIST Special Publication 800-82, National Institute of Standards and

Technology, Gaithersburg, Maryland, 2011.

21. University of Texas at San Antonio, Cyber Panoply, San Antonio, Texas (www.

cyberpanoply.com/index.html), 2012.

22. J. Yoon, Framework for Evaluating the Readiness of Cyber First Responders for

Industrial Control Systems, M.S. Thesis, Department of Electrical and Computer

Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base,

Ohio, 2016.

23. J. Yoon, S. Dunlap, J. Butts, M. Rice and B. Ramsey, Evaluating the readi-

ness of cyber first responders responsible for critical infrastructure protection,

International Journal for Critical Infrastructure Protection, vol. 13, pp. 19–27,

2016.

111

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2017 Master’s Thesis Aug 2015 — Mar 2017

Multi-PLC Exercise Environments for
Training ICS First Responders

17G310

Daoud, Joseph, K, 1LT, USA

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-17-M-020

Department of Homeland Security ICS-CERT
POC: Neil Hershfield, DHS ICS-CERT Technical Lead ATTN:
NPPD/CSC/NCSD/US-CERT Mailstop: 0635 245 Murray Lane, SW, Bldg 410,
Washington, DC 20528 Email: ics-cert@dhs.gov phone: 1-877-776-7585

DHS ICS-CERT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

When systems are targeted by cyber attacks, cyber first responders must be able to react effectively, especially when
dealing with critical infrastructure. Training for cyber first responders is lacking and most existing exercise platforms are
expensive, inaccessible or ineffective. This paper presents a mobile training platform which incorporates a variety of
programmable logic controllers into a single system which facilitates the development of the unique skills required of
cyber first responders operating in the realm of industrial control systems. The platform is modeled after a jail in the
northeastern United States and was developed to maximize realism. Example training scenarios are provided to address
specific skills and techniques. Results show that the platform is robust enough to conduct sustained training exercises
that address a curriculum that has been proposed for cyber first responders.

Indusctrial Control Systems, Cyber First Responders, Training Platform

U U U U 121

Dr. Barry E. Mullins, AFIT/ENG

(937) 255-3636, x7979; barry.mullins@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2017

	Multi-PLC Exercise Environments for Training ICS First Responders
	Joseph K. Daoud
	Recommended Citation

	thesis-v3.dvi

