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Abstract 
 
 
 The United States has dramatically increased its production of alternative fuels 

over the past seven years. With the passing of the Energy Independence and Security Act 

of 2007 (EISA), alternative fuel production will increase in the United States over 700% 

from 2005 levels. However, the pursuit of petroleum alternatives is not a recent trend. 

Over the last 100 years, various nations have pursued petroleum alternatives with varying 

levels of success. This research focuses on the historical development of 10 leading 

alternative fuels and feedstocks. Through a thorough literature review we will identify 

commonalities among these fuels and feedstocks which have hindered their adoption. 

Further, the research evaluates the 10 alternative fuels and feedstocks with text mining 

software to support findings from the literature review. This research finds that 

alternative fuels face significant challenges with regards to environmental impacts, 

technological maturity, and societal costs. Further, these petroleum alternatives have 

rarely been economical solutions. The research findings suggest that while there are 

National Security reasons for pursuing petroleum alternatives, rarely are there economic 

ones.  
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A CENTURY LONG PURSUIT OF ALTERNATIVE 
FUELS AND FEEDSTOCKS: 

A CONTENT ANALYSIS 

 

 

I:  Introduction 
 

Background 
 

Energy independence has been a common goal discussed by United States 

politicians for decades. When energy prices spike, inevitably discussions lead to finding 

foreign oil alternatives and the need for energy independence. The past eight U.S. 

presidents have declared the need for the United States to become less dependent on 

foreign oil sources. Developing our own alternative fuels and feedstocks is often 

mentioned as one of the key factors in the United States achieving energy independence.  

Although energy independence has been noted to score points with voters across 

all demographics, it is not realistic (Bryce, 2008). Besides a brief period in the 1930s, 

when a combination of larger discoveries of oil in Texas and export demands fueled by 

World War II, the United States has never been energy independent. The United States 

has only been a net exporter of oil in seven of the past 100 (Bryce, 2008). Figure 1.1 

shows total net imports of oil since 1910.  
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Figure 1.1 Annual U.S. Net Imports of Crude (Thousand Barrels per Day) 

 
One of the key provisions in the 2007 Energy Independence and Security Act 

(EISA) mandated a dramatic increase in the use and production of renewable fuels (CRS, 

2007).  The ambitious plan called for a 700% increase in biofuel production by 2022, 

with nearly all of the production increases after 2014 coming from advanced biofuels 

(DOE, 2009). EISA is not unlike other goals the United States has set in the past. During 

the 1980s and 1990s, “the United States set goals to derive a substantial portion of its fuel 

for transportation from alternative sources, 10% by 2000, and 30% by 2010” (Melendez, 

2006).  Although EISA has resulted in production capability has rising dramatically, the 

production targets have not been met. In 2009, the United States only met 8% of its 

domestic fuel demand while using 35% of its corn crop in ethanol production (Economic 

Research Service, 2010).  Further, many producers are not profitable.  
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There is a growing body of literature focused on the cost and benefits of biofuels 

(Tao, et al, 2009; Zhang & Wetzstein, 2008) and the near-term outlook for biofuels 

(Ghobadian & Rahimi, 2004; National Research Council, 2010). However, less research 

has been done reviewing why biofuels have failed to help the United States achieve 

energy independence and what traits these alternative fuels and feedstocks share. 

Although many associate alternative fuel development with the oil embargos of the 

1970s, the history of alternative fuels goes back much further.  

Purpose of This Study 
  
 In this study, we examine literature written on 10 of the many proposed 

alternative fuels and feedstocks. This study focuses on the historical development as well 

as sections pertaining to the environment, technology, economics, and viability of each. 

This study includes a fairly even mix of both alternative fuels and feedstocks presently in 

use, and feedstocks which may enjoy increased use in the future. We hope to identify 

commonalities among present alternative fuels and prospective feedstocks which have 

hindered or helped diffusion.  In addition, we will review the documents from the 

literature review with text mining software as another method of identifying common 

traits these alternative fuels and feedstocks share. Countries throughout the world have 

been trying to make alternative fuels work for more than 100 years. This study hopes to 

further research into why alternative fuels have failed.    

Research Questions 
 

1. Are increased use of alternative fuels and feedstocks the appropriate path for the 

United States to become energy independent? 
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2. Are there commonalities among alternative fuels and feedstocks which have 

prevented their widespread adoption? 

3. What qualities do alternative fuels and feedstocks need to ensure widespread 

adoption in the future? 

Chapter Summary 
 

The rest of this paper is arranged as follows:  Chapter II provides an extensive 

review of past research involving the selected alternative fuels and feedstock.  In Chapter 

III, we will detail the procedures we used in creating the database which the text-mining 

software will analyze. In Chapter IV, we will articulate the results and themes identified 

by the text mining software.  Finally, in Chapter V we will summarize the results and 

offer conclusions based on the research.  
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II:  Literature Review 
 
 In this chapter we will discuss the development of 10 alternative fuels and 

feedstocks being heavily promoted today as potential replacements for petroleum use. We 

will review their historical development and examine each from an environmental, 

technological, economic, and viability perspective. Through a thorough literature review, 

we hope to find common themes and traits that are shared which have helped or hindered 

the development of alternative fuels.  There have been many biofuels touted as petroleum 

alternatives, but we will first examine ethanol.  

Corn Ethanol 
 

History 
 

Although most people think ethanol fuel story began in the 1970s, the use of 

ethanol for industrial applications has been around for almost 200 years.  In 1826, Samuel 

Morey developed an engine that ran on ethanol and turpentine while the developer of the 

modern internal combustion engine used ethanol as the fuel in one of his engines in 1860 

as well (EIA, 2008). Automobile inventors had many choices of potential fuels such as 

whale oil, lard oil, and camphine,”a mixture of ethyl alcohol, turpentine, and camphor” 

(Bernton, Kovarik, & Sklar, 1982).  According to Morris, “alcohol was already one of the 

nation’s premier illuminants and industrial chemicals with 90 million gallons were 

produced in the late 1850s” (Morris D. , 1993) and was half the price of lard oil and 

whale oil (Bernton, et al, 1982). Unfortunately, taxes levied on alcohols during the 

outbreak of the Civil War prevented ethanol’s continued rise. 
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The tax on distilled spirits was repealed in the early 1800s until the Civil War, 

when taxes were initially levied at 20 cents a gallon but rose to $2.08 a gallon by 1864 

(Herrick, 1907). This made it virtually impossible to compete with other potential sources 

of illumination. Lard oil and recently discovered kerosene were only taxed at the rate of 

10 cents a gallon (Bernton, et al, 1982). Congress wished to eliminate industry from the 

taxation, leaving the tax burden solely on alcohol purchased for beverage consumption. 

However, as Herrick states, “no way could be devised, as at that time denaturing was not 

an established fact, as it is now” (Herrick, 1907).  Europe, on the other hand, embraced 

alcohol fuels. Germany did not have plentiful oil reserves and passed legislation enacting 

tariffs on imported petroleum to increase domestic industrial alcohol production 

(Bernton, et al, 1982). From 1887 to 1902 Germany increased its production of alcohol 

from 10 million gallons to more than 29 million gallons (Herrick, 1907). With the 

beginning of the 20th century, industrial alcohol finally got a reprieve from the Civil War 

imposed tax. 

The success in Europe was noticed in the United States, and farmers suffering 

from large grain surpluses were looking for other markets to reduce their surpluses and 

increase crop prices (Bernton, et al, 1982). In 1906, farmers’ pressure and Roosevelt’s 

concern over monopolistic activities by Big Oil led to legislation eliminating the tax 

(Carolan, 2009). However, ethanol had fallen far behind in the race to supply America 

with fuels. While the tax-induced price of ethanol had prevented more widespread use 

over the previous 40 years, Standard Oil had been busy laying pipelines and investing in 

infrastructure (Tarbel, 1904). While alcohol was economically competitive with whale 

and lard oil, it could not compete with the new petroleum products. Petroleum was 
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naturally cheaper, and the infrastructure spending added to petroleum’s advantage.  As 

Benton, et al state, ”Even without the tax, the Agriculture Department noted, alcohol sold 

for a minimum of 30 cents per gallon, while gasoline sold for a minimum of 10 cents per 

gallon, and kerosene for 8 cents per gallon” (Bernton, et al, 1982). However, the outbreak 

of World War I would temporarily change alcohol producers’ fortunes, and this time for 

the better. 

World War I led to a huge increase in demand for all industrial products, 

including alcohol. Demand increased from 10 million gallons in 1914 (Bernton, et al, 

1982) to more than 52 million gallons by the end of the war (Scientific Station For Pure 

Products, 1920). Alcohol aided in the manufacture of explosives (Scientific Station For 

Pure Products, 1920), and in the production of mustard gas (Bernton, et al, 1982).  The 

rapid increase in production led to much enthusiasm about the future potential of 

industrial alcohol. Shortly after the war, The Scientific Station for Pure Products 

proclaimed, “The future of industrial alcohol is limited only by the restrictions which 

may surround its use. Now that the United States has gotten a start in the chemical and 

allied industries in which alcohol is an absolute necessity, developments should be rapid 

and extensive” (Scientific Station For Pure Products, 1920). Unfortunately, with the 

Prohibition movement gaining strength, industrial alcohol would soon be dealt another 

blow. 

The Anti-Saloon League had gradually been gaining strength in the early 1900s 

and Prohibition was passed in 1919, taking effect in 1920 (Bernton, et al, 1982). It is of 

note that The Rockefeller family contributed more than $1 million dollars to the anti-

alcohol movement (Bernton, et al, 1982) and Prohibition had the indirect effect of 
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reducing or eliminating potential competitors of Standard Oil, Rockefeller’s company. 

The alcohol movement floundered when Prohibition took effect, but there were still vocal 

supporters.  Chemical engineers and distillers fought to distinguish industrial alcohols 

(Giebelhaus, 1980) but to no avail. Other scientists warned of its necessity in developing 

other sources of fuel. In 1921, a research scientist from General Motors warned that oil 

reserves were decreasing rapidly and proposed alcohol as a substitute (Bernton, et al, 

1982). However, the most vocal and influential pro-alcohol group was compromised of 

members of the farm chemurgic movement. 

The term “chemurgy” combining the Egyptian root for chemistry, and the Greek 

root for work, was coined by the Dow Chemical Company’s Director of Organic 

Chemical Research in 1926 (Carolan, 2009). Chemurgists had lofty goals to transform the 

country, including opening new markets to farmers, creating greater income for farmers, 

helping create full employment, and helping the United States achieve self-sufficiency in 

industrial materials (Beeman, 1994). In 1926 the economy was still booming, so creating 

full employment was not as important as it soon would become. 

The onset of the Great Depression helped the chemurgic movement grow. From 

1929 to 1932 prices received by farmers collapsed and the economics of corn to alcohol 

made more sense, leading to intense lobbying efforts in the Midwest (Bernton, et al, 

1982). In 1933, the constitutional amendment establishing prohibition was overturned 

and the ethanol movement would again flourish. Midwestern states soon began to 

mandate 10% alcohol blends (Morris D. , 1993). The potential of mandates spreading 

instigated an oil industry backlash, leading the National Petroleum Association publically 

campaign against blending. Widespread pamphlets questioned the use of tax dollars and 
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stated, “to force the use of alcohol in motor fuel would be to make every filling station 

and gasoline pump a potential speakeasy” (Morris D. , 1993). It wasn’t just Big Oil that 

questioned increased research and government support for industrial alcohol, detractors 

came from within the government as well. 

In 1933 the Assistant USDA Secretary questioned the economics of industrial 

alcohol in his letter to Ohio Senator Bulkley stating,  

“in this Department we have come to expect the rediscovery of the possibilities of 
alcohol and the agitation for its wider use about every ten years…One of the great 
troubles with the situation is that there are so many people chasing an imaginary 
rainbow in hope of discovering at each end of it a pot of gold which they may 
kindly distribute to the farmer…It’s [making power alcohol economically 
feasible] like trying to extract gold from sea water and attracts the same sort of 
people” (Wright D. E., 1993). 
 

Nevertheless, many research projects were initiated in the Midwest by the chemurgic 

movement and Iowa State University in collaboration with the USDA (Wright D. E., 

1993). The Secretary of the USDA was not as pessimistic as his assistant but did 

acknowledge in an editorial that getting the industry moving further would entail high 

capital costs for plants of $4 million, as well as government assurances with regards to 

purchases, and price floors (Wright D. E., 1993). However, the question on what to do 

with the crop surpluses ceased to exist after a period of droughts commonly known as the 

Dust Bowl. In 1935 and 1936, Henry Ford sponsored two chemurgic conferences where 

members of the chemurgic movement and Big Oil debated the merits of alcohol’s use as 

a fuel (Giebelhaus, 1980). Each side did little to aid their cause, but at the end of the 

second conference private loans were announced to convert a brewery in an experimental 

distiller (Giebelhaus, 1980). 
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Within two years of starting their distillery for fuel alcohol, creative marketing 

and the support of many Midwestern farmers who disdained Big Oil enabled the 

Atchinson group to sell their Agrol blend in more than 2,000 stations in eight states 

(Giebelhaus, 1980). The distillery’s product was popular but never competed 

economically with oil. Big Oil waged a nasty PR campaign against the blend and with 

demand dipping and the novelty of purchasing the blended product wearing off, in 1938 

the company closed the distillery (Bernton, et al, 1982). The production costs were 500% 

greater than refining gasoline and the distillery’s remarkable failure led the USDA to 

issue a report recommending against any incentives to help stabilize the alcohol fuels 

industry (Bernton, et al, 1982). Although the distillery had successfully removed excess 

grain from the market, it became known as, “the greatest fiasco of the chemurgic 

movement” (Time, 1943). Once again, when things looked bleak for the farm-based 

alcohol movement, war would save the industry. 

World War II changed the United States farm problem, “from surplus to shortage” 

(Time, 1943).  These shortages even brought the Atchison plant back online with 

expanded operations (Giebelhaus, 1980). During World War II the production of alcohol 

rose to 500 million gallons a year (Time, 1942) and with the conflict in Asia cutting off 

traditional supplies of rubber (Morris D. , 1993), the alcohol industry filled a vital need. 

Most of the production of alcohol was used to produce synthetic rubber and explosives, 

not fuel (Time, 1943). Even in wartime, the alcohol and oil industry were bitter 

competitors.  

According to Morris, “The federal government initially gave two large contracts 

to the agriculture and the petroleum industry for synthetic rubber production” (Morris D. 
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, 1993). Although the agriculture community started producing in larger quantities first, 

the petroleum industry’s product was always more economical.  At the end of the war 

rubber production from alcohol cost $.21 lb., while their petroleum competitors averaged 

$.11 lb (Bernton, et al, 1982).  After the war, the market for farm-based alcohol 

collapsed. Access to rubber imports was restored pushing prices down further, while 

gasoline remained a much cheaper transportation fuel.  Additionally, food shipments to 

Europe caused grain prices to rise rapidly, making farm-based alcohol products even less 

economically competitive (Bernton, et al, 1982).  The government withdrew its support 

for grain alcohol (Morris D. , 1993), and the industry died.  

Large projects were discontinued (Finlay, 2003) and low oil prices continued to 

subdue interest in alcohol fuel in the 1950s. Grain surpluses in the 1950s did, however 

result in sporadic government interest. However, presidential commission in 1958 found 

that technology and economics were unfavorable and the use of alcohol for fuel could not 

be justified (Bernton, et al, 1982). Despite these setbacks, the turbulent 1970s would see 

the farm-based fuels industry rise from the ashes.  

The Clean Air Act of 1970 reintroduced the possibility of ethanol blending by 

mandating the inclusion of oxygenates, or chemicals containing oxygen which help 

gasoline burn cleaner (Mousdale, 2008). Shortly thereafter, the oil embargo of 1973 

caused oil prices to more than double overnight.  Originally, grain prices spiked, enabling 

farmers to cover some of the increased fuel costs, but farmers’ overproduction caused 

grain prices to collapse the following year (Bernton, et al, 1982). Farmers, faced with 

lower revenue and increased costs began to look for solutions.  Soon many farmers were 

distilling their own alcohol to use as fuel on the farm (Bernton, et al, 1982).  
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By 1978, the pro-alcohol movement had become increasingly mainstream. South 

Dakota State University received funding to produce the first operating dry mill in the 

United States (Songstand, Lakshmanan, Chen, Gibbons, Hughes, & Nelson, 2009), while 

the Carter Administration and Congress passed the Energy Tax Act of 1978 defining 

gasohol as coming from plant-based sources, and providing a subsidy of $.40 cents per 

gallon of ethanol blending into gasoline (Soetaert & Vandamme, 2009). In 1978 the first 

gasohol pump opened in Nebraska, and by 1981 over 10,000 stations in all 50 states had 

gasohol pumps while more than 6,000 permits for fuel production had been granted 

(Bernton, et al, 1982). However, even with the subsidies gasohol was only competitive in 

states that removed state highway taxes (Bernton, et al, 1982). 

Throughout the early 1980s, subsidies were increased for United States producers 

of gasohol. Support for ethanol production did not waiver with the Regan Administration 

taking office. Loan guarantees, tariffs enacted on cheaper Brazilian ethanol, and 

gradually increasing their subsidies to $.60 cents a gallon were measures taken to support 

the industry (Bryce, 2008). By the mid-1980s, ethanol production had exploded to 163 

ethanol plants  (EIA, 2008).  However, oil prices collapsed in 1986 and by the end of the 

year less than half remained in business (EIA, 2008).  To ensure survival, ethanol plants 

would have cut production costs while finding new ways of generating revenue if they 

wanted to stay afloat.  

In 1990 ethanol plants began adopting cost-reducing technologies and expanded 

production of wet mill plants which produced marketable by-products (EIA, 2008). 

Although the blending credit was reduced, the government increased support in other 

areas. The Energy Policy Act of 1992 required flex-fuel vehicle purchases and for the 
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vehicles to use alternative fuels (Mousdale, 2008), while amendments to the Clean Air 

Act of 1990 helped ethanol spur more demand for use of ethanol as an oxygenator (EIA, 

2008). However, even increase in demand would not make up for the poor economics of 

the industry. 

 In the mid-1990s, poor yields and increased crop prices caused many Midwestern 

states to increase subsidies to ethanol plants to sustain the industry (Bryce, 2008). In 

1997, United States automakers began mass producing Flex Fuel Vehicles (FFV) (EIA, 

2008). Although the vehicles would not change demand for ethanol, they would help 

provide a customer base for when the industry recovered.  For the third time in its history, 

war and geo-political events would save the industry shortly after the new millennium. 

With the events of September 11th and the Iraq War, oil became associated with 

supporting enemies of the United States. In the eyes of many, increasing ethanol 

production would increase our energy independence and lessen purchases of oil thus 

preventing more money going to support terrorists and unfriendly nations. In addition, 

states were beginning to ban the oxygenate MTBE due to environmental concerns which 

helped lead to the passing of the Energy Policy Act of 2005 (Carolan, 2010). The Act 

contained billions in support for ethanol programs, R&D incentives for cellulosic ethanol, 

while also instituting a renewable fuels standard (RFS) requiring a doubling of biofuel 

output to 7.5 billion gallons by 2012 (Soetaert & Vandamme, 2009). Creating market 

demand and ensuring that demand will grow in the future have been instrumental in 

ethanol flourishing in the new millennium (Carolan, 2010).  

With massive subsidies and high oil prices, production capability nearly doubled 

two years after the passing of the Energy Policy Act of 2005 (Renewable Fuels 
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Association, 2010). President Bush continued to encourage greater ethanol production 

with his passing of the 2007 Energy Independence and Security Act. The Act ensured 

producers of a massive increase in demand. Bush’s 20 in 10 required the domestic 

production of alternative fuels to increase by more than 700% to 35 billion gallons while 

also increasing funding for biofuels research and infrastructure (CRS, 2007).  This act has 

helped ethanol production to increase to almost 11 billion gallons by the end of 2009 

(Renewable Fuels Association, 2010).  Although ethanol production is up, many 

producers are still not profitable. 

Russian drought and other extreme weather throughout the world have caused 

many agricultural commodities to skyrocket with the price of corn going up nearly 40%  

in 2010 (CME Group, 2010). This has led to a gallon of ethanol becoming even more 

expensive than a gallon of gas (Caylor, 2010). Further, some states are beginning to 

propose new rules which take into account land use change, potentially classifying 

ethanol a less green fuel (Burns, 2009). Although proponents tout corn ethanol as a 

“green fuel”, there are many environmental concerns.  

Environmental Perspective 
 

Ethanol proponents like to point to direct CO2 emission reductions by up to 59% 

when compared with gasoline (RFA, 2010). There is no argument that ethanol burns 

cleaner, but what many proponents fail to account for is the total life cycle assessment of 

ethanol. Land use change from grassland to crops is a big concern (Pimentel, Patzek, & 

Cecil, 2007; Kim, Kim, & Dale, 2009; Heath, Hsu, Inman, Aden, & Mann, 2009), and 

many argue this land use change creates a carbon debt which takes decades to pay back 
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(Pimentel & Pimentel, Food, Energy, and Society, 2008). Carbon debts can occur when 

land is converted from woodland or prairie to agriculture. This conversion can result in 

large quantities of greenhouse gases being released into the atmosphere, thus creating a 

‘carbon debt’.  Further, corn is an energy intensive crop requiring large amounts of 

nitrogen fertilizer with runoff potentially polluting groundwater and aquifers (Pimentel, 

et al, 2007). In addition, the large amounts of water required during the production 

process could contribute to water scarcity in certain areas of North America by 2030 

(Van Lienden, Gerbens-Leens, Hoekstra, & Van Der Meer, 2010). 

Technological Perspective 
 

Today, investments in crop science have enabled the  doubling of corn yields 

since 1980 and refineries are always looking for technologies to improve processes and 

decrease inputs (RFA, 2010). However, although there may be room for improvement, it 

appears the technology is nearing the height of its maturity. The Energy Independence 

and Security Act specified after 2016 the biofuel production increase must come from 

advanced biofuels (CRS, 2007). Most of today’s research is now focusing on cellulosic 

ethanol (RFA, 2010).  

Economic Perspective 
 

The economics of ethanol are challenging and without government aid it is 

questionable if the industry would survive. Ethanol proponents tout ethanol as, “the 

highest performance fuel on the market and it keeps engines running smoothly” (RFA, 

2010). However, they often neglect to mention the lower energy content in ethanol 

compared to gasoline. The energy content of one gallon of gasoline is 125,000 BTU 
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while ethanol supplies only 84,000 BTU per gallon, or 33%  less energy (ORNL, 2010). 

In 2006, Consumer Reports ran a test, finding that the vehicles fuel economy dropped by 

27% when running on 85% ethanol (E85) (Bryce, 2008). Thus, although gas and ethanol 

might be the same price at the pump, the lower energy content of ethanol makes it much 

more expensive.  Consumers pay more at the pumps, and also support the industry 

through numerous subsidies. 

Tarrifs, purchase mandates, blending credits, reduced state sales taxes, and small 

producer tax credits are a few of the ways the government supports the industry (Koplow, 

2006). Former Presidential Candidate John McCain stated that subsidies cost $3 per 

gallon in 2003 (Pimentel & Pimentel, 2008). Further, Pimentel found that if one were to 

account for ethanol’s lower energy content,  it would take $7.12 to produce the energy 

equivelant of 1 gallon of gasoline (Pimentel & Pimentel, Food, Energy, and Society, 

2008). Ethanol has many indirect costs.  Consumers pay for the increased demand of corn 

through higher food prices. 

Increased ethanol production has increased the prices of many different types of 

food.  A 2009 Congressional Budget Office Report stated, “ The increase in amount of 

corn used to produce ethanol has exerted upward pressure on corn prices, boosted the 

demand for cropland, and raised the price of animal feed. Those effects, in turn, have 

lifted the price of soybeans, meat, poultry, and dairy, and consequently the retail price of 

food” (CBO, 2009). The amount of the increase is debated, but the Congressional Budget 

Office’s conservative estimate found that increased ethanol production was responsible 

for 10-15% percent of the increase in food prices from 2007 to 2008 (CBO, 2009).  
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Viability 
 

Corn ethanol production will never be able to to be produced on a scale enabling 

the United States to achieve energy independence. In 2005, a study found if the United 

States devoted its entire corn crop to ethanol production, it would have only met 12% of 

the gasoline demand (Hill, Nelson, Tilman, Polasky, & Tiffany, 2006). While it has been 

shown to have a modest effect on lowering gasoline prices and increasing farmers 

incomes (CBO, 2009), there are many environmental and societal costs associated with 

increased ethanol production. Most importantly, ethanol has never been economical. Its 

success is dependent on both the price of gasoline and the price of corn. According to the 

CBO, “It is unlikely that, on average, ethanol producers the past several decades would 

have turned a profit if they had not received production subsidies” (CBO, 2009). Corn 

ethanol will only remain a viable alternative energy solution so long as politicians and the 

American taxpayer allow.  

Sugar Ethanol 
 

History 
 

Sugar has played an integral part in Brazil’s economic development since shortly 

after it was discovered in 1500. Initially, the Portuguese developed trade in brazilwood 

but as the large tracks of forest were cleared near this land became used for sugarcane 

plantations (Bernton, et al, 1982). Sugarcane plantations spread rapidly and by the 17th 

century, Brazil was among the world leaders in sugar production (Nass, Pereira, & Ellis, 

2007). According to Martines-Filho, et al, 

“For many nations, the size and stability of domestic consumption has been 
critical in the development of export markets. The rise of the ethanol industry in 
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Brazil may be due to the reverse. Its long history as a leading sugar producer and 
exporter has led to the development of a dynamic domestic cane-based ethanol 
industry” (Martines-Filho, Burnquist, & Vian, 2006). 

 The advent of the automobile created many new uses for sugar. 

As automobile technology diffused a vigorous pro alcohol fuels movement in 

Brazil in which, “local officials and plantation owners promoted alcohol fuel use and 

cross-country tours of pure alcohol fueled cars were staged” (Bernton, et al, 1982). In 

1903, Brazil promoted increased ethanol use and production by staging the International 

Exhibition of Ethanol Equipment in Rio de Janeiro (Gordinho, 2010). Later, some local 

governments in Northeastern Brazil began ordering official vehicles to operate on alcohol 

and by 1931, “the federal government had ordered gasoline importers to mix a minimum 

5% alcohol into their fuel” (Bernton, et al, 1982). Shortly thereafter, sugar production 

became even more closely aligned with the government with the creation of the Institute 

of Sugar and Alcohol (Nass, et al, 2007).  A mere eight years later, the Brazilian 

Government declared a monopoly of the export and external marketing of sugar 

(Cordonnier, 2008). In 1941 a quota system was established and in 1945 subsidies were 

established for smaller sugar mills as well as an established floor price for sugar 

(Cordonnier, 2008). 

Increased government involvement starting in the 1930s led to a great expansion 

in distilleries and fuel alcohol production. From 1933 to 1945 the number of distilleries 

increased from a single unit to over 54 while the fuel alcohol production increased from 

100,000 liters to 77,000,000 liters (Bernton, et al, 1982). German attacks on oil tankers 

led mandatory fuel blending levels to reach heights of nearly 50%, but the end of the war 
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ushered in a period of cheap oil and a massive decrease in alcohol blend use (Bernton, et 

al, 1982).  

The 1970s ushered in a new boom to sugar ethanol production. A combination of 

the first oil price spike and plummeting sugar prices led Brazil to make huge increases in 

its ethanol programs (Schuring, 2008). In 1975 Brazil created the Programa Nacional do 

Alcool or PROALCOOL (Soetaert & Vandamme, 2009). The decision to move ahead on 

PROALCOOL was made for strategic reasons, not economic ones. The Brazilian 

Government sought to safeguard its sugar industry and secure more domestic fuel 

production (Cordonnier, 2008) even though the cost of ethanol from sugarcane was more 

than twice the cost of gas from imported oil (Bernton, et al, 1982). PROALCOOL was a 

broad sweeping program which helped potential producers in numerous areas. 

The decree which created PROALCOOL offered a panacea for the sugar 

industry’s efforts to reduce its surpluses. PROALCOOL offered; assistance with 

transportation costs (Cordonnier, 2008), massive increase in credit and low interest loans 

for infrastructure investment (Xavier, 2007), mandatory blending (Schuring, 2008), and 

the government invested heavily in research to reduce costs and increase production 

(Nass, et al, 2007). The aid and incentives led to a rapid increase in Brazilian production 

capability. Within five years of the program initiation, Brazil’s production increased from 

600 million liters to 3.4 billion liters (Schuring, 2008). Increased aid did not have an 

entirely positive effect on Brazilian society. This great increase in production capability 

had adverse effects on the food supply. From 1976 to 1981, most new cropland was 

devoted to sugarcane while food production remained stagnant (Pimentel & Pimentel, 

2008). This led to reduced availability of food, higher prices, and in certain instances, 
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riots (Pimentel & Pimentel, 2008). The second oil price spike in 1979 led to even more 

favorable government actions for the sugar and ethanol industry. 

The second oil spike led to the creation of more government agencies to move 

PROALCOOL forward (Schuring, 2008).  The Brazilian government pursued agreements 

with car companies to modify production lines to produce cars running on 100% ethanol, 

mandated these cars use in government fleets, and gave taxi drivers tax breaks to convert 

engines (Xavier, 2007). In addition, to spur demand for 100% ethanol cars the 

government decreased taxes on ethanol car purchases and decreased the yearly license 

fees (Nass, et al, 2007).  By the mid-eighties, ethanol fueled cars accounted for over 94% 

of new car sales (Xavier, 2007) and ethanol production quadrupled to 12.3 billion liters 

(Schuring, 2008).  However, in the mid-eighties, wild swings in oil and sugar prices 

would deal a strong blow to Brazil’s ethanol industry.  

According to Schuring, ”Beginning in 1986, the price per barrel of crude oil fell 

from a level of $30-$40 to between $12-$20….coinciding with a time of scarce public 

funds for subsidizing programs to encourage energy alternatives, hampering ethanol 

production growth” (Schuring, 2008). In addition, the inflation rate was in the triple-

digits and leadership changing from military rule to democracy led to cuts in ethanol 

subsidies (Nass, et al, 2007). The industry was hurt by the price floor of ethanol being 

lowered to below production costs in 1986 (Nass, et al, 2007). In 1988, sugar prices 

skyrocketed making the economics even more unfavorable (Xavier, 2007). This led to 

sugar crops being diverted to exports which created ethanol shortages (Xavier, 2007) and 

purchases of ethanol fueled cars to plummet (Nass, et al, 2007). The end of the 1980s 
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signified the end of heavy government subsidies and a continued stagnation of the 

ethanol industry. 

Both the Sugar and Alcohol Institute and PROALCOOL were abolished in the 

early 1990s which were characterized as a period of great deregulation (Shikida, 2010). 

This deregulation was not without challenges as sugar was overproduced causing sugar 

prices and ethanol production to collapse (Nass, et al, 2007) as the price floor had been 

removed. By the late 1990s ethanol production had fallen to below 1985 levels 

(Goldemberg, 2006). However, a rebound in oil prices in 2001, coupled with the 

introduction of flexible fuel cars capable of running on any percentage of gasoline and 

ethanol mixture helped the industry recover (Schuring, 2008). Today, Brazil’s ethanol 

industry is growing rapidly. Almost four decades of heavy R&D spending has enabled 

the Brazilian ethanol industry to compete with gasoline without subsidies (Soetaert & 

Vandamme, 2009). High oil prices, along with large increases in acreage and mills 

coming online (Zuurbier & Vooren, 2008)will enable Brazil to continue being a world 

leader sustainable ethanol production. 

Environmental Perspective  
 

Environmental concerns are often voiced by detractors as the main reason against 

producing more sugarcane ethanol. Central to the issue are concerns over land-use 

changes and deforestation in the Amazon (Zuurbier & Vooren, 2008). Some argue that 

certain trends could lead to over half closed-canopy forests in the Amazon Basin being 

damaged or replaced by 2030 (Nepstad, Stickler, Soares-Filho, & Merry, 2008). 

However, this argument does not hold considering more than 95% of growth occurred in 
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the south-central region of Brazil, not the Amazon Basin (Zuurbier & Vooren, 2008). 

Furthermore, sugarcane ethanol is significantly better when comparing net energy yields 

and GHG reductions (Zuurbier & Vooren, 2008). Other concerns are; soil degradation, 

water use, water pollution, and air pollution from sugarcane burning (Schuring, 2008). 

However, even with these drawbacks sugarcane ethanol has less of an environmental 

impact than other biofuels currently in use (Zuurbier & Vooren, 2008)and much of this is 

due to the great improvements in technology.  

Technological Perspective 
 

The advantages of Brazilian ethanol production,”are mostly due to the 

technological developments that have been conducted for many years in private 

companies, research centers, and universities” (Soetaert & Vandamme, 2009). Early in 

the PROALCOOL program, ethanol costs were near $100 per barrel (Goldemberg, 2006), 

but through many years of research the costs have decreased significantly. Improvements 

in juice extraction, fermentation, distillation, cane washing, and automation have resulted 

in higher yields, lower costs, and positive environmental benefits (Soetaert & 

Vandamme, 2009).   According to Xavier, “ Between 1975 and 2000, modernization of 

the sugarcane yield per hectare increased by 33% and ethanol yield from sugar rose by 

14%” (Xavier, 2007). Heavy investment in R&D continues with researchers continuously 

working to breed better varieties increasing yields further while reducing inputs (Preto, 

2008). The continuous improvement in technology via R&D has led to the economics of 

Brazilian sugarcane ethanol to be more favorable than any biofuel to date.  

Economic Perspective 
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Initially, the economics of Brazil’s ethanol program were not favorable, but they 

have improved greatly.  According to Goldemberg, ”Estimates of the total investments in 

the agricultural and industrial sectors for automobile ethanol fuel between 1975 to 1989 

reached a total of 4.92 billion (in 2001 dollars), but oil imports avoided meant savings of 

52.1 billion (in 2003 dollars) from 1975-2002” (Goldemberg, 2006). Production costs are 

naturally lower than corn-ethanol because of fewer steps in the conversion process 

(Jacobs, 2006) and lower labor costs (Xavier, 2007). Brazil has averaged a decrease of 2-

3% in production costs per year since 1975 (Soetaert & Vandamme, 2009). A shorter 

production process is not the only reason why sugarcane ethanol holds an economic 

advantage over corn ethanol. 

  A by-product of sugarcane ethanol production process is bagasse.  Bagasse is 

used to power the sugar mills and allows the mills to be net power generators while 

helping sugarcane ethanol achieve energy balances two to eight times greater than 

ethanol produced from other crop sources (Mandil & Shihab-Eldin, 2010). The 

economics of sugarcane ethanol today are favorable and continued infrastructure 

spending will only increase its economic competitiveness.  Ethanol pipeline construction 

from mainland cities to the coast, as well as port improvements scheduled for completion 

by 2013 will ensure Brazil remains the world leader in biofuels exportation.  

Viability 
 

Sugarcane ethanol is viewed as the only biofuel considered achieving a measure 

of success when examining environmental impact and remaining economically 

competitive (Mandil & Shihab-Eldin, 2010). It is exceeds corn and other starch based 
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ethanol in almost all facets. Environmentally, GHG reductions are a minimum twice that 

with corn ethanol (Mandil & Shihab-Eldin, 2010). Continued improvements in genetics 

leading to increased yields and decreased inputs will reduce GHG emissions even further. 

It has proven to be the only biofuel economically competitive with oil without the help of 

subsidies. Socially, increased sugarcane production does not directly raise the price of 

other food staples. This enables it to sidestep many food or fuel debates. However, the 

problems for the United States lie in economics, geography, and scale.  

Most ethanol plants are located in the Midwest, while sugar production would be 

located in the southern states. This would necessitate new ethanol plant construction in 

the South (Jacobs, 2006).  In addition, sugarcane crop growers believe that it is more 

profitable to produce sugar for consumption rather than for ethanol (Jacobs, 2006). 

Geography and scalability must also play an important part in examining sugarcane 

ethanol’s potential in the United States. With the difference in fuel use between the two 

nations, as well as only small portions of the United States being able to grow sugarcane, 

it would be difficult to replicate Brazil’s results. Brazil has demonstrated sugarcane as a 

biofuel feedstock can be a success, but their situation is unique.   

 

Biomass/Cellulosic Crops as Feedstocks 

History 
 

There is often some ambiguity as to what the term biomass actually means. 

According to a recent biomass feasibility study conducted jointly by the DOE and USDA, 

biomass is defined as, “all plant and plant-derived materials including animal manure, not 

just starch, sugar, oil crops already used for food and energy” (USDA & DOE, 2005). For 
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the purpose of this section, we will focus on wood, crop residues, and waste-to-energy.  

Humans have been using biomass since man discovered how to make fire.  

Where available, wood is generally the biofuel of choice in developing countries 

(Yevich & Logan, 2003). Humans used biomass to fuel one of our earliest forms of 

transportation, the horse. However, widespread use of horses for transportation was not 

without its drawbacks. Horse pollution was a hot issue in the 19th century. In 1894, the 

London Times predicted, “by 1950 every street in the city would be buried in nine feet 

deep of horse manure” (Morris E. , 2007). Fortunately, as automobile use became 

widespread, the issue of horse pollution gradually faded away. The first vehicles were 

built to run on ethanol, but even early on some academics realized the drawbacks to 

producing fuel from food crops.  

Fueling a significant portion of the country’s fuel needs would require a 

significant portion of the country’s crop production. Two pilot plants were built in the 

early 1900s to convert forest and wood-processing waste to ethanol but failed to become 

commercially successful (Kamm, et al, 2006).  Nevertheless, Yale Chemistry Professor 

Harold Hibbert believed that cellulose was the answer (Kovarik, 2007). In 1920, Hibbert 

was quoted as asking, “Does the average citizen understand what this means? In from 10 

to 20 years this country will be entirely dependent upon outside sources for a supply of 

liquid fuels…paying out vast sums yearly in order to obtain crude from Mexico, Russia, 

and Persia. Alcohol from cellulose will solve this problem” (Kovarik, 2007). Throughout 

the late 1930s Russia and Germany built many plants to create ethanol from wood waste, 

however the water intensive process produced a rather diluted product making it very 

expensive to process (Kamm, et al, 2006).  
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During World War II, the United States researched various methods to produce 

Rubber and Ethanol via cellulose, as well as enzymatic processes using the fungus which 

was the culprit of jungle rot (Kamm, et al, 2006). Research slowed in the 1950s, but 

biomass continued to play an important role in the daily life of Americans. The majority 

of North Americans still relied on wood to heat their homes until the 1950s, after which 

electricity and natural gas displaced biomass (Centre for Energy, 2010). Sporadic 

research continued into various pathways of cellulosic ethanol production until the late 

1960s (Kamm, et al, 2006), but low energy prices tempered enthusiasm for alternative 

forms of energy.  

The turbulent 1970s led to renewed interest in all forms of alternative fuels, 

including biomass. The United States was introduced to the European method of creating 

energy from waste in the mid-seventies with the newly created Energy Research and 

Development Administration actively supporting research (Hickman Jr, 2001). Waste-to-

Energy (WTE) was a synergistic solution helping alleviate bulging landfills while also 

providing an alternative form of electricity. The National Energy Act of 1978 created a 

regulatory mandate encouraging plants to look to renewable energy sources for power 

creation (Duffield & Collins, 2006).  Meanwhile, the Oak Ridge National Laboratory  

took charge of the DOE’s Bioenergy Feedstock Development Program to develop energy 

crops out of short-rotation tree crops and other potential herbaceous energy crops (Kszos, 

et al., 2000).  

The 1980s and early 1990s brought about continued research in ethanol via 

cellulose but pilot plants mediocre results and low oil prices did little to increase 

enthusiasm. However, biomass as a means to produce electricity did spread among North 
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America and Europe. States such as California rapidly developed their biomass power 

capacity (Centre for Energy, 2010).  In Europe, in addition to wood fueled biomass 

power plants, increased attention was given to WTE plants utilizing manure. The Dutch 

invested large amounts of resources promoting WTE plants utilizing manure, but the 

projects were plagued with cost overruns and technical difficulties (Negro, Hekkert, & 

Smits, 2007).  

Increased energy prices have once again led to increased interest in biomass. 

Government spurred innovation with the passage of the Agricultural Risk Protection Act 

of 2000, which contained the Biomass Research and Development Act (Duffield & 

Collins, 2006). This Act promoted cooperation and coordination of policies to promote 

R&D with regards to bio-products, and provided financial assistance to those entities 

engaged in Biomass research (Duffield & Collins, 2006). The Farm Bill 2002 and 

Healthy Forests Restoration Act of 2003 increased Federal procurement of bio-based 

products and helped promote biomass production through use of grants (DOE, 2009).   

However, the Energy Policy Act of 2005 did much more to spur commercial biomass 

development.  

The Energy Policy Act of 2005 established a Renewable Fuel Standard (RFS) 

which mandated 250 million gallons of fuel derived from cellulosic biomass by 2013 and 

called for a program to guarantee loans for energy projects that employ new or improved 

technologies (DOE, 2009). Around the same time the Energy Policy Act of 2005 was 

being debated, the USDA and DOE sponsored a study to examine the feasibility of 

harvesting a billion tons of biomass annually. A billion tons of biomass was needed to 

fulfill potentially replace 30% of petroleum consumption by 2030 (USDA & DOE, 
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2005). A mere two years later, the Energy Independence and Security Act of 2007(EISA) 

cemented the billion ton study’s vision.  

EISA drastically increased the Renewable Fuel Standards from 4.7 billion gallons 

in 2007 to 36 billion gallons by 2022 (DOE, 2009). Further, almost 90% of the expansion 

after 2011 will come from cellulosic ethanol or other advanced biofuels (DOE, 2009). 

EISA also greatly expanded grants available for various cellulosic and advanced biofuel 

development as well as plant construction. With government mandates the future of 

ethanol appeared bright. However, even with government mandates, cellulosic ethanol 

has faced significant headwinds recently. The technological uncertainty, credit crises, and 

problems with the DOE’s Loan Guarantee program have all slowed cellulosic ethanol’s 

advance (Lane, 2010). Biomass and cellulosic ethanol have to overcome many barriers to 

become viable in the future.  

Environmental Perspective 
 

Biomass harvested for energy requires very few agricultural inputs when 

compared to crops such as corn-based ethanol. Perennial crops such as switchgrass and 

Miscanthus require less fertilizer and water inputs, as well as less tilling (Jones & Walsh, 

2001; Heaton, Voigt, & Long, 2004). Biomass and cellulosic ethanol dramatically 

reduces GHG emissions. Cellulosic ethanol has the potential to cut GHG emissions by 

86% (Kumar, Barrett, Delwiche, & Stroeve, 2009). When compared with corn-based 

ethanol, cellulosic ethanol use results in over three and a half times the GHG emission 

reductions (DiPardo, 1999).  Establishing biomass energy crops on marginal and 
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deforested land can also improve the soil quality (Field, Campbell, & Lobell, 2007). 

WTE also provides many environmental benefits. 

In 2003, the EPA noted that, “WTE as a power source had less environmental 

impact than any other source of electricity” (Glover & Mattingly, 2009). Each ton of 

MSW combusted results in one ton of carbon equivalent removed from the atmosphere 

(Glover & Mattingly, 2009). This reduction is achieved by eliminating potential landfill 

methane emissions, recovering metals, and by the offset of fossil fueled sources of 

electricity (Glover & Mattingly, 2009). Increased biomass use has a myriad of 

environmental effects, but not all are positive. 

The removal of forests and agricultural waste can have many negative 

consequences as well. Removing forest residues could lead to nutrient depletion and 

habitat damage for small animals (Land Use Consultants, 2007). Removing agricultural 

residues may lead to increased soil erosion, increased water demand, and reduced 

beneficial organisms in the soil (Andrews, 2006).  Finally, although biomass energy 

crops reduce emissions when compared with many other traditional renewable energy 

crops, increased harvesting of biomass can lead to deforestation and other potentially 

harmful land-use changes resulting in a carbon debt (Field, Campbell, & Lobell, 2007). 

WTE also has its share of environmental drawbacks.  

Although the EPA has reported WTE’s smaller environmental impact than other 

sources of electricity, it has faced resistance due to a history of toxic emissions. No new 

waste combustion plants have been constructed since 1996 due to resistance over 

potential emissions (Glover & Mattingly, 2009). EPA regulations have significantly 

reduced toxic emissions from combustion plants, but landfill gas capture systems have 
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faced significantly less resistance due to lower levels of toxic emissions released (Glover 

& Mattingly, 2009).  Although gas capture releases less dioxins and mercury than 

combustion, it has been found to release somewhat higher levels of SOx and NOx.  

Technological Perspective  
 

Technical issues are the primary bottleneck affecting cellulosic ethanol. Although 

production has been demonstrated at a pilot level, the technology has not been 

demonstrated on a commercial scale (Office of Science, 2010). Biomass feedstock is 

more difficult to break down than corn ethanol. A key obstacle lies in breaking down the 

complicated structure of cell walls (Yuan, Tiller, Al-Ahmad, Stewart, & Stewart Jr, 

2008).  Biomass feedstock need pretreatment to correct this problem. Not all forms of 

pretreatment work efficiently on all biomass feedstock (Kumar, et al, 2009) and there are 

often problems with recalcitrance occurring (Himmel, Vinzant, Bower, & Jechura, 2005). 

Biotechnology may offer the answer to the recalcitrance problem, but further research is 

needed.  

Modifying a plant’s cell wall could result in greater susceptibility to pathogens 

and insects (Li, Weng, & Chapple, 2008). After biomass completes pretreatment, 

enzymes are used to break down the cellulose into glucose. This is challenging because, 

“cell walls have evolved for strength not only but for resistance to biochemical attack by 

living organisms” (Gomez, Steele-King, & McQueen-Mason, 2008).  Greater research is 

needed in the development of enzymes. According to Wyman, “enzymes with greater 

specific activity are needed to increase reaction rates and achieve high conversions with 

much less enzymes” (Wyman, 2007). Discovering new enzymes with properties enabling 
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higher conversion and reaction rates are high priority research goals (DOE, 2006). 

According to Yuan, et al, “Improvement or replacement of processes are crucial for 

increasing efficiently and decreasing costs….Technology breakthroughs are badly 

needed” (Yuan, et al, 2008).  Without breakthroughs in technology, cellulosic ethanol 

will never be economically viable.  

Economic Perspective  
 

Biomass and cellulosic ethanol face significant economic challenges. Although 

the Billion Ton study suggests that a large annual supply of biomass is technically 

feasible, it may not be economically feasible. Recently harvested biomass is bulky, often 

wet, and only contains a fraction of the energy on a volume basis that coal does (Boyles, 

1986; Timmons, et al, 2007). Transporting wet, bulky biomass weighs on costs.  

Additionally, factors such as steep terrian, unroaded areas, and low-impact removal 

signficantly affect the economic viability of biomass (USDA & DOE, 2005). According 

to Fales, et al, “feedstock production and logistics currently constitute an estimated 35 to 

65% of total production costs of cellulosic ethanol, while logistics associated with 

moving the biomass to a refinery can comprise 50-75% of those costs” (Fales, Hess, & 

Wilhelm, 2007).  

Many different methods are being tested to reduce logistical costs. Fast pyrolysis 

is a method that has great potential to reduce these costs. Fast pyrolysis systems may be 

built on portable units and be situated near the biomass source (Huber, 2008). Although 

being situated next to the  biomass sourcereduces logistic costs, its smaller scale may 

suffer from economies of scale.  Studies have shown production costs to decrease as the 
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plant size increases (Dwivedi, Alavalapati, & Lal, 2009; Lange, 2007). Processing costs 

further hinder the diffusion of biomass and cellulosic ethanol. 

Although biomass feedstock is traditionally cheaper than corn, processing costs 

result in much higher conversion costs than corn-ethanol (DiPardo, 1999). As with many 

advanced biofuels, technological challenges and cost are highly correlated. New 

technology is expensive to develop but until new, efficient technology is developed the 

total production cost will not be competitive. The process of pretreatment and hydrolysis 

add significant costs (Binder & Raines, 2010). Enzymes to break down biomass are up to 

10 times more expensive than enzymes required to breakdown corn grain starch (DOE, 

2006). Recently, some research has focused on process integration. Integrating the 

pretreatment and hydrolysis phases (DOE, 2006) could result in reduced capital and 

energy costs (Demirbas, 2009). Capital costs are prohibitive for cellulosic refineries.  

Lowering the debt financing cost could help alleviate high initial outlays for 

capital costs (Solomon, Barnes, & Halvorsen, 2007).  However, this remains a goal and is 

not a reality. Financial institutions require high rates of return to mitigate the percieved 

risk for investing in a technology yet to be proven commerically viable (Wyman, 2007). 

Although many facets of biomass energy and cellulosic ethanol are expensive, biomass 

energy and cellulosic ethanol does have postive economic benefits. 

Biomass can be an economical source of heat and electricity. According to Lucia, 

et al, “Biomass based Combined Heat and Power (CHP) provide the primary energy for 

large segements of the population in Scandinavian and Norther European countries” 

(Lucia, Argyropoulos, Adamopoulos, & Gaspar, 2007).  This process is more energy 

efficient with the combustion used to produce electricity while lower pressure steam is 
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used for heating (Lucia, Argyropoulos, Adamopoulos, & Gaspar, 2007).  Further, these 

powerstations are not dependent on any one biomass crop helping ensure they have a 

steady stream of feedstock throughout the year (Venedaal, Jorgensen, & Foster, 1997).  

Viability 
 

Although many studies have indicated biomass fulfilling up to one third of global 

energy by 2100 (Hamelinck & Faaij, 2006), many potential hurdles remain before 

biomass can achieve more widespread use. A continuous and economic supply regardless 

of weather and region remain a key constraint for biomass (Wang, Li, Wang, Zhu, & 

Wang, 2010). To date, Europe has been much more active in electricity plants using 

biomass as a feedstock. Northern Europe has used its tremendous forest resources (Lucia, 

2007), while other areas of Europe depend on a variety of feedstocks such as manure 

(Negro, et al, 2007; Antoni, et al, 2007). Biomass can replace 10% of coal usage in coal 

power plants while compacted biomass pellets used for heat may be the most efficient 

method for biomass  (Field, Campbell, & Lobell, 2007). Biomass for heat and electricity 

is presently the most economical use. To date, there has been no cost effective production 

of cellulosic ethanol on a commercial scale. 

The challenges cellulosic ethanol faces are similar to other advanced biofuels with 

uncertainty being a primary obstacle. Although high yields have led researchers to 

estimate energy crops like switchgrass may be more profitable than corn, processing 

technologies need to progress for cellulosic ethanol production to be profitable (Yuan,et 

al, 2008). Further, government support is also needed to spur creation of cellulosic 

ethanol refineries (Buckley & Wall, 2006). Recently, companies have experienced 
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problems receiving low cost government loans and grants (Lane, 2010). Problems 

securing loans resulted in a slowdown in production of biorefineries forcing the EPA to 

lower the cellulosic biofuel mandate for 2011 over 90%, from 250 gallons to a 6-25 

million range (Lane, 2010) . 

Until uncertainties over technology, RFS implementation, and government aid are 

settled, large scale production cellulosic ethanol will remain challenging. Without 

technology improvements and government mandates, the economics are prohibitive. A 

plant capable of producing only 100 million gallons annually has capital costs of at least 

$400 million (2008$) and would only be competitive with oil priced at $140 a barrel or 

higher (Taheripour & Tyner, 2008). A recent GAO report found the government 

subsidizes cellulosic ethanol $3 per gallon (Chicago Tribune, 2010). Cellulosic ethanol 

will not be a viable option until there are technology breakthroughs or the price of oil 

skyrockets.  

Switchgrass as a Feedstock 

History 
 
 Perennial grasses have been used as feedstock for centuries. They have 

contributed greatly as an energy source for farm animals since this country was settled.  

Switchgrass is a perennial grass native to North America and, “Since the 1940s, 

switchgrass has been used for pasture purposes in the Great Plains and Midwest states.” 

(Keshwani & Cheng, 2009). The focus on switchgrass as a potential energy crop came 

much later. 

 Deeper investigation into the energy potential of biomass was stimulated by the 

crises of the 1970s (Boyles, 1986). When the United States began looking at crops for 
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biomass potential in the early 1980s switchgrass was one of thirty-four plants involved in 

screening trials by the Department of Energy (DOE) and seven institutions (Wright, et al., 

2009). The goal of herbaceous energy crop research was, “to develop crops that can be 

economically produced on a wide variety of sites and readily and practically incorporated 

into conventional farming operations” (Ferrell, Wright, & Tuskan, 1995). It was also 

important that the production of biomass did not lead to a large reduction of food 

production so research focused on finding species that could be grown on marginal land 

or in winter (Wright L. , 2007). Many potential benefits of switchgrass were noted 

(Keshwani & Cheng, 2009) by the institutions and six of the seven recommended it for 

further study (Wright, et al., 2009). Other potential crops were documented but 

switchgrass’ geographical range throughout much of North America and location in 

many diverse habitats set it apart (Ferrell, Wright, & Tuskan, 1995).  

 Funding limitations limited the DOE’s crop development funding to one species 

(Wright, et al., 2009) and switchgrass was chosen in 1990 (Wright L. , 2007). By 

focusing on one herbaceous crop, “it was believed there would be a greater chance for 

proving the value of genetics and biotechnology in increasing yields and improving 

economics” (Wright L. , 2007). Emphasis was placed on switchgrass because it had high 

productivity, could be grown on lands of marginal quality, low water and nutrient 

requirements, high soil carbon sequestration potential, and the flexibility for multipurpose 

uses (Keshwani & Cheng, 2009; Wright, et al., 2009). Throughout the 1990s research 

was focused on enhancing yields and agronomic best practices (Wright, et al., 2009). 

Switchgrass production provides many environmental benefits when compared to 

traditional crops.   
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Environmental Perspective  
 
 Switchgrass is described as having the potential for high output but requiring low 

inputs (Sanderson & Adler, 2008) .  Inputs into the agricultural process degrade the net 

energy value of the biofuel produced. Among the biggest inputs into the process are fuel 

and fertilizer use.  According to Soetaert and Vandamme,  “No-till cropping tends to 

reduce fuel and fertilizer use…for dedicated energy crops such as switchgrass, tilling is 

not required (Soetaert & Vandamme, 2009)”. Further, switchgrass improves soil quality 

(Mann & Tolbert, 2000), improve surface water quality (Keshwani & Cheng, 2009), and 

sequesters carbon from the atmosphere (Rinehart, 2006; Bransby, Mclaughlin, & Parrish, 

1998). Finally, switchgrass is native to North America and, “more environmentally 

acceptable than the introduction of an exotic species for the same purpose” (Heaton,et al, 

2004). 

 Switchgrass has been demonstrated to have broad benefits in regards to the 

environment, but there are some concerns. Switchgrass has low water requirements to 

survive, but to thrive it requires much more water.  When exposed to drought conditions 

switchgrass suffered, “severe reductions (75-80%) in biomass yield” (Barney, Mann, 

Kyser, Blumwald, Deynze, & DiTomaso, 2009). This could lead to an irrigation 

requirement if greater yields are desired. Nitrogen fertilizer may also be required to 

maximize yields (Heaton, et al, 2004). Perennial grasses like switchgrass do offer high 

output but to achieve the highest outputs inputs from water and nitrogen are needed. 

Technological Perspective 
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Technological barriers in the conversion of switchgrass to ethanol were discussed 

in the cellulosic ethanol as a feedstock section on.  

Economic Perspective 
 

The economic problems with converting cellulosic crops into biofuels were 

documented in the cellulosic section. However, there are also many economic challenges 

associated with switchgrass as an energy crop.  Establishment of switchgrass as a crop is 

a persistent issue with most switchgrass crops not reaching maturity until after their 

second year (Wright L. , 2007). According to Hipple and Duffy,  “The economic 

uncertainty around the costs and benefits of producing switchgrass, as well as the 

potential loss of Conservation Reserve Program benefits were identified as key factors in 

Iowa farmers’ slowness to embrace switchgrass (Hipple & Duffy, 2002). Had costs and 

expected return on investment (ROI) been identified, farmers would have been more 

open to adopting switchgrass  (Hipple & Duffy, 2002).   

Viability 
 

The United States has invested heavily into switchgrass research over the past 30 

years. Being regarded as a biofuel with great potential has demonstrated that, “rapid and 

significant progress can be made in developing an energy crop with a focused, broad-

based and intensive research effort” (Sanderson, et al., 1996). Switchgrass’ many 

environmental and social benefits are key factors which have resulted in continue funding 

for research.  However, a key factor in switchgrass’ future development will be further 

technological progress into making cellulosic ethanol conversion more cost effective. The 

economics of switchgrass, “can be improved by developing value-added by-products” 
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(Keshwani & Cheng, 2009), but until the economics of cellulosic ethanol conversion are 

improved, switchgrass will not be a viable option.   

Miscanthus as a Feedstock 

History 
 

Miscanthus is a genus that encompasses 14 to 20 species (Jones, 2001; Heaton et 

al, 2010) which originated from Southeast Asia (Jones, 2001).  Miscanthus species have 

played an important role in throughout many countries in Asia. “From ancient times, 

human life in Japan depended closely on the use of Miscanthus for fodder and roofing.” 

(Jorgensen & Schwarz, 2000). Heaton notes that, “Miscanthus species have long been 

used for grazing and structural materials in China and Japan” (Heaton et al, 2010). While 

long used in Asia, its first mention in western literature was in 1885 (Jones, 2001).  

Miscanthus was first introduced to Europe in the 1930s (Lewandowski, 2000), 

although its cultivation was primarily for ornamental use (Jones, 2001). In the 1960s, “a 

sawmill entrepreneur who foresaw a future lack of wood for paper pulp performed minor 

cultivation trials in Denmark” (Jorgensen & Schwarz, 2000). However, the potential for 

energy began to outshine its pulp potential. It was evaluated as a potential bioenergy crop 

due to concerns over fossil fuel dependence in the 1970s (Heaton, et al 2010) and  Finch 

notes that, “In the 1970s and 1980s, the expected end use was for direct combustion, 

either for heat or electricity production from steam turbines” (Finch, 2009). Interest grew 

in Miscanthus potential from the EU agricultural policy reformation in 1992. Jorgensen 

notes, “ Extended areas of new crops to produce not only food, but also energy and 

materials, was one of the visions when the EU agricultural policy was reformed in 1992” 

(Jorgensen & Schwarz, 2000).   



39 
 

 Unfortunately, high establishment costs and losses during the first winter hindered 

more expansive trials of Miscanthus (Venedaal, et al, 1997). Total losses of Miscanthus 

crops in Germany during the early 1990s were a major contributor in Miscanthus 

research in Germany nearly grinding to a halt (Jorgensen & Schwarz, 2000). In the late 

1990s, the European Miscanthus Improvement program worked to identify Miscanthus 

breeding and genotype performance under different weather conditions  to help prevent 

crop losses (Heaton et al, 2010). In 2000, European researchers developed  a model to 

predict Miscanthus potential performamce in the United States (Heaton et al, 2010). 

Following this model, researchers went on to show that Miscanthus would, “likely 

produce more biomass per unit of input of water, nitrogen or  heat, than would 

switchgrass” (Heaton et al, 2004). Research on Miscanthus has exploded in the United 

States the past 10 years going from, “virtually non-existent to work being underway in 

nearly every state” (Heaton et al, 2010).  Over the past 40 years extensive research on the 

viability of Miscanthus as an energy crop has been performed(Lewandowski, 2000; 

Styles, 2008; Finch, 2009; Heaton, et al 2010). It has many potential benefits, but there 

also factors that have prevented a more widespread adoption.  

Environmental Perspective 
 

The environmental benefits of Miscanthus are very similar to those listed for 

switchgrass.  Miscanthus can also be described as requiring low inputs but producing 

high yields (ADAS Consulting Ltd, 2001). Large CO2 reductions when compared with 

other crops such as corn (Mousdale, 40), reduced nitrate leaching (Finch, 2009), and 

reduced soil erosion (Heaton, et al, 2010) are common environmental benefits associated 
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with Miscanthu. Miscanthus crops require much less nitrogen fertilizer inputs than 

switchgrass (Heaton, et al, 2004). However, there are some environmental drawbacks.  

Water use (Heaton, et all 2010) and soil impact (Lewandowski, 2000) are major 

concerns when discussing widespread planting of Miscanthus.  Miscanthus has great 

water use efficiency, but Miscanthus uses great amounts of water (Jones, 2001).  When 

compared to regular crops such as potatoes and winter wheat, the water evaporation rate 

is nearly double with a rooting depth of 2.5 meters compared to 1 meter of the 

conventional crops(Finch et al, 2009). Earthworms, which are believed to bring many 

benefits to the whole soil ecosystem decreased by 50% in Miscanthus fields, relative to a 

meadow (Finch et al, 2009). Miscanthus use does have some drawbacks, but overall 

Miscanthus use is more environmentally friendly than many biofuel feedstocks. The 

biggest challenges Miscanthus faces is in the technical and economic arenas.  

Technological Perspective 
 

The technological barriers in the conversion Miscanthus to biofuels were 

highlighted in the Biomass/cellulosic feedstocks  to biofuels in the preceding pages.   

Economic Perspective 
 

While the economics of Miscanthus appear to be better than switchgrass due to 

higher crop yield (Heaton, 2010;Finch, 2009), Miscanthus has many hurdles to clear. 

Perhaps most important, all biomass crops like Miscanthus face near-term economic 

challenges.  Cheaper fossil fuel alternatives and the investment required to start 

producing biomass crops (Fischer, Prieler, & Velthuizen, 2005) are obstacles that 

cellulosic ethanol crops have yet to overcome. Some economic findings suggest that 
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policies are needed to provide incentives for producing and using these crops based not 

only on energy content, but also environmental benefits (Khanna, Dhungana, & Clifton-

Brown, 2008). Like other biomass crops, Lewandowski notes, “the economics of 

Miscanthus depend upon a number of assumptions: the yield, the chosen production 

chain, propagation method, number of years of assumed production, whether costs are 

annualized, transport and land-use costs, and the farmer’s own profit margin” 

(Lewandowski, 2000).   

The scale of propagation is also economically challenging. According to Heaton 

et al, “ because Miscanthus is sterile micropropagation must be used to multiply 

Miscanthus into commercial quantities…Micropropagated Miscanthus plants are 

available in the US, but very expensive” (Heaton, et al 2010).  It is hard to induce farmers 

to produce a perennial grass crop when there is so much uncertainty regarding cost, price, 

and profit (Hipple & Duffy, 2002).  Another concern is water use. According to Jones, 

“Since the potential economic return from energy crops is currently low relative to other 

arable enterprises, farmers are more likely to consider growing energy crops on their less 

productive land….in many cases the low productivity is the result of poor water 

availability” (Jones, 2001). The irrigation required for commercial scale production of 

Miscanthus detracts from the economic viability even further.  

Viability  
 

Miscanthus is a crop with potential to fill the low input, high output role that is 

desired for biofuels today(Finch, et al 2009).  The life cycle assessment of Miscanthus 

has been demonstrated be positive when compared with current ethanol crops and other 
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perennial grasses.  However, for Miscanthus to satisfy the low input, high output mantra 

cellulosic ethanol technology must become economically viable. In addition, 

establishment costs are high and the governments may need to provide greater economic 

incentives such as price floors and guaranteed purchases for farmers to adopt Miscanthus 

crop production.  Widespread adoption of Miscanthus will remain a challenge until 

farmers’ uncertainty over costs and profit are reduced.  

Biodiesel from Soybean, Canola, and Waste Cooking Oil 

History 
 

When discussing biodiesel, the historical feedstock for the United States has been 

soybean oil, while canola oil has primarily been used in Europe (Knothe, Gerpe, & Krahl, 

2005).  For the purpose of this section, we will focus chiefly on the development soybean 

oil use, with references to canola oil, and waste cooking oil as well. The use of vegetable 

oil in diesel engines dates back to the diesel engine’s creation. Although not specifically 

designed for vegetable oil, a diesel engine exhibition in the 1900 World Fair in Paris had 

one engine which ran on peanut oil (Knothe, et al, 2005). According to Knoth, et al, “The 

engine ran on peanut oil at the request of the French Government. The peanut grew in 

considerable quantities in France’s African colonies. It was viewed as a way of for 

African colonies to be supplied with power and industry from their own resources, 

without being compelled to buy and import coal or liquid fuel” (Knothe, et al, 2005).  

The use of vegetable oils continued sporadically until the 1920s (Lim & Teong, 

2010). The spread of the automobile indirectly hurt the burgeoning biodiesel industry. As 

oil companies refined more gasoline, the surplus distillate they were left with proved to 

be a quality fuel for diesel engines and a much cheaper alternative to vegetable oils 
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(Radich, 1998). The availability of cheaper petroleum led to manufactures altering the 

diesel engine to more efficiently use the lower viscosity petroleum effectively killing the 

use of vegetable oils (Lim & Teong, 2010).  

Throughout the 1930s and 1940s biodiesel was used sporadically, but often only 

in emergencies (Ma & Hanna, 1999). Some research continued after the war (Knothe, et 

al, 2005), but biodiesel remained an afterthought until the turbulent 1970s sparked 

renewed interest (Radich, 1998). By the 1980s, countries were creating policies for future 

biodiesel growth. Initiatives supportive of biodiesel were passed in South Africa, 

Germany, France, and New Zealand in the early 1980s (Knothe, et al, 2005). The United 

States hosted the first international conference on plant and vegetable oils in 1982 

focusing on the cost and effect of biodiesel on engine performance (Singh & Singh, 

2010). By 1992, soybean growers organized into the National Biodiesel Board which 

focused on promoting biodiesel use throughout the United States (Singh & Singh, 2010).  

The end of the 20th century ushered in a period of growth of biodiesel production 

in Europe and the United States. In Europe, large plants were built and warranties were 

expanded by Volkswagen and Audi to include biodiesel use in their engines (Korbitz, 

1999).  While in the United States, amendments to the Energy Policy Act of 1998 

provided credits for biodiesel use and blending (Knothe, et al, 2005).  These policies have 

enabled biodiesel’s exponential growth. Production of biodiesel in the United States has 

increased from 500 thousand gallons in 1999, to more than 700 million gallons in 2008 

(National Biodiesel Board, 2010).  

Environmental Perspective 
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Biodiesel’s biggest benefits in comparison to gasoline or petroleum diesel are in 

the environmental arena (Demirbas A. , Importance of biodiesel as transportation fuel, 

2007). Soybean production does not require energy intensive nitrogen fertilizer (Pimentel 

& Pimentel, 2008) which helps reduce some of the harmful run-off experienced with 

increased corn production. Biodiesel use significantly reduces many different types of 

harmful emissions (Sharma & Singh, Development of biodiesel: Current scenario, 2009; 

Haas, Scott, Alleman, & McCormick, 2001). Further, the polluting emissions are have 

less toxicicity than petroleum diesel emissions (Haas, et al, 2001).  It can be particularly 

beneficial in mining and marine operations where emission reductions are more 

important (Ma & Hanna, 1999).  Biodiesel is considered biodegradable with plants being 

able to grow in a spill-contaminated area within four weeks (Knothe, et al, 2005). Finally, 

when the feedstock is waste oil, valuable resources are conserved and emissions are 

reduced.  

The environmental challenges are similar, to the challenges facing corn ethanol. 

Increased fertilizer use (although not nitrogen), and potential soil erosion (Pimentel & 

Pimentel, 2008) are always issues when dealing with terrestrial crop production. 

Additionally, although biodiesel use reduces most harmful emissions, studies have found 

a slite increase in nitrogen oxide emissions, a potent GHG (Vertes, Qureshi, Blaschek, & 

Yukawa, 2010). Its lower energy content results in more fuel being consumed for the 

same distance travelled (Singh & Singh, 2010). However, even with these drawbacks, the 

net energy gain is much higher with biodiesel than with corn-ethanol (Hill, et al, 2006).   

Technological Perspective 
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There are few technical barriers converting vegetable oils to biodiesel. However, 

to make vegetable oils compatible with diesel engines and lower the viscosity vegetable 

oils need to go through a process called transesterification (Atadashi, Aroua, & Aziz, 

2010). Without processes such as transesterification, a myriad of engine problems could 

occur (Meher, Sagar, & Naik, 2006).  The transesterification process also produces 

valuable by-products, such as glycerol, which can contribute to making biodiesel more 

economical (Atadashi, et al, 2010).  

Economic Perspective 
 

Biodiesel faces the same economic challenges as other terrestrial crops used for 

alternative fuels: it is not economical. The energy content is also lower when compared 

with fossil based diesel. Studies have shown biodiesel to be more than 10% lower than 

fossil based diesel (Radich, 1998; Wassell Jr & Dittmer, 2006) resulting in a 5-10% 

reduction in fuel economy (Demirbas A. , Importance of biodiesel as transportation fuel, 

2007). Like ethanol, biodiesel customers are paying the same price for fuel with less 

energy than their fossil based counterparts.  

The need for marketing of by-products in biodiesel production is crucial to its 

economic viability.  Glycerol can be sold to a variety of commercial manufacturing 

industries and its marketing is a key factor in making biodiesel more economical 

(Atadashi, Aroua, & Aziz, 2010; Hasheminejad, Tabatabaei, Mansourpanah, Far, & 

Javani, 2010). However, by-products are not always marketable, and increased biodiesel 

production could saturate the market. Recently, some biodiesel producers have been 
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incinerating glycerol to avoid such a glut (Santana, Martins, da Silva, Batistella, Filho, & 

Maciel, 2010).  

Most importantly, the major cost of producing biodiesel lies in the feedstock. 

Feedstock compromises roughly 80% percent of the operating costs which results in 

biodiesel costing up to three times more than fossil-based diesel (Demirbas A. , 

Importance of biodiesel as transportation fuel, 2007). Some suggest using multiple 

feedstocks to reduce costs (Moser, 2008), while others list waste oil as a potentially 

cheaper, more economical solution (Groschen, 2002). Although waste cooking oil is 

cheaper, processing it into usable biodiesel not. In certain trials, the expensive processing 

costs completely neutralized the savings from cheaper feedstock (Zhang, Dube, McLean, 

& Kates, 2003).  

Viability  
 

The prospects of biodiesel via terrestrial crops replacing a significant amount of 

our demand is unrealistic for numerous reasons. Singh and Singh state, “Constraints on 

the availability of agricultural feedstock impose limits on the possible contribution of 

biodiesel to transport” (Singh & Singh, 2010).  Converting our entire soybean crop to 

biodiesel production would supply less than 10% of our domestic diesel demand while 

we would have to plant soybeans over an area 160% larger than the entire U. S. cropland 

for biodiesel to meet domestic demand (Bryce, 2008). Waste oil, often discussed as a 

replacement feedstock, has the potential to produce 350 million gallons of diesel per year 

in the United States (Groschen, 2002). 350 million gallons wouldn’t even replace 1 

percent of 2007 domestic U.S. demand (Bryce, 2008).   
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The lower energy content, prohibitive production costs, and scalability issues 

make it difficult for terrestrial crops to replace a significant percentage of our diesel 

demand. Even with present subsidies, biodiesel is far from being economically 

competitive. With feedstock comprising 80% of the production cost and agricultural 

commodities recently rising near 2008’s all-time high (CME Group, 2010), it is not 

economically feasible to expand production of biodiesel. Biodiesel may remain a niche, 

such as in mining or marine operations, but widespread use will remain challenging as 

long as the primary feedstock is terrestrial crops.  

Jatropha as a Feedstock 

History 
Jatropha is a small tree that grows up to 7m tall and can live up to 50 years 

(Achten, et al., 2008). Trees and shrubs in arid regions serve many purposes for 

populations of developing countries, and today, there is discussion about commercial 

cultivation of Jatropha (Heller, 1996). Jatropha is native to Mexico and parts of South 

America and is believed to have been distributed by Portuguese seamen in the 16th 

century throughout the Caribbean and parts of Africa (Heller, 1996).  

 For a time, Jatropha oil was used for lamp lighting (Brittaine & Lutaladio, 2010). 

In the first half of the 20th century parts of Africa exported Jatropha seeds to Europe 

where the oil was extracted for production of soap (Brittaine & Lutaladio, 2010). During 

World War II, Jatropha was used for production of diesel in parts of Africa (Gubitz, 

Mittelbach, & Trabi, 1999; Kumar & Sharma, 2008). Today, it is still used for medicinal 

purposes and soap production in rural communites, while there is renewed interest in its 

potential for biodiesel production (Brittaine & Lutaladio, 2010).  
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Environmental Perspective 
 

Jatropha has many of the same positive environmental effects as other biodiesel 

feedstocks, but it also offers many additional benefits. It has the lowest emissions when 

compared with engines running on other vegetable oils (Gubitz, Mittelbach, & Trabi, 

1999). It can also be grown in low rainfall areas, marginal soils, and all the while helping 

prevent soil erosion (Openshaw, 2000; Achten, et al., 2008). Today, it is being viewed as 

having the potential to combat climate change and provide a source of renewable energy 

(Parawira, 2010).  

However, few long-term feasibility studies have been attempted. Not all 

environmental effects are positive. Yearly harvesting may lead to resource depletion 

(Prueksakorn & Gheewala, 2006). Little is published about the fertilizer requirements of 

Jatropha, creating uncertainty with regards to the energy balance (Openshaw, 2000).  

Although Jatropha does grow on marginal land, fertilization and irrigation will be 

required to produce optimal yields (Achten, et al., 2008). Finally, many countries worry 

about Jatropha’s invasive potential (Parawira, 2010).  

Technological Perspective 
 

Production of biodiesel has few technological barriers, but more research is 

needed into Jatropha genetics. Kumar and Sharma state, “Before exploiting any plant for 

industrial application, it is imperative to have complete information about its biology, 

chemistry, and all other applications so that the potential of the plant can be utilized 

maximally” (Kumar & Sharma, 2008). Little is known about the different genotypes 
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(Parawira, 2010) and more research is needed to find which types produce more oil 

(Achten, et al., 2008).  

Economic Perspective 
 

Jatropha is easy to establish and has a rapid growth rate (Openshaw, 2000). This 

growth rate gives it higher yields than other biodiesel crops such as sunflower, soy, or 

peanuts (Foidl, Foidl, Sanchez, Mittelbach, & Hackel, 1996). Further, because it can be 

grown on marginal land, it could turn formally worthless land into potential revenue for 

land owners and while creating jobs (Prueksakorn & Gheewala, 2006). The key for 

Jatropha to become commercially viable is using the whole product, not just crushing the 

seeds for oil (Kumar & Sharma, 2008; Openshaw, 2000).  However, many argue that 

producing Jatropha for biodiesel is an inefficent use of recources.  

If the whole product of Jatropha is not used, Jatropha biodiesel production is not 

energy efficient (Openshaw, 2000). Additionally, producing Jatropha for biodiesel 

production is potentially forgoing more profitable markets such as soap production 

(Openshaw, 2000). The cultivation of Jatropha is very labor intensive and often times the 

predicted costs are underestimated. According to Parawira, “predictions of productivity 

seem to ignore the results of [Jatropha] plantations from the 1990s, most of which are 

abandoned now for reasons of lower productivity and or higher labor costs than 

expected” (Parawira, 2010).  Although it is possible to grow Jatropha without fertilizer 

and irrigation, many doubt the potential of a commercial yield without those inputs 

(Gressel, 2008). Production costs have been estimated at up to 10 times the selling price 

of fossil-based diesel in developed countries (Openshaw, 2000). 
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Viability 
 
Presently, Jatropha is garnering more attention than other oil seed crops (Parawira, 

2010). Jatropha does not compete with food and the ability to grow on marginal land has 

helped it become the leader of potential terrestrial biodiesel feedstocks.  However, in 

order to become truly viable the economics of Jatropha must change. Producers must 

develop a commercial market for the co-products of Jatropha.  Finally, more research is 

needed in identifying potential yield, optimal growing conditions, and best practices in 

order to remove producers’ uncertainty. Until more knowledge is acquired, many 

commercial companies may be hesitant to invest heavily in cultivation of Jatropha oil.  

Palm Oil as a Feedstock 
 

History 
 

Humans have been using palm oil for thousands of years. It is estimated that palm 

oil may have been part the food supply in ancient Egypt (Kiple & Ornelas, 2000).  During 

the 18th and 19th centuries, it was used for a variety of purposes from producing soap 

(Gathmann, 1893) to medicinal (Willich & Mease, 1803), and also as a lubricant for 

machinery during the British Industrial Revolution (Kiple & Ornelas, 2000). Palm oil 

plantations spread from Africa into Southeast Asia early in the 20th century (Kiple & 

Ornelas, 2000).  The tree was first introduced to Malaysia as an ornamental plant in 1875 

and the sector began to grow during the war in 1917 (Abdullah, Salamatinia, Mootabadi, 

& Bhatia, 2009). Both England and Germany were importers of palm oil during World 

War I (United States Tariff Commission , 1921).  
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The first biodiesel patent given in Belgium in 1937 was made from palm oil 

(Knothe, et al, 2005). Belgium tested palm oil based biodiesel in a commercial bus in 

1938 and reported no operational problems (Knothe, et al, 2005). Although war made all 

feedstocks more valuable, palm oil development greatly expanded in Malaysia after 1960 

when government policies led to increased production (Basiron, 2007). According to 

Kiple and Ornelas, “The oil palm was seen as a useful means of diversification to avoid a 

dangerous dependence on rubber” (Kiple & Ornelas, 2000). In the early 1980’s palm oil 

prices collapsed and the country announced plans to convert palm oil into biodiesel 

(Cross, 1985).  The Malaysian Palm Oil Board was created in 1982 and two years later 

construction began on the first plant to convert palm oil to biodiesel (Lim & Teong, 

2010).  

Creation of biodiesel was encouraged through continued and new Malaysian 

Government incentives in the late 1980s helping enable the drastic increase in palm oil 

production in the 1990s (Abdullah, et al, 2009). From 1960 to 2005 the palm oil industry 

experienced 10-11% compound annual growth (Basiron, 2007).  The National Biofuels 

Policy of 2005 further encouraged production and set mandatory biodiesel blending 

limits of 5% (Abdullah, et al, 2009).  The postive economics of palm oil, as well as 

favorable government policies have helped Malaysia become a world leader in palm oil 

production.  

Environmental Perspective 
 

Biodiesel burns cleaner than fossil diesel with emission tests showing positive 

reductions (Lim & Teong, 2010; Crabbe, Nolasco-Hipolito, Kobayashi, Sonomoto, & 
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Ishizaki, 2001). Additionally, recent IEA and United Nation reports showed a greater 

reduction of GHG emissions when using palm oil than other any biodiesel feedstock 

excluding effects of land use change (Jayed, Masjuki, Saidur, Kalam, & Jahirul, 2009). 

However, the effects of land use change are key factors in growing backlash against the 

increased production and use of palm oil based biodiesel. When considering land use 

change, it is a stretch to call palm oil based biodiesel environmentally friendly. 

Over the past 50 years, crops dedicated to palm oil production have expanded 

rapidly with land dedicated to oil palm cultivation increasing nearly 400% (Koh & 

Wilcove, 2008). Government policies have indirectly encouraged conversion of former 

forests to be cleared for agriculture (Koh & Wilcove, 2008) while large amounts of GHG 

were released as burning was the method of choice for clearing land (Reijnders & 

Huijbregts, 2008). Widespread clearing has resulted in a 30% loss of forest land in 

Indonesia and a 20% loss in Malaysia while up to 85% of new palm oil plantations in 

some provinces being created on former forest land (Wicke, Sikkema, Dornburg, & Faaij, 

2011). These forests are rich in biodiversity and home to many endangered species 

(Abdullah, et al, 2009). Malaysia has created the Roundtable on Sustainable Palm Oil 

(RSPO) to find solutions in growing a more environmentally sustainable practice (Lim & 

Teong, 2010), but little has changed thus far.  

Technological Perspective  
 

There are few technical challenges in palm oil biodiesel production but extensive 

research has been done to increase yields (Lim & Teong, 2010). According to Basiron, 

“Since the 1960s, experiments have been carried out to produce hybrid strains of oil palm 
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that give higher yields of oil” (Basiron, 2007).  This has led some strains to produce over 

100% more than their original counterparts (Basiron, 2007). Recently, the DNA for the 

oil-palm tree was decoded, which should lead to even more breakthroughs in yield 

potential (Lim & Teong, 2010). Further research leading to increased yields will enable 

palm oil based biodiesel to continue its march toward economic viability.  

Economic Perspective 
 

The economics of palm oil based biodiesel are more positive than other feedstock. 

Its high yield and cheap labor sources in the region have allowed palm oil to remain low 

(Jayed, et al, 2009). It has been estimated that the industry provides direct or indirect 

employment to almost 900 thousand workers in Malaysia alone (Abdullah, et al, 2009). 

Unlike corn-based ethanol, it has a positive net energy balance (Ester da Costa & Lora, 

2007) and significant amounts of capital are invested in research annually to improve 

operations (Basiron, 2007).  

Palm oil based biodiesel consumes less energy than other biodiesel feedstocks 

because electricity is produced during the production process  (Pleanjai & Gheewala, 

2009). This energy balance is the best among current oil seed crops (Pleanjai & 

Gheewala, 2009; Thoenes, 2006; Abdullah, et al, 2009). High yields enable palm oil to 

achieve signficantly lower production costs when compared with competitors soy, 

sunflower, coconut, and rapeseed (Thoenes, 2006; Crabbe, et al, 2001). Palm oil biodiesel 

presently has the cheapest production costs, but other feedstocks are becoming more 

competitive. 
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Labor costs are a large portion of production costs and these have not improved 

significantly over the past 20 years (Thoenes, 2006). While labor costs and productivity 

have remained steady for palm oil,  competitor crops such as soy and sunflower have 

experienced significant improvements (Thoenes, 2006).  In addition, headwinds are 

coming from the European Union.  Subsidies and failure to obtain International 

Sustainability and Carbon Cetification (ISCC) may prevent increased exportation to the 

EU (Lim & Teong, 2010). Obtaining these certifications will increase company costs and 

potentially make palm oil less competitive.  

Viability  
 

The palm oil based biodiesel industry has rapidly expanded over the past few 

decades. This expansion has been aided by the general consensus that, “in the absence of 

subsidies, palm oil is by far the most competitive vegetable oil for the production of 

biodiesel” (Thoenes, 2006). While the most economically competitive, it suffers the same 

drawbacks as many other biofuels. The competitiveness of biodiesel from palm oil is 

directly related to feedstock prices and the price of crude. Recently, price spikes in palm 

oil have forced many companies to stop producing or shut down completely due to higher 

feedstock prices (Jayed, et al, 2009; Yusup & Khan, 2010).  

Biodiesel from palm oil has been blamed on pressuring food prices as well (Lim 

& Teong, 2010).  Further, with regulations in the EU emphasizing environmental 

sustainability, palm oil production costs should rise. Although palm oil has found a good 

niche, it still has a problem of scalability. In some areas expansion is beginning to slow 

due to land scarcity (Thoenes, 2006). Finally, geographic and climate differences limit 
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the United States ability to ever produce palm oil biodiesel on a commercial scale. Palm 

oil is a valuable supplement to certain tropical countries, but it will never be the answer 

to United States quest for energy independence.  

Algae as a Feedstock 

History 
 

Algae are one of the oldest life-forms (Brennan & Owende, 2010) and could be 

part of the answer to our energy independence goals. Over the past decade, algae have 

increasingly been mentioned for their potential fuel production (Christi, 2007; Dismukes, 

Carrieri, Bennette, Ananyev, & Posewitz, 2008; Amin, 2009). Algae are often listed as 

the best, or among the best of potential feedstocks for future biofuel production because 

they do not have the limitations of terrestrial feedstocks (Brennan & Owende, 2010; 

Beer, Boyd, Peters, & Posewitz, 2009). Although much attention has been placed on 

algae recently, proposals for using algae to create fuel date back to the 1950s (DOE, 

2009).  

The potential for microalgae to produce lipids under certain conditions was 

discovered in the 1940s (DOE, 2009). In the 1950s, scientists continued their 

examination of algal uses and by the end of the decade there were propsals to use algae 

both as fuel (DOE, 2009) and food (Stimson Jr, 1956). During these early years, focus 

was placed on what growing conditions were most conducive to algal lipid production 

(DOE, 2009). However, research  into algae energy production only gained serious 

traction during the oil spikes of the 1970s (DOE, 2009; Sheehan, Dunahay, Benemann, & 

Roessler, 1998).  
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The high energy prices of the 1970s were the driving factor behind the creation of 

the Department of Energy’s (DOE’s) Aquatic Species Program (ASP) in 1978 (DOE, 

2009). Initially, researchers envisioned a process where wastewater could be used as feed 

for algae which would produce methane but the focus gradually shifted into algae’s fuel 

production potential (Sheehan, et al, 1998).  The ASP studied more than 3,000 different 

microalgae (Radakovits, Jinkerson, Darzins, & Posewitz, 2010), looking not only at the 

amount of oil algae could produce, but also finding algae who could grow in extreme 

conditions with regards to temperature, pH, and salinity (Sheehan, et al, 1998). These 

strains were collected and identified from 1980 to 1987 (Sheehan, et al, 1998). The ASP 

gradually narrowed potential algae down to 300 strains and began further examination of 

the best strains (DOE, 2009).  

Unfortunately, funding gradually decreased after the mid-1980s and the program 

was finally killed in 1996 due to budget reductions, which forced the DOE to focus on 

bioethanol production (Sheehan, et al, 1998). The ASP significantly progressed algae 

research and provided a good base for future algal endeavors but the economics never 

worked. ASP concluded that even with optimistic cost assessments, algae would still cost 

between $59-186 per barrel while oil cost $20 in 1995 (DOE, 2009).  

Japan also took interest in Algae research. In 1990, the 10-year RITE program 

was established with 2 dozen private companies, various academic institutions, and some 

national laboratories supporting research efforts (Sheehan, et al, 1998).  While the ASP 

used the more economical open pond cultivation of algae, Japan’s research focused on 

closed photobioreactors because they required less land area and could potentially be 
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more productive (Sheehan, et al, 1998). However, Japan’s program was an epic failure 

and was cancelled after costing more than $250 million (Benemann, 2008).  

Since the end of the ASP program in 1996, the DOE, DOD, USDA, Defense 

Advanced Research Projects Agency , Air Force, and many other agencies in the 

government has provided funding for additional algae research (DOE, 2009).  Despite the 

past failures, interest in algae for fuel is on the upswing.  Recent oil price spikes and 

progression of science has led interest in algae to bloom. However, key obstacles must 

still be overcome. 

Environmental Perspective 
 

Part of the draw to algal production is the relative few environmental barriers. 

Although algae do use water and may require high inputs of energy (Groom, Gray, & 

Townsend, 2008), this is negated by algae’s ability to grow in wastewater or brackish 

conditions unsuitable for other feedstocks(Pittman, Dean, & Osundeko, 2011; Subhadra 

B. G., 2010; Subhadra & Edwards, 2010). The effect is two-fold, saving  freshwater, and 

an environmentally friendly way to treate wastewater (Park, Craggs, & Shilton, 2011).  In 

addition, they do not require environmentally harmful pesticides that many other 

terrestrial feedstocks use (Brennan & Owende, 2010). Finally, algae is very efficient in 

CO2 conversion, and could be ‘fed’ with emissions from power plants (DOE, 2009). 

Algae is still early in its development as a biofuel and has many technological barriers to 

widespread adoption. 

Technological Perspective 
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Significant technical barriers remain in algal cultivation, harvesting, and 

conversion.  Although research is progressing rapidly in genetic maniplation (Beer, et al, 

2009), we are, “far from” understanding molecular biology and regulation of lipid body 

metabolism in algae” (Scott, et al., 2010). Additionally, there is potential for a negative 

energy balance during the process (Brennan & Owende, 2010). Further research 

identifying best practices in minimizing energy use during the harvesting, extraction, and 

conversion phases as well as increasing yields is needed (DOE, 2009). Finally, at the 

present time it is difficult to extract by-products (Brennan & Owende, 2010). Algae 

productivity is higher than land plants (Scott, et al., 2010), the key to success is being 

able to utilize this higher productivity.  Much further research and progress are needed in 

these areas to improve the economics of biofuels from algae.  

Economic Perspective  
 

Algae will never be a viable alternative fuel without the economics changing. 

Thus far, high capital and operating costs have tempered enthusiasm.  Both the ASP and 

Japan’s RITE program were shut down being deemed not economically viable. Algae 

production does have the potential of producing valuable by-products (Dismukes, et al, 

2008), but the technological barriers associated with utilizing these by-products have yet 

to be overcome. Many believe the key to successful commercialization depends on being 

able to produce high value by-products  (Singh & Gu, 2010).  

One idea being discussed to increase algae’s economic competitiveness is creating 

integrated renewable energy parks (IREP) (Subhadra B. G., 2010). These parks could 

potentially utilize heat via the IREP’s solar panels to create conditions favorable for algae 
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growth  (Subhadra B. G., 2010). IREPs theoretically would lower energy usage and bring 

down total production costs associated with algae.  Unfortunately, to date, algae have not 

proven economical (Pittman, et al, 2011). The ASP cost estimate of algal oil production 

being competitive with crude priced at $56-189 per barrel.  However, there is much 

uncertainty in production costs and today, 15 years after the ASP program ended, some 

estimate the production cost to be between $9-40 per gallon of oil or $378-1,680 per 

barrel of oil (Singh & Gu, 2010) .  

Viability  
 

Today, over 150 companies worldwide are working toward making a cost-

competitive biofuel from algae (Singh & Gu, 2010). It is often listed as the best future 

feedstock candidate (Subhadra B. G., 2010).  It is capable of producing year round and 

doesn’t compromise food production (Brennan & Owende, 2010; Mutantda, Ramesh, 

Karthikeyan, Kumari, Anadraj, & Bux, 2011; Singh & Gu, 2010; Scott, et al., 2010). To 

date, it is the only biofuel crop with the potential to completely displace fossil diesel 

(Singh, Nigam, & Murphy, 2011; Christi, 2007). However, there is much uncertainty in 

regards to costs and production potential.  Experts agree that further R&D is needed in 

many facets of algae biofuel production (DOE, 2009). Past research efforts in the U.S. 

and Japan were deemed failures. Until technology improves and costs fall dramatically 

algae will never be a practical solution to our alternative fuel needs.  

Coal-to-Liquid Processes 

History 
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In searching for alternative fuels and feed stocks to replace United States 

dependence on petroleum, renewed emphasis is being placed on synthetic fuels from 

coal, natural gas, and biomass. Many people regard coal conversion technology as being 

a new development but its use almost predates the United States. Although not used for 

transportation purposes, use of gas produced via coal distillation for lighting has been 

used for centuries. As early as the 1790s, use of coal gas for lighting purposes was 

documented and leading the technology to rapidly diffuse throughout much of the world 

shortly thereafter in the 1800s (Probstein & Hicks, 1982).  Coal to liquid (CTL) 

technology was developed in Germany during the early 1900s.  

Similar to the United States today, one of the key factors in Germany’s pursuit of 

alternatives to petroleum was strategic reasons.  Germany had a large supply of coal 

resources but lacked any meaningful petroleum reserves. This posed a serious problem 

during the turn of the century when coal was being replaced by gasoline and diesel 

(Stranges, 1984).  Friedrich Bergius’ work with high-pressure coal hydrogenation or coal 

liquefaction process from the early 1900s until the mid-1920s kick-started Germany’s 

CTL progress (Probstein & Hicks, 1982)and later earned Bergius the Nobel Prize for his 

work (The Nobel Foundation, 1966). In 1926, the first commercial plants producing 

synthetic fuels via coal hydrogenation were being developed (Probstein & Hicks, 1982). 

Franz Fischer and Hans Tropsch published their own research on gaseous synthesis 

(Schulz, 1999).  Although coal hydrogenation and the Fischer-Tropsch (FT) process both 

sought to end Germany’s need for foreign petroleum imports, they were not competitors. 

 “Coal hydrogenation and the Fischer-Tropsch process were complementary 

because coal hydrogenation produced high quality gasoline and aviation fuel while the 
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FT process produced high quality diesel and lubricating oil” (Stranges, 2003). Their 

growth was encouraged by the government and various subsidies helped the industry 

expand. Imported fuel tariffs, minimum government purchases of the product, and 

government funding of capital expenditures all led to a more rapid build-up of Germany’s 

CTL industry (Stranges, 2003). 

CTL development was the centerpiece in Hitler’s call for petroleum independence 

(Stranges, 2003).  The industry grew from three small-scale CTL plants in 1933 to 

satisfying over 60%of Germany’s petroleum use near the end of the war (Stranges, 2003).  

Germany succeeded in developing CTL technology and proved it could be viable on a 

commercial scale. However, it was viable because it had the financial and political 

support of the German government. CTL technology never succeeded in being a cost 

effective way of replacing petroleum.  Production of CTL fuel cost the German 

government over double the price of imported products (Stranges, 2003).  After the war, 

a combination of the forced dismantling of German CTL plants (Stranges, 2003) and an 

era of cheap petroleum led to commercial scale CTL production being phased out 

(Probstein & Hicks, 1982). 

However, the United States did continue CTL research after the war. The Bureau 

of Mines annual report in 1949 expressed interest in CTL technology because of the 

United States’ vast coal resources and limited oil and natural gas deposits as well as 

“stabilizing the coal market whose prospects appear bleak” (U.S. Bureau of Mines, 

1950). However, further economic analysis led the Bureau to find that a commercial CTL 

plant would not be economically attractive due to high startup costs and cost of 

production (U.S. Bureau of Mines, 1950). The Bureau’s findings led United States 
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research to gradually taper off by the mid-1950s.  However, South Africa continued their 

research into CTL technologies. 

Much like Germany, South Africa had a large resource base of coal and little 

petroleum reserves. And, much like Germany, South Africa had strategic reasons for 

developing alternatives to petroleum.  Loss of petroleum imports due to their apartheid 

policies, investment in CTL technology gave South Africa a path to petroleum 

independence (Speight, 2008)South Africa’s first plant became operational in 1955 and 

during some periods it was commercially profitable (Anastai, 1980). With the tumultuous 

1970s, South Africa’s investments in FT plants were needed because Iran stopped 

exporting crude to South Africa in 1979 (Anastai, 1980). The uncertainty of the 1970s led 

to increased investment from South Africa (Anastai, 1980) and renewed R & D in the 

United States (Bartis, et al, 2007). South Africa’s  plant expansion would satisfy almost 

50% of their annual petroleum demand when finished (Anastai, 1980). The United States 

annual budget in direct coal liquefaction R&D grew from $100 million in 1975 to more 

than $500 million in 1981 (Bartis, Camm, & Ortiz, 2007).  However, within two years 

falling oil prices and cost escalation of programs led to their cancellation (Bartis, et al, 

2007) 

Recent years’ spikes in oil prices have brought renewed interest into oil from 

“unconventional” sources such as CTL (Bartis, et al, 2007). The United States is often  

called the “Saudi Arabia of Coal” (Thomas, 2006), and producing liquid fuels from a 

plentiful feedstock as coal could help achieve greater energy independence. Many 

benefits are discussed by proponents of developing a robust CTL industry.  Developing a 

robust CTL industry could potentially increase employment (Bartis, et al, 2007) increase 
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our energy security (Gray, 2005), decrease world oil prices (Bartis, et al, 2007)and CTL 

fuels burn cleaner than regular petroleum products (Marano & Ciferno, 2001). Although 

there are many potential benefits, there are also many reasons why only Germany 

(Stranges, 2003)and South Africa (Anastai, 1980) have successfully run commercial size 

CTL plants.  

Environmental Perspective 
 
 Besides our push to achieve energy independence, mitigating GHG emissions and 

using ‘cleaner’ fuels are factors in our push away from traditional petroleum sources 

(Takeshita & Yamaji, 2008). However, many argue that one of the biggest obstacles in 

regards to CTL is that it is not a clean fuel (Packham, 2003). Without carbon 

sequestration, a large scale CTL industry in the United States capable of producing three 

million barrels of liquid fuels would dramatically increase the amount of carbon dioxide 

emissions (Bartis, et al 2007). In addition, methane emissions, air toxins, and damaged 

and contaminated aquifers are all issues associated with increased coal mining (Bartis, et 

al, 2007) 

Technological Perspective 
 
 The technological barrier exists primarily in the development of a large scale 

carbon sequestration program.  Although in 2007 the DOE planned to have, “fossil fuel 

conversion systems that achieve 90% CO2 capture with 99% storage permanence at less 

than a 10% increase in the cost of energy services” (NETL, 2007)by 2012, there remains 

a lack of confidence in carbon capture and the ability address technical issues (Williams, 
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et al, 2009). Until carbon capture technology improves, CTL will continue to face strong 

opposition to its development 

Economic Perspective 
 

CTL technology’s failure to produce liquid fuels at price economically 

competitive with conventional petroleum is the primary reason CTL technology has not 

enjoyed widespread use throughout the world. If CTL technology was more economical, 

it would have greater success. If CTL is to enjoy widespread use among western nations 

carbon sequestration will be required. Unfortunately, technology has not yet proven to be 

viable on a commercial scale. Additionally, carbon sequestration will raise the price of 

CTL significantly (NETL, 2007). Although Sasol has operated a sporadically profitable 

plant in South Africa, their success is not easy to replicate.  CTL production in South 

Africa works because, “their availability of low cost coal, scarcity of domestic petroleum 

resources, and abundance of cheap labor” (Anastai, 1980).  

Scale is an issue that is often neglected.  When South Africa was expanding plants 

and production it spent, “ $6-7 billion to increase its production to 112K bpd….to get the 

similar results the United States would need to spend $300 billion (1980$s)” (Anastai, 

1980). Previous pilot scale CTL projects in the United States were closed down because 

of massive cost overruns. “Initial cost estimates in 1979 for the plants were $700 million 

but within two years they had grown to $1.4 and $1.9 billion respectively. (Bartis, et al, 

2007). Some have stated that a high estimate in cost of a plant capable of producing 

80,000 bpd of synthetic fuels would only be $8-10 billion but acknowledge, “there is a 

lack of recent experience in designing and constructing FT CTL plants” (Bartis, et al, 
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2007). The uncertainty of oil prices has played a role in investment apprehension. A 

conservative estimate by Rand estimated that CTL production could be between $55-65 

[2007 dollars] a barrel but admitted that, “costs remain highly uncertain and could fall out 

of the $55-65 per barrel crude oil equivalent range” (Bartis, et al, 2007). Many factors 

affecting operating costs are very prohibitive. 

The type of coal can have an effect on operational costs. Certain coals have a 

propensity to cake more. Caking is defined as, “when heated, coal softens and fuse 

together, swelling and re-solidifying into a porous char or cake which is greater than the 

original volume” (Probstein & Hicks, 1982).  Most American coals have a high caking 

propensity (Probstein & Hicks, 1982)which can require blending and/or performance 

modifications (Dyk, Keyser, & Coertzen, 2006). Further, “The caking coals tend to form 

a plastic mass in the bottom of a gasifier and subsequently plug up the system thereby 

markedly reducing process efficiency” (Speight, 2008).  

With climate change often dominating the headlines, carbon sequestration is also 

something that must be accounted for.  There is uncertainty about the costs associated 

with carbon sequestration. In coal powered electricity plants, the cost of carbon 

sequestration has been estimated to increase the price of electricity by “60-100% in older 

plants and 25-50% in more advanced plants” (NETL, 2007). Costs for CTL plant carbon 

sequestration are thought to be less expensive (Bartis, et al, 2007). However, these 

estimates are based on assumptions and no carbon sequestration technology has been 

demonstrated on a “megascale” which a commercial size CTL plant would operate 

(Williams, Darson, Liu, & Kreutz, 2009).  
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Viability 
 
 Increasing the use of CTL technology does offer the United States a path towards 

energy independence. However, there are many barriers to CTL adoption. Uncertainties 

surrounding environmental consequences and carbon sequestration technology, as well as 

the high initial capital costs, and cost associated with carbon sequestration are significant 

barriers in CTL adoption. More widespread use of CTL technology will likely depend on 

oil prices, successful demonstration of carbon capture technology, and government 

incentives. It should be noted that CTL technology has yet to be proven more economical 

than petroleum. The only two countries that used CTL technology to meet a majority of 

their fuel needs did so for strategic purposes, not economic.  Subsidies initially provided 

by Germany and South Africa were instrumental in supporting the growth of domestic 

CTL production. Further, government sponsored research was key to making processes 

more profitable and reducing risk for companies venturing into CTL production.  
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Chapter III:  Data Collection and Methodology 
 

Introduction 
 
 The extensive literature review provided the foundation of this report. However, 

we used content analysis and text mining to corroborate the findings of the literature 

review. Content analysis and text mining focus on extracting pieces of information out of 

collections of textual information. In our case, we used the literature review articles as 

our sources of documents. In this section, the research will examine the process we used 

for the content analysis and text mining. There are many pre-processing steps before 

starting content or text analysis.    

Data Preparation 
 

Description of Data 
The documents analyzed consist mostly of journal articles, government reports, 

and other scholarly information relating to the alternative fuels and feedstocks reviewed 

in our research. The breakdown of fuel/feedstock type and number of documents is listed 

below in Table 3.1. Most of the journal articles and reports were from the period of 2000 

to 2010.   

 

Table 3.1 Number of Documents by Fuel/Feedstock  

Fuel/Feedstock Type 
Number of 
Documents 

Corn Ethanol 60 
Sugar Ethanol 33 

Biomass/Cellulosic 86 
Switchgrass 46 
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Miscanthus 26 
Biodiesel 52 
Jatropha 15 
Palm Oil 17 

Coal-to-Liquid 28 
Algae 39 
Total 402 

 

Collection 

The initial documents collected were comprised of the most accessible documents 

via a Google Scholar search on the selected fuel and feedstock type. Google Scholar 

searches were performed not only on fuel and feedstock type, but also on journal articles 

pertaining to the LCA, economics, technology, and viability of each. Further documents 

that were applicable to the research were found through the works cited section of the 

original documents. According to Peladeau and Stovall,  

“ …When one wants to perform comparison among several groups, it is essential the 
number of examples from each group be large enough to ensure the information obtained 
for this subgroup is reliable and representative….Otherwise the descriptive or inferential 
statistics computed may be unreliable”  (Peladeau & Stovall, 2005).  
 

A large enough number of documents were collected for each fuel and feedstock type in 

order to be reliable and representative of each group’s population. Appendix A lists 

additional articles used in the text mining process but not quoted in the literature review.   

Unfortunately, most of the journal articles and reports collected were written after 2000. 

Due to the recent nature of the articles, the ability to measure the evolution of themes 

over time was limited.  

Importation 
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 Most journal articles were imported into QDA Miner content analysis software 

(from Provalis Research) without problems. However, some article formats proved 

difficult to transfer. To ensure correct coding and that QDA Miner read the documents 

properly ABBYY FineReader 10 Professional Edition was used. This software allowed 

the conversion of difficult to read PDF files into MS Word.  The newly created MS Word 

documents were uploaded into QDA Miner. The process minimized the loss of 

documents due to conversion problems.   

Database Cleansing 

It was necessary for any database cleansing. The database consisted of peer 

reviewed journal articles and government reports from scholarly sources. Misspelled 

words can create problems when analyzing text, but because the articles and reports were 

taken from scholarly sources, a check of spelling was deemed unnecessary.   

Database Structure 

 Constructing the database was a critical part of the process. Poor structure could 

affect the results significantly. Data was classified into three main categories and various 

subcategories. Table 3.2 shows the data breakdown by group and subgroup information 

for fuel type and topic. Data was classified by fuel type, topic, and report date. The topics 

were very similar to themes identified. Themes identified consisted of environmental 

considerations, energy efficiency, world region, technology, societal costs and benefits, 

financial considerations, agricultural consequences, and national security.  

Table 3.2 Breakdown of Groups and Subgroups 

Fuel/Feedstock Type Topic 
Corn Ethanol LCA/Environmental 
Sugar Ethanol Economics 
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Biomass/Cellulosic Ag/Food Prices 
Switchgrass Policy 
Miscanthus Technology 

Biodiesel 
 Jatropha 
 Palm Oil 
 Coal-to-Liquid 
 Algae   

 

Dictionary Development 
 

Dictionary development is an important prerequisite to the analyses. We decided 

to proceed with a categorization process in creating our dictionary instead of stemming or 

lemmatization approaches. Stemming and lemmatization both had significant drawbacks 

which led us to believe categorization would be the most appropriate path. Stemming 

seemed too aggressive and could have potentially created more problems. 

Peladeau and Stovall describe stemming as, “a well-known technique of form 

reduction by which common suffix and sometimes prefix are stripped from the original 

word form”  (Peladeau & Stovall, 2005).  Stemming often reduces words to word roots  

(Peladeau & Stovall, 2005) , which could make it nearly impossible to interpret our 

results. Using a stemming approach, common terms in this analysis could be reduced to 

words with completely different meaning. Words such as biogas, biomass, and bioenergy 

could potentially be reduced to gas, mass, and energy giving researchers completely 

different meanings while making inferences unreliable. While not as aggressive as 

stemming, lemmatization had drawbacks as well.  

The most significant problem that stemmed from lemmatization was the potential 

ambiguousness of words reduced to their root form. Although lemmatization can 
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significantly reduce word count, it can potentially create more work if researchers cannot 

determine the meaning of the word. It was not necessary to reduce word count for this 

research. It is believed that the 402 articles analyzed were a representative and reliable 

sample from the population. The collection of articles was not large enough to require 

stemming or lemmatization.   

 With the categorization process, ambiguousness was not a problem. The process 

of dictionary creation requires subject knowledge because the user will be creating 

categories and categorizing the words/phrases (Davi, Haughton, Nasr, Shah, Skaletsky, & 

Spack, 2005).  Given the extensive literature review, developing the dictionary for 

alternative fuels and feedstocks was not challenging.. The extensive literature review 

enabled the identification of many core and related words within the journal articles and 

reports.  

Exclusion List 
 
 Lists of exclusion words are common in content analysis or text mining projects. 

The exclusion list removes, “words that have little semantic value such as pronouns and 

conjunctions” (Provalis Research, 2010) from content analysis. Exclusion lists both 

reduce processing time and allow retention of the most relevant words (Peladeau & 

Stovall, 2005). The standard exclusion list in QDA Miner containing about 550 words 

was used for this analysis.    

Categorization Process 
 

1) Research identified technical terms commonly used in journal articles reviewing 

alternative fuels and feedstocks.  
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2) A random sample of 5% of the documents and WordStat (phrase finding software 

by Provalis Research) was used to look for the frequency of phrase occurrence in 

text. This allowed the identification of how many times the phrase occurred in the 

text. Phrases were chosen because the same word in different contexts can have 

completely different meanings. Phrases offer more specific insight which is hard 

to gather from individual words. Further, the specific insight that phrases give 

allowed proper categorization of important phrases. 

3) For further support, key phrases in context were examined using the Key Word In 

Context(KWIC) tool in Wordstat. Viewing the key phrases in context, allowed 

proper classification of data into appropriate themes.  
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Chapter IV: Analysis and Results 
 
 

Co-Occurrences of Keywords  
 

Often in text mining words there are incidences of co-occurrence.  When words or 

phrases appear in the same sentence or paragraph they may offer the opportunity for 

further understanding of relationships. We used cluster analysis. Cluster analysis gives us 

a path in which to group themes. Categories that tend to appear together are combined at 

an early stage and may show evolution of themes. Additionally, relationships that we 

may not anticipate finding may appear, which provide a new way of looking at the 

relationship between categories.  

Keywords by Numerical or Categorical Variables 
 
 A technique we used to explore the themes was keywords by numerical or 

categorical variables. Specifically, we used correspondence plots, histograms, and pie 

charts, to analyze themes by frequency of occurrence. Further, “correspondence analysis 

is a descriptive and exploratory technique designed to analyze relationships among 

entries[fuel types]” (Provalis Research, 2010).  These plots enabled us to view the basic 

statistics and themes by documents.   
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Figure 4.1 Correspondence Plot  

 
 Figure 4.2 is a correspondence plot showing the relationships between themes and 

groups. Each group [biofuel/feedstock in white box] contains a distribution of each of the 

themes listed. The closer a group is to the origin (center), the more similar the 

distribution of themes within the group is when compared with the document collection 

as a whole. In figure 4.2 we see that Coal-to-liquid has a similar distribution of themes 

when compared to the document as a whole. For Miscanthus, we see the distribution of 

themes different from the document collection as a whole. From the extensive literature 

review we believe this may be due to many articles focusing on technology 
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breakthroughs needed for Miscanthus to become a viable replacement for corn ethanol. 

Technology is not as prevalent of a theme for other feedstock reviewed in this study. 

 For themes, location closer to the origin means most documents in the collection 

as a whole contain a similar number of the particular theme. Figure 4.1 shows financial 

considerations location close to the origin. Financial considerations location closer to the 

origin shows this theme is consistent throughout the document collection as a whole.  

For relationships between the groups and themes, proximity is not as important as 

angle (Provalis Research, 2010). An acute angle means the words and themes are 

correlated (Provalis Research, 2010).  On the right side we see a correlation between the 

themes technology and energy efficiency to Biomass/cellulosic, switchgrass, Miscanthus, 

and algae. This supports data gathered in the literature review showing technology is an 

overriding theme within biomass, cellulosic ethanol crops, and algae. Specifically, 

technological barriers to efficient production of ethanol from any of the aforementioned 

feedstocks have been impediments to successful development of the advanced biofuels.  

Further, the feedstocks mentioned gravitate towards the energy efficiency theme. This 

supports the literature review where many articles often mentioned potential for biomass 

to be used in electrical power generation. Many articles believe this is the most efficient 

current use of biomass energy crops.  

Further, we see corn and sugar ethanol correlated with the theme Food/Ag 

consequences. This supports earlier research. Corn is an ingredient in most animal feed 

and people depend on it as a staple throughout the world. With biofuel production 

causing an unnatural rise in demand, it is only natural that prices begin to rise.  
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      Figure 4.2 Percentage Occurrence of Theme Technology by Group 

 Figure 4.2 illustrates the percentage occurrence of the theme technology by 

fuel/feedstock. This figure is another illustration of the technology theme being prevalent 

in many of the advanced fuels and feedstocks. The occurrence of technology in the 

biomass/cellulosic group and algae is over 80% and 60% respectively. This supports 

much of the literature review showing that technology is the key barrier for many of the 

advanced alternative fuels.  
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Figure 4.3 Percentage Occurrence of Theme Subsidies by Group 

 
 Figure 4.3 shows the percentage occurrence in the document collection by 

fuel/feedstock type of the theme subsidies. Figure 4.3 supports the literature review 

showing the prevalence of the theme subsidies in corn ethanol articles. With over 50% of 

the articles categorized in the corn ethanol fuel type containing the theme subsidies,  the 

text mining provided support for our belief that subsidies are a key theme in corn ethanol.  

Although we reviewed roughly the same number of sugar ethanol articles, subsidies play 

a much smaller theme in this fuel type. This further supports information gathered during 

the literature review.  Although subsidies were important early in sugar ethanol’s 

development, it is produced more efficiently now and subsidies play a diminishing role in 

its success.  
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Figure 4.4 Percentage Occurrence of Theme Food/Ag Effects by Group 

 Figure 4.4 shows the prevalence of Food/Ag Effects throughout many of the fuel 

types. Food/Ag Effects is a prevalent theme in corn & sugar ethanol, as well as biodiesel. 

Biomass/cellulosic and algae likely have a high percentage of articles with the Food/Ag 

Effects theme occurring as well. This is most likely because of the potential positive 

effects associated with increased production of these feedstocks which were frequently 

mentioned in articles. Figure 4.5 discusses the prevalent Food/Ag Effects trend in further 

depth.  
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Figure 4.5 Average Frequency of Food/Ag Theme per Article 

  
 Figure 4.5 lists the average frequency of Food/Ag Effects theme per article 

reviewed. The bars show the amount of ethanol produced each year. From 2000 to 2005, 

the frequency of the Food/Ag Effects theme occurs on average less than one time per 

article while the increase in ethanol production averages around 400M gallons per year. 

However, after 2005 the Food/Ag Effects theme is mentioned much more often. 2005 and 

2007 are highlighted red because during these years major U.S. political initiatives were 

passed to encourage and expand biofuel production. After 2005 both production and the 

average frequency of Food/Ag themes per article increase much more rapidly. As biofuel 

production has increased, the frequency of occurrence for the theme of Food/Ag effects 

has increased as well. There is a decrease in frequency from 2008-2010 which is believed 

to have resulted from a collapse in agricultural prices over this period. Although 
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originally many alternative fuels and feedstocks were developed as a way of supporting 

agricultural prices and increasing market demand, we now see demand may be increasing 

too much. Since June of 2010, most agricultural prices are up 50-100%. It is expected 

that there will be an uptick in frequency of this theme for articles written in late 2010 and 

2011. With food and agricultural prices becoming a much more prevalent theme, we may 

see increased resistance to expanding alternative fuel and feedstock production. 
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Chapter V: Conclusion 
 

Although humanity has pursued petroleum alternatives since petroleum’s 

discovery, alternative fuels have yet to successfully supplant petroleum.  Throughout 

both the literature review and the text mining results, there were many shared traits and 

themes among alternative fuels. These commonalities have limited alternative fuels 

acceptance, and will likely continue to limit their use as a substitute for petroleum. 

Alternative fuels have been found to be much less environmentally sound than 

proponents claim, require great advancements in technology, have scalability issues, 

result in many societal costs, and are not economical.  

Although proponents of alternative fuels tout how the alternative fuel [end 

product] burns cleaner, recently much discussion has focused on the life cycle 

assessments of these alternative fuels. Many petroleum alternatives are often dirtier than 

the fuel they are trying to replace. When considering alternative fuels produced in the 

tropics, land use change must be considered. When forests or grassland are cleared for 

energy crop production, it creates carbon debts which may require up to decades to pay 

back. CO2 emissions released from the land use change are something now being 

measured when countries consider a petroleum alternative’s cleanliness. Further, one 

must factor in the tremendous resources energy crops require.  

 Most terrestrial crops require large amounts of fertilizer and water to harvest. 

Corn has some of the highest water and nitrogen fertilizer demands. Although cellulosic 

crops such as Miscanthus and switchgrass have lower water demands, to be produced 

commercially it is thought they would have a significant water requirement. Fertilizer, 
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which is energy intensive to produce, would also be required for commercial scale 

production of the cellulosic crops. CTL fuels are even worse environmental offenders.  

 Production of CTL fuels release tremendous emissions. CTL production is an 

inherently dirty process, both during coal mining and processing. CTL proponents count 

on breakthroughs in carbon sequestration technology to alleviate many of the 

environmental concerns, but carbon sequestration, as with many technologies in the 

alternative fuel industry, has yet to be demonstrated on a commercial level.  

 Technology is truly one of the biggest limiting factors in advanced alternative 

fuels. Through our research, it seemed that technological breakthroughs are often 

mentioned as only being a few years away. This appears to be an exaggeration. Carbon 

sequestration has been discussed since the 1970s, but a successful, commercial scale 

operation has yet to be demonstrated. Cellulosic ethanol’s potential was discussed over 

80 years ago and it has yet to be demonstrated on a commercial level. Algal based 

alternative fuels have the greatest potential to be produced on a large scale with minimal 

impact, yet the technology to produce it economically remains an elusive target. 

Technology enabling wide spread, economical, commercial production being 5 to 10 

years away was a theme prevalent throughout the documents reviewed. Further, 

alternative fuels and feedstocks have tremendous limitations with scalability.  

 Another common theme in the research was the lack of scalability for most 

alternative fuels. With current production yields, devoting entire food crops to energy 

production would only solve a fraction of our current needs.  Other countries such as 

South Africa and Brazil, which rely on alternative fuels to meet a large percentage of 

their transportation needs, do on smaller scales. Cellulosic ethanol, algal fuels, and CTL 
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are viewed as having the potential to be produced on a much wider scale without 

disrupting food supplies, but until technology breakthroughs happen, producing large 

amounts of these fuels would be cost prohibitive. Currently, increased production of 

terrestrial crops for alternative energy has resulted in a massive spike in food prices.  

 With the United States and other nations devoting larger portions of their food 

crops to alternative fuel production, food prices have spiked dramatically. United States 

citizens consume a larger percentage of processed foods, thus blunting the effects of 

rising food prices. However, most of the world’s population does not.  Although 

proponents debate the effect, the United Nations has listed increased biofuel production 

as one of the biggest factors in the commodity spike since June of 2010 (NY Times, 

2011). These rising prices have been one of the factors exacerbating unrest of people 

throughout the developing world and played a significant role in protests sweeping 

throughout the Middle East (Russia Today, 2011). Finally, and most importantly, 

alternative fuel production is not economical.  

 The overwhelming theme throughout the research was the lack of economic 

viability in regards to most alternative fuels. Throughout the history of alternative fuels, 

their production has rarely been economical. All nations support their alternative fuel 

industries with subsidies to encourage production. Excluding Brazil, no nation has 

consistently achieved economical production of alternative fuels. Further, even the 

Brazilian industry lost money during periods of sugar price spikes.   

 An underlying problem with terrestrial crops profitability is the assumption they 

will be profitable at a certain price level of oil. Unfortunately, increased oil prices result 

in higher production costs for these petroleum alternatives. Additionally, because a large 
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percentage of the cost is feedstock, increasing alternative fuel production increases 

demand for these feedstocks, thus raising prices. Rarely have nations been able to satisfy 

their transportation fuel needs from alternative fuels. 

 Over the past century, only Germany, South Africa, and Brazil have successfully 

produced alternative fuels to satisfy a large portion of their domestic needs. The common 

threads these countries share are identifying alternative fuel production as a matter of 

national security and massive government subsidies to get their nascent industries off the 

ground. These countries all placed national security motivations above the economics of 

alternative fuel production. There are certainly reasons for the United States to pursue 

alternatives to petroleum, but economics is not one of them.   
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