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Abstract 

Early research on time phasing primarily focuses on the theoretical foundation for 

applying the continuous distribution function, or S-curve, to model the distribution of 

development expenditures.  Minimal methodology is provided for estimating the S-

curve’s parameter values.  Brown, White, and Gallagher (2002) resolve this shortcoming 

through regression analysis, but their methodology has not been widely adopted by 

aircraft cost analysts, as it is judged as overly broad and not specific to aircraft.  Instead, 

analysts commonly apply the 60/40 “rule of thumb” to aircraft development, assuming 60 

percent expenditures at 50 percent schedule.  It is currently unknown if the 60/40 

heuristic accurately describes contemporary aircraft development programs. Therefore, 

using a sample of 26 DoD aircraft programs, we first test the accuracy of 60/40, 

discovering that, as a heuristic, the 60/40 cannot account for differences between new 

start and upgrade programs.  Next, we improve upon prior research by using program 

characteristics to construct an aircraft-specific methodology for estimating parameters.  

Finally, we conclude our research by comparing the accuracy of our Rayleigh, Weibull, 

and Beta S-curve models.  Our Weibull model explains 74.6 percent of total variation in 

annual budget, improving the estimation of budgets by 6.5 percent, on average, over the 

baseline 60/40 model. 
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ACCURACY OF TIME PHASING AIRCRAFT DEVELOPMENT USING THE 

CONTINUOUS DISTRIBUTION 

 
I.  Introduction 

Once a point estimate is established for a Department of Defense (DoD) research, 

development, test and evaluation (RDT&E) program, the program manager must “time 

phase”, or spread, funding across the program’s expected fiscal years.  One method 

presented by current DoD cost analysis literature is the application of the continuous 

probability distribution, commonly referred to as an S-curve (AFCAH, 2007: 15-25).  A 

comprehensive literature review reveals that the single-parameter Rayleigh distribution (a 

special case of the Weibull distribution) is the most frequently studied and applied S-

curve model for time phasing development efforts (Norden, 1970; Putnam, 1978; 

Watkins, 1982; Abernathy, 1984; Lee et al., 1997).  Recently published research shows 

that increased precision may be achieved through the application of the two-parameter 

Weibull and Beta distributions (Brown et al., 2002; Burgess, 2006).   However, no 

aircraft development-specific means currently exists to estimate the parameters for the 

Rayleigh, Weibull, and Beta distributions; as a result, many cost analysts instead favor 

the application of a 60 percent expenditures at 50 percent schedule “rule of thumb” (Lee 

et al., 1997; NASA, 2002). 

Therefore, this research has three goals.  First, this research will attempt to 

identify the source of the 60 percent expenditures by 50 percent schedule heuristic, and 

test its applicability against a database of contemporary aircraft development programs. 

Second, this research will develop a standard methodology for estimating parameters for 
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the Rayleigh, Weibull, and Beta distributions.  Finally, using the developed methodology 

for estimating parameters, this research will compare the predictive ability of the 

Rayleigh, Weibull, and Beta distribution models, with the intent of defining a best-fit, 

robust model to be utilized for future time phased estimates of aircraft development 

expenditures and budgets.    

Problem Statement 

One common method for allocating dollars over fiscal years is the application of 

the continuous distribution, often referred to as an S-curve within DoD cost estimating 

literature.  In applying the S-curve, the Air Force Cost Analysis Handbook (AFCAH) 

cautions that:  

No single S-curve…describes the funding profile of all development programs; 

rather, estimators adjust the general S-shape of the curve to model a program’s 

particular expenditure pattern of more/less effort earlier/later in the development 

program (AFCAH, 2007: 15-26).   

However, the problem arises that no standard baseline exists from which a program 

manager may begin analysis.  The closest to a commonly accepted baseline is the 60/40 

S-curve, which is cited as a “rule of thumb” by the NASA Cost Estimating Guide (2002: 

168) and Lee et al. (1997), and used as an example curve in both the DoD Basic Cost 

Estimating (BCE) (2005) and AFCAH (2007) literature.  Unfortunately, the origin of the 

60/40 S-curve remains unpublished and therefore unclear to many cost analysts, making 

it difficult to justify to decision makers.   To further convolute the rule of thumb, Air 

Force guidance reports that the ratio 60/40, which describes the S-curve’s skew, may be 
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interpreted to have two different definitions (AFCAH, 2007).  Under the first, less 

commonly used definition, 60/40 would describe a program with 60 percent expenditures 

at 40 percent schedule.  Under the second, more commonly accepted definition, 60/40 

would describe a program with 60 percent expenditures at 50 percent schedule.  For these 

reasons, the cost analyst may be apprehensive to accept the 60/40 S-curve as a standard 

baseline for aircraft development.  And if the 60/40 S-curve is accepted as a baseline, no 

published methodology exists for further adjusting the distribution parameters based on 

program characteristics.  For example, it is currently unknown whether the distribution of 

expenditures for upgrade programs differs from the distribution for new starts.   

Therefore, it becomes evident that a requirement exists for an aircraft-specific S-curve 

model capable of being adjusted by the development program’s characteristics.  This 

requirement leads us to develop our research approach, which is presented next. 

Research Approach 

The real world applicability of past S-curve research has been limited, as many 

researchers attempted a “one size fits all” approach of defining an optimal Rayleigh 

distribution for fitting all development programs.  Limited consideration was given to 

how a program’s characteristics drive the parameters of the selected Rayleigh or Weibull 

distribution.  Brown, White, and Gallagher (2002) resolve this limitation, utilizing a 

program’s length of development, program type, and branch of service to estimate 

Weibull parameter values.  Using their Weibull technique, Brown et al. report an average 

correlation of 0.607 between the actual budget distribution and the Weibull-predicted 

budget distribution.  
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As a follow-on effort to Brown et al.’s research, we will pursue a similar research 

approach.  As summarized in Figure 1, this approach proposes that development program 

characteristics may be used to estimate distribution parameters, which in turn predict the 

distribution of expenditures.  The distribution of expenditures is later converted to a 

predicted budget profile before measuring goodness-of-fit (R2).  However, our research is 

uniquely different from Brown et al., as we will consider aircraft-specific development 

characteristics, such as time to first flight and aircraft type, within the model.  We 

postulate that the inclusion of these aircraft-specific characteristics will lead to greater 

predictive ability, in turn leading to more appropriate time-phased projections of future 

aircraft development budgets. 

 

 
Figure 1: Research Approach for Aircraft Development S-curve Model 

Research Implications 

Research by Belcher and Dukovich (1999) documents that funding provided in 

the wrong fiscal years of a development program result in productivity inefficiencies, 



5 

schedule slips and increased program costs.  Unger (2001) confirms these findings, and 

coins the term “inappropriate funding” to describe programs which initially have 

adequate total funding, but receive the funding in the wrong fiscal years.  Examples of 

inappropriate funding are given by AFCAH (2007), which warns some analysts resist 

“putting adequate monies in the front end of a new program to fund technical personnel 

and analysts when the program most needs them. A program can inadvertently weaken 

itself by stretching this requirement out over a number of fiscal years.” (AFCAH, 2007: 

15-9).  Similarly, Better Buying Power 1.0 (2010) proposes that underfunding the peak 

years of a development program results in a “leisurely acquisition timeline” and schedule 

growth.  Inappropriate funding leads to schedule growth, which consequently leads to 

cost growth. 

As all programs compete for funding, the usual result is that a program settles into 

a level-of-effort pattern of annual funding that does not deviate much from year to 

year…thus a one-year extension of a program set to complete in 10 

years…result[s] in 10 percent growth in cost as the team working on the project is 

kept on another year (BBP 1.0, 2010: 4).   

Therefore, it is implied by Belcher and Dukovich (1999), Unger (2001), AFCAH (2007) 

and BBP 1.0 (2010) that an adequate cost estimate may be ruined by inappropriate time 

phasing and funding shortfalls, which in turn create schedule and cost growth.  To finish 

on-time and on-budget, a program requires both adequate funding and appropriate time 

phasing.  As a result, the objective of this research is to minimize schedule and cost 

growth by allowing the cost analyst to more appropriately time phase his or her aircraft 
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development program.  To meet this objective, we will next present the investigative 

questions that form the basis of our research. 

Research Questions 

The objective of this research is best summarized by the following questions: 

1 – Is the “rule of thumb” that 60 percent of expenditures occur by 50 percent schedule 

(60/40 S-curve) accurate for contemporary aircraft development programs?   

2 – What program and/or schedule characteristics best predict distribution parameters? 

3 – Which distribution (Rayleigh, Weibull, or Beta) provides the best S-curve model for 

time phasing contemporary aircraft development programs? 

Summary 

 Current acquisition policy emphasizes the importance of developing an accurate 

point estimate, while undervaluing the importance of applying an appropriate 

methodology to the time phasing of the estimate.  Research has already established that 

funding provided in the wrong fiscal year of the program may result in both cost and 

schedule inefficiencies (Belcher et al., 1999) (Unger, 2001).  Therefore, we propose the 

development of an S-curve model capable of more accurately predicting aircraft 

development expenditures. 

 In the next chapter, Chapter 2, the common methods for time phasing, historical 

S-curve research, origins of the 60/40 rule of thumb, and attributes of each distribution-

type are discussed.  Chapter 3 reviews our data collection procedures and proposed 

methodology for the estimation of a best-fit S-curve model.  Chapter 4 presents the 

results of our applied methodology; in particular, the R2 and robustness of the model is 
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reviewed.  Finally, Chapter 5 summarizes and discusses our results, outlines research 

limitations, and suggests topics for future aircraft time phasing research. 
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II. Literature Review 

Chapter Overview 

This chapter is an overview of topics related to time phasing and the application 

of the S-curve.  First, the purpose and three common methods for time phasing are 

provided.  Next, a literary review of the evolution of the S-curve time phasing method is 

presented, in chronological order.  Subsequently, a literature review identifying the origin 

of the 60/40 “rule of thumb” is offered.  Finally, this chapter concludes with a brief 

review of the characteristics of the Rayleigh, Weibull, and Beta distributions.  For the 

cost analysis practitioner unfamiliar with these distributions, the effect of increasing or 

decreasing the distribution parameters is shown. 

Methods of Time Phasing 

Contemporary cost analysis literature offers three methods for time phasing: 

schedule/milestone, analogy, and the S-curve (AFCAH, 2007).  The choice of one 

method over another method is often influenced by the availability of schedule 

information on the program to be estimated, as well as the availability of historical data 

on analogous programs. 

The schedule/milestone method is considered the most exact means of phasing, 

but it is also the most complex.  When completed correctly, the schedule/milestone 

method is easily explained to decision makers, and is highly defendable during outside 

analyses.  However, the accurate application of the schedule/milestone method requires a 

master program schedule and work breakdown structure (WBS) that may be unattainable 

for the initial time phased estimate of a RDT&E program (AFCAH, 2007: 15-15).  When 
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a master schedule is not available, the cost analyst must either estimate the schedule or 

rely on an alternate time phasing method (BCE, 2005: 16-6). 

By comparison, the analogy method is the simplest method as it utilizes the time 

phased expenditures of a single, analogous development program as the basis for 

spreading funding.  However, AFCAH instructions warn “the process of finding a truly 

analogous program…may be difficult and time consuming” (AFCAH, 2007: 15-21).   

Additionally, the analogy method’s reliance on a single program may introduce 

additional uncertainty and risk which could be mitigated through the use of the S-curve, 

which accrues data from multiple programs.   

Therefore, the use of the S-curve, or cumulative distribution function (CDF), is 

often the preferred method for RDT&E programs initiated with considerable schedule 

uncertainty.  When contrasted with the analogy method, the S-curve is theoretically 

superior, as it may utilize historical data from multiple analogous programs to form an 

estimated distribution of expenditures.  The resulting expenditure distribution may then 

be adjusted based on unique program characteristics expected to shift effort earlier or 

later into the program’s development (AFCAH, 2007: 15-25).  As shown in Figure 2, the 

S-curve is given its name from the shape formed when cumulative program expenditures 

are plotted over time. 
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Figure 2: S-Curve of Cumulative Costs over Time 

Evolution of the S-curve in Cost Analysis Literature 

No single continuous distribution type describes the S-curve.  As shown in Table 

1, a review of literature reveals that a variety of continuous distributions may be used to 

model the relationship between a program’s cost and time.  Beginning with Norden’s 

publication of “Useful Tools for Project Management” in 1970, the single parameter 

Rayleigh distribution is the most frequently applied and researched application of the S-

curve.  Conversely, Weida (1977) offers the solution of applying two quadratic equations.  

Brown et al. and Unger et al. subsequently improve upon previous research, showing that 

the two parameter Weibull distribution offers a more robust fit for RDT&E programs 

(Brown et al., 2002; Unger et al., 2004).  Finally, Burgess (2006) simultaneously tests the 

Rayleigh, Weibull, and Beta distributions; his results show that the Weibull distribution 
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26 DoD RDT&E space contracts (Burgess, 2006: 24-25).  For the remainder of this 

subchapter, we will review the findings of these publications in greater detail.  

Table 1: Notable S-curve Research 

Year Author Distribution Applied 
1970 Norden Rayleigh 
1977 Weida Quadratic Equation 
1978 Putnam Rayleigh 
1982 Watkins Rayleigh 
1984 Abernethy Rayleigh 
1997 Lee et al. Rayleigh 
2001 Unger Rayleigh and Weibull 
2002 Brown et al.  Rayleigh and Weibull 
2006 Burgess Rayleigh, Weibull, and Beta 

 

Applications of the Rayleigh Distribution (Special Case of the Weibull) 

Norden (1970) first applies the continuous distribution to development 

expenditures by utilizing the Rayleigh distribution, which is a special case of the Weibull 

Distribution, to relate monthly manpower usage and elapsed project time.  Norden 

observes that “there are regular patterns of manpower buildup and phase-out in complex 

project.  The cycles…seem to be a function of the way groups of engineers and scientists 

tackle complex technological development problems” (Norden,1970: 80).  By using the 

assumption that the rate of problem solving increases as a linear function of time, a 

relationship may be derived between manpower and project time.  Nordon represents this 

relationship using the Rayleigh cumulative distribution function 

 𝑦 = 𝐾(1 − 𝑒−𝑎𝑡2) (1) 

where 𝑦 = cumulative manpower utilized at time 𝑡, 𝐾 = total cumulative manpower 

utilized by end of the project, 𝑎 = Rayleigh scale parameter, and 𝑡 = elapsed time since 
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the start of the project.  Norden states that on average, projects of high importance will 

reach peak manpower sooner, while projects of lower importance will take longer to 

reach peak effort.  Therefore, highly important projects are numerically represented by a 

larger scale parameter 𝑎; projects of lower importance are represented with a smaller 

scale parameter 𝑎.   

Putnam (1978) builds on Norden’s approach of applying the Rayleigh distribution 

to RDT&E projects.  Putnam relates Norden’s Rayleigh model to software development 

by analyzing the recorded manpower-hours of 50 U.S. Army Computer Systems 

Command contracts.  Putnam calculates that the peak (inflection point) of manpower 

effort occurs at 39.45 percent of software’s development lifecycle (Putnam, 1978: 349).  

These findings validate Norden’s theory that, on average, manpower requirements for 

development projects have a shorter rise and longer exponential tail.  However, Putnam 

also notes that a small subset of contracts within his dataset do not follow the expected 

Rayleigh distribution, and instead exhibit a stepwise increase to peak effort, followed by 

steady effort requirements until completion.  Putnam postulates that projects which do 

not conform to the Rayleigh distribution are the result of inefficient management acting 

contrary to system requirements.  Putnam summarizes his assessment by saying that 

“usually management adapts to the system signals, but generally responds late because 

the signal is not clear instantaneous with the need” (Putnam, 1978: 348).  In such a case, 

the project is overfunded or overstaffed during the later years or months of the 

development program, resulting in management continuing to support peak manpower 

levels after the manpower is no longer required.    
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Following Putnam, cost researchers Watkins and Abernethy further confirm the 

viability of the Rayleigh distribution for time phasing.  Watkins (1982) uses the Rayleigh 

distribution to forecast cost growth in contracts.  By applying the shape of the Rayleigh 

distribution against the difference between actual cost of work performed, budgeted cost 

of work performed, and budget cost of work scheduled, Watkins hypothesizes that total 

cost growth (as defined by budget at completion) may be estimated early within a 

development contract.  Abernethy (1984) models the Rayleigh distribution against cost 

data from 21 Navy contracts, to include Navy aircraft and missiles.  Although Abernethy 

successfully fits the Rayleigh distribution to individual contracts, he cannot produce a 

Rayleigh parameter that fits all contract data to within five percent of its final values.  

Abernethy theorizes that an increased sample size will result in additional precision for 

future studies.   

Finally, cost researchers Lee et al. (1997) offer two theory-based contributions to 

the Rayleigh S-curve.  First, Lee et al. write that it has been previously observed that the 

peak expenditure rate (𝑡𝑝) for “aircraft development programs often comes at, or slightly 

before, the time of first flight” (Lee et al, 1997:32).  Therefore, the Rayleigh’s scale 

parameter 𝑎 may be calculated by setting the derivative of the Rayleigh’s probability 

distribution function equal to 0 at the time of first flight.  When simplified, this equates to 

𝑎 = 0.5𝑡𝑝
−2 for the Rayleigh equation given in (1).  Second, Lee et al. offer a solution 

for those applying the 60/40 S-curve.  By setting 𝑎 = 3.5, the Rayleigh distribution will 

always produce a S-curve for which 60 percent expenditures occur at 50 percent 

schedule, when truncated to control for the Rayleigh’s infinite tail.  Lee et al. truncate 

their S-curve model by assuming that schedule completion occurs at 97 percent of 
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expenditures.  It should be noted that we will again reference Lee et al.’s 60/40 Rayleigh 

S-curve in Chapter 4 of this thesis, as the model will serve as our standard “baseline” 

model for comparison.  

Application of the Quadratic Function 

Rather than rely on an established distribution, Weida (1977) offers the approach 

of using quadratic functions to estimate the S-curve.  Weida’s method estimates two 

independent quadratic equations; one quadratic equation represents all expenditures 

before the inflection point, with the other equation representing expenditures following 

inflection.  After aggregating the cost performance reports from 17 DoD weapon systems, 

Weida finds that the mean inflection point for aircraft development contracts occurs at 

56.2 percent of expenditures and 45.2 percent of time (Weida 1977: 8). 

 
Applications of the Weibull & Beta Distributions 

Unger (2001) first recommends that the Weibull distribution is a better predictor 

of RDT&E expenditure profiles than the Rayleigh distribution.  Unger tests the ability of 

both the Rayleigh and Weibull to predict variation and cost and schedule growth, finding 

that the Weibull outperforms the Rayleigh when fit to individual programs.  However, in 

his findings, Unger annotates a significant limitation of his model: no method currently 

exists to estimate the Rayleigh and Weibull parameters for future programs.   

Brown, White, and Gallagher (2002) resolve Unger’s stated limitation, using 

multi-stage regression techniques to estimate Rayleigh and Weibull parameters.  Brown 

et al. define their Weibull cumulative distribution function as 

 𝐹(𝑡) =  1 −  𝑒−(𝑡− 𝛾
𝛿 )𝛽 (2) 
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where 𝑡 = time, 𝛾 = location parameter, 𝛿 = scale parameter, and 𝛽 = shape parameter.  

Using 128 completed DoD RDT&E programs, Brown et al. estimate that the Weibull 

scale parameter 𝛿 is a linear function of program duration, defined as 

𝛿 = 0.726(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛).  Similarly, the shape parameter 𝛽 is a function of duration, 

branch of service, and program type, and defined as = 1.299 + 0.972 ln(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

− 0.461(𝑁𝑜𝑛𝐴𝐹) −  0.543(𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐) −  1.099 (𝑆𝑝𝑎𝑐𝑒).  Brown et al. report their 

scale parameter model coefficient of determination as 0.922; the shape parameter model 

coefficient of determination is 0.309.   

In addition to duration, branch of service, and program type, Brown et al. test the 

predictive ability of total program cost, but find that it does not have a statistically 

significant influence on the Weibull’s scale and shape parameters.  Furthermore, they 

find that the Weibull parameter estimates for missiles, munitions, ships, and vehicles are 

statistically equivalent to aircraft.  When contrasting their Weibull model with their 

Rayleigh model, Brown et al. determine the Weibull distribution improves budget profile 

projection by 60 percent, on average.  Brown et al. conclude their research by observing 

that because the Rayleigh distribution is limited to one scale parameter, the Rayleigh 

distribution often overestimates expenditures during the early phase of programs and 

underestimates during the later phases (Brown et al., 2002: 51).   

Following Brown et al., Burgess (2006) further advances S-curve estimation 

techniques by simultaneously testing the Rayleigh, Weibull, and Beta distributions. Using 

contract expenditure data from 26 National Reconnaissance Office and DoD space 

satellite systems, Burgess concludes that although the Beta distribution is more accurate 

than the Rayleigh, it is less accurate than the Weibull.  Burgess reports that it is not 
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surprising that the Weibull and Beta distribution show greater accuracy than the 

Rayleigh, “because the Weibull and Beta have more parameters and are therefore better 

able to accommodate variations among spending profiles” (Burgess, 2006: 17).  

However, Burgess is not satisfied with the ability of the Weibull distribution to fit the 

aggregated data set used within his study.   

In particular, Burgess observes that the Weibull model fails to capture late 

program spending.  This shortfall in predictive capability is the result of a theoretical 

assumption of the distribution; when applying a continuous distribution, we must assume 

that the rate of work (and thus rate of spending) is completely variable and always begins 

and ends at zero.  This assumption is not consistent with reality, where a fixed cost exists 

for each year of a space program.  Therefore, Burgess recommends the inclusion of a 

constant rate term in the Weibull equation, based on schedule length, to better account for 

the fixed costs and overhead present within satellite RDT&E programs (Burgess 2006: 

25).  Burgess publishes his modified Weibull equation as 

 𝐸(𝑡) =  𝑑[𝑅𝑡 + 1 − 𝑒−𝛼𝑡𝛽] (3) 

where 𝑑 =  𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
𝑅+1− 𝑒−𝛼

, 𝛼 =  −0.414 + 0.729(𝑢𝑛𝑖𝑡𝑠) +  0.0488(𝑚𝑜𝑛𝑡ℎ𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) +

 0.145(% 𝑛𝑜𝑛𝑟𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔), 𝛽 = 1.71, and 𝑅 = 0.00148(𝑚𝑜𝑛𝑡ℎ𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛). 

Origin and Applicability of the 60/40 “Rule of Thumb” 

 Introduced in Chapter 1, the 60/40 “rule of thumb” is a commonly cited heuristic 

assumption used to approximate the continuous distribution.  It is still in use by cost 

analysts to time phase aviation programs, as confirmed by AFLCMC-FZC staff.  

Notably, the use of the 60/40 S-curve is not specific to aircraft cost analysis, as a 
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contemporary review of cost analysis literature reveals that the NASA Cost Estimating 

Guide (2002) references the 60/40 S-curve as a “rule of thumb” for spreading space 

expenditures (but does not provide an origin or reference).  Additionally, the DoD’s BCE 

(2005) and Air Force’s AFCAH (2007) repeatedly use the 60/40 S-curve as an example 

within time phasing chapters; however, both documents fail to provide a source.  

Therefore, we search for the origin of the 60/40 S-curve to better judge its applicability 

for time phasing contemporary aircraft development.   

We discover that Lee et al. (1997) trace the most likely origin of the rule of thumb 

to a circa-1980 aircraft study completed by the OSD Cost Analysis Improvement Group 

(CAIG).  The CAIG study remains undocumented, but the results are recalled by Mr. 

Gary Christle, former Deputy Director of Acquisition Management at OSD (Lee et al., 

1997:33).  Since the CAIG study remains unpublished and is no longer recoverable, it is 

not possible to determine the applicability of the study’s methodology and data source.  

Therefore, we instead evaluate the accuracy of the 60/40 rule of thumb by providing a 

historical synopsis of findings from all available aircraft development time phasing 

studies:   

 

1 – Weida (1977) reviews seventeen aircraft development contracts and determines that 

contracts obligate 57 percent of expenditures by 50 percent schedule, on average.  

Additionally, Weida provides a table of “inflection points”, which identify the time of 

peak expenditures within a development program.  Weida’s inflection point findings are 

reproduced in Appendix 1.    
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2 – In 1979, a study completed by the General Research Corporation finds that aircraft 

contracts typically obligate 57 percent of expenditures by 50 percent schedule.  An 

extensive literary search could not locate the original General Research Corporation 

study; instead, we rely on a summation of the General Research Corporation study 

provided by Dibbly (1988: 14).  

 

3 – Dibbly (1988) reviews 22 aircraft avionics development contracts and discovers that 

contract type, contract value and engineering complexity have a statistically significant 

effect on the S-curve distribution.  Based on the combination of these characteristics, 

aircraft avionics development contracts will fall into one of three categories.  As 

summarized in Table 2, contracts will typically obligate either 57 percent expenditure at 

50 percent schedule, 68 percent expenditures at 50 percent schedule, or 78 percent 

expenditures at 50 percent schedule. 

Table 2: Dibbly (1988) Avionics Funding Profile Study 

Contract Type Contract Value Engineering Complexity S-curve 
Cost Plus Small High 

57/43 Cost Plus Large High 
Fixed Price Large High 
Cost Plus Large Low 

Fixed Price Small High 
68/32 Fixed Price Large Low 

Cost Plus Small Low 
Fixed Price Small Low 78/22 

 

4 – Brown et al. (2002) include 19 aircraft development programs as part of their larger, 

multi-platform study of the Weibull-based S-curve.  Although Brown et al. do not 
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provide a summary of percent expenditures by 50 percent schedule, we may approximate 

this statistic using the estimated Weibull parameters provided within Brown’s thesis 

appendix (Brown, 2001: 65-69).  Using this data, we estimate that 57.1 percent of 

expenditures occur at 50 percent schedule, on average.   

Characteristics of Probability Distributions 

As denoted earlier in this chapter, the S-curve is given its name from the shape 

formed when a cumulative density function (CDF) is fitted to the plot of cumulative 

effort versus development time.  The AFCAH (2006, 15-25) reports that the normal 

distribution is typically used.  However, a significant limitation of the normal distribution 

is the assumption that values are symmetric about the mean, or schedule midpoint.  

Therefore, when applied to development efforts, the normal distribution could only 

model programs which are expected to expend equal funding during the earlier and later 

half of the development schedule, as shown in Figure 3. The normal distribution’s 

assumption of symmetry is incongruent with published S-curve research, which find that, 

on average, aircraft development programs expend a greater percentage of funds during 

the first 50 percent of schedule (Weida, 1977; Dibbly, 1988; Lee et al., 1997; Brown et 

al., 2002).   

Therefore, to provide a better fit for the positively skewed expenditure pattern, 

multi-parameter distributions with one or more flexible shape parameters are considered.  

Based on precedence established by Brown et al. (2002) and Burgess (2006), the Weibull 

distribution (for which the Rayleigh distribution is a special case) and the Beta 

distribution are selected for testing.  A summary of the Weibull and Beta distribution 
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characteristics follow.  To allow for easier comprehension and application of these 

distributions by the cost analyst practitioner, we will utilize Microsoft Excel’s naming 

convention for distribution parameters for the remainder of this thesis, rather than apply 

conventions more commonly utilized within mathematical texts. 

 

Figure 3: The Normal Distribution 

Characteristics of the Weibull Distribution 

The two-parameter Weibull distribution is named for the Swedish scientist 

Waloddi Weibull, who in 1951 used the distribution to model the breaking strength of 

materials (Johnson et al., 1994: 628).  Mathematically, the Weibull CDF consists of a 

shape parameter, α, and scale parameter, β and is written as 

 % 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 = 1 − 𝑒−(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝛽 )𝛼  (4) 

Within Excel, this same function is represented as  

  = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒,𝛼,𝛽, 𝑡𝑟𝑢𝑒) (5) 
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The effect of modifying the Weibull distribution’s shape parameter, α, is shown in Figure 

4.  When α = 3.7 and β = 0.6, the distribution is approximately symmetric, or equivalent 

to the normal distribution, and expenditures are equivalent for the first half and last half 

of development.  As we decrease the value of the shape parameter α below 3.7, while 

holding the scale parameter β constant, program spending increases during the first half 

of development and the distribution becomes positively skewed.   

 

 

Figure 4: Effects of changing Weibull shape parameter α 

Conversely, the effect of modifying the Weibull distribution’s scale parameter, β, 

which controls statistical dispersion, is shown in Figure 5. Again we start with a Weibull 

distribution where α = 3.7 and β = 0.6, which is roughly equivalent to the normal 

distribution.  As scale parameter β is decreased, the distribution becomes more highly 

peaked and spending varies more significantly from period to period.  Therefore, a 
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decrease in the value of β, while holding α constant, will result a less uniform, more 

“pointed” distribution of expenditures.   

 

 

Figure 5: Effects of changing Weibull scale parameter β 

Characteristics of the Rayleigh Distribution 

The one-parameter Rayleigh is a special case of the Weibull distribution which 

assumes the shape parameter, α, is fixed at a value of 2, and only the scale parameter β is 

allowed to vary.  As documented in Chapter 1, the Rayleigh forms the basis of early S-

curve research (Norden, 1970; Putnam, 1978; Watkins, 1982; Abernathy, 1984).  The 

Rayleigh’s applicability to early research may be attributed to the characteristic that 

Rayleigh-modeled peak expenditures occur at 38 percent of program schedule, when 

program schedule is truncated at 97 percent of expenditures (to control for an infinite tail) 

(Lee et al., 1997).  This characteristic is notable, as it results in a distribution in which 

approximately 60 percent of expenditures occur by 50 percent schedule, consistent with 

0 

0.5 

1 

0 0.5 1 

C
um

ul
at

iv
e 

Ex
pe

nd
itu

re
s  

Cumulative Schedule 

α = 3.6, β = 0.6 

α = 3.6, β = 0.4 



23 

the 60/40 rule of thumb introduced earlier (Lee et al., 1997) (Burgess, 2006).  Therefore, 

in all cases the Rayleigh distribution will be positively skewed, meaning that peak 

expenditures will occur during the first half of development. 

Characteristics of the Beta Distribution 

Compared to the Weibull distribution, which consists of only one higher-order 

shape parameter and one scale parameter, the Beta distribution contains two higher-order 

shape parameters, α and β.  Therefore, the Beta is more versatile, and the distribution’s 

“flexibility encourages its empirical use in a wide range of applications” (Johnson et al., 

1995: 235).    In CDF form, the Beta equation is written as 

 % 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 =  (1−% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)𝛽−1(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)𝛼−1Γ (α+β)
Γ(α)Γ(β)

  (6) 

where Γ represents a factorial function for which Γ(n) = (n − 1)!  Within Excel, this 

equation is represented by the command  

 = 𝐵𝑒𝑡𝑎𝑑𝑖𝑠𝑡(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒,𝛼,𝛽) (7) 

Although the relationship between the α and β parameters is mathematically very 

complex, two broad observations may be made relating to the Beta distribution’s skew 

and kurtosis.   

First, it is shown in Figure 6 that the skewness of the Beta distribution is 

influenced by the ratio between shape parameters α and β.  When α = β, the distribution 

is symmetric and closely resembles a normal distribution, and expenditures are equivalent 

for the first half and last half of development.  When α > β, the distribution is negatively 

skewed, resulting in peak spending during the last half of development.  When α < β, the 
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distribution is positively skewed, resulting in peak spending during the first half of 

development.  Therefore, it is expected that α < β for most development programs.  

Second, it is shown in Figure 7 that as the α and β parameters increase in value 

from zero, dispersion decreases (and kurtosis, or peakedness, therefore increases).  When 

α = 1 and β = 1, the distribution is uniformly distributed, which assumes that expenditures 

are constant throughout development.    By comparison, when α and β both increase in 

value to 3, dispersion decreases and the “S-curve shape” becomes visible.   

 

 

Figure 6: Effects of changing the ratio between Beta shape parameters 
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Figure 7: Effects of changing the magnitude of Beta shape parameters 

Summary 

Funding provided in the wrong fiscal year of a program may result in lost 

funding, schedule slips, and cost growth (Unger, 2001).  As a result, the AFCAH, the 

primary guidebook for Air Force cost analysts, provides three methods to increase time 

phasing precision: schedule/milestone, analogy, and S-curve.  For RDT&E applications, 

the S-curve is often the preferred method, as the S-curve does not require detailed 

program schedule or WBS data (AFCAH, 2007).   

Initially, analysts applying the S-curve time phasing method primarily relied on 

the single parameter Rayleigh distribution.  The Rayleigh distribution is a special case of 

the Weibull distribution which assumes a fixed shape parameter of 2.  More recently, the 

Weibull and Beta distributions have become commonplace as Brown et al. (2002), Unger 

et al. (2004), and Burgess (2006) have demonstrated the increased precision available 

from utilizing multi-parameter distributions.  Having defined the Weibull and Beta 
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distributions and reviewed previous research, we will next define our methodology for 

constructing an aircraft-development specific S-curve model. 
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is to define the methods used to gather and analyze 

data while constructing our model.  First, we explain the source for aircraft RDT&E data 

and our decision to utilize total obligation authority (TOA) data instead of contract 

expenditures.  Following data source selection, our method for converting TOA into 

estimated base year 2014 expenditures is explained.  Next, we present our method for 

standardizing each expenditures data point into a percent schedule by percent 

expenditures data base.  Finally, the procedure for estimating best-fit Rayleigh, Weibull, 

and Beta parameters is given, and the methodology for determining the significance of 

our resulting Rayleigh, Weibull, and Beta models is explained. 

Data Source 

The first step in any research methodology is determining the most credible and 

applicable source for data.  Therefore, the efforts of previous S-curve researchers are 

reviewed.  For their research, Brown et al. (2002), Porter and Gallagher (2004), and 

Unger et al. (2004) rely on the Select Acquisitions Report (SAR) to obtain the Total 

Obligation Authority (TOA), which is the amount of budget for each year of a 

development program.  Using the OSD Comptroller outlay rates, the authors are able to 

use TOA to approximate annual expenditures.  By comparison, Norden (1970), Weida 

(1977), Putnam (1978), Abernathy (1984), and Burgess (2006) obtain expenditure data 

directly from contractor cost reports; therefore, no further transformation of data is 

required to obtain actual expenditures.  Although either method of data sourcing is 
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acceptable, we determine that utilizing the SAR’s TOA data are more desirable for two 

reasons.   

First, we determine that SAR TOA data are more applicable to the “real-world” 

time phasing estimates that occur early within an aircraft program’s development.  Once 

transformed by outlay rates, TOA data directly estimate a development program’s total 

expenditures across all development contracts.  By comparison, contract expenditure data 

from a single contractor’s Cost Data Summary Reports may only represent a portion of 

the total aircraft development effort.  Furthermore, during the research process, it was 

discovered that the prime contractor and supporting contractors often submit their 

reoccurring annual expenditure reports in different months of the year.  As a result, for 

programs with multiple development contracts, it is often not possible to sum 

expenditures across individual contracts to obtain total program expenditures.  Due to this 

limitation, we therefore judge SAR data as more representative of the entire aircraft 

development effort.   

Second, SAR data are more consistently reported and available.  By law, SAR 

reports are updated and reported annually and include budgeted TOA amounts for every 

fiscal year of development.  By comparison, a review of Cost Data Summary Reports 

within DACIMS revealed one or more missing annual reports for 19 of the 26 programs 

in our database.  Furthermore, 8 of 26 programs considered have no Cost Data Summary 

Reports available for their entire development effort.  Therefore, we determine that 

utilizing SAR data will result in a more robust database with greater explanatory power.   
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Data Selection 

For the purposes of defining an aircraft-specific S-curve model and testing the 

60/40 heuristic, only aircraft development programs are incorporated.  Aircraft 

development programs are defined as any fixed-wing, manned aircraft developed for one 

or more of the U.S. DoD service branches and designated as DoD Acquisition Category 1 

(ACAT 1).  After applying these criteria, we arrive at an initial sample size of 28 

programs with available SAR TOA data.  Next, we further specify that programs must 

have a reported engineering and manufacturing development (EMD) contract award date, 

first flight date, and initial operational capability (IOC) date.  After applying these 

criteria, 2 of the 28 aircraft development programs are deselected, leaving a remaining 

sample size of 26 aircraft as shown in Table 3.  The C-130 AMP and KC-130J programs 

are both deselected for lacking a published first flight and IOC date.   

Table 3: Selected Aircraft Development Programs 

1 A-10 14 EA-6B ICAP 
2 AWACS BLOCK 40 15 F-14A 
3 AWACS RSIP 16 F-14D 
4 B-1 CMUP 17 F-15A 
5 B-2 EHF 1 18 F-16A/B 
6 B-2 RMP 19 F-18E/F 
7 B-2A 20 F-18A 
8 C-17A 21 F-22 
9 C-5 AMP 22 F-35 AF 

10 C-5 RERP 23 F-5E 
11 E-2D 24 JSTARS 
12 E-6A 25 P-8A 
13 EA-18G 26 T-46A 
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Converting TOA (Budget) to Annual Expenditures (Base Year) 

RDT&E funding (appropriation 3600) is budgeted to execute in the first fiscal 

year of availability, but may be approved by the acquisition program’s Chief Financial 

Officer to obligate in the second year of availability.  Thus, RDT&E funding is 

considered “multiyear”, and available for incurring obligation for more than one fiscal 

year (AFCAH, 2007: 15-4).  Therefore, when estimating annual expenditures from TOA, 

we must account for this uncertainty by applying the OSD-Comptroller outlay rate to 

approximate multiyear spending.  As an example, consider the published RDT&E Navy 

outlay rates for fiscal years 1992 through 2002 are shown in Table 4.  From this table, we 

may interpret that, on average, a Navy RDT&E program will spend 55.95 percent of 

available FY92 funding during FY92 (first year), 33.01 percent of FY92 funding during 

FY93 (second year), and only 7.97 percent of FY92 funding during FY94 (third year).   

 

Table 4: Navy RDTE Outlay Rates (FY92-02) 

  Outlay Rates (Percentage) 
  First Year Second Year Third Year Fourth Year Fifth Year 
FY92 55.95 33.01 7.97 1.43 1.64 
FY93 54.36 33.88 7.91 1.32 2.53 
FY94 54.46 33.8 7.89 1.32 2.53 
FY95 47.73 38.8 9.06 1.51 2.9 
FY96 50 35.2 9.8 2.2 2.8 
FY97 51.77 34.45 8.97 1.2 3.61 
FY98 49.23 36.6 9.15 2.18 2.84 
FY99 50.9 38.69 6.31 2.34 1.76 
FY00 53.77 38.6 5.29 1.17 1.17 
FY01 53.3 38.41 5.25 1.17 1.87 
FY02 52.33 36.1 5.79 3.93 1.85 
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This same methodology is applied to the F-18 E/F’s TOA in Table 5.  Using the outlay 

rates given in Table 3, we calculate in Table 4 that $195.6 Million of FY92’s TOA will 

be expended during FY92.  Furthermore, $115.4 Million of FY92’s TOA will be 

expended during FY93, and $27.9 Million of FY92’s TOA will be expended during 

FY94.  Carrying this methodology from FY92 through FY02 reveals the estimated TY 

expenditures, shown in Table 4’s bolded font.  Additionally, Figure 8 compares the 

distribution of TOA and estimated expenditures.  Due to the effect of multiyear funding, 

expenditures will always appear to “lag” behind TOA.  

Table 5: F-18 E/F TOA to Then Year Expenditures Conversion 

 

Following the application of outlay rates, the F-18 E/F’s estimated then year 

annual expenditures must be converted to base year expenditures to control for the effects 

of inflation.  As shown in Table 6, then year expenditures are divided by the OSD-

Comptroller’s raw inflation index to obtain base year dollars.  FY2014 was selected as 

the base year, as the majority of our research was completed within FY2014.   

 

FY TOA FY92 FY93 FY94 FY95 FY96 FY97 FY98 FY99 FY00 FY01 FY02

FY92 349.5 195.5 115.4 27.9 5.0 5.7 0.0 0.0 - - - -

FY93 842.1 - 457.8 285.3 66.6 11.1 21.3 0.0 0.0 - - -

FY94 1396.2 - - 760.4 471.9 110.2 18.4 35.3 0.0 0.0 - -

FY95 1246 - - - 594.7 483.4 112.9 18.8 36.1 0.0 0.0 -

FY96 801.1 - - - - 400.6 282.0 78.5 17.6 22.4 0.0 0.0

FY97 345.4 - - - - - 178.8 119.0 31.0 4.1 12.5 0.0

FY98 234.6 - - - - - - 115.5 85.9 21.5 5.1 6.7

FY99 195.6 - - - - - - - 99.6 75.7 12.3 4.6

FY00 132.1 - - - - - - - - 71.0 51.0 7.0

FY01 13.9 - - - - - - - - - 7.4 5.3

FY02 1.1 - - - - - - - - - - 0.6

195.5 573.1 1073.5 1138.2 1011.0 613.4 367.1 270.2 194.7 88.3 24.1
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Figure 8: F-18 E/F Budget vs. TY Expenditures Profile 

Table 6: F-18 E/F Then-Year Expenditures to Base-Year Expenditures Conversion 

Fiscal Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 
TY Expenditures ($M) 195.5 573.1 1073.5 1138.2 1011.0 613.4 367.1 270.2 194.7 88.3 24.1 
Inflation Factor 0.675 0.693 0.707 0.721 0.735 0.750 0.756 0.762 0.772 0.786 0.793 
BY14 Expend. ($M) 289.7 827.0 1518.4 1578.6 1375.5 817.9 485.6 354.6 252.2 112.3 30.4 

 

Converting Annual Expenditures to Percent Schedule by Percent Expenditures 

Before beginning analysis, the estimated expenditures for each aircraft program 

are standardized into a percent schedule by percent expenditure format by applying 

consistent development start and end criteria to each program.  However, the selection of 

start and end criteria for development should not be made indiscriminately, as Burgess 

(2006) warns that: 

Models…cannot be more accurate than the underlying cost and schedule 

estimates, and they are meaningful only when the scope of both underlying 

estimates (cost and schedule) is precisely defined.  In the case of schedule 
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estimates, models must have precise definitions of start and end time, indexed to 

specific programmatic events that have common definitions across programs. It 

doesn’t help to have an accurate model that predicts 60 percent spent at 50 percent 

time, for example, if the definition of “time” is ambiguous (Burgess, 2006:19). 

Therefore, we determine that simply using the annual TOA funding or outlay-rate 

estimated expenditures to define the start or end of development would be inappropriate, 

as TOA is often distorted in a manner that disconnects funding from development 

milestones.  For example, it is observed that many historical development SAR budgets 

do not distinguish between the initial and follow-on development efforts; specifically, the 

occurrence of follow-on development results in multiple funding inflection points that 

could significantly skew the right tail of the S-curve.  It is determined that these follow-

on development efforts are beyond the scope of the initial time phased estimate. 

Engineering and Manufacturing (EMD) contract award is selected as our 

definition of schedule start, as the date of EMD contract award is commonly published 

and is synonymous with the primary contractor initiating aircraft development efforts.  

For most development efforts, EMD contract award coincides with the published 

Milestone B.  By comparison, Initial Operating Capability (IOC) is selected as our 

definition of schedule end for two reasons.  First, IOC is selected as development end 

because it is the latest milestone event that is consistently reported for all aircraft 

development programs within our database.  By comparison, Full Operational Capability 

(FOC) was also considered as an alternate definition of schedule end; however, it is 

reported inconsistently as only four of 26 programs publish FOC.  Second, IOC is 

selected as development end because AFCAH (2007) reports that the planned IOC date is 
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highly influential on time phasing.  “The IOC is a primary driver in determining the 

program’s development and production schedules…the program’s time phased estimate 

therefore must be consistent with the schedule…so that its budgetary inputs can support 

the achievement of the IOC” (AFCAH, 2007: 15-10). 

Having selected appropriate start and end criteria for development, we next must 

truncate any expenditures that occur outside of development.  Linear interpolation is 

utilized to estimate partial years which result from EMD contract award or IOC occurring 

during the fiscal year (any date other than 30 September).  Following truncation, the 

standardization to percent schedule by percent expenditures occurs, as shown for the F-18 

E/F in Figure 9.  This procedure is repeated for all 26 aircraft development programs, 

until a dataset of standardized percent schedule and percent expenditure is gathered.  The 

aggregated database generates a scatter plot with a visible S-curve, seen in Figure 10. 

 

FY1992 FY1993 FY1994 FY1995 FY1996 FY1997 FY1998
289.70 827.04 1518.43 1578.70 1375.52 817.90 485.62

FY1999 FY2000 FY2001 FY2002 FY2003 FY2004 FY2005
354.55 252.27 112.37 30.44 7.63 2.17 0.36

Event EMD Awd IOC
Start 7/21/1992 9/30/1992 9/30/1993 9/30/1994 9/30/1995 9/30/1996 9/30/1997 9/30/1998 9/30/1999 9/30/2000
End 9/30/1992 9/30/1993 9/30/1994 9/30/1995 9/30/1996 9/30/1997 9/30/1998 9/30/1999 9/30/2000 9/15/2001

Incremental 
Expenditures 

(BY14 $)
56.35 827.04 1518.43 1578.70 1375.52 817.90 485.62 354.55 252.96 107.75

Cumulative 
Expenditures 

(BY14 $)
56.35 883.39 2401.82 3980.51 5356.03 6173.93 6659.55 7014.10 7267.05 7374.81

Schedule 0.0212 0.1304 0.2396 0.3488 0.4583 0.5675 0.6766 0.7858 0.8953 1.0000
Expenditures 0.0076 0.1198 0.3257 0.5397 0.7263 0.8372 0.9030 0.9511 0.9854 1.0000

Outlay Rate-Estimated Expenditures (BY14 $) by Fiscal Year

Incremental and Cumulative Expenditures Controlling for RDTE Start and End

Percent Schedule by Percent Expenditures

 

Figure 9: F-18E/F Standardization to Percent Schedule by Percent Expenditures 
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Figure 10: Standardized Percent Schedule by Percent Expenditures Database 

Estimation of Weibull and Beta Distribution Parameters 

After converting each program to a percent schedule by percent expenditures 

format, optimal parameters must be computed for each program.  Nonlinear estimation 

techniques are utilized to determine the best-fit parameters for the Rayleigh (as a special 

case of the Weibull), Weibull, and Beta distributions.  Analysis is completed separately 

for each program using the Microsoft Excel Solver add-in, with the parameter cells 

identified as changing cells and the sum-squared error (SSE) identified as the target cell.  

During analysis, Excel Solver allows the parameters of each distribution to vary until the 

SSE value between the actual expenditure percentage and the distribution-modeled 

expenditure percentage is minimized.  As an example, Table 7 shows the results of 

optimal parameter analysis on the F-18E/F program, using the Weibull distribution. 

Changing the parameters to any value other than 𝛼 = 1.76171 and 𝛽 = 0.40402 would 

increase error between actual and predicted expenditures for the F-18E/F.  The estimated 

parameters by distribution type and program are provided in Appendix C. 
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Table 7: F-18E/F Minimized SSE for the Weibull Distribution 

Cum. 
Schedule 

Cumulative Expenditures Squared 
Error 

  Parameters 
Actual Weibull Predicted   Alpha Beta 

0 0 0 0   1.76171 0.40402 
0.021238 0.007641 0.005560 0.000004       
0.130422 0.119784 0.127533 0.000060       
0.239605 0.325678 0.328570 0.000008       
0.348789 0.539744 0.537844 0.000004       
0.458271 0.726260 0.713077 0.000174       
0.567454 0.837165 0.837861 0.000000       
0.676638 0.903013 0.916301 0.000177       
0.785821 0.951089 0.960382 0.000086       
0.895304 0.985389 0.982794 0.000007       
1.000000 1.000000 0.992819 0.000052       

Sum Squared Error = 0.000572     
 

    
      

Tests for Linear Relationships between Parameters and Program Characteristics 

 Next, using linear regression, we test for the existence of relationships between an 

aircraft development program’s attributes and its estimated parameters for the Rayleigh, 

Weibull and Beta models.  For the linear regression model, the distribution’s parameter 

becomes the dependent variable, while a development program’s characteristics are 

treated as independent variables (also known as predictor variables).  Based on previous 

S-curve research, it is postulated that the following program attributes are significant 

predictor variables: development program length (Brown et al., 2002; Burgess, 2006), 

development expenditure amount (Dibbly, 1988), branch of service (Brown et al., 2002), 

and scheduled time to first flight (Lee et al., 1997).  In addition, several other program 

characteristics are considered as predictor variables for our linear model, as summarized  

in Table 8. 
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Table 8: Program Characteristics Considered as Predictor Variables 

# Predictor Variables Previously Documented 
1 Length of Development (EMD Award through IOC) Brown et al. (2002), Burgess (2006) 
2 Total Costs of Development (BY14 Dollars) Dibbly (1988) 
3 Branch of Service Brown et al. (2002) 
4 Aircraft Type (Attack/Fighter, Cargo, Bomber, or ISR) - 
5 Time to First Flight (% Schedule) Lee et al. (1997) 
6 RDT&E Prototypes - 
7 Upgrade Program (Not New Start) - 
8 Avionics-Specific Upgrade Program - 
9 Budget Threshold Breach - 

10 Schedule Threshold Breach - 
11 Concurrency (overlap between OT&E and Milestone C) - 

 

Although 11 predictor variables are considered for each distribution parameter, it 

is our goal to make each model as parsimonious, or simplistic, as possible.  Therefore, the 

final linear regression for each distribution parameter will be limited to four or less 

predictor variables, with a goal of two or less.  There are several reasons we strive for 

parsimony.  First, the regression equation with four or fewer variables is less effort for 

cost analysts to apply and decreases the risk of a computational error.  Second, the model 

with fewer variables is more easily explained and presented to program managers and 

other key decision makers.  Third (and most importantly), DoD cost analyst often work 

with relatively small sample sizes of historic program cost data.  An often cited “10-to-1 

rule of thumb” within statistics recommends that a regression should have 10 or more 

observations per independent variable (Vittinghoff and McCulloch, 2007).  Similarly, a 

linear modeling textbook by Neter et al. (1996) states that a ratio of six to 10 predictor 

variables per predictor variable is acceptable. Due to having only 26 useable observations 
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within this thesis, we set the goal of 2 or fewer predictor variables per parameter, with an 

upper limit of 4 predictor variables per parameter.   

Comparison of Final Rayleigh, Weibull, and Beta S-curve Models 

 Using the linear relationships between program characteristics and parameters, a 

final model will be developed for each distribution type.  Hence, we will be directly 

comparing the final Rayleigh, Weibull, and Beta models, with the intention of defining 

the ‘best’ model.  To determine the best model, the predicted TOA profile, derived from 

predicted annual expenditures, will be compared against the actual TOA profile.  The 

best model will be defined as the model which provides for the highest average accuracy 

when predicting annual TOA, while controlling for model robustness across time and 

aircraft type.  Therefore, we next present the Lee et al (1997) methodology for deriving a 

TOA profile from predicted annual expenditures, followed by definitions for model 

accuracy and robustness. 

Convert Annual Expenditures to a TOA (Budget) Profile 

 The first step in this process of converting from base year 2014 annual 

expenditures to then year TOA is “escalating” each year’s predicted base year 2014 

expenditures, so that our prior controls for inflation are removed and current year 

expenditures are obtained.  Escalation is accomplished by multiplying each year’s 

predicted base year 2014 expenditures by the OSD-Comptroller’s raw inflation index.  It 

should be noted that this process is simply a reversal of the current year to base year 

methodology applied earlier in Table 6.  The second step in our process involves 

transforming our predicted current year expenditures into a TOA profile through a 
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application of the OSD-Comptroller’s outlay rates.  We elect to employ Lee et al.’s 

(1997) methodology of using a linear system of equations to calculate a TOA profile.  

Lee et al.’s (1997) methodology defines the linear equation 

                            𝑇𝑘 = (𝑂𝑘 −  𝑠2𝑇𝑘−1 −  𝑠3𝑇𝑘−2 − ⋯−  𝑠𝑗𝑇𝑘−𝐽+1)/𝑠1 (8) 

Where 𝑡 represents the estimated TOA in a given year, 𝑠 represents the outlay pattern 

value (value between 0 and 1), and 𝑂 represents the outlay, also known as annual 

expenditure. 

Model Accuracy 

Our research will utilize the Pearson R2 to judge each model’s accuracy.  We 

make the distinction that R2 is computed separately for each of the aircraft development 

programs and then averaged to arrive at a mean model R2.  This technique ensures that 

aircraft development programs with a greater number of years of RDTE do not bias the 

reported R2 value; hence, each aircraft development program is allotted equal weight in 

determining the model’s accuracy.   

Robustness 

When selecting a best model, consideration will also be given to model 

robustness.  As documented by Stingler (2010), robustness has many definitions that have 

changed throughout time.  However, for this thesis, we will comprise a simple standard 

for S-curve model robustness: the best S-curve model should be able to accurately predict 

annual expenditures (as measured by R2) for all aircraft types across all time periods.  For 

example, an S-curve model which is only accurate in predicting time-phased expenditures 

for 1970’s-era fighter aircraft would be useless for the cost analyst attempting to time 

phase a contemporary cargo aircraft.   
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Summary 

 This chapter explains the proposed methodology for estimating the best model for 

time-phasing aircraft RDT&E expenditures.  We begin by first obtaining SAR budget 

data from DAMIR and estimating annual expenditures via outlay rates.  After accounting 

for inflation through the application of the OSD-Comptroller inflation rates, the 

expenditure data are transformed into a percent expenditure by percent schedule format.  

This transformation is necessary to establish a database of standardized program data for 

analysis.  Next, we estimate distribution parameters for each program using Excel’s 

Solver; distribution parameters are adjusted until the SSE is minimized.  Following the 

estimation of parameters, linear relationships between the distribution parameters and 

program characteristics are developed.  These linear relationships are then used to 

construct our final Rayleigh, Weibull, and Beta models.  Finally, using the R2 for annual 

TOA and robustness checks, these final models are compared and a “best” model is 

defined.  In the next chapter, we present the analysis of our data and model development.   
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IV.  Analysis and Results 

Introduction 

This chapter provides the results from the methodology outlined in Chapter 3.  

First, using our database of 26 aircraft, we calculate the average percent of expenditures 

at the development program midpoint to determine the accuracy of the 60 percent 

expenditures by 50 percent schedule “rule of thumb”.  Second, linear relationships 

between development program characteristics and distribution parameters are developed.  

Finally, using the developed linear relationships, the best Rayleigh, Weibull, and Beta 

models are compared.  The models are judged by their R2 values in addition to robustness 

across time, aircraft type, and upgrade characteristic. 

Accuracy of 60/40 “Rule of Thumb” 

 As introduced earlier, the 60 percent expenditures at 50 percent schedule heuristic 

(also known as the 60/40 rule of thumb) is well known to cost analysts (Lee at al., 1997).  

To test the accuracy of this rule, we calculate the estimated percent expenditures at 50 

percent schedule for the 26 aircraft development programs in our database through linear 

interpolation.  We discover that programs expend only 56.3 percent of their total 

expenditures at 50 percent schedule, on average, as summarized in Appendix B.  More 

specifically, 7 programs expend more than 60 percent by the development midpoint, 16 

expend less than 60 percent by the program midpoint, and 3 expend approximately 60 

percent by the program midpoint.   

However, a noticeable time trend emerges when programs are plotted across time 

in Figure 11.  Expenditures for aircraft development programs have generally become 
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more “front-loaded” over time, with a greater percentage of expenditures occurring by 

the development midpoint.  The most significant change in development program 

spending is visible during the 1980s, the period during which the President’s Blue Ribbon 

Commission on Defense Management was preparing its final report.  The report 

recommended sweeping changes to acquisitions management, to include increased usage 

of prototyping, limitations on concurrency, early development testing, and a multi-year 

appropriations cycle (Blue Ribbon Commission, 1986).  We hypothesize that the 

President’s Blue Ribbon Panel had an influence on the distribution of aircraft 

development expenditures, and therefore elect to analyze separately the 14 

“contemporary” programs which initiated development during the last 30 years. If the 

contemporary programs (from 1985 and later) are analyzed in isolation, we discover that 

programs expend a mean of 63.13 percent of total expenditures at 50 percent schedule, 

with a median of 59.83 percent expenditures at 50 percent schedule.   

Additionally, a second trend emerges between contemporary upgrade (to include 

modification programs) and contemporary new start programs, as shown in Table 9.  On 

average, we find that the expenditures for contemporary upgrade programs are more 

“front loaded” than their contemporary new start counterparts.  Contemporary upgrade 

programs expend 65.27 percent of total expenditures at 50 percent schedule, while 

contemporary new start programs expend 55.04 percent of total expenditures at 50 

percent schedule. As a result, we assess that the 60/40 rule is generally not an accurate 

heuristic for the contemporary aircraft development program, given that the analyst can 

identify the development program as either a new start or upgrade. 
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Figure 11: Percent Expenditures at 50% Schedule, by Year of Contract Award 

 

Table 9: Percent Expenditures at 50% Schedule, New Start vs. Upgrade (1985-later) 

New Start 
Program 

Percent 
Expenditures at 
50% Schedule  

Upgrade 
Program 

Percent 
Expenditures at  
50% Schedule 

F-22 0.60   AWACS BLOCK 40 0.69 
F-35 AF 0.60   AWACS RSIP 0.80 
JSTARS 0.54   B-1 CMUP 0.49 
P-8A 0.46   B-2 EHF 1 0.75 

Mean: 0.55   B-2 RMP 0.60 
Median: 0.57   C-5 AMP 0.57 

      C-5 RERP 0.76 
      E-2D 0.70 
      EA-18G 0.49 
      EA-6B ICAP 0.56 
      F-18E/F 0.77 
      Mean: 0.65 
      Median: 0.69 
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Linear Relationships between Parameters and Program Characteristics 

 Utilizing unique program characteristics, linear relationships are developed to 

explain variation in the estimated distribution parameter values.  In addition to the 11 

program characteristics previously documented, we consider interactions between 

predictor variables and transformations of predictor variables, such as the application of 

natural log, to increase the explanatory power of our models.  Predictor variables which 

are not statistically significant at the 5 percent level are excluded from the model outputs.    

Based on the discovery of the time trend observed earlier, we also consider the inclusion 

of an indicator variable, also known as a “dummy variable”, for all aircraft with an EMD 

contract award date before 1985.   

Additionally, it should be emphasized that the C-17A is excluded from the linear 

regression models for two reasons.  First, the C-17A is an overly influential data point 

across all distribution parameters and consistently resulted in Cook’s D values above 1.  

A Cook’s D value above 0.5 indicates that a data point is significantly influential on the 

model estimates (Neter, Kutner, Nachtsheim, and Wasserman, 1996: 380).  Second, a 

qualitative review of the acquisition history of the C-17A reveals that the C-17A aircraft 

suffered extensive development delays due to contracting difficulties, budget cuts, and 

management problems, as evidenced by a 1990 USAF Inspector General investigation for 

management improprieties (Saxer, 1995).  Although schedule delays are not uncommon 

for aircraft development, we determine that the extent of the C-17A’s delays make it a 

unique data point that should be separated from other aircraft within our sample.   
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Rayleigh Distribution – Scale Parameter β 

 Three predictor variables are significant at explaining variation in the Rayleigh’s 

scale parameter β: time to first flight, upgrade program, and the interaction between the 

pre-1985 indicator and upgrade.  Together, these three variables provide a R2 of 0.535, 

and significance at the 5 percent level is maintained for all variables, as displayed in 

Table 10.  Next, we test for influential data points by utilizing the Cook’s D statistic.  As 

shown in Appendix D, the absence of values over 0.5 indicates that no influential 

observations exist for the linear regression model.  Finally, we use the residuals, which 

are the difference between the observed and predicted parameter values, to test separately 

for normality and constant variance.  Appendix D displays the normal distribution fit to 

residual values; the Shapiro-Wilks test p-value greater than 0.05 indicates that the 

residual values are normally distributed.  Residuals appear to have a reasonably uniform 

distribution across the predicted range, showing constant variance. Constant variance is 

further confirmed by the Breusch-Pagan test; the reported p-value of 0.5264 fails to 

rejects the null hypothesis of constant variance. 

 
Weibull Distribution – Shape Parameter α 

One predictor variable is significant at explaining variation in the Weibull’s shape 

parameter α: the pre-1985 indicator.  As shown in Table 11, this single variable provides 

a R2 of 0.357, with statistical significance at the 0.05 level.  As shown in Appendix D, the 

absence of Cook’s D values over 0.5 indicates that no influential observations exist for 

either linear regression model.  Additionally, Appendix D displays the normal 

distribution fit to residual values; the Shapiro-Wilk’s p-value greater than 0.05 indicates 
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that the residual values are normally distributed.  Residuals appear to be uniformly 

distributed, with a Breusch-Pagan p-value of 0.6911. 

Table 10: Summary of Fit – Rayleigh Scale Parameter β 

Summary of Fit 

R2         0.534592 
R2- Adjusted         0.468105 

Model Parameter Estimates 
Term Estimate Std. Error Prob. > |t| Std. Beta VIF 
Intercept 0.450261 0.048829 <0.0001 - - 
First Flight (% Schedule) 0.240399 0.100000 0.0255 0.36211 1.02381 
Upgrade Program -0.078185 0.025229 0.0054 -0.48676 1.11316 
Interaction 0.148797 0.045965 0.0039 0.50304 1.08960 

 

Table 11: Summary of Fit -- Weibull Shape Parameter α 

Summary of Fit 

R2         0.356652 
R2- Adjusted         0.328681 

Model Parameter Estimates 
Term Estimate Std. Error Prob. > |t| Std. Beta VIF 
Intercept 1.91047 0.049748 <0.0001 - - 
Pre-1985 Contract Award 0.503002 0.140866 0.0016 0.597204 1 

 

Weibull Distribution – Scale Parameter β 

As an indicator of robustness, it is discovered that the Weibull’s scale parameter β 

is influenced by the same predictor variables as the Rayleigh’s scale parameter β: time to 

first flight, upgrade program, and the interaction between the pre-1985 indicator and 

upgrade.  Together, these three variables provide a R2 of 0.547, and statistical 

significance is maintained at the 0.05 level for all variables, as displayed in Table 12.  As 
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shown in Appendix D, the absence of Cook’s D values over 0.5 indicates that no 

influential observations exist for the linear regression model.  Additionally, Appendix D 

displays the normal distribution fit to residual values; the Shapiro-Wilk’s p-value greater 

than 0.05 indicates that the residual values are normally distributed.  Residuals appear to 

be uniformly distributed, with a Bruesch-Pagan p-value of 0.5176. 

Table 12: Summary of Fit -- Weibull Scale Parameter β 

Summary of Fit 

R2         0.546873 
R2- Adjusted         0.482141 

Model Parameter Estimates 
Term Estimate Std. Error Prob. > |t| Std. Beta VIF 
Intercept 0.442652 0.049748 <0.001 - - 
First Flight (% Schedule) 0.258704 0.101884 0.0191 0.377406 1.0238 
Upgrade Program  -0.079064 0.025703 0.0057 -0.47673 1.1132 
Interaction 0.156363 0.04683 0.0031 0.51196 1.0896 

 
 

Beta Distribution – Shape Parameter α 

 Three predictor variables are significant at explaining variation in the Beta’s 

shape parameter α: the pre-1985 indicator, length of development, and the natural log of 

1 divided by the length of development.  Table 13 displays that these variables together 

provide a R2 of 0.462, and significance at the 5 percent level is maintained for all 

variables.  As shown in Appendix D, the absence of Cook’s D values over 0.5 indicates 

that no influential observations exist for the regression model.  Additionally, Appendix D 

displays the normal distribution fit to residual values; the Shapiro-Wilk’s p-value greater 
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than 0.05 indicates that the residual values are normally distributed.   Residuals appear to 

be uniformly distributed, with a Bruesch-Pagan p-value of 0.6473. 

Table 13: Summary of Fit – Beta Shape Parameter α 

Summary of Fit 

R2         0.462269 
R2- Adjusted         0.385451 

Model Parameter Estimates 

Term Estimate 
Std. 

Error Prob. > |t| Std. Beta VIF 
Intercept -1.803242 0.362462 0.0988 - - 
Pre-1985 Contract Award 0.742528 0.873358 0.0183 0.745497 1.67176 
Length of Development -0.324556 0.112016 0.0086 -2.15116 21.5268 
Ln(1/Length of Develop.) -2.945843 0.91015 0.0040 -2.51231 23.5293 

 
Beta Distribution – Shape Parameter β 

 Four predictor variables are useful in explaining variation in the Beta’s shape 

parameter β: the pre-1985 indicator, length of development, upgrade, and the interaction 

between upgrade and the pre-1985 indicator.  Together, these variables provide a R2 of 

0.593, and significance at the 5 percent level is maintained for all variables, as displayed 

in Table 14.  As shown in Appendix D, the absence of Cook’s D values over 0.5 indicates 

that no influential observations exist for the regression model.  Additionally, Appendix D 

displays the normal distribution fit to residual values; the Shapiro-Wilk’s p-value greater 

than 0.05 indicates that the residual values are normally distributed.  The residuals plot 

appears to be uniformly distributed with a reported Breusch-Pagan p-value of 0.419. 
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Table 14: Summary of Fit – Beta Shape Parameter β 

Summary of Fit 

R2         0.593305 
R2- Adjusted         0.511966 

Model Parameter Estimates 

Term Estimate 
Std. 

Error Prob. > |t| Std. Beta VIF 
Intercept -0.361293 0.548769 0.5178 - - 
Pre-1985 Contract Award 1.426644 0.377201 0.0012 1.11796 4.29664 
Length of Development 0.155172 0.039521 0.0008 0.80274 2.05559 
Upgrade Program 1.492916 0.306782 <.0001 1.19306 2.95581 
Interaction -1.646058 0.45711 0.0018 -0.71431 1.93505 

 

Functional Form of Final Models 

 Having established program characteristics to operate as predictor variables for 

the distribution parameters, we write the final functional forms of our Rayleigh, Weibull, 

and Beta non-linear equations.  Additionally, we identify a baseline model for 

comparison: the 60/40 Rayleigh model, provided in Lee et al. (1997).  It should be 

emphasized that the Lee et al. 60/40 model controls for the Rayleigh’s infinite tail by 

assuming that schedule completion occurs at 97 percent of expenditures; therefore, the 

right side of the given equation is divided by 0.97. 

Final Rayleigh Distribution Model 

 % 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 = 1 − 𝑒−(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝛽 )2 (9) 

𝛽 =  0.45026 + 0.2404 (% 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑎𝑡 𝐹𝑖𝑟𝑠𝑡 𝐹𝑙𝑖𝑔ℎ𝑡) 

− 0.07819 (𝑈𝑝𝑔𝑟𝑎𝑑𝑒) + 0.1488 (𝑃𝑟𝑒 − 1985 × 𝑈𝑝𝑔𝑟𝑎𝑑𝑒) 
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Final Weibull Distribution Model 

  % 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 = 1 − 𝑒−(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒
𝛽 )𝛼  (10) 

 𝛼 = 1.91047 + 0.503 (𝑃𝑟𝑒 − 1985)  

𝛽 =  0.44265 + 0.2587 (% 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑎𝑡 𝐹𝑖𝑟𝑠𝑡 𝐹𝑙𝑖𝑔ℎ𝑡) 

− 0.07906 (𝑈𝑝𝑔𝑟𝑎𝑑𝑒) +  0.15636 (𝑃𝑟𝑒 − 1985 × 𝑈𝑝𝑔𝑟𝑎𝑑𝑒) 

Final Beta Distribution Model 

 % 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 =  (1−% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)𝛽−1(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)𝛼−1Γ (α+β)
Γ(α)Γ(β)

 (11) 

𝛼 =  −1.80324 + 0.74253 (𝑃𝑟𝑒 − 1985) −  0.32456 (𝐿𝑒𝑛𝑔𝑡ℎ) −

 2.94584 (ln  1
𝐿𝑒𝑛𝑔𝑡ℎ

)  

𝛽 = −0.36129 + 1.42664 (𝑃𝑟𝑒 − 1985)  +  0.155517 (𝐿𝑒𝑛𝑔𝑡ℎ) 

+ 1.49292 (𝑈𝑝𝑔𝑟𝑎𝑑𝑒) −  1.64606 (𝑃𝑟𝑒 − 1985 × 𝑈𝑝𝑔𝑟𝑎𝑑𝑒) 

Baseline 60/40 “Rule of Thumb” Model 

 % 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 = 1−𝑒−3.52(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)2

0.97
  (12) 

Comparison between Final Models’ Predictive Capability 

 Annual TOA R2 

 Next, using our written equations, we compare the predictive accuracy of our 

Rayleigh, Weibull, and Beta models against the baseline 60/40 model.  As previously 

explained in Chapter 3, accuracy is defined as R2, or the percentage of total variability in 

annual TOA that is explained by the model.  After applying our methodology for 

calculating R2, we find that the Weibull model offers the highest nominal predictive 

ability across all programs, on average, as shown in Table 15.  When only contemporary 
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programs with a contract award of 1985 or later are considered, the Weibull again 

outperforms the Rayleigh and Beta distributions, although by a less significant 

percentage.  As a result, we are not yet satisfied the Weibull model is superior, and next 

turn to robustness checks to validate if any model is consistently superior (or inferior) for 

predicting a particular time period, aircraft type or upgrade program.  

 

Table 15: R2 Comparison between Final Models 

 
   

 
  

  60/40 Rayleigh Weibull Beta 
Mean R2  0.6807 0.7365 0.7463 0.6988 
Mean R2 (CY85 –14 contract award only) 0.6813 0.7149 0.7152 0.6648 
Median 0.7240 0.8002 0.8011 0.7163 
Max R2 0.9488 0.9538 0.9707 0.9138 
Min R2 0.2785 0.3173 0.3715 0.3784 
         

R2 Range (All Historical Data) 60/40 Rayleigh Weibull Beta 

< 0.5 4 3 1 2 
0.5 < 0.6 4 3 5 5 
0.6 < 0.7 4 4 2 4 
0.7 < 0.8 7 1 4 7 
0.8 < 0.9 4 10 9 6 
0.9 < 1.0 3 4 4 1 

Total 25 25 25 25 

 
 

   Robustness Check 1 

As our first test of robustness, we examine each model’s predictive ability as a 

function of time in Figure 12 and Table 16.  Although it is observed that no model is 

radically superior for predicting budget requirements for more contemporary aircraft, the 

Weibull model holds as the most predictive during two of the five 10 year periods.   
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Figure 12: Models' Predictive Ability over Time 

Table 16: Models’ Predictive Ability over Time 

Year of EMD 
Contract Award 

Sample 
(n) 60/40 Rayleigh Weibull Beta 

CY65-74 4 0.7684 0.8137 0.7149 0.7466 
CY75-84 6 0.5583 0.7012 0.8200 0.7545 
CY85-94 4 0.5679 0.6489 0.6737 0.7006 
CY95-04 10 0.7223 0.7291 0.7182 0.6367 
CY05-14 1 0.7240 0.8359 0.8504 0.8024 

  

Robustness Check 2 

Next, as a second check of robustness, the mean R2 value for each aircraft type is 

computed.  Aircraft are grouped into four broad development categories: attack/fighter, 

bomber, cargo, and ISR/electronic.  For both fighter (Table 17) and bomber (Table 19) 

aircraft, it is observed that the Weibull model generally outperforms both the Rayleigh 

and Beta model, as measured by the mean.  Conversely, for cargo (Table 18), the Beta 
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outperforms the Rayleigh and Weibull; however, with a sample size of only two cargo 

aircraft, our inference is limited. Finally, it is seen in Table 20 that we are least successful 

at predicting the annual TOA for ISR/Electronic aircraft, as the best performing model 

(the Rayleigh) offers a mean R2 of only 0.65.   

Table 17: Attack/Fighter Aircraft R2 Comparison 

Program 60/40 Rayleigh Weibull Beta 

A-10 0.9182 0.8836 0.7053 0.5404 
F-14A 0.9488 0.9538 0.8011 0.7761 
F-14D 0.6007 0.6944 0.8473 0.6825 
F-15A 0.3543 0.4983 0.5537 0.7993 
F-16A 0.9327 0.9293 0.9707 0.7394 
F-18 E/F 0.6796 0.8806 0.8937 0.7479 
F-18A 0.2785 0.3173 0.5118 0.7160 
F-22 0.8109 0.7944 0.8314 0.8716 
F-35 (USAF) 0.8082 0.8077 0.8167 0.5375 
F-5E 0.8523 0.9191 0.7996 0.8708 

Mean: 0.7184 0.7678 0.7731 0.7281 
Median: 0.8096 0.8442 0.8089 0.7436 

 

Table 18: Cargo Aircraft R2 Comparison 

Program 60/40 Rayleigh Weibull Beta 

C-5 AMP 0.7070 0.5679 0.5261 0.6357 
C-5 RERP 0.7384 0.9007 0.9316 0.8476 

Mean 0.7227 0.7343 0.7288 0.7417 
Median: 0.7227 0.7343 0.7288 0.7417 
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Table 19: Bomber Aircraft R2 Comparison 

Program 60/40 Rayleigh Weibull Beta 

B-1 CMUP 0.8287 0.8202 0.7880 0.7283 
B-2 EHF 1 0.7240 0.8359 0.8504 0.8024 
B-2 RMP 0.7750 0.8000 0.8044 0.7163 
B-2A 0.5837 0.8002 0.9048 0.5974 

Mean 0.7278 0.8141 0.8369 0.7111 
Median: 0.7495 0.8102 0.8274 0.7223 

 
Table 20: ISR/Electronic Aircraft R2 Comparison 

Program 60/40 Rayleigh Weibull Beta 

AWACS Block 40 0.5065 0.6728 0.7139 0.6058 
AWACS RSIP 0.4111 0.5664 0.5980 0.6919 
E-2 D 0.7726 0.8633 0.8605 0.8190 
E-6A 0.7323 0.8703 0.8808 0.9138 
EA-18G 0.6989 0.5373 0.5004 0.5630 
EA-6B ICAP 0.7307 0.6761 0.6256 0.5353 
JSTARS 0.3700 0.3543 0.3715 0.4910 
P-8A 0.6575 0.6452 0.6151 0.3784 

Mean 0.6099 0.6482 0.6457 0.6248 
Median: 0.6782 0.6590 0.6203 0.5844 

 
  

Robustness Check 3 

As a third, and final, check of robustness, the ability of each model to predict annual 

TOA for both “new starts” and “upgrade” programs is compared.  In Table 21 and Table 

22, it is shown that, on average, we predict the distribution of TOA for new starts and 

upgrade programs with equal success.  Across both new starts and upgrades, the Weibull 

model generally outperforms the Rayleigh and Beta models. 
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Table 21: New Start Aircraft R2 Comparison 

Program 60/40 Rayleigh Weibull Beta 

A-10 0.9182 0.8836 0.7053 0.5404 
B-2A 0.5837 0.8002 0.9048 0.5974 
E-6A 0.7323 0.7803 0.8808 0.9138 
F-14A 0.9488 0.9538 0.8011 0.7761 
F-15A 0.3543 0.4983 0.5537 0.7993 
F-16A 0.9327 0.9293 0.9707 0.7394 
F-18A 0.2785 0.3173 0.5118 0.7160 
F-22 0.8109 0.7944 0.8314 0.8716 
F-35 AF 0.8082 0.8077 0.8167 0.5375 
JSTARS 0.3700 0.3543 0.3715 0.4910 
P-8A 0.6575 0.6452 0.6151 0.3784 
T-46A 0.5962 0.8339 0.9552 0.8628 

Mean: 0.6659 0.7232 0.7432 0.6853 
Median: 0.6949 0.8040 0.8089 0.7277 

 
 

Table 22: Upgrade Aircraft R2 Comparison 

Program 60/40 Rayleigh Weibull Beta 

AWACS Block 40 0.5065 0.6728 0.7139 0.6058 
AWACS RSIP 0.4111 0.5664 0.5980 0.6919 
B-1 CMUP 0.8287 0.8202 0.7880 0.7283 
B-2 EHF 1 0.7240 0.8359 0.8504 0.8024 
B-2 RMP 0.7750 0.8000 0.8044 0.7163 
C-5 AMP 0.7070 0.5679 0.5261 0.6357 
C-5 RERP 0.7384 0.9007 0.9316 0.8476 
E-2 D 0.7726 0.8633 0.8605 0.8190 
EA-18G 0.6989 0.5373 0.5004 0.5630 
EA-6B ICAP 0.7307 0.6761 0.6256 0.5353 
F-14D 0.6007 0.6944 0.8473 0.6825 
F-18 E/F 0.6796 0.8806 0.8937 0.7479 
F-5E 0.8523 0.9191 0.7996 0.8708 

Mean: 0.6943 0.7488 0.7492 0.7113 
Median: 0.7240 0.8000 0.7996 0.7163 
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Summary 

Chapter 4 provides the results of applying our methodology to a sample of 26 

ACAT 1 aircraft development programs.  First, it is shown that the accuracy of the 60/40 

“rule of thumb” is limited, as it does not account for the differences in time phasing 

between new start and upgrade development programs.  Next, we provide goodness-of-fit 

results that show that three unique aircraft development characteristics may be used to 

estimate the Rayleigh, Weibull, and Beta distribution parameters.  Specifically, it is 

shown that time to first flight, length of development, and upgrade are statistically 

significant at the 0.05 level for estimating one or more distribution parameters.  Finally, 

we use the estimated linear relationships to construct a final Rayleigh, Weibull, and Beta 

model.  Through a series of accuracy and robustness checks, these final models are 

compared against the baseline 60/40 model provided by Lee et al. (1997).  We discover 

that the Weibull model outperforms other proposed models for the majority of robustness 

checks.  In the following chapter, Chapter 5, we conclude our research effort by 

answering Chapter 1 research questions, recognizing model limitations, and identifying 

areas for future research. 
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V.  Conclusions and Recommendations 

Introduction 

 In this chapter, we revisit our initial research questions to validate that our 

research accomplished its intended goal.  Additionally, we review the limitations of 

findings, identify areas for future research, and conclude by summarizing the significance 

of this research. 

Research Questions Answered 

 1 – Is the ‘rule of thumb’ that 60 percent of expenditures occur by 50 percent 

schedule (60/40 S-curve) accurate for contemporary aircraft development programs?   

 Lee et al. (1997) trace the origin of the 60/40 rule of thumb to a circa-1980 

aircraft development study completed by the OSD Cost Analysis Improvement Group 

(CAIG).  However, the OSD-CAIG study could not be recovered, so we instead review 

all available studies on time phasing aircraft development. 

During the 1970’s, both Weida (1976) and General Research Corporation (1979) 

find that aircraft development contracts have 57 percent expenditures at 50 percent 

schedule.  Using the Weibull parameters located in the appendix from Brown (2001), we 

separately estimate that aircraft development programs have 57.1 percent expenditures at 

50 percent schedule, on average.  Similarly, the 26 historical aircraft development 

programs from this thesis report 56.3 percent expenditures at 50 percent schedule, on 

average.  These results would likely lead the cost analyst to erroneously select a 56/44 or 

57/43 “rule of thumb” over the 60/40.  
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 However, attempting to identify a single rule of thumb that summarizes all 

aircraft across time would be a mistake, as two significant trends emerge.  Firstly, as 

shown earlier in Figure 13, a significant time trend is observed within our data.  Aircraft 

programs which began development during calendar year 1985 or later have expenditure 

distributions which are more “front loaded” (skewed right) than programs from before 

1985.  As a result, when the 14 “contemporary” programs from 1985 and later are 

analyzed in isolation, we find that programs expend a mean of 63.1 percent of total 

expenditures at 50 percent schedule, with a median of 59.8 percent expenditures at 50 

percent schedule.   

Next, we further delineate contemporary aircraft as either new starts or upgrades 

in Table 9.  It is discovered that contemporary new starts (n=4) expend a mean of 55.0 

percent expenditures at 50 percent schedule, while contemporary upgrades (n=11) expend 

a mean of 65.3 percent expenditures at 50 percent schedule.  Therefore, as a heuristic, we 

determine that the 60/40 rule of thumb generally overestimates early expenditures for 

new starts, while underestimating early expenditures for upgrade programs.   

2 – What program and/or schedule characteristics best predict distribution 

parameters for the Rayleigh, Weibull, and Beta distributions?   

 As summarized previously in Table 8, eleven unique attributes were considered 

initially as predictor variables for the distribution parameters.  However, only three of 

eleven characteristics were statistically significant.  The time to first flight and program 

upgrade characteristics are predictive for the Rayleigh and Weibull distribution 

parameters, while the time to first flight, upgrade, length of development characteristic  

are predictive for the Beta distribution parameters.  Total development costs, branch of 
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service, aircraft type, prototyping, budget/schedule threshold breaches, and concurrency 

were not statistically significant predictor variables (at the 0.05 level) for any of the 

distribution parameters.   

3 – Which distribution (Rayleigh, Weibull, or Beta) provides the best S-curve 

model for time phasing contemporary aircraft development programs? 

The Weibull distribution model, which explained 74.6 percent of the total variation 

in annual expenditures, is marginally more accurate than our Rayleigh and Beta models, 

which explained 73.7 percent and 69.9 percent of variation, respectively.  All three 

models proved more accurate than the 60/40 model, which explained only 68.0 percent of 

total variation.  Robustness checks reveal that the Weibull model is superior across most 

aircraft types and sampled time periods, with exceptions.   

Due to these exceptions, we recognize that no time phasing model is perfect, and 

recommend that the cost analyst consider the application of two or more S-curve models 

as a “cross check” of their time phased estimate.  To facilitate this cross-check, we again 

provide the final functional forms for our Rayleigh, Weibull, and Beta models in 

Appendix E using Microsoft Excel notation.  For clarity, those predictor variables which 

are only applicable to historical aircraft with contract award dates prior to 1985 are 

removed.   

Limitations 

We recognize several major limitations that could potentially limit the 

applicability of this research to “real world” cost analysis applications.  First, continuing 

a methodology previously applied by Brown et al. (2002), Porter and Gallagher (2004), 
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and Unger et al. (2004), we utilize the published OSD-Comptroller outlay rates to 

estimate expenditures from budgeted TOA.  Therefore, we recognize that the estimated 

program expenditures to which we fit our models are not “actuals”, but instead 

approximations of expenditures.  For this reason, we elect to apply the Lee et al. (1997) 

methodology to transform our predicted expenditures into predicted TOA before 

measuring R2.   Similarly, when applying the models presented in this thesis to “real 

world” estimates, we recommend that the cost analyst also apply the Lee et al. 

methodology to convert their predicted expenditures into predicted TOA.   

Second, in constructing our model, we utilize budget and schedule data from the 

latest SAR available for each aircraft development program.  We do not account for any 

cost or schedule growth which exists between the aircraft program’s first and latest SAR.  

Therefore, the reported Weibull time phasing model R2 of 0.746 assumes absolutely 

accurate inputs for the cost, schedule, and program characteristics.  Once again, this 

assumption contrasts with the “real world”, where we recognize that cost and schedule 

estimates are rarely clairvoyant.  As a result, if any of estimated model inputs are less 

than accurate, the model accuracy will decrease, on average, below 0.746. 

Third, we recommend that the cost analyst should observe caution when using our 

models to “extrapolate”, or estimate beyond the original range of historical observations.  

Due to the usage of an indicator variable which distinguishes between pre-1985 contract 

awards and more contemporary programs, we further restrict this recommendation by 

asserting that the cost analyst should avoid going beyond the range of inputs for 

contemporary aircraft given in Table 23, particularly for the Beta model.  As a 

demonstration of the danger of interpolation, the reader should recognize that our data set 
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includes only four new starts which began development during 1985 or later. For each of 

these new starts, the length of development was between 9.3 and 14.8 years.  If the Beta 

model is extrapolated against a theoretical new start program with a first flight at 40 

percent schedule and a comparatively short 6 year development length, we discover that 

it estimates only 20 percent expenditures at 50 percent schedule, which is unlikely.  

However, it should be distinguished that we observe that our Weibull and Rayleigh 

models are generally more stable (compared to the Beta) when extrapolated outside of the 

observed range. 

Table 23: Upper and Lower Bounds for Model Inputs 

 

Recommendations for Future Research 

We recommend two areas for future research.  First, as addressed within 

limitations, our thesis assumes accurate cost and schedule inputs without growth.  

Therefore, for future research, we recommend the creation of a time phasing model with 

the capability to account for expected cost and schedule growth.  Secondly, we assert that 

it would be valuable for future researchers to expand upon the time phasing investigation 

completed by Unger et al. (2004).  Unger et al. find that a statistically significant 

relationship exists between the shape of the initial budget profile for a development 

program and observed cost and schedule growth.    However, as a potential limitation of 

their study, Unger et al. do not account for the effect of budget curtailments, specifically 

Lower Upper Lower Upper Lower Upper Lower Upper
First Flight (% Schedule) 0.29 0.72 0.34 0.42 0.28 0.66 0.39 0.66
Length of Development 4.2 14.8 9.3 14.8 5.7 12.2 5.7 12.2

New Start
All Historic Contemporary

Upgrade
All Historic Contemporary
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budget “cuts” within the early years of development.  We therefore hypothesize that both 

1) the initial shape of the budget (as measured by Weibull parameters) and 2) whether 

that initial budget is fully funded are predictive of future cost and schedule growth.  

Summary 

Past research documents that funding provided in the wrong fiscal years of a 

development program result in productivity inefficiencies, schedule slips and increased 

program costs (Belcher et. al, 1999; Unger, 2001).  Therefore, it is in the best interest of 

the system program office to submit an appropriate time phased estimate to the budget 

formulation process.  To assist in the estimation process, our research first tests the 

applicability of the 60/40 “rule of thumb” to contemporary aircraft programs.  We 

discover that, as a heuristic, the 60/40 does not account for the difference is spending 

patterns between new start and upgrade development programs.  Contemporary new start 

programs expend a mean of 55 percent expenditures at 50 percent schedule (55/45), while 

contemporary upgrade programs expend a mean of 65 percent expenditures at 50 percent 

schedule (65/35).  Next, we construct a methodology for estimating distribution 

parameters for the Rayleigh, Weibull, and Beta using characteristics common to all 

aircraft developing programs.  We find that time to first flight, years of development, and 

upgrade are all statistically significant predictors of our distribution parameters.  Finally, 

using our proposed methodology, we identify three final models which are estimated to 

improve time phasing accuracy when compared to the 60/40 “rule of thumb”.   

 



63 

Appendix A: Weida (1977) Expenditure Inflection Points  

  % Expenditures % Schedule 
B-1 0.56 0.36 
F-105 0.58 0.34 
C-141 0.54 0.51 
C-5 0.52 0.34 
XB-70 0.47 0.44 
Tug R 0.53 0.55 
Tug C 0.50 0.46 
Tug E 0.64 0.51 
Tug G 0.66 0.51 
C-5 Quality Assurance Hours 0.44 0.46 
C-5 Production Hours 0.52 0.48 
A-10 System 0.49 0.47 
A-10 Engine 0.69 0.62 
A-10 Gun 0.56 0.45 
A-10 Milestones 0.54 0.42 
AGM-65 A 0.62 0.43 
AWACS 0.70 0.51 

Mean: 0.56 0.46 
Median: 0.54 0.46 

Std. Deviation: 0.08 0.07 
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Appendix B: Estimated Percent Expenditures at 50% Schedule, by Program 

Program Year of EMD 
Contract Award 

Percent Expenditures at 50% Schedule 
Linear Interpolation Weibull  Beta 

A-10 1973 0.67 0.68 0.66 
AWACS BLOCK 40 2003 0.69 0.71 0.69 
AWACS RSIP 1988 0.80 0.82 0.82 
B-1 CMUP 1996 0.49 0.51 0.50 
B-2 EHF 1 2007 0.75 0.78 0.76 
B-2 RMP 2004 0.60 0.62 0.59 
B-2A 1981 0.46 0.46 0.45 
C-17A 1982 0.36 0.35 0.35 
C-5 AMP 1999 0.57 0.59 0.58 
C-5 RERP 2001 0.76 0.77 0.76 
E-2D 2004 0.70 0.71 0.69 
E-6A 1983 0.51 0.54 0.52 
EA-18G 2003 0.49 0.50 0.48 
EA-6B ICAP 1998 0.56 0.56 0.54 
F-14A 1969 0.55 0.57 0.54 
F-14D 1984 0.51 0.50 0.49 
F-15A 1970 0.47 0.49 0.47 
F-16A/B 1975 0.55 0.55 0.54 
F-18E/F 1992 0.77 0.77 0.76 
F-18A 1976 0.38 0.38 0.38 
F-22 1991 0.60 0.63 0.60 
F-35 AF 2001 0.60 0.61 0.58 
F-5E 1970 0.37 0.35 0.35 
JSTARS 1985 0.54 0.59 0.56 
P-8A 2004 0.46 0.47 0.46 
T-46A 1982 0.43 0.45 0.43 
  Mean: 0.56 0.58 0.56 
  Median: 0.55 0.57 0.54 
  Std. Deviation: 0.13 0.13 0.13 
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Appendix C: Estimated Distribution Parameters by Program 

Program 
Rayleigh – 

Scale β 
Weibull – 
Shape α 

Weibull – 
Scale β 

Beta - 
Shape α 

Beta - 
Shape β 

A-10 0.46 1.65 0.46 1.24 1.84 
AWACS Block 40 0.44 1.45 0.43 1.09 1.80 
AWACS RSIP 0.37 1.76 0.37 1.78 3.73 
B-1 CMUP 0.57 2.46 0.57 2.21 2.20 
B-2 EHF 1 0.39 1.52 0.38 1.25 2.46 
B-2 RMP 0.51 1.87 0.51 1.47 1.85 
B-2A 0.60 2.54 0.60 2.25 2.01 
C-17A 0.64 3.67 0.63 4.47 3.46 
C-5 AMP 0.52 2.39 0.52 2.30 2.71 
C-5 RERP 0.41 1.86 0.41 1.84 3.30 
E-2D 0.44 1.71 0.44 1.46 2.33 
E-6A 0.56 2.19 0.56 1.76 1.83 
EA-18G 0.59 2.18 0.59 1.67 1.57 
EA-6B ICAP 0.55 2.10 0.55 1.81 1.99 
F-14A 0.55 1.99 0.55 1.53 1.69 
F-14D 0.58 2.63 0.58 2.66 2.61 
F-15A 0.59 2.42 0.59 1.98 1.86 
F-16A/B 0.54 2.40 0.55 2.31 2.51 
F-18A 0.64 3.10 0.64 3.09 2.41 
F-18E/F 0.40 1.76 0.40 1.71 3.13 
F-22 0.51 1.75 0.50 1.32 1.70 
F-35 AF 0.52 1.87 0.52 1.51 1.86 
F-5E 0.68 2.59 0.69 1.31 0.85 
JSTARS 0.54 1.68 0.54 1.14 1.33 
P-8A 0.60 2.29 0.61 1.72 1.55 
T-46A 0.61 2.63 0.61 2.24 1.93 

Mean: 0.53 2.17 0.53 1.86 2.13 
Median: 0.55 2.10 0.55 1.72 1.93 

Std. Deviation: 0.08 0.50 0.09 0.72 0.70 
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Appendix D: Tests for Influence, Normality, and Constant Variance 

Rayleigh Scale Parameter β – Influential Data Points 

 

 
Rayleigh Scale Parameter β– Normality of Residuals 
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Rayleigh Scale Parameter β – Constant Variance 

 
 

Breusch-Pagan Test: 
P-value – 0.5264 

 
Weibull Shape Parameter α – Influential Data Points 
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Weibull Shape Parameter α – Normality of Residuals 

 
 
 

Weibull Shape Parameter α – Constant Variance 
 

 
 

Breusch-Pagan Test: 
P-value – 0.6911 
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Weibull Scale Parameter β – Influential Data Points 
 

 
 
 
Weibull Scale Parameter β – Normality of Residuals  
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Weibull Scale Parameter β – Constant Variance 

  
 

Breusch-Pagan Test: 
P-value – 0.5176 

 
Beta Shape Parameter α – Influential Data Points  
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Beta Shape Parameter α – Normality of Residuals  
 

 

 
 

Beta Shape Parameter α – Constant Variance  
 

 
 

Breusch-Pagan Test: 
P-value – 0.6473 
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Beta Shape Parameter β – Influential Data Points  
 

  
 

Beta Shape Parameter β – Normality of Residuals  
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Beta Shape Parameter β – Constant Variance  
 

 

 
 

Breusch-Pagan Test: 
P-value – 0.4188 
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Appendix E: Functional Forms of Final Models (Excel Notation) 

Note: For easier application to contemporary aircraft, input variables which are 

applicable only to aircraft with pre-1985 contract awards have been removed from 

models. 

 

Final Rayleigh Distribution Model 

 = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒,𝛼,𝛽, 𝑡𝑟𝑢𝑒) 

 𝛼 = 2  

𝛽 =  0.45026 + 0.2404 (% 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑎𝑡 𝐹𝑖𝑟𝑠𝑡 𝐹𝑙𝑖𝑔ℎ𝑡)

−  0.07819 (0 𝑖𝑓 𝑁𝑒𝑤 𝑆𝑡𝑎𝑟𝑡; 1 𝑖𝑓 𝑈𝑝𝑔𝑟𝑎𝑑𝑒) 

Final Weibull Distribution Model 

  = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒,𝛼,𝛽, 𝑡𝑟𝑢𝑒)  

 𝛼 = 1.91047 

𝛽 =  0.44265 + 0.2587 (% 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑎𝑡 𝐹𝑖𝑟𝑠𝑡 𝐹𝑙𝑖𝑔ℎ𝑡)

−  0.07906 (0 𝑖𝑓 𝑁𝑒𝑤 𝑆𝑡𝑎𝑟𝑡; 1 𝑖𝑓 𝑈𝑝𝑔𝑟𝑎𝑑𝑒) 

Final Beta Distribution Model 

 = 𝐵𝑒𝑡𝑎𝑑𝑖𝑠𝑡(% 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒,𝛼,𝛽)  

𝛼 =  − 1.80324 −  0.32456 (𝐿𝑒𝑛𝑔𝑡ℎ) −  2.94584 (ln  1
𝐿𝑒𝑛𝑔𝑡ℎ

)  

𝛽 = − 0.36129 +  0.155517 (𝐿𝑒𝑛𝑔𝑡ℎ)

+  1.49292 (0 𝑖𝑓 𝑁𝑒𝑤 𝑆𝑡𝑎𝑟𝑡; 1 𝑖𝑓 𝑈𝑝𝑔𝑟𝑎𝑑𝑒) 
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