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Abstract

An imaging Fourier-transform spectrometer (IFTS) was used to collect infrared

hyper-spectral imagery of smokestack plume associated with coal-burning power fa-

cility to assess the influence of turbulence on spectral retrieval of temperature (T)

and pollutant concentrations (Ci). A mid-wave (1.5-5.5 µm) Telops Hyper-Cam was

used and features a 320x256 InSb focal-plane array with a 326 µrad instantaneous

field-of-view (IFOV). The line-of-sight distance to the 76 m tall smokestack exit was

350 m (11.4 x 11.4 cm2 IFOV). Approximately 5000 interferogram cubes were col-

lected in 30 minutes on a 128x128 pixel window corresponding to a spectral resolution

of 20 cm−1. Radiance fluctuations due to plume turbulence were observed on a time

scale much shorter than hyper-spectral image acquisition rate, thereby introducing

scene change artifacts (SCA) in the Fourier-transformed spectra. Time-averaging the

spectra minimizes SCA magnitudes, but accurate T and Ci retrieval would require

a priori knowledge of the statistical distribution of temperature and other stochastic

flow field parameters. A method of quantile sorting in interferogram space prior to

Fourier-transformation is presented and used to identify turbulence throughout the

plume. It is demonstrated that if radiance fluctuations are due only to temperature

fluctuations, the spectrum associated with each interferogram quantile directly cor-

responds to the corresponding quantile temperature. Analysis of the quantile spectra

indicate that radiance fluctuations are driven by more than just temperature fluctua-

tions. Immediately above the stack exit, T and CO2 concentration estimates from the

median spectrum are 395 K and 6%, respectively, which compare well to in situ mea-

surements. Turbulence is small above the stack exit and introduced systematic errors

in T and Ci on the order of 0.5 K and 0.01%, respectively. In some plume locations,
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turbulent fluctuations introduced errors in T and Ci on the order of 8 K and 1%, re-

spectively. While more complicated radiance fluctuations precluded straightforward

retrieval of the temperature probability distribution, the results demonstrate the util-

ity of additional information content associated with multiple interferogram quantiles

and suggest IFTS may find use as a tool for non-intrusive flow field analysis.
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UNDERSTANDING THE INFLUENCE OF TURBULENCE IN IMAGING

FOURIER-TRANSFORM SPECTROMETRY OF SMOKESTACK PLUMES

I. Introduction

Fourier-transform spectrometry (FTS) has long been employed for the remote

characterization of the spectra of chemical plumes. The ability to determine with

confidence the species concentrations emitted from a smokestack without the need

for in situ measurements has important intelligence and governmental applications.

FTS presents the opportunity to remotely monitor smokestacks to verify adherence

with environmental regulations without disruption of plant operations. The ability to

simultaneously determine the concentrations of multiple chemical species make FTS

an attractive option for the purpose of monitoring smokestack emissions. Its mobility,

distance from the source, and the fact that FTS is a passive technique all provide the

potential to monitor smokestacks undetected, making FTS advantageous for monitor-

ing smokestack effluents for intelligence purposes as well. While previous research has

demonstrated the capability of using non-imaging FTS to characterize plumes [1]-[6],

the degree to which turbulence in smokestack plumes affects spectral interpretation is

unknown. The accuracy of effluent concentrations obtained by non-imaging FTS can

be improved upon by imaging Fourier-transform spectrometry (IFTS), which provides

the additional spatial advantage over non-imaging FTS. Non-imaging FTS lacks the

ability to isolate specific regions of the source, and the results can be affected by

incorporating both turbulent and steady regions of the source or regions other than

the source itself. IFTS possesses the ability to isolate specific regions of the plume

and improve the accuracy of effluent concentration estimates. Because IFTS retains
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the DC component of intensity, which is removed in virtually all non-imaging FTS,

the spectra can be statistically sorted into quantile spectra. These quantile spectra

provide additional information related to flow field fluctuations.

While IFTS is an efficient means for the remote characterization of a static source,

problems arise when observing a turbulent source such as a smokestack plume. Tur-

bulence due to temperature or concentration fluctuations in the plume introduces

scene change artifacts (SCAs) which corrupt the spectra. Figure 1 shows images

(0.1 seconds apart) captured with the Telops Hyper-Cam imaging spectrometer and

shows the structure of the plume changing with time. These images demonstrate the

presence of turbulent fluctuations in the plume, which must be taken into account to

gain better confidence in effluent concentration estimates obtained by IFTS.

Figure 1. Images of a coal-burning smokestack plume changing with time captured with
the Telops Hyper-Cam imaging spectrometer. The presence of turbulent fluctuations
is apparent in the changing structure of the plume.

Because the radiative transfer model used to determine temperatures and effluent

concentrations assumes a single temperature source, accurate interpretation of the
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spectra requires an understanding of the underlying temperature distribution. Non-

linearities in the spectral model result in a bias of temperatures (and hence concentra-

tions) retrieved from the time-averaged spectrum. Thus knowledge of the underlying

temperature distribution is required to accurately simulate the time-averaged spec-

trum. If both temperature and effluent concentrations are fluctuating, then knowledge

of both the temperature and concentration distributions is necessary.

This research uses hyper-spectral imagery of a coal-burning smokestack plume

obtained from the Telops Hyper-Cam imaging spectrometer to quantify the effects

of turbulence on the proper interpretation of smokestack emissions for accurate pol-

lutant concentration retrieval. In past studies, it has been shown that IFTS can be

used to determine the effluents and concentrations of a turbulent source by reducing

spectral artifacts through temporal averaging [7]-[9]. However, due to non-linearities

in the model, use of the mean spectrum gives a biased estimate of temperature (and

therefore concentrations). This research seeks to use a single-layer radiative transfer

model to estimate temperature and column densities for each plume pixel. A novel

method of processing the interferograms is employed that reduces spectral artifacts

and under the correct conditions provides unbiased temperature and column density

estimates. This method provides a means of understanding the effect of turbulence

throughout the plume by leveraging the DC level imagery to produce quantile in-

terferograms. Assuming only temperature is causing turbulent radiance fluctuations,

quantile spectra can be mapped to corresponding quantile temperatures and the un-

derlying temperature distribution discerned. This research seeks to use these quantile

spectra to quantify the turbulence-driven radiance fluctuations and determine if tem-

perature fluctuations are in fact the primary cause. This also enables the estimation

of retrieved concentration confidence bounds which include the effects of turbulence.

The potential of IFTS for general non-intrusive analysis of emissive flow fields is also

3



demonstrated. IFTS, because it retains the DC component of intensity, provides

quantile spectra which contain fluctuation information across the plume. A simu-

lation tool for modeling mid-wave infrared spectra of turbulent gas-phase sources is

also developed.

Chapter 2 summarizes previous research relating to the remote observation of

chemical plumes and the use of IFTS to observe turbulent sources. It also provides

the necessary theoretical background for an understanding of the method of inter-

ferogram processing and spectral modeling used. Chapter 3 contains a conference

paper detailing the methodology, experimental setup, results, and conclusions of this

research.

4



II. Background

2.1 Previous Work

Non-imaging Fourier transform spectrometry has been widely used in the past to

characterize the spectra of smokestack plumes. While research has shown effluent

concentrations obtained from FTS to be consistent with in situ measurements, the

accuracy of these measurements is limited by the instrument’s ability to take in a

uniform section of the plume. Imaging FTS presents the possibility of improving upon

FTS measurements through its ability to isolate sections of the plume. Research has

shown SCAs in the spectra that would discourage the use of IFTS to study turbulent

sources can be reduced through temporal averaging [7]-[9] or a method of statistically

sorting the interferograms [10].

2.1.1 Fourier-Transform Infrared Spectrometry of Plumes.

The use of FTS for the purpose of remotely monitoring smokestack emissions has

been well researched in the past, often with the goal of a more efficient means of verify-

ing emissions compliance, fence line monitoring, and other environmental monitoring

problems. One application of FTS is the remote determination of the substances

burned at a power plant. Carlson et al. used an FTS to study the emission spec-

tra of the constituents of exhaust plumes from the smokestacks of small buildings.

The main objective of this research was to establish the best process for determining

whether gas or oil was being burned in the furnace. First, the chemical compositions

and H2O/CO2 concentration ratios for oil and gas were calculated. Since the back-

ground was strong and fluctuated greatly relative to the weak emission characteristics

of the effluents, it was necessary to utilize a method of spectral pattern recognition

to diminish the influence of the background. By using a number of H2O to CO2 tran-
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sitions to determine the concentration ratio of H2O to CO2, the gas and oil products

in the exhaust plume could be distinguished [6].

The capability of FTS to obtain accurate effluent concentration estimates from

smokestack plumes has been demonstrated repeatedly since the 1970’s. Prengle et

al. used a Fourier-transform spectrometer based on a Michelson interferometer to

demonstrate the potential for the remote sensing of pollutants such as CO, NO, NO2,

unburned hydrocarbons, and combustion product olefins from sources such as power

plants. Temperature and concentration models were developed and measurements

of gas powered power plant plumes were made. It was shown that temperatures

could be determined to within ±10 K and concentrations estimated within 28% for

concentrations in the 10 − 104 ppm range [1]. Herget et al. used the remote optical

sensing of emissions (ROSE) system to determine the pollutants in gas plumes. The

ROSE system, a non-imaging Fourier-transform infrared system, was used to measure

the emission and absorption spectra of the gas from a cement plant smokestack. The

species observed were NO, CO, CO2, NH3, HCL, H2CO, HF, and SO2. Temperature

estimates were within 10% of in situ measurements, and concentrations were within

20% [4].

Research involving the use of FTS to study the spectra of turbulent plumes con-

tinued in the 1990’s. Hilton et al. used an FTS to measure the emission spectra of

a smokestack. These emission spectra were compared with those modeled using the

HITRAN database to determine temperature and concentrations of CO2 and H2O

in the plume. The temperature was determined to be 85 ± 9◦C, and the concen-

trations were accurate to within 10% [5]. The potential of using FTS to monitor

smokestack emissions was also demonstrated by Haus et al. A high-resolution K300

spectrometer and a software based on radiative transfer line-by-line calculations and

a least-squares method was used to estimate concentrations of smokestack and flare
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plume emissions. FTS measurements were successfully performed of both power plant

and small building smokestacks. The concentrations obtained from FTS were consis-

tent with in situ measurements. For the case of power plant smokestacks, the average

differences between FTS and in situ measurements seldom exceeded 25% [2]. FTS

techniques have also been successfully applied in determining species concentrations

of jet engine exhaust. Schaefer et al. demonstrated the capability of FTS to estimate

plume effluent concentrations by comparing intrusive measurements of aircraft engine

exhaust with those from an FTS. A spectroscopic database and software was devel-

oped to enable the determination of species concentrations. The results for CO2, CO,

and NO agreed with the intrusive measurements within 30%. A narrow-band device

was used to obtain CO2 concentration measurements, which agreed with the intrusive

measurements within 10% [3]. Although past research demonstrates the capability

of FTS to estimate species concentrations, discrepancies between FTS estimates and

in situ measurements (between 10% and 30% difference in concentrations) suggests

that the accuracy of these methods can be improved upon. Imaging FTS presents a

means of improving upon traditional FTS methods.

2.1.2 Imaging Fourier-Transform Spectrometry of Turbulent Plumes.

While the study of turbulent plumes is not a new area of research, the use of

imaging Fourier-transform spectrometers to observe plumes is an area still under

development. Moore et al. used an IFTS to demonstrate that despite turbulent fluc-

tuations, IFTS can be used to characterize the spectra of the exhaust plume of a

turbojet engine. Temporal averaging was used to reduce SCAs in the spectra, and

spatial maps of temperature and concentration were generated. The time-averaged

spectra revealed clear CO and CO2 emission features as well as information about

plume temperature and concentrations. However, no information about the underly-
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ing temperature distribution could be discerned [9].

Gross et al. showed the capability of using imaging Fourier-transform spectrom-

etry to remotely monitor smokestack plumes. The Telops Hyper-Cam imaging spec-

trometer was used to obtain hyper-spectral imagery of a smokestack plume in order to

study its chemical effluents and temperature. This data was time-averaged to reveal

the discharge of HCl, CO2, CO, SO2, and NO. A single-layer plume radiative transfer

model was applied to the pixels directly above the stack exit to estimate the temper-

ature and column densities of the various constituents and observe how each varied

across the plume. It was found that the temperature was fairly consistent across the

stack with a mean of 396.3 ± 1.3 K and the effluent column densities fluctuated ac-

cording to the plume pathlength. The estimated volume fractions of CO2 (8.6±0.4%)

and SO2 (380± 23 ppmv) agreed well with in situ measurements (9.40± 0.03% and

383±23 ppmv, respectively). NO was estimated to have a concentration of 104±7

ppmv. These results demonstrate the capability of using IFTS to not only identify

various effluents, but also obtain accurate concentration estimates. Errors between in

situ measurements and concentration estimates of SO2 and CO2 were 1% and 8%, re-

spectively [7]. Although there was good agreement with in situ measurements, if and

how much systematic error is introduced as a result of interpreting the time-averaged

spectrum of a turbulent source is presently unknown. For example, because of the

nonlinear effect of temperature fluctuations on the infrared spectrum, temperature

fluctuations result in a time-averaged spectrum that cannot be described using the

mean temperature alone. Instead, a priori knowledge of the underlying temperature

probability density function (and the probability density functions of any other fluc-

tuating parameters) is necessary to properly interpret the time-averaged spectrum.

A method of overcoming the effects of turbulent fluctuations in jet engine ex-

haust was demonstrated by Tremblay et al. This method involved statistically sort-
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ing the data for each optical path difference (OPD) before performing a Fourier-

transformation. Various quantiles of intensity were determined at each OPD and

interferograms generated for each pixel. A Fourier-transform was then performed on

the various quantile interferograms to obtain the corresponding spectra. After the

quantile interferograms and spectra were constructed, spatial maps of the brightness

temperature were created. Comparing the median and mean brightness temperature

maps revealed sections of the plume where the mean and median differed consider-

ably. Because of the nonlinearity of Planck’s function, the mean is a biased estimate

of brightness temperature for unsteady sources. Thus in turbulent sections of the

plume, the mean spectrum could bias temperature (and consequently concentration)

estimates. The results of this research demonstrate that using the median and other

quantile interferograms, as opposed to the mean interferogram, result unbiased esti-

mates of temperature [10].

2.2 Theory

Imaging Fourier-transform spectrometry combines the spectral information ob-

tained from a Fourier-transform spectrometer with the spatial information of an

imager. FTS uses an interferometer such as a Michelson to obtain the spectrum

(radiance as a function of frequency) of a source. An IFTS combines a Michelson

interferometer with an infrared camera to obtain an interferogram for each pixel in

the focal plane array (FPA), or a series of images at successive OPDs. Taking the

Fourier-transform of the interferogram at each pixel results in a series of spectral

images at successive wavenumbers, or a spectrum at each pixel.
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2.2.1 Fourier-Transform Spectrometry.

A traditional Michelson interferometer (see Figure 2 below) is based on a col-

limating lens, two mirrors (one stationary and one moving), a beamsplitter, and a

detector. Light from the source is collimated by the lens and then divided by the

beamsplitter into two components of equal amplitude. The two components are di-

rected to separate mirrors and then reflected back by the mirrors to the beamsplitter.

They are recombined again at the beamsplitter and directed to the detector. The

two beams interfere with each other when recombined. The intensity seen by the

detector is dependent upon the difference in the distances traveled by the two beams

(optical path difference), controlled by the position of the moving mirror, as well as

the spectrum of the source.

Figure 2. Diagram of a traditional Michelson interferometer. The intensity read by
the detector is a function of the optical path difference of the two beams (controlled
by the moving mirror) and the spectrum of the source.

The measured intensity as a function of OPD forms an interferogram. The intensity,
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Io, measured by the detector as a function of OPD for a monochromatic source is

represented by

Io(xk) = L(ν̃o)[1 + cos(2πν̃ox)], (1)

where xk is the OPD, L(ν̃o) is the spectral radiance, and ν̃o is the wavenumber

(1/λ). When source includes more than one frequency, the interferogram will be a

superposition of cosine waves of different amplitudes and frequencies. The intensity

is integrated up over all frequencies, resulting in Equation 2 below [12],

Io(xk) =

� ∞

0

L(ν̃)[1 + cos(2πν̃xk)]dν̃. (2)

In non-imaging FTS, the mean (the spectral radiance, L(ν̃), integrated over all

frequencies) or DC component of intensity is removed, resulting in

I(xk) = Io(xk)− ¯I(xk) =

� ∞

0

L(ν̃)cos(2πν̃xk)dν̃. (3)

Taking the Fourier-transform of Equation (3) gives the spectrum, or L as a function

of ν̃. For an interferogram extending from negative infinity to positive infinity, the

cosine transform produces the monochromatic spectrum. The greater the frequency

of the oscillations in the interferogram, the greater the frequency of the spectral

line. In reality, the spectrum will not be monochromatic, but will correspond to a

lower resolution due to the fact that a real interferogram is finite in length. The

length of the interferogram is controlled by the maximum optical path difference

of the instrument. The finite maximum optical path difference of the instrument

gives rise to an instrument line shape (ILS) in the spectrum. This ILS is due to the

truncation of the interferogram to a finite length, which is equivalent to multiplying

it by a rectangular function or convolving the spectrum with a sinc function. An

apodization function is used to reduce the “ringing” in the spectrum associated with
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the sinc ILS side lobes by smoothly reducing the amplitude of the interferogram [12].

In imaging FTS, the DC component of intensity is retained, and a Fourier-

transform of Equation 2 is taken. IFTS obtains a spectrum for each pixel, which

can then be fit to a spectral model to obtain the temperature and effluent concentra-

tions at each pixel in the plume.

2.2.2 Spectral Modeling.

Because a smokestack plume is not a perfect emitter and must radiate through the

atmosphere before reaching the detector, the temperature of a pixel cannot simply

be obtained from the spectrum through application of Planck’s blackbody radiation

law,

L(ν̃) =
2hc2ν̃3

ehcν̃/kTB − 1
. (4)

Thus the spectra must be fit to a model to determine the kinetic temperatures in

the plume. A spectral model describing the apparent radiance of the plume can be

derived from the macroscopic radiative transfer equation,

dL(ν̃)

ds
= −kν̃(L(ν̃)− Sν̃), (5)

where kν̃ is the extinction coefficient (which includes the effects of absorption and

scattering of radiation) and Sν̃ is the source function (defined as the ratio of the

emission coefficient to the extinction coefficient) [13].

Equation 5 can be written to include the effects of multiple scattering and absorp-

tion,

dL(ν̃)

dτν̃
= −L(ν̃) + [1− a(ν̃)]LBB(ν̃) +

a(ν̃)

4π

�

4π

dΩ
�
p(Ω

�
,Ω)L(ν̃)(Ω

�
), (6)

where dτν̃ = k(ν̃)ds is the differential optical path, a(ν̃) is the single scattering
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albedo (the probability a photon will be scattered), LBB(ν̃) is the blackbody ra-

diance, Ω is the direction of the radiative energy, and p(Ω
�
,Ω) is the scattering

phase function. The thermal contribution of the source function is represented by

[1− a(ν̃)]LBB(ν̃), and the scattering component of the source function is represented

by a(ν̃)
4π

�
4π dΩ

�
p(Ω

�
,Ω)L(ν̃)(Ω

�
). In order to simplify the radiative transfer problem,

it is assumed that scattering, background radiation, and self-emission from the atmo-

sphere are minimal and that the plume is in local thermodynamic equilibrium (LTE).

Since there is minimal scattering (a(ν̃) is very small) and the plume is in LTE, the

radiative transfer equation simplifies to

dL(ν̃)

dτν̃
= −L(ν̃) + LBB(ν̃). (7)

Solving the differential equation above with the assumption the plume is uniform

along the line of sight yields

L(ν̃, l) = L(ν̃, 0)e−kabs(ν̃)l + (1− e−kabs(ν̃)l)LBB(ν̃, T ), (8)

where l represents the path length of the plume, L(ν̃, 0) is the background radiance,

k(ν̃) now includes only the absorption coefficient (kabs(ν̃)) (since scattering is low),

and (1− e−kabs(ν̃)l) is the emissivity (1- transmittance) of the plume [13].

Ignoring background radiation, the apparent radiance at the boundary of the

plume simplifies to

L(ν̃, l) = εLBB(ν̃, T ). (9)

Accounting for transmittance through the atmosphere to the detector and integrating

over all wavenumbers, the radiance seen by the detector is represented by

L(ν̃) =

�
τ(ν̃

�
)ε(ν̃

�
)LBB(ν̃

�
, T )ILS(ν̃ − ν̃

�
)dν̃

�
, (10)
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where τ is the atmospheric transmittance profile between the plume and the detector,

and ILS is the instrument line shape function [7]. The convolution of the incident

radiance with instrument line shape describes the instrument’s resolving power. The

instrument line shape is characterized by the shape of the spectral line (defined by

the length and varying amplitude of the interferogram) and any apodization function

used to reduce “ringing” [12].

The absorption coefficient for the jth absorption line of the ith species is defined

as kabs(ν̃) ≡ Si,jNΦi,j(ν̃), where Si,j is the line strength of the jth absorption line

of the ith molecule, N is the total gas density (determined from the ideal gas law

and the atmospheric temperature and pressure), andΦ i,j(ν̃) is the profile of the jth

line [13]. The emissivity can be rewritten by replacing kabs(ν̃) with Si,jNΦi,j(ν̃) and

summing over all lines for all species in the plume, resulting in

ε(ν̃) = 1− e−N
�

i qi
�

j Si,j(ν̃j ,T )Φi,j(ν̃)τp, (11)

where qi is the fractional column density (volume fraction times the path length for

the ith species), and τp is the transmittance of the soot in the plume. Near the center

of the stack exit the path length is simply the stack diameter, and the volume fraction

can be determined exactly [7].

The absorption cross-section for the ith species, σi(ν̃, T ), is given by

σi(ν̃, T ) =
�

j

Si,j(ν̃j, T )Φi,j(ν̃), (12)

where Si,j is the line strength of the jth line for the ith molecule, and ν̃j is the central

wavenumber of the transition. The line strengths depend on the individual transition

as well as the population in the ground state. Assuming LTE, the distribution of

excited states is defined by the Boltzmann distribution, and Si,j depends explicitly
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on the kinetic temperature of the plume. These line strengths can be determined

theoretically or experimentally. The HITRAN database [11] includes the information

needed to calculate the absorption cross-sections for the species present in the plume

[13]. Using this information, the spectra can be fit to the spectral model (Equation

10) to determine temperatures and effluent concentrations.

2.2.3 Statistics Background.

The cumulative distribution function (CDF) describes the probability that a vari-

able X is less than or equal to a value x and can be represented by D(x) = P (X ≤ x),

where D(x) represents the CDF. The probability density function (PDF) is the de-

fined as the derivative of the CDF, and describes the probability of obtaining a given

value of X. For a normally distributed random variable, the CDF and PDF are rep-

resented by Figure 3, where Figure 3 has been standardized to a mean of 0 and a

standard deviation of 1. A quantile is any point along the CDF. The Qth quantile

represents the value of x such that there is a probability Q of obtaining a value less
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Figure 3. Cumulative distribution function (left) and probability distribution function
(right) for the standard normal distribution, where D(x) is the probability of obtaining
a value less than or equal to x and P (x) is the probability of obtaining a value equal to
x.
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than or equal to x. For example, the median (or 50%) quantile is the value of x with a

50% probability of obtaining a value less than or equal to it. Thus from a distribution

of quantiles the CDF and consequently the PDF can be derived.
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III. Understanding the Influence of Turbulence in Imaging

Fourier Transform Spectrometry of Smokestack Plumes

3.1 Abstract

An imaging Fourier-transform spectrometer (IFTS) was used to collect infrared

hyper-spectral imagery of smokestack plume associated with coal-burning power fa-

cility to assess the influence of turbulence on spectral retrieval of temperature (T)

and pollutant concentrations (Ci). A mid-wave (1.5-5.5 µm) Telops Hyper-Cam was

used and features a 320x256 InSb focal-plane array with a 326 µrad instantaneous

field-of-view (IFOV). The line-of-sight distance to the 76 m tall smokestack exit was

350 m (11.4 x 11.4 cm2 IFOV). Approximately 5000 interferogram cubes were col-

lected in 30 minutes on a 128x128 pixel window corresponding to a spectral resolution

of 20 cm−1. Radiance fluctuations due to plume turbulence were observed on a time

scale much shorter than hyper-spectral image acquisition rate, thereby introducing

scene change artifacts (SCA) in the Fourier-transformed spectra. Time-averaging the

spectra minimizes SCA magnitudes, but accurate T and Ci retrieval would require

a priori knowledge of the statistical distribution of temperature and other stochastic

flow field parameters. A method of quantile sorting in interferogram space prior to

Fourier-transformation is presented and used to identify turbulence throughout the

plume. It is demonstrated that if radiance fluctuations are due only to temperature

fluctuations, the spectrum associated with each interferogram quantile directly cor-

responds to the corresponding quantile temperature. Analysis of the quantile spectra

indicate that radiance fluctuations are driven by more than just temperature fluctu-

ations. Immediately above the stack exit, T and CO2 concentration estimates from

the median spectrum are 395 K and 6%, respectively, which compare well to in situ

measurements. Turbulence is small above the stack exit and introduced systematic
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errors in T and Ci on the order of 0.5 K and 0.01%, respectively. In some plume lo-

cations, turbulent fluctuations introduced errors in T and Ci on the order of 8 K and

1%, respectively. While more complicated radiance fluctuations precluded straight-

forward retrieval of the temperature probability distribution, the results demonstrate

the utility of additional information content associated with multiple interferogram

quantiles and suggest IFTS may find use as a tool for non-intrusive flow field analysis.

3.2 Introduction

Fourier-transform spectrometry (FTS) has long been employed for the remote

characterization of the spectra of chemical plumes. The ability to determine with

confidence the species concentrations emitted from a smokestack without the need

for in situ measurements has important intelligence and governmental applications.

FTS presents the opportunity to remotely monitor smokestacks to verify adherence

with environmental regulations without disruption of plant operations. The ability to

simultaneously determine the concentrations of multiple chemical species make FTS

an attractive option for the purpose of monitoring smokestack emissions. Its mobility,

distance from the source, and the fact that FTS is a passive technique all provide the

potential to monitor smokestacks undetected, making FTS advantageous for monitor-

ing smokestack effluents for intelligence purposes as well. While previous research has

demonstrated the capability of using non-imaging FTS to characterize plumes [1]-[6],

the degree to which turbulence in smokestack plumes affects spectral interpretation is

unknown. The accuracy of effluent concentrations obtained by non-imaging FTS can

be improved upon by imaging Fourier-transform spectrometry (IFTS), which provides

the additional spatial advantage over non-imaging FTS. Non-imaging FTS lacks the

ability to isolate specific regions of the source, and the results can be affected by

incorporating both turbulent and steady regions of the source or regions other than

18



the source itself. IFTS possesses the ability to isolate specific regions of the plume

and improve the accuracy of effluent concentration estimates. Because IFTS retains

the DC component of intensity, which is removed in virtually all non-imaging FTS,

the spectra can be statistically sorted into quantile spectra. These quantile spectra

provide additional information related to flow field fluctuations.

While IFTS is an efficient means for the remote characterization of a static source,

problems arise when observing a turbulent source such as a smokestack plume. Tur-

bulence due to temperature or concentration fluctuations in the plume introduces

scene change artifacts (SCAs) which corrupt the spectra. Figure 4 shows images

(0.1 seconds apart) captured with the Telops Hyper-Cam imaging spectrometer and

shows the structure of the plume changing with time. These images demonstrate the

presence of turbulent fluctuations in the plume, which must be taken into account to

gain better confidence in effluent concentration estimates obtained by IFTS.

Figure 4. Images of a coal-burning smokestack plume changing with time captured with
the Telops Hyper-Cam imaging spectrometer. The presence of turbulent fluctuations
is apparent in the changing structure of the plume.
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Because the radiative transfer model used to determine temperatures and effluent

concentrations assumes a single temperature source, accurate interpretation of the

spectra requires an understanding of the underlying temperature distribution. Non-

linearities in the spectral model result in a bias of temperatures (and hence concentra-

tions) retrieved from the time-averaged spectrum. Thus knowledge of the underlying

temperature distribution is required to accurately simulate the time-averaged spec-

trum. If both temperature and effluent concentrations are fluctuating, then knowledge

of both the temperature and concentration distributions is necessary.

This research uses hyper-spectral imagery of a coal-burning smokestack plume

obtained from the Telops Hyper-Cam imaging spectrometer to quantify the effects

of turbulence on the proper interpretation of smokestack emissions for accurate pol-

lutant concentration retrieval. In past studies, it has been shown that IFTS can be

used to determine the effluents and concentrations of a turbulent source by reducing

spectral artifacts through temporal averaging [7]-[9]. However, due to non-linearities

in the model, use of the mean spectrum gives a biased estimate of temperature (and

therefore concentrations). This research seeks to use a single-layer radiative transfer

model to estimate temperature and column densities for each plume pixel. A novel

method of processing the interferograms is employed that reduces spectral artifacts

and under the correct conditions provides unbiased temperature and column density

estimates. This method provides a means of understanding the effect of turbulence

throughout the plume by leveraging the DC level imagery to produce quantile in-

terferograms. Assuming only temperature is causing turbulent radiance fluctuations,

quantile spectra can be mapped to corresponding quantile temperatures and the un-

derlying temperature distribution discerned. This research seeks to use these quantile

spectra to quantify the turbulence-driven radiance fluctuations and determine if tem-

perature fluctuations are in fact the primary cause. This also enables the estimation
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of retrieved concentration confidence bounds which include the effects of turbulence.

The potential of IFTS for general non-intrusive analysis of emissive flow fields is also

demonstrated. IFTS, because it retains the DC component of intensity, provides

quantile spectra which contain fluctuation information across the plume. A simu-

lation tool for modeling mid-wave infrared spectra of turbulent gas-phase sources is

also developed.

3.3 Methodology

Previous work using IFTS to characterize the exhaust plume of a turbojet engine

showed that turbulent fluctuations introduced SCAs into the spectrum, which were

treated as noise and reduced through temporal averaging. Although the signal-to-

noise ratio was increased and spectral emission lines were identified, no information

about underlying temperature distribution could be discerned [9]. Previous research

involving IFTS of smokestack plumes also used time-averaged spectra, and concen-

tration estimates agreed well with in situ measurements [7]. However the degree to

which use of the mean spectra biased these results is unknown. Another method

of processing the interferograms that offers unbiased estimates of temperature and

concentration as well as information about underlying temperature distribution is

presented. Application of this method can increase confidence in concentrations of

smokestack effluents obtained by IFTS.

3.3.1 IFTS.

The intensity detected by the instrument can be represented by

I(xk) =

� ∞

0

(1 + cos(2πxkν̃)L(ν̃; t(xk))dν̃ = IDC + IAC , (13)
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where xk is the optical path difference (OPD), ν̃ corresponds to the wavenumber

(1/λ), L(ν̃, t(xk)) is the time-varying spectral radiance, and t(xk) is the time of the

sample at xk. In this work, it is assumed that at time t(xk), each physical parameter

which affects the radiance is taken from an appropriate distribution function. The

simple case in which only temperature fluctuations are present will be considered.

The intensity as shown in Equation 13 can be split into two pieces, IDC and IAC . IDC

is simply L(ν̃, T ) integrated over all wavenumbers and will be constant for a static

source. In nearly all non-imaging FTS, IDC is removed prior to analog-to-digital

conversion using an electronic high-pass filter. IAC is the modulated piece and is

associated with the cosine transform of L(ν̃, T ). Taking the Fourier-transform results

in the raw spectrum, which can then be calibrated to radiance units [10].

3.3.2 Spectral Model.

In order to determine temperature and effluent concentrations across the plume,

the spectra are fit a model, represented by

L(ν̃) =

�
τ(ν̃

�
)ε(ν̃

�
)LBB(ν̃

�
, T )ILS(ν̃ − ν̃

�
)dν̃

�
, (14)

where L(ν̃) corresponds to the apparent spectral radiance, τ is the atmospheric trans-

mittance profile between the plume and the detector, ε represents the spectral emis-

sivity of the plume, LBB is Planck’s blackbody radiance, and ILS represents the

instrument line shape (characterized by the shape of the spectral line as well as any

apodization function used) [13].

The spectral emissivity is determined from

ε(ν̃) = 1− e−
�

i qiNσi(ν̃,T )τp, (15)
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where qi (the fractional column density) is the volume fraction times the path length

for the ith species, N is the total gas density, σi is the absorption cross-section (cal-

culated from information contained in the HITRAN database [11]), and τp is the

transmittance of the soot in the plume [13]. The total gas density is given by the

ideal gas law, N = P

kBT
, and hence N is also dependent upon temperature. Because

the relative populations of each molecule’s internal energy states are defined by the

Boltzmann distribution, σi is also a function of temperature.

Spectral fitting was accomplished by first computing the absorption cross-sections

for the various plume effluents, CO2, CO, SO2, HCl, H2O, using the Line By Line

Radiative Transfer Model (LBLRTM) [14]. LBLRTM was used to calculate the ab-

sorption cross-sections at 1 K increments for the temperature range of the plume from

spectral line data contained in the HITRAN database [11]. Linear interpolation was

used to determine the absorption cross-sections for temperatures in between.

A radiative transfer model (Equation 14) was then used to compute the appar-

ent radiance of the plume. The parameters for modeling atmospheric transmittance

were atmospheric temperature, CO2 concentration, relative humidity, pathlength,

and pressure. The parameters varied in the model were temperature (T), fractional

column density of CO2 (qCO2), and soot transmittance (τp). Because the plume path-

length is known only above the stack exit, CO2 concentration is reported in terms of

column density. Due to the low spectral resolution, CO2 was the only species with

notable spectral features and thus was the only species included in the model. The

other species in the plume were held constant and assumed to be known. Increasing

the spectral resolution (at the expense of data size and processing time) would allow

other species in the plume to be resolved.

Use of a monochromatic radiative transfer model is computationally expensive.

Therefore a spectral interpolation method was devised in order to make fitting each
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quantile spectrum for each pixel feasible. The radiative transfer model was used to

compute the apparent radiance for a range of the three variables, T, qCO2 , and τp. This

was done for each wavenumber sampled and resulted in a three-dimensional matrix for

each wavenumber on the spectral axis. A model for spectral fitting was then created

from this array through linear interpolation of the in-between parameter values. This

model eliminated the need to perform the calculations using the radiative transfer

model during the spectral fitting process. The data was fit to the interpolation model

by employing a Neider-Mead search followed by a Levenberg-Marquardt nonlinear

minimizer. Because the only species modeled was CO2, only the 2000 to 2450 cm−1

region was included in the fit. The mean as well as the Qmed, Q±0.5s, Q±1s, Q±1.5s

and Q±2s spectra were fit to the spectral model.

For turbulent sources, the various flow field parameters (such as temperature,

species concentrations, density, and velocities) will fluctuate randomly about their

mean values. To simplify the discussion, it is assumed that only temperature fluc-

tuations affect the time-averaged spectrum. If temperature is fluctuating, proper

interpretation of the spectra requires some knowledge of the underlying temperature

distribution, which is not provided by the time-averaged spectrum. The radiative

transfer model used to fit the data and determine temperature and effluent concen-

trations is a single temperature model. In other words, the model assumes that the

source is steady (i.e. the temperature distribution is a delta function) and therefore

that the average radiance is the radiance at the average temperature. When the

temperature of the source is varying, there will be a temperature probability den-

sity function with some shape and width and the model breaks down. The average

radiance of the source if temperature is fluctuating is represented by

�L(ν̃)� =
�

P (T )Lmodel(ν̃, T )dT, (16)
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where ν̃ is wavenumber (1/λ), �L(ν̃)� is the average spectral radiance, P (T ) represents

the temperature probability density function, and Lmodel(ν̃, T ) is the model radiance

(represented by Equation 14). Because temperature fluctuates according to some

underlying distribution, Lmodel must be weighted by the probability of obtaining a

specific temperature. Knowledge about the temperature distribution provides an

understanding of the fluctuation strength and can increase the confidence in the

temperature and concentrations provided by the model. The closer the temperature

distribution is to a delta function (i.e. the steadier the source), the more accurate the

single temperature model approximation. The method presented utilizes the median

and other quantiles to discern the nature of the temperature distribution and is based

on the assumption that temperature is the only parameter fluctuating.

3.3.3 Turbulent Sources.

IFTS relies on the assumption that the source under observation is constant. For

a turbulent source with fluctuations in radiance that are purely a result of tempera-

ture fluctuations, the temperature fluctuates from one OPD to the next, appearing

as “noise” in the interferogram. This introduces spectral artifacts and corrupts the

spectra. Time-averaging results in a spectrum with few SCAs, however proper inter-

pretation of this spectrum requires knowledge of the underlying temperature distri-

bution. Use of a single temperature model to retrieve the temperature will produce

biased results due to inherent nonlinearities in the model. For example, there is a non-

linear relationship between temperature and blackbody spectral radiance in Planck’s

function,

LBB(ν̃) =
2hc2ν̃3

ehcν̃/kTB − 1
, (17)

where TB corresponds to the brightness temperature, ν̃ corresponds to the wavenum-

ber in cm−1, h is Planck’s constant, c is the speed of light, k is Boltzmann’s con-
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stant, and LBB(ν̃) is the blackbody spectral radiance. Because of the nonlinearity of

Planck’s function, the average LBB(ν̃) of a temperature-fluctuating blackbody is not

the LBB(ν̃) associated with the mean T
B
, and is actually not a blackbody spectral

radiance at any temperature. The effect is the same when considering the average

model radiance, which includes the blackbody spectral radiance. The average model

radiance is not equal to the radiance at the the average temperature,

�L(ν̃)� =
�

P (T )Lmodel(ν̃, T )dT �= Lmodel(ν̃, �T �). (18)

Therefore fitting the time-averaged spectrum to the spectral model results in a bi-

ased estimate of temperature (and hence concentration), and accurate interpretation

of the spectra requires knowledge of the underlying temperature distribution. Median

and other quantile spectra, however, provide unbiased estimates of temperature. The

median temperature will therefore be the temperature retrieved from the median spec-

trum. In addition to providing unbiased temperature and concentration estimates,

quantile spectra can also provide additional information regarding the underlying

temperature distribution.

3.3.4 Quantile Analysis Method.

This method involves sorting the interferograms into quantiles prior to taking the

Fourier-transform. The monotonic relationship between temperature and intensity

enables each quantile interferogram to be mapped to a single quantile temperature

and the underlying temperature distribution retrieved. It can be shown that there

is a monotonic relationship between the blackbody radiance and temperature [10].

The plume radiance, which includes the blackbody radiance, can also be shown to

be monotonic with temperature. Figure 5 shows the model radiance, L(ν̃, T ), at a

temperature of 390 K subtracted from the model radiance at 400 K. Because the dif-
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ference the two spectra is greater than zero at all wavenumbers, the spectral radiance

in Figure 5 increases with temperature at all wavenumbers. This demonstrates the

monotonicity of L(ν̃, T ) with temperature for the chosen temperatures. This assump-

tion that spectral radiance is monotonic with temperature was verified for the range

of temperatures expected in the plume.
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Figure 5. Difference in the model radiance at two temperatures: L(ν̃, 400K)−L(ν̃, 390K).
L(ν̃, 400K)− L(ν̃, 390K) is greater than zero at all wavenumbers.

Because the unmodulated component of intensity, IDC , is maintained, there is

also a monotonic relationship between the total intensity and the spectral radi-

ance. Since L(ν̃, T ) in Equation 13 is weighted by a number that is always positive

(1 + cos(2πxkν̃) ≥ 0) and L(ν̃, T ) increases monotonically with temperature at all

wavenumbers, the intensity also increases monotonically with temperature. Assum-

ing the temperature fluctuates rapidly compared to the time between samples and

concentration fluctuations are small, sampling the intensity at a specific OPD cor-

responds to sampling a single temperature from the temperature probability density

function.

Since L(ν̃, T ) and I(xk) are both monotonic functions with the source tempera-
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ture, the various quantiles are maintained when converting from one to the next,

Q = P{T ≤ TQ},

= P{L(ν̃, T ) ≤ L(ν̃, TQ)}, ∀ν̃,

= P{I(xk) ≤ IQ(xk)}, ∀xk, (19)

where Q is the quantile with a probability Q of T ≤ TQ and IQ(xk) the intensity

at the Qth quantile. This monotonic relationship implies that by sampling a large

enough number of interferograms, a representative portion of the underlying temper-

ature distribution has also been sampled. If a large number of interferograms are

collected, the intensity at a specific OPD can be found for each interferogram and the

underlying intensity distribution at that OPD retrieved. Various intensity quantiles

can be found for each OPD and quantile interferograms that are free from SCAs con-

structed. This can be done for any number of quantiles. Because the DC component

of intensity is preserved, each quantile interferogram corresponds to a single quantile

temperature. This method cannot be applied, however, to non-imaging FTS. Because

IDC is filtered out in traditional Fourier-transform spectrometers, the monotonic re-

lationship between the observed intensity and L(ν̃, T ) breaks down. The quantile

interferogram for the Qth quantile is represented by Equation 20 below [10],

IQ(xk) =

� ∞

0

(1 + cos(2πν̃xk)L(ν̃, TQ)dν̃. (20)

Note that if both concentration and temperature experience large fluctuations,

then a specific intensity corresponds to sampling from a probability density function

of both variables. In this case, quantile interferograms cannot be mapped to a single

temperature. However the various quantile interferograms (and their corresponding

quantile spectra) still contain information that may be useful in understanding the
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nature of the source turbulence.

A discrete Fourier-transform is taken of Equation 20 to obtain quantile spectra.

The corresponding kinetic temperatures and effluent concentrations are obtained by

fitting the spectra to the spectral model. The temperature quantiles can be used to

derive the temperature cumulative distribution function, from which the temperature

probability density function can be obtained. Taking the difference between two

temperature quantiles gives an estimate of the standard deviation and provides a

measure of quantifying the temperature fluctuations in the plume. While the method

of sorting the interferograms still holds, if the concentration fluctuates along with

the temperature, then the monotonic relationship between intensity and temperature

breaks down and a specific intensity corresponds to sampling from a distribution of

both temperature and concentration. A quantile spectrum will correspond to a range

of temperature and concentration pairs rather than to single temperature.

When statistically sorting the interferograms, accommodations had to be made

for the large size of the data cubes. One row from each data cube was imported

at a time. After importing the row from all data cubes, the desired quantiles for

that row were determined. The quantiles were determined one row at a time until

quantile spectra for each pixel in the plume were generated. When computing the

mean interferogram, however, an entire data cube was imported at a time and added

to the previous data cubes. Dividing by the total number of data cubes at the end

generated the mean interferogram. Thus simply time-averaging the interferograms is

less computationally expensive than sorting interferograms into quantiles.
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3.4 Experimental

3.4.1 Stack Measurements.

A coal-burning industrial smokestack near Dayton, Ohio was observed the evening

of 20 August, 2010 using the Telops Hyper-Cam, a mid-wave infrared imaging Fourier-

transform spectrometer. The plant has three smokestacks approximately 76 m tall,

and measurements were taken of the center stack (the only stack operating). The

instrument was set up 350 m from the top of center stack (determined using a Newcon

Optik LRB3000 Pro laser range finder), and data was taken for approximately 30

minutes. The goal of the test was to collect hyper-spectral imagery of the smokestack

plume for the characterization of turbulence within the plume. Measurements were

taken with a high enough spatial resolution to capture the strong fluctuations in

radiance and a low enough spectral resolution so that a large enough sample of data

cubes for statistical analysis could be taken in a reasonable time frame. Measurements

were performed in the evening to reduce the effect of background radiation.

In order for sufficient spatial resolution of the turbulent fluctuations, the distance

of the instrument to the smokestack was chosen such that each pixel viewed relatively

small sections of the plume. The instrument was set up about 350 meters from the

stack, resulting in a field of view (FOV) of 11.4 x 11.4 cm2 for each pixel. Figure

6 shows the location of the smokestack under observation along with the location

of the observation point. The location was chosen so that the instrument could be

set up far enough from any sources of noise (such as the generators used to power

the equipment) and the potential of objects entering the field of view (FOV) of the

instrument was minimal.

Hyper-spectral imagery was collected in the evening from approximately 1:26 am

UTC to 2:15 am UTC with a moderately cloud covered sky background. Meteorologi-

cal measurements were taken with a Kestrel 9500. During data collection the average
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ambient temperature was 23.8◦C, the average humidity was 75.4%, the average at-

mosphere pressure was 991.8 hPa, and the wind speed was 3.5 mph from the SSE

direction.

Figure 6. Diagram of the coal-burning power plant and test observation point.

3.4.2 Instrumentation.

The Telops Hyper-Cam operates using a Michelson interferometer to obtain a

two-dimensional image of a source’s intensity for many successive OPDs, resulting in

an interferogram cube. The instrument has a 320 x 256 pixel 16-bit Stirling-cooled

InSb focal plane array (FPA) and a spectral range of 1800-6667 cm−1. The spectral

resolution ranges from 0.25-150 cm−1. Each pixel has an instantaneous FOV of 0.326

mrad. The spectral resolution, FOV, and integration time can all be adjusted to

improve the acquisition rate. The instrument was configured with a FOV of 128 x

128 pixels. The spectral resolution was 20 cm−1. Using a 90 µs integration time, 5048

data cubes were collected in approximately 30 minutes. Due to the large size of the

data cubes and the corresponding time required to process the data cubes, only one

30 minute test was performed.

Two internal blackbodies of known temperature were used for the radiometric cal-
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ibration of the raw spectra. These blackbody measurements provide the information

needed to calculate the gain and offset coefficients used to convert raw spectra to

radiance units. Blackbody temperatures were chosen that resulted in intensities that

closely bracketed the range of digital numbers of the plume. The higher calibration

temperature was chosen such that the FPA would not saturate. Calibration data

was collected at temperatures of 20◦C and 45◦C, spectral resolution of 20 cm−1, and

an integration time of 90 µs. 500 data cubes were collected at each temperature.

Calibration was performed by first converting the interferograms into raw spectra.

The calibration temperatures, 318.05 K and 292.61 K, were then converted into ra-

diance units in order to take advantage of the linear relation between digital number

and radiance. The gain and offset coefficients were then found and the raw spectra

converted to radiance units [W/(cm2· sr· cm−1)]. A minimum wavenumber of 1750

cm−1 and a maximum of 3000 cm−1 were used. A hamming apodization function and

phase correction were applied.

3.5 Results and Discussion

The data set analyzed consisted of 2524 data cubes with a spectral resolution of

20 cm−1 and a FOV of 128 x 128 pixels. Because the data in forward and reverse scan

directions must be analyzed separately, only half the data collected was analyzed. The

raw interferograms were sorted into various quantile interferograms corresponding to

cumulative probabilities of 0.023, 0.067, 0.159, 0.309, 0.5, 0.692, 0.841, 0.933, and

0.977. For a Gaussian distribution, these cumulative probabilities correspond to the

median, ±0.5s, ±1s, ±1.5s and ±2s quantiles (Qmed, Q±0.5s, Q±1s, Q±1.5s and Q±2s)

quantiles, where s represents the standard deviation. These interferograms were then

converted to spectra and calibrated to radiance units. However, due to the low

probability of observing events outside ±1s, estimates of the true quantiles outside
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of ±1s will likely be poor.

3.5.1 Spectral Imagery.

When fitting data to a spectral model, the mean or median spectrum can be used

to obtain temperature and concentration estimates. For a steady source, the mean

and median spectra will be equal and simply time-averaging the spectra is sufficient

for accurate temperature and concentration estimates. Figure 7 below demonstrates

the difference between the mean and median spectra. The top left image in Figure

7 corresponds to the mean radiance (Lmean(ν̃)) [µW/cm2/sr/cm−1] at 2238 cm−1, a

strong CO2 emission feature, and appears similar to the median radiance (Lmed(ν̃))

at 2238 cm−1. The area above the stack exit, where Lmean(ν̃) is on the order of 1

µW/cm2/sr/cm−1, corresponds to the area of greatest temperature. As the plume

spreads out and decreases in temperature, Lmean(ν̃) decreases. Because Figure 7

corresponds to a strong CO2 emission feature, the plume radiance (approximately

1 µW/cm2/sr/cm−1 above the stack exit) is much greater than that of the stack

(approximately 0.3 µW/cm2/sr/cm−1), which is nearly imperceptible compared to

the background. The image in the top right corresponds to the mean spectra at

several pixels in different areas of the plume as well as in the background and stack.

Pixel (15, 70), corresponding to the stack, exhibits continuum emission consistent with

radiation from a graybody with emissivity 0.12 and temperature 375 K. Pixel (35,

125) corresponds to background radiation and is much less than that of the bright

plume pixels. Pixel (35, 65) corresponds to the brightest region above the stack,

resulting in the spectrum with the largest spectral features. Pixel (62, 61) is located

in the center of the plume, pixel (68, 89) is located in a more turbulent section in the

right edge of the plume, and pixel (118, 16) is located in the area of lower Lmean(ν̃) in

the lop left of the image. The largest peaks in the plume spectra, most noticeable at
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pixel (35, 65), occur as a result of the P and R branches corresponding to transitions

between different CO2 vibrational levels [7]. The emission feature peaking at 2068

cm−1 results from a combination of different CO2 rotational-vibrational transitions.

The emission features at 2392 cm−1 (commonly called the red spike) and 2238 cm−1

(commonly called the blue spike), most of which would normally be absorbed by

atmospheric CO2, arise from increased populations in higher-energy rotational levels

caused by high plume temperatures [7].

Although the mean and median radiance (Lmed(ν̃)) images would appear nearly

identical, Figure 7 demonstrates the differences between the mean and median. The

bottom left image in Figure 7 corresponds to Lmean(ν̃) - Lmed(ν̃) [µW/cm2/sr/cm−1]

at 2238 cm−1. For a perfectly steady source, Lmean(ν̃) and Lmed(ν̃) would be the same.

However, Figure 7 shows differences between the mean and median, the greatest being

on the outer right edge of the plume. The bottom right image in Figure 7 corresponds

to the difference between the spectra at the same pixels as those shown in the mean

spectra image. The difference between the spectra is the greatest for those pixels in the

plume, with the largest difference appearing in pixel (68, 89). The greatest differences

occur at emission features in the plume spectra. The difference between the mean and

median is near zero for the pixels located in the stack and background, as would be

expected for steady sources, and near zero at the stack exit. The difference between

the mean and median spectra indicates the presence of radiance fluctuations in the

plume, the source of which could be due to turbulent temperature or concentration

fluctuations in the plume or some other phenomenon such as wind. The validity

of the assumption that temperature is the primary of cause of turbulent radiance

fluctuations can be investigated by fitting the spectra to the model. Even though

Figure 7 demonstrates Lmean(ν̃) and Lmed(ν̃) appear to be nearly equal at the stack

exit, there are some fluctuations and the mean spectrum could still introduce a bias
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into the fit results. The severity of this bias can be investigated by comparing the

mean and median fit results.

3.5.2 Fit Results.

Fitting the data to the spectral model yielded residuals that exhibited some struc-

ture. Figure 8 shows the mean and median fit and residuals for several pixels in the
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Figure 7. Top left: Lmean(ν̃) [µW/cm2/sr/cm−1] at 2238 cm−1, a CO2 emission feature.
Top right: Mean Spectra at several pixels corresponding to the stack, plume, and back-
ground radiation. The large spectral features correspond to CO2 emission features due
to rotational-vibrational transitions. Bottom left: Lmean(ν̃) - Lmed(ν̃) [µW/cm2/sr/cm−1]
at 2238 cm−1. Bottom right: Mean - median spectra at several pixels corresponding to
the plume, stack, and background radiation.
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plume, (35, 65), (62, 61), (68, 89), and (118, 16). The model and data are shown for

only the 2000 to 2450 cm−1 range, corresponding to the portion of the spectrum in-

cluded in the fit. The structure in the residuals demonstrates the potential problems

with the current spectral model. The residuals are also as much as an order of mag-

nitude greater than the instrument noise level (0.0013 µW/cm2/sr/cm−1), indicating

there to be significant systematic errors in portions of the plume. Although the mean

and median data and fits appear very close, the greatest difference between the mean

and median appears in pixel (68, 89), located in the turbulent right hand edge of the

plume.
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Figure 8. Top: Mean spectral data (solid circles), mean fit results (solid lines), median
spectral data (empty circles), and median fit results (dashed lines) for pixels (35, 65)
(blue), (62, 61) (green), (68, 89) (red), and (118, 16) (purple). Only the range included
in the fit (2000 to 2450 cm−1) is shown. Bottom: Residuals for the mean (solid lines)
and median (dashed lines) for pixels (35, 65) (blue), (62, 61) (green), (68, 89) (red),
and (118, 16) (purple).

The left hand image in Figure 9 represents a measure of the magnitude of the sys-
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tematic error (R) throughout the plume, where R= �(Lmean(ν̃)−Lmodel(ν̃))2�. The

Rmean image, which is similar to that of the Rmedian image, shows a pattern of great-

est error (approximately 0.014 µW/cm2/sr/cm−1) in the center of plume. In this

region, Rmean is an order of magnitude greater than the noise level of instrument,

indicating the presence of systematic errors in the fit. This pattern of larger error

in the center of plume is likely due to limitations in the model. The spectral model

assumes the plume is uniform along the line of sight. However, Papanicolaou and List

demonstrated in their measurements of axisymmetric plumes that the mean velocity

and concentration profiles across the radius of the plume can be closely approximated

by Gaussian profiles [15]-[16]. This implies that systematic errors in the plume are

due to inhomogeneities along the line of sight. The line of sight in the edges of the

plume in Figure 9 includes only the tails of the Gaussian concentration profile. The

edges of the plume have had more time to mix with the surrounding atmosphere, and

thus are more uniform along the line of sight. Because IFTS gives a two-dimensional

representation of a three-dimensional source, the center of the image includes both

the cooler, well-mixed edges of the plume as well as the warmer center. In the center

of the image, the line of sight includes the entire Gaussian profile and is therefore is

less uniform, resulting in a greater R. Although the largest Rmean is on the order of

0.014 µW/cm2/sr/cm−1 (in the center of the plume), Lmean(ν̃) in this region ranges

from approximately 0.6 to 0.9 µW/cm2/sr/cm−1. However the spatial pattern in the

Rmean demonstrates the inadequacy of the current spectral model.

The systematic error related to just the turbulent fluctuations in the plume is cap-

tured in the right hand image in Figure 9. This error is represented by Rmean−Rmedian,

which corresponds to �(Lmean(ν̃)−Lmodel(ν̃))2� − �(Lmedian(ν̃)−Lmodel(ν̃))2�. The im-

age shows that above the stack exit Rmean - Rmed is near zero, on the order of 10−4

µW/cm2/sr/cm−1, and for many pixels is negative. The difference is greater further
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Figure 9. Left: Root mean squared error of Lmean(ν̃) and spectral model (Rmean)
[µW/cm2/sr/cm−1]. Right: Rmean - Rmed [µW/cm2/sr/cm−1].

up the plume and along the more turbulent right edge of the plume (also visible in the

difference between the Lmean(ν̃) and Lmed(ν̃) in Figure 7). The low difference between

Rmean and Rmed above the stack exit demonstrates that the mean is an appropriate

means of estimating effluent concentrations in this region. The effluent concentrations

can be precisely determined only in the region directly above the stack exit where the

pathlength is known to be equal to the stack diameter. The concentrations cannot be

determined exactly farther up in the plume because the exact pathlength is unknown.

Thus because any bias introduced by using the mean spectra is negligible in the area

of interest, simply time-averaging the spectra is sufficient for accurate effluent con-

centration estimates. The areas of greater difference in Rmean and Rmed demonstrate

areas where turbulence could be a potential problem in determining temperature and

effluent concentrations.

The similarity between the fits of the mean and median spectra is also apparent in

Figure 10. The top row of Figure 10 shows the mean brightness temperature (Tmean

B
),

the difference between Tmean

B
and Tmed

B
(median brightness temperature), the standard

deviation of T
B
(s+

TB
), and the difference between two sTB estimates (s+

TB
− s−

TB
). s+

TB
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was estimated from Q+1s - Qmed, and s−
TB

was estimated from Qmed - Q−1s. Figure 10

also shows the fit results of the mean spectra for all the three fit parameters, as well

as the difference between the mean and median fit results, the standard deviation

of the fit results, and the difference between two standard deviation estimates. The

mean temperature (Tmean) image highlights the areas of highest Tmean to be above

the stack exit, with Tmean diminishing the farther up the plume. Tmean directly above

the stack exit is on average 395 K (as is Tmed), which compares favorably to the in

situ temperature of 394 K. The mean CO2 column density (qCO2
mean) map shows the

areas of greatest qCO2
mean, approximately 43 cm, in the center of the plume, with lower

qCO2
mean closer to the edges of the plume. Directly above the stack exit qCO2

mean is

on average 25 cm or 6% (as is qCO2
med), compared to an in situ measurement of 8.5%.

The mean soot transmittance (τpmean) image (bottom left panel) shows a similar

pattern of lower τpmean in the center of the plume, and greater τpmean along the edges.

Above the stack exit, τpmean is approximately 0.97.

The differences between Tmean and Tmed are low (within about ±1 K) above the

stack exit. The area on the right hand edge of the plume where the Tmean is much

less than that of the Tmed corresponds to the area of the plume where the difference

between Rmean and Rmed is the greatest (Figure 9). The differences between qCO2
mean

and qCO2
med are near zero across most to the stack exit (less than 1 cm) and are much

greater towards the right hand edge and top half of the plume. The map of the dif-

ference between τpmean and τpmed shows a similar pattern, with the lowest differences

nearer the stack exit (on the order of −10−3 or less) and the greatest differences in

the top half and right hand edge of the plume. The similarity between the mean and

median fit results for the three parameters near the stack exit further demonstrates

that there is little bias in using the time-averaged spectra. The similarity in Tmean

B

and Tmed

B
above the stack exit indicates this to be a fairly steady region. The simi-
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Figure 10. Top row (from left to right): Tmean

B
, Tmean

B
- Tmed

B
, sTB , and the difference

in two sTB estimates. Second row (from left to right): Tmean (K), Tmean - Tmed (K), sT
(K), and the difference in two sT estimates. Third row (from left to right): qCO2

mean

(cm), qCO2
mean-qCO2

med (cm), sq (cm), and the difference in two sq estimates (cm).
Bottom row (from left to right): Mean τp, τpmean - τpmed, sτ , the difference in two sτ
estimates. Standard deviations were estimated from the Q+1s - Qmed. Difference in
standard deviation estimated from (Q+1s - Qmed) - (Qmed - Q−1s).

larity of the fit results in this region proves that this region is in fact steady enough

that temperature fluctuations do not introduce systematic errors larger than those

already present due to use of a simple, single temperature model.
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The standard deviation maps in Figure 10, approximated from Q+1s - Qmed, are an

estimate of how much each parameter is changing. The standard deviation of T (s+
T
)

is greatest along the outer right hand edge of the plume (corresponding to the same

region of high standard deviation of the T
B
) and low above the stack exit (within

about 2 K). The standard deviation of qCO2 (s+
q
) is lowest near the stack exit (within

about 1 cm) and greater farther up the plume and along the right hand edge of the

plume, a pattern also demonstrated by the difference in qCO2
mean and qCO2

med. The

standard deviation of τp (s+τ ) shows a very similar pattern and is also lowest along the

stack exit (within about 104) and greater farther up the plume and along the right

hand side. The large standard deviations in the right hand edge are likely an effect of

wind, causing the plume to move in and out of the field of view of the pixels in that

region. As would be expected, the plume’s changing density and pathlength farther

from the stack exit contribute to more changes in radiance and thus larger sT , sq,

and sτ . The right hand column in Figure 10 represents the difference in two standard

deviation estimates (∆s) of the T
B
, T , qCO2 , and τp. ∆s is calculated from (Q+1s -

Qmed) - (Qmed - Q−1s). Assuming only one parameter is fluctuating,∆ s represents the

degree of symmetry of the underlying probability density function of that parameter.

These images show the areas of the plume where the probability density function

deviates the most from a symmetric distribution. For example, the TB image shows

∆s to be greatest along the outer right hand edge of the plume, and low near the

stack exit.∆ s of the kinetic temperature is also greatest along the outer right hand

edge (indicating a region where the temperature distribution is least symmetric) and

low near the stack exit.∆ s of the column density is greatest in the top half of the

plume (indicating a region where the column density distribution is least symmetric)

and low near the stack exit.∆ s of the τp is also low at the stack exit and greatest

toward the top of plume. The low∆ s for all three parameters above the stack exit
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indicates this to be a region of high symmetry.

The standard deviation images in Figure 10 demonstrate that temperature is not

the only parameter fluctuating. The assumption that temperature is the only pa-

rameter fluctuating allowed quantile spectra to be mapped to a single temperature.

The difference between CO2 column densities and soot transmittances retrieved from

quantile spectra should therefore be zero, which is not the case in Figure 10. While the

method of sorting the spectra into quantiles is still valid, the monotonic relationship

between IDC and temperature falls apart and these quantile spectra can no longer be

mapped to a specific temperature. Rather, each quantile spectrum maps to a collec-

tion of temperature and concentration pairs that all correspond to the same integrated

radiance, and quantitative conclusions cannot be drawn. Thus because temperature

is not the only parameter varying, the underlying temperature distribution cannot be

inferred and accurate estimates of temperature fluctuations obtained. However, sort-

ing the data into quantiles before fitting to the model still provides information that

simply time-averaging the spectra does not. Although fitting a quantile spectrum to

the model gives only one of the temperature and concentration pairs possible, it still

provides a sample of the underlying temperature and concentration distribution not

provided by the time-averaged spectrum. Quantile spectra can still reveal a good

deal of spatial information, as demonstrated by the standard deviation and∆ s maps

in Figure 10. Figure 10 shows clear spatial patterns in the standard deviation and

∆s images. Considering the fact that each pixel was treated independently, these

patterns are representative of real phenomena in the plume. For flow fields in which

multiple parameters are randomly fluctuating, retrieval of the underlying joint prob-

ability density function from the mean spectrum is difficult if not impossible without

considerable a priori knowledge of its general form. Quantile spectra, however, can

provide additional constraining data for this retrieval process and may improve the
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success of such a method.

Figure 11 shows the fit results of several pixels for the three parameters along

with the 95% confidence intervals for Qmed, Q±0.5s, and Q±1s. The median value has

been subtracted from each curve. Although trends can be seen in the figures, the

confidence intervals overlap significantly, making it difficult to draw any quantitative

statistical information from the results. Trends, however, can be still observed in the

results. No real trend in T or qCO2 is apparent in the pixel directly above the stack

exit (35, 65). In the pixel in the center of the plume (62, 61), T appears flat with

increasing probability, however qCO2 appears to increase. Any trend in temperature

is difficult to discern at pixel (118, 16) since the T appears flat with the exception of
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Figure 11. From left to right: T (K), qCO2 , and τp of several pixels for Qmed, Q±0.5s, and
Q±1s with 95% confidence intervals. The median has been subtracted from each curve.
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the tails of the curve. A trend in qCO2 at pixel (118, 16) is also difficult to discern

because qCO2 falls and rises in the center of the curve. τp appears fairly flat with

the exception of the tails of the curves for every pixel except (68, 89), where it does

exhibit a downward trend. Pixel (68, 89) also demonstrates a trend of both increasing

T and qCO2 with probability. Even considering overlapping confidence intervals, all

three parameters for pixel (68, 89) exhibited change as probability increased in this

turbulent region of the plume.

3.5.3 Turbulence Simulations.

Although the similarity of the fit results above the stack exit demonstrated that

temperature and concentration fluctuations were small enough for use of a single

temperature model to accurately determine concentrations, at some point the fluc-

tuations become too large and the model breaks down. Simulations were performed

to investigate the error introduced by the use of a single temperature model to in-

terpret the mean spectrum of a turbulent source. The average radiance of the source

with only the temperature fluctuating can be represented by Equation 18. P (T ) was

chosen to be a Gaussian distribution with a mean 396 K, and the standard deviation

(sT ) was varied from 0 to 20 K. The average radiance, Lmean(ν̃), was compared to the

radiance at the average temperature, L(Tmean), for each P (T ). The same simulation

was performed for a source with only a fluctuating CO2 concentration. In this case,

P (T ) in Equation 18 is replaced with a probability distribution of CO2 concentration.

A Gaussian distribution with a mean of 25.4 cm (6%) and a standard deviation (sq)

that ranged from 0 to 15.3 cm (3.6%) were chosen. The top left plot in Figure 12

represents the error (R) as function of sT for the case of sq = 0 (concentration not

fluctuating), where R = �(Lmean(ν̃)−L(Tmean))2�. The top right plot represents the

error (R) as a function of sq for the case of sT = 0 (temperature not fluctuating),
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Figure 12. Top row: Root mean square of Lmean(ν̃) - L(Tmean, qCO2
mean) (R)

[µW/cm2/sr/cm−1] as a function of sT/Tmean (left) and as a function of sq/qCO2
mean

(right). Center row: qCO2error (qCO2
mean - qCO2corresponding to Lmean(ν̃)) as a func-

tion of sT/Tmean (left) and as a function of sq/qCO2
mean (right). Bottom row: T error

(Tmean- T corresponding to Lmean(ν̃)) as a function of sT/Tmean (left) and as function of
sq/qCO2

mean (right). Tmean = 396 K, and is representative of Tmean above the stack exit.
qCO2

mean = 25 cm (6%), and is representative of qCO2
mean above the stack exit. Only

one parameter was varied at a time.
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where R = �(Lmean(ν̃)−L(qmean

CO2
))2� [µW/cm2/sr/cm−1]. sT and sq are presented as

fractions of the Tmean and qCO2
mean at the stack exit. The center plots in Figure 12

represent the error in temperature normalized by Tmean as a function of the relative

T fluctuations (left) and relative qCO2 fluctuations (right). The temperature error

corresponds to Tmean - T determined from the mean spectrum. The bottom plots in

Figure 12 represent the error in qCO2 normalized by qCO2
mean as a function of relative

T fluctuations (left) and relative qCO2 fluctuations (right). qCO2 error corresponds to

qCO2
mean - qCO2 determined from the mean spectrum.

Because only 1000 temperatures and concentrations were sampled, plotting the

error as a function of the relative temperature and concentration fluctuations resulted

in somewhat jagged curves. In order to smooth out the results, the above analysis was

performed several times for each case (sT = 0 and sq = 0) and averaged. According

to Figure 12, a 1.9% CO2 concentration fluctuation (32% of qCO2
mean) is required to

give the same overall error (0.0038 µW/cm2/sr/cm−1 or 3 times the noise level of the

instrument) as a 9.5 K temperature fluctuation (2.4% of Tmean). This same pattern

is observed in the T error and qCO2 error plots. If only one parameter is fluctuating, a

much larger qCO2 fluctuation than T fluctuation is needed obtain the same errors in T

and qCO2 . Thus if only one parameter is fluctuating, temperature fluctuations have a

much greater impact on the quality of the fit results than concentration fluctuations.

The relative importance of the error in T and qCO2 can be examined by comparing

the relative errors at the sT and sq that result in the same overall error in the spectrum.

Table 1 contains the relative T and qCO2 errors corresponding to an overall error, R,

of 0.0038 µW/cm2/sr/cm−1 for each case. The arrows in Figure 12 indicate the

value of sT and sq that result in an overall error, R, of 0.0038 µW/cm2/sr/cm−1. A

comparison of the relative T and qCO2 errors at these values reveals that if only T

fluctuates, the relative errors are the same. If only qCO2 is fluctuating, the magnitude
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of the relative qCO2 error is approximately 5 times greater than that of the relative

T error, indicating that in this case qCO2 error has a greater influence on the overall

error in the spectrum.

Table 1. Temperature and CO2 concentration errors corresponding to an overall error,
R, equal to 0.0038 µW/cm2/sr/cm−1 for each case (sT = 0 and sq = 0).

Temperature Fluctuating: Concentration Fluctuating:
sT = 0.024 (9.5 K) sq = 0.32 (0.019% or 8.1 cm)

R: 0.0038 µW/cm2/sr/cm−1 0.0039 µW/cm2/sr/cm−1

T Error/ Tmean: -0.21% (-0.84 K) 0.36% (1.4 K)
qCO2 Error/qCO2mean: -0.21% (0.013% or 0.054 cm) -1.9% (-0.11% or -0.47 cm)

The method used to obtain the standard deviation images in Figure 10 is based

on the assumption that only the temperature of the source is fluctuating. Although

the sq map clearly shows that qCO2 is fluctuating, the corresponding T and qCO2 errors

can still be found under the assumption that only one parameter is fluctuating. For

example, the pixels in the sT image can be connected with the T and qCO2 errors that

would result if only the temperature was fluctuating. Table 2 contains the T and qCO2

errors corresponding to the sT and sq of pixels (35, 65) and (68, 89). Pixel (35, 65)

is in the region above the stack exit, and pixel (68, 89) is in the turbulent right hand

edge of the plume. The results in Table 2 demonstrate that if only temperature or

concentration fluctuates, the standard deviations found in the turbulent region of the

plume result in substantial errors due to use of a single temperature model.

Table 2. Temperature and CO2 concentration errors corresponding to the sT and sq of
pixels (35, 65) and (68, 89).

Temperature Fluctuating Concentration Fluctuating
Pixel (35, 65): Pixel (68, 89): Pixel (35, 65): Pixel (68, 89):
sT = 1.4 K sT = 9.5 K sq = 0.11 cm sq = 8.0 cm

T Error: 0.02 K -0.84 K 0.003 K 1.3K

qCO2 Error:
−4x10−4% -0.013 % −1x10−4 % -0.098 %

(−9x10−4 cm) (-0.054 cm) (−5x10−4 cm) (-0.41 cm)
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3.6 Conclusions and Recommendations

The similarity in the mean and median fit results immediately above the smokestack

exit serves to increase the confidence in temperature and effluent concentrations ob-

tained by IFTS. Because effluent concentrations are readily derived from column

densities above the stack exit where the plume geometry is known, the similarity in

the mean and median fit results in this region demonstrates that the mean spectrum

is sufficient for determining effluent concentrations. The similarity in the mean and

median fit results above the stack exit demonstrates that this region is steady enough

for use of the mean spectrum to estimate temperature and effluent concentrations.

The ability of IFTS to isolate the area above the stack exit makes it an ideal method

for determining effluent concentrations of smokestack plumes. While IFTS has the

capability of identifying the turbulent and steady regions of the plume, non-imaging

FTS does not.

While this research demonstrated the similarity of the mean and median spectra

directly above the stack exit, the mean and median spectra differed significantly in

regions affected by turbulence in the plume or other causes (such as wind) of temporal

radiance variations. Nonetheless, approximate temperature and CO2 column densities

were retrieved throughout the plume. Even though fit residuals were small, the

spatial pattern in the root mean square fit error demonstrates the imperfections in

the spectral model. This spatial pattern may indicate the presence of information

in the spectra about temperature and concentration gradients along the line of sight

that could potentially be recovered from the spectrum.

IFTS also presents an advantage in its ability to provide additional information

not provided by non-imaging FTS. Imaging spectrometers retain the DC component

of intensity, allowing the statistical sorting of the spectra, a capability not provided

by non-imaging spectrometers. While the results of this research showed that each

48



quantile spectrum could not be mapped to a specific temperature and therefore the

underlying temperature distribution could not be inferred, standard deviation and

∆s maps obtained by the statistical sorting of the spectra provided considerable spa-

tial information not contained in the mean spectrum. These maps demonstrate the

amount of information contained in the quantile spectra as well as the potential of

quantile spectra for flow field diagnostics. Quantile spectra contain considerable ad-

ditional information, and the interpretation of quantile spectra and their application

to flow field diagnostics is worth further investigation.
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Appendix A. Matlab Code

The code in this appendix sorts the raw interferograms into quantiles and cre-

ates quantile interferograms for data cubes in only one direction. Only the median,

±1s, and ±2s quantile interferograms are shown, however, any number of quantile

interferograms can be created.

Listing A.1.

1 %% Creates quantile interferogram matrices for data cubes in 1 ...

direction

% Inputs:

xsize =128; %size of window in x-direction

ysize =128; %size of window in y-direction

6 sw =948; %sampling window dimension

sweepdir = 1; %sweep direction: forward = 1, reverse = 0

files = dir(’DAT*F_OC.raw’); %file prefix for data cubes of ...

interest

%Create empty matrices the size:

11 %(# of data rows)x(# columns)x(sampling window dimension)

q_median = zeros(ysize ,xsize ,sw); % Median quantile

q_p1s = zeros(ysize ,xsize ,sw); %+1s quantile

q_p2s = zeros(ysize ,xsize ,sw); %+2s quantile

q_m1s = zeros(ysize ,xsize ,sw); % -1s quantile

16 q_m2s = zeros(ysize ,xsize ,sw); % -2s quantile

nFiles = length(files); %Number of cubes

Data = zeros(nFiles , xsize , sw); %Create an empty matrix the size:

%(# data cubes in chosen direction)x(# columns)x(sampling window ...

dimension)

21
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%Imports and finds the various quantiles one row at a time for all...

data cubes in the specified direction.

progressbar (0);

for jj = 1: ysize %jj is row number

k=1;

26 for ii = 1: nFiles

fname = files(ii).name;

[~,~,hd]= importTelops(fname ,’header ’); %Imports just the ...

header information for each datacube.

if hd.DCA_SweepDirection == sweepdir %Imports only the data ...

cubes in the specified direction.

[Data(k,:,:) ,~,H] = importTelops(fname ,’row’,jj ,1); %3...

x3 Matrix of all datacubes in specified direction.

31 k=k+1;

end

end

for n=1:sw %Finds each quantile from the matrix of data cubes

q_median(jj ,:,n) = quantile(Data(:,:,n) ,0.5,1);

36 q_p1s(jj ,:,n) = quantile(Data(:,:,n) ,0.841,1);

q_p2s(jj ,:,n) = quantile(Data(:,:,n) ,0.977,1);

q_m1s(jj ,:,n) = quantile(Data(:,:,n) ,0.159,1);

q_m2s(jj ,:,n) = quantile(Data(:,:,n) ,0.023,1);

end

41 progressbar(jj/ysize);

end

%Reshape matrices for calibration to radiance units:

rq_median=reshape(permute(q_median ,[2 1 3]),xsize*ysize ,sw);

46 rq_p1s=reshape(permute(q_p1s , [2 1 3]),xsize*ysize ,sw);

rq_p2s=reshape(permute(q_p2s , [2 1 3]),xsize*ysize ,sw);

rq_m1s=reshape(permute(q_m1s , [2 1 3]),xsize*ysize ,sw);

rq_m2s=reshape(permute(q_m2s , [2 1 3]),xsize*ysize ,sw);
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