Air Force Institute of Technology AFIT Scholar

Theses and Dissertations

Student Graduate Works

3-11-2011

TOF-SIMS for Rapid Nuclear Forensics Evaluation of Uranium Oxide Particles

Hannah E. Hocking

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Nuclear Commons

Recommended Citation

Hocking, Hannah E., "TOF-SIMS for Rapid Nuclear Forensics Evaluation of Uranium Oxide Particles" (2011). *Theses and Dissertations*. 1455. https://scholar.afit.edu/etd/1455

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

TOF-SIMS FOR RAPID NUCLEAR FORENSICS EVALUATION OF URANIUM OXIDE

PARTICLES

THESIS

Hannah E. Hocking, Captain, USAF

AFIT/GNE/ENP/11-M10

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

AFIT/GNE/ENP/11-M10

TOF-SIMS FOR RAPID NUCLEAR FORENSICS EVALUATION OF URANIUM OXIDE PARTICLES

THESIS

Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Engineering

Hannah E. Hocking, BS

Captain, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GNE/ENP/11-M10

TOF-SIMS FOR RAPID NUCLEAR FORENSICS EVALUATION OF URANIUM OXIDE PARTICLES

Hannah E. Hocking, BS

Captain, USAF

Approved:

Larry Burggraf, PhD (Chairman)

James Petrosky, PhD (Member)

Alex Li, PhD (Member)

MSgt Wesley Schuler (Member)

Date

Date

Date

Date

ABSTRACT

Because of nuclear proliferation concerns, nuclear material must be safeguarded, and peaceful intentions verified. The field of nuclear forensics addresses these concerns. While established nuclear forensic techniques exist, quicker, more accurate and less expensive methods are of interest for nonproliferation applications. Currently a host of different analytical techniques, requiring a week or longer, are employed to obtain isotopic ratios, chemical abundances and morphology for forensic particulate samples. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is a candidate technology for rapid evaluation of these properties for small amounts of nuclear materials. After a thorough investigation, this study found TOF-SIMS to be particularly useful to the nuclear forensic field as a triage technique, capable of quickly identifying and roughly assessing uranium containing materials for these properties. Uranium isotopic abundances can be determined to an accuracy of 1 percent. Uranium oxide particles are clearly distinguished from one another. TOF-SIMS imaging easily and quickly reveals the basic shape and composition of particles. Additionally the relative abundances of various secondary ions produced with TOF-SIMS may uncover new information on fundamental uranium oxide structures and properties.

Acknowledgments

Sir Issac Newton once said, "If I have seen further it is only by standing on the shoulders of giants." I am no Newton, and perhaps this statement is perhaps a bit of a reach for me. However, I am comfortable in saying that I could not hope to accomplish anything without the "giants" that surround me. Thank you, Dr. Burggraf for all the guidance and patience you showed me. Without your expertise and support I would have been lost. Thank you to Dr. Gardella and Brett Yatzor at SUNY Buffalo for the use of your TOF-SIMS and your expert knowledge. Thank you to Dr. Felker and Dr. Li for all your help in the lab. Thank you to Dr. Simons and Dr. Szakal for your clarification on a number of points I was confused on. Thank you to Mr family, for your unwavering support and encouragement.

Capt Hannah E. Hocking

TABLE OF CONTENTS

		Page
Abs	stract	iv
Ack	nowledgments	V
List	of Figures	viii
List	of Tables	ix
I.	Introduction	1
II.	Background	4
	Uranium	4
	TOF-SIMS Capabilities	7
	Previous Work	13
III.	Methodology	17
	Gold Sample Mounting Technique	17
	TOF-SIMS Parameters	
	Data Collection Process and Parameters	19
IV.	Data Analysis/ Results	22
	Isotope Determination	22
	Protonation Determination	29
	Dominate Ion	
	Protonation Depth Profile	
	Lattice Valence	
	Uranium Carbide Depth Profile	42
	Morphology	43
	Advantages and Disadvantages of Gold Mounting Technique	44
V.	Conclusions/Recommendations	46
	Isotopic Calculation Performance	46

	Page
Protonation Findings	46
Lattice Valence Findings	47
Oxide Determination	48
Morphology	48
Success of the Gold Sample Mounting Procedure	49
Nuclear Forensic Utility of TOF-SIMS	49
Appendix A. Sample Preparation Procedure	51
Appendix B. System of Equations for UO^+ and UO_2^+ Ions	54
Appendix C. Isotope Calculator	57
Appendix D. Protonation Calculator	85
Appendix E. Protonation Values	114
Appendix F. Protonation Ratios	139
Appendix G. TOF-SIMS Images	161
Bibliography	194

LIST OF FIGURES

Figure	Page
1. Crystalline structure of UO ₂ , U ₃ O ₈ , and UO ₃ . [19]	6
2. Schematic Diagram of the SIMS Process. [10]	9
3. Two Dimensional Total Ion TOF-SIMS Image. [10]	10
4. A TOF-SIMS sputter depth profile. [10]	12
5. Partial TOF-SIMS mass spectra obtained from Schuler's study. [7]	13
6. Chemical Composition of an Oxidized U-238 Particle	14
7. Screenshot of the Isotope Calculator interface.	
8. Graphical Representation of Table 4.	
9. Screenshot of the Protonation Calculator interface.	31
10. Micro-Fraction of H_2O^+ as compared to total ion count	36
11. Fraction of protonated UxOy ⁺ ions as a function of depth	37
12. Screenshot of the Valence Calculator	39
13. Lattice valence as a function of depth	41
14. Fraction of uranium carbide as a function of sputtering depth	42
15. TOF-SIMS images of spectra nU001 and nU002	44

LIST OF TABLES

Table	Page
1. Natural Isotopic Abundance of Uranium	4
2. Sample Specifications	18
3. Collection Conditions for all Spectra Acquired in the Study	20
4. Results of the Isotope Calculator for three samples of varying enrichments	26
5. Absolute error of the Isotope Calculator	27
6. Tabulated protonation values	32
7. Protonation ratios	33
8. Tabulated lattice valence for all spectra	40

TOF-SIMS FOR RAPID NUCLEAR FORENSICS EVALUATION OF URANIUM OXIDE PARTICLES

I. Introduction

As more and more countries express interest in nuclear technology the need to monitor and assess nuclear activities is ever growing. Nuclear material must be safeguarded and peaceful intentions must be verified. Nuclear forensics, the technical means by which nuclear materials are characterized and interpreted [1], is an ongoing area of interest for the Department of Defense. While established nuclear forensic techniques exist [1], more accurate, less expensive and quicker methods are of continued interest. Rapid, actionable information is a priority.

Special nuclear material [2], plutonium and certain isotopic enrichments of uranium, is material which could be fashioned into a nuclear weapon and is of special regulatory interest. While plutonium is not commonly found in nature, uranium is much more widespread. Uranium ore is found in many locations across the globe. Uranium has many uses ranging from pottery glaze to nuclear weapon cores and uranium oxides are perhaps the most common nuclear reactor fuel. All this makes uranium a much more difficult material to monitor.

Currently, obtaining isotopic and chemical abundances of forensic samples requires a host of different analytical instruments and can take a week or more [1]. New technology can provide breakthroughs in the endeavor to identify and characterize uranium containing particulates using isotopic, chemical, and morphological data.

Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) shows the potential to shorten the nuclear forensic timeline for uranium containing compounds. TOF-SIMS has the capability to gather isotopic and chemical information as well as gain a sense of the sample morphology. It can gather this information quickly and concurrently.

This study explores the potential of TOF-SIMS to be used as a nuclear forensic technique for the purpose of rapidly locating and describing uranium and uranium oxide particulate. Specifically the goal of this research was to determine if TOF-SIMS could be used to quickly achieve isotopic, chemical and morphological data on a uranium containing particle.

In this study, a novel sample mounting technique in which uranium oxide particulate samples were pressed into a clean gold surface was developed in hopes of reducing sample contamination. This technique calls for a minimum of sample preparation, which complements a quick forensic study. The gold mounted uranium oxide particulate samples were subjected to TOF-SIMS analysis using an IONTOF TOF-SIMS V with a Bi_3^{++} primary ion beam and a C_{60} sputtering beam which gathered mass spectrum data to 3000 amu.

The study found TOF-SIMS to be particularly useful to the nuclear forensic field as a sort of triage technique, capable of quickly identifying and roughly assessing particles of interest. The Isotope Calculator, created in this effort, can determine the isotopic abundance of uranium accurate to within 1%. Oxide identification is achievable through a variety of mass spectrum analysis. Morphology information obtained with TOF-SIMS static imaging provides excellent insight into the sample particle and its environs. The gold sample mounting technique has both advantages and drawbacks, but is advantageous in situations where rapid analysis is desired. Additionally, TOF-SIMS may hold some merit as a tool in uncovering more information on fundamental uranium structure and properties.

II. Background

Uranium research perhaps reached its heyday in the 1950s. Prior to the Manhattan Project, relatively little interest was taken in uranium. Much of what is known about the basic science of uranium was discovered during the Manhattan Project and, later, for the development of nuclear reactors. Subsequent research efforts have been mainly focused on nuclear forensic applications. The relative sophistication of our nuclear forensic capabilities, however, will always depend on our understanding of the fundamental science underlying these techniques. For that reason it is imperative that both our sample material, uranium, and our proposed analysis technique, TOF-SIMS, be firmly understood.

Uranium

Uranium, being radioactive, exists in several isotopic forms. The majority (99.2742%) of naturally occurring uranium is U-238. A smaller percent (0.7204%) is found as U-235. The long half-life of uranium makes its natural isotopic abundance a practical constant [3].

 Table 1. Natural Isotopic Abundance of Uranium.

	U-234	U-235	U-238
Abundance	0.0054%	0.7204%	99.2742%
Half-life	2.455E+5 y	7.04E+8 y	4.468E9 y

Nuclear reactors and enrichment facilities have the ability to alter the isotopic abundance of uranium. Enrichment facilities increase the U-235 content of uranium for use as

nuclear fuel or weapon material. Reactors will generally deplete the U-235 content of uranium fuel, though not necessarily below natural levels. Analysis of a forensic sample for isotopic abundance can tell of the sample's isotopic enrichment history.

Additionally the chemical nature of the uranium containing sample is important to this study. Fission fragments and impurities will contribute to a uranium containing sample. Uranium has oxidation states ranging from +3 to +6 and will form many compounds as well. Some of the most common chemicals which uranium reacts with are carbon, water, and oxygen. Chemical content can be related back to the processing history of a forensic sample.

Both uranium and uranium oxides will combine with carbon to form uranium carbides UC and UC₂. A third, less common, carbide is also possible; U_2C_3 . Methane has also been shown to produce UC carbide on uranium. Carbon has a reducing effect on uranium and uranium oxides [4].

Water has been shown to react with uranium metal; oxidizing it. Uranium oxides show some affinity for water as well, existing as hydrates. $UO_2 * 2H_2O$, $U_3O_8 * H_2O$, $U_3O_8 * 2H_2O$, $UO_3 * H_2O$, $UO_3 * 2H_2O$, $2UO_3 * H_2O$, and $2UO_3 * 3H_2O$ are all noted in literature. As uranium oxidation state increases, hydrate formation becomes more probable. Adding energy to a uranium oxide hydrate can have the effect of further oxidation rather than dehydration [4].

Figure 1. Crystalline structure of UO₂, U₃O₈, and UO₃. [20]

Uranium metal is not chemically stable in an oxygen environment. Uranium oxidizes readily in the open atmosphere. The most common stoichiometric uranium oxides are UO_2 , U_3O_8 , and UO_3 . Different crystalline structures exist for each of these oxides.

In an oxidizing environment uranium oxide will favor the UO₃ species. In a reducing environment UO₂ will be favored. In air, the intermediate form, U₃O₈, is favored. However, in reality uranium oxidation will produce a gradient of oxide composition with the stoichiometric oxides appearing merely as thin layers. Schueneman found that at low temperature, a gradient of amorphous defected oxide coating will form on UO₂ particles. Simple oxygen diffusion dynamics were found accountable for the oxide formation. The detailed characterization of uranium oxidation can be used to relate a particle's oxidation profile back to storage conditions and particle life [5].

Uranium's oxidation state, or valence, varies from +4, for pure UO_2 , to +6, for pure UO_3 . Determining the oxidation state of uranium helps to describe the chemical composition of the uranium oxide particle. In Plog et al. [6] the term fragment valence is defined as the formal valence number of the metal atom in the fragment ion. For metal oxide, $Me_mO_n^{q}$, the average fragment valence is,

$$K = (q+2n)/m. \tag{1}$$

In a mass spectrum, multiple types of fragments can be seen. Plog et al. shows, for a selection of metal oxides, that a plot of the abundance of each of these fragments against their average fragment valence yields two Gaussian curves; one for the positive ion spectrum and one for the negative ion spectrum. Averaging the mean of each curve gives G^0 , which they define as the lattice valence. The authors put forth that this lattice valence could be used to determine oxide concentration for stoichiometry determination, but that the relation between lattice valence and metal valency must be known in considerable detail for a quantitative determination [6]. Schuler began using this principle to describe the average oxidation state of uranium [7]. In this work the change in lattice valence will be used as a relative measure of the average oxidation state of a uranium sample.

TOF-SIMS Capabilities

Sodhi states that "time-of-flight secondary ion mass spectrometry (TOF-SIMS) has emerged as one of the most important and versatile surface analytical techniques available for advanced materials research" [8]. Certain techniques even allow a three dimensional map of sample composition to be produced. TOF-SIMS requires a minimum of sample preparation, and is minimally destructive. All of this taken together makes TOF-SIMS a leading candidate for nuclear forensic analysis.

In general, all mass spectrometry includes the following steps. First the sample must be vaporized. Then these fragments are ionized and the ions are separated according to their mass-to-charge ratio (m/z). Either positive or negative ions may be selected to be examined with the positive ion analysis being more common. The abundance or intensity of each m/z is then determined to produce the mass spectrum of the sample. Analysis of the molecular fragments that comprise the mass spectrum is required to determine the contributing isotopic and chemical species. Various methods are used to atomize, ionize, and separate samples [9].

The most common methods of achieving atomization and ionization include the use of plasmas, sparks, lasers, and ion beams. Separation occurs by use of a quadrupole, magnetic sector, double focusing, ion trap, or time-of-flight mass analyzer. Currently magnetic sector SIMS instruments are used in state-of-the-art nuclear forensic analysis [10]. Magnetic sector SIMS makes use of an ion beam to fragment and ionize the sample. Ions are then separated by virtue of electromagnetics. Magnetic sector SIMS' advantage comes in the ultra high resolution that is achievable and the ability to completely fragment and consume the sample producing very high ion counts. Disadvantages include the extremely low m/z range and complete consumption of a forensic sample.

Time-of-flight SIMS (TOF-SIMS) mass analyzers also use an ion beam to fragment and ionize the sample. However, TOF-SIMS ion beams are much lower in fluence than the ones found in magnetic sector SIMS. A time-of-flight tube is used to separate the ions according to m/z. The time-flight-tube enables a virtually unlimited m/z range, the lower fluence primary ion beam allows spectra to be gathered from a single

monolayer of the sample, and preservation of a forensic sample as evidence. Tradeoffs are made in resolution and sensitivity [9].

Many different ion beams are available for TOF-SIMS instruments, each with its own advantages and disadvantages. Oxygen, cesium, and bismuth are commonly used ion beams. Ion beam selection must be tailored to the sample and study.

Figure 2. Schematic Diagram of the SIMS Process. [11]

The accelerated ion beam is momentarily pulsed at the sample surface. This beam of ions blasts away secondary ions from the sample. The secondary ions are then accelerated via electric field into a drift tube. All ions have nearly the same kinetic energy upon entering the drift tube. Heavier ions will therefore have a lower velocity than light ions. At the end of the drift tube is an ion detector. The high velocity light weight ions will reach the ion detector more quickly than the heavy ions. The time of arrival of each ion group is a result of their m/z ratio. A mass spectrum is constructed

from the information received at the ion detector. Once all the ions have cleared the drift tube the process can begin again. Each spectrum takes mere fractions of a second and most TOF-SIMS data is actually an aggragation of many of these brief spectra. The aggregate mass spectrum can be used to identify the compositions of the secondary ions given off by the sample surface, reflecting the composition of the sample itself [9].

TOF-SIMS is a versatile analysis method, and several techniques have been developed to fully exploit the capabilities of the instrument. Two of the most important are static imaging and dynamic depth profiling

Rastering the primary ion beam across the surface of the sample to be analyzed can effectively yield a two dimensional image of the sample composition. A spectrum is taken at each pixel in the image. Peaks of interest are selected and an image is constructed with the information gained from each point along the ion beam path highlighting the location of high and low intensity of the selected peak within a sample. This technique can be used to map out regions of chemical species with in a sample and provides some morphology data along with chemical and isotopic abundance.

Figure 3. Two Dimensional Total Ion TOF-SIMS Image of a Coated Paper Cross-section. [11]

Further, dynamic depth profiling enables a three dimensional map of the sample composition to be produced. Dynamic TOF-SIMS depth profiling is achieved in a different method to magnetic sector SIMS. In magnetic sector SIMS the abundance of an ion is tracked real-time as the whole sample is eroded from the primary ion beam. In dynamic TOF-SIMS, two ion beams are used. The first ion beam is used exactly as described above. The second ion beam is alternated with the first. Its function is to sputter away large quantities of material from the sample surface. No spectrum is recorded during sputtering. This technique allows a series of spectra to be recorded at discrete depths within the sample [11]. Dynamic TOF-SIMS has found use in such varied applications as archeology and biotechnology [12] [13]. Along with the imaging technique described above, a three dimensional map of the sample composition can be assembled.

Certain issues arise with use of the sputtering gun, however. Unequal erosion rates for different elements, uneven erosion of the sample surface, and implantation can all occur.

Not all substances react to sputtering to the same degree. A multitude of factors go into determining an element's sputter yield. When a sample is made up of a combination of elements which do not all desorb the surface at the same rate nonstoichiometric sputtering occurs. Oxides are known to exhibit nonstoichiometric sputtering. The oxygen will preferentially desorb the surface of the sample resulting in a reduction process in the remaining sample [14].

When preferential sputtering occurs, surface roughness can also result. For example if a patch of low yield molecules cover the surface of a high yield substance an island can form. The low yield molecules, resisting sputtering, and anything underneath them, will remain as an island while the surrounding high yield substance gets eroded away. These kinds of effects can play havoc with the assumption that sputtering will cleanly remove a layer of the sample at a time [14].

When a sputtering primary ion hits the sample surface the most likely interaction will not be for it to bounce away. Typically the sputtering ion will implant itself some distance into the surface of the sample. While this distance is usually greater than the monolayer that is analyzed after sputtering, with continued sputtering the implantation depth will be reached. The sputtering implantation pattern is dependent on many factors including sputtering species, sample species, sputtering ion energy, and sputtering angle [14].

Figure 4. A TOF-SIMS sputter depth profile of a thin MoSi₂ film on silicon reveals the presence of a fluorine contaminant at the film / substrate interface. [11]

Previous Work

Because the half-life of uranium is so large, the isotopic distribution, and therefore the mass spectra, can be fairly well known. Previous studies have been conducted with uranium detailing its mass spectra.

Figure 5. Partial TOF-SIMS mass spectra obtained from Schuler's study. [7]

In 2009 MSgt Schuler completed an extensive TOF-SIMS study of uranium oxides. UO₂, UO₃ and U₃O₈ samples were studied in isotopic abundances ranging from 0.5 to 90.0% U-235 [7]. Unfortunately, lack of a sputtering source to scour sample surfaces led to severe hydrocarbon surface contamination which influenced the data. Additionally without a sputtering source this study was limited to static SIMS methods yielding only surface information. Schuler was able to demonstrate the value of TOF-SIMS analysis as a potential nuclear forensic technique. He managed to overcome the

interfering effects of surface contamination and gather critical information from his data. Schuler also applied a very useful technique to determine the average oxidation state of TOF-SIMS samples [7].

Figure 6. Chemical Composition of an Oxidized U-238 Particle from a Dynamic TOF-SIMS Study [15].

Lawrence Livermore National Laboratories (LLNL) has conducted a number of TOF-SIMS studies of uranium in recent years. In 2005 LLNL conducted a dynamic TOF-SIMS study of U-238 which had been implanted with C⁺ ions. The control sample used in this 2005 study was a U-238 metal particle, exposed to the air for one year. The control provides a good estimation of what to expect from a dynamic TOF-SIMS study of uranium. However, dynamic TOF-SIMS analysis was performed on the control material only to a depth of 100 nm. The analysis suggests that the oxide layer was much thicker than 100 nm, and the oxide gradient is not properly seen. This study made no assessment of the suitability of this kind of technique for forensic analysis [15]. No treatment of higher mass ions, nor was the oxide layer characterized.

In 1998 LLNL published a study of the effect the TOF-SIMS primary ion beam has on uranium dioxide secondary ion emission [16]. A similar study was carried out in 2004 by Center Interdisciplinaire de Recherche Ions Lasers [17]. These studies show that there is a power law relationship for higher mass secondary ion yields. Different experimental parameters like primary ion beam species and degree of ionization can affect the power law exponent. Higher mass ions are believed to carry more accurate sample composition information whereas the abundance low mass ions are believed to be a product of volatilization conditions. Tailoring a TOF-SIMS operation to produce greater yields of high mass ions would be advantageous for determining the chemical composition of a sample.

In 2008 a group of scientists from the Japan Atomic Energy Agency published a magnetic sector SIMS study investigating the precision achieved for the isotopic ratio for uranium. It was determined that particle sizes of greater than 2 μ m are sufficient to reduce the relative standard deviation of the U-235/U-238 ratio to 5.0% [18]. For a TOF-SIMS study, which produces lower secondary ion counts than magnetic sector SIMS, a particle size much greater than 2 μ m must be analyzed for accurate results. From a forensic perspective this may limit the accuracy available for some sample analysis.

In 1999 a European static SIMS study of uranium and plutonium was carried out [19]. This study established that SIMS was a valuable tool for the forensic community. This study focused on trace chemicals contained within the nuclear material to determine the sample history. Oxide characteristics were not examined. While trace chemicals can go far to determine the bulk properties of samples, surface contamination may give misleading results. Dynamic SIMS is required to verify trace chemical content and oxide layers give the history of a particular particle.

While studies of uranium and uranium oxide samples exist, TOF-SIMS analysis of uranium and uranium oxides has yet to be fully explored. Much more information can be gleaned from a forensic sample with proper use of this instrument. Not only could an isotopic abundance determination be achieved through TOF-SIMS, but analysis of the higher mass ions and a dynamic depth profile could yield chemical composition information enabling the oxide form of the sample to be identified.

III. Methodology

Gold Sample Mounting Technique

A previous TOF-SIMS study produced data that was contaminated by the presence of hydrocarbons. It was assumed that the high levels of protonation in U_xO_y ions were a result of this hydrocarbon contamination. In mounting uranium and uranium oxide particles for this study many precautions were taken to reduce the level of hydrocarbons present. This prohibited the use of plastics and adhesives in preparing the samples. Instead the sample particles were pressed into a clean gold surface. The sample preparation procedure can be found in Appendix A.

A thin layer of gold was placed on a copper substrate and heated to 915 degrees Celsius. An azeotrope occurs in the gold-copper phase diagram at 911 degrees. This allows a gold-copper alloy to form between the two layers without melting either layer. The heat treatment firmly attaches the gold to the copper without the use of hydrocarbon containing adhesives.

Subsequently a fine 1mm² grid of lines was impressed into the soft gold surface using a machined carbide stamp. The gridlines serve as landmarks on the sample mount and facilitated the location of uranium containing particle using scanning TOF-SIMS. After the gridlines were placed on the gold and copper sample mount, uranium particles were placed on the gold surface and pressed into the surface using a hydraulic press.

For this study a total of eight different uranium containing particles were used. Uranium metal, UO_2 , U_3O_8 , and UO_3 particles were investigated in both natural and depleted ${}^{235}U/{}^{238}U$ isotopic ratios. Additionally data from two different enriched samples were included in the study. See Table 2 for specific information on the samples used in this study.

Sample	Material	Reference Name	Source	Type of Standard	Fraction U-234	Fraction U-235	Fraction U-236	Fraction U-238
nU	U metal	CRM 112-A	NBL	Metal Assay and Isotopic	.000052458	.0072017		.9927458
nUO ₂	UO_2		NBL	Commercial material	.0000542	.007239		.99271
nU ₃ O ₈	U_3O_8	CRM 129	NIST	Isotopic	.000052962	.0072087	.00000097	.9927382
nUO ₃	UO ₃	CRM 18	NIST	Uranium Assay	.000055	.0072	0	.992745
dU	U metal	CRM 115	NBL	Uranium Assay	.0000076	.0020291	.0000322	.9979311
dUO ₂	UO_2		IBI Labs	Commercial material		.002- .0035		
dU ₃ O ₈	U_3O_8		IBI Labs	Commercial material		.002- .0035		
dUO ₃	UO ₃		IBI Labs	Commercial material		.002- .0035		
U500*	U_3O_8	CRM U500	NBL	Isotopic	.005181	.49696	.000755	.49711
U900*	U_3O_8	CRM	NBL	Isotopic	.007777	.90196	.003327	.08693

 Table 2: Sample Specifications

*Sample materials were not actually used in the course of this experiment, but spectra from these samples were utilized.

TOF-SIMS Parameters

The mounted samples were analyzed in an IONTOF TOF-SIMS V. A cycle time of 185 us was chosen allowing ion clusters of up to 3000 amu to be detected. The samples were analyzed using a Bi_3^{++} primary ion beam. The primary ion beam accelerated ions to 25 keV and 50 keV¹ at a target current of approximately 0.3 pA. A resolution of 256x256 was used for each image data collection. The sputtering beam used was a C60⁺ gun. The C60⁺ gun accelerated ions to 10 keV and a target current of approximately 1.4 nA. The sputtering area was 300x300 µm, greater than any of the analysis areas in this study.

¹ The TOF-SIMS required re-optimization of beam parameters part way through this study resulting in two different primary ion beam energies.

Data Collection Process and Parameters

For each sample a uranium-containing particle was located by scanning the gold surface using the primary ion beam monitoring U⁺, UO⁺, UO₂⁺, and UO₃⁺ ions. Once a particle was located, a 150 scan (30 minute) positive spectrum was recorded followed by a 150 scan (30 minute) negative spectrum. One scan samples data from each of the 256x256 pixels in the analysis area. The buckyball sputtering beam was then used to irradiate the particle for 5 scans in an effort off any surface contamination. Five scans of the sputtering gun translates very roughly to etching 0.5 nm of surface thickness. After this first sputtering period another positive/negative pair of spectra was recorded. The sputtering beam was then again directed onto the sample for 20 scans to erode some thickness into the particle. Twenty sputtering scan equates roughly to 2 nm of material. A third pair of positive/negative spectra was recorded. Again the sputtering beam was directed onto the sample for 20 scans and a fourth pair of spectra was recorded.²

 $^{^{2}}$ For the dUO2 sample a positive/negative pair of spectra was recorded followed by 2 sputtering scans, a second pair of spectra, 2 sputtering scans, a third pair of spectra, 2 sputtering scans, a fourth pair of spectra, 20 sputtering scans, and a final fifth pair of spectra. See Table 3.

Table 3: Collection Conditions for all Spectra Acquired in the Study.

Sample: nU		
Spectrum Name	Positive	Negative
nU001	Х	
nU002		Х
5 Sput	ttering Scan	S
nU003	X	
nU004		Х
20 Spu	ttering Scar	IS
nU005	Х	
nU006		Х
20 Spu	ttering Scar	IS
nU007	X	
nU008		Х

Sample:	dU						
Spectrum Name Positive Negative							
dU001		Х					
dU002			Х				
	5 Sputte	ering Scans	;				
dU003		Х					
dU004			Х				
	20 Sputt	ering Scan	S				
dU005		Х					
dU006			Х				
	20 Sputt	ering Scan	S				
dU007		Х					
dU008			Х				

Sample: nUO2			Sample: dUO2		
Spectrum Name	Positive	Negative	Spectrum Name	e Positive	Negative
nUO2001	Х	_	dUO2012	Х	_
nUO2002		Х	dUO2013		Х
5 Sputt	ering Scan	S	2 Spu	ttering Scans	5
nUO2003	X		dUO2014	X	
nUO2004		Х	dUO2015		Х
20 Sput	tering Scan	IS	2 Sputtering Scans		
nUO2005	X		dUO2016	X	
nUO2006		Х	dUO2017		Х
20 Sput	tering Scan	IS	2 Spu	ttering Scans	5
nUO2007*	X		dUO2018	X	
nUO2008*		Х	dUO2019		Х
*continued the next day			20 Spi	ittering Scan	S
	-		dUO2020	X	
			dUO2021		Х

Sample: nU3O8			Sample: dU3O8		
Spectrum Name	Positive	Negative	Spectrum Name	Positive	Negative
nU3O8001	Х		dU3O8001	Х	
nU3O8002		Х	dU3O8002		Х
5 Sput	tering Scan	s	5 Sput	tering Scan	S
nU3O8003	X		dU3O8003	X	
nU3O8004		Х	dU3O8004		Х
20 Sput	ttering Scar	IS	20 Sputtering Scans		
nU3O8005	X		dU3O8005	X	
nU3O8006		Х	dU3O8006		Х
20 Sput	ttering Scar	IS	20 Spu	ttering Scan	IS
nU3O8007	x		dU3O8007	X	
nU3O8008		Х	dU3O8008		Х

Sample: nUO3			Sample: dUO3		
Spectrum Name	Positive	Negative	Spectrum Name	Positive	Negative
nUO3001	Х		dUO3001	Х	
nUO3002		Х	dUO3002		Х
5 Sputtering			5 Sputtering		
Scans			Scans		
nUO3003	Х		dUO3003	Х	
nUO3004		Х	dUO3004		Х
20 Sputtering			20 Sputtering		
Scans			Scans		
nUO3005*	Х		dUO3005	Х	
nUO3006*		Х	dUO3006		Х
20 Sputtering			20 Sputtering		
Scans			Scans		
nUO3007*	Х		dUO3007	Х	
nUO3008*		Х			

*continued the next day

IV. Data Analysis/ Results

Isotope Determination

An isotopic calculator was developed in this study to evaluate TOF-SIMS capability to make a rapid isotopic determination. This information is both valuable to nuclear forensic community and essential for subsequent mass spectrum analysis of unknown samples.

The isotopic calculator was tested against the sample standards, nU3O8, U500, and U900, as described in Table 2. All three of these samples are U_3O_8 particles and they cover a range of enrichments from 0.72% to 90% U-235. Data from this experiment, spectrum nU3O8001, and data from a previous experiment, spectra U50001P and U90001P, were used for this analysis. The isotopic calculator inputs mass spectrum data for a given U_xO_y ion and reports the estimated uranium isotopics.

Each U_xO_y ion will result in a series of mass spectrum peaks due to the existence of multiple isotopes of both uranium and oxygen. This series of peaks holds the isotopic information for the sample particle. Most peaks have intensity contributions from multiple isomers having varying uranium and oxygen isotopes. Additionally, uranium oxide ions show a tendency to protonate, or take up a hydrogen atom, creating additional peaks. A linear equation summing each of these component intensity contributions can be constructed for each peak. A system of linear equations is formed by the equations for each individual peak which can be solved for the uranium isotopics and protonation percentage.

The system of equations for U^+ ion (with contributions from UH^+ and UH_2^+) are:

 $\begin{aligned} &Peak_{234} = fU 234 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] \\ &Peak_{235} = fU 235 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 234 \cdot [P1 \cdot fH1] \\ &Peak_{236} = fU 236 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 235 \cdot [P1 \cdot fH1] + fU 234 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] \\ &Peak_{237} = fU 237 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 236 \cdot [P1 \cdot fH1] + fU 235 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] \\ &Peak_{238} = fU 238 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 237 \cdot [P1 \cdot fH1] + fU 236 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] \\ &Peak_{239} = fU 238 \cdot [P1 \cdot fH1] + fU 237 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] \\ &Peak_{240} = fU 238 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] \end{aligned}$

where Peak_{XXX} is the total number of counts in peak XXX, fU234 is the atom fraction of U-234 in the sample, fU235 is the atom fraction of U-235 in the sample, fU236 is the atom fraction of U-236 in the sample, fU237 is the atom fraction of U-237 in the sample, fU238 is the atom fraction of U-238 in the sample, P1 is the percentage of uranium atoms that have protonated, P2 is the percentage of uranium atoms that have taken up two hydrogen atoms, or diprotonated, fH1 is the atom fraction of H-1, and fH2 is the atom fraction of deuterium.

The system of equations used for UO^+ and UO_2^+ ions can be found in Appendix B. As additional atoms are added to the ion the number of equations and the number of terms in each equation grows rapidly leaving this exercise best left to a computer for large ions.

Contamination can hinder efforts to make an accurate isotopic determination. Several commonly found metals can produce contributions to peaks in the UO_y peak range reducing the accuracy of an isotopic determination. Various isotopes of PbAl ions, PbSi ions, PbO₂ ions, and Sn₂ ions are likely to have produced peak interference in these spectra [10].

The isotope calculator presented in Appendix C was written in Matlab. It inputs mass spectrum data along with an initial assumption for the uranium isotopics and percentage of protonation and diprotonation. The spectrum to be analyzed is input into the Select File textbox. Initial Assumptions for isotopics and protonation are entered in to the Initial Assumptions box. Natural isotopic abundance and 10 to 20 percent protonation are good starting assumptions. If the results show a marked difference from the initial assumptions, the assumptions can be refined to obtain the most accurate answer. The target U_xO_y ion which the isotopic determination will be obtained from is specified by the user in the Specify Ion box. "+" should be selected for positive spectra, "-" should be selected for negative spectra.

Once all data is entered, clicking the "Calculate" button begins the isotopic determination. The program uses the specified ion to selected relevant peaks. These peaks are located, have their background subtracted, and their peak counts calculated. The full system of equations for the input ion is constructed and the relative peak counts are fed into an iterative solver which settles on an isotopic determination for uranium, and the protonation percentage.

When the determination is complete the Results box and graph will update. The Results box reports the fractionation of the uranium; the fraction of protonation and diprotonation; R^2, a goodness of fit parameter, where 0 would be the ideal value; and the total counts for all peaks attributed to the ion. The estimated error reported by the calculator are one sigma values based on counting statistics.

The isotope calculator was tested against U_3O_8 particles of three different isotopic abundances. The isotopic determination for the most abundant ion for each uranium series is reported in Table 4.

Figure 7: Screenshot of the Isotope Calculator interface. The graph displays a wealth of information in one easy to read format. The blue lines show the actual background subtracted data from the input spectrum. The cyan circles (with error bars) show the relative fraction of counts for each peak. The red "x" s show the relative fraction of counts calculated for each peak from the determined isotopics. The black line shows the recreated spectrum from the determined isotopics.
Table 4: F counting st	Results of t tatistics.	he Iso	tope Calcu	llator for th	nree s	amples of	varying en	richm	ents. The	estimated	error	s are one s	igma valu	es bas	ed on
		fU234	4	Į	U235		f	U236		-	U237			fU238	
Natural U	308														
Standard	0.0	00052	962	0.0	0720	87	0.00	0000	097	0.0	0000	00	0.	99273	82
U02+	0.00005	-/+	0.00002	0.01841	-/+	0.00006	0.00560	-/+	0.00004	0.01118	-/+	0.00005	0.96477	-/+	0.00077
U204+	0.00023	-/+	0.00000	0.00692	-/+	0.00022	0.00393	-/+	0.00019	0.00000	-/+	0.00010	0.98891	-/+	0.00244
U3O7+	0.00000	-/+	0.00013	0.00557	-/+	0.00045	0.00000	-/+	0.00030	0.00000	-/+	-0.00020	0.99443	-/+	0.00417
U409+	0.00001	-/+	0.00000	0.00277	-/+	0.00117	0.00000	-/+	-0.00136	0.00000	-/+	0.00000	0.99722	-/+	0.00921
U5011+	0.00000	-/+	0.00000	0.00000	-/+	0.00000	0.00000	-/+	0.00000	0.00424	-/+	0.00412	0.99576	-/+	0.02264
50% Enric	ched U3O8														
Standard	0	.0051	8	0	.4969	6	0.	.0007	9	0	0000	C)	.4971	1
U02+	0.01139	-/+	0.00005	0.50043	-/+	0.00041	0.00405	-/+	0.00017	0.00000	-/+	-0.00007	0.48413	-/+	0.00040
U204+	0.00907	-/+	0.00064	0.49602	-/+	0.00259	0.00000	-/+	-0.00148	0.00000	-/+	0.00104	0.49491	-/+	0.00430
U306+	0.00005	-/+	-	0.51097	-/+		0.00326	-/+	-	0.00000	-/+	0.00583	0.48572	-/+	5.19730
0002 5	ahod 113.00														
			((,	(c					
Standard	<u> </u>	.0077	×	Ö	.9019.	9	0	.0033.	ω	0	0000	0	U	0.0869	ŝ
U02+	0.02333	-/+	0.00007	0.88434	-/+	0.00064	0.01166	-/+	0.00027	0.00000	-/+	0.00010	0.09233	-/+	0.00015
U204+	0.00005	-/+	0.00045	0.90651	-/+	0.00297	0.02622	-/+	0.00112	0.00010	-/+	0.00055	0.09324	-/+	0.00102
U306+	0.00001	-/+	0.00114	0.91444	-/+	0.00702	0.00000	-/+	0.00230	0.00000	-/+	0.00145	0.08531	-/+	11.26200
U408+	0.00564	-/+	0.38280	0.92707	-/+		0.00000	-/+		0.00000	-/+	0.00000	0.06729	-/+	0.45781

	fU234	fU235	fU236	fU237	fU238
Natural U3O8					
UO2+	0.0000	0.0112	0.0056	0.0112	0.0280
U2O4+	0.0002	0.0003	0.0039	0.0000	0.0038
U3O7+	0.0001	0.0016	0.0000	0.0000	0.0017
U4O9+	0.0000	0.0044	0.0000	0.0000	0.0045
U5O11+	0.0001	0.0072	0.0000	0.0042	0.0030
50% Enriched U3O8					
UO2+	0.0062	0.0035	0.0033	0.0000	0.0130
U2O4+	0.0039	0.0009	0.0008	0.0000	0.0022
U3O6+	0.0051	0.0140	0.0025	0.0000	0.0114
90% Enriched U3O8					
UO2+	0.0156	0.0176	0.0083	0.0000	0.0054
U2O4+	0.0077	0.0046	0.0229	0.0001	0.0063
U3O6+	0.0078	0.0125	0.0033	0.0000	0.0016
U4O8+	0.0021	0.0251	0.0033	0.0000	0.0196

 Table 5: Absolute error for Isotope Calculations.

Figure 8: Graphical Representation of Table 4.

Protonation Determination

Any in-depth analysis of mass spectrum data requires that the degree of protonation for a given U_xO_y ion must be quantified. Most analysis requires that the total number of counts for the ion be known. The mass resolution necessary to distinguish the UxOy counts from the UxOyH counts is currently unattainable [10]. This leaves quantification of protonation to a mathematical exercise. Degree of protonation was calculated in two ways.

A Protonation Calculator, found in Appendix D, was developed. This calculator works in much the same way as the isotopic calculator. It inputs mass spectrum data along with the known uranium isotopics and an initial guess at the percentage of protonation and diprotonation. The spectrum to be analyzed is input into the Select File textbox. The known isotopics and initial assumptions for protonation are entered in to the Isotopics and Initial Assumptions box. Ten to 20 percent protonation is a good starting assumption. If the results show a marked difference from the initial assumptions, the assumptions can be refined to obtain the most accurate answer. The target U_xO_y ion, for which the protonation determination is calculated, is specified by the user in the Specify Ion box. "+" should be selected for positive spectra, "-" should be selected for negative spectra.

Once all data is entered clicking the "Calculate" button begins the protonation determination. The program uses the specified ion to selected relevant peaks. These peaks are located, have their background subtracted, and their peak counts calculated. The appropriate system of equations is constructed and the relative peak counts are fed into an iterative solver which settles on the protonation percentage for the ion.

29

When the determination is complete the Results box and graph will update. The Results box reiterates the fractionation of the uranium; and reports the fraction of protonation and diprotonation; R^2, a goodness of fit parameter, where zero would be the ideal value; and the total counts for all peaks attributed to the ion. The estimated error reported by the calculator are one sigma values based on counting statistics. Table 6 shows the protonation values for each prominate ion in the nU001 spectrum. Protonation values for all other spectra can be found in Appendix E.

Figure 9: Screenshot of the Protonation Calculator interface. The graph displays a wealth of information in one easy to read format. The blue lines show the actual background subtracted data from the input spectrum. The cyan circles (with errorbars) show the relative fraction of counts for each peak. The red "x" s show the relative fraction of counts calculated for each peak from the determined isotopics. The black line shows the recreated spectrum from the determined isotopics.

 Table 6: Tabulated protonation values and total counts for each prominate peak in the nU001 spectrum.

Spec	etrum:	nU001						
Isoto	opics:	234:	0.0000525	235:	0.0072017	236:	0.0000000	
		237:	0.0000000	238:	0.9927458			
]	lon		D1	-	D)	Total	Counta	Docidual
U	0		F1		F 4	Total	Counts	Residual
1	0	0.458810) +/- 0.011475	0.107030 -	+/-0.003763	47563	+/- 241	0.022024
1	1	0.230960) +/- 0.001129	0.034217 -	+/-0.000296	428354	+/- 661	0.002181
1	2	0.242770	+/- 0.000573	0.027926 -	+/- 0.000154	1845030	+/- 1361	0.000545
1	3	0.649830) +/- 0.658030	0.266440 -	+/-0.233640	153616	+/- 402	0.026017
2	2	0.000000	0 +/- 0.000000	0.000000 -	+/0.017376	1721	+/- 85	0.000366
2	3	0.032250) +/- 0.001883	0.018359 -	+/0.000877	28256	+/- 197	0.000302
2	4	0.138040	+/- 0.000968	0.002675 -	+/- 0.000251	243239	+/- 505	0.000110
2	5	0.508100) +/- 0.006065	0.018695 -	+/-0.001155	134100	+/- 381	0.000209
3	5	0.000000) +/- 0.000000	0.000000 -	+/0.002636	7248	+/- 112	0.001102
3	6	0.051230	0 +/- 0.001221	0.000000 -	+/0.000536	62829	+/- 267	0.000251
3	7	0.124470	+/-0.001757	0.000000 -	+/0.000569	79185	+/- 299	0.000509
3	8	0.607090) +/- 0.072334	0.000000 -	+/0.019976	3073	+/- 96	0.000761
4	7	0.000000) +/- 0.000000	0.000000 -	+/0.014290	1309	+/- 70	0.002004
4	8	0.000000) +/- 0.002462	0.000000 -	+/0.001701	15087	+/- 144	0.001046
4	9	0.060749	+/-0.002802	0.000000 -	+/0.001280	23113	+/- 174	0.001070
4	10	0.219720	0 +/- 0.034577	0.000000 -	+/0.022164	1609	+/- 80	0.001190
5	9	0.000000	0 +/- 0.000000	0.000000 -	+/0.031659	248	+/- 51	0.003002
5	10	0.000000	0 +/- 0.000000	0.000000 -	+/0.004611	4802	+/- 94	0.003417
5	11	0.000000	+/- 0.000000	0.000000 -	+/0.004353	6093	+/- 108	0.003684
5	12	0.000000) +/- 0.000000	0.000000 -	+/0.021605	1325	+/- 70	0.003960
6	12	0.000000	0 +/- 0.000000	0.000000 -	+/0.034727	859	+/- 57	0.004862
6	13	0.000000	+/- 0.000000	0.000000 -	+/0.028177	1095	+/- 69	0.005176
6	14	0.000000) +/- 0.000000	0.000000 -	+/0.101590	373	+/- 55	0.005498
7	15	0.000000	+/- 0.000000	0.000000 -	+/0.036006	181	+/- 48	0.006898

Additionally ratios of protonated and di-protonated peaks were ratio-ed to the high intensity U-238 peak for each ion. Table 7 shows these ratios for spectrum nU001. Values for all other spectra are located in Appendix F.

Table 7: Counts in the intense U-238 peak and ratios of the U-238 protonated and diprotonated peaks to the U-238 peak for each prominate ion in the nU001 spectrum. The dominate ion for each uranium series is highlighted. A qualitative determination of the most probable dominate ion is made for the higher uranium series.

Sp	ecti	rum: nU001		
I U	on O	Counts (U-238 Peak)	(U-238+1) Peak / 238 Peak	(U-238+2) Peak / U-238 Peak
1	0	17856 +/- 137	1.06671 +/- 0.01147	0.13538 +/- 0.00377
1	1	303360 +/- 552	0.29566 +/- 0.00113	0.02163 +/- 0.00029
1	2	1311957 +/- 1146	0.32466 +/- 0.00057	0.02973 +/- 0.00015
1	3	2710 +/- 67	33.03191 +/- 0.82801	11.45472 +/- 0.29217
2	2	1721 +/- 49	0.0 +/	0.0 +/
2	3	26250 +/- 167	0.03496 +/- 0.00188	0.0 +/
2	4	203259 +/- 452	0.15876 +/- 0.00097	0.00756 +/- 0.00025
2	5	61879 +/- 251	1.07504 + - 0.00606	0.05204 +/- 0.00116
3	5	7248 +/- 89	0.0 +/	0.0 +/
3	6	57868 +/- 243	0.06192 +/- 0.00122	0.0 +/
3	7	67703 +/- 263	0.15704 +/- 0.00176	0.00067 +/- 0.00057
3	8	1173 +/- 46	1.52952 + - 0.07596	0.0 +/
4	7	1309 +/- 46	0.0 +/	0.0 +/
4	8	14801 +/- 124	0.01934 +/- 0.00246	0.0 +/
4	9	21172 +/- 149	0.09168 +/- 0.00280	0.0 +/
4	10	1230 +/- 47	0.30825 +/- 0.03460	0.0 +/
5	9	234 +/- 30	0.0 +/	0.0 +/
5	10	4802 +/- 76	0.0 +/	0.0 +/
5	11	6093 +/- 84	0.0 +/	0.0 +/
5	12	1272 +/- 47	0.0 +/	0.0 +/
6	12	859 +/- 42	0.0 +/	0.0 +/
6	13	1095 +/- 50	0.0 +/	0.0 +/
6	14	373 +/- 37	0.0 +/	0.0 +/
7	15	172 +/- 33	0.0 +/	0.0 +/
8	17	+/	+/	+/
9	19	+/	+/	+/
10	21	+/	+/	+/

The degree of protonation that a given U_xO_y ion may experience was found to have some dependance on how favored that ion may be to form. Ions containing one more oxygen than the dominate ion were found to have a much higher degree of protonation. The relative level of protonation an ion experiences may hold some information on the stability of ion coming off the surface. Ions containing a greater number of uranium atoms were also found to have a lower level of protonation.

Dominate Ion

The dominate ions were identified for each positive surface spectrum. It was found that the dominate three and four uranium ions for UO_2 contained less oxygen than the other oxides. While the abundance of low mass ions is generally considered to be more telling of instrument conditions than sample surfaces, high mass ions, like the ones here, may hold information on sample make-up.

Sample		Domina	te Ion	
nUO2	UO ₂ ⁺	$U_2 O_4^+$		
dUO2	UO ₂ ⁺	$U_2 O_4^+$		
nU3O8	UO ₂ ⁺	$U_2 O_4^+$	$U_{3}O_{7}^{+}$	$U_{4}O_{9}^{+}$
dU3O8	UO ₂ ⁺	$U_2 O_4^+$	$U_{3}O_{7}^{+}$	$U_{4}O_{9}^{+}$
nUO3	UO ₂ ⁺	$U_2 O_4^+$	$U_{3}O_{7}^{+}$	$U_{4}O_{9}^{+}$
dUO3	UO ₂ ⁺	$U_2 O_4^+$	$U_{3}O_{7}^{+}$	$U_{4}O_{9}^{+}$
nU		$U_2 O_4^+$	$U_{3}O_{7}^{+}$	$U_4 O_9^+$
dU	UO ₂ ⁺	$U_2O_4^+$	$U_{3}O_{7}^{+}$	

 Table 8: Dominate Ions for each positive surface spectrum.

Protonation Depth Profile

It is commonly believed that the level of protonation observed in a spectrum is related to hydration. H_2O^+ ion abundance was determined for each spectrum in an effort

to relate the overall level of protonation back to relative hydration level. The fraction of H_2O^+ ions to total secondary ions was plotted as a function of sputtering depth. Likewise the fraction of protonated $U_xO_y^+$ ions to total $U_xO_y^+$ ions was plotted as a function of sputtering depth. It was found that the two trends do not correlate. A surface level dehydration is found for nearly all particles. This can be attributed to the ultra high vacuum conditions of the TOF-SIMS. This followed by a layer of increased hydration which may describe the traditional surface layer of the particle. This increased hydration layer is followed by a layer of decreased hydration, possibly describing the bulk hydration of the particle. Protonation on the other hand was found to be a surface phenomenon. In nearly all cases the highest levels of protonation were found on the surface of the particle. Both UO₂ and U₃O₈ particles then show a steep reduction in protonation while UO₃ particles have a nearly level region of protonation followed by a more moderate reduction in protonation. These trends may relate to the acid/base behavior of the oxides.

Depth (Number of Sputtering Scans)

Figure 10: Micro-Fraction of H_2O^+ as compared to total ion count. In nearly all particles a surface level dehydration is seen. *A break in analysis where the samples were exposed to air occurred during the nUO2 and nUO3 data collection.

Figure 11: Fraction of protonated UxOy⁺ ions as a function of depth for each particle. *A break in analysis where the samples were exposed to air occurred during the nUO2 and nUO3 data collection.

Lattice Valence

A fragment valence, K, was calculated for each U_xO_y ion and plotted against its intensity to obtain G^o, the lattice valence, as in Plog et al. [6]. The fragment valence can also be described as the average oxidation state of uranium in each ion. The lattice valence is assumed to hold some relation to the average oxidation state of the sample material, but that relationship has not been fully described. The data shows a decrease in lattice valence as particle depth increases. The valence graphs for spectra nU001 and nU002 is shown in Figure 12. Companion positive and negative log files generated by the Protonation Calculator are input into the Enter Data box. The Results box reports the Gaussian mean for the negative and positive ions in each uranium series for which there is three are more data points, G⁺ and G⁻. G⁰, the lattice valence, is obtained by averaging the two. The left graph displays the positive spectrum data where the x-axis is the fragment valence for each ion and the y-axis is unprotonated counts for each ion. The right graph similarly displays the negative spectrum data. Gaussian curves are fit to each uranium series. Lattice valences are tabulated in Table 9.

Figure 12: Screenshot of the Valence Calculator used to generate valence graphs as in Plog et al. [6]. The left graph displays the positive spectrum data where the x-axis is the fragment valence for each ion and the y-axis is unprotonated counts for each ion. The right graph similarly displays the negative spectrum data. Gaussian curves are fit to each uranium series. U1 – red, U2 – yellow, U3 – green, U4 – blue, U5 – red, U6 – yellow, U7 – green, U8 – blue, etc.

Table 9: Tabulated lattice valence for all spectra. Depth is measured in the cumulative number of C60 sputtering scans from the particle surface. A break in analysis where the samples were exposed to air occurred during the nUO2 and nUO3 data collection. It is probable that reoxidation occurred during these periods.

Dorticlo	Depth-		U Series	
1 al ticle	Sputtering Scans	1	2	3
	0	4.6936	5.1960	4.8441
nU	5	4.1322	4.3024	
по	25	4.0582		
	45	4.0454		
	0	4.6879		
"UO 2	5	4.3510		
11002	25	3.7488		
	45	4.5566		
	0	5.2418	5.0904	
nU209	5	5.0343	4.8980	
110308	25	4.5267	4.5285	
	45	4.3549		
	0	4.9049	4.9653	4.9709
"UO 2	5	4.4381		
11005	25	4.8660		
	45	4.6823		
	0	4.9649	4.8592	4.8733
au	5	4.6399		
uU	25	4.5257		
	45	4.4021		
dUO2	0	5.2810		
	2	4.8678		
	4	4.7584		
	6	4.7434		
	26	4.6006		
	0	5.1875	5.0754	
dU308	5	5.0393		
u0308	25	4.4408		
	45	4.3371		
	0	5.2684	5.0578	4.9684
4103	5	4.6128		
u003	25	4.3664		
	45			

Figure 13: Lattice valence as a function of depth for each particle. *A break in analysis where the samples were exposed to air occurred during the nUO2 and nUO3 data collection. It is probable that reoxidation occurred during these periods as seen in the UO_2 and UO_3 graphs.

While all particles in Figure 11 show a reduction in lattice valence with sputtering depth, it is expected for UO₃ particles which should have a U_3O_8 surface layer due to exposure to the atmosphere, that a rise in average oxidation state would be present. Several factors may be at work here. Preferential oxygen sputtering may be causing a reduction in the sample. Carbon, a reducer, from the sputtering beam may be implanting itself into the particle surface and lowering the oxidation state of the uranium. The relative stability of the oxide and of secondary ions may be a factor. Here U_3O_8 shows the most moderate and most reproducible trend. This may be a result of the greater stability of U_3O_8 as compared to the other oxides.

Uranium Carbide Depth Profile

Carbon implantation was investigated as a possible cause of the lattice valence reduction trend. The fraction of UC^+ ions to U^+ ions was plotted as a function of sputtering depth. The surface spectra showed severe peak interference and reliable information was not attainable for this layer. The trends seen in carbide formation were modest at best and did not correlate to those seen in the lattice valence trends. Carbide formation is not likely the dominate factor in the reduction trend.

42

Morphology

A distinct advantage of TOF-SIMS over other types of analytical instruments is the ability to obtain a sense of the elemental or chemical map of the sample. Images can be produced easily and quickly which show the basic shape of particles and sample features. The elemental or chemical makeup of major sample features or contamination is easily determined.

Figure 15 shows images from a pair of spectra for a natural uranium metal particle. The set of images on the left were produced from spectrum nU001, a positive spectrum. The set of images on the right were produced from spectrum nU002, a negative spectrum. These images clearly show two larger uranium containing particles; one approximately 50 um in diameter, and one approximately 100 um in diameter. Also apparent are regions of aluminum concentration, both on the particles and on the gold mounting surface. Hydrocarbons are found in all areas of these surface level spectra, but are present in much higher quantities on the uranium containing particles. Silicon ions are found throughout the area as well. A possible silica particle can be seen in the midright side of the negative images. Images for all spectra can be found in Appendix G.

Figure 15: TOF-SIMS images of spectra nU001 and nU002.

Advantages and Disadvantages of Gold Mounting Technique

The gold sample mounting technique developed in this study was found to have several advantages and disadvantages over the previously used carbon tape mount. The gold mounting technique was developed in an effort to reduce the hydrocarbon contamination of samples. Hydrocarbon contamination was greatly reduced, with the gold surface cleaned of hydrocarbons after just a few scans of the buckyball sputtering beam. The actual sample material held on to hydrocarbon species much longer. Although hydrogen became much less abundant protonation of the U_xO_y ions continued.

Additionally other forms of contamination were introduced with the gold mounting technique. Major Au_x ion peaks and many minor gold containing ion peaks were observed. Minor aluminum containing ion peaks, perhaps from the aluminum wrapping material used with the samples in lieu of plastics, also littered the spectra. While it was easy to exclude major contaminate peaks, the multitudinous weak contamination peaks cause more of a problem for data analysis, especially isotopic determination.

One advantage to the gold mounting technique was that the lack of volatile materials enabled the samples to be brought under vacuum in a very timely manner. Many times the samples were at sufficient vacuum before the TOF-SIMS machine had finished start-up procedures. A final unexpected advantage to the gold mounting technique was that the prominent Au_x ion peaks enabled high mass spectra calibrations.

V. Conclusions/Recommendations

Isotopic Calculation Performance

The isotopic calculator developed in this study was found to obtain an isotopic determination accurate to within 1%. For this study it was found that the U_2 series of ions were a more accurate predictor of isotopic composition. This is no doubt due to peak interference in the U_1 portion of the spectra. The U_2 ion series provided the highest number of ion counts while minimizing peak interference.

The accuracy of this isotopic determination, while by no means state of the art, can still provide a great deal of usefulness to the nuclear forensic community. TOF-SIMS is able to quickly and easily make the distinction between natural (or near natural) uranium, fuel grade enrichments, and weapons grade enrichments. Along with the inherent ease at which TOF-SIMS is able to scan and pick out particles of interest, this alone makes TOF-SIMS a powerful triage tool for the nuclear forensic community.

It is likely that the isotopic determination capability can be improved by studying and peak stripping common interference sources. There is also room for improvement in the error estimation piece of the calculator. Better isotopic determination and better understanding of the error are both valuable enhancements to a tool finding use in nuclear forensics.

Protonation Findings

A protonation calculator was developed which was found to estimate protonation of uranium oxide ions to a sufficient degree to allow relative abundances of each ion species to found. It was also found that the probabilities of protonation for all uranium oxide ions are not equal. Adding additional oxygen atoms to the dominate ion will drastically increase the probability of protonation. With the help of quantum mechanical calculations this phenomenon may shed light on the structure of these ions as they are formed from the sample surface. Further it was discovered that different uranium oxides exhibit different overall protonation trends enabling a protonation depth profile to discern UO_3 from other oxides. Quantification of protonation levels also enabled the calculation of lattice valence for uranium oxide samples.

Lattice Valence Findings

Lattice valence was calculated for each uranium-containing particle $(UO_2, U_3O_8, UO_3 \text{ and } U \text{ metal})$ as a function of depth. A reduction in the average oxidation state of uranium was found for every particle. This reduction may be attributed to several factors. The buckyball sputtering beam may have reduced the samples due to carbon implantation or preferential sputtering of the oxygen. Secondary ions leaving the surface of the particle may have had more to do with the molecular structural stability of the particle and the ionization affinity of each secondary ion than with the stoichiometry of the uranium oxide. Uranium carbide signatures were found to be modest and carbon implantation is not likely the dominate factor in this reduction trend. It is probable that instead a combination of these factors produced the trend. More study is required to deconvolve the various factors at play. It is likely that with more study a greater understanding of the processes involved will be achieved. Nevertheless, U_3O_8 particles

were clearly distinguished from the rest. U_3O_8 particles showed a reproducible and much more modest reduction trend as a function of depth as compared to all other particles.

Oxide Determination

A combination of dominate ion identification, protonation depth profile trend, and lattice valence depth profile trend can be used to identify oxide composition. UO_2 can be distinguished by identification of the dominate $U_xO_y^+$ ions in a surface spectrum. UO_3 can be identified by its characteristic protonation depth profile as seen in

Figure 11. U_3O_8 can be detected by its characteristic lattice valence depth profile as seen in Figure 13. When applied to the surface oxide of metal uranium samples, dU and nU, it is found that the dU sample exhibits U_3O_8 behavior while the nU sample shows UO_3 behavior.

Morphology

While TOF-SIMS may only be able to provide rough outlines of the particles under study, other highly useful information is attained. Static imaging provides an elemental or chemical map of the analysis surface which is easily and quickly produced. This allows the user to get a sense not only of the particle of interest, but also of major sources of contamination which may be present. Other methods of analysis do not provide the kind of imaging that is readily available with TOF-SIMS.

Success of the Gold Sample Mounting Procedure

The gold sample mounting procedure developed in this study did not reduce the protonation of uranium oxide ions as expected. However certain advantages did present themselves. Hydrocarbon contamination on the mounting surface was drastically reduced. The sample mounting procedure was very friendly to the TOF-SIMS ultra high vacuum system, reducing the pump down time to a matter of minutes, and the regular Au_x ions seen provided a means for spectrum calibration at the high mass end. Disadvantages include the presence of metal contamination especially in the U₁O_x ion range.

The gold sample mounting procedure would be well applied to samples where hydrocarbon contamination must be avoided, but metal contamination may be tolerated. Because of the lack of complex sample preparation and the quick pump down time, this sample mounting method may also be of use when quick answers are critical. The gold sample mounting procedure is not suggested for uranium containing samples where the most accurate TOF-SIMS isotopic determination is wanted.

Nuclear Forensic Utility of TOF-SIMS

TOF-SIMS would prove itself a powerful addition in the arsenal of a nuclear forensics expert. TOF-SIMS analysis would be found most useful as a quick and easy

method to triage forensic samples. With very little training a TOF-SIMS operator would be able to locate particles of interest, and obtain a rough isotopic determination. Images provide a sense of the particle and its environment. Major sources of contamination can be seen. A rudimentary depth profile enables the specific oxide to be determined. Additionally trace chemical analysis could be carried out with the spectrum obtained. Essentially TOF-SIMS quickly provides the user information on what to look for when using other more precise methods of analysis. This enables nuclear forensic analysis to be less of a "needle in a haystack" process. It is likely that with continued study TOF-SIMS will be able to provide more and quicker answers to the nuclear forensics expert as uranium containing samples are better characterized.

Appendix A. Sample Preparation Procedure

Materials: $\frac{1}{4}$ inch copper squares (approximately $\frac{1}{32}$ " thick) $\frac{1}{4}$ inch steel squares (approximately $\frac{1}{32}$ " thick) ¹/₄ inch diameter gold foil circles (50 microns thick) Aluminum foil for wrapping samples and lining sample container Flat pressing surfaces (aluminum ingots were used) Gold stamp¹ Blue M oven with argon gas purge² Methanol – HPLC grade (Fisher Scientific, Lot 070517) Acetonitrile- 99.93+% HPLC grade Sonicator- Branson 1210³ Hotplate Tweezers Spatula Beaker Sample container Argon Carver press⁴ Glove box^5 PPE Sample particulate

- PPE: For non-glove box operations safety glasses and gloves must be worn. For glove box operations and any handling of radioactive particulate a lab coat, gloves, TLD, and a 3M 6100/07024 HEPA respirator with 2091 filters is required.
 - 1. Scribe corresponding identifying marks on the "dirtier" side of copper and steel piece pairs using a diamond tipped scribe (letters work well). These sides will be on the outside of the copper/gold/steel sandwich.
 - 2. Cut or tear ³/₄ inch square pieces of aluminum foil and wrap then carefully remove each wrapper from a copper/steel sandwich set⁶. (This is to pre-crease the foil to allow for easier wrapping of a clean sample.)
 - 3. Place copper squares, steel squares, aluminum wrappers, and pressing surfaces in small 100 mL beaker and fill with acetonitrile until items are covered (approximately 20 mL). Place the beaker in a sonicator set to degas and subject to sonication for 15 minutes.
 - 4. Rinse sonicated items, sample container, aluminum container liner, gold stamp piece, and tweezers with a few mL of methanol using a squeeze bottle. Heat these items on a clean hotplate at 100 degrees Celsius for 10 minutes.
 - 5. Place gold foil circles on copper squares and press between the clean pressing surfaces at 2500 lbs of pressure using the carver press.

- 6. Set BlueM oven to 915 degrees Celsius and insure that argon gas is flowing through the oven.
- 7. Once oven temperature has leveled out place one gold/copper piece on glass spatula and carefully insert into oven. Gold should be placed on the unmarked side of the copper.
- 8. After gold/copper piece has been in the oven at or above 911 degrees for 60 seconds remove and allow to cool.
- 9. Repeat steps seven and eight for each piece. The gold should become firmly attached to the copper piece without significant discoloration or distortion.
- 10. Using gold press tap coordinate lines into gold surface⁷.
- 11. Pair gold/copper pieces with corresponding steel pieces and wrap in aluminum foil. Again, marked sides should be on the outside of the sandwich. Make corresponding marks on the aluminum foil to distinguish samples.
- 12. In glove box unwrap sample and use a cleaned spatula to place the smallest possible amount of uranium particulate onto unmarked side of steel sandwich piece.
- 13. Gently tap off all visible particulate from steel piece.
- 14. Place steel piece on gold/copper piece and rewrap with foil.
- 15. Press sample sandwich at 2500 lb pressure using the carver press.
- 16. Unwrap sample and inspect to ensure sample preparation was successful.
- 17. Rewrap sample, use additional aluminum foil if necessary.

Figure A- 1: Gold Stamp. The gold stamp consists of two machined aluminum blocks and a serrated carbide plunger. The sample is placed gold side up between the two aluminum blocks and the serrated tip is used to impress lines onto the gold surface. Subsequently turning the upper block 90 degrees and impressing a second set of lines will create a grid.

Figure A- 2: Blue M Oven.

Figure A- 3: Carver Press.

Figure A- 4: Sonicator.

Figure A- 5: Glove Box.

Figure A- 6: Copper/Steel sandwich set on pre-creased aluminum foil wrapper.

Figure A- 7: Copper/Gold/Steel sandwich showing prepared gold surface.

Appendix B. System of Equations for UO⁺ and UO₂⁺ Ions

System of linear equations for UO ions:

 $Peak_{250} = fU234 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]$ $Peak_{251} = fU235 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [P1 \cdot fH1]$ $+ fU234 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]$ $Peak_{25} = fU236 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU235 \cdot fO16 \cdot [P1 \cdot fH1] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [P1 \cdot fH2) + (P2 \cdot fH1)] + (P2 \cdot fH1) + (P2$ $+ fU235 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot [P1 \cdot fH1]$ $+ fU234 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]$ $Peak_{253} = fU237 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot [P1 \cdot fH1] + fU235 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot [P1 \cdot fH2) + (P2 \cdot fH1)] + (P2 \cdot fH1) + (P2$ $+ fU236 \cdot f017 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [P1 \cdot fH1] + fU234 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [P1 \cdot fH1] + fU234 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [P1 \cdot fH1] + fU234 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [P1 \cdot fH1] + fU234 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [P1 \cdot fH1] + fU234 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [P1 \cdot fH1] + fU234 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [P1 \cdot fH1] + fU234 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot [(P1 \cdot f$ $+ fU235 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO18 \cdot [P1 \cdot fH1]$ $Peak_{254} = fU238 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16$ $+ fU237 \cdot f017 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [P1 \cdot fH1] + fU235 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [P1 \cdot fH2] + fU236 \cdot f017 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [P1 \cdot fH2] + fU236 \cdot f017 + fU236 \cdot f01$ $+ fU236 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU235 \cdot fO18 \cdot [P1 \cdot fH1] + fU234 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot [(P1$ $Peak_{255} = fU238 \cdot fO16 \cdot [P1 \cdot fH1] + fU237 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]$ $+ fU238 \cdot f017 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot f017 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]$ $+ fU237 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P$ $Peak_{255} = fU238 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]$ + $fU238 \cdot fO17 \cdot [P1 \cdot fH1] + fU237 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]$ $+ fU238 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2$

Peak_{XXX} is the total number of counts in peak XXX, fU234 is the atom fraction of U-234 in the sample, fU235 is the atom fraction of U-235 in the sample, fU236 is the atom fraction of U-236 in the sample, fU237 is the atom fraction of U-237 in the sample, fU238 is the atom fraction of U-238 in the sample, P1 is the percentage of uranium atoms that have protonated, P2 is the percentage of uranium atoms that have taken up two hydrogen atoms, or diprotonated, fH1 is the atom fraction of H-1, and fH2 is the atom fraction of deuterium.

System of linear equations for UO₂ ions:

```
Peak_{266} = fU234 \cdot fO16 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]
   Peak_{267} = fU235 \cdot fO16 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [P1 \cdot fH1]
   + fU234 \cdot fO17 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]
   + fU234 \cdot fO16 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]
   Peak_{26} = fU236 \cdot fO16 \cdot [016 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU235 \cdot fO16 \cdot [O16 \cdot [P1 \cdot fH1] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot [(P1 \cdot 
   + fU235 \cdot fO17 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [P1 \cdot fH1]
   + fU 234 \cdot fO18 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]
   + fU235 \cdot fO16 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH1]
   + fU 234 \cdot fO17 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)]
   + \, fU\,234 \cdot \, fO16 \cdot \, fO18 \cdot [1 - (P1 \cdot \, fH1) - (P1 \cdot \, fH2) - (P2 \cdot \, fH1)]
   Peak_{269} = fU237 \cdot fO16 \cdot fO16 \cdot (1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH1) + fU235 \cdot fO16 \cdot (O16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1))] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH2
   + fU236 \cdot fO17 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU235 \cdot fO17 \cdot fO16 \cdot [P1 \cdot fH1] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU234 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2) +
   + \, fU\,235 \cdot \, fO18 \cdot \, fO16 \cdot [1 - (P1 \cdot \, fH1) - (P1 \cdot \, fH2) - (P2 \cdot \, fH1)] + \, fU\,234 \cdot \, fO18 \cdot \, fO16 \cdot [P1 \cdot \, fH1]
   + fU237 \cdot fO16 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH1] + fU235 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) + (P2 \cdot f
   + fU236 \cdot fO17 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU235 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU234 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot [P1 \cdot fU23 + fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot [P1 \cdot fU23 + fU23 + fO17 \cdot [P1 \cdot fU23 + fU
   + fU235 \cdot fO18 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH1]
   + fU 237 \cdot fO16 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH1] + fU 235 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH1] + fU 235 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU 236 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + (P2 \cdot fH1) + (P2 \cdot fH2] + (P2 \cdot fH1)] + (P2 \cdot fH2] + (P2 \cdot fH2] + (P2 \cdot fH1)] + (P2 \cdot fH2] + (P2 \cdot fH2
   + fU 236 \cdot fO17 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 235 \cdot fO17 \cdot fO18 \cdot [P1 \cdot fH1] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2) 
   + fU235 \cdot fO18 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU234 \cdot fO18 \cdot fO18 \cdot [P1 \cdot fH1]
   Peak_{270} = fU238 \cdot fO16 \cdot (fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot (P1 \cdot fH1) + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot (P1 \cdot fH1) + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot (P1 \cdot fH1) + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot (P1 \cdot fH1) + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot (P1 \cdot fH1) + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot (P1 \cdot fH1) + fU236 \cdot fO16 \cdot (P1 \cdot fH2) + (P2 \cdot fH1)]
   + fU237 \cdot fO17 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO16 \cdot [P1 \cdot fH1] + fU235 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO16 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO16 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) +
   + fU 236 \cdot fO18 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 235 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH1] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot
   + fU 238 \cdot fO16 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH1] + fU 236 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH1] + fU 236 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH1] + fU 236 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH1) + (P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2) + (P1 \cdot fH1)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2) + (P1 \cdot fH2)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2)] + fU 237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2)] + fU 237 \cdot fO17 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2) + (P1 \cdot fH2) + (P1 \cdot fH2)] + fU 237 \cdot fO16 \cdot fO17 \cdot 
   + fU237 \cdot f017 \cdot f017 \cdot [0-(P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot f017 \cdot f017 \cdot [P1 \cdot fH1] + fU235 \cdot f017 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU235 \cdot f017 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot f017 \cdot [(P1 \cdot fH2) + (P2 \cdot f
   + fU 236 \cdot fO18 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 235 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH1] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 234 \cdot fO18 
   + fU238 \cdot fO16 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot 
+ fU237 \cdot fO17 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH2)] + fU236 \cdot fO17 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 
+ fU 236 \cdot fO18 \cdot [O18 \cdot [O1
   Peak_{271} = fU238 \cdot fO16 \cdot fO16 \cdot [P1 \cdot fH1] + fU237 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]
   + fU238 \cdot f017 \cdot f016 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f016 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f016 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + (P2 \cdot fH1) + (P2 \cdot fH1)] + (P2 \cdot fH1) + 
   + fU237 \cdot fO18 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) +
   + fU238 \cdot fO16 \cdot fO17 \cdot [P1 \cdot fH1] + fU237 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]
   + fU238 \cdot fO17 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)
   + fU237 \cdot fO18 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH2] + (P2 \cdot fH2) + (P2 \cdot f
   + fU238 \cdot fO16 \cdot fO18 \cdot [P1 \cdot fH1] + fU237 \cdot fO16 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]
   + fU238 \cdot f017 \cdot f018 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [P1 \cdot fH1] + fU236 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot f017 \cdot f018 \cdot [(P1 \cdot fH2) + (P1 \cdot fH2
   + fU237 \cdot fO18 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot fO18 \cdot [P1 \cdot fH1] + fU235 \cdot fO18 \cdot fO18 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU236 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot
   Peak_{272} = fU238 \cdot fO16 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]
   + fU238 \cdot fO17 \cdot fO16 \cdot [P1 \cdot fH1] + fU237 \cdot fO17 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]
   + fU238 \cdot fO18 \cdot fO16 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot fO16 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH2] + (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot fO18 \cdot fO16 \cdot [P1 \cdot fH1] + fU238 \cdot fO18 \cdot
   + fU238 \cdot fO16 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]
+ fU238 \cdot fO17 \cdot fO17 \cdot [P1 \cdot fH1] + fU237 \cdot fO17 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)]
   + fU 238 \cdot fO18 \cdot fO17 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU 237 \cdot fO18 \cdot fO17 \cdot [P1 \cdot fH1] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO17 \cdot [(P1 \cdot fH2) + (P2 \cdot fH1)] + fU 236 \cdot fO18 \cdot fO
   + \, fU \, 238 \cdot \, fO16 \cdot \, fO18 \cdot [(P1 \cdot \, fH2) + (P2 \cdot fH1)]
   + \, fU238 \cdot \, fO17 \cdot \, fO18 \cdot [P1 \cdot \, fH1] + \, fU237 \cdot \, fO17 \cdot \, fO18 \cdot [(P1 \cdot \, fH2) + (P2 \cdot \, fH1)]
   + fU238 \cdot fO18 \cdot fO18 \cdot fO18 \cdot [1 - (P1 \cdot fH1) - (P1 \cdot fH2) - (P2 \cdot fH1)] + fU237 \cdot fO18 \cdot fO18 \cdot [P1 \cdot fH1] + fU236 \cdot fO18 \cdot fO18 \cdot [O18 \cdot
```

Peak_{XXX} is the total number of counts in peak XXX, fU234 is the atom fraction of U-234

in the sample, fU235 is the atom fraction of U-235 in the sample, fU236 is the atom

fraction of U-236 in the sample, fU237 is the atom fraction of U-237 in the sample, fU238 is the atom fraction of U-238 in the sample, P1 is the percentage of uranium atoms that have protonated, P2 is the percentage of uranium atoms that have taken up two hydrogen atoms, or diprotonated, fH1 is the atom fraction of H-1, and fH2 is the atom fraction of deuterium.

Appendix C. Isotope Calculator

```
IsotopeCalculator
    🖬 🎍 🔖 🔍 🖓 🕲 🐙 🔏 • 🗔 🔲 📰 🔲 🖬
                          Isotope Calculator
       Select File
                                                   Results
0
                                                          U-234
                                                                    0
                   nU308_center_recaLTX1
                                                    0.91418
                                                            U-235
                                                                    0.31496
                                                                          P2
      Initial Assumptions
                                        Specify Ion
                                       U 1
0 0
       .00001
             U-234
                       0.1
                             P1
                                                    0.085819
                                                            U-236
                                      0 0

● +

○ -
                                                   +/-
                                                          0
       .0072 U-235 0
                           P2
                                                                            R^2
                                                      0
                                                            U-237
        0
              U-236
                                                   +/-
                                                                   4.7264 TotalCounts
                                                      0
                                                            U-238
       .9927 U-238
                                                                    Export Data
                                                   +1-
                                     Calculate
  0.9
  0.8
  0.7
  0.6
  0.5
  0.4
  0.3
  0.2
                 0.2
                         0.3
                                 0.4 0.5
           0.1
                                                0.6
                                                         0.7
                                                                0.8
                                                                        0.9
```

```
function varargout = IsotopeCalculator(varargin)
% ISOTOPECALCULATOR M-file for IsotopeCalculator.fig
00
       ISOTOPECALCULATOR, by itself, creates a new ISOTOPECALCULATOR or
raises the existing
       singleton*.
8
8
8
      H = ISOTOPECALCULATOR returns the handle to a new
ISOTOPECALCULATOR or the handle to
      the existing singleton*.
2
%
      ISOTOPECALCULATOR ('CALLBACK', hObject, eventData, handles, ...)
8
calls the local
      function named CALLBACK in ISOTOPECALCULATOR.M with the given
8
input arguments.
8
8
      ISOTOPECALCULATOR('Property', 'Value',...) creates a new
ISOTOPECALCULATOR or raises the
       existing singleton*. Starting from the left, property value
8
pairs are
      applied to the GUI before IsotopeCalculator OpeningFcn gets
8
called. An
      unrecognized property name or invalid value makes property
8
application
8
       stop. All inputs are passed to IsotopeCalculator OpeningFcn via
varargin.
2
8
       *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
       instance to run (singleton)".
8
8
```

```
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help IsotopeCalculator
% Last Modified by GUIDE v2.5 02-Dec-2010 12:06:33
% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name',
                                     mfilename, ...
                   'gui Singleton', gui Singleton, ...
                   'gui OpeningFcn', @IsotopeCalculator OpeningFcn, ...
                   'gui_OutputFcn', @IsotopeCalculator_OutputFcn, ...
                   'gui_LayoutFcn', [] , ...
                   'gui Callback',
                                     []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before IsotopeCalculator is made visible.
function IsotopeCalculator OpeningFcn(hObject, eventdata, handles,
varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
            structure with handles and user data (see GUIDATA)
% handles
% varargin command line arguments to IsotopeCalculator (see VARARGIN)
% Choose default command line output for IsotopeCalculator
handles.output = hObject;
% Update handles structure
set(hObject,'toolbar','figure');
guidata(hObject, handles);
% UIWAIT makes IsotopeCalculator wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = IsotopeCalculator OutputFcn(hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

```
58
```

```
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in calculate pushbutton.
function calculate pushbutton Callback(hObject, eventdata, handles)
% hObject handle to calculate pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Change calculate button
%set(handles.calculate pushbutton, 'String', '...');
%guidata(hObject, handles);
%Get inputs
cla(handles.axes1, 'reset')
guidata(hObject, handles);
axes(handles.axes1)
filename = get(handles.filename editText, 'String');
rawdata = dlmread(filename, '', 2, 0);
channel = rawdata(:,1);
mass = rawdata(:,2);
intensity = rawdata(:,3);
icU234 = str2double(get(handles.ic234 editText, 'String'));
icU235 = str2double(get(handles.ic235_editText, 'String'));
icU236 = str2double(get(handles.ic236 editText, 'String'));
icU237 = 0;
icU238 = str2double(get(handles.ic238 editText, 'String'));
icP1 = str2double(get(handles.icP1 editText, 'String'));
icP2 = str2double(get(handles.icP2 editText, 'String'));
nU = str2double(get(handles.nU editText, 'String'));
n0 = str2double(get(handles.n0 editText, 'String'));
p = get(handles.pos radiobutton, 'Value');
n = get(handles.neg radiobutton, 'Value');
if p==1 \&\& n==0, pn = 1;
elseif p==0 && n==1, pn = 0;
else error('Correct charge')
end
%GetIsotopics
[fU234 fU235 fU236 fU237 fU238 P1 P2 R2 TotalCounts,...
    sigmaTotalCounts, sigma238, sigma237, sigma236, sigma235, sigma234,
sigmaP1, sigmaP2]...
    = GetIsotopics1(mass, intensity, icU234, icU235, icU236, icU237,
icU238, icP1, icP2, nU, nO, pn);
% [fU234 fU235 fU236 fU237 fU238 P1 P2 R2 TotalArea, sigmaTotalArea,
confidence, points] = GetIsotopics1(mass, intensity, icU234, ...
     icU235, icU236, icU237, icU238, icP1, icP2, nU, nO, pn);
%Convert numbers to strings
```

```
sfU234 = num2str(fU234);
sfU235 = num2str(fU235);
sfU236 = num2str(fU236);
sfU237 = num2str(fU237);
sfU238 = num2str(fU238);
sP1 = num2str(P1);
sP2 = num2str(P2);
sR2 = num2str(R2);
sTotalCounts = num2str(TotalCounts);
seTotalCounts = num2str(sigmaTotalCounts);
seU234 = num2str(sigma234);
seU235 = num2str(sigma235);
seU236 = num2str(sigma236);
seU237 = num2str(sigma237);
seU238 = num2str(sigma238);
seP1 = num2str(sigmaP1);
seP2 = num2str(sigmaP2);
%Populate output
set(handles.fU234_text, 'String', sfU234);
set(handles.fU235_text, 'String', sfU235);
set(handles.fU236 text, 'String', sfU236);
set(handles.fU237 text, 'String', sfU237);
set(handles.fU238 text, 'String', sfU238);
set(handles.P1_text, 'String', sP1);
set(handles.P2_text, 'String', sP2);
set(handles.eU234 text, 'String', seU234);
set(handles.eU235 text, 'String', seU235);
set(handles.eU236 text, 'String', seU236);
set(handles.eU237_text, 'String', seU237);
set(handles.eU238 text, 'String', seU238);
set(handles.eP1 text, 'String', seP1);
set(handles.eP2 text, 'String', seP2);
set(handles.R2 text, 'String', sR2);
set(handles.TotalCounts_text, 'String', sTotalCounts);
set(handles.eTotalCounts_text, 'String', seTotalCounts);
%set(handles.calculate pushbutton, 'String', 'Calculate');
guidata(hObject, handles);
function nU editText Callback(hObject, eventdata, handles)
% hObject handle to nU editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
            structure with handles and user data (see GUIDATA)
% Hints: get(hObject, 'String') returns contents of nU editText as text
         str2double(get(hObject,'String')) returns contents of
8
nU editText as a double
guidata(hObject, handles);
```

```
% --- Executes during object creation, after setting all properties.
function nU_editText_CreateFcn(hObject, eventdata, handles)
% hObject handle to nU_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
```

```
empty - handles not created until after all CreateFcns
% handles
called
% Hint: edit controls usually have a white background on Windows.
2
       See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function nO editText Callback(hObject, eventdata, handles)
% hObject handle to nO editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject, 'String') returns contents of nO editText as text
8
        str2double(get(hObject, 'String')) returns contents of
nO editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function nO editText CreateFcn(hObject, eventdata, handles)
% hObject handle to nO editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
           empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
       See ISPC and COMPUTER.
8
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function filename editText Callback(hObject, eventdata, handles)
% hObject handle to filename editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of filename_editText as
text
2
        str2double(get(hObject,'String')) returns contents of
filename editText as a double
%get(hObject,'String')
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
```

```
function filename editText CreateFcn(hObject, eventdata, handles)
```
```
% hObject handle to filename_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFons
called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
```

```
function ic234_editText_Callback(hObject, eventdata, handles)
% hObject handle to ic234_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic234_editText as
text
% str2double(get(hObject,'String')) returns contents of
ic234_editText as a double
guidata(hObject, handles);
```

```
% --- Executes during object creation, after setting all properties.
function ic234_editText_CreateFcn(hObject, eventdata, handles)
% hObject handle to ic234_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
```

```
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
```

```
function ic235_editText_Callback(hObject, eventdata, handles)
% hObject handle to ic235_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic235_editText as
text
% str2double(get(hObject,'String')) returns contents of
ic235_editText as a double
guidata(hObject, handles);
```

```
% --- Executes during object creation, after setting all properties.
function ic235 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to ic235 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
       See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function ic236 editText Callback(hObject, eventdata, handles)
% hObject handle to ic236 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic236 editText as
text
        str2double(get(hObject,'String')) returns contents of
8
ic236 editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function ic236 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to ic236 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
8
       See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function ic238 editText Callback (hObject, eventdata, handles)
% hObject handle to ic238 editText (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic238 editText as
text
```

```
str2double(get(hObject,'String')) returns contents of
ic238 editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function ic238 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to ic238 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
       See ISPC and COMPUTER.
010
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function icP1 editText Callback(hObject, eventdata, handles)
% hObject handle to icP1 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of icPl editText as
text
0/0
         str2double(get(hObject,'String')) returns contents of
icP1 editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function icP1 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to icP1 editText (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
% handles
           empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
9
       See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function icP2 editText Callback(hObject, eventdata, handles)
% hObject handle to icP2 editText (see GCBO)
```

```
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

```
% Hints: get(hObject,'String') returns contents of icP2 editText as
text
2
         str2double(get(hObject,'String')) returns contents of
icP2 editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function icP2 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to icP2 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
        See ISPC and COMPUTER.
2
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in ExportData pushbutton.
function ExportData pushbutton Callback(hObject, eventdata, handles)
% hObject handle to ExportData pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
filename = get(handles.filename editText,'String');
icU234 = get(handles.ic234 editText, 'String');
icU235 = get(handles.ic235 editText, 'String');
icU236 = get(handles.ic236 editText, 'String');
icU237 = '0';
icU238 = get(handles.ic238 editText, 'String');
icP1 = get(handles.icP1 editText, 'String');
icP2 = get(handles.icP2 editText, 'String');
nU = get(handles.nU_editText, 'String');
n0 = get(handles.n0 editText, 'String');
p = num2str(get(handles.pos radiobutton, 'Value'));
n = num2str(get(handles.neg radiobutton, 'Value'));
IC = '1';
PC = '0';
fU234 = get(handles.fU234 text, 'String');
fU235 = get(handles.fU235_text, 'String');
fU236 = get(handles.fU236 text, 'String');
fU237 = get(handles.fU237 text, 'String');
fU238 = get(handles.fU238 text, 'String');
P1 = get(handles.P1_text, 'String');
P2 = get(handles.P2_text, 'String');
eU234 = get(handles.eU234 text, 'String');
eU235 = get(handles.eU235 text, 'String');
eU236 = get(handles.eU236 text, 'String');
```

```
eU237 = get(handles.eU237_text, 'String');
```

```
eU238 = get(handles.eU238 text, 'String');
eP1 = get(handles.eP1 text, 'String');
eP2 = get(handles.eP2_text, 'String');
R2 = get(handles.R2 text, 'String');
TotalCounts = get(handles.TotalCounts text, 'String');
sigmaTotalCounts = get(handles.eTotalCounts text, 'String');
% M = [filename, nU, nO, p, n, IC, PC, icU234,...
    icU235,icU236,icU237,icU238,...
90
     icP1, icP2, fU234, fU235, fU236, fU237, fU238, ...
8
     P1, P2, R2, TotalCounts, eU234, eU235, eU236, eU237, eU238, ...
2
     eP1, eP2, sigmaTotalCounts];
2
fileID = fopen('logdata.txt', 'a');
%s \n',...
   filename, nU, nO, p, n, IC, PC, icU234,...
   icU235,icU236,icU237,icU238,...
   icP1, icP2, fU234, fU235, fU236, fU237, fU238, ...
   P1, P2, R2, TotalCounts, eU234, eU235, eU236, eU237, eU238, ...
   eP1, eP2, sigmaTotalCounts);
guidata(hObject, handles);
```

```
% --- Executes on button press in pos_radiobutton.
function pos_radiobutton_Callback(hObject, eventdata, handles)
% hObject handle to pos_radiobutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

% Hint: get(hObject,'Value') returns toggle state of pos_radiobutton

% --- Executes on button press in neg_radiobutton. function neg_radiobutton_Callback(hObject, eventdata, handles) % hObject handle to neg_radiobutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of neg_radiobutton

```
function [fU234 fU235 fU236 fU237 fU238 P1 P2 R2 TotalCounts,...
    sigmaTotalCounts, sigma238, sigma237, sigma236, sigma235, sigma234,
sigmaP1, sigmaP2]...
    = GetIsotopics1(mass, intensity, icU234, icU235, icU236, icU237,
icU238, icP1, icP2, nU, nO, pn)
%Get peaks of interest
peaks = GetPeaks(nU,nO);
peaksize = size(peaks);
hold on
%Get local variance------
%Identify largest peak
loc1 = find (mass > (peaks(1)-0.4), 1, 'first');
loc2 = find (mass > (peaks(peaksize(1))+0.4), 1, 'first');
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
[Pmax ploc] = max(yvalues);
bigpeak = xvalues(ploc);
%Get peak segment
loc1 = find (mass > (bigpeak-0.4), 1, 'first');
loc2 = find (mass > (bigpeak+0.4), 1, 'first');
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
%Find local background
[min(1) location(1)] = GetMinimum(mass, intensity, bigpeak-0.5, .5);
[min(2) location(2)] = GetMinimum(mass, intensity, bigpeak+0.5, .5);
bg(1) = mean (intensity((location(1)-20):(location(1)+20)));
bg(2) = mean (intensity((location(2)-20):(location(2)+20)));
background = mean ([bg(1) bg(2)]);
%Subtract background
yvalues = yvalues-background;
%Fit regular gauss
gauss = fit(xvalues, yvalues, 'gauss1');
%Get gaussian statistics
stats = coeffvalues(gauss);
c = stats(3);
sigma = c/sqrt(2);
∞_____
for i = 1:peaksize(1); %Find the counts for each peak
    %Find peak max
   peak = peaks(i);
    loc1 = find (mass > (peak-2*sigma), 1, 'first');
    loc2 = find (mass > (peak+2*sigma), 1, 'first');
```

```
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
[pmax ploc] = max(yvalues);
%Recenter around max
peak = xvalues(ploc);
%Find local background and noise
ploc = loc1+ploc;
[min(1) location(1)] = GetMinimum(mass, intensity, peak-0.5, .5);
[min(2) location(2)] = GetMinimum(mass, intensity, peak+0.5, .5);
bg(1) = mean (intensity((location(1)-20):(location(1)+20)));
bg(2) = mean (intensity((location(2)-20):(location(2)+20)));
background = mean ([bg(1) bg(2)]);
noise = ((bq(1) - min(1)) * 2 + (bq(2) - min(2)) * 2) / 2;
sigmaB(i) = sqrt(background*(loc2-loc1));
%Find +/- 4 sigma peak segment
loc1 = find (mass > (peak-4*sigma), 1, 'first');
loc2 = find (mass > (peak+4*sigma), 1, 'first');
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
sigmaM(i) = sqrt(sum(yvalues));
%Subtract background and plot peak segment
yvalues = yvalues-background;
sigmaX(i) = sqrt(sigmaM(i)^2 + sigmaB(i)^2);
plot(xvalues, yvalues)
%Total counts
counts(i) = sum(yvalues);
if counts(i) < 0; counts(i) = 0; end
```

end

```
%Get relative peak counts
TotalCounts = sum(counts);
sigmaTotalCounts = sqrt(sigmaX*sigmaX');
data = (counts/TotalCounts);
for i = 1:peaksize(1);
    if counts(i) == 0;
        sigmaData(i) =
sqrt((sigmaX(i)^2/1)+(sigmaTotalCounts^2/TotalCounts^2))*data(i);
    else
        sigmaData(i) =
sqrt((sigmaX(i)^2/counts(i)^2)+(sigmaTotalCounts^2/TotalCounts^2))*data
(i);
    end
end
%Weed out zero peaks
index1 = data==0;
doi = data;
poi = peaks;
poi(index1) = 0;
doi = nonzeros(doi);
poi = nonzeros(poi);
%Solve for isotopics, protonation
```

[fU234 fU235 fU236 fU237 fU238 P1 P2 R2] = Solver(doi, poi, ... icU234, icU235, icU236, icU237, icU238, icP1, icP2, nU, nO);

%Get calculated peak area from isotopics, protonation
[calc] = CalcArea([fU234 fU235 fU236 fU237 fU238 P1 P2], peaks, nU,
nO);

%Plot

```
multiplier = Pmax;
ylim([-Pmax/10 Pmax*1.1]);
legend('hide');
plot (peaks(:,1), data*multiplier, 'oc')
errorbar (peaks(:,1), data*multiplier, sigmaData*multiplier, 'oc')
plot (peaks(:,1), calc*multiplier, 'xr')
PlotSpectrum(fU234, fU235, fU236, fU237, fU238, P1, P2, nU, nO,...
c, multiplier)
```

%Get isotopics, protonation error

```
[sigma238, sigma237, sigma236, sigma235, sigma234, sigmaP1, sigmaP2]...
= GetError(i, counts, sigmaX, P1, P2);
```

```
function peaks = GetPeaks(nU,nO)
if nU == 0, error('invalid ion');
%U1 series
elseif nU == 1
        if nO == 0, peaks = (234:240)';
        elseif n0 == 1, peaks = (250:256)';
        elseif n0 == 2, peaks = (266:272)';
       elseif n0 == 3, peaks = (282:288)';
        elseif nO == 4, peaks = (298:304)';
       else error('invalid ion')
        end
%U2 series
elseif nU == 2
        if nO == 2, peaks = (500:510)';
        elseif nO == 3, peaks = (516:526)';
       elseif n0 == 4, peaks = (532:542)';
       elseif nO == 5, peaks = (548:558)';
       elseif nO == 6, peaks = (564:574)';
        elseif nO == 7, peaks = (580:590)';
        else error('invalid ion')
        end
%U3series
elseif nU == 3
        if nO == 4, peaks = (766:780)';
        elseif nO == 5, peaks = [782, 783, 784, 785, 786, 787, 789,
790,...
                791,792,793,794,795,796]';
        elseif nO == 6, peaks = (798:812)';
        elseif nO == 7, peaks = (814:828)';
       elseif nO == 8, peaks = (830:844)';
       elseif nO == 9, peaks = (846:860)';
       else error('invalid ion')
        end
%U4 series
elseif nU == 4
       if nO == 5, peaks = (1019:1034)';
        elseif nO == 6, peaks = (1035:1050)';
        elseif nO == 7, peaks = (1051:1066)';
        elseif nO == 8, peaks = (1067:1082)';
        elseif nO == 9, peaks = (1083:1098)';
       elseif nO == 10, peaks = (1099:1114)';
       elseif nO == 11, peaks = (1115:1130)';
       else error('invalid ion')
       end
%U5 series
elseif nU == 5
        if nO == 5, peaks = (1257:1272)';
        elseif nO == 6, peaks = (1273:1288)';
        elseif nO == 7, peaks = (1289:1304)';
        elseif nO == 8, peaks = (1305:1320)';
       elseif nO == 9, peaks = (1321:1336)';
       elseif nO == 10, peaks = (1337:1352)';
        elseif nO == 11, peaks = (1353:1368)';
```

```
elseif nO == 12, peaks = [1369 1370 1371 1372 1373 1374 1375
1376 ...
                1377 1378 1380 1381 1382 1383 1384]';
        elseif nO == 13, peaks = (1385:1400)';
        elseif nO == 14, peaks = (1401:1416)';
        elseif nO == 15, peaks = (1417:1432)';
        else error('invalid ion')
        end
%U6 series
elseif nU == 6
        if nO == 6, peaks = (1511:1526)';
        elseif nO == 7, peaks = (1527:1542)';
        elseif nO == 8, peaks = (1543:1558)';
        elseif nO == 9, peaks = (1559:1574)';
        elseif nO == 10, peaks = [1575 1577 1578 1579 1580 1581 1582
. . .
                1583 1584 1585 1586 1587 1588 1589 1590]';
        elseif nO == 11, peaks = (1591:1606)';
        elseif nO == 12, peaks = (1607:1622)';
       elseif n0 == 13, peaks = (1623:1638)';
       elseif nO == 14, peaks = (1639:1654)';
       elseif nO == 15, peaks = (1655:1670)';
       elseif nO == 16, peaks = (1671:1686)';
       elseif n0 == 17, peaks = (1687:1702)';
       elseif nO == 18, peaks = (1703:1718)';
        else error('invalid ion')
        end
%U7 series
elseif nU == 7
        if nO == 7, peaks = [1765 1766 1767 1768 1769 1770 1771 1772
. . .
                1774 1775 1776 1777 1778 1779 1780]';
        elseif nO == 8, peaks = (1781:1796)';
        elseif nO == 9, peaks = (1797:1812)';
       elseif nO == 10, peaks = (1813:1828)';
       elseif nO == 11, peaks = (1829:1844)';
        elseif nO == 12, peaks = (1845:1860)';
       elseif nO == 13, peaks = (1861:1876)';
       elseif nO == 14, peaks = (1877:1892)';
       elseif nO == 15, peaks = (1893:1908)';
       elseif n0 == 16, peaks = (1909:1924)';
       elseif nO == 17, peaks = (1925:1940)';
        elseif nO == 18, peaks = (1941:1956)';
        elseif nO == 19, peaks = [1957 1958 1959 1960 1961 1962 1963
1964 ...
                1965 1966 1967 1968 1969 1971 1972]';
        elseif nO == 20, peaks = (1973:1988)';
        elseif nO == 21, peaks = (1989:2004)';
        else error('invalid ion')
        end
%U8 series
elseif nU == 8
       if nO == 8, peaks = (2019:2034)';
        elseif nO == 9, peaks = (2035:2050)';
        elseif nO == 10, peaks = (2051:2066)';
```

```
elseif nO == 11, peaks = (2067:2082)';
        elseif nO == 12, peaks = (2083:2098)';
        elseif nO == 13, peaks = (2099:2114)';
        elseif nO == 14, peaks = (2115:2130)';
        elseif nO == 15, peaks = (2131:2146)';
        elseif nO == 16, peaks = (2147:2162)';
        elseif nO == 17, peaks = [2163 2164 2165 2166 2168 2169 2170
2171 ...
                2172 2173 2174 2175 2176 2177 2178]';
        elseif nO == 18, peaks = (2179:2194)';
        elseif nO == 19, peaks = (2195:2210)';
        elseif nO == 20, peaks = (2211:2226)';
        elseif nO == 21, peaks = (2227:2242)';
       elseif nO == 22, peaks = (2243:2258)';
       elseif nO == 23, peaks = (2259:2274)';
       elseif nO == 24, peaks = (2275:2290)';
        else error('invalid ion')
        end
%U9 series
elseif nU == 9
        if nO == 9, peaks = (2273:2288)';
        elseif nO == 10, peaks = (2289:2304)';
        elseif n0 == 11, peaks = (2305:2320)';
        elseif nO == 12, peaks = (2321:2336)';
        elseif nO == 13, peaks = (2337:2352)';
        elseif nO == 14, peaks = [2353 2354 2355 2356 2357 2358 2359
2360 ...
                2361 2362 2363 2365 2366 2367 2368]';
        elseif nO == 15, peaks = (2369:2384)';
        elseif nO == 16, peaks = (2385:2400)';
        elseif nO == 17, peaks = (2401:2416)';
        elseif n0 == 18, peaks = (2417:2432)';
        elseif nO == 19, peaks = (2433:2448)';
       elseif nO == 20, peaks = (2449:2464)';
       elseif nO == 21, peaks = (2465:2480)';
       elseif nO == 22, peaks = (2481:2496)';
        elseif nO == 23, peaks = (2497:2512)';
       elseif nO == 24, peaks = (2513:2528)';
       elseif n0 == 25, peaks = (2529:2544)';
       elseif nO == 26, peaks = (2545:2560)';
        elseif nO == 27, peaks = (2562:2576)';
       else error('invalid ion')
        end
%U10 series
elseif nU == 10
        if nO == 10, peaks = (2527:2542)';
        elseif nO == 11, peaks = (2543:2558)';
        elseif nO == 12, peaks = (2559:2574)';
        elseif n0 == 13, peaks = (2575:2590)';
        elseif nO == 14, peaks = (2591:2606)';
        elseif nO == 15, peaks = (2607:2622)';
        elseif nO == 16, peaks = (2623:2638)';
        elseif nO == 17, peaks = (2639:2654)';
       elseif nO == 18, peaks = (2655:2670)';
        elseif nO == 19, peaks = (2671:2686)';
```

```
elseif n0 == 20, peaks = (2687:2702)';
        elseif n0 == 21, peaks = (2703:2718)';
        elseif nO == 22, peaks = (2719:2734)';
        elseif nO == 23, peaks = (2735:2750)';
        elseif nO == 24, peaks = [2751 2752 2753 2754 2755 2756 2757
2759 ...
                2760 2761 2762 2763 2764 2765 2766]';
        elseif n0 == 25, peaks = (2767:2782)';
        elseif n0 == 26, peaks = (2783:2798)';
        elseif nO == 27, peaks = (2799:2814)';
        elseif nO == 28, peaks = (2815:2830)';
        elseif nO == 29, peaks = (2831:2846)';
        elseif nO == 30, peaks = (2847:2862)';
        else error('invalid ion')
        end
else
   error('invalid ion')
end
peaks = peaks - .0051*n0 +.0460*nU;
```

```
function [I,loc] = GetMinimum(mass, intensity, massnumber, halfrange)
loc1 = find (mass > (massnumber-halfrange), 1, 'first');
loc2 = find (mass > (massnumber+halfrange), 1, 'first');
slice = intensity (loc1:loc2);
I = min(slice);
loc = find (slice == I, 1, 'first') + loc1;
```

```
function [fU234 fU235 fU236 fU237 fU238 P1 P2 r] = Solver(data, peaks,
. . .
    icU234, icU235, icU236, icU237, icU238, icP1, icP2, nU, nO)
initial = [icU234, icU235, icU236, icU237, icU238, icP1, icP2];
%pass parameters
data = data;
peaks = peaks;
. . .
    'TolX', .000000000000000001,...
    'MaxFunEvals', 5000, 'MaxIter', 5000);
[s, r] = fminsearch (@(variables)Residuals(variables, data, peaks, nU,
nO)...
    , initial, options);
   fU234 = s(1);
    fU235 = s(2);
    fU236 = s(3);
   fU237 = s(4);
   fU238 = s(5);
   P1 = s(6);
   P2 = s(7);
%Correct for bad values- this is due to the solver scheme.
if fU234 < 0, fU234 = 0; end
if fU235 < 0, fU235 = 0; end
if fU236 < 0, fU236 = 0; end
if fU237 < 0, fU237 = 0; end
if fU238 < 0, fU238 = 0; end
if fU234 > 1, fU234 = 1; end
if fU235 > 1, fU235 = 1; end
if fU236 > 1, fU236 = 1; end
if fU237 > 1, fU237 = 1; end
if fU238 > 1, fU238 = 1; end
if P1 < 0, P1 = 0; end
if P1 > 1, P1 = 1; end
if P2 < 0, P2 = 0; end
if P2 > 1, P2 = 1; end
if (P1+P2)>1, P2 = 1-P1; end
U = fU234+fU235+fU236+fU237+fU238;
fU234 = fU234/U;
fU235 = fU235/U;
fU236 = fU236/U;
fU237 = fU237/U;
fU238 = fU238/U;
```

```
function res = Residuals(variables, data, peaks, nU, nO)
calc = CalcArea(variables, peaks, nU, nO);
datapoints = size(data);
res = 0;
for i = 1:datapoints(1)
    res = res +(abs(data(i)-calc(i)))^2;
end
```

```
function [calc] = CalcArea(variables, peaks, nU, nO)
%variables = [fU234 fU235 fU236 fU237 fU238 P1 P2];
fU234 = variables(1);
fU235 = variables(2);
fU236 = variables(3);
fU237 = variables(4);
fU238 = variables(5);
P1 = variables(6);
P2 = variables(7);
%Insure realistic values
if fU234 < 0, fU234 = 0; end
if fU235 < 0, fU235 = 0; end
if fU236 < 0, fU236 = 0; end
if fU237 < 0, fU237 = 0; end
if fU238 < 0, fU238 = 0; end
if fU234 > 1, fU234 = 1; end
if fU235 > 1, fU235 = 1; end
if fU236 > 1, fU236 = 1; end
if fU237 > 1, fU237 = 1; end
if fU238 > 1, fU238 = 1; end
if P1 < 0, P1 = 0; end
if P1 > 1, P1 = 1; end
if P2 < 0, P2 = 0; end
if P2 > 1, P2 = 1; end
if (P1+P2)>1, P2 = 1-P1; end
fU = [fU234, fU235, fU236, fU237, fU238];
%Check for fU = 1 and normalize if necessary
if sum(fU)~=1,
    fU234 = fU(1) / sum(fU);
    fU235 = fU(2) / sum(fU);
    fU236 = fU(3) / sum(fU);
    fU237 = fU(4) / sum(fU);
    fU238 = fU(5) / sum(fU);
    fU = [fU234, fU235, fU236, fU237, fU238];
end
[masses, fractions]=GetMF(nU,nO,fU, P1, P2);
calc = GetSumComponents(peaks, masses, fractions);
```

```
function [m, f] = GetMF(nU, nO, fU, P1, P2)
mU234 = 234.040951;
mU235 = 235.0439299;
mU236 = 236.045568;
mU237 = 237.0487302;
mU238 = 238.0507882;
f016 = .99762;
f017 = .00038;
f018 = .00200;
mO16 = 15.99491462;
mO17 = 16.9991317;
mO18 = 17.999161;
%Н
fH1 = 0.99985;
fH2 = 0.00015;
mH1 = 1.007825032;
mH2 = 2.01410178;
mH = [0, mH1, mH2];
fPO = 1 - (P1*fH1) - (P1*fH2) - (P2*fH1);
fP1 = P1*fH1;
fP2 = P2*fH1+P1*fH2;
fP = [fP0, fP1, fP2];
80
mO = [mO16, mO17, mO18];
fO = [fO16, fO17, fO18];
응U
mU = [mU234, mU235, mU236, mU237, mU238];
m = 0;
f = 1;
for i = 1:nU;
    m = [mU(1) + m, mU(2) + m, mU(3) + m, mU(4) + m, mU(5) + m];
    f = [fU(1)*f, fU(2)*f, fU(3)*f, fU(4)*f, fU(5)*f];
    [f, m]=ReduceVector(f, m);
end
if nO>0;
    for j = 1:n0;
        m = [mO(1) + m, mO(2) + m, mO(3) + m];
        f = [fO(1) * f, fO(2) * f, fO(3) * f];
        [f, m]=ReduceVector(f, m);
    end
end
%Add protonation
m = [m+mH(1), m+mH(2), m+mH(3)];
f = [f*fP(1), f*fP(2), f*fP(3)];
[f, m]=ReduceVector(f, m);
```

```
function [output1, output2]=ReduceVector(input1, input2)
s = size(input1);
for i = 1: s(2);
    if input1(i) < 1e-5;
        input1(i) = 0;
        input2(i) = 0;
    end
end
output1 = (nonzeros(input1))';
output2 = (nonzeros(input2))';</pre>
```

```
function [calc] = GetSumComponents(peaks, masses, fractions)

peaknumber = size(peaks);
calc = zeros(1, peaknumber(1));

for i = 1: peaknumber(1);
    index = find(masses>(peaks(i,1)-0.5) & masses<(peaks(i,1)+0.5));
    components = size(index);
    for j = 1: components(2);
        calc(i) = calc(i) + fractions(index(j));
    end
end</pre>
```

```
function[sigma238, sigma237, sigma236, sigma235, sigma234, sigmaP1,
sigmaP2]...
    = GetError(i, counts, sigmaX, P1, P2)
f018 = .00200;
fH2 = 0.00015;
enrich = 0;
if i == 7 \& counts(2) > counts(i-2); enrich = 1; j = 1; end
if i == 11 \&\& counts(3) > counts(i-2); enrich = 1; j = 2; end
if i == 15 && counts(4)>counts(i-2); enrich = 1; j = 3; end
if i == 19 && counts(5)>counts(i-2); enrich = 1; j = 4; end
if i == 23 \&\& counts(6) > counts(i-2); enrich = 1; j = 5; end
if i = 27 \& counts(7) > counts(i-2); enrich = 1; j = 6; end
if i == 31 && counts(8)>counts(i-2); enrich = 1; j = 7; end
if i == 35 && counts(9)>counts(i-2); enrich = 1; j = 8; end
if i == 39 && counts(10)>counts(i-2); enrich = 1; j = 9; end
if i == 43 && counts(11)>counts(i-2); enrich = 1; j = 10; end
if enrich == 1;
    CountSum =
counts(1) + counts(2) + counts(3) + counts(4) + counts(5) + counts(6) + counts(7);
    est238 = ((counts(j+4) - (counts(j+2)*P2) - (counts(j+3)*P1)) / (1-
P1-P2)) ...
        /CountSum;
    est237 = ((counts(j+3) - (counts(j+1)*P2) - (counts(j+2)*P1)) / (1-
P1-P2))...
        / CountSum;
    est236 = ((counts(j+2) - (counts(j)*P2) - (counts(j+1)*P1)) / (1-
P1-P2))...
        / CountSum;
    est235 = ((counts(j+1) - (counts(j)*P1)) / (1-P1-P2)) / CountSum;
    est234 = counts(j) / CountSum;
    if counts(j) == 0; counts(1) = 1; end
    if counts(j+1) == 0; counts(2) = 1; end
    if counts(j+2) == 0; counts(3) = 1; end
    if counts(j+3) == 0; counts(4) = 1; end
    if counts(j+4) == 0; counts(5) = 1; end
    if counts(j+5) == 0; counts(6) = 1; end
    if counts(j+6) == 0; counts(7) = 1; end
    if P1 == 0; P1 = 1/CountSum; end
    if P2 == 0; P2 = 1/CountSum; end
    sigmaCountSum = sqrt(sigmaX(j)^2+sigmaX(j+1)^2+sigmaX(j+2)^2+...
        sigmaX(j+3)^2+sigmaX(j+4)^2+sigmaX(j+5)^2+sigmaX(j+6)^2);
    sigma234 = sqrt((sigmaX(j)^2/counts(j)^2) +
(sigmaCountSum^2/CountSum^2)) *est234;
    sigmaP1 =
sqrt((sigmaX(j+2)/counts(j+2))^2+(sigmaX(j+1)/counts(j+1))^2)*...
        (counts(j+2)/counts(j+1));
    sigmaP2 =
sqrt((sigmaX(j+3)/counts(j+3))^2+(sigmaX(j+1)/counts(j+1))^2)*...
```

```
(counts(j+3)/counts(j+1));
    sigma235 = sqrt(((sigmaX(j+1)^2 +
((sigmaX(j)/counts(j))^2+(sigmaP1/P1)^2)...
        * (counts (j) *P1) ^2) / (counts (j+1) - counts (j) *P1) ^2) + ...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est235;
   sigma 236 =
sqrt(((sigmaX(j+2)^2+((sigmaX(j)/counts(j))^2+(sigmaP2/P2)^2)*(counts(j)
)*P2)^2+...
((sigmaX(j+1)/counts(j+1))^2+(sigmaP1/P1)^2)*(counts(j+1)*P1)^2)/...
       (counts(j+2)-counts(j)*P2-counts(j+1)*P1)^2)+...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est236;
   sigma237 =
sqrt(((sigmaX(j+3)^2+((sigmaX(j+1)/counts(j+1))^2+(sigmaP2/P2)^2)*(coun
ts(j+1)*P2)^2+...
((sigmaX(j+2)/counts(j+2))^2+(sigmaP1/P1)^2)*(counts(j+2)*P1)^2)/...
       (counts (j+3) -counts (j+1) *P2-counts (j+2) *P1) ^2) + ...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est237;
   sigma238 =
sqrt(((sigmaX(j+4)^2+((sigmaX(j+2)/counts(j+2))^2+(sigmaP2/P2)^2)*(coun
ts(j+2)*P2)^2+...
((sigmaX(j+3)/counts(j+3))^2+(sigmaP1/P1)^2)*(counts(j+3)*P1)^2)/...
       (counts (j+4) -counts (j+2) *P2-counts (j+3) *P1) ^2) + ...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est238;
elseif enrich == 0;
    CountSum = counts(i)+counts(i-1)+counts(i-2)+counts(i-3)+counts(i-
4) +counts (i-5) +counts (i-6);
    est238 = (counts(i-2)+counts(i-1)+counts(i))/CountSum;
    est237 = (counts(i-3) - (counts(i-5)*P2) - (counts(i-4)*P1)) /
CountSum;
    est236 = (counts(i-4) - (counts(i-6)*P2) - (counts(i-5)*P1)) /
CountSum;
    est235 = (counts(i-5) - (counts(i-6)*P1)) / CountSum;
    est234 = counts(i-6) / CountSum;
    estP1 = counts(i-1) / counts(i-2);
    estP2 = (counts(i) - counts(i-2)*f018 - counts(i-1)*fH2) /
counts(i-2);
    if counts(i) == 0; counts(i) = 1; end
    if counts(i-1) == 0; counts(i-1) = 1; end
    if counts(i-2) == 0; counts(i-2) = 1; end
    if counts(i-3) == 0; counts(i-3) = 1; end
    if counts(i-4) == 0; counts(i-4) = 1; end
    if counts(i-5) == 0; counts(i-5) = 1; end
    if counts(i-6) == 0; counts(i-6) = 1; end
    if P1 == 0; P1 = 1/CountSum; end
    if P2 == 0; P2 = 1/CountSum; end
```

```
sigmaCountSum = sqrt(sigmaX(i)^2+sigmaX(i-1)^2+sigmaX(i-2)^2+...
        sigmaX(i-3)^2+sigmaX(i-4)^2+sigmaX(i-5)^2+sigmaX(i-6)^2);
    sigma238 = sqrt(((sigmaX(i-2)^2+(sigmaX(i))^2+(sigmaX(i-1))^2)/...
        (counts(i-2)+counts(i-1)+counts(i))^2) +
(sigmaCountSum^2/CountSum^2)) *est238;
    sigmaP1 = sqrt((sigmaX(i-1)^2/counts(i-1)^2) + (sigmaX(i-
2) ^2/counts (i-2) ^2)) *estP1;
    sigmaP2 = sqrt(((sigmaX(i)^2+(sigmaX(i-2)*f018)^2+(sigmaX(i-
1)*fH2)^2)...
        /(counts(i)-counts(i-2)*f018-counts(i-1)*fH2)^2)+(sigmaX(i-
2)^2/counts(i-2)^2))*estP2;
    sigma234 = sqrt((sigmaX(i-6)^2/counts(i-6)^2) +
(sigmaCountSum^2/CountSum^2)) *est234;
    sigma235 = sqrt((((sigmaX(i-5))^2+...
        (sqrt((sigmaX(i-6)^2/counts(i-
6)^2)+(sigmaP1^2/P1^2))*(counts(i-6)*P1))^2)...
        /(counts(i-5)-counts(i-
6) *P1) ^2) + (sigmaCountSum^2/CountSum^2)) *est235;
    sigma236 = sqrt((((sigmaX(i-4))^2+...)
        (sqrt((sigmaX(i-6)^2/counts(i-
6)^2)+(sigmaP2^2/P2^2))*(counts(i-6)*P2))^2 ...
        +(sqrt((sigmaX(i-5)^2/counts(i-
5)^2)+(sigmaP1^2/P1^2))*(counts(i-5)*P1))^2 ...
        )/(counts(i-4)-counts(i-6)*P2-counts(i-
5) *P1) ^2) + (sigmaCountSum^2/CountSum^2)) *est236;
    sigma237 = sgrt((((sigmaX(i-3))^2+...)
        (sqrt((sigmaX(i-5)^2/counts(i-
5)^2)+(sigmaP2^2/P2^2))*(counts(i-5)*P2))^2+...
        (sqrt((sigmaX(i-4)^2/counts(i-
4)^2)+(sigmaP1^2/P1^2))*(counts(i-4)*P1))^2 ...
        )/(counts(i-3)-counts(i-5)*P2-counts(i-
4) *P1) ^2) + (sigmaCountSum^2/CountSum^2)) *est237;
end
```

Appendix D. Protonation Calculator


```
function varargout = ProtonationCalculator(varargin)
% PROTONATIONCALCULATOR M-file for ProtonationCalculator.fig
       PROTONATIONCALCULATOR, by itself, creates a new
8
PROTONATIONCALCULATOR or raises the existing
      singleton*.
00
8
8
      H = PROTONATIONCALCULATOR returns the handle to a new
PROTONATIONCALCULATOR or the handle to
8
      the existing singleton*.
8
8
      PROTONATIONCALCULATOR('CALLBACK', hObject, eventData, handles, ...)
calls the local
8
      function named CALLBACK in PROTONATIONCALCULATOR.M with the
given input arguments.
8
8
      PROTONATIONCALCULATOR ('Property', 'Value',...) creates a new
PROTONATIONCALCULATOR or raises the
      existing singleton*. Starting from the left, property value
8
pairs are
      applied to the GUI before ProtonationCalculator OpeningFcn gets
2
called. An
      unrecognized property name or invalid value makes property
8
application
      stop. All inputs are passed to ProtonationCalculator OpeningFcn
8
via varargin.
8
8
      *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
```

```
00
       instance to run (singleton)".
2
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help
ProtonationCalculator
% Last Modified by GUIDE v2.5 02-Dec-2010 17:51:32
% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name',
                                     mfilename, ...
                   'gui Singleton', gui_Singleton, ...
                   'gui OpeningFcn', @ProtonationCalculator OpeningFcn,
. . .
                   'gui OutputFcn', @ProtonationCalculator OutputFcn,
. . .
                   'qui LayoutFcn', [], ...
                   'qui Callback',
                                     []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
   gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before ProtonationCalculator is made visible.
function ProtonationCalculator OpeningFcn(hObject, eventdata, handles,
varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
\% varargin % \  command line arguments to ProtonationCalculator (see
VARARGIN)
% Choose default command line output for ProtonationCalculator
handles.output = hObject;
% Update handles structure
set(hObject,'toolbar','figure');
guidata(hObject, handles);
% UIWAIT makes ProtonationCalculator wait for user response (see
UIRESUME)
% uiwait(handles.figure1);
```

```
% --- Outputs from this function are returned to the command line.
function varargout = ProtonationCalculator OutputFcn(hObject,
eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in calculate pushbutton.
function calculate pushbutton Callback(hObject, eventdata, handles)
% hObject handle to calculate pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Change calculate button
%set(handles.calculate pushbutton, 'String', '...');
%guidata(hObject, handles);
%Get inputs
cla(handles.axes1, 'reset')
guidata(hObject, handles);
axes(handles.axes1)
filename = get(handles.filename editText,'String');
rawdata = dlmread(filename, '', 2, 0);
channel = rawdata(:,1);
mass = rawdata(:,2);
intensity = rawdata(:,3);
fU234 = str2double(get(handles.ic234 editText, 'String'));
fU235 = str2double(get(handles.ic235 editText, 'String'));
fU236 = str2double(get(handles.ic236_editText, 'String'));
fU237 = 0;
fU238 = str2double(get(handles.ic238 editText, 'String'));
icP1 = str2double(get(handles.icP1 editText, 'String'));
icP2 = str2double(get(handles.icP2 editText, 'String'));
nU = str2double(get(handles.nU editText, 'String'));
n0 = str2double(get(handles.n0 editText, 'String'));
p = get(handles.pos radiobutton, 'Value');
n = get(handles.neg radiobutton, 'Value');
if p==1 && n==0, pn = 1;
elseif p==0 \&\& n==1, pn = 0;
else error('Correct charge')
end
%GetProtonation
[P1 P2 R2 TotalCounts, sigmaTotalCounts, eP1, eP2] =
GetProtonation1(mass, intensity, fU234, ...
```

```
fU235, fU236, fU237, fU238, icP1, icP2, nU, nO, pn);
%Convert numbers to strings
sfU234 = num2str(fU234);
sfU235 = num2str(fU235);
sfU236 = num2str(fU236);
sfU237 = num2str(fU237);
sfU238 = num2str(fU238);
sP1 = num2str(P1);
sP2 = num2str(P2);
seP1 = num2str(eP1);
seP2 = num2str(eP2);
sR2 = num2str(R2);
sTotalCounts = num2str(TotalCounts);
seTotalCounts = num2str(sigmaTotalCounts);
%Populate output
set(handles.fU234 text, 'String', sfU234);
set(handles.fU235 text, 'String', sfU235);
set(handles.fU236 text, 'String', sfU236);
set(handles.fU237_text, 'String', sfU237);
set(handles.fU238_text, 'String', sfU238);
set(handles.P1 text, 'String', sP1);
set(handles.P2 text, 'String', sP2);
set(handles.eP1 text, 'String', seP1);
set(handles.eP2_text, 'String', seP2);
set(handles.er2_text, 'String', sR2);
set(handles.TotalCounts_text, 'String', sTotalCounts);
set(handles.eTotalCounts_text, 'String', seTotalCounts);
%set(handles.calculate pushbutton, 'String', 'Calculate');
guidata(hObject, handles);
function nU editText Callback(hObject, eventdata, handles)
% hObject handle to nU editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of nU editText as text
2
        str2double(get(hObject, 'String')) returns contents of
nU editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function nU editText CreateFcn(hObject, eventdata, handles)
% hObject handle to nU editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
            empty - handles not created until after all CreateFcns
% handles
called
% Hint: edit controls usually have a white background on Windows.
        See ISPC and COMPUTER.
8
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
```

```
function nO editText Callback(hObject, eventdata, handles)
% hObject handle to nO editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject, 'String') returns contents of nO editText as text
        str2double(get(hObject,'String')) returns contents of
8
nO editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function nO editText CreateFcn(hObject, eventdata, handles)
% hObject handle to nO editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
           empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
       See ISPC and COMPUTER.
00
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
   set(hObject, 'BackgroundColor', 'white');
end
function filename editText Callback(hObject, eventdata, handles)
% hObject handle to filename editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of filename editText as
text
8
        str2double(get(hObject,'String')) returns contents of
filename editText as a double
%get(hObject,'String')
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function filename editText CreateFcn(hObject, eventdata, handles)
% hObject handle to filename editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
       See ISPC and COMPUTER.
```

end

```
89
```

```
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function ic234 editText Callback(hObject, eventdata, handles)
% hObject handle to ic234 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic234 editText as
text
8
         str2double(get(hObject,'String')) returns contents of
ic234 editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function ic234 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to ic234 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
       See ISPC and COMPUTER.
2
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function ic235 editText Callback(hObject, eventdata, handles)
% hObject handle to ic235 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic235 editText as
text
         str2double(get(hObject,'String')) returns contents of
8
ic235 editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function ic235 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to ic235 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
           empty - handles not created until after all CreateFcns
called
```

```
% Hint: edit controls usually have a white background on Windows.
8
       See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function ic236 editText Callback(hObject, eventdata, handles)
% hObject handle to ic236 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic236 editText as
text
8
         str2double(get(hObject,'String')) returns contents of
ic236 editText as a double
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function ic236 editText CreateFcn(hObject, eventdata, handles)
% hObject handle to ic236 editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
          empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
       See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function ic238_editText_Callback(hObject, eventdata, handles)
% hObject handle to ic238_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ic238 editText as
text
2
         str2double(get(hObject,'String')) returns contents of
ic238 editText as a double
guidata(hObject, handles);
```

```
% --- Executes during object creation, after setting all properties.
function ic238 editText CreateFcn(hObject, eventdata, handles)
```

```
% hObject handle to ic238_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
```

```
function icP1_editText_Callback(hObject, eventdata, handles)
% hObject handle to icP1_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of icP1_editText as
text
% str2double(get(hObject,'String')) returns contents of
icP1_editText as a double
guidata(hObject, handles);
```

```
% --- Executes during object creation, after setting all properties.
function icP1_editText_CreateFcn(hObject, eventdata, handles)
% hObject handle to icP1_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
```

```
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
```

```
function icP2_editText_Callback(hObject, eventdata, handles)
% hObject handle to icP2_editText (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of icP2_editText as
text
% str2double(get(hObject,'String')) returns contents of
icP2_editText as a double
guidata(hObject, handles);
```

```
% --- Executes during object creation, after setting all properties.
function icP2 editText CreateFcn (hObject, eventdata, handles)
% hObject
            handle to icP2 editText (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
        See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in ExportData pushbutton.
function ExportData pushbutton Callback(hObject, eventdata, handles)
% hObject handle to ExportData pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
filename = get(handles.filename editText,'String');
icU234 = get(handles.ic234 editText, 'String');
icU235 = get(handles.ic235 editText, 'String');
icU236 = get(handles.ic236 editText, 'String');
icU237 = '0';
icU238 = get(handles.ic238 editText, 'String');
icP1 = get(handles.icP1 editText, 'String');
icP2 = get(handles.icP2_editText, 'String');
nU = get(handles.nU editText, 'String');
n0 = get(handles.n0 editText, 'String');
p = num2str(get(handles.pos radiobutton, 'Value'));
n = num2str(get(handles.neg radiobutton, 'Value'));
IC = '0';
PC = '1';
fU234 = get(handles.fU234 text, 'String');
fU235 = get(handles.fU235 text, 'String');
fU236 = get(handles.fU236 text, 'String');
fU237 = get(handles.fU237 text, 'String');
fU238 = get(handles.fU238 text, 'String');
P1 = get(handles.P1_text, 'String');
P2 = get(handles.P2_text, 'String');
eU234 = '0';
eU235 = '0';
eU236 = '0';
eU237 = '0';
eU238 = '0';
eP1 = get(handles.eP1 text, 'String');
eP2 = get(handles.eP2_text, 'String');
R2 = get(handles.R2_text, 'String');
TotalCounts = get(handles.TotalCounts text, 'String');
sigmaTotalCounts = get(handles.eTotalCounts text, 'String');
```

% M = [filename, nU, nO, p, n, IC, PC, icU234,... 8 icU235,icU236,icU237,icU238,... 2 icP1, icP2, fU234, fU235, fU236, fU237, fU238, ... 2 P1, P2, R2, TotalCounts, eU234, eU235, eU236, eU237, eU238, ... eP1, eP2, sigmaTotalCounts]; 8 fileID = fopen('logdata.txt', 'a'); %s \n',... filename, nU, nO, p, n, IC, PC, icU234,... icU235,icU236,icU237,icU238,... icP1, icP2, fU234, fU235, fU236, fU237, fU238, ... P1, P2, R2, TotalCounts, eU234, eU235, eU236, eU237, eU238, ... eP1, eP2, sigmaTotalCounts); guidata(hObject, handles);

% --- Executes on button press in pos_radiobutton. function pos_radiobutton_Callback(hObject, eventdata, handles) % hObject handle to pos_radiobutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of pos_radiobutton

% --- Executes on button press in neg_radiobutton. function neg_radiobutton_Callback(hObject, eventdata, handles) % hObject handle to neg_radiobutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of neg radiobutton

```
function [P1 P2 R2 TotalCounts, sigmaTotalCounts, sigmaP1, sigmaP2] =
GetProtonation1...
   (mass, intensity, fU234, fU235, fU236, fU237, fU238, icP1, icP2, nU,
nO, pn)
%Get peaks of interest
peaks = GetPeaks(nU,nO);
peaksize = size(peaks);
hold on
%Get local variance-----
____
%Identify largest peak
loc1 = find (mass > (peaks(1)-0.4), 1, 'first');
loc2 = find (mass > (peaks(peaksize(1))+0.4), 1, 'first');
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
[Pmax ploc] = max(yvalues);
bigpeak = xvalues(ploc);
%Get peak segment
loc1 = find (mass > (bigpeak-0.4), 1, 'first');
loc2 = find (mass > (bigpeak+0.4), 1, 'first');
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
%Find local background
[min(1) location(1)] = GetMinimum(mass, intensity, bigpeak-0.5, .5);
[min(2) location(2)] = GetMinimum(mass, intensity, bigpeak+0.5, .5);
bg(1) = mean (intensity((location(1)-20):(location(1)+20)));
bg(2) = mean (intensity((location(2)-20):(location(2)+20)));
background = mean ([bg(1) bg(2)]);
%Subtract background
yvalues = yvalues-background;
%Fit regular gauss
gauss = fit(xvalues, yvalues, 'gauss1');
%Get gaussian statistics
stats = coeffvalues(gauss);
c = stats(3);
sigma = c/sqrt(2);
____
for i = 1:peaksize(1); %Find the counts for each peak
   %Find peak max
   peak = peaks(i);
   loc1 = find (mass > (peak-2*sigma), 1, 'first');
   loc2 = find (mass > (peak+2*sigma), 1, 'first');
```

```
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
[pmax ploc] = max(yvalues);
%Recenter around max
peak = xvalues(ploc);
%Find local background and noise
ploc = loc1+ploc;
[min(1) location(1)] = GetMinimum(mass, intensity, peak-0.5, .5);
[min(2) location(2)] = GetMinimum(mass, intensity, peak+0.5, .5);
bq(1) = mean (intensity((location(1)-20):(location(1)+20)));
bg(2) = mean (intensity((location(2)-20):(location(2)+20)));
background = mean ([bg(1) bg(2)]);
noise = ((bq(1) - min(1)) * 2 + (bq(2) - min(2)) * 2) / 2;
sigmaB(i) = sqrt(background*(loc2-loc1));
%Find +/- 4 sigma peak segment
loc1 = find (mass > (peak-4*sigma), 1, 'first');
loc2 = find (mass > (peak+4*sigma), 1, 'first');
yvalues = intensity(loc1:loc2, 1);
xvalues = mass(loc1:loc2, 1);
sigmaM(i) = sqrt(sum(yvalues));
%Subtract background and plot peak segment
yvalues = yvalues-background;
sigmaX(i) = sqrt(sigmaM(i)^2 + sigmaB(i)^2);
plot(xvalues, yvalues)
%Total counts
counts(i) = sum(yvalues);
if counts(i) < 0; counts(i) = 0; end
```

end

```
%Get relative peak counts
TotalCounts = sum(counts);
sigmaTotalCounts = sqrt(sigmaX*sigmaX');
data = (counts/TotalCounts);
for i = 1:peaksize(1);
    if counts(i) == 0;
        sigmaData(i) =
sqrt((sigmaX(i)^2/1)+(sigmaTotalCounts^2/TotalCounts^2))*data(i);
    else
        sigmaData(i) =
sqrt((sigmaX(i)^2/counts(i)^2)+(sigmaTotalCounts^2/TotalCounts^2))*data
(i);
    end
end
%Weed out zero peaks
index1 = data==0;
doi = data;
poi = peaks;
poi(index1) = 0;
doi = nonzeros(doi);
poi = nonzeros(poi);
%Solve for protonation
```

[P1 P2 R2] = PSolver(doi, poi, [fU234 fU235 fU236 fU237 fU238], ... icP1, icP2, nU, nO);

%Get calculated peak area from isotopics, protonation
[calc] = CalcArea([fU234 fU235 fU236 fU237 fU238 P1 P2], peaks, nU,
nO);

%Plot

```
multiplier = Pmax;
ylim([-Pmax/10 Pmax*1.1]);
legend('hide');
plot (peaks(:,1), data*multiplier, 'oc')
errorbar (peaks(:,1), data*multiplier, sigmaData*multiplier, 'oc')
plot (peaks(:,1), calc*multiplier, 'xr')
PlotSpectrum(fU234, fU235, fU236, fU237, fU238, P1, P2, nU, nO,...
c, multiplier)
```

%Get protonation error

```
[sigma238, sigma237, sigma236, sigma235, sigma234, sigmaP1, sigmaP2]...
= GetError(i, counts, sigmaX, P1, P2);
```
```
function peaks = GetPeaks(nU,nO)
if nU == 0, error('invalid ion');
%U1 series
elseif nU == 1
        if nO == 0, peaks = (234:240)';
        elseif n0 == 1, peaks = (250:256)';
        elseif n0 == 2, peaks = (266:272)';
       elseif n0 == 3, peaks = (282:288)';
        elseif nO == 4, peaks = (298:304)';
       else error('invalid ion')
        end
%U2 series
elseif nU == 2
        if nO == 2, peaks = (500:510)';
        elseif nO == 3, peaks = (516:526)';
       elseif n0 == 4, peaks = (532:542)';
       elseif nO == 5, peaks = (548:558)';
       elseif nO == 6, peaks = (564:574)';
        elseif nO == 7, peaks = (580:590)';
        else error('invalid ion')
        end
%U3series
elseif nU == 3
        if nO == 4, peaks = (766:780)';
        elseif nO == 5, peaks = [782, 783, 784, 785, 786, 787, 789,
790,...
                791,792,793,794,795,796]';
        elseif nO == 6, peaks = (798:812)';
        elseif n0 == 7, peaks = (814:828)';
       elseif nO == 8, peaks = (830:844)';
       elseif nO == 9, peaks = (846:860)';
       else error('invalid ion')
        end
%U4 series
elseif nU == 4
       if nO == 5, peaks = (1019:1034)';
        elseif nO == 6, peaks = (1035:1050)';
       elseif nO == 7, peaks = (1051:1066)';
        elseif nO == 8, peaks = (1067:1082)';
        elseif nO == 9, peaks = (1083:1098)';
       elseif nO == 10, peaks = (1099:1114)';
       elseif nO == 11, peaks = (1115:1130)';
       else error('invalid ion')
       end
%U5 series
elseif nU == 5
        if nO == 5, peaks = (1257:1272)';
        elseif nO == 6, peaks = (1273:1288)';
        elseif nO == 7, peaks = (1289:1304)';
        elseif nO == 8, peaks = (1305:1320)';
       elseif nO == 9, peaks = (1321:1336)';
       elseif nO == 10, peaks = (1337:1352)';
        elseif nO == 11, peaks = (1353:1368)';
```

```
elseif nO == 12, peaks = [1369 1370 1371 1372 1373 1374 1375
1376 ...
                1377 1378 1380 1381 1382 1383 1384]';
        elseif nO == 13, peaks = (1385:1400)';
        elseif nO == 14, peaks = (1401:1416)';
        elseif nO == 15, peaks = (1417:1432)';
        else error('invalid ion')
        end
%U6 series
elseif nU == 6
        if nO == 6, peaks = (1511:1526)';
        elseif nO == 7, peaks = (1527:1542)';
        elseif nO == 8, peaks = (1543:1558)';
        elseif nO == 9, peaks = (1559:1574)';
        elseif nO == 10, peaks = [1575 1577 1578 1579 1580 1581 1582
. . .
                1583 1584 1585 1586 1587 1588 1589 1590]';
        elseif nO == 11, peaks = (1591:1606)';
        elseif nO == 12, peaks = (1607:1622)';
       elseif n0 == 13, peaks = (1623:1638)';
       elseif nO == 14, peaks = (1639:1654)';
       elseif nO == 15, peaks = (1655:1670)';
       elseif nO == 16, peaks = (1671:1686)';
       elseif n0 == 17, peaks = (1687:1702)';
       elseif nO == 18, peaks = (1703:1718)';
        else error('invalid ion')
        end
%U7 series
elseif nU == 7
        if nO == 7, peaks = [1765 1766 1767 1768 1769 1770 1771 1772
. . .
                1774 1775 1776 1777 1778 1779 1780]';
        elseif nO == 8, peaks = (1781:1796)';
        elseif nO == 9, peaks = (1797:1812)';
       elseif nO == 10, peaks = (1813:1828)';
       elseif nO == 11, peaks = (1829:1844)';
        elseif nO == 12, peaks = (1845:1860)';
       elseif n0 == 13, peaks = (1861:1876)';
       elseif nO == 14, peaks = (1877:1892)';
       elseif nO == 15, peaks = (1893:1908)';
       elseif n0 == 16, peaks = (1909:1924)';
       elseif nO == 17, peaks = (1925:1940)';
        elseif nO == 18, peaks = (1941:1956)';
        elseif nO == 19, peaks = [1957 1958 1959 1960 1961 1962 1963
1964 ...
                1965 1966 1967 1968 1969 1971 1972]';
        elseif nO == 20, peaks = (1973:1988)';
        elseif nO == 21, peaks = (1989:2004)';
        else error('invalid ion')
        end
%U8 series
elseif nU == 8
       if nO == 8, peaks = (2019:2034)';
        elseif nO == 9, peaks = (2035:2050)';
        elseif nO == 10, peaks = (2051:2066)';
```

```
elseif nO == 11, peaks = (2067:2082)';
        elseif nO == 12, peaks = (2083:2098)';
        elseif nO == 13, peaks = (2099:2114)';
        elseif nO == 14, peaks = (2115:2130)';
        elseif nO == 15, peaks = (2131:2146)';
        elseif nO == 16, peaks = (2147:2162)';
        elseif nO == 17, peaks = [2163 2164 2165 2166 2168 2169 2170
2171 ...
                2172 2173 2174 2175 2176 2177 2178]';
        elseif nO == 18, peaks = (2179:2194)';
        elseif nO == 19, peaks = (2195:2210)';
        elseif nO == 20, peaks = (2211:2226)';
        elseif n0 == 21, peaks = (2227:2242)';
       elseif nO == 22, peaks = (2243:2258)';
       elseif nO == 23, peaks = (2259:2274)';
       elseif nO == 24, peaks = (2275:2290)';
        else error('invalid ion')
        end
%U9 series
elseif nU == 9
        if nO == 9, peaks = (2273:2288)';
        elseif nO == 10, peaks = (2289:2304)';
        elseif n0 == 11, peaks = (2305:2320)';
        elseif nO == 12, peaks = (2321:2336)';
        elseif nO == 13, peaks = (2337:2352)';
        elseif nO == 14, peaks = [2353 2354 2355 2356 2357 2358 2359
2360 ...
                2361 2362 2363 2365 2366 2367 2368]';
        elseif nO == 15, peaks = (2369:2384)';
        elseif nO == 16, peaks = (2385:2400)';
        elseif nO == 17, peaks = (2401:2416)';
        elseif n0 == 18, peaks = (2417:2432)';
        elseif nO == 19, peaks = (2433:2448)';
       elseif nO == 20, peaks = (2449:2464)';
       elseif nO == 21, peaks = (2465:2480)';
       elseif nO == 22, peaks = (2481:2496)';
        elseif nO == 23, peaks = (2497:2512)';
       elseif nO == 24, peaks = (2513:2528)';
       elseif n0 == 25, peaks = (2529:2544)';
       elseif nO == 26, peaks = (2545:2560)';
        elseif nO == 27, peaks = (2562:2576)';
       else error('invalid ion')
        end
%U10 series
elseif nU == 10
        if nO == 10, peaks = (2527:2542)';
        elseif nO == 11, peaks = (2543:2558)';
        elseif nO == 12, peaks = (2559:2574)';
        elseif nO == 13, peaks = (2575:2590)';
        elseif nO == 14, peaks = (2591:2606)';
        elseif nO == 15, peaks = (2607:2622)';
        elseif nO == 16, peaks = (2623:2638)';
        elseif nO == 17, peaks = (2639:2654)';
       elseif nO == 18, peaks = (2655:2670)';
        elseif nO == 19, peaks = (2671:2686)';
```

```
elseif n0 == 20, peaks = (2687:2702)';
        elseif n0 == 21, peaks = (2703:2718)';
        elseif nO == 22, peaks = (2719:2734)';
        elseif nO == 23, peaks = (2735:2750)';
        elseif nO == 24, peaks = [2751 2752 2753 2754 2755 2756 2757
2759 ...
                2760 2761 2762 2763 2764 2765 2766]';
        elseif n0 == 25, peaks = (2767:2782)';
        elseif n0 == 26, peaks = (2783:2798)';
        elseif nO == 27, peaks = (2799:2814)';
        elseif nO == 28, peaks = (2815:2830)';
        elseif nO == 29, peaks = (2831:2846)';
        elseif nO == 30, peaks = (2847:2862)';
        else error('invalid ion')
        end
else
   error('invalid ion')
end
peaks = peaks - .0051*n0 +.0460*nU;
```

```
function [I,loc] = GetMinimum(mass, intensity, massnumber, halfrange)
loc1 = find (mass > (massnumber-halfrange), 1, 'first');
loc2 = find (mass > (massnumber+halfrange), 1, 'first');
slice = intensity (loc1:loc2);
I = min(slice);
loc = find (slice == I, 1, 'first') + loc1;
```

```
function [P1 P2 r] = PSolver(data, peaks, fU, icP1, icP2, nU, nO)
%initial values
initial = [icP1, icP2];
%pass parameters
data = data;
peaks = peaks;
• • •
   'TolX', .0000000000000000001,...
   'MaxFunEvals', 5000, 'MaxIter', 5000);
[solution, r] = fminsearch (@(variables) ...
       PResiduals(variables, data, peaks, fU, nU, nO), initial,
options);
   P1 = solution(1);
   P2 = solution(2);
%Correct for bad values- this is due to the solver scheme.
if P1 < 0, P1 = 0; end
if P1 > 1, P1 = 1; end
if P2 < 0, P2 = 0; end
if P2 > 1, P2 = 1; end
if (P1+P2)>1, P2 = 1-P1; end
```

```
function res = PResiduals(variables, data, peaks, fU, nU, nO)
calc = PCalcArea(variables, peaks, fU, nU, nO);
datapoints = size(data);
res = 0;
for i = 1:datapoints(1)
    res = res +(abs(data(i)-calc(i)))^2;
end
```

```
function calc = PCalcArea(variables, peaks, fU, nU, nO)
%variables = [P1 P2];
fU234 = fU(1);
fU235 = fU(2);
fU236 = fU(3);
fU237 = fU(4);
fU238 = fU(5);
P1 = variables(1);
P2 = variables(2);
%Insure realistic values
if fU234 < 0, fU234 = 0; end
if fU235 < 0, fU235 = 0; end
if fU236 < 0, fU236 = 0; end
if fU237 < 0, fU237 = 0; end
if fU238 < 0, fU238 = 0; end
if fU234 > 1, fU234 = 1; end
if fU235 > 1, fU235 = 1; end
if fU236 > 1, fU236 = 1; end
if fU237 > 1, fU237 = 1; end
if fU238 > 1, fU238 = 1; end
if P1 < 0, P1 = 0; end
if P1 > 1, P1 = 1; end
if P2 < 0, P2 = 0; end
if P2 > 1, P2 = 1; end
if (P1+P2)>1, P2 = 1-P1; end
fU = [fU234, fU235, fU236, fU237, fU238];
%Check for fU = 1 and normalize if necessary
if sum(fU)~=1,
    fU234 = fU(1) / sum(fU);
    fU235 = fU(2) / sum(fU);
    fU236 = fU(3) / sum(fU);
    fU237 = fU(4) / sum(fU);
    fU238 = fU(5) / sum(fU);
    fU = [fU234, fU235, fU236, fU237, fU238];
end
[masses fractions]=GetMF(nU,nO,fU, P1, P2);
calc = GetSumComponents(peaks, masses, fractions);
```

```
function [m, f] = GetMF(nU,nO,fU,P1,P2)
mU234 = 234.040951;
mU235 = 235.0439299;
mU236 = 236.045568;
mU237 = 237.0487302;
mU238 = 238.0507882;
f016 = .99762;
f017 = .00038;
f018 = .00200;
mO16 = 15.99491462;
mO17 = 16.9991317;
mO18 = 17.999161;
%Н
fH1 = 0.99985;
fH2 = 0.00015;
mH1 = 1.007825032;
mH2 = 2.01410178;
mH = [0, mH1, mH2];
fPO = 1 - (P1*fH1) - (P1*fH2) - (P2*fH1);
fP1 = P1*fH1;
fP2 = P2*fH1+P1*fH2;
fP = [fP0, fP1, fP2];
80
mO = [mO16, mO17, mO18];
fO = [fO16, fO17, fO18];
응U
mU = [mU234, mU235, mU236, mU237, mU238];
m = 0;
f = 1;
for i = 1:nU;
    m = [mU(1) + m, mU(2) + m, mU(3) + m, mU(4) + m, mU(5) + m];
    f = [fU(1)*f, fU(2)*f, fU(3)*f, fU(4)*f, fU(5)*f];
    [f, m]=ReduceVector(f, m);
end
if nO>0;
    for j = 1:n0;
        m = [mO(1) + m, mO(2) + m, mO(3) + m];
        f = [fO(1) * f, fO(2) * f, fO(3) * f];
        [f, m]=ReduceVector(f, m);
    end
end
%Add protonation
m = [m+mH(1), m+mH(2), m+mH(3)];
f = [f*fP(1), f*fP(2), f*fP(3)];
[f, m]=ReduceVector(f, m);
```

```
function [output1, output2]=ReduceVector(input1, input2)
s = size(input1);
for i = 1: s(2);
    if input1(i) < 1e-5;
        input1(i) = 0;
        input2(i) = 0;
    end
end
output1 = (nonzeros(input1))';
output2 = (nonzeros(input2))';</pre>
```

```
function [calc] = GetSumComponents(peaks, masses, fractions)

peaknumber = size(peaks);
calc = zeros(1, peaknumber(1));

for i = 1: peaknumber(1);
    index = find(masses>(peaks(i,1)-0.5) & masses<(peaks(i,1)+0.5));
    components = size(index);
    for j = 1: components(2);
        calc(i) = calc(i) + fractions(index(j));
    end
end</pre>
```

```
function [calc] = CalcArea(variables, peaks, nU, nO)
%variables = [fU234 fU235 fU236 fU237 fU238 P1 P2];
fU234 = variables(1);
fU235 = variables(2);
fU236 = variables(3);
fU237 = variables(4);
fU238 = variables(5);
P1 = variables(6);
P2 = variables(7);
%Insure realistic values
if fU234 < 0, fU234 = 0; end
if fU235 < 0, fU235 = 0; end
if fU236 < 0, fU236 = 0; end
if fU237 < 0, fU237 = 0; end
if fU238 < 0, fU238 = 0; end
if fU234 > 1, fU234 = 1; end
if fU235 > 1, fU235 = 1; end
if fU236 > 1, fU236 = 1; end
if fU237 > 1, fU237 = 1; end
if fU238 > 1, fU238 = 1; end
if P1 < 0, P1 = 0; end
if P1 > 1, P1 = 1; end
if P2 < 0, P2 = 0; end
if P2 > 1, P2 = 1; end
if (P1+P2)>1, P2 = 1-P1; end
fU = [fU234, fU235, fU236, fU237, fU238];
%Check for fU = 1 and normalize if necessary
if sum(fU)~=1,
    fU234 = fU(1) / sum(fU);
    fU235 = fU(2) / sum(fU);
    fU236 = fU(3) / sum(fU);
    fU237 = fU(4) / sum(fU);
    fU238 = fU(5) / sum(fU);
    fU = [fU234, fU235, fU236, fU237, fU238];
end
[masses, fractions]=GetMF(nU,nO,fU, P1, P2);
calc = GetSumComponents(peaks, masses, fractions);
```

```
function[sigma238, sigma237, sigma236, sigma235, sigma234, sigmaP1,
sigmaP2]...
    = GetError(i, counts, sigmaX, P1, P2)
f018 = .00200;
fH2 = 0.00015;
enrich = 0;
if i == 7 \& counts(2) > counts(i-2); enrich = 1; j = 1; end
if i == 11 \&\& counts(3) > counts(i-2); enrich = 1; j = 2; end
if i == 15 && counts(4)>counts(i-2); enrich = 1; j = 3; end
if i == 19 && counts(5)>counts(i-2); enrich = 1; j = 4; end
if i == 23 \&\& counts(6) > counts(i-2); enrich = 1; j = 5; end
if i = 27 \& counts(7) > counts(i-2); enrich = 1; j = 6; end
if i == 31 && counts(8)>counts(i-2); enrich = 1; j = 7; end
if i == 35 && counts(9)>counts(i-2); enrich = 1; j = 8; end
if i == 39 && counts(10)>counts(i-2); enrich = 1; j = 9; end
if i == 43 && counts(11)>counts(i-2); enrich = 1; j = 10; end
if enrich == 1;
    CountSum =
counts(1) + counts(2) + counts(3) + counts(4) + counts(5) + counts(6) + counts(7);
    est238 = ((counts(j+4) - (counts(j+2)*P2) - (counts(j+3)*P1)) / (1-
P1-P2)) ...
        /CountSum;
    est237 = ((counts(j+3) - (counts(j+1)*P2) - (counts(j+2)*P1)) / (1-
P1-P2))...
        / CountSum;
    est236 = ((counts(j+2) - (counts(j)*P2) - (counts(j+1)*P1)) / (1-
P1-P2))...
        / CountSum;
    est235 = ((counts(j+1) - (counts(j)*P1)) / (1-P1-P2)) / CountSum;
    est234 = counts(j) / CountSum;
    if counts(j) == 0; counts(1) = 1; end
    if counts(j+1) == 0; counts(2) = 1; end
    if counts(j+2) == 0; counts(3) = 1; end
    if counts(j+3) == 0; counts(4) = 1; end
    if counts(j+4) == 0; counts(5) = 1; end
    if counts(j+5) == 0; counts(6) = 1; end
    if counts(j+6) == 0; counts(7) = 1; end
    if P1 == 0; P1 = 1/CountSum; end
    if P2 == 0; P2 = 1/CountSum; end
    sigmaCountSum = sqrt(sigmaX(j)^2+sigmaX(j+1)^2+sigmaX(j+2)^2+...
        sigmaX(j+3)^2+sigmaX(j+4)^2+sigmaX(j+5)^2+sigmaX(j+6)^2);
    sigma234 = sqrt((sigmaX(j)^2/counts(j)^2) +
(sigmaCountSum^2/CountSum^2)) *est234;
    sigmaP1 =
sqrt((sigmaX(j+2)/counts(j+2))^2+(sigmaX(j+1)/counts(j+1))^2)*...
        (counts(j+2)/counts(j+1));
    sigmaP2 =
sqrt((sigmaX(j+3)/counts(j+3))^2+(sigmaX(j+1)/counts(j+1))^2)*...
```

```
(counts(j+3)/counts(j+1));
    sigma235 = sqrt(((sigmaX(j+1)^2 +
((sigmaX(j)/counts(j))^2+(sigmaP1/P1)^2)...
        * (counts (j) *P1) ^2) / (counts (j+1) - counts (j) *P1) ^2) + ...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est235;
   sigma 236 =
sqrt(((sigmaX(j+2)^2+((sigmaX(j)/counts(j))^2+(sigmaP2/P2)^2)*(counts(j)
)*P2)^2+...
((sigmaX(j+1)/counts(j+1))^2+(sigmaP1/P1)^2)*(counts(j+1)*P1)^2)/...
       (counts(j+2)-counts(j)*P2-counts(j+1)*P1)^2)+...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est236;
   sigma237 =
sqrt(((sigmaX(j+3)^2+((sigmaX(j+1)/counts(j+1))^2+(sigmaP2/P2)^2)*(coun
ts(j+1)*P2)^2+...
((sigmaX(j+2)/counts(j+2))^2+(sigmaP1/P1)^2)*(counts(j+2)*P1)^2)/...
       (counts (j+3) -counts (j+1) *P2-counts (j+2) *P1) ^2) + ...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est237;
   sigma238 =
sqrt(((sigmaX(j+4)^2+((sigmaX(j+2)/counts(j+2))^2+(sigmaP2/P2)^2)*(coun
ts(j+2)*P2)^2+...
((sigmaX(j+3)/counts(j+3))^2+(sigmaP1/P1)^2)*(counts(j+3)*P1)^2)/...
       (counts (j+4) -counts (j+2) *P2-counts (j+3) *P1) ^2) + ...
        ((sigmaP1^2+sigmaP2^2)/(1-P1-
P2) ^2) + (sigmaCountSum/CountSum) ^2) *est238;
elseif enrich == 0;
    CountSum = counts(i)+counts(i-1)+counts(i-2)+counts(i-3)+counts(i-
4) +counts (i-5) +counts (i-6);
    est238 = (counts(i-2)+counts(i-1)+counts(i))/CountSum;
    est237 = (counts(i-3) - (counts(i-5)*P2) - (counts(i-4)*P1)) /
CountSum;
    est236 = (counts(i-4) - (counts(i-6)*P2) - (counts(i-5)*P1)) /
CountSum;
    est235 = (counts(i-5) - (counts(i-6)*P1)) / CountSum;
    est234 = counts(i-6) / CountSum;
    estP1 = counts(i-1) / counts(i-2);
    estP2 = (counts(i) - counts(i-2)*f018 - counts(i-1)*fH2) /
counts(i-2);
    if counts(i) == 0; counts(i) = 1; end
    if counts(i-1) == 0; counts(i-1) = 1; end
    if counts(i-2) == 0; counts(i-2) = 1; end
    if counts(i-3) == 0; counts(i-3) = 1; end
    if counts(i-4) == 0; counts(i-4) = 1; end
    if counts(i-5) == 0; counts(i-5) = 1; end
    if counts(i-6) == 0; counts(i-6) = 1; end
    if P1 == 0; P1 = 1/CountSum; end
    if P2 == 0; P2 = 1/CountSum; end
```

```
sigmaCountSum = sqrt(sigmaX(i)^2+sigmaX(i-1)^2+sigmaX(i-2)^2+...
        sigmaX(i-3)^2+sigmaX(i-4)^2+sigmaX(i-5)^2+sigmaX(i-6)^2);
    sigma238 = sqrt(((sigmaX(i-2)^2+(sigmaX(i))^2+(sigmaX(i-1))^2)/...
        (counts(i-2)+counts(i-1)+counts(i))^2) +
(sigmaCountSum^2/CountSum^2)) *est238;
    sigmaP1 = sqrt((sigmaX(i-1)^2/counts(i-1)^2) + (sigmaX(i-
2) ^2/counts (i-2) ^2)) *estP1;
    sigmaP2 = sqrt(((sigmaX(i)^2+(sigmaX(i-2)*f018)^2+(sigmaX(i-
1)*fH2)^2)...
        /(counts(i)-counts(i-2)*f018-counts(i-1)*fH2)^2)+(sigmaX(i-
2)^2/counts(i-2)^2))*estP2;
    sigma234 = sqrt((sigmaX(i-6)^2/counts(i-6)^2) +
(sigmaCountSum^2/CountSum^2)) *est234;
    sigma235 = sqrt(((sigmaX(i-5))^2+...
        (sqrt((sigmaX(i-6)^2/counts(i-
6)^2)+(sigmaP1^2/P1^2))*(counts(i-6)*P1))^2)...
        /(counts(i-5)-counts(i-
6) *P1) ^2) + (sigmaCountSum^2/CountSum^2)) *est235;
    sigma236 = sqrt((((sigmaX(i-4))^2+...)
        (sqrt((sigmaX(i-6)^2/counts(i-
6)^2)+(sigmaP2^2/P2^2))*(counts(i-6)*P2))^2 ...
        +(sqrt((sigmaX(i-5)^2/counts(i-
5)^2)+(sigmaP1^2/P1^2))*(counts(i-5)*P1))^2 ...
        )/(counts(i-4)-counts(i-6)*P2-counts(i-
5) *P1) ^2) + (sigmaCountSum^2/CountSum^2)) *est236;
    sigma237 = sgrt((((sigmaX(i-3))^2+...)
        (sqrt((sigmaX(i-5)^2/counts(i-
5)^2)+(sigmaP2^2/P2^2))*(counts(i-5)*P2))^2+...
        (sqrt((sigmaX(i-4)^2/counts(i-
4)^2)+(sigmaP1^2/P1^2))*(counts(i-4)*P1))^2 ...
        )/(counts(i-3)-counts(i-5)*P2-counts(i-
4) *P1) ^2) + (sigmaCountSum^2/CountSum^2)) *est237;
end
```

Appendix E. Protonation Values

The following tables report protonation values for U_xO_y ions in each spectrum as determined by the Protonation Calculator described in Appendix D. P1 denotes the fraction of ions with a single protonation. P2 denotes the fraction of ions which have diprotonated. The Total Counts column reports the total counts attributed to an ion including the protonated and di-protonated counts. The residual is the R^2 value reported by the Protonation Calculator. A smaller residual indicates a better fit from the Protonation Calculator. Reported errors are one sigma values based on counting statistics.

Spect	trum:	nU001 Metal						
Isoto	pics:	234: 0.00005252		35: 0.0072017 236:		236: 0.00	000000	
		237: 0).0000000 238 :		0.9927460			
I	on							
U	0	P1		P2		TotalCour	nts	Residual
1	1	0.231696+/- 0.0	001128 0.	036655 +/-	0.000296	431902+/-	661	0.002491
1	2	0.242892+/- 0.0	000573 0.	028319+/-	0.000154	1847520+/-	1361	0.000572
1	3	0.687916+/- 0.0	006477 0.	312084 +/-	0.006400	156862+/-	402	0.039182
2	2	0.092638+/- 0.0	014742 0.	063403 +/-	-0.014164	2408+/-	85	0.002636
2	3	0.072982+/- 0.0	001862 0.	018666+/-	-0.000841	31018+/-	197	0.003109
2	4	0.145178+/- 0.0	000968 0.	000000 +/-	0.000251	247238+/-	505	0.000331
2	5	0.517463 +/- 0.0	006030 0.	000000+/-	0.001156	137955+/-	381	0.001462
3	5	0.000000+/- 0.0	000000 0.	009244 +/-	-0.002543	7822+/-	112	0.000608
3	6	0.067229+/- 0.0	001218 0.	000000+/-	0.000527	65121+/-	267	0.000384
3	7	0.137918+/- 0.0	001752 0.	000000 +/-	0.000564	82070+/-	299	0.000063
3	8	0.595741+/- 0.0	054905 0.	000000+/-	-0.013793	3895+/-	96	0.000452
4	7	0.014113 +/- 0.0	000000 0.	000000+/-	-0.010093	1748+/-	70	0.001199
4	8	0.025473 +/- 0.0	002442 0.	000000+/-	-0.001669	15944 +/-	144	0.000586
4	9	0.085590+/- 0.0	002789 0.	000000 +/-	-0.001254	24323+/-	174	0.000982
4	10	0.345043 +/- 0.0	029194 0.	000000+/-	-0.014445	2576+/-	80	0.000561
5	9	0.000000+/- 0.0	000000 0.	101641 +/-	-1.192870	598+/-	51	0.006223
5	10	0.000000+/- 0.0	000000 0.	000000+/-	-0.004243	5268+/-	94	0.001825
5	11	0.000000 +/- 0.0	000000 0.	000000 +/-	-0.004059	6624+/-	108	0.001847
5	12	0.016939+/- 0.0	018219 0.	000000+/-	-0.015452	1771+/-	70	0.000651

6	12	0.000000+/- 0.000000	0.000000+/0.017138	1265+/- 57	0.001817
6	13	0.000000 +/- 0.000000	0.000000+/0.014723	1679 +/- 69	0.002535
6	14	0.000000+/- 0.000000	0.042407+/0.050127	852+/- 55	0.002555
7	15	0.000000 +/- 0.000000	0.000000+/0.254068	594+/- 48	0.000642

Г

Spect	rum:	nU002				
Isoto	pics:	234: 0.0	0000525 235:	235: 0.0072017 236: 0.000000		
		237: 0.0	0000000 238:	0.9927460		
I	on					
U	0	P1	P	2 T	otalCounts	Residual
1	2	0.152251+/- 0.00	0.171446+/-	0.005055 2	0878+/- 155	0.000226
1	3	0.158658+/- 0.00	0.060699 +/-	0.000801 18	3134+/- 432	0.000061
1	4	0.661585+/- 0.02	0.117791 +/-	0.005325 13	9440+/- 379	0.000557
2	5	0.396360+/- 0.01	5981 0.000000 +/-	-0.003994	8265 +/- 105	0.000160
2	6	0.392629+/- 0.00	0.000000 +/-	0.001722 3	1499+/- 193	0.000459
2	4	0.260003 +/- 0.00	0.086488 +/-	0.060748	337+/- 42	0.011746
3	7	0.000000+/- 0.00	0.180018 +/-	-0.018959	1602+/- 63	0.012561
3	8	0.100848+/- 0.00	95071 0.000000 +/-	-0.002595	9766+/- 117	0.000873
3	9	0.397665 +/- 0.04	-1669 0.000000 +/-	-0.023230	1953+/- 77	0.000463
4	10	0.000000+/- 0.00	0.043154 +/-	-0.023044	1250+/- 60	0.001061
4	11	0.000000 +/- 0.02	.2755 0.043410 +/-	-0.016572	1555+/- 68	0.005956
5	13	0.000000 +/- 0.00	0.00000 +/-	-0.019711	1318+/- 60	0.001522

Spect	rum:	nU003				
Isotoj	pics:	234: 0.000052	0.0072017	35: 0.0072017 236: 0.000000		
		237: 0.000000	0.9927460)		
I	on					
U	0	P1	P2	TotalCounts	Residual	
1	0	0.360405 +/- 0.005486	0.069465 +/- 0.002140	62018+/- 255	0.000020	
1	1	0.221754+/- 0.001146	0.041317+/- 0.000386	395170+/- 632	0.001245	
1	2	0.297978+/- 0.001804	0.093410+/- 0.000826	369903+/- 613	0.003544	
2	2	0.101951 +/- 0.004038	0.065756+/0.001422	16639+/- 145	0.005060	
2	3	0.098004+/- 0.001969	0.021819 +/- 0.000672	36610+/- 205	0.005954	
2	4	0.133924 +/- 0.004035	0.152225 +/0.001784	24594+/- 174	0.021836	
3	4	0.255216+/- 0.000000	0.048042 +/0.003435	4970+/- 86	0.080379	
3	5	0.206848+/- 0.000000	0.038777 +/0.003027	6723+/- 99	0.040808	
3	6	0.032653 +/- 0.000000	0.005749+/0.004825	3479+/- 82	0.002644	
3	7	0.000000+/- 0.000000	0.000000+/0.036170	286+/- 42	0.000859	
4	6	0.297022 +/- 0.000000	0.056310+/0.029209	1104+/- 54	0.144971	
4	7	0.000000 +/- 0.000000	0.000000+/0.052836	608+/- 48	0.000873	

4	8	0.001504 +/- 0.000000	0.000281+/0.058758	439+/- 35	0.002376

Spect	rum:	nU004			
Isotoj	pics:	234: 0.0000525	5 235: 0.0072017		
		237: 0.000000	238: 0.9927460		
I	on				
U	0	P1	P2	TotalCounts	Residual
1	1	0.375068+/- 0.020958	0.115327 +/- 0.011248	6604 +/- 95	0.000266
1	2	0.191338+/- 0.003690	0.117503+/- 0.002906	39772+/- 206	0.000007
1	3	0.129046+/- 0.001668	0.058247 +/- 0.001140	86816+/- 300	0.000012
1	4	0.669583+/- 0.116092	0.215784 +/- 0.042960	29521+/- 181	0.000076
2	4	0.000000+/- 0.000000	0.081520+/0.119932	425 +/- 37	0.005193
2	5	0.270459+/- 0.040680	0.019376+/0.034250	1204+/- 54	0.000939
2	7	0.000000+/- 0.000000	0.141295+/0.102961	480+/- 56	0.021415

Spect	rum:	nU005						
Isotoj	pics:	234:	0.0000525	235:	0.0072017 23	36: 0.00	00000	
		237:	0.0000000	238:	0.9927460			
I	on							
U	0	P1		P2		TotalCour	nts	Residual
1	0	0.209617 +/-	0.002909	0.024398+/- 0.	.001086	57216+/-	245	0.000007
1	1	0.183310+/-	0.001207	0.023812+/- 0.	.000349	242224 +/-	498	0.000647
1	2	0.253948 +/-	0.002002	0.071751 +/- 0.	.000917	192583 +/-	443	0.001282
2	2	0.015357 +/-	0.003423	0.118894 +/0	0.001480	13540+/-	134	0.012519
2	3	0.033371+/-	0.001872	0.128510+/0).000863	25880 +/-	172	0.015280
2	4	0.087861 +/-	0.005261	0.206387+/0	0.002654	13281 +/-	137	0.049256
3	4	0.268700+/-	0.000000	0.049698+/0).004367	3777 +/-	80	0.097731
3	5	0.257336+/-	0.000000	0.048032+/0).003298	4574 +/-	85	0.062366
3	6	0.018534 +/-	0.000000	0.004028+/0).009064	1786+/-	65	0.001729
4	6	0.198336+/-	0.000000	0.036242+/0).045209	541+/-	51	0.048963

Spect	rum:	nU006			
Isotopics:		234: 0.000052	25 235: 0.007201	0.0072017 236: 0.000000	
		237: 0.00000	0.992746	0	
Ion					
U	0	P1	P2	TotalCounts	Residual
1	1	0.336812+/- 0.023075	0.073321 +/- 0.012293	3613+/- 74	0.000820
1	2	0.187557+/- 0.005289	0.098596+/- 0.003712	19220+/- 147	0.000003
1	3	0.110715+/- 0.001931	0.037926+/- 0.001222	50760+/- 230	0.000006

1	4	0.705021+/- 0.211075	0.197944 +/- 0.069005	16366+/- 137	0.000024
2	5	0.000000+/- 0.000000	0.000000+/0.034689	267+/- 37	0.000484
2	6	0.319169+/- 0.107327	0.279271+/0.043251	647 +/- 42	0.087703

Spect	rum:	nU007				
Isotoj	pics:	234:	0.0000525	235: 0.00720	0.000000 0.000000	1
		237:	0.0000000	238: 0.99274	460	
I	on					
U	0	P	1	P2	TotalCounts	Residual
1	0	0.148659+/-	0.002316	0.007488+/- 0.000791	49792+/- 228	0.000010
1	1	0.158793+/-	0.001241	0.014359 +/- 0.000287	178633+/- 428	0.000410
1	2	0.218642+/-	0.002016	0.054115 +/- 0.000932	135632+/- 375	0.000337
2	2	0.000000+/-	0.002749	0.129596+/0.001280	12369+/- 124	0.010122
2	3	0.017376+/-	0.001900	0.128741 +/0.000985	19786+/- 154	0.021098
2	4	0.063984 +/-	0.005887	0.259498 +/0.002997	9975+/- 116	0.062110
3	4	0.000000+/-	0.000000	0.412801 +/0.005284	3372+/- 73	0.109152
3	5	0.265511+/-	0.000000	0.048732 +/0.004151	3394+/- 76	0.067801
3	6	0.000000+/-	- 0.000000	0.000000 +/0.009291	1264+/- 58	0.000516

Spect	rum:	nU008						
Isotopics:		234:	0.0000525	0.0000525 235: 0.0072017 2		236: 0.000000		
		237:	0.0000000	238: 0.9927460				
Ion								
U	0		P1	P2	Tota	lCounts	Residual	
1	1	0.318816-	+/- 0.024371	0.023000+/- 0.013	3872 242	9+/- 63	0.000430	
1	2	0.187809-	+/- 0.006040	0.068474+/- 0.003	3989 1358	2+/- 124	0.000023	
1	3	0.101480-	+/- 0.002042	0.028517 +/- 0.001	1264 4123	3+/- 209	0.000059	
1	4	0.702722-	+/- 0.250370	0.200789+/- 0.082	2132 1299	5+/- 125	0.000023	
2	5	0.000000-	+/- 0.064446	0.000000+/0.03	4415 27	7+/- 31	0.000352	

Spect	rum:	nUO2001				
Isotopics:		234: 0	.0000542 235:	0.0072390	236: 0.000000	
		237: 0	.0000000 238:	0.9927100		
Ic	on					
U	0	P1		P2	TotalCounts	Residual
1	1	0.215778+/- 0.00	0.0144	52+/- 0.001106	33324 +/- 191	0.000224
1	2	0.200088+/- 0.00	01865 0.01798	39 +/- 0.000498	119555 +/- 350	0.000415
1	3	0.944545 +/- ####	##### 0.0554	55 +/- 10.291300	1792+/- 76	0.000077
2	3	0.000000 +/- 0.00	0.0000	00+/0.006224	1963 +/- 57	0.000210
2	4	0.016756 +/- 0.00	0.0000	00+/0.002014	9193+/- 108	0.000307

2	5	0.365506+/- 0.064886	0.005252+/0.131166	973 +/- 51	0.000310
3	5	0.048465 +/- 0.000000	0.009042+/0.010529	232+/- 26	0.003087
3	6	0.000000 +/- 0.000000	0.000000 +/0.009307	1585 +/- 51	0.000935
3	7	0.000000 +/- 0.000000	0.000000 +/0.045756	729+/- 43	0.000975

Spect	rum:	nUO2002			
Isotop	oics:	234: 0.000054	2 235: 0.007239	0 236: 0.000000	
		237: 0.000000	0 238: 0.992710	0	
Ιο	on				
U	0	P1	P2	TotalCounts	Residual
1	2	0.037643 +/- 0.000000	0.033951+/- 0.023879	937+/- 49	0.000987
1	3	0.098636+/- 0.004281	0.020404 +/- 0.002598	10553+/- 111	0.000124
1	4	0.712731+/- 0.073469	0.000000+/- 0.014201	6825 +/- 96	0.000144

Spect	rum:	nUO2003			
Isoto	pics:	234: 0.000054	2 235: 0.0072390	236: 0.000000	
		237: 0.000000	0.9927100		
I	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.002699+/- 0.000000	0.008064 +/- 0.002706	3741+/- 68	0.000018
1	1	0.071098+/- 0.003204	0.000000+/0.001029	13873 +/- 125	0.000043
1	2	0.120537+/- 0.004091	0.000000 +/- 0.001951	14634+/- 129	0.000040
1	3	0.080134+/- 0.000000	0.049901 +/- 0.045554	230+/- 29	0.007804
2	2	0.018476+/- 0.000000	0.004067 +/0.019793	761+/- 42	0.001392
2	3	0.000000+/- 0.000000	0.000000 +/0.007129	1214+/- 47	0.000355
2	4	0.004487+/- 0.000000	0.000000+/0.062485	587+/- 42	0.000773

Spect	rum:	nUO2004			
Isotop	pics:	234: 0.000054	2 235: 0.007239	0 236: 0.00000	
		237: 0.000000	0 238: 0.992710	C	
Ic	on				
U	0	P1	P2	TotalCounts	Residual
1	2	0.000000+/- 0.000000	0.373140+/0.123275	980+/- 44	0.140776
1	3	0.037279+/- 0.004786	0.000000+/0.003455	5305+/- 80	0.000047
1	4	0.858226+/- 0.558964	0.000000+/0.223125	1631+/- 56	0.000096

Spectrum:	nUO2005			
Isotopics:	234:	0.0000542 235:	0.0072390 236:	0.000000
	237:	0.0000000 238:	0.9927100	

I	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.002888+/- 0.003714	0.003356+/- 0.002134	6862+/- 90	0.000070
1	1	0.081152+/- 0.003927	0.000000 +/0.001140	11937 +/- 119	0.000029
1	2	0.146522+/- 0.006313	0.000000 +/0.003350	8831+/- 104	0.000403
1	3	0.000000+/- 0.000000	0.039787 +/- 0.031572	396+/- 35	0.000066
2	2	0.071177 +/- 0.000000	0.013106+/0.145790	586+/- 39	0.010371
2	3	0.000000 +/- 0.000000	0.000000 +/0.032538	715+/- 45	0.000022
2	4	0.007600+/- 0.000000	0.001404 +/0.032449	366+/- 37	0.000543

Spect	rum:	nUO2006				
Isotop	oics:	234:	0.0000542	235: 0.0072390	236: 0.00000	
		237:	0.0000000	238: 0.9927100		
Ic	on					
U	0	P1		P2	TotalCounts	Residual
1	3	0.000935 +/- 0.	.007486	0.006793 +/0.006217	2515 +/- 57	0.000068
1	4	0.915963 +/- 3	.843670	0.084037 +/0.079770	535 +/- 39	0.006446
1	2	0.000000 +/- 0.	.000000	0.586259+/0.050819	820+/- 40	0.339522

Spect	rum:	nUO2007						
Isotop	pics:	234:	0.0000542	235:	0.00723902	236: 0.0	00000	
		237:	0.0000000	238:	0.9927100			
I	on							
U	0	P1		P2	2	TotalCou	nts	Residual
1	0	0.042505+/-	0.007279	0.010047 +/-	-0.004077	4245 +/-	74	0.000056
1	1	0.095378+/-	0.002242	0.000000+/-	-0.000650	32373+/-	187	0.000043
1	2	0.142730+/-	0.002361	0.017466+/-	0.000954	48201+/-	227	0.000021
1	3	0.320031+/-	0.101381	0.074117+/-	-0.059024	359+/-	35	0.004677
2	2	0.032990+/-	0.000000	0.005727+/-	-0.019697	806+/-	38	0.001715
2	3	0.000000+/-	0.000000	0.000000 +/-	-0.003143	2922+/-	62	0.000427
2	4	0.000000+/-	0.000000	0.000000+/-	-0.006522	2541+/-	64	0.000401
3	5	0.000000+/-	0.000000	0.011427 +/-	-0.028809	405+/-	32	0.001332
3	6	0.015587+/-	0.000000	0.002939+/-	-0.017167	343+/-	32	0.001314

Spectrum:	nUO2008					
Isotopics:	234:	0.0000542	235:	0.0072390	236: 0.000000)
	237:	0.0000000	238:	0.9927100		
Ion						
U O	P1		Р	2	TotalCounts	Residual

1	1	0.206392 +/- 0.000000	0.000000 +/0.021947	149 +/- 37	0.038110
1	2	0.163890+/- 0.025258	0.217927 +/- 0.029930	1789+/- 57	0.193169
1	3	0.054505 +/- 0.003243	0.000000 +/0.001819	12018+/- 120	0.000040
1	4	0.734645 +/- 0.181428	0.092072 +/- 0.045687	4693+/- 81	0.000065

Spect	trum:	nU3O8001			
Isoto	pics:	234: 0.000053	30 235: 0.007208	0.000000	01
		237: 0.00000	0.992740	0	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	1	0.176680+/- 0.000775	0.022115+/- 0.000212	544710+/- 741	0.000559
1	2	0.205370+/- 0.000365	0.020120+/- 0.000098	3249680 +/- 1804	0.000199
1	3	0.771120+/- 0.130640	0.158530+/- 0.027989	246558+/- 501	0.001727
2	2	0.115030+/- 0.015680	0.066844+/0.017769	2283 +/- 81	0.003701
2	3	0.039074+/- 0.001747	0.026166+/0.000931	28854 +/- 186	0.000329
2	4	0.074139+/- 0.000549	0.002585+/- 0.000191	330229 +/- 582	0.000071
2	5	0.362140+/- 0.002610	0.008925+/- 0.000491	220452+/- 478	0.000014
3	5	0.025116+/- 0.000000	0.005178+/0.004258	4285 +/- 85	0.001141
3	6	0.018249+/- 0.000780	0.000000+/- 0.000557	61064 +/- 258	0.000287
3	7	0.050199+/- 0.000831	0.000000+/- 0.000424	116036 +/- 351	0.000093
3	8	0.383210+/- 0.011646	0.000000+/0.002799	14037 +/- 137	0.000598
4	7	0.076697+/- 0.000000	0.014502+/0.702960	589+/- 49	0.008745
4	8	0.000000 +/- 0.000000	0.000000+/0.002227	10925 +/- 122	0.001448
4	9	0.003808+/- 0.001501	0.000000+/- 0.001087	25879 +/- 175	0.000618
4	10	0.114550+/- 0.009341	0.000000+/0.005047	5112 +/- 94	0.000551
4	11	0.259290+/- 0.064524	0.111020+/0.246480	908 +/- 64	0.007978
5	10	0.000000 +/- 0.000000	0.008263+/0.005756	2959+/- 76	0.003207
5	11	0.000000 +/- 0.000000	0.000000+/0.004276	5373 +/- 96	0.001540
5	12	0.000000 +/- 0.000000	0.042006+/0.007288	3267 +/- 79	0.004509
6	12	0.000000 +/- 0.000000	0.231250+/0.015993	177 +/- 39	0.033372
6	13	0.000000 +/- 0.000000	0.068880+/0.086488	437 +/- 51	0.004349
6	14	0.000000 +/- 0.000000	0.018805+/0.029174	893 +/- 52	0.001056
6	15	0.000000 +/- 0.000000	0.490790+/0.014320	101 +/- 31	0.044240
7	15	0.000000 +/- 0.000000	0.233680+/0.013478	84 +/- 29	0.048848
7	16	0+/- 0	0.18204+/0.009225	81.1951 +/- 23.0074	0.021041
7	17	0+/- 0	0.3066+/0.013979	45.6098+/- 23.3042	0.041129

 Spectrum:
 nU3O8002

 Isotopics:
 234:
 0.0000530 235:
 0.0072087 236:
 0.0000001

		237: 0.00	000000 238: 0.992740	00	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	2	0.056023 +/- 0.010	0.226990+/- 0.013531	4278 +/- 79	0.000499
1	3	0.100840+/- 0.001	251 0.018498+/- 0.000597	98954 +/- 318	0.000012
1	4	0.484910+/- 0.004	0.018654+/- 0.000763	164753 +/- 410	0.000197
2	5	0.295200+/- 0.062	0.015077 +/0.126830	637 +/- 40	0.000288
2	6	0.156790+/- 0.005	5297 0.000000 +/0.001858	12924 +/- 123	0.000308
2	7	0.879600+/- 1.043	3200 0.000000+/0.075669	1196+/- 56	0.000319
3	8	0.000000+/- 0.000	0000 0.000000 +/0.007306	2046 +/- 56	0.000395
3	9	0.006556+/- 0.000	0000 0.000000+/0.043366	840 +/- 47	0.000510
4	10	0.000000+/- 0.000	0000 0.307020+/0.004492	23 +/- 13	0.032531
4	11	0.000000 +/- 0.000	0000 0.000000 +/0.188600	472 +/- 35	0.000394
5	14	0.000000 +/- 0.000	0000 0.185240 +/0.006588	21+/- 13	0.018929

Spec	trum:	nU3O8003			
Isoto	pics:	234: 0.000053	0 235: 0.0072087	236: 0.0000001	
		237: 0.000000	0.238: 0.9927400)	-
I	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.093186+/- 0.002772	0.026396+/- 0.001836	20273 +/- 153	0.001151
1	1	0.059720+/- 0.000313	0.000979+/- 0.000065	747417 +/- 866	0.000003
1	2	0.129920 +/- 0.000258	0.013123 +/- 0.000084	3.09878e6 +/- 1761	0.000019
1	3	0.749590+/- 0.054799	0.052901 +/- 0.007201	37518 +/- 201	0.001032
2	2	0.050443 +/- 0.000000	0.012179 +/- 0.002690	7152 +/- 94	0.001877
2	3	0.000000 +/- 0.000000	0.000000 +/- 0.000355	74768 +/- 279	0.000074
2	4	0.012981 +/- 0.000276	0.000000 +/- 0.000195	255036 +/- 509	0.000007
2	5	0.132670+/- 0.003619	0.000000+/0.001256	19494 +/- 149	0.000136
3	4	0.000000 +/- 0.000000	0.000000 +/- 0.004324	2021 +/- 58	0.000277
3	5	0.000000 +/- 0.000000	0.000000+/0.001166	13045 +/- 127	0.001049
3	6	0.000000 +/- 0.000000	0.000000 +/- 0.000560	54879 +/- 242	0.000243
3	7	0.000000 +/- 0.000000	0.000000+/0.001462	16357 +/- 139	0.000469
4	6	0.000000 +/- 0.000000	0.000000+/0.084748	456+/- 41	0.000420
4	7	0.000000 +/- 0.000000	0.000000+/0.004576	2630+/- 66	0.000298
4	8	0.000000 +/- 0.000000	0.000000 +/- 0.001630	11005 +/- 115	0.001977
4	9	0.000000 +/- 0.000000	0.000000+/0.003316	4214 +/- 77	0.002358
5	9	0.038749 +/- 0.000000	0.000000 +/- 0.007882	906 +/- 45	0.005604
5	10	0.037925 +/- 0.000000	0.000000 +/- 0.003907	3192 +/- 75	0.007020
5	11	0.000000 +/- 0.000000	0.000000 +/- 0.008504	963 +/- 47	0.000899

Spect	rum:	nU3O8004			
Isotoj	pics:	234: 0.00005	30 235: 0.0072087	236: 0.0000001	
		237: 0.00000	00 238: 0.9927400)	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	2	0.000000 +/- 0.000000	0.007121 +/0.012958	1858+/- 55	0.000229
1	3	0.025712+/- 0.000657	0.000555 +/- 0.000399	85160+/- 295	0.000012
1	4	0.519690 +/- 0.007699	0.023105 +/- 0.001441	92064 +/- 308	0.000014
2	6	0.075297 +/- 0.009036	0.000000 +/0.004534	2770 +/- 58	0.000219
2	7	0.366830+/- 0.000000	0.000000 +/0.008046	24+/- 18	0.070764
2	5	0.231070+/- 0.000000	0.000000 +/0.006494	27 +/- 16	0.022804

Spect	rum:	nU3O8005			
Isoto	pics:	234: 0.000053	0.0072087 0.0072087	236: 0.0000001	
		237: 0.000000	0.9927400)	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.088841+/- 0.003123	0.000000+/0.001076	17719+/- 140	0.000050
1	1	0.119690+/- 0.001289	0.000000+/0.000268	109257 +/- 335	0.000023
1	2	0.178070 +/- 0.001591	0.035439+/- 0.000716	144182 +/- 384	0.000001
1	3	0.275570+/- 0.045853	0.162830+/- 0.035411	1346 +/- 55	0.000034
2	2	0.060953 +/- 0.000000	0.000733+/0.002710	6254 +/- 93	0.005519
2	3	0.053131+/- 0.000000	0.009562+/0.001388	13989 +/- 130	0.006862
2	4	0.009784 +/- 0.003683	0.084938+/0.002229	10125 +/- 117	0.010949
2	5	0.269860+/- 0.000000	0.000000+/0.019646	146 +/- 37	0.038553
3	4	0.270740+/- 0.000000	0.000000+/0.003644	1820 +/- 59	0.085633
3	5	0.112020 +/- 0.000000	0.021489+/0.004771	2407 +/- 66	0.024985
3	6	0.000000 +/- 0.000000	0.000000+/0.005231	1817 +/- 55	0.001261
4	8	0.053121 +/- 0.000000	0.006709+/- 0.022960	187 +/- 26	0.001810

Spect	rum:	nU3O8006			
Isotopics:		234: 0.000053	0.0072087	236: 0.0000001	
		237: 0.000000	0.9927400)	
Ion					
U	0	P1	P2	TotalCounts	Residual
1	1	0.000000+/- 0.000000	0.000000 +/2.262400	505 +/- 49	0.000093
1	2	0.120230+/- 0.009840	0.004230 +/0.007157	3669 +/- 72	0.000232
1	3	0.069528 +/- 0.001787	0.003979 +/- 0.000911	33602 +/- 189	0.000003

1	4	0.702160+/- 0.097788	0.127480+/- 0.025459	15422+/- 136	0.000065
2	6	0.055776+/- 0.000000	0.011110 +/0.025319	308+/- 30	0.004540
2	5	0.000000 +/- 0.000000	0.240570 +/0.009581	35+/- 18	0.027110
2	7	0.000000 +/- 0.000000	0.303220+/0.003780	11+/- 7	0.022263

Spect	rum:	nU3O8007				
Isotop	pics:	234:	0.0000530	235: 0.0072087	7 236: 0.0000001	
		237:	0.0000000	238: 0.9927400)	
Ic	n					
U	0	P1		P2	TotalCounts	Residual
1	0	0.067543+/-	0.003083	0.000000+/0.001113	15350+/- 131	0.000065
1	1	0.112470+/-	0.001636	0.000000 +/0.000405	66662+/- 265	0.000009
1	2	0.173970+/-	0.002300	0.034148 +/- 0.001085	67984 +/- 266	0.000011
1	3	0.072441 +/-	0.036566	0.037855 +/- 0.032284	700+/- 45	0.000020
2	2	0.064782+/-	0.000000	0.011752 +/0.003287	4384 +/- 79	0.007270
2	3	0.050698+/-	0.000000	0.009310+/0.001889	8029 +/- 104	0.006433
2	4	0.000000+/-	0.006298	0.147140+/0.003776	4810+/- 84	0.025514
3	4	0.274740+/-	0.000000	0.000000 +/- 0.004755	1099+/- 51	0.085259
3	5	0.171970+/-	0.000000	0.030978+/0.020999	1072 +/- 55	0.050106
3	6	0.013799+/-	0.000000	0.003138 +/0.019548	769+/- 42	0.002111

Spect	rum:	nU3O8008			
Isotopics:		234: 0.00005	30 235: 0.0072087	236: 0.0000001	
		237: 0.00000	00 238: 0.9927400)	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	1	0.095117+/- 0.027746	0.053063 +/0.037209	973 +/- 53	0.001390
1	2	0.107500+/- 0.008442	0.059897 +/0.005172	5041 +/- 83	0.004773
1	3	0.064235 +/- 0.001758	0.001711 +/- 0.000922	36252 +/- 199	0.000007
1	4	0.713970+/- 0.116170	0.138550 +/- 0.030752	15811+/- 135	0.000067
2	6	0.019551+/- 0.000000	0.003994 +/0.025265	149+/- 32	0.000882

Spect	rum:	nUO3001 UO3			
Isoto	pics:	234: 0.000055	0 235: 0.0072000	236: 0.000000	
		237: 0.000000	0 238: 0.9927450)	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	1	0.294778 +/- 0.005102	0.051344 +/- 0.001517	39018+/- 209	0.008070
1	2	0.237430+/- 0.001900	0.038237 +/- 0.000562	163450 +/- 411	0.002619

1	3	0.551146+/- 0.008883	0.292364 +/- 0.007685	25695 +/- 174	0.136948
2	3	0.013142 +/- 0.000000	0.000000+/0.007886	1846+/- 66	0.000272
2	4	0.148944 +/- 0.003675	0.001700+/0.001260	22990 +/- 167	0.000152
2	5	0.470782 +/- 0.014111	0.000000+/0.003486	17902 +/- 151	0.000338
3	5	0.051781 +/- 0.000000	0.000000+/0.074312	460+/- 41	0.003307
3	6	0.000000 +/- 0.000000	0.000000+/0.003546	5981 +/- 100	0.000412
3	7	0.086117 +/- 0.004177	0.000000 +/0.001997	11921 +/- 122	0.000775
3	8	0.304839 +/- 0.046856	0.000000+/0.045839	1124 +/- 55	0.000546
4	8	0.000000 +/- 0.000000	0.000000+/0.014151	1196+/- 55	0.001887
4	9	0.000000 +/- 0.000000	0.000000 +/0.006346	2991 +/- 75	0.001872
4	10	0.000000 +/- 0.000000	0.025483 +/0.061271	385 +/- 41	0.001941
5	11	0.000000 +/- 0.000000	0.000000 +/0.049138	682 +/- 44	0.002109

Spect	trum:	nUO3002				
Isoto	pics:	234: 0.000	0550 235:	0.0072000 236:	0.000000)
		237: 0.000	0000 238:	0.9927450		
I	on					
U	0	P1	P2	Tota	alCounts	Residual
1	3	0.126195 +/- 0.00636	0 0.019707 +/-	0.004375 7764	+/- 101	0.000038
1	4	0.731761 +/- 0.20459	9 0.131247 +/-	0.051733 7288	8+/- 97	0.000023
1	2	0.000000 +/- 0.00000	0 0.223956+/-	-0.209504 543	3+/- 40	0.027379
2	5	0.000000 +/- 0.00000	0.000000 +/-	-0.019303 132	2+/- 31	0.000153
2	6	0.278157 +/- 0.02448	8 0.000000 +/-	-0.012896 2311	l +/- 64	0.000156
2	7	1.000000+/- Inf	0.000000 +/-	#NAME? 294	4+/- 40	0.000216
3	7	0.757479 +/- 0.00000	0.000000 +/-	-0.008389 49	9+/- 18	0.098654
3	8	0.000000 +/- 0.00000	0 0.000000 +/-	-0.166543 562	2+/- 41	0.000591
3	9	0.080385 +/- 0.00000	0 0.014937 +/-	-0.015832 143	3+/- 31	0.005180
4	11	0.040248 +/- 0.00000	0 0.008251 +/-	-0.014168 125	5+/- 27	0.006333
5	13	0.000000 +/- 0.00000	0 0.136581 +/-	-0.009815 42	2+/- 22	0.007894
5	14	0.000000 +/- 0.00000	0.000000 +/-	-0.003322	9+/- 11	0.001781

Spect	rum:	nUO3003			
Isotoj	pics:	234: 0.000055	0.00720	000 236: 0.000000	
		237: 0.000000	0.99274	50	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.403501 +/- 0.021137	0.032222 +/- 0.009378	6830+/- 101	0.000025
1	1	0.216132 +/- 0.002694	0.033790+/- 0.000976	68876+/- 269	0.000291
1	2	0.305171+/- 0.003482	0.070531 +/- 0.001422	98198+/- 319	0.000884

1	3	0.316011+/- 0.046896	0.448757 +/- 0.058091	1197+/- 62	0.052699
2	2	0.024339+/- 0.000000	0.004456+/0.016032	922+/- 46	0.002238
2	3	0.009375+/- 0.006468	0.000000 +/0.002895	4592+/- 84	0.000207
2	4	0.102056+/- 0.007820	0.000000 +/0.004227	5644 +/- 92	0.000205
3	5	0.000000 +/- 0.000000	0.000000 +/0.029045	624 +/- 38	0.000518
3	6	0.000000 +/- 0.000000	0.000000 +/0.022511	869+/- 44	0.000486

Spect	rum:	nUO3004			
Isotopics:		234: 0.0000550	0.0072000	236: 0.00000	
		237: 0.000000	0.9927450)	
Ion					
U	0	P1	P2	TotalCounts	Residual
1	2	0.221011+/- 0.025948	0.145812 +/- 0.018838	2038+/- 58	0.102122
1	3	0.100575 +/- 0.005043	0.024501 +/- 0.003619	7955 +/- 95	0.000033
1	4	0.746836+/- 0.280644	0.097782+/- 0.066136	3301 +/- 71	0.000066
2	6	0.111945 +/- 0.000000	0.000000 +/0.014734	80+/- 19	0.009697

Spect	rum:	nUO3005			
Isotoj	pics:	234: 0.0000550	0.0072000	236: 0.000000	
		237: 0.000000	0.9927450		
I	0 n				
U	0	P1	P2	TotalCounts	Residual
1	0	0.211796+/- 0.009611	0.018691+/- 0.004245	7575 +/- 102	0.001341
1	1	0.109990+/- 0.000966	0.004045 +/- 0.000259	174168 +/- 423	0.000089
1	2	0.186068+/- 0.000867	0.023009 +/- 0.000296	496510 +/- 708	0.000031
1	3	0.815942+/- 3.130980	0.119206+/- 0.419167	3983 +/- 89	0.003859
2	2	0.000000+/- 0.000000	0.033446+/0.027817	894 +/- 46	0.000598
2	3	0.000000+/- 0.000000	0.000000+/0.001478	10731+/- 116	0.000371
2	4	0.016351+/- 0.001493	0.000000 +/0.000896	31249 +/- 187	0.000231
2	5	0.227611+/- 0.031716	0.000000+/0.022585	1323 +/- 56	0.000280
3	5	0.000000+/- 0.000000	0.000000+/0.006479	1525 +/- 52	0.000429
3	6	0.000000 +/- 0.000000	0.000000 +/0.002220	6162 +/- 88	0.000878
3	7	0.000000 +/- 0.000000	0.000000 +/0.009766	1317 +/- 51	0.001078
4	8	0.000000 +/- 0.000000	0.000000 +/0.011923	1155 +/- 45	0.000881

Spectrum:	nUO3006							
Isotopics:	234:	0.0000550	235:		0.0072000	236:	0.000000	
	237:	0.0000000	238:		0.9927450			
Ion	P1			P2		Total	Counts	Residual

U	0				
1	2	0.072118+/- 0.018239	0.183361 +/0.024945	1550+/- 50	0.035378
1	3	0.023238+/- 0.001390	0.000000 +/- 0.000988	26442 +/- 170	0.000008
1	4	0.645216+/- 0.026211	0.019086+/- 0.004508	25781+/- 170	0.000044
2	6	0.000000 +/- 0.000000	0.000000 +/0.029852	711+/- 40	0.000903

Spect	rum:	nUO3007			
Isotoj	pics:	234: 0.0000	550 235: 0.0072000	236: 0.000000	
		237: 0.0000	000 238: 0.9927450)	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.062007 +/- 0.008745	0.019155 +/- 0.005300	3369+/- 67	0.000417
1	1	0.110685 +/- 0.001512	2. 0.000000+/0.000348	77669+/- 284	0.000018
1	2	0.185486+/- 0.001520	0.031722 +/- 0.000672	168390 +/- 416	0.000005
1	3	1.000000 +/- Inf	0.000000 +/- #NAME?	321 +/- 42	0.000210
2	2	0.000000 +/- 0.000000	0.061600+/0.007918	1205 +/- 46	0.002888
2	3	0.000000 +/- 0.000000	0.000000+/0.001653	7583+/- 96	0.000457
2	4	0.000000 +/- 0.000000	0.000000 +/0.001867	9452 +/- 111	0.000410
2	5	0.000000 +/- 0.000000	0.376438+/0.012860	37 +/- 24	0.066875
3	4	0.017293 +/- 0.000000	0.003494 +/0.017842	336+/- 34	0.001078
3	5	0.000000 +/- 0.000000	0.000000+/0.008341	1237 +/- 46	0.000859
3	6	0.005805 +/- 0.000000	0.001138+/0.004462	2028+/- 54	0.001469
3	7	0.038066 +/- 0.000000	0.007046+/0.008730	123 +/- 23	0.002857

Spect	rum:	nUO3008				
Isotop	oics:	234: 0.0000	550 235:	0.0072000	236: 0.000000)
		237: 0.0000	0000 238:	0.9927450)	
Ic	on					
U	0	P1		P2	TotalCounts	Residual
1	2	0.016181+/- 0.016300	0.364451	+/0.017262	2482+/- 62	0.129512
1	3	0.056330+/- 0.001574	0.000676	+/- 0.000838	36235 +/- 197	0.000005
1	4	0.703318+/- 0.072250	0.105993	+/- 0.017605	19087 +/- 149	0.000063
2	6	0.000000+/- 0.000000	0.000000	+/0.041854	305+/- 32	0.000809
2	7	0.000000+/- 0.000000	0.226790	+/0.008236	49+/- 16	0.030135

Spectrum:	dU001						
Isotopics:	234:	0.0000076	235:	0.0020291	236:	0.0000322	
	237:	0.0000000	238:	0.9979310			
Ion		P1]	22	Total	Counts	Residual

U	0				
1	0	0.427994 +/- 0.041102	0.102138+/- 0.013542	3469+/- 78	0.069717
1	1	0.212393 +/- 0.003370	0.055189+/- 0.001017	40316+/- 209	0.013919
1	2	0.187421 +/- 0.001289	0.038018+/- 0.000387	216493 +/- 470	0.004116
2	3	0.154728 +/- 0.000000	0.000000+/0.005718	3192 +/- 84	0.011064
2	4	0.088631+/- 0.002462	0.013799+/0.000992	30546 +/- 193	0.000319
2	5	0.498966+/- 0.017970	0.000000+/0.004339	13197 +/- 129	0.000113
3	5	0.012470 +/- 0.000000	0.002644+/0.045238	682+/- 45	0.000549
3	6	0.008400 +/- 0.002955	0.016003+/0.002130	9277 +/- 109	0.000884
3	7	0.071792 +/- 0.003976	0.000000+/0.002048	12035 +/- 122	0.000146
3	8	0.050707 +/- 0.000000	0.010058+/0.032781	135 +/- 43	0.004805
4	8	0.000000 +/- 0.000000	0.000000+/0.006979	2175 +/- 65	0.000059
4	9	0.000000 +/- 0.000000	0.000000+/0.005105	3924 +/- 77	0.000649
4	10	0.000000 +/- 0.000000	0.050290+/0.046192	245 +/- 40	0.003197
5	10	0.000000 +/- 0.000000	0.000000+/0.423648	489+/- 43	0.000484
5	11	0.010754 +/- 0.000000	0.002018+/0.017187	1204 +/- 49	0.000544
1	3	0.486715 +/- 0.006751	0.283109+/- 0.004912	26267 +/- 173	0.338177

Spect	t rum:	dU002			
Isoto	pics:	234: 0.000007	0.002029	1 236: 0.0000322	2
		237: 0.000000	0.9979310	0	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	2	0.180589 +/- 0.012119	0.183099 +/- 0.011869	5226+/- 88	0.010305
1	3	0.145789 +/- 0.002122	0.064802 +/- 0.001381	63375 +/- 257	0.000298
1	4	0.686958 +/- 0.052604	0.141045 +/- 0.013601	55818+/- 243	0.001581
2	5	0.323496+/- 0.020715	0.000000+/0.007577	3547 +/- 75	0.000097
2	6	0.389720 +/- 0.010066	0.000000 +/- 0.002189	18453 +/- 149	0.000029
2	7	0.870540+/- 41.360300	0.129460 +/- 36.702700	1422+/- 78	0.006595
3	7	0.420060 +/- 0.000000	0.004970+/0.164631	1015 +/- 54	0.037910
3	8	0.074505 +/- 0.006081	0.000000 +/0.003444	6694+/- 99	0.000109
3	9	0.412165 +/- 0.044534	0.000000+/0.028056	1684+/- 63	0.000239
4	10	0.000000 +/- 0.000000	0.000000+/0.253659	567 +/- 53	0.000115
4	11	0.132975 +/- 0.021169	0.000000 +/0.014331	1721+/- 63	0.000243
5	13	0.000000 +/- 0.000000	0.000000 +/0.017533	1294+/- 55	0.000605

Spectrum:	dU003			
Isotopics:	234:	0.0000076 235:	0.0020291 236:	0.0000322
	237:	0.0000000 238:	0.9979310	

Ion					
U	0	P1	P2	TotalCounts	Residual
1	0	0.189729 +/- 0.015625	0.008996+/0.008658	2539+/- 59	0.000054
1	1	0.122650 +/- 0.001918	0.007144 +/- 0.000560	52161 +/- 235	0.000206
1	2	0.180778 +/- 0.001765	0.031401+/- 0.000696	116580 +/- 346	0.000133
1	3	0.737836+/- Inf	0.000000+/- #NAME?	503 +/- 47	0.072225
2	2	0.000000 +/- 0.000000	0.000000+/0.242749	531 +/- 33	0.000034
2	3	0.000000 +/- 0.000000	0.000000+/0.002568	4432+/- 76	0.000081
2	4	0.014517 +/- 0.003452	0.000000+/0.002049	8290 +/- 101	0.000073
2	5	0.006116+/- 0.000000	0.001322+/0.027560	187 +/- 35	0.000442
3	5	0.000000 +/- 0.000000	0.000000+/0.016970	746+/- 40	0.000114
3	6	0.000000 +/- 0.000000	0.000000+/0.005481	1977 +/- 50	0.000327
4	6	0.150741 +/- 0.000000	0.000000+/- 0.056471	52+/- 14	0.023383
4	8	0.000000 +/- 0.000000	0.000000+/0.007779	236+/- 28	0.000272

Spect	rum:	dU004			
Isotopics:		234: 0.00000	0.002029 0.002029	1 236: 0.0000322	2
		237: 0.00000	00 238: 0.997931	0	
Ic	on				
U	0	P1	P2	TotalCounts	Residual
1	2	0.070500 +/- 0.009614	0.002434 +/0.009147	2817 +/- 63	0.000045
1	3	0.034898 +/- 0.001587	0.001715 +/- 0.001074	26779 +/- 171	0.000007
1	4	0.665625 +/- 0.057188	0.086584 +/- 0.013781	13273 +/- 124	0.000022
2	6	0.000000 +/- 0.000000	0.000000 +/0.102168	617 +/- 42	0.000334

Т

ſ

Spect	rum:	dU005				
Isoto	pics:	234: 0.0000076		235: 0.00202	0.0020291 236: 0.0000322	
		237:	0.0000000	238: 0.99793	310	
I	0 n					
U	0	P1		P2	TotalCo	ounts Residual
1	0	0.050812 +/- 0	0.013286	0.004124 +/0.008363	3 1838+/-	51 0.00001
1	1	0.116846 +/- 0	0.002513	0.000000 +/0.000641	30190+/-	180 0.00000
1	2	0.189621+/- 0	0.003064	0.035869 +/- 0.001427	44099+/-	215 0.00000
2	2	0.000000 +/- 0	0.000000	0.000000 +/0.006244	4 1293+/-	45 0.00006
2	3	0.007135 +/- 0	0.000000	0.001640 +/0.002623	3 3716+/-	67 0.00030
2	4	0.022228+/- 0	0.000000	0.004057 +/0.005063	3 2898+/-	63 0.00156
3	4	0.000000 +/- 0	0.000000	0.148144 +/0.023630) 451+/-	34 0.01751
3	5	0.093582 +/- 0	0.000000	0.000000 +/0.033658	3 718+/-	37 0.00758
3	6	0.000000 +/- 0	0.000000	0.000000 +/1.872480) 499+/-	32 0.00034

Spect	rum:	dU006				
Isotopics:		234: 0.000007	0.0020291	0.0020291 236: 0.0000322		
		237: 0.000000	0.9979310)		
Ie	on					
U	0	P1	P2	TotalCounts	Residual	
1	1	0.000000+/- 0.046744	0.074706 +/0.079470	397 +/- 39	0.005915	
1	2	0.108510+/- 0.009830	0.000000 +/0.006763	3649+/- 72	0.000014	
1	3	0.054042 +/- 0.001733	0.000000 +/- 0.000945	31713 +/- 185	0.000007	
1	4	0.689997+/- 0.131187	0.153257 +/- 0.040654	9682 +/- 108	0.000027	
2	6	0.012481 +/- 0.000000	0.002011 +/0.029599	161 +/- 31	0.001056	

Spect	rum:	dU007				
Isotoj	pics:	234: 0.00000	76 235: 0.0020291	236: 0.0000322		
		237: 0.00000	00 238: 0.9979310	238: 0.9979310		
I	on					
U	0	P1	P2	TotalCounts	Residual	
1	0	0.043835 +/- 0.016642	0.001981 +/0.010881	1379+/- 46	0.000006	
1	1	0.117589+/- 0.003721	0.000000 +/0.001395	18237 +/- 144	0.000002	
1	2	0.209712+/- 0.004897	0.039728 +/- 0.002360	21876 +/- 154	0.000003	
2	2	0.003497 +/- 0.000000	0.000836+/0.043932	422 +/- 29	0.000093	
2	3	0.000000 +/- 0.000000	0.000000 +/0.005618	1649 +/- 48	0.000066	
2	4	0.012169 +/- 0.000000	0.002335 +/0.018005	1069+/- 44	0.000717	

Spect	rum:	dU008				
Isotopics:		234: 0.000007	6235: 0.002029	0.0020291 236: 0.0000322		
		237: 0.000000	0.997931)		
Ion						
U	0	P1	P2	TotalCounts	Residual	
1	2	0.156717 +/- 0.013539	0.047204 +/- 0.007590	2918+/- 65	0.018437	
1	3	0.076287 +/- 0.002670	0.009821+/- 0.001486	18853 +/- 143	0.000004	
1	4	0.696990 +/- 0.241496	0.183211+/- 0.078879	6610+/- 90	0.000019	

Spect	rum:	dUO2012						
Isotop	pics:	234: 0.0000100		235:	0.0027500 236: 0.00		0.000000	
		237: 0.0000000		38: 0.9972400				
Ic	on							
U	0	P1		P2		Total	Counts	Residual
1	0	0.368346+/- 0	0.023649	0.231512 +/-	-0.009743	9389	9+/- 114	0.026950

1	1	0.321307 +/- 0.003967	0.037537 +/- 0.000883	75276+/- 283	0.003820
1	2	0.199305+/- 0.001618	0.030612 +/- 0.000501	154950 +/- 400	0.002400
2	3	0.003948+/- 0.000000	0.000906+/0.004741	2591 +/- 68	0.000078
2	4	0.077129 +/- 0.004457	0.000000 +/0.002106	10323 +/- 118	0.000078
2	5	0.458016+/- 0.039302	0.000000+/0.017530	2774 +/- 72	0.000079
3	5	0.000000 +/- 0.000000	0.000000+/0.056372	427 +/- 34	0.000256
3	6	0.002874 +/- 0.000000	0.000679 +/0.006535	2061 +/- 59	0.000181
3	7	0.003484 +/- 0.000000	0.000820+/0.006900	1665 +/- 53	0.000204
4	8	0.018445 +/- 0.000000	0.023947 +/- 0.015748	310+/- 32	0.000194

Spect	rum:	dUO2013					
Isotop	pics:	234:	0.00001002	235:	0.0027500	236: 0.00000	
		237:	0.0000000	238:	0.9972400		
Ic	on						
U	0	P1		P2		TotalCounts	Residual
1	3	0.000000 +/- 0	0.004510	0.025727 +/-	-0.003386	6159+/- 92	0.000393
1	4	0.563565 +/- 0	0.036431	0.000000+/-	-0.010339	6072+/- 92	0.000058
1	2	0.292149 +/- 0	0.067796	0.248835 +/-	0.060872	1208 +/- 50	0.093822
2	6	0.000000 +/- 0	.000000	0.031219+/-	-0.032615	255 +/- 32	0.000735

Spect	rum:	dUO2014					
Isotop	oics:	234:	0.0000100	235:	0.0027500	236: 0.000	000
		237:	0.0000000	238:	0.9972400		
Ic	m						
U	0	P1		P2		TotalCounts	s Residual
1	0	0.012974 +/-	0.007653	0.021338+/-	-0.003873	3857 +/- 7	4 0.000291
1	1	0.061944 +/-	0.000973	0.000000 +/-	-0.000227	92781+/- 3	09 0.000006
1	2	0.099257 +/-	0.000695	0.006449 +/-	0.000245	297355 +/- 5	49 0.000001
1	3	0.860534 +/-	0.807814	0.005054 +/-	-0.111222	1426+/- 5	4 0.000217
2	2	0.049491 +/-	0.000000	0.001793 +/-	0.008373	638+/- 3	5 0.001667
2	3	0.000000 +/-	0.000000	0.000000 +/-	-0.001725	5678+/- 8	2 0.000132
2	4	0.000000 +/-	0.000000	0.000000 +/-	-0.001309	13745 +/- 1	26 0.000201
3	5	0.000000 +/-	0.000000	0.000000 +/-	0.004135	900+/- 3	8 0.000067
3	6	0.000000 +/-	0.000000	0.000000 +/-	-0.004163	2693+/- 6	0 0.000374
3	7	0.000000 +/-	0.000000	0.000000 +/-	-0.038604	643 +/- 3	5 0.000394
3	8	1.000000+/-	0.000000	0.000000 +/-	-0.018954	4+/- 6	0.376499

Spectrum:	dUO2015			
Isotopics:	234:	0.0000100 235:	0.0027500 236:	0.000000

		237:	0.0000000	238: 0.9972400)	
I	on					
U	0		P1	P2	TotalCounts	Residual
1	2	0.048253	+/- 0.000000	0.004146+/- 0.020973	542+/- 34	0.002665
1	3	0.025251	+/- 0.001837	0.000000 +/0.001128	16528+/- 133	0.000023
1	4	0.624137	+/- 0.035998	0.037591 +/- 0.007508	12903 +/- 120	0.000014
2	6	0.014848	+/- 0.000000	0.000000 +/0.042308	312+/- 29	0.000358

Spect	rum:	dUO2016			
Isotop	pics:	234: 0.0000100	235: 0.0027500	236: 0.000000	
		237: 0.0000000	238: 0.9972400		
Ie	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.024418 +/- 0.000000	0.012259 +/- 0.003835	3220+/- 66	0.000328
1	1	0.057172 +/- 0.001117	0.000000+/0.000317	69922 +/- 269	0.000011
1	2	0.102733 +/- 0.000899	0.007406+/- 0.000338	189669 +/- 439	0.000004
1	3	0.894597 +/- 3.680440	0.105403 +/0.047879	531+/- 41	0.008721
2	2	0.006249 +/- 0.000000	0.008295+/- 0.006161	1054 +/- 41	0.000088
2	3	0.000000 +/- 0.000000	0.000000+/0.001750	5380+/- 80	0.000118
2	4	0.000000 +/- 0.000000	0.000000 +/0.001644	8827 +/- 101	0.000166
2	5	0.051752 +/- 0.000000	0.000000+/0.038853	312 +/- 29	0.001654
3	5	0.000000 +/- 0.000000	0.000000+/- 0.005197	717 +/- 39	0.000046
3	6	0.024726+/- 0.000000	0.004448+/0.005553	1692 +/- 52	0.002348
3	7	0.000000 +/- 0.000000	0.000000+/0.014045	230+/- 26	0.000232

Spect	rum:	dUO2017			
Isotopics:		234: 0.000010	0.0027500	236: 0.000000	
		237: 0.000000	0 238: 0.9972400)	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	2	0.199160+/- 0.000000	0.009387 +/- 0.014305	835 +/- 37	0.040824
1	3	0.028327 +/- 0.002092	0.000000 +/0.001232	16416+/- 134	0.000027
1	4	0.689043 +/- 0.065933	0.045949 +/- 0.014086	9834+/- 111	0.000018
2	6	0.000000 +/- 0.000000	0.000000 +/0.016120	200+/- 25	0.000123

Spectrum:	dUO2018						
Isotopics:	234:	0.0000100	235:	0.0027500	236:	0.000000	
	237:	0.0000000	238:	0.9972400			
Ion	P1			P2	Total	Counts	Residual

U	0				
1	0	0.009794 +/- 0.000000	0.014657 +/- 0.004354	3041 +/- 68	0.000096
1	1	0.058259 +/- 0.001120	0.000000 +/0.000304	67846 +/- 264	0.000017
1	2	0.103017 +/- 0.000947	0.008107 +/- 0.000369	170422 +/- 416	0.000003
1	3	0.910933 +/- 3.037230	0.089067 +/0.045385	517 +/- 39	0.009635
2	2	0.032957 +/- 0.000000	0.007486+/- 0.007072	1230+/- 46	0.000851
2	3	0.000000 +/- 0.000000	0.000000 +/0.001699	5825 +/- 85	0.000119
2	4	0.000000 +/- 0.000000	0.000000 +/0.001806	8474 +/- 98	0.000219
2	5	0.066589+/- 0.000000	0.011858+/0.012778	181+/- 26	0.002896
3	5	0.003701 +/- 0.000000	0.000000 +/- 0.005598	933 +/- 41	0.000145
3	6	0.021825 +/- 0.000000	0.004085 +/0.005728	1969 +/- 49	0.001940
3	8	0.130090+/- Inf	0.000000 +/- #NAME?	3+/- 4	0.295846

Spect	rum:	dUO2019				
Isotop	oics:	234: 0.00001	100 235:	0.0027500	236: 0.000000	
		237: 0.00000	000 238:	0.9972400		
Ion						
U	0	P1		P2	TotalCounts	Residual
1	1	0.000000+/- 0.000000	0.038368	8+/0.001646	36+/- 8	0.001855
1	2	0.345091+/- 0.000000	0.00710	7+/- 0.013882	953+/- 40	0.120819
1	3	0.025551+/- 0.002196	0.00000	0+/0.001180	16315+/- 134	0.000025
1	4	0.693071+/- 0.072841	0.064693	5 +/- 0.016007	9475 +/- 104	0.000017

Spect	trum:	dUO2020			
Isoto	pics:	234: 0.0000100	235: 0.0027500	236: 0.000000	
		237: 0.0000000	238: 0.9972400		
Ι	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.010113 +/- 0.000000	0.006185 +/- 0.003630	4483 +/- 80	0.000042
1	1	0.051595+/- 0.001525	0.000000 +/0.000478	34959+/- 192	0.000008
1	2	0.096401+/- 0.001712	0.006942 +/- 0.000678	51154+/- 230	0.000003
1	3	0.000000+/- 0.000000	0.077805 +/- 0.079960	185 +/- 37	0.000010
2	2	0.013662+/- 0.000000	0.003187 +/0.004717	1661+/- 54	0.000440
2	3	0.000000 +/- 0.000000	0.075844 +/0.002940	3039+/- 63	0.006732
2	4	0.041512+/- 0.000000	0.000000 +/0.002301	2074+/- 57	0.001952
3	4	0.062842 +/- 0.000000	0.001946 +/- 0.010787	304+/- 33	0.001798
3	5	0.017035 +/- 0.000000	0.000000 +/0.012047	258+/- 34	0.000554
3	6	0.058835+/- 0.000000	0.010834 +/0.012554	283+/- 28	0.007565
3	8	0.610049+/- Inf	0.147946 +/- Inf	7+/- 7	0.032795

Spect	rum:	dUO2021			
Isotopics:		234: 0.000010	0.0027500	0.0027500 236: 0.00000	
		237: 0.000000	0.9972400)	
Ion					
U	0	P1	P2	TotalCounts	Residual
1	2	0.000000 +/- 0.000000	0.176302 +/0.042147	868 +/- 38	0.032932
1	3	0.027968 +/- 0.003349	0.000000 +/0.001904	8295 +/- 98	0.000025
1	4	0.759664 +/- 0.145089	0.000000+/0.068196	3402 +/- 75	0.000075

Spec	trum:	dU3O8001			
Isotopics:		234: 0.0000100 235: 0.0027500 236: 0.000000			
	-	237: 0.000000	0 238: 0.9972400		
J	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.415310+/- 0.031007	0.048161 +/- 0.010771	3558 +/- 74	0.001377
1	1	0.148310+/- 0.001875	0.013415 +/- 0.000496	70298+/- 269	0.000285
1	2	0.131600 +/- 0.000717	0.010245 +/- 0.000195	401156 +/- 637	0.000105
1	3	0.812490+/- 1.907300	0.147570+/- 0.353960	12360 +/- 127	0.000562
2	3	0.008781+/- 0.000000	0.001978+/0.007758	1865 +/- 58	0.000169
2	4	0.053050+/- 0.002205	0.000000 +/0.001079	21080 +/- 155	0.000025
2	5	0.339700+/- 0.011742	0.000000 +/0.003290	9611+/- 107	0.000044
3	6	0.000000 +/- 0.000000	0.000000 +/0.004599	3243 +/- 69	0.000111
3	7	0.000000 +/- 0.000000	0.000000 +/0.003605	5386 +/- 87	0.000390
3	8	0.052792 +/- 0.000000	0.000000 +/0.012151	92+/- 29	0.001978
3	5	0.021876+/- 0.000000	0.008035 +/- 0.023042	185 +/- 19	0.000297
4	8	0.019013 +/- 0.000000	0.003836+/0.035184	354 +/- 39	0.000572
4	9	0.000000 +/- 0.000000	0.000000 +/- 0.006723	1021 +/- 47	0.000391
4	10	0.264430 +/- 0.000000	0.048509 +/0.008047	50+/- 22	0.045058

Spect	rum:	dU3O8002			
Isoto	pics:	234: 0.000010	0.0027500	236: 0.000000	
		237: 0.000000	0.9972400)	
I	0 n				
U	0	P1	P2	TotalCounts	Residual
1	2	0.026456+/- 0.013295	0.183940+/- 0.017073	2347 +/- 63	0.001399
1	3	0.093613+/- 0.001408	0.013423 +/- 0.000713	71513 +/- 272	0.000008
1	4	0.481380 +/- 0.005847	0.023957 +/- 0.000957	117769+/- 347	0.000582
2	5	0.159030+/- 0.070357	0.053141 +/0.055107	419+/- 37	0.001372
2	6	0.164090 +/- 0.005604	0.000000 +/0.001830	11446 +/- 115	0.000079
---	----	-----------------------	---------------------	---------------	----------
2	7	0.806840+/- 0.369610	0.000000+/0.079199	1214 +/- 50	0.000167
3	8	0.000000 +/- 0.000000	0.000000 +/0.008110	1932 +/- 55	0.000315
3	9	0.043766+/- 0.033358	0.000000+/0.056814	753 +/- 43	0.000121
4	10	0.000000 +/- 0.000000	0.453030+/0.005327	32+/- 15	0.037341
4	11	0.002071+/- 0.000000	0.000610 +/0.080852	397 +/- 36	0.000194
5	13	0.000000 +/- 0.000000	0.053973 +/0.012993	212 +/- 25	0.003126
5	14	0.147840 +/- 0.000000	0.147820+/0.006417	20+/- 14	0.026739

Spect	trum:	dU3O8003			
Isoto	pics:	234: 0.000010	0.0027500	236: 0.000000	
		237: 0.000000	0.9972400)	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	0	0.005399+/- 0.000000	0.001073 +/0.007103	1820 +/- 51	0.000022
1	1	0.057247 +/- 0.001109	0.000198+/0.000273	60204 +/- 248	0.000006
1	2	0.090646 +/- 0.000716	0.005532+/- 0.000243	243175 +/- 496	0.000017
1	3	0.853970+/- 0.651850	0.000000 +/0.088556	1226+/- 46	0.000029
2	3	0.000000 +/- 0.000000	0.000000 +/0.002260	2754 +/- 57	0.000159
2	4	0.000000 +/- 0.000000	0.000000 +/0.001392	11494 +/- 114	0.000204
2	5	0.000000 +/- 0.000000	0.000000 +/0.072387	572 +/- 36	0.000220
3	5	0.000000 +/- 0.000000	0.000000 +/0.006351	380+/- 28	0.000402
3	6	0.000000 +/- 0.000000	0.000000 +/0.004052	2414 +/- 55	0.000242
3	7	0.000000 +/- 0.000000	0.000000 +/0.085761	551 +/- 38	0.000229
4	8	0.019547 +/- 0.000000	0.000000 +/- 0.009817	309 +/- 29	0.000958
5	10	0.193270 +/- 0.000000	0.053180 +/- 0.103540	47 +/- 19	0.024038

Spect	rum:	dU3O8004			
Isotoj	pics:	234: 0.0000100	235: 0.0027500	236: 0.000000	
		237: 0.0000000	238: 0.9972400		
Ion					
U	0	P1	P2	TotalCounts	Residual
1	2	0.004915 +/- 0.000000	0.001151 +/0.041740	892+/- 44	0.000108
1	3	0.018013 +/- 0.000844	0.000000 +/- 0.000541	49596+/- 227	0.000000
1	4	0.494010 +/- 0.008695	0.017226 +/- 0.001502	56611+/- 242	0.000016
2	6	0.000000 +/- 0.000000	0.000000 +/0.008672	1731+/- 54	0.000359
2	7	0.392120+/- 0.736440	0.115580+/0.006152	22+/- 9	0.005606
3	8	0.017504 +/- 0.000000	0.011256 +/- 0.018597	191+/- 24	0.000185
3	9	0.103690+/- 0.000000	0.000000 +/0.007480	35+/- 14	0.006299

Spectrum: dU3O8005								
Isoto	pics:	234:	0.0000100235: 0.00275			236: 0.0	00000	
	_	237:	0.00000002	238: 0.9972400				
I	on							
U	0	P1		P2		TotalCou	ints	Residual
1	0	0.000000+/- 0.	.000000	0.000000 +/-	-0.002379	4331+/-	75	0.000008
1	1	0.096566+/- 0.4	.002496	0.000000 +/-	-0.000687	25966+/-	166	0.000002
1	2	0.127180 +/- 0.	.002889	0.016744 +/-	0.001440	27521+/-	171	0.000008
1	3	0.079761 +/- 0.4	.000000	0.088003 +/-	0.074081	109+/-	19	0.003936
2	2	0.000000 +/- 0.4	.000000	0.035383 +/-	-0.036753	658+/-	35	0.001230
2	3	0.000000 +/- 0.	.000000	0.000000 +/-	-0.004491	1544 +/-	49	0.000110
2	4	0.032428 +/- 0.4	.000000	0.005924 +/-	-0.021506	986+/-	45	0.001820

Spect	rum:	dU3O8006						
Isotopics:		234: 0.0000100		235: 0.0027500		236: 0.000000		
		237:	0.0000000	238:	0.9972400			
Ion								
U	0	P1		P2		TotalCo	unts	Residual
1	2	0.131970+/- 0	0.010196	0.000000 +/-	-0.006786	3680+/-	71	0.000024
1	3	0.066867+/- 0	0.001867	0.007308 +/-	0.000980	31648+/-	183	0.000001
1	4	0.702120+/- 0	0.104040	0.130740+/-	0.029815	12964 +/-	124	0.000026
2	6	0.052927 +/- 0	0.000000	0.010185 +/-	-0.018327	146+/-	28	0.004798

Spect	etrum: dU3O8007					
Isotopics:		234: 0.000010	0.0027500	236: 0.000000		
		237: 0.000000	0.9972400)		
Ie	on					
U	0	P1	P2	TotalCounts	Residual	
1	0	0.041572 +/- 0.004688	0.000000 +/0.002448	5696+/- 80	0.000004	
1	1	0.097574+/- 0.002529	0.000000 +/0.000651	25038+/- 163	0.000012	
1	2	0.123580+/- 0.003058	0.018004 +/- 0.001525	23521 +/- 158	0.000005	
1	3	0.022942 +/- 0.000000	0.059248 +/- 0.035226	211+/- 22	0.000419	
2	2	0.019453 +/- 0.000000	0.003986+/0.018490	734+/- 36	0.001118	
2	3	0.009637 +/- 0.000000	0.002030 +/0.006321	1417 +/- 49	0.000466	
2	4	0.059453 +/- 0.000000	0.010428 +/0.041978	750+/- 42	0.005057	

Spectrum:	dU3O8008			
Isotopics:	234:	0.0000100 235:	0.0027500 236:	0.000000
	237:	0.0000000 238:	0.9972400	

Ion					
U	0	P1	P2	TotalCounts	Residual
1	1	0.008448+/- 0.048285	0.103190 +/0.071999	432+/- 38	0.003909
1	2	0.096800+/- 0.011190	0.000742 +/0.007579	2997+/- 66	0.000057
1	3	0.074166+/- 0.002246	0.007558 +/- 0.001141	24412 +/- 161	0.000002
1	4	0.712780+/- 0.161000	0.146660 +/- 0.044593	9554+/- 105	0.000021
2	6	0.000000 +/- 0.000000	0.075055 +/0.020139	125 +/- 25	0.006636

Spec	trum:	dUO3001						
Isoto	pics:	234: 0.0000100		235: 0.0027500 236: 0		6: 0.00	00000	
		237:	0.0000000	238:	0.9972400			
]]	[on							
U	0	P1		P2	1	FotalCour	nts	Residual
1	0	0.384300+/-	0.148250	0.306690+/	0.100850	970+/-	54	0.051516
1	1	0.262060+/-	0.007867	0.038375 +/- 0	0.002388 1	3043 +/-	127	0.006119
1	2	0.208500+/-	0.002406	0.031078 +/- 0	0.000683 7	6922+/-	284	0.002567
2	3	0.093454+/-	0.000000	0.000000 +/	0.035648	759+/-	42	0.003333
2	4	0.096084+/-	0.004847	0.000000 +/	0.002252 1	0448 +/-	118	0.000075
2	5	0.431010+/-	0.020450	0.000000 +/	0.006186	7277 +/-	103	0.000110
2	6	1.000000+/-	Inf	0.000000 +/- #	*NAME?	321 +/-	39	0.000214
3	5	0.127290+/-	0.000000	0.000000 +/	0.008468	190+/-	22	0.011781
3	6	0.000000+/-	0.000000	0.000000 +/	0.007166	2492 +/-	67	0.000172
3	7	0.037042+/-	0.006468	0.000000 +/	0.003619	5025 +/-	85	0.000203
3	8	0.051462+/-	0.000000	0.010320 +/	0.045839	232+/-	40	0.002679
4	7	0.384810+/-	0.000000	0.000000 +/	0.001248	22+/-	13	0.060345
4	8	0.000000+/-	0.000000	0.000000 +/	0.812690	511+/-	37	0.000392
4	9	0.000000+/-	0.000000	0.000000 +/	0.021050	916+/-	51	0.000653
4	10	0.000000+/-	0.000000	0.025364 +/	0.014534	117 +/-	27	0.000797
5	10	0.093674+/-	0.000000	0.017852 +/	0.008590	82+/-	22	0.006317
5	11	0.003407 +/-	0.000000	0.000621+/	0.022763	295+/-	29	0.000382
1	4	0.599080+/-	4.446700	0.252930 +/- 1	.188200	0+/-	114	0.130940

Spect	trum:	dUO3002			
Isotopics:		234: 0.000010	0 235: 0.002750	0 236: 0.000000	
		237: 0.000000	0 238: 0.997240	0	
I	on				
U	0	P1	P2	TotalCounts	Residual
1	3	0.169940+/- 0.003508	0.069919+/- 0.002221	30656+/- 182	0.000228
1	4	0.693880+/- 0.051626	0.118050 +/- 0.012446	40023+/- 208	0.000354

1	2	0.037855+/- 0.028249	0.222130 +/- 0.031007	1210+/- 57	0.003683
2	5	0.287690+/- 0.024965	0.000000 +/0.011247	2241+/- 62	0.000063
2	6	0.343920+/- 0.009595	0.000000 +/0.002600	14810+/- 136	0.000093
2	7	0.796390+/- 0.548580	0.100530+/0.388620	3523 +/- 82	0.013419
3	7	0.207860+/- 0.000000	0.000000 +/0.110120	551+/- 41	0.010905
3	8	0.055482+/- 0.007467	0.000000 +/0.004411	4560+/- 85	0.000153
3	9	0.295950+/- 0.024348	0.000000 +/0.012616	2576+/- 71	0.000221
4	11	0.000000 +/- 0.000000	0.000000 +/0.017119	1474+/- 63	0.000960
5	13	0.000000 +/- 0.000000	0.000000 +/0.027228	970+/- 48	0.000300
5	14	0.143260+/- 0.000000	0.000000 +/0.022411	88+/- 36	0.007881
4	10	0.000000+/- 0.000000	0.000000 +/0.114880	442+/- 43	0.000374

Spectrum: dUO3003								
Isotoj	pics:	234: 0.0000100		235:	235: 0.0027500 236		36: 0.000000	
		237:	0.0000000	238:	0.9972400			
I	on							
U	0	P1		P2	2	TotalCou	ints	Residual
1	0	0.261760+/-	0.019537	0.020093 +/-	-0.013468	2525 +/-	59	0.000199
1	1	0.159580+/-	0.003257	0.009499 +/-	0.001263	28737+/-	178	0.000009
1	2	0.228860+/-	0.003434	0.049802 +/-	0.001499	51079+/-	232	0.000244
1	3	0.353720+/-	0.137980	0.139560 +/-	0.080651	340+/-	32	0.004562
2	2	0.004960+/-	0.000000	0.001317 +/-	-3.616300	510+/-	35	0.000142
2	3	0.000477 +/-	0.000000	0.000252 +/-	-0.005127	2253+/-	61	0.000107
2	4	0.043861+/-	0.008621	0.000000 +/-	-0.006020	3001+/-	66	0.000062
3	5	0.000000+/-	0.000000	0.000000 +/-	-0.034389	395+/-	29	0.000308
3	6	0.004734+/-	0.000000	0.001148 +/-	-0.074926	430+/-	34	0.000343
3	7	0.150320+/-	0.000000	0.027987 +/-	-0.006914	29+/-	18	0.027642

Spect	rum:	dUO3004					
Isotopics:		234: ().0000100 235:	0.0027500	0.0027500 236: 0.00000		
		237: ().0000000 238:	38: 0.9972400			
Ion							
U	0	P1		P2	TotalCounts	Residual	
1	1	0.403970+/- 0.00	0.0000 0.0000	00+/0.016180	71+/- 19	0.071713	
1	2	0.062879 +/- 0.02	26648 0.0100	08+/0.066328	801 +/- 40	0.000235	
1	3	0.023858 +/- 0.0	03432 0.0050	11+/- 0.002410	8115 +/- 98	0.000002	
1	4	0.650250 +/- 0.09	97720 0.0476	78+/- 0.031654	2874 +/- 66	0.000014	
2	5	0.283120 +/- 0.0	00000 0.0000	00+/0.004881	15+/- 12	0.048793	

Spect	rum:	dUO3005									
Isotop	pics:	234: 0.0000	0.0027500	0.0027500 236: 0.000000							
		237: 0.00000	000 238: 0.9972400	0.9972400							
Ion											
U	0	P1	P2	TotalCounts	Residual						
2	3	0.048205 +/- 0.000000	0.010140 +/- 0.006845	659 +/- 39	0.001768						
2	4	0.007273 +/- 0.000000	0.000000 +/0.053394	368 +/- 32	0.000217						
2	2	0.011660 +/- 0.000000	0.000000 +/0.019404	248+/- 31	0.000467						
3	6	0.234790 +/- 0.000000	0.000000 +/0.001826	18+/- 15	0.014520						
1	0	0.000395 +/- 0.000000	0.019093 +/- 0.005180	1399+/- 48	0.000000						
1	1	0.100300 +/- 0.004523	0.000000 +/0.001967	9755 +/- 106	0.000012						
1	2	0.160650 +/- 0.006054	0.000000 +/- 0.003233	9987 +/- 109	0.000035						
1	3	0.158630 +/- 0.000000	0.070732 +/- 0.091013	119+/- 21	0.010539						

Spect	rum:	dUO3006			
Isotopics:		234: 0.000010	0.002750	00 236: 0.000000	1
		237: 0.000000	0 238: 0.997240	00	
Ion					
U	0	P1	P2	TotalCounts	Residual
1	2	0.165080+/- 0.020220	0.043617 +/0.024032	1477 +/- 48	0.002482
1	3	0.071749 +/- 0.003898	0.001322 +/- 0.002550	9302 +/- 104	0.000057
1	4	0.753470+/- 0.342670	0.098747 +/- 0.087309	2903 +/- 71	0.000120

Spect	rum:	dUO3007						
Isotop	pics:	234: 0.00001002		235:	235: 0.0027500 236: 0.			
		237:	0.0000000	238:	0.9972400			
Ie	on							
U	0	P1		P2	P2		TotalCounts	
1	0	0.000000 +/-	0.000000	0.002749 +/-	0.000743	13616+/-	126	0.000006
1	1	0.008741+/-	0.000000	0.001762 +/-	-0.000942	9273+/-	106	0.000243
1	2	0.015351+/-	0.000000	0.003396+/-	-0.005088	2311+/-	54	0.000682
1	3	0.000000+/-	0.000000	0.026339 +/-	0.016473	503+/-	32	0.000008
2	2	0.000000 +/-	0.000000	0.000000 +/-	-0.015597	346+/-	34	0.000062

Appendix F. Protonation Ratios

The following tables report the number of counts in the intense U-238 containing peak for each U_xO_y ion, the ratio of the counts in the peak one mass number greater than the U-238 peak to the U-238 peak and the ratio of the counts in the peak two mass numbers higher than the U-238 peak to the U-238 peak. Reported errors are one sigma values based on counting statistics.

Spectrum: nU001										
lo	on									
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Pea	k/U-238Peak			
1	1	303885 +/-	552	0.29655 +/-	0.00113	0.02312 +/-	0.00029			
1	2	1312296 +/-	1146	0.32481+/-	0.00057	0.02994 +/-	0.00015			
1	3	3437 +/-	67	26.25461+/-	0.52157	9.19024 +/-	0.18743			
2	2	1994 +/-	49	0.11059+/-	0.01474	0.00000 +/-	NaN			
2	3	26844 +/-	167	0.05632 +/-	0.00186	0.00027 +/-	0.000839			
2	4	203797 +/-	452	0.16093 +/-	0.00097	0.00963 +/-	0.000251			
2	5	62302 +/-	251	1.07714 +/-	0.00603	0.06275 +/-	0.00116			
3	5	7492 +/-	89	0.00000+/-	NaN	0.00000 +/-	NaN			
3	6	58321+/-	243	0.06953 +/-	0.001218	0.00637 +/-	0.000528			
3	7	68369+/-	263	0.16604 +/-	0.00175	0.00906 +/-	0.000565			
3	8	1551 +/-	46	1.46022 +/-	0.05583	0.00000 +/-	NaN			
4	7	1646 +/-	46	0.00000 +/-	NaN	0.00000 +/-	NaN			
4	8	15076 +/-	124	0.04644 +/-	0.002444	0.00000 +/-	NaN			
4	9	21599 +/-	149	0.11555 +/-	0.00279	0.00000 +/-	NaN			
4	10	1618+/-	47	0.53578+/-	0.02921	0.00000 +/-	NaN			
5	9	507 +/-	30	0.00000+/-	NaN	0.00000 +/-	NaN			
5	10	5175 +/-	76	0.00000+/-	NaN	0.00000 +/-	NaN			
5	11	6499 +/-	84	0.00000+/-	NaN	0.00000 +/-	NaN			
5	12	1642 +/-	47	0.00000+/-	NaN	0.00000 +/-	NaN			
6	12	1228 +/-	42	0.00000+/-	NaN	0.00000 +/-	NaN			
6	13	1638+/-	50	0.00000+/-	NaN	0.00000 +/-	NaN			
6	14	757 +/-	37	0.00000+/-	NaN	0.00000 +/-	NaN			
7	15	542 +/-	33	0.00000 +/-	NaN	0.00000 +/-	NaN			

Sp	Spectrum: nU002										
I	on										
U	0	Counts(U-238	Peak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Pea	k/U-238Peak				
1	2	13940+/-	120	0.22367 +/-	0.00474	0.25376+/-	0.00507				
1	3	140432 +/-	376	0.20155 +/-	0.00133	0.08084 +/-	0.00080				
1	4	29185 +/-	172	3.07303 +/-	0.02088	0.52844 +/-	0.00533				
2	5	4926 +/-	73	0.66315 +/-	0.01599	0.00000 +/-	NaN				
2	6	18460+/-	139	0.64624 +/-	0.007783	0.01827 +/-	0.001723				
2	4	217 +/-	22	0.00000 +/-	NaN	0.00000 +/-	NaN				
3	7	1277 +/-	40	0.00000 +/-	NaN	0.00000 +/-	NaN				
3	8	8589+/-	95	0.13128 +/-	0.00507	0.00000 +/-	NaN				
3	9	1139 +/-	41	0.66720+/-	0.041669	0.00000 +/-	NaN				
4	10	1135 +/-	40	0.00000 +/-	NaN	0.00000 +/-	NaN				
4	11	1407 +/-	45	0.08788+/-	0.02276	0.00000 +/-	NaN				
5	13	1255 +/-	43	0.00000 +/-	NaN	0.00000 +/-	NaN				

Sp	Spectrum: nU003										
lo	on										
U	0	Counts(U-238	Peak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Pea	k/U-238Peak				
1	0	35227 +/-	189	0.63330+/-	0.00549	0.12498 +/-	0.00214				
1	1	282859+/-	533	0.28739+/-	0.00115	0.03956 +/-	0.00039				
1	2	214864+/-	465	0.47200 +/-	0.00180	0.12752 +/-	0.00083				
2	2	13584+/-	120	0.12323 +/-	0.00404	0.00000 +/-	NaN				
2	3	30630+/-	177	0.08615 +/-	0.001969	0.00213 +/-	0.000673				
2	4	17139+/-	134	0.18910+/-	0.00404	0.00000 +/-	NaN				
3	4	3356+/-	60	0.00000 +/-	NaN	0.00000 +/-	NaN				
3	5	4903 +/-	73	0.00000 +/-	NaN	0.00000 +/-	NaN				
3	6	3227+/-	61	0.00000 +/-	NaN	0.00000 +/-	NaN				
3	7	283+/-	25	0.00000 +/-	NaN	0.00000 +/-	NaN				
4	6	683+/-	32	0.00000 +/-	NaN	0.00000 +/-	NaN				
4	7	595+/-	29	0.00000 +/-	NaN	0.00000 +/-	NaN				
4	8	417+/-	26	0.00000 +/-	NaN	0.00000 +/-	NaN				

Sp	Spectrum: nU004										
lon											
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak				
1	1	3301+/-	61	0.73385 +/-	0.02096	0.22126+/-	0.01126				
1	2	27149+/-	166	0.27726+/-	0.00369	0.17387+/-	0.00291				
1	3	69483 +/-	265	0.15911+/-	0.00167	0.07703+/-	0.00114				

1	4	3312 +/- 61	5.88147 +/- 0.11698	1.90581+/- 0.04323
2	4	382+/- 24	0.00000 +/- NaN	0.00000+/- NaN
2	5	833+/- 35	0.38267 +/- 0.04062	0.00000+/- NaN
2	7	398+/- 27	0.00000 +/- NaN	0.00000+/- NaN

Sp	pectrum: nU005									
l	on									
U	0	Counts(U-238	Peak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Peak	/U-238Peak			
1	0	43566+/-	210	0.27455+/-	0.00291	0.03276+/-	0.00108			
1	1	187612 +/-	434	0.22084+/-	0.00121	0.01868+/-	0.00035			
1	2	125955 +/-	356	0.36549+/-	0.00200	0.09375+/-	0.00092			
2	2	11500 +/-	111	0.01849+/-	0.00342	0.00000+/-	NaN			
2	3	21226+/-	148	0.04095 +/-	0.001872	0.00000+/-	NaN			
2	4	9151+/-	99	0.12599+/-	0.00526	0.00000+/-	NaN			
3	4	2495 +/-	53	0.00000+/-	NaN	0.00000+/-	NaN			
3	5	3072 +/-	59	0.00000+/-	NaN	0.00000+/-	NaN			
3	6	1682 +/-	45	0.00000+/-	NaN	0.00000+/-	NaN			
4	6	397+/-	27	0.00000+/-	NaN	0.00000+/-	NaN			

Sp	Spectrum: nU006										
lo	on										
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak				
1	1	2069 +/-	48	0.56272+/-	0.02306	0.10902+/-	0.01228				
1	2	13567 +/-	119	0.26410+/-	0.00529	0.14309+/-	0.00372				
1	3	42643 +/-	207	0.13209+/-	0.00193	0.05174+/-	0.00123				
1	4	1603 +/-	45	7.11554 +/-	0.21253	2.02724+/-	0.06928				
2	5	264+/-	24	0.00000 +/-	NaN	0.00000+/-	NaN				
2	6	252+/-	21	0.79673 +/-	0.10733	0.00000+/-	NaN				

Sp	Spectrum: nU007										
I	on										
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak				
1	0	41771+/-	205	0.17726+/-	0.00232	0.01013+/-	0.00079				
1	1	144735+/-	382	0.18372+/-	0.00124	0.00895+/-	0.00029				
1	2	96726+/-	312	0.29599+/-	0.00202	0.07152+/-	0.00093				
2	2	10560+/-	104	0.02150+/-	0.00275	0.00000+/-	NaN				
2	3	16536+/-	131	0.02146+/-	0.0019	0.00000+/-	NaN				
2	4	6588+/-	83	0.09608+/-	0.00589	0.00000+/-	NaN				
3	4	1919+/-	47	0.00000+/-	NaN	0.00000+/-	NaN				
3	5	2251+/-	51	0.00000+/-	NaN	0.00000+/-	NaN				

3 6 1237+/- 40 0.00000+/- NaN 0.00000+/- NaN

Sp	ect	rum: nU(800				
lo	on						
U	0	Counts(U-238	BPeak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Peak	/U-238Peak
1	1	1566 +/-	42	0.47919+/-	0.02439	0.02680+/-	0.01392
1	2	10018 +/-	101	0.25606 +/-	0.00604	0.09970+/-	0.00399
1	3	35470 +/-	189	0.12049+/-	0.00204	0.04191+/-	0.00127
1	4	1260 +/-	42	7.16384 +/-	0.25398	2.07389+/-	0.08294
2	5	273+/-	21	0.00939+/-	0.064446	0.00000+/-	NaN

Sp	ect	rum: nU(D2001				
Ic	n						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	1	25214 +/-	161	0.27527 +/-	0.00387	0.01050+/-	0.00105
1	2	91452 +/-	303	0.24918+/-	0.00187	0.01745+/-	0.00050
1	3	51+/-	18	33.08100 +/-	11.53036	4.42961+/-	1.63826
2	3	1946 +/-	48	0.00000 +/-	NaN	0.00000+/-	NaN
2	4	8912 +/-	97	0.02819+/-	0.003789	0.00000 +/-	NaN
2	5	580+/-	32	0.52469 +/-	0.06599	0.00000 +/-	NaN
3	5	211+/-	21	0.00000 +/-	NaN	0.00000 +/-	NaN
3	6	1576 +/-	44	0.00000 +/-	NaN	0.00000+/-	NaN
3	7	724 +/-	35	0.00000 +/-	NaN	0.00000 +/-	NaN

Sp	Spectrum: nUO2002		1				
lo	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	862+/-	34	0.00000 +/-	NaN	0.04800+/-	0.02364
1	3	9135 +/-	97	0.11022 +/-	0.00428	0.02627+/-	0.00260
1	4	1917 +/-	48	2.49443 +/-	0.07353	0.05801+/-	0.01409

Sp	ecti	rum: nU(D2003				
lo	on						
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	3674+/-	62	0.00000 +/-	NaN	0.00000+/-	NaN
1	1	12827 +/-	115	0.08156+/-	0.00320	0.00000+/-	NaN
1	2	12780+/-	114	0.14216 +/-	0.00409	0.00277+/-	0.00195
1	3	202+/-	21	0.00000 +/-	NaN	0.00000+/-	NaN
2	2	729+/-	33	0.00000 +/-	NaN	0.00000+/-	NaN

23	1211+/- 39	0.00000 +/- NaN	0.00000+/- NaN
2 4	570+/- 31	0.00000 +/- NaN	0.00000 +/- NaN

Spe	ectr	um: nUC)2004		
lo	on				
U	0	Counts(U-238	Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak
1	2	623+/-	30	0.00000 +/- NaN	0.00000 +/- NaN
1	3	5039+/-	72	0.04085 +/- 0.00480	0.00000 +/- NaN
1	4	241+/-	22	5.76362+/- 0.54611	0.01324 +/- 0.10141

Sp	ecti	rum: nU	O2005				
Ic	on						
U	0	Counts(U-23	8Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	6765 +/-	84	0.00228+/-	0.00371	0.00000+/-	NaN
1	1	10897 +/-	107	0.09157 +/-	0.00393	0.00000+/-	NaN
1	2	7409+/-	89	0.16740+/-	0.00631	0.00093+/-	0.00335
1	3	373+/-	25	0.00000 +/-	NaN	0.08612+/-	0.03339
2	2	527+/-	29	0.00000 +/-	NaN	0.00000+/-	NaN
2	3	702 +/-	35	0.00000 +/-	NaN	0.00000+/-	NaN
2	4	354 +/-	25	0.00000 +/-	NaN	0.00000+/-	NaN

Spe	ectr	um: nUC	02006				
lo	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak/U-	-238Peak
1	3	2459+/-	51	0.00210+/-	0.00751	0.00000+/-	NaN
1	4	51+/-	14	9.94998+/-	2.77068	0.00000+/-	NaN
1	2	336+/-	24	0.00000+/-	NaN	0.00000+/-	NaN

Sp	ect	rum: nU(02007				
l	on						
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	3992 +/-	65	0.04486+/-	0.00728	0.00000+/-	NaN
1	1	29153+/-	171	0.11041+/-	0.00224	0.00000+/-	NaN
1	2	40079+/-	202	0.17244+/-	0.00236	0.02702+/-	0.00096
1	3	212+/-	19	0.27685+/-	0.10073	0.00000+/-	NaN
2	2	760+/-	32	0.00000+/-	NaN	0.00000+/-	NaN
2	3	2919+/-	56	0.00000+/-	NaN	0.00000+/-	NaN
2	4	2525 +/-	53	0.00000+/-	NaN	0.00000+/-	NaN
3	5	387+/-	25	0.00000+/-	NaN	0.00000+/-	NaN

3 6 325+/- 27 0.00000+/- NaN 0.00000+/- NaN

Sp	ect	rum: nU(D2008				
lo	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	1	120+/-	17	0.00000 +/-	NaN	0.00000+/-	NaN
1	2	871+/-	34	0.07291+/-	0.02470	0.05228+/-	0.02434
1	3	11221+/-	108	0.06053 +/-	0.00325	0.00000+/-	NaN
1	4	824+/-	33	4.14598+/-	0.18030	0.56550+/-	0.04558

Sp	ect	trum: nU3O8001		
lo	n			
U	0	Counts(U-238Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak
1	1	426796+/- 654	0.21096+/- 0.00078	0.01650 +/- 0.00021
1	2	2468544 +/- 1571	0.26045 +/- 0.00037	0.02306 +/- 0.00010
1	3	13178+/- 118	13.97150+/- 0.12945	2.64593 +/- 0.02776
2	2	1834 +/- 47	0.14224 +/- 0.01568	0.00600+/- 0.01245
2	3	26391+/- 165	0.04286+/- 0.001746	0.00000 +/- NaN
2	4	296819+/- 546	0.07916+/- 0.00055	0.00821+/- 0.000191
2	5	135140+/- 369	0.57800+/- 0.00261	0.02620+/- 0.00049
3	5	4048 +/- 68	0.00000 +/- NaN	0.00000 +/- NaN
3	6	57627 +/- 242	0.01708+/- 0.00078	0.00555 +/- 0.000557
3	7	106516+/- 328	0.05949+/- 0.00083	0.00681+/- 0.000425
3	8	8552 +/- 95	0.63494+/- 0.01165	0.00000 +/- NaN
4	7	512 +/- 31	0.00000 +/- NaN	0.00000 +/- NaN
4	8	10822 +/- 106	0.00000 +/- NaN	0.00000 +/- NaN
4	9	24827 +/- 160	0.01940+/- 0.00150	0.00542 +/- 0.001087
4	10	4372 +/- 69	0.14899+/- 0.00934	0.00000 +/- NaN
4	11	512 +/- 32	0.33413 +/- 0.06801	0.00000 +/- NaN
5	10	2769+/- 61	0.00000 +/- NaN	0.00000 +/- NaN
5	11	5187 +/- 77	0.00000 +/- NaN	0.00000 +/- NaN
5	12	2935 +/- 60	0.00000 +/- NaN	0.00000 +/- NaN
6	12	136+/- 28	0.00000 +/- NaN	0.00000 +/- NaN
6	13	378+/- 36	0.00000 +/- NaN	0.00000 +/- NaN
6	14	813 +/- 38	0.00000 +/- NaN	0.00000 +/- NaN
6	15	43 +/- 20	0.00000 +/- NaN	0.00000 +/- NaN
7	15	66 +/- 20	0.00000 +/- NaN	0.00000 +/- NaN
7	16	61.41463 +/- 16.681	0+/- NaN	0.146148 +/- 0.084538
7	17	28.14634 +/- 16.06	0+/- NaN	0+/- NaN

Sp	ectr	um: nU:	308002	2			
le	on						
U	0	Counts(U-238	3Peak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	3003 +/-	59	0.07041+/-	0.01000	0.31414+/-	0.01355
1	3	85834 +/-	294	0.11496+/-	0.00125	0.02646+/-	0.00060
1	4	79826 +/-	284	0.97785 +/-	0.00495	0.03981+/-	0.00076
2	5	428 +/-	27	0.42975 +/-	0.06220	0.00000+/-	NaN
2	6	10747 +/-	106	0.20032 +/-	0.005299	0.00000+/-	NaN
2	7	169 +/-	23	6.22693 +/-	0.86656	0.00000+/-	NaN
3	8	2000 +/-	48	0.00000+/-	NaN	0.00000+/-	NaN
3	9	799 +/-	33	0.00000+/-	NaN	0.00000+/-	NaN
4	10	16 +/-	9	0.00000+/-	NaN	0.00000+/-	NaN
4	11	448 +/-	28	0.00000+/-	NaN	0.00000+/-	NaN
5	14	8 +/-	10	0.00000 +/-	NaN	0.00000+/-	NaN

Sp	pectrum: nU3O8003									
l	on									
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Pea	k/U-238Peak			
1	0	17485 +/-	134	0.09544+/-	0.00275	0.00000 +/-	NaN			
1	1	694767 +/-	834	0.06324+/-	0.00031	0.00233+/-	0.00007			
1	2	2619573 +/-	1619	0.15102+/-	0.00026	0.01793 +/-	0.00008			
1	3	6877 +/-	85	3.97096+/-	0.05484	0.22698+/-	0.00714			
2	2	6575 +/-	83	0.00000+/-	NaN	0.00000 +/-	NaN			
2	3	73693 +/-	272	0.00000+/-	NaN	0.00201+/-	0.000355			
2	4	246044 +/-	496	0.01591+/-	0.00028	0.00648+/-	0.00020			
2	5	16585 +/-	130	0.16086+/-	0.00362	0.00000 +/-	NaN			
3	4	1985 +/-	48	0.00000+/-	NaN	0.00575 +/-	0.004286			
3	5	13034 +/-	118	0.00000+/-	NaN	0.00000 +/-	NaN			
3	6	53073 +/-	232	0.00000+/-	NaN	0.00588+/-	0.00056			
3	7	16060 +/-	130	0.00000+/-	NaN	0.00000 +/-	NaN			
4	6	451 +/-	32	0.00000+/-	NaN	0.00000 +/-	NaN			
4	7	2540 +/-	57	0.00000+/-	NaN	0.00000 +/-	NaN			
4	8	10957 +/-	107	0.00000+/-	NaN	0.00272 +/-	0.00163			
4	9	4176 +/-	69	0.00000+/-	NaN	0.00000 +/-	NaN			
5	9	824 +/-	37	0.00000+/-	NaN	0.00370+/-	0.007869			
5	10	2892 +/-	63	0.00000+/-	NaN	0.00287 +/-	0.003911			
5	11	916 +/-	36	0.00000+/-	NaN	0.00000+/-	NaN			

Sp	Spectrum: nU3O8004								
lo	on								
U	0	Counts(U-23	8Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak		
1	2	1823+/-	46	0.00000+/-	NaN	0.00000+/-	NaN		
1	3	81824+/-	286	0.02859+/-	0.00066	0.00766+/-	0.00040		
1	4	41454+/-	204	1.13823+/-	0.00771	0.06318+/-	0.00145		
2	6	2511+/-	52	0.09173+/-	0.00904	0.00000+/-	NaN		
2	7	15+/-	9	0.00000+/-	NaN	0.00000+/-	NaN		
2	5	20+/-	11	0.00000+/-	NaN	0.00000+/-	NaN		

Sp	Spectrum: nU3O8005								
Ic	on								
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Pea	k/U-238Peak		
1	0	16078 +/-	128	0.10027 +/-	0.00312	0.00000 +/-	NaN		
1	1	95010+/-	309	0.13410+/-	0.00129	0.00085 +/-	0.00027		
1	2	112056 +/-	336	0.22725 +/-	0.00159	0.04940+/-	0.00072		
1	3	725 +/-	35	0.50239+/-	0.04783	0.27863 +/-	0.03601		
2	2	5756 +/-	78	0.00000 +/-	NaN	0.00000 +/-	NaN		
2	3	12831+/-	115	0.00000 +/-	NaN	0.00000 +/-	NaN		
2	4	8948 +/-	97	0.01232 +/-	0.00368	0.00000 +/-	NaN		
2	5	104 +/-	18	0.00000 +/-	NaN	0.00000 +/-	NaN		
3	4	1286 +/-	40	0.00000 +/-	NaN	0.00000 +/-	NaN		
3	5	2017 +/-	49	0.00000 +/-	NaN	0.00000 +/-	NaN		
3	6	1817 +/-	46	0.00000 +/-	NaN	0.00000 +/-	NaN		
4	8	167 +/-	21	0.00000 +/-	NaN	0.01139+/-	0.021218		

Sp	spectrum: nU3O8006							
lo	on							
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak	
1	1	505 +/-	31	0.00000 +/-	NaN	0.00000+/-	NaN	
1	2	3174 +/-	59	0.13817 +/-	0.00984	0.00000+/-	NaN	
1	3	30709 +/-	176	0.07687 +/-	0.00179	0.01114+/-	0.00091	
1	4	2669 +/-	58	4.01729 +/-	0.09648	0.77120+/-	0.02531	
2	6	279+/-	20	0.00000 +/-	NaN	0.00000+/-	NaN	
2	5	30+/-	12	0.00000 +/-	NaN	0.00000+/-	NaN	
2	7	9+/-	7	0.00000 +/-	NaN	0.00000+/-	NaN	

Spect	rum: nU3O800 [°]	7	
lon	Counts(U-238Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak

U	ο						
1	0	14260+/-	121	0.07567 +/-	0.00308	0.00000+/-	NaN
1	1	58556+/-	243	0.12650+/-	0.00164	0.00000+/-	NaN
1	2	53294 +/-	232	0.22191+/-	0.00230	0.04915+/-	0.00109
1	3	612+/-	31	0.07718+/-	0.03674	0.01025+/-	0.03159
2	2	3971+/-	65	0.00000 +/-	NaN	0.00000+/-	NaN
2	3	7385+/-	89	0.00000 +/-	NaN	0.00000+/-	NaN
2	4	4004 +/-	66	0.00911+/-	0.00629	0.00000+/-	NaN
3	4	772+/-	32	0.00000 +/-	NaN	0.00000+/-	NaN
3	5	826+/-	38	0.00000 +/-	NaN	0.00000+/-	NaN
3	6	729+/-	33	0.00000 +/-	NaN	0.00000+/-	NaN

Sp	Spectrum: nU3O8008								
Ic	on								
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak		
1	1	821+/-	34	0.11223 +/-	0.02775	0.00000+/-	NaN		
1	2	4198 +/-	67	0.14555 +/-	0.00883	0.00000+/-	NaN		
1	3	33411+/-	185	0.07089+/-	0.00176	0.00899+/-	0.00092		
1	4	2367 +/-	53	4.72195 +/-	0.11604	0.95887+/-	0.03080		
2	6	144 +/-	20	0.00000 +/-	NaN	0.00000+/-	NaN		

Sp	Spectrum: nUO3001						
I	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	1	23868+/-	156	0.41926+/-	0.00510	0.02420+/-	0.00148
1	2	113612 +/-	338	0.30871+/-	0.00190	0.02914+/-	0.00056
1	3	411+/-	30	25.35579+/-	1.86996	9.48261+/-	0.71265
2	3	1783 +/-	47	0.00000+/-	NaN	0.00000+/-	NaN
2	4	19063 +/-	141	0.17664 +/-	0.003674	0.00000+/-	NaN
2	5	9439+/-	102	0.89364 +/-	0.01411	0.00000+/-	NaN
3	5	420+/-	28	0.00000+/-	NaN	0.00000+/-	NaN
3	6	5830+/-	82	0.00000+/-	NaN	0.00000+/-	NaN
3	7	10663 +/-	106	0.11171+/-	0.004177	0.00000+/-	NaN
3	8	768 +/-	33	0.45480+/-	0.04685	0.00000+/-	NaN
4	8	1192 +/-	43	0.00000+/-	NaN	0.00000+/-	NaN
4	9	2975 +/-	61	0.00000 +/-	NaN	0.00000+/-	NaN
4	10	356 +/-	29	0.00000+/-	NaN	0.00000+/-	NaN
5	11	672 +/-	34	0.00000+/-	NaN	0.00000+/-	NaN

Spe	ectru	um: nUC	03002				
l	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak/	/U-238Peak
1	3	6554+/-	84	0.14729+/-	0.00636	0.02747+/-	0.00438
1	4	1007 +/-	37	5.24131+/-	0.20550	0.93732+/-	0.05123
1	2	419 +/-	26	0.00000 +/-	NaN	0.00000+/-	NaN
2	5	130+/-	21	0.00000 +/-	NaN	0.00000+/-	NaN
2	6	1656 +/-	45	0.39643+/-	0.024451	0.00000+/-	NaN
2	7	17 +/-	9	17.98709 +/-	9.28766	0.00000+/-	NaN
3	7	22 +/-	11	0.00000+/-	NaN	0.00000+/-	NaN
3	8	560 +/-	32	0.00000+/-	NaN	0.00000+/-	NaN
3	9	128 +/-	21	0.00000+/-	NaN	0.00000+/-	NaN
4	11	115 +/-	20	0.00000+/-	NaN	0.00000+/-	NaN
5	13	34+/-	17	0.00000+/-	NaN	0.00000+/-	NaN
5	14	0+/-	47	NaN +/-	NaN	NaN +/-	NaN

Sp	Spectrum: nUO3003							
Ic	on							
U	0	Counts(U-238	Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak			
1	0	3831+/-	68	0.71532 +/- 0.02114	0.05665 +/- 0.00938			
1	1	50711+/-	226	0.28202 +/- 0.00269	0.03858+/- 0.00098			
1	2	59666 +/-	246	0.48160+/- 0.00348	0.10392+/- 0.00143			
1	3	28+/-	19	15.35330+/- 10.45334	21.53568+/- 14.64442			
2	2	879+/-	35	0.00000 +/- NaN	0.00000 +/- NaN			
2	3	4498+/-	72	0.01954 +/- 0.00647	0.00000+/- NaN			
2	4	4968+/-	73	0.11886 +/- 0.00782	0.00000+/- NaN			
3	5	611+/-	31	0.00000 +/- NaN	0.00000+/- NaN			
3	6	851+/-	36	0.00000 +/- NaN	0.00000+/- NaN			

Spe	ectr	um: nUC	03004				
lo	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	1093 +/-	38	0.24072+/-	0.02595	0.10245+/-	0.01885
1	3	6870+/-	84	0.11741+/-	0.00505	0.03541+/-	0.00362
1	4	539+/-	28	4.48130+/-	0.25481	0.72547 +/-	0.06475
2	6	54+/-	16	0.00000+/-	NaN	0.00000 +/-	NaN

Spect	trum: nUO300	5	
lon	Counts(U-238Peak) (U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak

U	0						
1	0	5679 +/-	79	0.26147 +/-	0.00962	0.00000+/-	NaN
1	1	152154 +/-	391	0.12064 +/-	0.00097	0.00224+/-	0.00026
1	2	387061+/-	623	0.23411+/-	0.00087	0.03092+/-	0.00030
1	3	241+/-	25	13.18585 +/-	1.41094	1.59992 +/-	0.20249
2	2	844 +/-	36	0.00000+/-	NaN	0.00000+/-	NaN
2	3	10706 +/-	107	0.00000+/-	NaN	0.00000+/-	NaN
2	4	30278 +/-	175	0.02683 +/-	0.00149	0.00000+/-	NaN
2	5	1011 +/-	38	0.30744 +/-	0.03171	0.00000+/-	NaN
3	5	1504 +/-	46	0.00000+/-	NaN	0.00000+/-	NaN
3	6	6124 +/-	82	0.00000+/-	NaN	0.00000+/-	NaN
3	7	1311 +/-	43	0.00000+/-	NaN	0.00000+/-	NaN
4	8	1132 +/-	40	0.00000 +/-	NaN	0.00000+/-	NaN

Spectrum: nUO3006							
lo	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	1142 +/-	36	0.09928+/-	0.01824	0.00000+/-	NaN
1	3	25445 +/-	161	0.02446 +/-	0.00139	0.00498+/-	0.00099
1	4	8601+/-	95	1.91369 +/-	0.02621	0.07795+/-	0.00451
2	6	708+/-	32	0.00000 +/-	NaN	0.00000+/-	NaN

\$ Spectrum: nUO3007		,					
lo	n						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	3047+/-	57	0.05946+/-	0.00875	0.00000+/-	NaN
1	1	68606+/-	263	0.12733+/-	0.00151	0.00000 +/-	NaN
1	2	130433+/-	362	0.23882+/-	0.00152	0.04618+/-	0.00067
1	3	22+/-	14	17.73311+/-	11.48832	0.00000 +/-	NaN
2	2	1109+/-	40	0.00000+/-	NaN	0.00000 +/-	NaN
2	3	7582 +/-	90	0.00000+/-	NaN	0.00000 +/-	NaN
2	4	9415+/-	100	0.00000+/-	NaN	0.00000 +/-	NaN
2	5	10+/-	16	0.00000+/-	NaN	0.00000 +/-	NaN
3	4	318+/-	25	0.00000+/-	NaN	0.00000 +/-	NaN
3	5	1232 +/-	40	0.00000+/-	NaN	0.00000 +/-	NaN
3	6	1942 +/-	49	0.00000+/-	NaN	0.00000 +/-	NaN
3	7	113+/-	18	0.00000 +/-	NaN	0.00000 +/-	NaN

Spectrum: nUO3008

lc	n						
U	0	Counts(U-238F	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	1525 +/-	42	0.03101+/-	0.01631	0.00000+/-	NaN
1	3	33698+/-	185	0.06138+/-	0.00157	0.00735+/-	0.00084
1	4	3671+/-	65	3.62157 +/-	0.07208	0.57962+/-	0.01759
2	6	305+/-	23	0.00000 +/-	NaN	0.00000+/-	NaN
2	7	53+/-	9	0.00000 +/-	NaN	0.00000+/-	NaN

Sp	ecti	rum: dU(001				
1	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Pea	k/U-238Peak
1	0	1305 +/-	41	0.88972+/-	0.04110	0.02965+/-	0.01368
1	1	27449+/-	167	0.23994+/-	0.00337	0.01165+/-	0.00101
1	2	160956+/-	402	0.21633+/-	0.00129	0.02035+/-	0.00039
2	3	2668+/-	55	0.00000+/-	NaN	0.00000+/-	NaN
2	4	27045 +/-	167	0.10017+/-	0.002462	0.00000+/-	NaN
2	5	6615+/-	84	0.99559+/-	0.01795	0.00000+/-	NaN
3	5	659+/-	31	0.00000+/-	NaN	0.00000+/-	NaN
3	6	8867+/-	96	0.01071+/-	0.00296	0.00000+/-	NaN
3	7	11019+/-	107	0.08841+/-	0.003973	0.00000+/-	NaN
3	8	124 +/-	22	0.00000+/-	NaN	0.00000+/-	NaN
4	8	2125 +/-	53	0.00000+/-	NaN	0.00000+/-	NaN
4	9	3909+/-	65	0.00000+/-	NaN	0.00000+/-	NaN
4	10	224+/-	23	0.00000+/-	NaN	0.00000+/-	NaN
5	10	483+/-	33	0.00000+/-	NaN	0.00000+/-	NaN
5	11	1146+/-	39	0.00000+/-	NaN	0.00000+/-	NaN
1	3	246+/-	27	28.10860+/-	3.13433	6.67519+/-	0.762416

Sp	ectr	um: dU(002		
lo	on				
U	0	Counts(U-238	Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Pea
1	2	3115 +/-	59	0.23340+/- 0.01151	0.25930+/- 0.01172
1	3	49161+/-	223	0.17895+/- 0.00212	0.08068+/- 0.00138
1	4	8683+/-	96	4.27514+/- 0.05247	0.81131+/- 0.01358
2	5	2367 +/-	53	0.48129+/- 0.02072	0.00000+/- NaN
2	6	11048+/-	108	0.64056+/- 0.010066	0.01793+/- 0.002191
2	7	59+/-	19	20.77372+/- 6.83501	0.00000+/- NaN
3	7	570+/-	31	0.00000+/- NaN	0.00000+/- NaN
3	8	6079+/-	81	0.08932+/- 0.00608	0.00000+/- NaN

3	9	971+/- 36	0.67902 +/- 0.045037	0.00000+/- NaN
4	10	548+/- 35	0.00000+/- NaN	0.00000+/- NaN
4	11	1458+/- 44	0.16669+/- 0.02117	0.00000+/- NaN
5	13	1272 +/- 42	0.00000+/- NaN	0.00000+/- NaN

Sp	Spectrum: dU003										
lo	on										
U	0	Counts(U-23	8Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak				
1	0	2030+/-	48	0.23676+/-	0.01562	0.00000+/-	NaN				
1	1	44891+/-	213	0.13557+/-	0.00192	0.00372+/-	0.00056				
1	2	90856+/-	304	0.22624+/-	0.00176	0.03935+/-	0.00070				
1	3	0+/-	1180	NaN+/-	NaN	NaN +/-	NaN				
2	2	527+/-	27	0.00000+/-	NaN	0.00000+/-	NaN				
2	3	4420+/-	70	0.00000+/-	NaN	0.00000+/-	NaN				
2	4	8109+/-	92	0.02234+/-	0.00345	0.00000+/-	NaN				
2	5	124 +/-	24	0.00000+/-	NaN	0.00000+/-	NaN				
3	5	740+/-	34	0.00000+/-	NaN	0.00000+/-	NaN				
3	6	1972 +/-	47	0.00000+/-	NaN	0.00000+/-	NaN				
4	6	0+/-	13	NaN+/-	NaN	NaN +/-	NaN				
4	8	205+/-	25	0.00000+/-	NaN	0.00000+/-	NaN				

Sp	Spectrum: dU004								
lo	n								
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak		
1	2	2594+/-	53	0.07680+/-	0.00961	0.00000+/-	NaN		
1	3	25543+/-	161	0.03662+/-	0.00159	0.00709+/-	0.00108		
1	4	3286+/-	61	2.66839+/-	0.05734	0.36591+/-	0.01383		
2	6	618+/-	30	0.00000+/-	NaN	0.00000+/-	NaN		

Sp	Spectrum: dU005											
l	on											
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak					
1	0	1734+/-	44	0.05376+/-	0.01324	0.00000+/-	NaN					
1	1	26597+/-	164	0.13439+/-	0.00251	0.00000+/-	NaN					
1	2	33923+/-	185	0.24556+/-	0.00306	0.05054+/-	0.00143					
2	2	1292 +/-	39	0.00000+/-	NaN	0.00000+/-	NaN					
2	3	3642+/-	62	0.00000+/-	NaN	0.00000+/-	NaN					
2	4	2783+/-	54	0.00000+/-	NaN	0.00000+/-	NaN					
3	4	378+/-	25	0.00000+/-	NaN	0.00000+/-	NaN					
3	5	639+/-	30	0.00000+/-	NaN	0.00000+/-	NaN					

3 6 498+/- 28 0.00000+/- NaN 0.00000+/- NaN

Sp	Spectrum: dU006										
lo	on										
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak				
1	1	363+/-	24	0.00000+/-	NaN	0.00000+/-	NaN				
1	2	3239+/-	60	0.12446+/-	0.00983	0.00000+/-	NaN				
1	3	29762+/-	174	0.05949+/-	0.00173	0.00441+/-	0.00094				
1	4	1528+/-	42	4.33418+/-	0.13138	0.98406+/-	0.04062				
2	6	161+/-	19	0.00000+/-	NaN	0.00000+/-	NaN				

Sp	Spectrum: dU007										
lo	on										
U	0	Counts(U-238	3Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak				
1	0	1313+/-	40	0.04593+/-	0.01664	0.00000+/-	NaN				
1	1	16041+/-	128	0.13467+/-	0.00372	0.00000+/-	NaN				
1	2	16330+/-	129	0.28112+/-	0.00490	0.05849+/-	0.00236				
2	2	417+/-	25	0.00000+/-	NaN	0.00000+/-	NaN				
2	3	1642+/-	43	0.00000+/-	NaN	0.00000+/-	NaN				
2	4	1039+/-	36	0.00000+/-	NaN	0.00000+/-	NaN				

Sp	Spectrum: dU008										
lon											
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak				
1	2	2196+/-	51	0.15654+/-	0.01354	0.01524+/-	0.00759				
1	3	17075+/-	132	0.08480+/-	0.00267	0.01708+/-	0.00149				
1	4	794+/-	31	5.74377+/-	0.24364	1.53221+/-	0.07937				

Sp	Spectrum: dUO2012									
lo	on									
U	Ο	Counts(U-238	Peak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Pea	k/U-238Peak			
1	0	3746+/-	66	0.92124 +/-	0.02364	0.00000 +/-	NaN			
1	1	46106+/-	216	0.31322 +/-	0.00303	0.02181+/-	0.00088			
1	2	115313+/-	341	0.23945 +/-	0.00162	0.01803 +/-	0.00050			
2	3	2545+/-	53	0.00000 +/-	NaN	0.00000 +/-	NaN			
2	4	9448+/-	100	0.09127 +/-	0.004453	0.00000 +/-	NaN			
2	5	1463 +/-	45	0.82221+/-	0.03995	0.00000 +/-	NaN			
3	5	418+/-	26	0.00000 +/-	NaN	0.00000 +/-	NaN			
3	6	2008+/-	50	0.00000 +/-	NaN	0.00000 +/-	NaN			
3	7	1617+/-	44	0.00000 +/-	NaN	0.00000 +/-	NaN			

 4
 8
 288 +/- 26
 0.00000 +/- NaN
 0.00169 +/- 0.016885

Spe	ectr	um: dUC	2013	I			
lon							
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	3	5942 +/-	81	0.00168+/-	0.00450	0.00000+/-	NaN
1	4	2647 +/-	55	1.28725 +/-	0.03648	0.00000+/-	NaN
1	2	444 +/-	26	0.13690+/-	0.04970	0.00379+/-	0.03965
2	6	238+/-	24	0.00000+/-	NaN	0.00000+/-	NaN

Sp	ect	trum: dU	02014				
lo	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	3715 +/-	64	0.01343 +/-	0.00765	0.00000 +/-	NaN
1	1	86738+/-	296	0.06803 +/-	0.00097	0.00000 +/-	NaN
1	2	264057 +/-	514	0.11217 +/-	0.00070	0.01180+/-	0.00025
1	3	186+/-	23	6.47632 +/-	0.83706	0.00000 +/-	NaN
2	2	599 +/-	30	0.00000 +/-	NaN	0.00000 +/-	NaN
2	3	5672 +/-	78	0.00000 +/-	NaN	0.00000 +/-	NaN
2	4	13735 +/-	120	0.00000 +/-	NaN	0.00000 +/-	NaN
3	5	887 +/-	35	0.00000 +/-	NaN	0.00140+/-	0.00449
3	6	2684 +/-	56	0.00000 +/-	NaN	0.00000 +/-	NaN
3	7	640+/-	31	0.00000+/-	NaN	0.00000 +/-	NaN
3	8	0+/-	41	NaN +/-	NaN	NaN +/-	NaN

Spectrum: dUO2015							
lon							
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	510+/-	27	0.00000 +/-	NaN	0.00000+/-	NaN
1	3	15987 +/-	127	0.02917 +/-	0.00183	0.00000+/-	NaN
1	4	4339+/-	68	1.84103 +/-	0.03599	0.12779+/-	0.00752
2	6	301+/-	23	0.00000 +/-	NaN	0.00000+/-	NaN

S	pec	trum: dUO2016	5	
lon				
ι	0	Counts(U-238Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak
1	0	3093 +/- 59	0.00000 +/- NaN	0.00000 +/- NaN
1	. 1	65753 +/- 257	0.06340+/- 0.00112	0.00000 +/- NaN
1	. 2	167654 +/- 410	0.11694 +/- 0.00090	0.01327 +/- 0.00034

1	3	62 +/- 17	7.97667+/- 2.30521	0.00000 +/- NaN
2	2	1028+/- 37	0.00000 +/- NaN	0.01933+/- 0.005793
2	3	5366 +/- 77	0.00000 +/- NaN	0.00000 +/- NaN
2	4	8808+/- 96	0.00000 +/- NaN	0.00000 +/- NaN
2	5	291+/- 22	0.00000 +/- NaN	0.00000 +/- NaN
3	5	705 +/- 35	0.00000 +/- NaN	0.00412+/- 0.005224
3	6	1606 +/- 47	0.00000 +/- NaN	0.00000 +/- NaN
3	7	226+/- 22	0.00000 +/- NaN	0.00000 +/- NaN

Spectrum: dUO2017			D2017				
lon							
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	659+/-	30	0.00000 +/-	NaN	0.00000+/-	NaN
1	3	15848+/-	127	0.03357 +/-	0.00209	0.00000+/-	NaN
1	4	2601+/-	57	2.58660+/-	0.06573	0.19535+/-	0.01407
2	6	197+/-	19	0.00000 +/-	NaN	0.00000+/-	NaN

Sp	ect	trum: dU(02018			-	
Ic	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Pea	k/U-238Peak
1	0	2955 +/-	61	0.00000 +/-	NaN	0.00000+/-	NaN
1	1	63723 +/-	253	0.06455+/-	0.00112	0.00000 +/-	NaN
1	2	150465 +/-	388	0.11733+/-	0.00095	0.01401+/-	0.00037
1	3	67 +/-	16	7.33588+/-	1.80594	0.00000 +/-	NaN
2	2	1168 +/-	40	0.00000 +/-	NaN	0.00000 +/-	NaN
2	3	5814 +/-	81	0.00000 +/-	NaN	0.00000 +/-	NaN
2	4	8473 +/-	93	0.00000 +/-	NaN	0.00000 +/-	NaN
2	5	164 +/-	20	0.00000 +/-	NaN	0.00000 +/-	NaN
3	5	912 +/-	37	0.00000 +/-	NaN	0.00008+/-	0.005842
3	6	1875 +/-	45	0.00000 +/-	NaN	0.00000 +/-	NaN
3	8	0+/-	59	NaN +/-	NaN	NaN +/-	NaN

Sp	Spectrum: dUO2019						
lon							
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	1	95+/-	17	0.00000 +/-	NaN	0.00000+/-	NaN
1	2	617+/-	29	0.00000 +/-	NaN	0.00000+/-	NaN
1	3	15798+/-	128	0.03082+/-	0.00220	0.00000+/-	NaN
1	4	2286+/-	51	2.84768 +/-	0.07287	0.28912+/-	0.01605

Sp	ecti	rum: dU()2020				
Ic	n						
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	4398+/-	73	0.00000 +/-	NaN	0.00000+/-	NaN
1	1	33052 +/-	183	0.05672 +/-	0.00152	0.00000+/-	NaN
1	2	45577 +/-	215	0.10932 +/-	0.00171	0.01303+/-	0.00068
1	3	165 +/-	21	0.00000 +/-	NaN	0.00000+/-	NaN
2	2	1616+/-	45	0.00000 +/-	NaN	0.00000+/-	NaN
2	3	2774 +/-	55	0.00000 +/-	NaN	0.00000+/-	NaN
2	4	1958 +/-	48	0.00000 +/-	NaN	0.00000+/-	NaN
3	4	278+/-	23	0.00000 +/-	NaN	0.01028+/-	0.01088
3	5	249+/-	24	0.00000 +/-	NaN	0.00000+/-	NaN
3	6	257+/-	24	0.00000 +/-	NaN	0.00000+/-	NaN
3	8	0+/-	299	NaN +/-	NaN	NaN +/-	NaN

Spectrum: dUO2021							
I	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak/U-	-238Peak
1	2	710+/-	30	0.00000+/-	NaN	0.00000+/-	NaN
1	3	7991+/-	91	0.03073+/-	0.00335	0.00000+/-	NaN
1	4	814 +/-	34	3.08797 +/-	0.14782	0.00000+/-	NaN

S	pect	rum: dU:	30800	1			
I	lon						
U	0	Counts(U-238	Peak)	(U-238+1)Peak/	Ú-238Peak	(U-238+2)Peak	/U-238Peak
1	0	1858 +/-	48	0.76038+/-	0.03083	0.07498+/-	0.01100
1	1	58150+/-	242	0.17039+/-	0.00187	0.01074+/-	0.00051
1	2	340067 +/-	584	0.15007+/-	0.00072	0.01141+/-	0.00020
1	3	397 +/-	33	24.83851+/-	2.06846	4.26065 +/-	0.37240
2	3	1821+/-	47	0.00000+/-	NaN	0.00000+/-	NaN
2	4	19735 +/-	142	0.06099+/-	0.00220	0.00000+/-	NaN
2	5	6275 +/-	81	0.51931+/-	0.01174	0.00000+/-	NaN
3	6	3196 +/-	61	0.00000+/-	NaN	0.00000+/-	NaN
3	7	5358 +/-	77	0.00000+/-	NaN	0.00000+/-	NaN
3	8	62 +/-	19	0.00000+/-	NaN	0.00000+/-	NaN
3	5	184 +/-	20	0.00000+/-	NaN	0.00000+/-	NaN
4	8	335 +/-	31	0.00000+/-	NaN	0.00000+/-	NaN
4	9	993 +/-	39	0.00000+/-	NaN	0.00000+/-	NaN

20	+/-	1
50	1/-	

4 10 30+/- 15 0.00000+/- NaN 0.00000+/- NaN

Sp	Spectrum: dU3O8002						
le	on						
U	0	Counts(U-23	8Peak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	1784 +/-	47	0.00000+/-	NaN	0.20427+/-	0.01777
1	3	63168 +/-	252	0.10509 +/-	0.00141	0.02023+/-	0.00071
1	4	56708 +/-	239	0.97450+/-	0.00585	0.04443+/-	0.00096
2	5	340 +/-	24	0.25434 +/-	0.06567	0.00000+/-	NaN
2	6	9451+/-	99	0.20464 +/-	0.005604	0.00000+/-	NaN
2	7	246 +/-	20	3.98611+/-	0.35510	0.00000+/-	NaN
3	8	1913 +/-	48	0.00000+/-	NaN	0.00000+/-	NaN
3	9	701+/-	30	0.05241+/-	0.03336	0.00000+/-	NaN
4	10	6 +/-	11	0.00000+/-	NaN	0.00000+/-	NaN
4	11	385 +/-	28	0.00000+/-	NaN	0.00000+/-	NaN
5	13	192 +/-	20	0.00000+/-	NaN	0.00000+/-	NaN
5	14	16+/-	8	0.00000+/-	NaN	0.00000+/-	NaN

Sp	Spectrum: dU3O8003						
l	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Pea	k/U-238Peak
1	0	1803 +/-	46	0.00000+/-	NaN	0.00000+/-	NaN
1	1	56453 +/-	238	0.06111+/-	0.00111	0.00016+/-	0.00026
1	2	217858 +/-	467	0.09989+/-	0.00072	0.00895 +/-	0.00024
1	3	205 +/-	19	5.26355 +/-	0.52428	0.00000 +/-	NaN
2	3	2754 +/-	55	0.00000+/-	NaN	0.00000 +/-	NaN
2	4	11486 +/-	109	0.00000+/-	NaN	0.00000 +/-	NaN
2	5	570+/-	30	0.00000+/-	NaN	0.00000 +/-	NaN
3	5	379 +/-	25	0.00000+/-	NaN	0.00103 +/-	0.00635
3	6	2396 +/-	52	0.00000+/-	NaN	0.00000 +/-	NaN
3	7	545 +/-	33	0.00000+/-	NaN	0.00000 +/-	NaN
4	8	294 +/-	27	0.00000+/-	NaN	0.00465 +/-	0.00982
5	10	37 +/-	15	0.00000+/-	NaN	0.09115 +/-	0.094859

Sp	Spectrum: dU3O8004								
lo	on								
U	0	Counts(U-238Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak					
1	2	953+/- 34	0.00000 +/- NaN	0.00000+/- NaN					
1	3	48232 +/- 221	0.01969 +/- 0.00084	0.00548+/- 0.00054					

1	4	27322 +/- 167	1.01211+/- 0.00869	0.04462+/- 0.00150
2	6	1729+/- 46	0.00000 +/- NaN	0.00000 +/- NaN
2	7	5+/- 8	0.00000 +/- NaN	0.00000 +/- NaN
3	8	181+/- 21	0.00000 +/- NaN	0.00338+/- 0.02122
3	9	30+/- 9	0.00000 +/- NaN	0.00000 +/- NaN

Sp	Spectrum: dU3O8005							
lon								
U	0	Counts(U-238	3Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak	
1	0	4326+/-	69	0.00000 +/-	NaN	0.00000+/-	NaN	
1	1	23342 +/-	154	0.10742 +/-	0.00249	0.00000+/-	NaN	
1	2	23409 +/-	154	0.15025 +/-	0.00289	0.02479+/-	0.00144	
1	3	127 +/-	16	0.00000 +/-	NaN	0.00000+/-	NaN	
2	2	629+/-	29	0.00000 +/-	NaN	0.00000+/-	NaN	
2	3	1540+/-	42	0.00000 +/-	NaN	0.00000+/-	NaN	
2	4	934+/-	35	0.00000 +/-	NaN	0.00000+/-	NaN	

Sp	Spectrum: dU3O8006								
lon									
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak		
1	2	3183 +/-	58	0.15614 +/-	0.01020	0.00000+/-	NaN		
1	3	29010+/-	172	0.07332+/-	0.00187	0.01396+/-	0.00098		
1	4	2178+/-	49	4.15070+/-	0.10372	0.81862+/-	0.02998		
2	6	134+/-	18	0.00000 +/-	NaN	0.00000+/-	NaN		

Sp	Spectrum: dU3O8007						
lon							
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	5449 +/-	75	0.04420 +/-	0.00469	0.00000+/-	NaN
1	1	22507 +/-	151	0.10971+/-	0.00253	0.00000+/-	NaN
1	2	20058+/-	142	0.14549 +/-	0.00306	0.02600+/-	0.00153
1	3	186+/-	16	0.00000 +/-	NaN	0.00000+/-	NaN
2	2	709 +/-	30	0.00000 +/-	NaN	0.00000+/-	NaN
2	3	1383 +/-	41	0.00000 +/-	NaN	0.00000+/-	NaN
2	4	687+/-	32	0.00000 +/-	NaN	0.00000+/-	NaN

Spe	ect	rum: dU3O800	8	
loi	n			
U	0	Counts(U-238Peak)	(U-238+1)Peak/U-238Peak	(U-238+2)Peak/U-238Peak

1	1	382+/- 26	0.00990 +/- 0.04851 0.00000 +/- NaN
1	2	2684 +/- 55	0.10801+/- 0.01119 0.00000+/- NaN
1	3	22189+/- 150	0.08165 +/- 0.00224 0.01408 +/- 0.00114
1	4	1367+/- 40	4.93917 +/- 0.15696 1.06107 +/- 0.04398
2	6	115+/- 16	0.00000 +/- NaN 0.00000 +/- NaN

Sp	ectr	um: dU0	D3001				
I	on						
U	0	Counts(U-238	BPeak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	298+/-	25	1.23113 +/-	0.14210	0.00000+/-	NaN
1	1	8715 +/-	96	0.47867 +/-	0.00952	0.01440+/-	0.00238
1	2	56528+/-	239	0.25530+/-	0.00241	0.01927+/-	0.00068
2	3	679 +/-	30	0.00000+/-	NaN	0.00000+/-	NaN
2	4	9332 +/-	99	0.11060+/-	0.004847	0.00000+/-	NaN
2	5	4122 +/-	71	0.76244 +/-	0.02045	0.00000+/-	NaN
2	6	0+/-	816	NaN +/-	NaN	NaN +/-	NaN
3	5	140 +/-	17	0.00000+/-	NaN	0.00000+/-	NaN
3	6	2467 +/-	54	0.00000+/-	NaN	0.00000+/-	NaN
3	7	4770 +/-	72	0.05129+/-	0.00647	0.00000+/-	NaN
3	8	212 +/-	24	0.00000+/-	NaN	0.00000+/-	NaN
4	7	13 +/-	8	0.00000+/-	NaN	0.00000+/-	NaN
4	8	505 +/-	29	0.00000+/-	NaN	0.00000+/-	NaN
4	9	910+/-	41	0.00000+/-	NaN	0.00000+/-	NaN
4	10	110+/-	18	0.00000+/-	NaN	0.00000+/-	NaN
5	10	70+/-	17	0.00000+/-	NaN	0.00000+/-	NaN
5	11	282 +/-	22	0.00000+/-	NaN	0.00000+/-	NaN
1	4	0+/-	8	NaN +/-	NaN	NaN +/-	NaN

Sp	ectr	um: dU0	03002				
lo	on						
U	0	Counts(U-238	BPeak)	(U-238+1)Pea	k/U-238Peak	(U-238+2)Peak	/U-238Peak
1	3	22925 +/-	153	0.21961+/-	0.00351	0.09242+/-	0.00223
1	4	7233 +/-	89	3.76767+/-	0.05153	0.62643+/-	0.01244
1	2	1029 +/-	42	0.28421+/-	0.03605	0.29039+/-	0.03149
2	5	1572 +/-	43	0.40716+/-	0.02497	0.00000+/-	NaN
2	6	9616+/-	101	0.53085+/-	0.009593	0.00000+/-	NaN
2	7	358+/-	24	7.65510+/-	0.53806	0.00000+/-	NaN
3	7	424 +/-	27	0.00000+/-	NaN	0.00000+/-	NaN
3	8	4229 +/-	69	0.07021+/-	0.00747	0.00000+/-	NaN

3	9	1787 +/-	45	0.43227 +/-	0.024349	0.00000+/-	NaN
4	11	1465 +/-	45	0.00000+/-	NaN	0.00000+/-	NaN
5	13	933 +/-	37	0.00000+/-	NaN	0.00000+/-	NaN
5	14	74 +/-	20	0.00000 +/-	NaN	0.00000+/-	NaN
4	10	432 +/-	27	0.00000 +/-	NaN	0.00000+/-	NaN

Spectrum: dUO3003							
lo	n						
U	Ο	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	0	1809 +/-	44	0.36448+/-	0.01954	0.00000+/-	NaN
1	1	23729+/-	155	0.19150 +/-	0.00326	0.01239+/-	0.00126
1	2	36313+/-	193	0.31314 +/-	0.00343	0.06672+/-	0.00150
1	3	134+/-	18	0.71390+/-	0.17310	0.00000+/-	NaN
2	2	502 +/-	27	0.00000 +/-	NaN	0.00000+/-	NaN
2	3	2223 +/-	53	0.00000 +/-	NaN	0.00000+/-	NaN
2	4	2839+/-	55	0.05150+/-	0.00862	0.00000+/-	NaN
3	5	387+/-	24	0.00000 +/-	NaN	0.00000+/-	NaN
3	6	418+/-	29	0.00000 +/-	NaN	0.00000+/-	NaN
3	7	32+/-	14	0.00000 +/-	NaN	0.00000+/-	NaN

Spe	ectr	um: dU	O3004				
lo	n						
U	0	Counts(U-238	BPeak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	1	42+/-	12	0.00000+/-	NaN	0.00000+/-	NaN
1	2	735+/-	31	0.04137 +/-	0.02808	0.00000 +/-	NaN
1	3	7799+/-	90	0.02525 +/-	0.00344	0.01071+/-	0.00242
1	4	859+/-	32	2.13662+/-	0.09829	0.15416+/-	0.03201
2	5	2+/-	7	0.00000+/-	NaN	0.00000 +/-	NaN

Sp	ectr	um: dUC	J 3005			
le	on					
U	0	Counts(U-238	Peak)	(U-238+1)Peak/U-238Pea	k (U-238+2)Peak	/U-238Peak
2	3	612+/-	32	0.00000 +/- NaN	0.00000+/-	NaN
2	4	360+/-	24	0.00000 +/- NaN	0.00000+/-	NaN
2	2	242+/-	25	0.00000 +/- NaN	0.00000+/-	NaN
3	6	13+/-	12	0.00000 +/- NaN	0.00000+/-	NaN
1	0	1368+/-	42	0.00000 +/- NaN	0.00000+/-	NaN
1	1	8755 +/-	95	0.11434 +/- 0.00453	0.00000+/-	NaN
1	2	8312 +/-	93	0.19045 +/- 0.00605	0.00316+/-	0.00325

1 3	95+/- 14	0.00000+/- NaN	0.00000+/- NaN
т J	JJ 1/ 17		

Spectrum: dUO3006							
lo	on						
U	0	Counts(U-238	Peak)	(U-238+1)Peak	/U-238Peak	(U-238+2)Peak	/U-238Peak
1	2	1236 +/-	37	0.20288+/-	0.02017	0.00000+/-	NaN
1	3	8510+/-	93	0.07558+/-	0.00389	0.00436+/-	0.00255
1	4	418+/-	26	5.13731+/-	0.34615	0.66550+/-	0.08764

Sp	ect	rum: dU	03007				
lo	on						
U	0	Counts(U-23	8Peak)	(U-238+1)Peak/U	-238Peak	(U-238+2)Peak	/U-238Peak
1	0	13553 +/-	122	0.00000+/-	NaN	0.00000+/-	NaN
1	1	9128 +/-	100	0.00000+/-	NaN	0.00000+/-	NaN
1	2	2280 +/-	50	0.00000+/-	NaN	0.00000+/-	NaN
1	3	482 +/-	28	0.00000+/-	NaN	0.04253+/-	0.01650
2	2	343 +/-	22	0.00000+/-	NaN	0.00000+/-	NaN

Appendix G. TOF-SIMS Images

nU003					
total	sum of rest	0 0 0 0			
mc:1858 tc:2.44e+7 I150 µm	mc:1787 tc:2.21e+7 → 150 µm	H=150 µm	I	⊢—150 μm	i—150 µm
	22 23 24 29 48 20 8 8 4	12 19 10 14 12 12	14 17 10 10 10 10 10 10 10 10 10 10 10 10 10		23 24 25 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14
AJ+ mc:60 tc:8.03e+5	C2H3+ mc:32 tc:1.59e+6	Si+ mc:12 tc:2.66e+4	Cu+ mc:15 tc:3.76e+4	Au+ mc:8 tc:7.26e+4	0+ mc:3 tc:4.74e+3
U+ mc.15 tc.7 4De+4		→ 50 µm 35 35 36 38 38 38 38 38 38 38 38 38 38 38 38 38	→ 150 µm 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	→ 50 µm 15 15 15 15 15 15 15 15 15 15	
		Herm: Si+/ total	Norm: Cu+/total	Norm: Au+ / Istal	Harm: O+ / total
i → + 50 µm	Horm: UO+ / total	i150 µm Res Res Norm: UO ₂ + / total	Here to gen	i — 150 µm 4 0 2 1 1 Norm: 302.061 / total)

nU005					
i—150 μm	i—150 μm	0			
140	110	0			
1216	110				
100					
000					
	200				
total mc-1498 to 1 80a+7	sum of rest				
i 1450 µm	inc 1457 (c 1.646 f)	⊢	⊢	i−−−150 μm	I
ALC: NOTE: STORE	24	10	1		
50	20			Contraction of the local division of the	
40	10			and the second	2.5
20	17	0		A State of the second sec	2.0
20	1000			and the second sec	1.5
					1.0
	*		i i i i i i i i i i i i i i i i i i i	Start Street	0.5
Al+	C2H6+	Si+	Cu+	Au+	0+
mc:59 tc:4.90e+5	mc:26 tc:8.93e+4	mc:11 tc:1.83e+4	mc:13 tc:2.38e+4	mc:11 tc:8.05e+4	mc:4 tc:4.17e+3
14	i i i i i i i i i i i i i i i i i i i	Distance of the local distance of the	1 ISO pin	0 100 pm	*
12		32		6	4
10	20	Participation and participation of the			0
a state of the second second	A STOLEN OF	21			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	100000000000000000000000000000000000000		8	2
4	10	10		•	8
2		State of the second	0	8	4
U+ 0	UO+ 0	UO2+ 0	U0 ₃ +	^a 302.06	8
mc:16 tc:9.20e+4	mc:44 tc:3.98e+5	mc:37 tc:4.17e+5	mc:4 tc:1.19e+4	mc:3 tc:1.23e+3	1.00
150 µm	Hou µm	150 µm.	150 µm	Hou µm	in nu not in t
26	24	5	15		
20 D	20			2000035000	
26	16			Real And And And And	°
1	12				4
10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2			
	4	1		The second the second second	2 Contract 1 Contract 2 Contract
Norm: Al+ / total	Norm: CaHa+/total	Norm: Si+ / total	Norm: Cu+/total	Norm: Au+ / total	Norm: O+/total
17 Th 12000000		5	11 Yaboon	100 222000	
H==+150 µm	150 µm	H=150 µm	i−−150 μm	1150 μm	i−−−150 µm
30	10	·	1		120
25	10		and the second		120
20	1888 - C			3	00
15	40	100			test internet
10		51 mil			A1 10 10 10 10 10 10 10 10 10 10 10 10 10
C Marco S	1000	William 12	2	10.500	25
Norm: Lik / total	Norm: LIO+ / total	Norm: UD++ / total	Norm: UD++ / total	Norm: 302.06 / total	Sum of Lif total
research of a rotal	Humin. Gover Lucai	rearrier of or a constant	rearing or organ / total	Horm: 302.00 / 101ai	mc:145 tc:1.25e+6

nU007					
150 pm	sum af rest	0			
mc:1314 tc:1.49e+7 → 150 µm	mc:1257 tc:1.35e+7 → 150 µm	100 µm	H-150 µm		I
40 30 30 11	20 16 12 8 4	10 10 10 10	10 10 11 12 12		2.5 2.6 2.5 2.6 1.6 1.6 0.5
Al+ mc:47 tc:3.49e+5	C2H6+ mc.22 tc:6.15e+4	Si+ mc:12 tc:1.42e+4	Cu+ mc:12 tc:1.81e+4	Au+ mc 9 tc 8 49e+4	0+ mc:4 tc:3.91e+3
→	n di contra la c			15 15 302.057 mc.2 tr.9 35aa2	
Herrit Al+ / total	Norm: C ₂ H ₂ +/ total	Herm: Si+/ total	++++++++++++++++++++++++++++++++++++++	Norm: Au+ / tetal	⊢ 150 µm
i → 1 50 µm 10 10 10 10 10 10 10 10 10 10 10 10 10	Horm: UO+ / total	i→150 µm norm: UO ₂ + / total	Herm: UO ₃ +/total	+	→→150 µm 100 80 80 80 80 80 80 80 80 80 80 80 80 8

nU02001	0.022					
⊢150 µm	2000	2400 2000 1100 1100 400				
total mc:2800 tc:6.46e+7	mc 2715 tc 6.23e+7					
і—— (60 µm	40 µm 40 20 10	50 pm	14 50 µm	50 µm 40 30	e 180 µm	2.0 1,8 1.5 1.0 0.8 0.5 0.3
AJ+ mc:50 tc:6.05e+5	C ₂ H ₀ + mc:53 tc:9.04e+6	Si+ mc:14 to:1.60e+5	Cu+ mc:51 tc:3.70e+5	Au+ mc:8 tc:6.18e+4	0+ mc:2 tc:9.39e+2	-0.0
U+	s uot	28 24 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	99 90 90 90 90 90 90 90 90 90 90 90 90 9	28 15 15 15 15 15 15 15 15 15 15 15 15 15	28 18 15 10 10 88 88 85 85 85 85 85 85 85	
Nerm: Al+ / total	10 10 10 10 10 10 10 10 10 10	mc co it.: (.si e+5) → (.co it.: (.co it.: (.si e+5) → (.co it.: (.co	e	10 10 10 10 10 10 10 10 10 10 10 10 10 1	12 150 µm 19 10 10 10 10 10 10 10 10 10 10 10 10 10	5 4 3 2 1
i150 µm	60 μm	i	60 μm 90 90	4.0 im 450 µm 3.5 3.6 3.6 1.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3	140 Limit 50 µm	123 108 80 40 20
Norm: U+/total	Norm: UU+ / total	Norm: UU ₂ + / total	 Norm: UO₃+ / total 	Norm: 3U2.05 / total	Sum of U / total	

nUO2005 I−−−150 μm 280 200 150 100	⊢−−150 µm 250 200 150 160				
total mc:295 tc:1.05e+7 ⊢ 50 µm	sum of rest mc:288 tc:1.03e+7 → 150 µm 2.5 2.0	⊢—150 µm 10 8	⊢—150 µm 8	⊢—150 μm ε	⊢—150 µm ол ол
Al+ mc:30 tc:9.62e+4 ⊢150 µm	^{1.5} C ₂ H ₃ + mc.3 tc:6.84e+3 ⊢150 µm	Si+ mc:12 tc:1.49e+4 ⊢ 150 µm	⁴ 2 Cu+ mc:9 tc:1.22e+4 ⊢→ 50 µm	4 2 0 mc:9 tc:7.51e+4 ⊢→ 50 µm	0.4 0+ mc:1 tc:2.36e+2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UO+ mc:16 tc:1.89e+4 ⊢→150 µm	0 UO2+ mc:11 tc:1.47e+4 ⊢→50 µm	2 1 UO3+ mc:4 tc:1.37e+3 ⊢→50 µm	0.0 0.4 0.2 302.045 mc:1 tc:4.90e+1 ⊢→ 50 µm	<u>⊢—</u> +50 µm
Norm: Al+/total	3 2 1 Norm: C ₂ H ₃ + / total ⁰	Norm: Si+ / total	Norm: Cu+/total	8 6 4 2 0 Norm: Au+ / total	18 12 08 0.4 Norm: O+ / total
н 150 µm 18 13 10 8 6 3 3 Norm: U+ / total	120 Horn 120	H 150 µm 13 10 6 3 Norm: UO ₂ + / total	⊢— 150 µm 3 2 1 Norm: UO ₃ + / total	H 10 µm 0.8 0.4 0.4 0.2 Norm: 302.045 / total ^{2,0}	E

nUO2007					
⊢ → 50 μm	⊢				
total 100	Sum of rest				
mc:310 to:9 91e+6	mc:293 tc:9 54e+6				
⊢ 50 um	⊢ 50 um	⊨— 50 µm	⊣ 50 um	⊨— 1 50 um	⊢ 50 um
30			10 8 5 3 0	864	
mc:36 to:1.01e+5	mc:6 to:1 17e+4	mc:17 tc:3 06e+4	mc:12 to:1 47e+4	mc-9 tc-9 14e+4	mc:3.tc:9.33e+2
→ 50 um	⊢ 50 um	⊢ 50 µm	→ 50 um	⊢ 50 µm	110.010.00072
· 2	20	40 30 20 10	20 15 12 08 0.4	0.4 0.4 0.2 0.0	
U+ mc:8.tc:8.01e+3	00+ mc:29 tc:4 87e+4	002+ mc:40 tc:6 90e+4	003+ mc:2 tc:9 86e+2	302.048 mc:1.tc:8.20e+1	
ilie:010:0101010	→ 50 µm	⊢ 50 µm	⊢ 50 µm	⊢ 50 µm	⊢ 50 µm
Norm: Al+ / total	Norm: C ₂ H ₃ + /total	Norm: Si+ /total	Norm: Cu+ / total	Norm: Au+ / total	Norm: O+ / total
50 μm	⊢−−− 50 µm	⊢—– 50 μm	50 μm	⊢— 50 μm	⊢—– 50 μm
2	30 20 10	30	2 1	10 0.8 0.4 0.2	40 20
Norm: U+ / total	Norm: UO+ / total	Norm: UO ₂ + / total	Norm: UO ₃ + /total	Norm: 302.048 / total 0.0	Sum of U / total

nU308001					
1000 μm	1000 рт 1000 родина 1000 родина				
mc:2887 tc:1.17e+8	mc:2788 tc:1.07e+8				
10 μm 40 20 Al+		1 50 µm 6 3 Si+	15 µm 15 10 6 Сп+	10 в 5 3 Ац+	H = 150 μm
mc:63 tc:1.77e+6	mc:74 tc:2.22e+6	mc:9 tc:1.10e+5	mc:19 tc:2.57e+5	mc:10 tc:8.14e+4	mc:4 tc:1.02e+4
I—I 50 µm	I—150 µm	I—I 50 µm	I—I 50 µm	⊢—I 50 µm	
U+ mc:5 tc:1.92e+4	40 20 UO+ mc:45 tc:7.13e+5	120 80 40 UO ₂ + mc:145 tc:4.70e+6	UO ₃ + mc:7 tc:2.24e+4	302.06 mc:3 tc:3.02e+3	
High Horney Horn	150 μm 150 μ	10 8 6 3 Norm: Si+ / total	150 μm 15 10 5 Norm: Cu+ / total	H-150 µm 6 3 Norm: Au+ / total	H = 150 µm 1 2 1 Norm: O+ / total
Horm: U+ / total 0	H 50 µm 10 20 Norm: UO+/total	150 µm 100 Norm: UO ₂ + / total	150 µт 4 2 Norm: UO ₃ + / total	на 150 µm 2 1 Norm: 302.06 / total	100 Norm: U+ / total + Norm mc:257 tc:5.52e+6

nU308003					
⊢−150 μm 1200 800 400	1200 800 400				
total 🗖	sum of rest				
mc:1441 tc:4.41e+7	mc:1325 tc:3.72e+7				
H 50 µm	10 20 10 0	F==150 μm		← 50 µm 6 4 2 0	⊢ 150 µm 4 2
mc:71 tc:1.51e+6	mc:27 tc:7.96e+4	mc:7 tc:3.65e+4	mc:10 tc:4.12e+4	mc:7 tc:5.36e+4	mc:7 tc:3.93e+4
→ 50 μm 4 2 0+ 0+	H 50 μm 40 20 U0+ 00+	120 μm 120 μ	⊢ 150 µm 2 1 UO3+	1.5 1.5 1.0 0.5 302.049	
HC-7 1C-2.849+4 → 50 μm 40 20 Norm: Al+ / total ⁰	MC-36 t2.1.022+6 → 50 µm 12 8 4 Norm: C ₂ H ₃ + / total	Hint: 143 (c, 4, 149+6 → 50 μm 4 2 Norm: Si+ / total ¹⁰	H0.4 10: 1090+4 H 50 μm 4 Norm: Cu+ / total ⁰	MC21C2.519+2 → 50 µm 6 4 2 Norm: Au+ / tota ⁰	i → 150 μm 12 8 4 Norm: O+ / total
⊢ 150 µm в б логт: U+ / total	I → 150 µm F S0 25 Norm: UO+ / total	Г—150 µm 200 100 Norm: UO₂+ / total	H 50 μm 4 2 Norm: UO ₃ + / total	H 50 µm 1.5 1.0 0.5 Norm: 302.049 / total	I → 150 µm 200 100 Sum of U / total mc:312 tc:5.44e+6

nU308005					
⊢— 150 µm 500 250	1				
total	sum of rest				
mc:804 tc:1.86e+/	mc:/52 tc:1.69e+/	1 170	1 170	1 170	1 1/20
10 pm					43 2 1
mc:38 to:1.67e+5	02113∓ mc12.tc://10e+/	mc:7 tc:5 35e+3		Au+ mc:11 tc:1 01e+5	0+ mc:4 tc:6 14e+3
H=150 µm	⊢	H=150 µm	Hete tet 1.200 (4	Het 11 te: no re to H=150 µm	110.4 10.0.14010
U+ mc:11 tc:8 83e+4	00 20 10 00+ mc 35 tc: 4 99e+5	76 50 25 UO ₂ + mc 98 tc:7 65e+5	4 3 2 1 0 003+ mc.4 tc: 1 19e+4	302.044 mc:2 tc:9 12e+2	
⊢−150 µm	⊢—150 μm	⊢—150 μm	⊢—1 50 μm	⊢−−1 50 µm	⊢—150 μm
Norm: Al+ / total ⁰	12 8 4 Norm: C ₂ H ₃ + / total	Norm: Si+ / total ⁰	4 3 2 1 Norm: Cu+ / total ⁰	Norm: Au+ / total ⁰	6 4 2 Norm: O+ / total
150 μm 10 10 Norm: U+ / total	150 µm 150 µm 50 25 Norm: UO+ / total	150 µm 150 µт 50 25 Norm: UO2+ / total	— 150 µm 4 2 Norm: UO3+ / total	⊢ 150 µm 2 1 Norm: 302.044 / total	150 µm 150 µm 150 100 50 Sum of U / total
					mc:167 tc:1.54e+b

nUO3001					
H 50 µm	1000 рт				
total "	sum of rest				
mc:2934 tc:1.03e+8	mc:2854 tc:1.00e+8	1 150	1 150	1 150	1 150
		20 16 10 6	20 10		1.2 1.2 1.2 1.2 0.2
AI+ mc:26 to:2 75o45	U2∏3+ mc:54 tc:1 31o+6	01+ ms:00 to:3 00ou45	00+ mc:08 to:0.93o45	AU+ mc:8 to:6 9/o±/	0+ me:2 te:3.40o±2
H 50 µm	H 50 µm	H 50 µm	H 50 um	H 50 µm	mc.z tc.J.40612
4 U+	20 10 UO+		1 UO ₃ +	2.0 1.5 1.0 0.5 302.049	
mc:5 tc:4.33e+3	mc:23 tc:4.68e+4	mc:81 tc:2.26e+5	mc:3 tc:2.58e+3	mc:2 tc:9.08e+2	1.170
PHS0 pm 20 10 Norm: Al+ / total 0	40 20 Norm: C ₂ H ₃ + / total	20 10 Norm: Si+/total	20 10 Norm: Cu+ / total	Norm: Au+ / total ⁰	Norm: O+ / total 0.0
⊢ 50 µm 3 2 1 Norm: U+ / total ⁰	150 µm 15 16 16 Norm: UO+ / total	→ 50 μm 60 40 20 Norm: UO ₂ + / total	⊢ 150 μm 3 2 1 Norm: UO₃+ / total	⊢ 50 µm 1.5 1.9 0.5 Norm: 302.049 / total	⊢ 50 µm бо 26 Sum of U / total mc:81 tc:2.19e+5
	nUC3001 i→150 µm nuc2934 tc:1.03e+8 i→150 µm nc:2934 tc:1.03e+8 i→150 µm nc:26 tc:2.75e+5 i→150 µm 14 20 0+ nc:5t ct:4.33e+3 i→150 µm 10 10 10 10 10 10 10 10 10 10	nU03001 i=150 μm i=150 μm icoo icoo sum of rest icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo icoo </td <td>nU03001 i+50 μm icon ictal 0 sum of rest 0 mc:2934 tc:1.00=+8 icon icon icon i-150 μm icon icon icon icon i-150 μm icon icon icon icon icon i-150 μm icon icon icon icon icon Al+ icon icon<td>nU03001 H 50 μm 2000 1000<td>nU03001 H 50 μm H 50 μm 2000 Sum of rest 0 nu0301 Sum of rest 0 0 0 0 0 nu0301 H 50 μm nu02304 H 50 μm 150 μm 150 μm 150 μm 150 μm 150 μm 150 μm 100 μm</td></td></td>	nU03001 i+50 μm icon ictal 0 sum of rest 0 mc:2934 tc:1.00=+8 icon icon icon i-150 μm icon icon icon icon i-150 μm icon icon icon icon icon i-150 μm icon icon icon icon icon Al+ icon icon <td>nU03001 H 50 μm 2000 1000<td>nU03001 H 50 μm H 50 μm 2000 Sum of rest 0 nu0301 Sum of rest 0 0 0 0 0 nu0301 H 50 μm nu02304 H 50 μm 150 μm 150 μm 150 μm 150 μm 150 μm 150 μm 100 μm</td></td>	nU03001 H 50 μm 2000 1000 <td>nU03001 H 50 μm H 50 μm 2000 Sum of rest 0 nu0301 Sum of rest 0 0 0 0 0 nu0301 H 50 μm nu02304 H 50 μm 150 μm 150 μm 150 μm 150 μm 150 μm 150 μm 100 μm</td>	nU03001 H 50 μm H 50 μm 2000 Sum of rest 0 nu0301 Sum of rest 0 0 0 0 0 nu0301 H 50 μm nu02304 H 50 μm 150 μm 150 μm 150 μm 150 μm 150 μm 150 μm 100 μm

dUO3001					
<u>⊢⊣ 100 µm</u>	I—I 100 µm				
2000	1000				
total -u	sum of rest				
mc:2191 tc:6.95e+7	mc:2140 tc:6.80e+7				
H 100 μm		H 100 μm	⊢ 100 µm 20 10	Η 100 μm	⊢ 100 µm 0.8 0.5 0.3
Alt me:12 to:1 19au5	U2∏3+ mc:47 tc:7 19o±5	01+ ms:13 to:1 64o46	00+ mc:09 tc:0 47o⊒5	Au+ mc:7 tc:// 52o+/	0+ mc:1 tc:1 56o±7
⊢ 100 um	H 100 um	⊢ 100 um	HILLED 10.2.47 810	H 100 um	mc. r tc. r. 306 rz
1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 10 5 10+ mc17 tc-2 54e+4	60 40 20 UO ₂ + mc73 tc1 39e+5	UO ₃ +	2.0 1.5 1.0 0.5 302.049 mc ⁻² tc ⁻⁵ 43a+2	
H 100 um	H 100 um	H 100 um	⊢ 100 um	H 100 um	⊢ 100 um
20 10 Norm: Al+ / total	40 20 Norm: C ₂ H ₃ + / total	20 10 Norm: Si+ / total	30 20 10 Norm: Cu+/total	Norm: Au+ / total ⁰	Norm: O+/total
— 100 μm в б 3 Norm: U+ / total	— 100 µm 12 8 4 Norm: UO+ / total	⊢ 100 µm 40 20 Norm: UO2+ / total) — 100 µm 4 2 Norm: UO₃+ / total	⊢ 100 µm 4 2 Norm: 302.049 / total	H 100 µm
					mc:56 tc:1.03e+5

dUO3003					
⊢ 100 µm 750 500	⊢ 100 µm 750 500				
total	sum of rest				
mc:996 tc:2.38e+7	mc:982 tc:2.32e+7				
H 100 µm	H 100 μm 10 CoHa+	⊢ 100 µm 8 4 Si+	⊢ 100 µm 12 8 4 01+	Η 100 μm 4 2 Διι+	⊢ 100 µm 2 1 0+
mc:27 tc:1.66e+5	mc:21 tc:1.45e+5	mc:11 tc:5.68e+4	mc:15 tc:8.38e+4	mc:6 tc:3.16e+4	mc:3 tc:8.06e+2
— 100 µm	I—I 100 µm	— 100 µm	— 100 µm	⊢н 100 µm	
4 2 0	20 10 UO+	20 10 UO ₂ +	2.0 1.5 1.0 0.5 UO ₃ +	20 1.5 1.0 0.5 302.052	
mc:5 tc:3.72e+3	mc:32 tc:3.74e+4	mc:32 tc:6.64e+4	mc:2 tc:8.87e+2	mc:2 tc:2.05e+2	1 1400
H 100 µm 75 60 25 Norm: Al+ / total 0	P 100 µm 15 10 5 Norm: C ₂ H ₃ +/total	Norm: Si+/total ⁰	Norm: Cu+/total ⁰	15 10 5 Norm: Au+ / total ⁰	Norm: O+ / total
⊢ 100 μm a a Norm: U+ / total ⁰	H 100 μm 20 Norm: UO+/total	Н 100 µm 40 20 Norm: UO2+ / total	⊢ 100 µm 4 2 Norm: UO3+ / total	H 100 μm	H 100 μm
					mc:117 tc:1.77e+5

dU03005					
⊢ 100 µт 400 200 total	H 100 µm				
mc:514 tc:6.55e+6	mc:505 tc:6.37e+6				
Η 100 μm 12 8 4 0	100 µm 12 8 4 СоНа+	H 100 µm	н 100 μm 5 0	⊢ 100 µm 4 2 Ан+	100 μm 1.5 1.0 0.5 0.4
m::14 tc:6.29e+4 → 100 µm 4 2 0+ m::6 tc:4.82e+3	01.03 me:12 tc:1.97e+4 → 100 µm 15 10 5 00+ me:18 tc:2 26e+4	mc:5 tc:6.66e+3 → 100 µm 002+ 002+ mc:11 tc:2 67e+4	mc:9 tc:1.29e+4 → 100 µm 1.5 1.0 0.5 UO ₃ + mc:2 tc:8 53e+2	mc:6 tc:2.67e+4 → 100 µm 1.0 0.8 0.5 0.3 302.045 mc:1 tc:7 20e+1	mc:2 tc:3.45e+2
H 100 µm	Г—100 µm 8 4 Norm: C₂H₃+ / total	100 µm 12 8 4 Norm: Si+/total	H 100 µm 12 8 4 Norm: Cu+/ total ⁰	100 µm 10 10 Norm: Au+ / total ⁰	⊢ 100 µm 4 2 Norm: O+ / total
⊢ 100 µm 12 8 4 Norm: U+ / total ⁰	I—I 100 µm 20 10 Norm: UO+ / total	H 100 μm 20 10 Norm: UO ₂ + / total	H 100 µm	⊢ 100 µm а 2 1 Norm: 302.045 / total	I 100 µm 100 µm 20 Sum of U / total mc:55 tc:7.52е+4

dU308003					
⊢ 50 µm 200 100 total	150 µm 200 100 sum of rest				
mc:240 tc:7.29e+6	mc:229 tc:6.55e+6				
⊢—150 µm 12 8 4 0	150 μm	μ 150 μm 3 2 1 51μ	⊢ 150 µm 2 1 Си±	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	μ 50 μm 2 1 0 1 0
me:14 te:1 33e+5	mc://tc://15e+3	mc:4 tc:7 30e+3	mc:3 tc:8 10e+3	mc:3 tc:// 23e+3	mc:3 tc:2 78e+3
He. 14 (c. 1.50e 13 → 50 µm 3 2 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	HC.4 IC.4.13813	HE-4 te. 7.50 pm H = 150 pm 20 UO ₂ + mc:41 tc:4.62e+5	Hit 3 to 100 rd 3 H = 150 µm 1.5 1.0 0.5 UO3+ mc:2 tc:7.63e+2	10 150 µm 150 µm 10 0.8 0.5 0.3 302.053 mc:1 tc:1.60e+1	nic.3 ic.2.70613
H == 150 μm 12 8 4 Norm: Al+ / total 0	H 50 μm 4 2 Norm: C ₂ H ₃ + / total	H === 150 μm 1 1 Norm: Si+ / total ⁰	Herefore μm 4 2 Norm: Cu+/total	Here 150 µm 1 Norm: Au+ / total ⁰	⊢— 150 µm 3 2 1 Norm: O+ / total
Here 150 µm 4 2 Norm: U+ / total ⁰	H 50 µm 20 10 Norm: UO+ / total	⊢ 150 µm 20 Norm: UO₂+ / total	1.5 μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	⊢ 150 µm 0.8 0.5 0.3 Norm: 302.053 / total	H150 μm 40 20 Sum of U / total mc:70 tc:8.08e+5

dU308005 → 150 µm 150 µm 1	→ 150 µm				
I 50 µm 4 2 Аl+	μ 150 μm	Генералия Син	H 50 μm 1.5 1.0 0.5 Si+	H = 150 μm 4 2 1 Au+	L 150 μm 1.5 1.0 0.5 0.4
mc:5 tc:1.18e+4 → 150 µm 4 2 1 0 U+	mc:3 tc:1.87e+3 → 150 µm s s 3 UO+	mc:2 tc:9.20e+2 → 150 µm ¹⁰ 8 5 3 UO ₂ +	mc:2 tc:6.00e+2 μ	mc:4 tc:9.76e+3 → 150 µm 0.8 0.5 0.3 302.054	mc:2 tc:3.69e+2
mc:4 tc:1.43e+4 → 50 μm 4 2 Norm: Al+ / total	mc:10 tc:6.13e+4 → 150 μm 4 2 Norm: C ₂ H ₃ + / total	mc10 tc:6.45e+4 → 150 μm	mci2 tc:1.15e+3 → 150 μm 4 3 2 1 Norm: Cu+ / total ⁰	mc:1 tc:9.20e+1 ┝── 150 µm 6 3 Norm: Au+ / total ⁰	H 150 µm 4 2 Norm: O+ / total
Г—150 µm 8 5 3 Norm: U+ / total	High Handler H	I 50 µm 10 10 Norm: UO₂+ / total	H 50 µm 4 2 Norm: UO₃+ / total	L	⊢ 150 µm 10 Sum of U / total mc:22 tc:1.24е+5

dU308007					
⊢— I 50 µm	i → 150 μm				
60 40 20	60 40 20				
total	sum of rest				
mc:/2 tc:1.15e+b	mc:/2 tc:1.01e+b	1 150	1 150	1 150	1 150
	2.0 1.5 1.0 0.6 0.0	2.0 1.5 1.0 0.6 0.0	Cu+	4 3 2 1 0	1.5 0.4
mc:4 tc:6.50e+3	mc:2 tc:1.65e+3	mc:2 tc:3.93e+2	mc:2 tc:7.30e+2	mc:4 tc:9.55e+3	mc:2 tc:3.04e+2
⊢—150 μm	⊢—150 μm	⊢—150 μm	⊢— 150 μm	⊢—150 μm	
4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UO+ mc:10 tc:5.32e+4	UO ₂ + mc:9 tc:5.03e+4	2.0 1.5 1.0 0.5 UO ₃ + mc:2 tc:1.25e+3	302.051 mc:1 tc:8.40e+1	
H 50 µm	нотт: C ₂ H ₃ + / total	1.5 μ 150 μm 1.5 1.0 0.5 Norm: Si+ / total	1 50 μm	Horm: Au+/total ⁰	H 150 µm 2 1 Norm: O+ / total
) — 150 µm 10 5 3 Norm: U+ / total	⊢ 150 µm 15 10 5 Norm: UO+/total	⊢ 150 µm 15 10 5 Norm: UO ₂ + / total	150 μm 1 Norm: UO ₃ + / total	H 50 μm	L 150 μm 15 10 5 Sum of U / total
					mc:17 tc:1.01e+5

dU001					
⊢Н 50 µm	1—150 µm				
2000	2000				
total 🔍	sum of rest				
mc:2569 tc:6.57e+7	mc:2535 tc:6.46e+7				
10 Δ14	H 50 µm		Η 50 μm 12 8 4 0	H 50 μm	H 50 µm 0.8 0.5 0.3 0.0
mc:29 to:1 72e+5	mc:31 tc:3 75e+5	mc:13 tc:1 //e+5	mc:14 to:8 06e+4	mc:6 tc:2 /5e+/	mc:1 tc:2 13e+2
H 50 um	H 50 um	H 50 um	H 50 um	H 50 um	110.110.2.100.2
U+ mc:4 tc:3 74e+3	12 12 12 8 4 0 UO+ mc:14 tc:4 94e+4	40 20 UO2+ mc:59 tc:2 81e+5	2.0 1.5 1.0 0.5 UO ₃ + mc ⁻² tc ⁻¹ 57e+3	2.0 1.5 1.0 0.5 302.052 mc;2 tc;5 78e+2	
⊢ 50 um	⊢150 um	H 50 um	⊢ 150 um	⊢150 um	⊣50 um
20 10 Norm: Al+ / total	20 10 Norm: C ₂ H ₃ + / total	Norm: Si+ / total 0	12 8 4 Norm: Cu+ / total ⁰	8 5 3 Norm: Au+ / total ⁰	Norm: O+ / total ⁰
H 50 μm	H 50 µm	H 50 µm	H 50 µm	H 50 μm	H 50 µm 40 20 Sum of U / total
					mc:65 tc:3.23e+5

dU003					
H 50 μm	H 50 μm 400 200				
total mo:C40 to:1 70o 17	SUM OF rest				
HC:640 tc:1.790+7 H 50 μm 40 20 0	H50 µm	H 50 µm	H 50 μm 4 2 Cu+	Η 50 μm	H 50 µm
Mir.73 tc:4.11e+5 H 50 µm 4 2 U+ mc.5 tc:4.37e+3	C2131 mc:8 tc:2.15e+4 H50 µm U0+ mc:1 tc:8.51e+4	ыл mc:10 tc:3.83е+4 Н50 µm ио2+ mc:40 tc:1.84е+5	тос5 tc:1.47е+4 H50 µm 1.5 U03+ mc:2 tc:3.12е+2	μ 1.25e+4 H 50 μm 1.0 0.5 0.5 0.3 302.054 mc:1 1c:9 70e+1	mc:2 tc:2.25e+3
H 50 µm H 50 µm 10 10 10 10 10 10 10 10 10 10	H=21 (c.0.5) (4 H=50 µm = 50	H 50 µm	H 50 µm	H 50 µm H 50 µm Autor Autor Au	H 50 µm 4 3 2 1 Norm: O+ / total
H 50 µm 4 Norm: U+ / total	H 50 µm Port 140 Norm: UO+ / total	H 50 μm 60 40 20 Norm: UO ₂ + / total	— 50 μm 2 1 Norm: UO ₃ + / total	H 50 μm	H 50 µm

dU005					
⊢Н 50 µm	⊢н 50 µm				
200	200				
total	sum of rest				
mc:4/1 tc:9.43e+6	mc:467 tc:8.88e+6	1.150	1 1 50	1.150	1 150
H 50 µm			H 50 μm	H 50 µm	1.50 µm
mc:84 tc:3 63e+5	C2113⊤ mc16 tc17 46e+3	ort mc:6 tc:1 18e+4	ou+ mc:4 tc:4 53e+3	Mut mc:6 tc:1 92e+4	0+ mc:2 tc:1 34e+3
H 50 um	H 50 um	H 50 µm	H 50 µm	H 50 µm	110.2 10.1.0 10.0
4 2 1 0	UO+	UO ₂ +	2.0 1.5 1.0 0.5 0.0	10 0.8 0.5 0.3 302 059	
mc:4 tc:4.65e+3	mc:15 tc:5.86e+4	mc:19 tc:8.06e+4	mc:2 tc:4.38e+2	mc:1 tc:4.70e+1	
H 50 μm 75 50 25 Norm: Al+ / total ⁰	H 50 μm 4 Norm: C ₂ H ₃ +/total	H 50 µm 8 4 Norm: Si+ / total	H 50 μm s Norm: Cu+ / total ⁰	H 50 μm s s Norm: Au+ / total ⁰	H 50 µm 4 2 Norm: O+ / total ⁰
H 50 µm	H 50 µm 20 Norm: UO+ / total	H 50 µm 20 Norm: UO ₂ + / total	H 50 µm 4 2 Norm: UO ₃ + / total	H 50 µm	H 50 µm
					mc.00 rc.2.208+3

dU007					
H 100 μm 1200 800 400 total	H 100 µm				
mc:1567 tc:1.37e+7	mc:1547 tc:1.33e+7				
100 μm 75 50 25 ΛΙ±	100 μm	Η 100 μm 12 8 4 5it	H 100 μm	Η 100 μm	100 μm 1.5 1.0 0.5 0.5
mc·91 tc·1 84e+5	mc:18 tc:3 83e+4	mc:12 tc:3 11e+4	mc:14 to:1 60e+4	mc:6 tc:1 96e+4	mc-2 tc-7 76e+2
U+ U+ U+ u+ U+ u+ u+ u+	H 100 µm H 100 µm 15 UO+ mc:20 tc:4.13e+4	H100 µm 40 UO ₂ + mc:56 tc:6.66e+4	HE 14 CE 1000 14 H 100 µm 1.5 0.5 UO ₃ + mc:2 tc:4.88e+2	1.5 302.05 mc:2 tc:1.23e+2	inc.2 (c.r.r00)2
H 100 µm	100 μm 20 10 Norm: C ₂ H ₃ + / total	100 μm 20 10 Norm: Si+ / total	H 100 μm 20 Norm: Cu+ / total ⁰	H 100 µm 20 10 Norm: Au+ / total ⁰	H 100 µm
100 μm 10 Norm: U+ / total	H 100 µm 100 µm 100 pm 100	⊢ 100 µm 50 25 Norm: UO₂+ / total	100 µm 12 8 4 4 12 4 4 12	H 100 μm 6 4 2 Norm: 302.05 / total	H 100 µm

dUO2012					
— 20 µm	— 20 µm				
2000	2000 1000				
total "	sum of rest				
mc:2410 tc:b./be+/	mc:235/ tc:b.51e+/	1 1 20	1 100	1 100	1 100
H 20 µm	PH 20 µm	20 µm	15 10 5	P→ 20 µm 6 4 2 0	1.5 0.1
mc:69 to:8 16e+5	C2113∓ mc:33 tc:6 76e+5	ort mc:26 tc:4 74e+5	mc:19 to:2 //5e+5	mc·8 tc·// /9e+/	0+ mc:2 tc:2 50e+3
H 20 um	H 20 µm	H 20 µm	H 20 um	H20 um	1110.2 10.2.000 10
	20 10 10+		2.0 1.5 1.0 0.5 0.0	2.0 1.5 1.0 0.5 302.055 0.0	
mc:6 tc:7.64e+3	mc:23 tc:8.29e+4	mc:42 tc:2.13e+5	mc:2 tc:9.58e+2	mc:2 tc:7.11e+2	
1 20 μm 75 50 25 Norm: Al+ / total ⁰	H 20 µm 20 19 Norm: C ₂ H ₃ + / total	H 20 µm 10 Norm: Si+ / total	H 20 µm	H 20 µm в 4 2 Norm: Au+ / total ⁰	H 20 µm 1.6 0.5 Norm: O+ / total
H 20 µm	H 20 µm 10 Norm: UO+ / total	H 20 μm 20 Norm: UO ₂ + / total	H 20 µm 1.5 1.0 0.5 Norm: UO ₃ + / total ⁰	H 20 μm 1.5 1.0 0.5 Norm: 302.055 / total	H 20 μm 40 20 Sum of U / total mc:57 tc:2.96e+5

dUO2014					
H 20 μm 400 200 total					
mc:637 tc:2.53e+7	mc:549 tc:2.25e+7				
120 μm 120 80 40 Δ14	⊢ 20 µm 4 2	— 120 µm б сіц	— 20 µm 4 2 Сиц	— 20 µm 4 2 Ант	120 μm 4 0
mc:123 tc:2 11e+6	02113∓ mc:5.tc:1.29e+4	mc·9 tc·7 51e+4	mc:5 tc:2 24e+4	mc·5 tc·2 92e+4	0+ mc:5 tc:1 11e+4
μα. 123 (2.2. τη είδ μ 120 μm 4 2 μα 0	HC.5 tc. 1,250 14 H−120 µm 10 10	HC.51C.7.51814 H-120 µm 40 20	HC.3 (C.2.24814 → 20 µm 1.5 1.0 0.5	HL:3 12.32814 H−120 µm 0.8 0.5 0.3 0.0	nic.3 (c. 1, 116 14
0+ mc·5 tc·6 95e+3	mc:25 tc:1 41e+5	mc:61 tc:4 28e+5	mc:2 tc:6 87e+2	002.040 mc:1 tc:6.40e+1	
20 µm 75 50 25 Norm: Al+ / total	→ 20 µm 4 2 1 Norm: C ₂ H ₃ + / total	Norm: Si+ / total	Norm: Cu+/total	Norm: Au+ / total ⁰	H 20 µm 1 2 1 Norm: O+ / total
H 20 μm 4 2 Norm: U+ / total 0	10 µm 10 Norm: UO+ / total	Hereit 20 µm 40 20 Norm: UO ₂ + / total	1.5 1.0 0.5 Norm: UO ₃ +/total ⁰	1.0 0.8 0.3 Norm: 302.046 / total	⊢ 120 µт во 40 20 Sum of U / total mc:70 tc:5.31е+5

dUO2016					
i—120 μm	⊢−1 20 µm				
400 200	400				
total mo:597 to:0 11o 17	SUM OF rest				
Inc.507 (c.2.11e∓7	1110.435 (C. 1.008+7		L 20 .um		L 20 .um
MIT mc:125 tc:2 05e+6	02113∓ mc:3.tc:6./00e+3	ort mc:8 tc:// 62e+/	ou+ mc:5 tc:1 54e+4	mc:6 tc:3 18e+4	0+ mc://tc:8.51e+3
He: 120 te:2:00€ 10	⊢	Hiele (c.4.62c (4 → 20 µm	⊢ 20 um	⊢120 um	110.4 10.0.01010
4 2 1 0	20 10 UO+	40 20 UO ₂ +	1.5 1.0 UO ₃ +	1.0 0.8 0.5 0.3 302.042	
mc:4 tc:5.79e+3	mc:21 tc:1.21e+5	mc:47 tc:3.05e+5	mc:2 tc:5.45e+2	mc:1 tc:4.4Ue+1	1 100
75 50 25 Norm: Al+ / total	Norm: C ₂ H ₃ + / total	Norm: Si+ / total	Norm: Cu+/total ⁰	Norm: Au+ / total ⁰	Norm: O+ / total
H 20 µm	H 20 µm 10 Norm: UO+ / total	1 20 µm 20 Norm: UO₂+ / total	→ 20 µm 1.5 1.0 0.5 Norm: UO ₃ + / total ⁰	H 20 µm	H 20 µm 40 20 Sum of U / total mc:63 tc:4.05e+5

dUO2018					
1 20 µm 400 200 total	120 µm 400 200 sum of rest				
mc:581 tc:1.88e+7	mc:481 tc:1.64e+7				
120 µm 120 80 40 Аl±	1 20 µm 2 1 0	1 20 µт 6 4 2 Si±	H 20 µm 4 2 1 0	1 20 µm 4 2 0	⊢ 20 µт 2 1 0+
mc:127 to:1 83e+6	mc:3 tc:5 47e+3	mc:7 tc:3 62e+4	mc:4 tc:1 34e+4	mc:6 tc:3 /1e+/	mc:3 tc:6 99e+3
H 20 µm 4 2 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	mc.3 tc.3 47913 → 120 µm 10 U0+ mc.24 tc:1 18e+5	HC71c:3:02e14 H 20 µm 10 10 10 10 10 10 10 10 10 10	HC.4 tc. 1.54e14 → 120 µm 1.5 1.0 0.5 1.0 0.3+ 0.0 0.3+	1.0 1.0 1.0 1.0 0.5 0.5 0.3 302.048 mc.1 tc:4.00e+1	10.3 10.0.000 13
He.+12.0 µm 120 µm 15 50 25 Norm: Al+ / total ⁰	He.24 to.1100 to H=120 µm 20 µm 21 1 Norm: C ₂ H ₃ + / total	Norm: Si+/ total	Norm: Cu+/total	Norm: Au+ / total ⁰	High 20 µm High 20 µm 1 2 1 0 1 0 1 0
H 20 µm 4 2 Norm: U+ / total	H 20 µm	1 20 µm 20 20 Norm: UO2+ / total	1.5 1.6 0.5 Norm: UO3+ / tota ⁰	L=120 μm 0.8 0.5 0.3 Norm: 302.048 / total	⊢ 20 µm 40 20 Sum of U/ total mc:63 tc:3.80е+5

→ 120 µm → 120 µm total aum of rest mc:463 tc:1.38e+7 mc:300 tc:1.26e+7 → 120 µm → 120 µm Al+ mc:300 tc:1.26e+7 mc:17 tc:9.45e+5 mc:3 tc:6.32e+3 mc:17 tc:9.45e+5 mc:3 tc:6.32e+3 mc:17 tc:9.45e+6 mc:17 tc:8.33e+4 → 120 µm → 120 µm 1 ± 20 µm ↓ 100 µm	dUO2020					
total mc:463 tc:1:38e+7 mc:463 tc:1:38e+7 mc:31 tc:1:32e+7 mc:31 tc:1:32e+7 mc:31 tc:1:32e+7 mc:31 tc:1:32e+7 mc:31 tc:6:32e+3 mc:4 tc:1:39e+4 mc:31 tc:6:32e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:6:00e+1 mc:21 tc:6:00e+1 mc:21 tc:6:00e+1 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:6:00e+1 mc:21 tc:6:00e+1 mc:21 tc:6:00e+1 mc:21 tc:6:00e+1 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:6:00e+1 mc:20 µm mc:21 tc:1:00e+3 mc:21 tc:1:00e+3 mc:21 tc:6:00e+1 mc:21	⊢ 20 μm 400 200	120 μm				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	total	sum of rest				
Al+ 120 µm	Inc.403 tc.1.30e+/	1110.300 t0.1.2007/	— 120 um	— 120 µm	— 120 um	⊨ 20 µm
Anc: 117 tc: 9.45e+5 mc: 3 tc: 6.32e+3 mc: 4 tc: 1.39e+4 mc: 4 tc: 1.39e+4 mc: 4 tc: 1.39e+4 mc: 4 tc: 9.30e+3 mc: 1 tc: 6.00e+1 mc: 0 + / total ⁰ Norm: 0 + / t					6 4 2 0	
→ 20 μm → 20 μm ↓ → 20 μm	mc:117 tc:9 45e+5	mc:3 tc:6.32e+3	mc:4 tc:1 39e+4	mc:4 tc:9 30e+3	mc:7 tc:4 25e+4	mc:3 tc:2 50e+3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I— 120 µm	⊢— 120 μm	⊢— 120 μm	⊢— 120 μm	⊢— 120 μm	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 10 5 UO+ mc17 tc:8 33e+4	UO ₂ + 0 10 10 10 10 10	1.5 1.0 0.5 UO ₃ + 0.0 mc ⁻² tr:1 0De+3	302.051	
Norm: Al+/total ⁰ Norm: C ₂ H ₉ +/total Norm: Si+/total ⁰ Norm: Cu+/total ⁰ Norm: Au+/total ⁰ Norm: Al+/total ⁰ Norm: C ₂ H ₉ +/total Norm: Si+/total ⁰ Norm: Cu+/total ⁰ Norm: Au+/total ⁰ H 20 µm 6 10 10 1 10 1	⊢— I 20 μm	⊢— 120 μm	⊢—120 μm	⊢— 120 μm	⊢—I20 μm	⊢— 120 μm
→ 20 µm → 20	80 60 20 Norm: Al+ / total 0	Norm: C ₂ H ₃ +/total	4 2 Norm: Si+ / total ⁰	4 2 Norm: Cu+ / total ⁰	6 4 2 Norm: Au+ / total ⁰	Norm: O+/total
Norm: U+/total Norm: UO+/total Norm: UO2+/total Norm: UO3+/total Norm: 302.051/total Sum of U/total	H 20 µm	10 μm	Г—120 µm 20 10 Norm: UO ₂ + / total	⊢ 20 µm 2 1 Norm: UO₃+ / total	H 20 μm 1.0 0.8 0.5 0.3 Norm: 302.051 / total	H 20 µm

Bibliography

- [1] American Physical Society, "Nuclear Forensics: Role, State of the Art, Program Needs," GPO, Washington, 2008.
- [2] Nuclear Regulatory Commission. (2010, Aug) [Online]. http://www.nrc.gov/materials/sp-nucmaterials.html
- [3] National Nuclear Data Center. (2010, Aug) Chart of the Nuclides. [Online]. http://www.nndc.bnl.gov/chart/
- [4] Joseph J. Katz and Eugene Rabinowitch, *The Chemistry of Uranium*. New York, NY: McGraw-Hill Book Company Inc., 1951.
- [5] R. A. Schueneman, A. I. Khaskelis, D. Eastwood, W. J. van Ooij, and L. W. Burggraf, "Uranium oxide weathering: spectroscopy and kinetics," *Journal of Nuclear Materials*, no. 323, pp. 8-17, 2003.
- [6] C. Plog, L. Wiedmann, and A. Benninghoven, "Empirical Formula for the Calculation of Secondary Ion Yeilds from Oxidized Metal Surfaces and Metal Oxides," *Surface Science*, vol. 67, pp. 565-580, 1977.
- [7] Wesley A. Schuler, "Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)," Air Force Institute of Technology, Master's Thesis AFIT/GWM/ENP/10-M03, 2010.
- [8] Rana N. S. Sodhi, "Time-of-flight secondary ion mass spectrometry (TOF-SIMS):-versatility in chemical and imaging surface analysis," *The Royal Society of Chemistry Analyst*, no. 129, pp. 483-487, 2004.
- [9] Douglas A. and others Skoog, *Principles of Instrumental Analysis*. Fort Worth, TX: Saunders College Publishing, 2006.
- [10] Y. Ranebo, P. M. L. Hedberg, M. J. Whitehouse, K. Ingeneri, and S. Littmann, "Improved Isotopic SIMS Measurements of Uranium Particles for Nuclear Safeguard Purposes," *Journal of Analytical Atomic Spectrometry*, vol. 24, pp. 277-287, 2009.
- [11] Physical Electronics. (2010, June) What is TOF-SIMS? [Online]. http://www.phi.com/surface-analysis-techniques/tof-sims.html
- [12] G. Spoto, "Secondary ion mass spectrometry in art and archaeology," *Thermochimica Acta*, no. 365, pp. 157-166, 2000.

- [13] N. Winograd, "Prospects for imaging TOF-SIMS: from fundamentals to biotechnology," *Applied Surface Science*, no. 203-204, pp. 13-19, 2003.
- [14] A. Benninghoven, F. G. Rudenauer, and H. W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends. New York, NY: John Wiley & Sons, 1987.
- [15] A. J. Nelson et al., "Uranium passivation by C+ implantation: A photoemission and secondary ion mass spectrometry study," *Surface Science*, no. 600, pp. 1319-1325, 2006.
- [16] A. V. Hamza, T. Schenkel, and A. V. Barnes, "Dependance of cluster ion emission from uranium oxide surfaces on the charge state of the incident slow highly charged ion," *The European Physical Journal D*, no. 6, pp. 83-87, 1999.
- [17] S. Boudjadar et al., "Contribution of ion emission to sputtering of uranium dioxide by highly charged ions," *The European Physical Journal D*, no. 32, pp. 19-24, 2005.
- [18] Fumitaka Esaka et al., "Dependence of the precision of uranium isotope ratio on particle diameter in individual particle analysis with SIMS," *Applied Surface Science*, no. 255, pp. 1512-1515, 2008.
- [19] Maria Betti, Gabriele Tamborini, and Lothar Koch, "Use of Secondary Ion Mass Spectrometry in Nuclear Forensic Analysis for the Characterization of Plutonium and Highly Enriched Uranium Particles," *Analytical Chemistry*, vol. 71, no. 14, pp. 2612-2622, July 1999.
- [20] International Bio-Analytical Industries Inc. (2010, Aug) [Online]. http://www.ibilabs.com/

REPORT D	OCUMENTATION PAGE	Form Approved OMB No. 074-0188			
The public reporting burden for this collection of inform maintaining the data needed, and completing and revi suggestions for reducing this burden to Department of Suite 1204, Arlington, VA 2220-4302. Respondents information if it does not display a currently valid OMB PLEASE DO NOT RETURN YOUR FORM TO	nation is estimated to average 1 hour per response, including the time for rev ewing the collection of information. Send comments regarding this burden es Defense, Washington Headquarters Services, Directorate for Information Op should be aware that notwithstanding any other provision of law, no person control number.	ewing instructions, searching existing data sources, gathering and timate or any other aspect of the collection of information, including erations and Reports (0704-0188), 1215 Jefferson Davis Highway, hall be subject to an penalty for failing to comply with a collection of			
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)					
24-03-2011	Master's Thesis	March 2010-March 2011			
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER			
TOF-SIMS for Rapid Nuclear	Forensics Evaluation of Uranium Oxide				
Particles	5b. GRANT NUMBER				
		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)		5d. PROJECT NUMBER 10ENP238			
Hocking, Hannah E., Capt, USAF		5e. TASK NUMBER			
		5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAM	MES(S) AND ADDRESS(S)	8. PERFORMING ORGANIZATION			
Air Force Institute of Technology		REPORT NUMBER			
Graduate School of Engineering a	and Management (AFIT/EN)				
2950 Hobson Way		AFIT/GNE/ENP/11-M10			
WPAFB OH 45433-7765					
9. SPONSORING/MONITORING AGEN	ICY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)			
Intentionally left blank					
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAILABILITY STA APPROVED FOR PUBLIC RELEA	ATEMENT ASE; DISTRIBUTION UNLIMITED				
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
Because of nuclear proliferation verified. The field of nuclear techniques exist, quicker, mor applications. Currently a host obtain isotopic ratios, chemical Secondary Ion Mass Spectrom properties for small amounts of to be particularly useful to the roughly assessing uranium con determined to an accuracy of TOF-SIMS imaging easily and relative abundances of various fundamental uranium oxide st	on concerns, nuclear material must be safe forensics addresses these concerns. While re accurate and less expensive methods are to f different analytical techniques, requiring al abundances and morphology for forension netry (TOF-SIMS) is a candidate technology of nuclear materials. After a thorough inve- ence forensic field as a triage technique ntaining materials for these properties. Ur 1 percent. Uranium oxide particles are cle d quickly reveals the basic shape and comp s secondary ions produced with TOF-SIMS ructures and properties.	guarded, and peaceful intentions established nuclear forensic of interest for nonproliferation ag a week or longer, are employed to particulate samples. Time-of-Flight gy for rapid evaluation of these estigation, this study found TOF-SIMS e, capable of quickly identifying and anium isotopic abundances can be arly distinguished from one another. position of particles. Additionally the S may uncover new information on			

15. SUBJECT TERMS

Nuclear, Forensics, Uranium, Mass Spectrometry, TOF-SIMS

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON Larry Burggraf, PhD, AFIT			
a. REPORT	b.	ABSTRACT	c. THIS PAGE		PAGES	19b. TELEPHONE NUMBER (Include area code)	
U		U	U UU	UU	UU	206	785-3636 x4507
			e		200	Larry.Burggraf@afit.edu	