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Abstract

As the concept of war has evolved, navigation in urban environments where GPS

may be degraded is increasingly becoming more important. Two existing solutions

are vision-aided navigation and vision-based Simultaneous Localization and Mapping

(SLAM). The problem, however, is that vision-based navigation techniques can re-

quire excessive amounts of memory and increased computational complexity resulting

in a decrease in speed. This research focuses on techniques to improve such issues

by speeding up and optimizing the data association process in vision-based SLAM.

Specifically, this work studies the current methods that algorithms use to associate a

current robot pose to that of one previously seen and introduce another method to

the image mapping arena for comparison. The current method, kd-trees, is efficient in

lower dimensions, but does not narrow the search space enough in higher dimensional

datasets. In this research, Kernelized Locality-Sensitive Hashing (KLSH) is imple-

mented to conduct the aforementioned pose associations. Results on KLSH shows

that fewer image comparisons are required for location identification than that of

other methods. This work can then be extended into a vision-SLAM implementation

to subsequently produce a map.
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KERNELIZED LOCALITY SENSITIVE HASHING

FOR

FAST IMAGE LANDMARK ASSOCIATION

I. Introduction

Current military and commercial operations already implement some level of

autonomy in today’s systems [61]. From unmanned aerial vehicles (UAV) to un-

manned ground vehicles (UGV), great successes have been made to remotely carry

out missions. UAVs are used today in military combat missions for intelligence, re-

connaissance and surveillance (ISR) and even close air support and air interdiction

as demonstrated by the RQ-1 Predator. UGVs, such as the iRobot 510 Packbot,

provide military ground troops with reconnaissance, surveillance, and first responder

capabilities such as explosive and other hazardous material detection and disposal.

Increasing the autonomy in these types of vehicles as well as others requires

computer vision [60]. This comes in many forms but overall narrows down to the

ability to use sensors to gather details about the environment and make decisions

based off of those details without human interaction. For instance, in object detection,

a sensor may detect an object such as a tree. The robot will use this information

to decide whether it can pass through obstruction, over or around it. The Boston

Dynamics LS3 scheduled for deployment in 2012 is one such robot having the expected

capability to follow a leader or travel to designated locations with the aid of GPS

all while carrying large loads over long distances [26]. To obtain and improve on

large scale implementations such as this, autonomous navigation and computer vision

through the use of images is key [60]. On a much smaller scale, research has been

completed using computer vision to conduct tasks such as vision-aided navigation

(VAN) [56], [68], [79]. One VAN subset in particular, robotic mapping, has made
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great strides since first developed in the late 1980s [69]. Entire environments can be

mapped from probabilistic approaches using many different types of sensors.

The concept of robotic mapping starts with the localization problem, which

includes position tracking, global localization and solving the kidnapped robot prob-

lem [41], [77]. Localization requires the use of sensors to match details that a robot

currently sees with details that are known about the environment. From there, the

theory progresses to the ability to create a map of an environment without any prior

knowledge. This thesis focuses on techniques to aid the mapping process through the

use of images.

1.1 Overview

Consider an agent in an unknown environment. As it randomly wanders, each

instance is an observation, and each observation an input to an overall map. While

these observations and maps take many forms which will be discussed throughout

this thesis, the point is that the recognition of observations help an agent to learn

the boundaries and obstacles of this unknown environment throughout exploration

and to localize itself. Those three concepts sum up the entire environment learning

process: exploration, localization, and mapping [44]. Exploring an environment while

using observations to localize and create a map is known as dead reckoning. This

involves using observations such as odometry to calculate change in location from its

original starting position. This process has no memory and therefore cannot recognize

repeated terrain. This concept of recognizing previously traveled terrain is known as

Simultaneous Localization and Mapping (SLAM) [25], [58]. However, the problem in

image recognition or more specifically, re-recognition is that objects in an environment

(and observations in general) are viewed differently depending on lighting, orientation,

and overall position compared to the last time that object was viewed. Therefore, if a

scene in an environment that was captured previously is recognized as new, the map

reflects this as unchartered territory. In order to conduct SLAM, the agent needs to

be able to efficiently match, or re-recognize observations to a database of observations.

2



This is known as the data association problem and is discussed in detail throughout

this thesis.

There are many types of observations agents collect such as vehicle odometry

information, inertial measurements, range information from lasers and sonar, and im-

ages. This thesis focuses on images, inertial measurements and odometry. The images

are used to conduct the data association, while all three can be used to subsequently

produce a map.

1.2 The Data Association Problem

The data association problem is best explained by comparing human to com-

puter vision. Given two images of a particular scene, a human identifies details of

what is specifically in the images and how they compare in terms of objects, people,

places, structures, etc. However, computer vision uses features based on contrast,

orientation, scale, etc. Therefore a human may describe an image as being a house

with a car in the driveway while a computer would describe a particular point on the

edge of the roof at which a drastic contrast change occurs between the roof and the

sky. This description is known as a feature.

In comparing images, a human would see that the same objects in the first image

are seen in the second and therefore are of the same scene. A computer calculates the

spatial distance between similar features in the images. If there are a lot of feature

matches between the images, then there is a high probability that the two images are

of the same scene.

Computer vision methods therefore must compare every feature in an image to

every other feature that the agent has discovered thus far to determine whether the

location is new or previously seen. This however requires every feature discovered to

be stored. Feature storage for data association can require large amounts of disk space

and memory; and methods to organize them can be computationally expensive. These

methods typically take on the form of data structures such as trees or hash tables.

3



Subsequently, the correspondence piece of data association can be computationally

expensive as well, because finding an exact match out of many requires analysis of

every entry in the database.

1.2.1 Exact Match vs k-Nearest Neighbors. Sometimes, the most computa-

tionally efficient solution instead of finding an exact match is to find a few close ones.

These are known as nearest neighbors to the query [52]. The idea is that there should

be a high probability that the exact match is among these neighbors. As alluded to

earlier, matches among features are made by spatial distance calculations. By visu-

alizing each feature as some d-dimensional point in ℜd space, the distance between

two points corresponds to their spatial distance. Common distance metrics in image

mapping are Euclidean and Mahalanobis distance. Given a query feature, q, and a set

of database features, {p1, ..., pN}, an exact match search would find the point, p such

that the distance between the query and the match is below a threshold and closer

than all other points. This, however, does not guarantee a correct match; therefore,

nearest neighbor searches are implemented to identify the closest k distances to the

query. The best choice of k to ensure the correct match is found is problem dependent.

1.2.2 k-d trees. Currently the most common method to conduct data asso-

ciation for image features is through the use of k-d trees [66], [5], [35], [13]. k-d trees

are a binary tree search method of conducting the data association. The variable k in

this instance, however, refers to the dimensionality of the data rather than the number

of nearest neighbors. These have been shown to produce successful data associations

in databases with hundreds of thousands of image features. The problem with trees

however, is that they require re-balancing and re-pruning as they grow larger which

can be computationally expensive. They are built with complexity O(N) in which

N is the time and complexity it takes to complete 1 operation. Tree maintenance is

then conducted with O(NlogN) [52]. As the number of features continuously grows,

they can also become overcrowded which adversely affects the data association [66].
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1.2.3 Kernelized Locality-Sensitive Hashing. Kernelized Locality-Sensitive

Hashing (KLSH) [42] is a hash table-based method of conducting the data association.

An extension of Locality-Sensitive Hashing, KLSH is a robust method that conducts

the nearest neighbor search of a query by associating matching or near-matching

features to the same location in a lookup table. Furthermore, differing from its parent

methods, it calculates all of the hashes in kernel space. This method has been used

previously on nearest neighbor search of images in many dimensions from Internet

datasets such as Flickr as well as others [42]. This research analyzes the robustness

of this method in the extension of its use in data association for image mapping

purposes.

1.3 Goals

This research focuses on improving the data association techniques needed for

successful mapping in vision-SLAM through the use of KLSH. The goals of this re-

search are to:

∙ Successfully implement KLSH as a data association technique for use in vision-

based SLAM

∙ Determine the metric position estimate as a result of the data association output

∙ Compare the correspondence accuracy of commonly used SIFT features vs HOG

features

∙ Determine the best parameter set for the KLSH algorithm

∙ Determine whether the best choice of the number of nearest neighbors is depen-

dent upon the overall size of the dataset

1.4 Results

The contributions of this research are the test results which provide an analysis

of the robustness of using KLSH to accomplish the data association in image mapping
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implementations such as vision-based SLAM and the recommendations of KLSH pa-

rameter settings for use in SLAM. The following provides the areas of focus in which

the method will be evaluated on:

∙ Recommend the best choices for the number of neighbors, k, required to suc-

cessfully associate a query feature to a matching feature in an entire database

∙ Evaluate performance in the context of probability of accurate match

∙ Evaluate performance in the context of memory and storage requirements

1.5 Thesis Outline

Chapter II first discusses vision-SLAM algorithms, then details other methods

to conduct each stage of the SLAM process. Then the background information for

this implementation is explained. Chapter III details how the data association im-

plementation was conducted, while Chapter IV reports implementation test results.

Finally, future work is discussed in Chapter V.
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II. Related Work

While in the past SLAM and other mapping algorithms have been implemented using

a variety of sensor inputs to include range information from lasers [27], [28], [58] and

sonar [44], this thesis explores methods using images. Vision-SLAM is not as widely

used as other methods because of the complexity required in image processing [16].

The memory required to store features and the time required for processing typically

prohibits online capability or requires trade-offs in accuracy. Vision-SLAM algorithms

vary in the types of additional sensors used, number and placement of cameras and

how the pose estimation is refined to create a map.

Many SLAM implementations use other sensor inputs to calculate pose estima-

tion using the images for verification and weighting. However, research has been done

using vision as the only sensor in conjunction with odometry such as [9] (only cam-

era was used for localization), [22], [35], [40], [48], [67], [78]. Stereo implementations

typically use either epipolar geometry to match feature movement between cameras

or visual geometry to calculate interframe movement [10], [13], [18], [64]. Other im-

plementations use multiple cameras to obtain a 360∘ view with omni-directional sens-

ing [39] as well as use features from hallway ceilings [36]. As the quality of features

that can be pulled depends on the environment, features extracted from outdoor en-

vironments, open and monotonous areas in particular are generally not the strongest

in tracking and are sparse. Therefore most vision-based SLAM research has been con-

ducted indoors, but outdoor implementations have been implemented as well [5], [48].

In addition to the solving the data association problem, there also exists the loop clos-

ing problem. This is the issue of determining whether a feature is new or previously

seen needing association. Both [11] and [57], via different methods, implement loop

closure techniques through the SLAM system learning and classifying the appearance

of all the features seen thus far as one subset. The sections that follow discuss common

methods to derive the final map through pose estimation.
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2.1 SLAM Methods

2.1.1 Extended Kalman Filter. The (EKF), per the name, is an extension

of the Kalman filter but allows for non-linear assumptions to be made in modeling.

As with similar filters to be discussed in this section, they all begin with the state

vector, xt. Shown below, the 2D state vector consists of robot pose and maps at time,

t

xt = (st,mK)T

xt = (sx,t, sy,t, s�,t,m1x,t ,m1y,t ,m2x,t ,m2y,t , ...,mKx,t ,mKy,t)
T

(2.1)

These poses, st consist of all x and y robot locations at each time instance as well

as the orientation, �. The map, mK , at each time instance consists of the coordinate

locations all of the features or landmarks observed at the corresponding robot pose,

while K denotes the number of features in the map. Therefore the each state vector

is a 2K + 3 length vector. This example denotes the state vector for 2D position and

estimation, however, this expression can be extended to higher dimensions.

To calculate and track the pose, the Kalman filter is basically a Bayesian filter

that represents each posterior as a jointly Gaussian distribution given by

p(xt∣zt, ut) = p(st,mK ∣zt, ut) (2.2)

assuming xt is a Gauss-Markov process. This states that the jointly Gaussian repre-

sentation of the robot pose and map is represented by parameters ut of size 2K + 3

dimensions and the covariance matrix, Σt of size (2K+3)×(2K+3). zt represents the

sensor data providing the odometry information used to re-estimate robot location.

The problem with the Kalman filter lies within its assumptions. The key assumption

is that the motion model, or function that estimates the state vector at time t, is

linearly dependent upon the previous pose and map at time t− 1 with added Gaus-

sian noise. As with most state transitions and models, this linearity relationship isn’t
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common. Typically, a robot such as described in this paper moves in a circular trajec-

tory [70] resulting in a non-linear pose function. Additionally, some sensors may be

appropriately modeled as non-linear functions of the pose as well. To resolve this, the

model is approximated using the Taylor Series expansion [69]. This approximation

is the driving force in the extended Kalman filter relaxing the linearity assumption.

This allows the motion model of transitions, xt between time t − 1 and t as well as

measurements, zt to be characterized as:

xt = f(x(t−1), ut) + wt

zt = ℎ(xt,mK) + vt
. (2.3)

in which f is the motion model using previous states, x(t−1) and input controls, ut

to estimate the current state, xt, and ℎ is the observation model of each observed

landmark, mK , at pose xt. wt and vt represent the zero-mean uncorrelated Gaussian

noise accounting for the unmodeled errors within the motion model and observations,

respectively. The general method for the EKF algorithm, as applied to SLAM, is

shown in Fig. 2.1

EKF Algorithm

1. Obtain initial state estimate using odometry data
2. Observe and add landmarks to the state
3. After moving, update the new current state using the odometry data
4. Update the estimated state from re-observing the landmarks
5. Add new landmarks to the current state

Figure 2.1: EKF Algorithm.

Each estimate step results in a calculation of the state vector consisting of robot

pose and observed map landmarks as well as a covariance matrix P representing the

following covariances [58]:

The update step then yields the following EKF equations as described by [54]
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Pt∣t =

[
Pxx Pxm
Pxm Pmm

]
t∣t

(2.4)

⎡⎣ x̄t∣t

m̄t

⎤⎦ =
[
x̄t∣t−1 m̄t−1

]T
+Wt

[
zt − ℎ(x̄t∣t−1, m̄t−1)

]
Pt∣t = Pt∣t−1 −WtStWt

T

St = ∇ℎPt∣t∇ℎT +Rt

Wt = Pt∣t−1∇ℎTSt−1

. (2.5)

where ∇ℎ is the Jacobian of ℎ calculated at x̄t∣t−1 and m̄t−1.
[
zt − ℎ(x̄t∣t−1, m̄t−1)

]
is called the innovation and is defined as the difference between the estimation and

the actual observation. St is then defined as the innovation covariance while Wt is the

Kalman gain. The Kalman gain is a weighting applied to update calculations that

directly affects how much each observed landmark should be trusted in relation to

the error calculations that are made.

2.1.2 Particle Filter. Particle filters represent a distribution by sampling

from that distribution. They can now be considered approximate, nonparametric and

represent any distribution, even Gaussian if needed. First we denote the particles,

which are the samples from the posterior distribution or more specifically, the state

vectors:
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�t = x
[1]
t , x

[2]
t , x

[3]
t , ..., x

[M ]
t . (2.6)

Here M is the number of particles in the set �t. Typically this number is large (i.e.,

tens of thousands). The likelihood that a particular state hypothesis, xt to be among

the particle set can be found using its Bayes filter relationship:

x
[m]
t p(xt∣z1:t, u1:t). (2.7)

[70] explains that this relationship remains true theoretically as M → ∞, but M ≥

100 is typically suitable in practice. At each time t, a new sample hypothesis is

generated for each mth particle from the distribution x
[m]
t p(x

[m]
t ∣ut, x

[
t−1m]), based

on the previous particle x
[m]
t−1 as well as the control used, ut.

Next the importance factor or particle weight, wt
[m] is found.

w
[m]
t = p(zt∣x[

tm]) (2.8)

By examining this likelihood, the weight represents the possibility that the mth par-

ticle is the correct representation of the environment considering the observed mea-

surements, zt and the known statistics, x
[m]
t . Next the particles are resampled. A

new temporary particle set, �̄t is formed by randomly drawing with replacement M

particles. The probability of drawing the mth particle is a function of its weight, w
[m]
t .

By drawing M random uniformly distributed numbers on interval [0, 1] and

selecting the particle that corresponds to the weight range of that random number,

a new particle set will be formed. For each m, the old particle will be replaced with

the drawn particle and reassigned a weight of 1
M

. Ideally, since this step is conducted

with replacement, the particles with higher importance or stronger weights tend to

be chosen more while the particles of less importance are eliminated.
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2.1.3 Rao-Blackwellized Particle Filter. The Rao-Blackwellized Particle

Filter RBPF is a Monte Carlo filtering technique. The drawback of the particle filter

is that in high dimensional spaces, sampling can be inefficient. Rao-Blackwellisation

is the recognition that the model is tractable and can be analytically marginalized out

or represented with only the necessary segments of the data. This leads directly in to

the advantage. In following this strategy, the size of the space requiring sampling is

greatly reduced.

Like ordinary particle filters, the state space is generalized as

p(y0:t∣z1:t) = p(y0:t−1∣z1:t−1)
p(zt∣yt)p(yt∣yt−1)

p(zt∣z1:t−1)
(2.9)

where yt and zt are the state vectors and observations respectively. The fundamental

piece in the Rao-Blackwellisation is that the state space is divided into two groups,

rt and xt resulting in

p(yt∣yt−1) = p(xt∣rt−1:t, xt−1)p(rt∣rt−1). (2.10)

This allows x0:t to be marginalized out of the conditional posterior distribution as

shown in Equation (2.11)

p(x0:ty1:t, r0:t)→ p(r0:t∣z1:t), (2.11)

which is just a fraction of the entire sample space. The importance sampling then

becomes

(r̄mt ) q(rt∣rm0:t−1, z1:t) (2.12)

with weights

wt
m =

p(r̄m0:t∣z1:t)

q(r̄mt ∣r̄m0:t−1, z1:t)p(r̄m0:t−1∣z1:t−1)
(2.13)
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and normalized by

w̃mt = wmt

[
N∑
j=1

wjt

]−1

(2.14)

.

In selection the samples, r̄m0:t are multiplied by large importance weights and

suppressed by smaller weights to obtain M random samples, r̃m0:t. This distribution is

approximated as p(r̃m0:t∣y1:t). Finally, apply a Markov transition kernel to obtain rm0:t

given by invariant distribution p(rm0:t∣y1:t).

2.1.4 FastSLAM. FastSLAM differs from other SLAM algorithms in that it

infers that the posterior can be factored [53].

p(�, st∣zt, ut, nt) = p(st∣zt, ut, nt)
∏
n

p(�n∣st, zt, ut, nt) (2.15)

It samples the path using a particle filter, in which each particle m, is its own

version of the map. But each particle also consists of N extended Kalman filters. The

mth particle contains the following EKF parameters:

S
[m]
t = st,[m], u

[m]
1,t ,Σ

[m]
1,t , ..., u

[m]
N,t,Σ

[m]
N,t (2.16)

The original FastSLAM, [50] makes the pose and observation estimates indepen-

dent of each other measuring the pose through a proposal distribution based solely on

the recent motion command and the observations through resampling. In situations

of high motion noise, this leads to the sampling of unlikely poses. FastSLAM 2.0, [51]

samples the pose as a function of both the control and the measurements yielding

s
[m]
t ≈ p(st∣st−1,[m], ut, zt, nt). (2.17)

This formulates the factorable proposal distribution as
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p(st∣st−1,[m], ut, zt, nt) = �[m]

∫
p(zt∣�n,t, nt, st)p(�n,t∣st−1,[m]zt−1nt−1) (2.18)

Then resampling is conducted with

w
[m]
t ∝ p(zt∣st−1,[m], ut, zt, nt) =

∫ ∫
p(zt∣�n,t, st, nt). (2.19)

Finally, feature tracking is ensured reliable by the presence and absence of features

in evidence calculations. Originally from [24], this algorithm is modified and en-

sures likely feature tracking through log-odds of the physical existence of landmarks

calculations.

2.2 Feature Extraction

No matter what mapping filter method is used, vision SLAM and the image

mapping arena as a whole depends on the ability to retrieve mathematically inter-

esting keypoints in an image. More importantly those same keypoints need to be

recognized in similar images. When a person looks at an image, key features would

be distinct objects, buildings or interesting scenic points that would strike memory

upon recognition in another image. However, in computer vision features are typically

detected by distinctive lighting, intensity, orientation changes as well as expected ge-

ometric and photometric deformations throughout the image. Furthermore, features

that are found in an image need to be invariant against these as well translation,

rotation, and scale changes. How much invariance is required, however, is dependent

upon the problem at hand [6]. Many researchers have found strong techniques that

have shown invariance in many aspects of images and environments both indoor and

outdoor. More well known techniques have been finding dissimilarity and texture [65],

using Hessian matrices [6], multi-scale phase based features [14], as well as one eval-

uated later in this thesis by called Scale Invariant Feature Transforms (SIFT) [46].
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SIFT has been very successful in the computer vision community and frequently used

in vision aided navigation [75] and image mapping [5], [9], [22], [18].

2.2.1 Interest Point Detectors. In order to help find these interesting points

in an image, interest point detectors have been implemented. These help to narrow

down the image space in which feature detection methods are used. Harris Corners

[33], developed in 1988 are a combination of scale-variant corner and edge detectors.

This method provided a basis for feature extraction and is therefore followed by many

variations. Region detectors such as the affine and scale invariant salient regions found

by [37], [38] are also popular. Finally blobs or regions lighter than their background

defined by smoothed curved edges, have been used as well [21].

2.3 Data Storage & The Data Association Problem

The data association problem is probably the most crucial part in image map-

ping. A wrong association will cause filter methods to diverge and maps to fall apart.

The problem is that direct search methods such as linear search can be computation-

ally expensive. And while distance metrics identify matches well, determining outliers

or mismatches can be even more expensive. These are the instances in which it is

better to find a few database objects that are close in distance to a query rather than

an exact match. These nearest neighbors have a high probability of match. Given a

query feature, q and a set of database features, {p1, ..., pN} an exact match would be

such that the distance between the query and the match is below a set threshold and

closer than all other points. Finding the k-nearest neighbors entails identifying the

closest k distances to the query. In covering common data association methods, this

section reviews two common types of data structures used to store data for improved

search techniques, trees and hash tables.

2.3.1 Data Association in SLAM. While the FastSLAM and FastSLAM 2.0

implementations both used maximum likelihood [49], [51] to solve the data association

problem, the most common method has been to store and match image features using
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kd-trees. Both [57] and [67] use kd-trees with SIFT features in conjunction with

SLAM via particle filtering, while [35] used them for 3D SLAM but added a Best

Bin First heuristic to the k-d tree search. Finally, [18] used vision-SLAM to map an

environment through visual odometry by associating SIFT features using hash tables.

2.3.2 Linear Search. The most basic method of solving the data association

is through linear search. In the context of matching images, this is conducted by

matching each feature to every other feature in the database, typically by Euclidean

or Mahalanobis distance methods. While this may be sufficient for small datasets in

low dimensionality, the operation time and complexity increases with O(Mn) where

M is the time and complexity to search 1 feature and n is the number of features in

the database.

At times the most efficient option isn’t necessarily to find an exact match to a

specific query. Sometimes, finding a few matches similar to the exact is best. Nearest

neighbor matching algorithms narrow down a large dataset to a more manageable

space. Then an exact search can be conducted on those few neighbors.

2.3.3 Nearest Neighbor Search Methods . The nearest neighbor search prob-

lem states that given a set P of points in ℜd, a data structure can be constructed

which given a query point q, will find the k points in P with the smallest distance

to q [52]. k in this context is the number of nearest neighbors desired. As alluded to

previously, distance is user defined, but typically an ls norm is used in which

∣∣p− q∣∣ = (
d∑

i=1

∣xi∣s)
1
s (2.20)

There are three main types of nearest neighbor (NN) output methods:

∙ Range Search

∙ k-NN

∙ Approximate k-NN (ANN)
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All of these methods are based on spatial distance from a query, q to a potential

matching point, p. A maximum range is established in searching for a match to a

query [52]. The range is the threshold that database objects must meet in order to

be matches or neighbors. There is no limit on the number of neighbors returned and

there are typically no heuristics to decrease the range as closer points are found. k-

nearest neighbor search simply finds the closest k points to the query. In approximate

k-NN search however, there is a termination point in accordance with finding the kth

neighbor. Once the distance between a point, p, and q surpasses a threshold or range,

no more neighbors will be returned, regardless of how far off of k.

2.3.4 kd-Trees. The kd-tree is a binary data structure tree used to store

finite points from a k-dimensional space [52]. Given a set of points in ℜkd , each can

then be placed in a binary tree based on distance from q. Using search methods, the

tree can prune down to a single match or a neighborhood of matches.

2.3.4.1 Tree Creation. Given an N×kd data set in which N is the

number of samples and kd being the number of dimensions in ℜkd space , a kd-tree

can be constructed using statistics of the data as well as the d-dimensional coordinates

or nodes of each sample. The leaves of the tree are nodes or sets of nodes, while the

branches are splits made based on the statistics of node locations. Trees are built

with O(N), in which N is the time and complexity of one completing one operation.

First, the variance of the points across each dimension is analyzed. The dimen-

sion, i with the greatest variance forms the first branch split. This split is in the form

of a hyperplane and is made at the median, m of the data in that dimension. The

first step is repeated with the remaining dimensions; that is the split is continuously

made at the median of the dimension with the greatest variance [7], [8], [47]. This

ensures balance in the tree with depth, d ≤ log2N where N is the total number of

data points across all samples or in this case feature vectors.
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Consider the 2D example in the left of Fig. 2.2 which forms the tree node layout

shown on the right. This becomes increasingly harder to visualize as the number of

dimensions increases, for example the SIFT feature vector to be discussed later is 128

dimensions in length, however the theory remains the same.

The binary tree as shown in the right of Fig. 2.2 is then built based off the

splits. Each node in the tree represents a line forming a hyperrectangle in the data

space. The first node represents the split made at 0.34 on dimension 1. The left

and right branches then represent the points in the space to the left and right of the

split, respectively. Like before, the first split on the left side occurs at the median

of dimension 2 as this is the dimension with the greatest variance across the points

in the hyperrectangle. This process is repeated until the branches lead to the leaves

of the tree which are the data points themselves. In this tree, each leaf represents a

singular data point, however some trees end in small clusters of similar data points.

In the latter case each of the siblings in the leaf are the nearest neighbors of the

query. Observing the tree it is seen that each node is represented by the (i,m) values

denoting the dimension and value among the points the split was made.

2.3.4.2 Nearest Neighbor and Best Bin First Search. Nearest neighbor

algorithms are performed finding the data point closest in Euclidean distance to the

query point, or feature vector to be matched. First the tree is traversed in order to

find the bin that the query point fits in according to the current tree structure. In that

traversal, the one-dimensional distances to those branching points are also calculated

and recorded in a priority search queue. Once the bin is found, the leaf in that bin can

be tested for matching as a good approximation to the nearest neighbor. The distance,

D from the q to the data point in that bin calculated. This bin is considered the best

bin. All subsequent searching is completed starting with the best bin first (BBF).

The tree is then backtracked, pruning off branches whose one-dimensional distances

from q are greater than D. This procedure ensures the most efficient detection of the

matching data point [52].
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Figure 2.2: kd-tree example. Each of the points in ℜkd space are shown
in this k = 2 kd-tree data space illustration (left). The division lines are
made based on the statistics of the points in that section. For instance, the
first line dividing A − D and E − H was made along dimension 1 because
the variance of the points across dimension 1 was greater than that of
dimension 2. The line is drawn at the median of the points in dimension
1. This process is repeated until the k points are left. The binary kd-tree
branch diagram (right) can then be formed based on the points on which
side of each division line the points are on.

2.3.4.3 Tree Size. While most literature fails to comment on the size

of the overall tree and number of data points or leaves that should appear at the

branch ends, the understanding is that the tree should be considerably large enough

so that the data space can be accurately spread throughout allowing for the smallest

search space possible in trying to compare query and data feature vectors. In other

words, trial and error may be the best option.

2.3.4.4 Size of k. This concept has been mainly been tested on mid-

dimensional datasets of 8 − 20 dimensions [7], [8], [52]. Typically, the performance

decreased as the dimensionality increased. Adding heuristics such as those noted

above allowed for use in much higher data space. Similar to the intention for this

work, [47] performed similar tree matching techniques using 128-dimension SIFT fea-

ture vectors with good results. The purpose of their work was to experiment with

the NN algorithm using dimensionality reduction on SIFT vectors matching features
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from varying viewpoints and scale changes. While they had varying results in the

dimensionality reduction, they had accurate matching using the full length vector.

Essentially, the rule of thumb to follow is k≪N .

2.3.4.5 Tree Maintenance. Adding or deleting points from the tree

can be done at any time with complexity O(NlogN); however, periodic balance checks

should be accomplished to ensure that the tree is still balanced accordingly. The tree

shown in Fig. 2.2 is a depiction of a fully balanced tree. If nodes are deleted from

one side of the tree more than the other, imbalance occurs. The degree of imbalance

required to cause issues in the algorithm is dependent on the problem, but overall

this balance is key when performing nearest neighbor-like algorithms.

2.3.4.6 Nearest Match vs. a close one. As remarked in [67], the disad-

vantage of using a kd-tree is that sometimes the match produced isn’t the nearest but

a close one. While some algorithms settle for this, others use heuristics, to help ensure

nearest match results. One such heuristic searches through a predetermined number

of branches to help ensure that the search wasn’t stopped prematurely. In another

implementation, [52] built multiple kd-trees, producing different branch structures

while projecting points onto different hyperplanes to ensure the right data point was

converged on.

2.3.5 LSH. Locality-Sensitive Hashing (LSH) was originally developed by

[34] then refined by [31]. By hashing points to a series of hash tables, the algorithm

ensures a high probability of collision for objects that are close to each other in

distance than those that are farther apart [31]. This concept and variations thereafter

( [1], [3], [15]) have been used for similarity search on several sets of data to include

images in large dimensions. A new hashing family was then introduced by [2] in which

the distances that defined the family were measured according to the ls norm. Similar

to the intent of this thesis, LSH was successfully used in agent localization for image

mapping in [59].
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A LSH algorithm is defined by the number of nearest neighbors output or how

near a point should be to be considered. The first definition below describes the cR-

nearest neighbor formulation. See Fig. 2.3 for an illustration. This is similar to k-NN

and ANN search discussed previously.

LSH Definition 1 Consider an N×d dataset P in which N are the

number of points, p and d are the number of dimensions in ℜd space

with parameters radius, R > 0 and probability � > 0. A data structure

can be constructed which given a query point q, which does the following

with probability 1− �: in the event there is an R-near neighbor of q in

P, the cR-near neighbors of q in P are reported.

P

Rq

cR

Figure 2.3: cR-near neighbors illustration from Definition 1.

LSH algorithms use more than one hash function to store data, also known

as hash function families, ℋ. Increasing the number of hash functions increases the

probability that a collision between p and q is much higher for points that are close

and lower for points that aren’t. This probability as seen in Equation (2.21) below is

related to the distance between those points.
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LSH Definition 2 A family of hash functions, ℋ is called

(R, cR, P1, P2)-sensitive if for any points p,q ∈ ℜd.

⎧⎨⎩ ∣∣p− q∣∣ ≤ R PH [ℎ(q) = ℎ(p)] ≥ P1

∣∣p− q∣∣ ≥ cR PH [ℎ(q) = ℎ(p)] ≤ P2

(2.21)

P1 and P2 in this instance are probability thresholds that meet P1 > P2 (R <

cR). In other words, every hash function in the family must report hash results

such that when the distance between p and q is within R, there is a high probability

(≥ P1) of collision. Additionally, when the distance is greater than cR, there is a low

probability of collision (≤ P2).

As mentioned earlier, there are a few different methods to form the LSH hash ta-

bles to solve the nearest neighbor algorithm. This discussion is based on the technique

developed by [31]. This technique transforms all points into the Hamming cube, Hd,

to compute hashes. See Appendix A.1 for review on Hamming cube representation

via the Unary function.

First, point p is represented as a binary vector, v(p), with length d′, where

d′ = Cd and C is the largest point across all dimensions in p. Next, denote I as

the subset of all dimensions in d′: I ∈ {1, . . . , d′}. There are t hash functions in

each bucket, and b buckets will represent the hash sequence for each point. One hash

bucket is defined as:

gj(v(p)) = v(p)∣Ij (2.22)

where v(p)∣Ij is the projection of v(p) on the coordinate set Ij. The following example

illustrates the computation of v(p)∣Ij in 2 dimensions. Consider the point from Equa-

tion (A.2) in the example in Appendix A.3, v(p) = [ 1 1 1 0 0 1 1 1 1 1 ] where d′ = 10

and set t = 3. At random, select t coordinates from the set, 1, . . . , d′ to project onto,

for example I = {2, 5, 8}.
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 1 1 1 0 0 1 1 1 1 1

 1 0 1 1 0 1
Figure 2.4: LSH random projection example.

Fig. 2.4 shows that the projection of the point onto the coordinate set in Ham-

ming space is the concatenation of the bits in those positions. Thus, gj(p) = [ 1 0 1 ].

Each bit selection in gj(p) is a different hash function, ℎ that forms an overall hash

bucket. Each bucket represents the hashing of a point to a table. This process is

repeated b times such that

g(p) = ⟨g1(p), . . . , gb(p)⟩ (2.23)

These b concatenations are the indices to the b hash tables point p is stored

to. Query processing simply uses the same functions to hash query points to. The

act of retrieving a database point from the indices calculated is considered a collision.

Points are retrieved until all b buckets have been retrieved or the total number of points

retrieved exceeds 2b. To find an exact match to q among all of the neighbors gathered,

requires using any of the nearest neighbor searches mentioned in Section 2.3.3. Fig. 2.5

outlines the general algorithm.

2.4 Exact Match Search via Line Fitting

With the exception of linear search, the previous section examined data asso-

ciation methods to find a number similar to a given query with the high probability

that the exact match is included. To then find an exact match, this section reviews

line fitting techniques to conduct image registration. As image registration deals with
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LSH Algorithm

1. Preprocessing

(a) Map all points to Hamming space.

(b) Choose t hash functions from ℋ to form a bucket (gj(p) =
[ℎ1(p), ℎ2(p), . . . , ℎt(p)])

(c) Select b hash function buckets (g1(p), . . . , gj(p), . . . , gb(p))

(d) For each j bucket, compute projection of vector, v(p) on to t dimensions
in the coordinate set, Ij

i. This forms the tuple gj(p) = ⟨g1(p). . .gL(p)⟩, for 1 < j < L
2. Processing and Matching a query, q

(a) Hash each query point using the same b hash function buckets as in pre-
processing

(b) Retrieve all points in the subsequent buckets g1(q), . . . , gb(q) until either
of the following occur:

i. All points from the b buckets have been retrieved
ii. Total number of points retrieved exceeds 2b

(c) Use nearest neighbor search techniques to answer query

Figure 2.5: LSH Algorithm.

aligning images with translation, rotation, and scale changes, line fitting between

many feature matches between images in the presence of outliers is key to ensuring

the feature match locations in the images are the same [80].

2.4.1 Least Squares Estimation. Given a set of data points in X and Y ,

finding the line or model that best represents or fits the data, the most common

technique is the least squares estimation LSE method. The LSE method states that

out of all possible models, the best model follows the following:

Best Model = min

(
n∑
i=1

(yi − f(xi))
2

)
(2.24)

Fig. 2.6 shows a set of data points that have been fit to the line shown. Each resid-

ual, or the vertical distance between each point and the line must been within some
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threshold to be considered an inlier. Any points beyond this threshold are considered

outliers and do not fit the model that the data has been fit to.

Figure 2.6: Least Squares line fitting example.

Like other techniques, least squares estimation has its flaws. At times, it can

only take as little as one outlier to skew the result producing an inaccurate repre-

sentation of what is constituted as an inlier. Fig. 2.7 shows an example of one such

downfall.
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Figure 1.4: These figures describe the effect of one outlier (red dot) on the least
square estimation of the parameters of a 2D line.

robustness exactly when this type of information is lacking: robustness in presence

of non-modeled distributions! Moreover, even if the bias stays bounded, the outliers

will still affect the estimate, which will differ from the “true value” of the parameter

vector.

Despite the very intuitive and qualitative character of the previous considerations

and the simplicity of the 2D line estimation example, we believe that it is now clear

why the estimation of the parameters of a model in presence of outliers constitutes

a very tricky and challenging problem. RANSAC is an effective algorithm to cope

with these types of problems.

13

Figure 2.7: Least Squares Estimation failure example [52]. The least
squares line on the left was calculated based on the points shown. The
plot to the right shows the negative affect just one outlier can have on line
fitting of a data set using least squares.
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2.4.2 Least Median Squares. Similar to the least squares algorithm, least

median squares is also widely used to model data. The least median squares (LMS)

algorithm simply states, out of all possible models, choose the model that best mini-

mizes the data such that

Best Model = min
(
M([(y1 − f(x1))2, (y2 − f(x2))2, ..., (yn − f(xn))2])2

)
(2.25)

where M is the median of the residuals. This method is very accurate even in the

presence of outliers. It outperforms other algorithms to include RANSAC, as discussed

later, up to the case in which the outliers account for more than 40% of the dataset [73].

This is known as the breakdown point. This method also fails in situations in which

a majority of the data is positioned on a dominant plane in the image [71]. In other

words, since this algorithm is dependent upon the minimum median of the residuals,

if the majority of those inputs are originating from one localized area, it can have an

undesired affect on the fit line.

2.5 Summary

This chapter has provided a detailed study of all techniques required to con-

duct fast image retrieval for vision-based SLAM. First, SLAM filtering methods were

reviewed, presenting detail on the pose estimation process. Then to answer the data

association, nearest neighbor search methods using tree and hash table-based ap-

proaches were evaluated. Finally, to conduct exact match image registration to match

the query based on the nearest neighbors found, common line fitting techniques were

eliminated as possible options.
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III. Methodology

This implementation combines the work of previous researchers and tests their capa-

bilities in a SLAM-like application with concentration on the data association. The

results of the data association testing can be used for vision-SLAM as well as other

localization techniques through image mapping. The general flow is shown in Fig.

3.1. In separate tests, SIFT features and features of type Histograms of Oriented

Gradients are broken into database and query features as determined by the agent’s

path. Each query is associated with k similar neighbors using KLSH. This method

stores each feature in a hash table by transforming points into kernel space prior to

completing hash calculations. Then an exact match amongst the neighbors is found

using RANSAC, in which image planes are aligned by calculating a transformation

matrix using a 2D image homography. Then feature matches in each image are com-

pared using distance metrics allowing for removing of false feature matches, known

as outliers. The output can then be used for localizing agent pose in the mapping

process. This implementation was conducted running all landmark features through

each method before proceeding to the next, but can be done iteratively. This chapter

first presents the background of each method used in the implementation. It then de-

tails how these methods were used to conduct the data association for this SLAM-like

setup.

3.1 Implementation Background

This section discusses the background and related work of the concepts imple-

mented in this research. First, SIFT and HOG features are reviewed for image feature

extraction. To compute the data association a k-nearest nearest neighbor method, an

extension of LSH, known as KLSH is discussed. Finally, RANSAC is reviewed which

answers the query using the nearest neighbors provided by KLSH.

3.1.1 Feature Extraction. Using computer vision to detect features requires

strong detection capability in images whose scenes have specific orientation changes

among the objects and vary in scale and translation. Tracking of these features from
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Figure 3.1: Implementation flow block diagram.

image to image requires repeatability of the detector so that features from the same

objects or keypoints are captured. Finally features that are found in an image need

to be invariant against translation, rotation, and scale changes depending on the

problem. For instance, rotation invariance is required with environments in which

the the camera or objects being tracked are moving with changing orientations, such

as images taken from a camera rotating about the horizontal axis. Scale invariance

is required in scenes in which the agent is moving forward or backward through

the environment, causing objects to change in size. This implementation uses an

agent that moves through an indoor, land environment. Therefore, there are minimal

rotation changes throughout the image, just scale and translation.

Data Association via KLSH is tested on both SIFT and HOG features. SIFT

features have been found to be successful in all aspects of computer vision due to their

scale, rotation, and translation invariance and have been refined on numerously since

originally implemented by Lowe [46]. HOG features, however are scale invariant and

have mainly been used in low resolution facial and object recognition [12], [55], [20].

3.1.1.1 SIFT. Scale Invariant Feature Transforms (SIFT) have been

used in many SLAM applications such as [9], [13], [35], [57], [67], [74]. First the
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image is analyzed in scale space using a difference of Gaussians (DOG) function for

various keypoints where interest points may be located. Local extrema of the DOG

function are computed and assigned as keypoints by comparing each pixel with its

surrounding 4 × 4 pixel neighbors. If the current pixel is greater or smaller than all

of the surrounding pixels in that neighborhood it is designated a keypoint. Next, for

each keypoint a Gaussian smoothing function is applied as a function of the scale at

all levels in the image scale space. Next an orientation assignment is conducted using

gradient calculations on a specified region around the keypoint given by:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

�(x, y) = tan−1(L(x,y+1)−L(x,y−1)
L(x+1,y)−L(x−1,y)

(3.1)

Then all of the magnitudes are combined in a histogram, typically 36 bins long

covering 360∘ of orientation. Peaks within this histogram are noted as dominant

directions in the gradient. The orientation corresponding to the peak magnitude of

the histogram is assigned as the orientation for the keypoint. Multiple keypoints and

corresponding orientations are defined for all magnitudes that are within 80% of the

peak. This multiple assignment is rare however greatly contributes to the stability

of the feature matching algorithm. Finally, the descriptor assingment is started by

applying a Gaussian blur on the region around each keypoint. Then the region is

divided in to 2×2 subregions. The gradient is then calculated on each subregion

allowing the formation of another orientation histogram this time with typically 8

or 9 orientation bins depending on the requirements of the system. A descriptor is

formed by concatenating the histograms of all subregions. The final feature is a data

structure that contains information on the feature location, scale, orientation and the

descriptor vector.

3.1.1.2 HOG. The Histograms of Oriented Gaussians (HOG) imple-

mentation used in this paper follows the ideas from [12], [20], [19], [55]. Previously

HOG has primarily been used on small regions of an image typically for the use of
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Figure 3.2: HOG Implementation Flow Block Diagram.

pedestrian, vehicle and object detection [4], [20], [19], [55]. It has been found to

outperform many other descriptors in its class such as Haar wavelets and AdaBoost

classifiers [19], [55]. The overall process is described in Fig. 3.2. In starting with an

image patch, the goal is to calculate a 128-length descriptor for each patch.

First, the gradient of each image was calculated resulting in an orientation and

magnitude representation for each pixel as described below.

mag =
√

(∇x)2 + (∇y)2

� = arctan ∇y∇y , (� ∈ ℜ[0, 180∘], unsigned)
(3.2)

This gradient calculation was looked at in two ways. [20] reported that a simple

1D
[
−1 0 1

]
mask worked best, but the 3 × 3 sobel filter tested in [20] and

primarily used in [55] was also looked at for comparison. A smoothing function

was not used, but instead the edges of each image gradient were set to zero to help

eliminate any negative edge effects such as aliasing.

Next, a 3×3 block window was defined. While for this implementation the win-

dow had to be 3×3 to meet the requirements of the vision aided navigation algorithm

being used, there are multiple combinations that work well. See [19] for a survey.

Although the window block size is set, the number of pixels this window can cover

is what can vary. Since in the past this method has only been used on small im-

age regions there were not any guidelines to go by on how big or small the window

should be. Therefore, the implementation was first tested with the recommendation

by [20] for an 8×8-pixel cell resulting in a 24×24-pixel window. Each 8×8 cell is

represented as a histogram with 8 orientation bins. As little as four can be used,
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however better performance has been found up to nine bins (20∘ of separation) [20].

This implementation used eight to meet the descriptor requirements.

Although just about all feature extraction methods use gradient histograms

to represent calculated features, this method differs in its specific binning tactics.

Instead of just assigning the entire magnitude to an orientation bin, bin assignment is

determined by a weighted vote. The two bins closest to the pixel orientation receive a

percentage of the pixel magnitude based on the degree proximity from each bin. For

example, a pixel orientation of 65∘ in a nine bin histogram would be split between

bins three and four or orientations centered at 50∘ and 70∘ respectively. The weighted

vote based on spatial distance would result in 75% of the magnitude being assigned

to bin four (70∘) and 25% assigned to bin three (50∘).

Next the histograms of a 2×2 block of four cells are concatenated as a 32-

bit vector (4 cell histograms × 8 bins in length = 32). This vector is a partial

descriptor for the patch and will represent the first cell in the window. The vector

is then normalized to unit length by calculating the l2 norm. This overlapping block

method provides contrast invariance. By repeating this method for the other cells

in the window, four cells are found to have partial descriptors comprising of their

neighboring cells. An example of this is shown in Fig. 3.3. The displacement of

the four copies of numbers 1 − 4 represent four partial descriptors that make up

the final patch descriptor. Each respective underlined number indicates the cell that

represents that respective partial descriptor. Concatenating these four partial 32-bit

descriptors results in the 128-length descriptor describing this window as a feature

(32× 4 partial descriptors = 128).

As this window slides across every pixel throughout the image, thousands of

feature descriptors are calculated. Obviously, since all of these descriptors aren’t

actually valid features, only those that meet certain standards or thresholds were

kept. In any feature extraction method, one indication of a good feature is one

that has distinct contrast transitions [46]. This is mathematically noticed by those
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Figure 3.3: HOG Concatenation Assignment. The 128-length descriptor is
made up of a series of histogram concatenations. First, 4−2×2 overlapping
blocks are formed from each 3×3 patch. Starting with the top-left 2×2 block
labeled, 1, the 8-bin histograms from each of the 4 cells are concatenated
forming a 32-length vector. Repeating the process for the 2 × 2 blocks
labeled 2−4 and concatenating those vectors in block 1−4 order yields the
128-length descriptor that describes the 3× 3 block window.

gradient histograms that have magnitude representation across multiple orientation

bins. This is the first threshold method. Next by eliminating those descriptors that

don’t have peak magnitudes of at least some predetermined percentage greater than

the average, the number of features is greatly reduced to a more accurate, not to

mention manageable number.

3.1.2 Kernelized Locality-Sensitive Hashing. Kernelized Locality-Sensitive

Hashing (KLSH) is similar to standard LSH in that it computes hash functions using

random projections; however’ all computations are completed in kernel space using

only a portion of the data. Each database and query point are transformed to kernel

space first; therefore all statistics of the projection functions are unknown and must

be estimated. KLSH, thus far has been used to conduct nearest neighbor search on

several image databases in both small and large dimension sizes [42].
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Just as in LSH, KLSH starts with defining the hash functions. This time,

however the database and query collision probabilities are characterized by the amount

of similarity between the two points as described by [15].

KLSH Definition A locality-sensitive hashing scheme is a distribution

on a family ℋ of hash functions operating on a collection of objects,

such that for two objects p, q,

Pr[ℎ(p) = ℎ(q)] = sim(p, q). (3.3)

In other words, the probability of collision between two points is equal

to the similarity between them.

sim(p, q), in this definition is the similarity function and ℎ(p) is a hash function

selected at random from ℋ. The intuition behind this is that when ℎ(p) = ℎ(q), p

and q collide in the hash table or are assigned to the same hash. Therefore points

that are highly similar have a higher probability of being stored together in the hash

table resulting in collision [43]. This definition of LSH is slightly different than the

one given previously in the LSH discussion as defined by [31]; however, the concept

is the same. This implementation uses the definition as used by [42].

Describing the similarity function in terms of the inner product yields:

sim(p, q) = pT q (3.4)

[15] then expanded on this function defining the locality-sensitive hash function from

Equation (3.3) as

ℎr⃗(p) =

⎧⎨⎩ 1, if r⃗Tp ≥ 0

0, otherwise
(3.5)

where r⃗ is a random hyperplane from a zero-mean multivariate Gaussian N (0,Σp)

with the same dimensionality as the input vector p. This implies that each hash
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Figure 3.4: KLSH Projection Example. The projection of a random vec-
tor, r⃗ on a point, p across dimension, dt equates to the spatial position of
the coordinates in dt with respect to r⃗.

function is built solely from the statistics of the input. The proof showing that this

function obeys the locality-sensitive property is detailed in [32]. Since, one hash

equates to the sign of one projection on a point p, a series of hashes is formed simply

by repeating this process t times. This forms one hash bucket such that,

g(p) = ⟨ℎ1(p), . . . , ℎt(p), . . . , ℎk(p)⟩ . (3.6)

To understand the computation of one projection, consider the following ex-

ample. Fig. 3.4 shows a set of data points, P in ℜ2 space. As in Equation (3.5), r⃗

is formed from the statistics of p. A random Gaussian multivariate matrix, ℛ dis-

tributed by N (0,Σp) is formed. At random, a dimension in p is chosen to project

across. r1(p) as shown projects across dimension 2. Points to the right of this line

(r⃗Tp ≥ 0) are assigned a bit of 1, while points to the left (r⃗Tp < 0) are assigned as

0. Repeating this process t times yields the hashing scheme in column 1 of Table 3.1.

All bits pertaining to each individual point are concatenated to form the length, t

hash sequence for each bucket. Given b = 5, the table shows each hash location in

the bucket.
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Table 3.1: KLSH Hashing Scheme. The hash location for a particular
point, p is equal to the concatenated bits in the corresponding column.
The hash bucket contains the hashes for each point.

1p 3p2p 4p 5p

3, jr

1, jr

4, jr

2, jr

1p 3p2p 4p 5p
1 0 1 1 1
0 1 1 1 1
1 0 0 0 1
0 1 0 1 0

5, jr 1 0 0 0 1

1, ,( ) ( ) ( )
r rj j i k j ig p h p h p    

This shows that repeating this process b times yields the following series of hashes for

p,

g(p) =

⎧⎨⎩

ℎ1,1r⃗(p) ℎ2,1r⃗(p) . . . ℎl,1r⃗(p) . . . ℎt,1r⃗(p)
...

...
...

...
...

...

ℎ1,j r⃗(p) ℎ2,j r⃗(p) . . . ℎl,j r⃗(p) . . . ℎt,j r⃗(p)
...

...
...

...
...

...

ℎ1,br⃗(p) ℎ2,br⃗(p) . . . ℎl,br⃗(p) . . . ℎt,br⃗(p)

⎫⎬⎭
(3.7)

for 1 < j < b, 1 < l < t. In KLSH, all computation is done in kernel space such that

the similarity function in Equation (3.4) extends to

sim((xi, xj)) = �(xi, xj) = �(xi)
T�(xj), (3.8)

In this formulation, �(xi, xj) is the mapping of points xi and xj to kernel space using a

predefined kernel function. �(∙) therefore, is a compilation of the random hyperplane

projection hash functions from H using the method just discussed. The problem

is that nothing is known about the data while in kernel space to generate r⃗ from.

Therefore, in order to construct the hash function, r⃗ needs to be constructed such
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that r⃗T�(x) can be computed directly from the kernel function. Like the standard r⃗, it

should be approximately Gaussian but allow the function as a whole to be computed

using only the kernels. This is accomplished by constructing r⃗ as a weighted sum of

a subset of the database input.

From the central limit theorem discussed in Appendix A.2, consider each kernel

data sample, �(x) as a vector from some distribution D with mean, � and variance,

Σ. If t database objects are chosen i.i.d. from D forming the set S, then a random

variable, zt can be defined as

zt =
1

k

∑
i∈S

�(xi). (3.9)

As t grows large, the central limit theorem states that the subsequent random vector

z̃t, defined by

z̃t =
√
t(zt − �) (3.10)

has a multivariate Gaussian N (0,Σ). Then the whitening transform is applied to

yield

r⃗ = Σ1/2z̃t (3.11)

The hash function then becomes

ℎ(�(x)) =

⎧⎨⎩ 1, if �(x)TΣ1/2z̃t≥0

0, otherwise
. (3.12)

As mentioned previously, since the original data is being represented by the kernel

function, statistics such as Σ are unknown and therefore must be estimated via sam-

pling. Selecting n objects from the database enables calculation for the mean and
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covariance by eigendecomposition and kernel principal component analysis methods

via [62], in which Σ = V ΛV T . Therefore

Σ1/2 = V Λ1/2V T . (3.13)

Define the new hash function as,

ℎ(�(x)) = sign(�(x)TV Λ1/2V T z̃t) (3.14)

This denotes the hash process for a vector of kernel entries. Now, consider the case

in which there is a matrix of kernel inputs, K. Its eigendecomposition of K = UΘUT

makes this an expanded form of the single kernel input. The non-zero eigenvalues of

Λ from Equation (3.13) are the same as the non-zero eigenvalues of Θ. Let vm be

the m-th eigenvector of the covariance matrix and um be the m-th eigenvector of the

kernel matrix. From [62], compute the projection

vm
T�(x) =

n∑
i=1

1√
�m
um(i)�(xi)

T�(x). (3.15)

in which the �(xi) terms are the n data point samples mention previously. Performing

this computation over all m eigenvectors results in

ℎ(�(x)) = �(x)TV Λ−1/2V T z̃t =
n∑

m=1

√
�mvm

T�(x)Tvm
T z̃t. (3.16)

Substituting Equation (3.15) yields

n∑
m=1

√
�m(

n∑
i=1

1√
�m
um(i)�(xi)

T�(x)) ⋅ (
n∑
i=1

1√
�m
um(i)�(xi)

T z̃t). (3.17)

Simplifying yields
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=
n∑
i=1

n∑
j=1

(�(xi)
T�(x)) ⋅ (�(xj)

T z̃t)(
n∑

m=1

1√
�m
um(i)um(j)). (3.18)

Since K
− 1

2
ij =

∑n
k=1

1√
�k
uk(i)uk(j), further simplification yields

ℎ(�(x)) =
n∑
i=1

w(i)(�(xi)
T�(x)), (3.19)

where w(i) =
∑n

j=1Kij
−1/2�(xj)

T z̃t.

The Gaussian random vector r⃗, becomes r⃗ =
∑n

i=1 w(i)�(xi). This is therefore a

weighted sum over the vector inputs from the n database kernel entries. Substituting

the random vector of kernels, z̃t = 1√
t

∑
i∈S �(xi) from Equation (3.9) in w(i) yields

w(i) =
1

t

n∑
j=1

∑
l∈S

Kij
−1/2Kjl −

1

n

n∑
j=1

n∑
k=1

Kij
−1/2Kjk. (3.20)

Since the
√
t term has no affect on the sign of the hash function, it can be ignored.

Final simplification for w(i) is as follows:

1. Define e to be a vector of all ones and es to be a vector with ones in the entries

corresponding to the indices of S. The resulting w(i) is

w = K1/2

(
1

k
es −

1

n
e

)
. (3.21)

2. Therefore, the final hash function for a kernel input is

ℎ(�(x)) = sign

(
n∑
i=1

w(i)�(x, xi)

)
(3.22)

in which � is the mapping of points x and xi to kernel space. Similar to the hash-

ing discussion at the beginning of this section, each hash will concatenate multiple

iterations forming a bucket.
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KLSH Algorithm

1. Pre-processing

(a) Form kernel matrix, K over n data points from database

(b) Form es by selecting t indices at random from the set {1, . . . , n}
(c) Each ℎt(�(x)) performs a projection on ttℎ indices

(d) Form w = K1/2
(

1
t
es − 1

n
e
)

(e) Project the vector w(i) onto the point in kernel space in the same manner
as the example

i. Form hash bucket gj(x) by assigning bits accordingly
2. Query Process

(a) Form the same L hash buckets per Equation (3.23) as done for the database
points

(b) Use nearest neighbor techniques to answer query

Figure 3.5: KLSH Algorithm.

gj(x) =
[
ℎ1(�(x)) ℎ2,j(�(x)) . . . ℎt,j(�(x)) . . . ℎk,j(�(x))

]
, (1 < l < t), (1 < j < b)

(3.23)

To determine the best parameter set, this implementation tests accuracy of

query matches throughout multiple iterations, each time varying the number of points

in the database, n, the number of hash functions per bucket, b as well as the number

of feature points per image, t in each sample to estimate statistics from. The final

algorithm detailing this process is in Fig. 3.5.

3.1.3 RANSAC. Given two images of the same scene but translated, the

features in each should be the same, however, their locations will be different. In

selecting matching features between images, the goal is to eliminate the outliers, or

those matches which mathematically appear to be the same according to distance

metrics, but visually are not as shown in red in Fig. 3.6.

To handle this task, this implementation uses the RANdom Sampling And Con-

sensus (RANSAC) technique. In the past, RANSAC has been used for tasks such as
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Figure 3.6: Identifying inliers and outliers during feature matching be-
tween 2 translated image frames. This is an arbitrary example in which
each blue circle or diamond represents any feature type. The blue lines
represent correctly matched features, or inliers. The red lines represent
feature mismatches or outliers.

model parameter estimation in the presence of outliers [29]. It has recently been used

for data association with vision only SLAM using an EKF [17] as well as for agent

localization in [63], [30], [59], and [64]. One reason RANSAC is favored over other

techniques is its ability to give accurate results even in datasets in which more than

50% of the set are outliers. This percentage is known as the breakdown point. As

mentioned previously, the LMS technique falls prey to this limit, as does least squares

estimation [80]. To begin, RANSAC is broken into two main steps, hypothesis and

test.

In the hypothesis step, a minimal sample set (MSS) of the data is randomly

selected. RANSAC differs from other algorithms in that this sample set must be as

small as sufficiently possible in order to model the data as opposed to using the entire

dataset in least-squares and least median squares.

The test step simply tests how many samples of the entire dataset fit the model.

The set of samples that meet this criterion are known as the consensus set (CS), in

which larger sets are considered better. These steps are repeated until the probability

of finding a better CS falls below a predetermined threshold. Another termination

method is to use the best CS out of a specific number of iterations. The disadvantage

to this is that in repeating the algorithm until probabilistically complete has the

potential risk of no cap on computation time. Furthermore, while the probability
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of a good model increases with the number of iterations, there is no guarantee that

the optimal solution has been selected when bounding the number of iterations [80].

As this process is random, it can end in different results from one run to the next,

however stronger features and many iterations minimize this occurrence.

3.1.3.1 Calculating the Algorithm Termination Point. As just men-

tioned, the hypothesis and test steps are ran iteratively until the probability of finding

a better CS falls below a predetermined threshold or the predetermined number of

iterations has been reached. Another method is to combine the two and calculate the

number of iterations required produce a given probability threshold. If pMSS is des-

ignated as the probability of sampling from the dataset P a MSS s that produces an

accurate estimate of the model parameters. Therefore the probability of producing an

MSS with at least one outlier is 1−MSS. Consider the rare situation in which in the T

MSSs produced were all contaminated by outliers with probability (1−pMSS)T . Since

this probability decreases to 0 as T increases, the solution is to choose the number of

iterations, T such that

(1− pMSS)T ≤ � (3.24)

where � is a probability threshold. Solving for T and using the ceiling function, ⌈x⌉

yields

T =

⌈
log�

log(1− pMSS)

⌉
. (3.25)

Essentially, T is the smallest number of iterations required to produced the probability

term in the ceiling function.

3.1.3.2 Inlier/Outlier Threshold. Once the model is chosen and the

points are being compared to determine inliers, the selection is based on a distance

threshold. The selection of this threshold is key to the accuracy of the result. Setting
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the threshold too high will result in bad models being ranked equally with good ones

as shown in Fig. 3.7a. Fig. 3.7b shows that setting as the threshold too low will yield

the opposite in that none of the points will fit the model.

(a) (b)

Figure 3.7: RANSAC distance threshold effects. Example of a threshold
set too high (a). Example of a threshold set too low (b) [72].

3.1.4 Integration into Data Association Implementation. For each image

P0 and Ptrans, N×d feature sets are retrieved, in which N is the number of features

captured while d is the number of dimensions, 128. First the features in each image

are matched comparing all features with each other finding the minimum l2 Euclidean

distance norm. The locations of the feature mappings whose distances are below a

threshold are stored and become the dataset as to which RANSAC analyzes. Loca-

tions of features from image P0 are stored in p0 and locations from Ptrans in ptrans.

As RANSAC is a random process, the MSS is determined by selecting n match-

ing point samples at random with replacement between iterations. In order to repre-

sent the correspondence between the two images, a homography must be estimated.

See Appendix A.3 for a more details discussion than the derivations that follow. The

2D version is represented by a 3× 3 matrix H. This transformation matrix maps the

strong features, p′0 in the first image to the same plane as the corresponding features,

ptrans in the second image such that
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p̂0 = Hp0 (3.26)

in which p̂0 represents the feature locations of p0 in the same plane as ptrans.

To solve this transformation model, the entries of H are derived by the linear

system, Aℎ = 0, which is computed as discussed in Section A.3. A is a 2n×9 matrix

in which n is the number of points used for the model. The system is solved by per-

forming singular value decomposition on A where H is derived from the eigenvector,

Vi corresponding to the smallest eigenvalue of A for (1 < i < 9).

H =

⎡⎢⎢⎢⎣
Vi1 Vi2 Vi3

Vi4 Vi5 Vi6

Vi7 Vi8 Vi9

⎤⎥⎥⎥⎦ (3.27)

This essentially eliminates the translation between the two images allowing for

feature to feature comparison among the feature matches using Euclidean distance.

Those features that are below a predetermined threshold are considered inliers. This

makes up the CS. This process is repeated many times, R noting the number of inliers

each iteration. The model that produces the largest consensus set is considered the

best choice. The value of R is dependent on how many iterations it takes for the

probability of a better inlier result to occur. This probability gets smaller and smaller

as the R increases. This implementation evaluates this iteration parameter across

many values testing each time for the number of iterations that minimizes the overall

count, yet meets a predetermined threshold of accuracy.

3.2 Computing the Data Association

Each input to the KLSH algorithm includes the features of the query image

along with the features of all the images being queried according to an orientation

heuristic. During preprocessing, the agent orientation at the time of each observation

is retrieved from an internal navigation system known as FV-SIFT. This algorithm
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separately tracked image features updating a pose estimated from the IMU shown [76].

The agent orientation at each time step an image was taken is notated. Those database

image whose orientations match that of the query are input to KLSH. For each query

image feature, m image identifiers are returned. The top k identifiers whose feature

points in ℜ128 space are closest to the query are output as neighboring matches.

Just as there is uncertainty in the pose at each landmark, there is uncertainty

in the data association as well. This can be modeled by the following. For every

query feature, there will be at most k-nearest neighbors returned. The accuracy of

the output depends on the number of features in each image used for analysis. An

increase in the number of features increases query match accuracy but also increases

the complexity, memory requirements and runtime. This implementation ran multiple

iterations on each dataset, varying in the number of features kept. The following is

an example of the nearest neighbor matching process. Fig. 3.8 below shows a sample

path through an environment. As shown, each marker represents a landmark at which

an image was taken.

Figure 3.8: Data Association Computation Example: Sample Path. L1−
L12 are landmarks, or points in the environment at which an image was
taken. After completing the first loop and returning to L1, query image,
Q1 is taken, followed by Q2−Q12 assuming the path was repeated.

As the agent repeats the loop and reappears at landmark L1, the following data

association example begins. At this point, the agent knows that it is at a location

that it has seen before, but does not know which landmark that is. This first point
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of reappearance is set as query, Q1. In order to determine this location relative to

landmark position, the image features for query image Q1 as well as the features

for each landmark L1 − L12 are input to the nearest neighbor KLSH algorithm.

Tables 3.2-3.5 represent the k-NN search process via KLSH with parameters k = 4

and 10 features. Fig. 3.9 shows an illustration of how the features from each image

are identified by the image ID (IID). In this arbitrary example, landmarks L1− L12

mentioned earlier, are represented as IIDs 100− 111 respectively.

Figure 3.9: Data Association Computation Example: KLSH input. This
arbitrary example illustrates the database feature identification and asso-
ciation to an image ID. IIDs 100−111 correspond with landmarks L1−L12.
These along with the query features for a particular query landmark are
sent as inputs to the KLSH algorithm. The results for k = 4 are shown
in Tables 3.2-3.5. Note: The results were arbitrarily chosen to represent
process flow and were not actually calculated.

The outputs are the k-nearest neighbors that are most similar to the input

query as shown in Table 3.2. Each query feature (QF) matches to k = 4 neighboring

landmark database features (DF). The image ID for each DF is also notated.

Table 3.2: Data Association Computation Example: KLSH output. The
outputs are the k-nearest neighbors for each feature.

NN1 NN2 NN3 NN4
QF1 DF01/100 DF02/100 DF24/102 DF10/101
QF2 DF13/101 DF05/100 DF59/105 DF04/100
QF3 DF02/100 DF21/102 DF31/103 DF42/104
QF4 DF04/100 DF05/100 DF09/100 DF17/101
QF5 DF49/104 DF06/100 DF36/103 DF26/102
QF6 DF07/100 DF03/100 DF08/100 DF08/100
QF7 DF15/101 DF03/100 DF54/105 DF46/104
QF8 DF06/100 DF22/102 DF04/100 DF55/105
QF9 DF01/100 DF31/103 DF29/102 DF49/104
QF10 DF01/100 DF02/100 DF51/101 DF16/101

Query 
Image 1

Query 
Feature 

#

Matching Feat #/Source Image ID
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Next in Table 3.3, the number of occurrences of each image ID for each feature

match is tallied. These tallies are then normalized with respect to each feature in

Table 3.4 to generate a weight to identify the final nearest neighbors.

Table 3.3: Data Association Computation Example: Identify image rep-
resentation.

100 101 102 103 104 105 106 107 108 109 110 111
QF1 2 1 1 0 0 0 0 0 0 0 0 0
QF2 2 1 0 0 0 1 0 0 0 0 0 0
QF3 1 0 1 1 1 0 0 0 0 0 0 0
QF4 3 1 0 0 0 0 0 0 0 0 0 0
QF5 1 0 1 1 1 0 0 0 0 0 0 0
QF6 4 0 0 0 0 0 0 0 0 0 0 0
QF7 1 1 0 0 1 1 0 0 0 0 0 0
QF8 2 0 1 0 0 1 0 0 0 0 0 0
QF9 1 0 1 1 1 0 0 0 0 0 0 0
QF10 2 2 0 0 0 0 0 0 0 0 0 0

Query 
Image 

1

Query 
Feature 

#

Source Image IDs

Table 3.4: Data Association Computation Example: Normalize image
representation across all images.

100 101 102 103 104 105 106 107 108 109 110 111
QF1 0.5 0.25 0.25 0 0 0 0 0 0 0 0 0
QF2 0.5 0.25 0 0 0 0.25 0 0 0 0 0 0
QF3 0.25 0 0.25 0.25 0.25 0 0 0 0 0 0 0
QF4 0.75 0.25 0 0 0 0 0 0 0 0 0 0
QF5 0.25 0 0.25 0.25 0.25 0 0 0 0 0 0 0
QF6 1 0 0 0 0 0 0 0 0 0 0 0
QF7 0.25 0.25 0 0 0.25 0.25 0 0 0 0 0 0
QF8 0.5 0 0.25 0 0 0.25 0 0 0 0 0 0
QF9 0.25 0 0.25 0.25 0.25 0 0 0 0 0 0 0
QF10 0.5 0.5 0 0 0 0 0 0 0 0 0 0

Query 
Feature 

#

Query 
Image 

1

Source Image IDs

Table 3.5: Data Association Computation Example: Query k-NNs. These
are the k-NNs to the the query. This is the input to RANSAC.

100 101 102 103
4.75 1.5 1.25 0.75

Source Image IDs
Query Image 1

Finally, Table 3.5 shows the k-nearest neighboring image IDs that have the most

representation as shown by their weightings, across all of the query features. These

k = 4 images are analyzed further using RANSAC to find an exact match to the

query.

3.2.1 An Exact Match From k-NNs. To complete the data association

problem, the top k nearest neighbors from the KLSH output, as shown in Table 3.5
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are retrieved and analyzed for an exact match using RANSAC. The original query

image is compared with each possible match yielding k different inlier results. Recall

the number of inliers are those feature matches between images that meet distance

thresholds calculable from a good transformation model. After many iterations, the

consensus set with the most inliers is selected as the most probabilistic match for the

query.

To determine the number of iterations, this algorithm actually followed both

methods discussed. An arbitrary number of iterations was made, justified by the

accuracy of match. The output is the time stamp of the image that has the most

feature matches between the two image spaces.

3.3 Summary

This section has reviewed the background research behind all of the methods

used to compute the data association and explained how it is implemented to solve the

data association problem in vision-based SLAM. Once features have been extracted

through either SIFT or HOG feature detection, hash-based methods via KLSH are

used to narrow down the search space in matching a single query feature to an entire

database of features. k-nearest neighbor search methods result in each query image

being matched with the k-most similar stored database images. The image IDs for

each image are then matched with the query side by side using homography-based

RANSAC. By correctly modeling the matching features in each image to the system,

false matches can be detected, resulting in the identification of the correct image

through standard distance techniques. The matches found answer the data associ-

ation for each instance in an agent’s movement throughout the environment. The

associations can be extended for use in vision-based SLAM and other image mapping

algorithms.
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IV. Results & Analysis

This chapter discusses the specific tests conducted to use KLSH to answer the data

association when determining agent pose in an environment. First the testing details

are discussed including vehicles, test grounds, and parameters used. Next the results

of using KLSH are presented and an analysis of its robustness as a viable option to

conduct data association is assessed.

4.1 Testing Procedure

4.1.1 Terrain. All tests were completed indoors in a hallway environment.

The overall path as shown in blue in Fig.4.1 was rectangular in shape with a perimeter

of approximately 210m. The hallway had tile flooring and is 2.5m wide. The agent

started at the top left blue arrow and traversed the path twice in the counterclockwise

direction producing just over 1260 images. From this path two smaller datasets were

derived. The path in red represents the traversing of approximately 140m on 3 of the

straightaways. 2 legs of this path produced a dataset with 510 images. Finally, the

last dataset simulates a path in which the agent made an observation in the form of

an image every 5m. The black and yellow circles shown are not to scale but provide a

general idea of the 5m distance with respect to the overall floor plan. This 2-lap 5m

dataset consists of 135 images.

It should be noted that the hallway used can be classified as office-like. The

distinction is made to express volume the traffic, causing inconsistent features in the

environment. While the building in which the tests were conducted was not a densely

populated area, there were instances of people walking through the hall that provided

positive obstacles for the feature algorithm to overcome. In computer vision, a person

or object that is apparent in one image and not in the next can have adverse affects

on image registration.

4.1.2 Agent. The agent, the Pioneer 2-AT in shown in Fig. 4.3 was driven

via remote control. Contained in its setup is all of the hardware required for data
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(210 m)(210 m)

(140 m)

Figure 4.1: Environment Layout.

collection. The hardware used is listed in Fig. 4.2. (Fig. 4.3 does display some

hardware not listed. These devices were not used in this implementation.)

Pioneer 2-AT Hardware

∙ PixeLINK PL-A741 machine vision cameras(2)
∙ MicroRobotics MIDG II consumer grade microelectricalmechanical systems

(MEMS) IMU
∙ Vision Computer

– 2.0 GHz Intel Core2Duo processor

– 4 GB memory

– Nvidia 9800GTX+ Graphics Processing Unit (GPU)
∙ Internal Computer

– Records vehicle odometry

Figure 4.2: Pioneer 2-AT Hardware.

The internal computer on board the robot calculates odometry based on the skid-

wheel steering of indoor tires with dimensions: 7in diameter, 2in width. The average

vehicle speed was about 1 m/s. As the vehicle was driven by remote control, there were

occurrences of variance in speed. These were assumed to be negligible in mapping.
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Figure 4.3: Pioneer 2-AT vehicle used for data collection. The circled
camera on the left of the camera bar was used to conduct data association.
The IMU is mounted at the center of the camera bar while the vision
computer and communications equipment are mounted towards the rear
of the chassis.

4.1.3 Image and Sensor Data Retrieval. The cameras as shown in Fig. 4.3

are placed in stereo mode; however, this implementation only uses images from the

slave camera, as denoted by the circle in the figure. It has a 90∘ field of view and

images are taken at a resolution of 1280×960 at a rate of 2 Hz. Taking into account the

average speed of 1 m/s, images were captured approximately every 0.5 m. The image

retrieval algorithm for this system is actually running a highly parallelized SURF

feature extraction program for a FV-SIFT [76]. FV-SIFT is an internal navigation

system that tracks image features to update the pose given from inertial measurements

[76]. This section of the process is calculated by the GPU which simultaneously allows

for the recording of stereo images and IMU data. The vehicle’s internal computer

records odometry used for pose estimation and links to the external computer via

Ethernet cable for time synchronization and communication with FV-SIFT.

For the purposes of this implementation, the images from the slave camera as

well as the orientation information from FV-SIFT are used. The images are saved as
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portable graymap files (.pgm) in Netpbm format, while the other data collected/cal-

culated are written as logs to text files.

4.2 Implementation Details & Parameters

The images are analyzed for features using a compiled executable for SIFT

features [46] and MatlabⓇ 2010a for HOG. All feature descriptors and parameter

information are stored as MatlabⓇ .mat files. As this implementation does not include

a loop closure heuristic, the image data is manually split between database and query

by visually determining the identifiers of the first and second loop. Each query is

then processed by the MatlabⓇ written Data Association algorithm. All processing

was completed on dual core processors with 4 GB of memory.

4.2.1 Memory Obstacles. As mentioned previously, this implementation was

run on a dual-core computer with limited memory. For this as well as possible future

use in online mobile algorithms, it is important to add heuristics that constrain the

number of features in the overall database or those sent to the KLSH algorithm at

one time.

4.2.1.1 Database Reduction Heuristic . The feature database as a

whole can have hundreds of thousands of features that must be sifted through in

order to find a match to a given query. By dividing the feature database into classes,

the number of features to be hashed for a particular query analysis is reduced. One

such class is based on heading. The features going in one direction will be different

than the features that are seen going the opposite direction in the same environment.

Therefore, a query can only be matched to features whose difference in orientation is

within tolerance. This implementation assigns the heading categories shown in Table

4.1 to each feature based on heading information gathered from the FV-SIFT output.

This results in each query being matched with features in 1 of 4 KLSH-driven hash

tables.
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Table 4.1: Database Reduction Heuristic: Orientation Classification. This
is the orientation classification used to classify the features in each image.

Heading Range Category
0− 51 1

52− 143 2
144− 225 3
226− 321 4
322− 359 1

4.2.1.2 Multiple KLSH runs per kernel. While trimming down the

database size with orientation heuristics helps, this implementation still ran into

memory issues. This implementation simply broke the KLSH hashing process into

multiple iterations. Define NF,� as the number of database features corresponding to

the orientation of q. Dividing NF,� throughout � iterations produces

N ′F,� =
NF,�

�
(4.1)

features per iteration. This reduces the complexity required in hashing NF,� points

to b tables to � iterations of N ′F,� points to b tables. This has a direct affect on the

kernel matrix size. Consider NF,� = 10K, � = 20. By

NF,�

�

′
=

10K

�
= 500, (4.2)

the kernel matrix decreases in size from 10K × 10K to 20-500× 500 kernel matrices,

thereby lessening memory requirements to that of a standard computer when running

implementation. Furthermore, the speed at which these table hashings are computed

is increased.

4.2.2 Kernel Matrix Generation. [42] reported that both the Gaussian

radial basis function (RBF) and Chi-Squared kernels were used in testing on multiple

datasets. Therefore this implementation tested on both as well.

Gaussian RBF kernel
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�(p, q) = e−
∣∣p−q∣∣2

2�2 . (4.3)

Chi-Squared kernel

�(p, q) = 1−
n∑
i=1

(pi − qi)2

1
2
(pi + qi)

. (4.4)

In each case, p and q are the N × d matrices of database and query features in which

N and d are the number of features and number of dimensions, respectively. For a

given KLSH iteration, the query inputs are the features from the query image, Nq×d

as well as the comparison database features, Np × d. Naturally, Np ≫ Nq. In order

to compute �, these matrices must be the same size. The solution to this is to build

the q kernel input such that it matches the dimensions of p by,

⎡⎣ Nq × d matrix of query features

(Np −Nq)× d matrix of ones

⎤⎦ (4.5)

4.3 Results

To determine the best fit for parameters and test overall performance of the

KLSH algorithm, the following tests were run:

1. Parameter sweep: Best choice for KLSH hash parameters n, b, and t

2. Parameter sweep: best choice of RANSAC iterations

3. Feature extraction comparison (SIFT vs HOG)

4. Parameter sweep: best choice of k for NN search

5. Data association performance: required trade-offs between memory use, accu-

racy, and speed

In using parameter sweeps to determine the best set, multiple tests were accomplished

varying the parameters such that an optimal solution could be calculated or extracted
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from the results. The best choice for each sweep is then used in determining the over-

all performance of the algorithm in Section 4.3.5. This performance as well as the

underlying determination of a good parameter is based on an accuracy of match met-

ric. Once KLSH and RANSAC have run and an answer is provided for a given query,

the accuracy of that match is calculated based on a truth table. During preprocessing,

the first and second loop images were aligned by time stamp. A truth table among

the two categories of time stamps was generated, then verified visually. Recall the

image capture rate of 2 Hz. For the large full loop dataset, the assumption was made

that if the vehicle moved at an average speed of 1 m/s then the avg distance between

2 images is 0.5 m. The desired position error is ±2 m. This therefore equates to the

requirement of a matching image time stamp to be within ±2 seconds from the truth

to be considered a positive match.

4.3.1 KLSH parameters. Determining a good parameter set is key in de-

riving the neighboring features in the KLSH output. Such a parameter set optimizes

accuracy of match with speed, minimal memory usage, and complexity. To start, the

value of n, or the number of features in the database to be sampled, was analyzed.

In contrast from [42] and leaving this parameter constant at 300 for all database

sizes, this implementation left the determination of the size of n up to the algorithm

heuristics mentioned in Section 4.2.1.1. In other words, n varies based on the number

of features, NF,� in the database. Since the KLSH algorithm is split into � itera-

tions of b hash tables, the size of n changes with every iteration. Furthermore, in an

actual SLAM implementation, the size of the entire database, N will require some

constraints, the overall size will continue to grow the longer the agent travels in the

environment.

To analyze the effect the parameters have on an individual match solution, this

implementation conducted a parameter sweep varying the number of hash buckets or

tables, b, the number of hashes per table, t as well as the size of the dataset, n. The

test was then conducted as follows:
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1. Manually select a query and a matching database image

2. Insert these as well as the features of NI neighboring images into KLSH, NI ∈

{7, 10, 20, 30, 40, 50}

(a) 50 features per image are used.

(b) The first iteration uses parameter NI = 7 producing 350 features

(c) The process is repeated for a total of 6 iterations, each increasing the

number of images added to the database, thereby varying n by 350 ≤ n ≤

2500 with NI

3. Run KLSH 2500 times per iteration of N varying b, t by 1 < b < 500, 1 < t < 300

4. Assign a 1 if the correct match was one of 7 NNs and a 0 otherwise

(a) A correct match is an image whose IID is within 2 secs of the exact match

5. These steps were conducted using SIFT features and a KLSH Gaussian kernel

retrieving 7 NNs

Fig. 4.4 shows the KLSH performance as a function of the parameters n, t, and

b. Each plot represents an increasing sample size, n, while the rows and columns

represent the increasing number of hash tables and hash bits per table respectively.

For a given b, t a white color assignment (1) means that there was a correct match to

the query within the top 7 nearest neighbors returned. A black color assignment (0)

is indicative of a false match.

These results show that when the dataset size is small, the probability of match despite

the hash parameters, b and t is large. As either b or t increases, KLSH performance

increases; however an increase in both parameters simultaneously, degrades perfor-

mance trends severely. [42] found t = 30, b = 300 to be a successful parameter set

based on performance in the low percentage of database features required in searching

for a query. This implementation used the above plots to measure these parameters as

well. In 5 of the 6 iterations shown, t = 30, b = 300 produced a correct match. These

parameters also optimize memory efficiency as well. It was mentioned that either b
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(b) n=1000 features (20 images)
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(c) n=1500 features (30 images)
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(d) n=2000 features (40 images)
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(e) n=2500 features (50 images)

Figure 4.4: KLSH performance varying n, sample sizes, t, hash bits per
table and b, hash tables. A white color assignment means there was a
correct KLSH query match among the 7 NNs returned, while a black
assignment means there was no match.

and t should be inversely proportional in size to produce sufficient accuracy. Since

the t term increases exponentially in the memory requirement of O (N(t2b)), the set

of t = 30, b = 300 is much more efficient than b≪ t. The plots also show that at low

values of b and t perform well as well. For instance, b = t = 10 not only produces

good accuracy throughout all database sizes, but also optimizes the memory required.

The parameter set used for testing was in accordance with [42] at b = 300, t = 30

and n = f(NF ). In conclusion to the sweep conducted, the optimal parameter set is

set at b = t = 10.
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4.3.2 RANSAC Parameter, R. The number of iterations, R, in a typical

RANSAC algorithm is a function of the probability there is a better consensus set

than discovered thus far. The greater the number of iterations is directly proportional

to the high probability that the best set has been reviewed. Recall the calculation for

the minimum number of iterations required in Equation (3.25). Instead of calculating

this parameter directly, a parameter sweep was conducted varying the number of

iterations and calculating the accuracy of match. Fig. 4.5 shows the data association

accuracy using RANSAC varying the number of iterations between 10−500. For this

test, 100 SIFT features were used from a 1260 image dataset and 7 KLSH nearest

neighbors hashed with parameters b = 300, t = 30 from a Gaussian kernel were input

to RANSAC with the features from each query.

Figure 4.5: RANSAC iteration parameter sweep. This sweep shows the
accuracy of match in varying the number of RANSAC iterations. This test
was conducted using the top 100 SIFT features and 7 KLSH NNs from a
dataset of a combined 1260 query and database images.

As shown in Fig. 4.5, for any number of iterations above 225, the probability of

accuracy averages at 0.95. This is a commonly used algorithm termination critereon

[71], [23]. Based on this result, the number of RANSAC iterations was set at R=275.

This value sufficiently optimizes algorithm run time as well as accuacy.
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4.3.3 SIFT vs HOG Features. The HOG descriptor vector does not perform

as well on larger sized images as it has previously on lower resolution images. The

accuracy of match for the HOG descriptor while still suitable, does not compare with

the accuracy of SIFT. Fig. 4.6 below shows the accuracy of match from each dataset

while varying the number of HOG (solid) and SIFT (dashed) features per image.
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Figure 4.6: SIFT vs HOG. These plots show the accuracy of match while
varying the number of HOG and SIFT features used in KLSH. These
results were produced from a Gaussian kernel, using 7 NNs.
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Figure 4.7: Implementation Performance: Probability of Accurate Match
with Varying Number of HOG Features. This plot shows that the accuracy
of match increases with the number of HOG features used per image. This
test was completed using HOG features with a Gaussian kernel on the 135
image dataset.

The results shown were run using a Gaussian kernel taking the top 7 KLSH nearest

neighbors hashed with parameters b =300 and t =30. In each dataset, the HOG

accuracy of match increases with the number of features. This can further be seen

in Fig. 4.7. Therefore, in order to obtain accuracy comparable to that of SIFT, more

features are required. Continuously increasing led to HOG probabilities of accuracy of

0.90+ with 250+ features. The requirement of twice as many SIFT features essentially

doubles the memory requirements, O (2NS(t2b)), where NS is the number of SIFT

features.

4.3.4 Best Choice of NN. To find the best choice for the number of nearest

neighbors to retrieve from KLSH, a parameters sweep was conducted analyzing per-

formance of 1− 20 nearest neighbors. Fig. 4.8 shows the accuracy at each parameter

throughout all datasets.

For all datasets, there is an average peak of accuracy around 5 nearest neighbors.

This shows that no matter what the size of the dataset, this is a good choice for k.
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High accuracy was also achieved at k = 1 nearest neighbor. The difference in this

accuracy for k = 1 and 5 can in most cases be considered negligible depending on

the application. Final determination on this parameter essentially comes down to

the compromises that can be accepted between speed and memory usage vs accuracy.

This means that given an entire dataset, the search for an exact match to a query can

be reduced to searching 5 images rather than all. The resulting complexity therefore

is a trade-off of an increase from O (NF (t2b)) for k = 1 to O (5NF (t2b)) for k = 5

4.3.5 Data Association Performance. Next the parameters established in

the previous sections were used to conduct the data association on each dataset vary-

ing the number of features. Fig. 4.9 shows plots of the number of features vs accuracy

for both the Gaussian and Chi-Squared kernels for all datasets.

In all datasets, the Gaussian kernel surpassed the performance of that of Chi-

Squared. While the accuracy in all cases increases with the increase in the number of

features, KLSH via Gaussian kernel performs at 0.95 probability of accuracy with 60

features and above in larger datasets.

4.3.6 Flaws in Accuracy. The plots in Fig. 4.9 show that as the datasets and

number of features both increase, the accuracy does as well. In looking specifically

at each association made, it was noticed that, in general, it was the same positions

in the environment that were being miss-associated. Therefore the degradation in

performance is more environment specific than capability of the algorithm. There

are always going to be certain areas in environments that features will have a hard

time picking up. The key is to optimize feature extraction methods to minimize these

occurrences.

4.4 Summary

This chapter has reviewed test setup and completion. The KLSH hash parame-

ters used produced results answering the data association with metric level precision.
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The SIFT feature detector outperformed HOG in accuracy by requiring less features

per image to hash similar points. This difference in feature requirement is double the

amount of memory required to produce hash tables than needed for SIFT. The Gaus-

sian kernel was found to perform better than the Chi-Squared kernel throughout all

dataset sizes. Like the HOG features, however, the Ch-Squared kernel does improve

in accuracy as the number of features grows. This in turn increases the complexity,

and memory requirements. Finally this implementation found that the number of

nearest neighbors required to achieve optimum accuracy can be narrowed between

k = 1 and 5. Although the accuracy is higher at k = 5, there is more of a requirement

for memory storage, while the opposite is true for k = 1. Here, speed and memory

usage is optimized with a slight trade-off in accuracy. The determination for which

situation is more ideal is problem specific.
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Figure 4.8: Parameter Sweep: KLSH k. This plot shows the accuracy
of match produced with a variation in the number of nearest neighbors
kept. This test was completed using different numbers of SIFT features,
according to the legend, with a Gaussian kernel.
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Figure 4.9: Implementation Performance: Gaussian vs Chi-Squared kernel
comparison. These plots show the accuracy of match while varying the
number of SIFT features used in KLSH for both the Gaussian (blue) and
Chi-Squared (red) kernels.
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V. Conclusion & Future Work

This research has presented an implementation of the hash table-based nearest neigh-

bor search method, KLSH to conduct the data association. The performance has

shown to answer the data association of a pose with metric level accuracy within a 2

m. This method therefore can be implemented as the data association solution in a

vision-SLAM algorithm. This section discusses the pros and cons to this method as

well as the areas for future work found to be required.

5.1 Conclusions

5.1.1 KLSH Performance. KLSH has shown to be a strong nearest neighbor

algorithm resulting in optimal accuracy narrowing down the search space needed to

answer the data association. The Chi-Squared kernel used in conjunction with SIFT

features in [42] did not perform as well in this implementation. The Gaussian kernel

performed better by far. Since images were taken at a rate of approximately 2 Hz

with an approximate velocity of 1 m/s, a correct data association provides metric

level precision down to 2 m. This is a remarkable capability that can be implemented

to produce accurate metric SLAM maps.

5.1.2 SIFT vs HOG. This research tests the HOG feature detector’s robust-

ness in using for image navigation purposes. In general, its use in facial and object

recognition has been found to produce better results than in this hashed based data

association implementation. The accuracy of match for a particular query was found

to be lower than that of SIFT but increased with the increase in features per image.

The computational complexity and memory requirements for this increase in features

in most problems will not warrant its use. When online capability is the ultimate goal,

maximum speed and minimum memory usage trade-offs must be optimized. The SIFT

feature detector produced matches with greater than 0.90 probability of accuracy on

larger datasets with as few as 20 features per image. This yields a memory usage of

O (20NF,�(t
2b)).
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5.1.3 Evaluation. Aside from the fact that this implementation was done in

MatlabⓇ , the overall process is, however time consuming. By adding database size

heuristics and dividing hash table calculations into multiple iterations, the speed of

the system was greatly increased without loss in efficiency thereby optimizing use in

image mapping. The goal of online capability may be able to be accomplished given

the number of features used per image remains relatively low. System constraints

are needed, however to determine an actual requirement. Finally, it was determined

that there is a trade-off in terms of optimization in the number of nearest neighbors

required. As the number of nearest neighbors increased past 5, the accuracy decreased.

Therefore, at most, KLSH was found to require no more than 5 images to search in

matching a query. In the case of the 1260 image dataset with over 630 database

images, thats only 1% of the entire database. It was also discovered however, that

at k=1, while the probability of accuracy was not as high it was still good, above

0.90 in most cases. This tradeoff in accuracy saves computation time and memory

by searching through just 1 image instead of all 5. The conditions warranting the

tradeoff are problem dependent but in most cases the difference in accuracy may be

negligible. The downfall to KLSH is that as the database size continues to grow,

speed will decrease and memory usage will increase. While it was shown that the

number of hash tables and bit length of each need not change with the increase in

daatbase size, memory usage increases by t2b with each added feature.

5.2 Future Work

This implementation unfortunately wasn’t able to compare the k-d tree method

using the same datasets tested on. Therefore an accurate comparison of which method

is better could not be accomplished. This is the first area that needs to be addressed

in future work. This implementation also needs to be tested in a vision-SLAM im-

plementation and optimized for use online. While the dimensionality required to

accurately describe image features has always been much larger than that of other

sensor methods, this implementation performs well optimizing accuracy across all
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database sizes while searching a fraction of a percentage of the data. The resulting

map produced in SLAM will determine whether or not the degradations in accuracy

found would impede the overall localization determination. Areas of concern for use

online lie in database size. Further heuristics are required to limit the database size

while still being able to accurately associate similar points. Furthermore, loop closure

techniques need to be implemented when completing in conjunction with SLAM.

While this algorithm performs well at a low number of features, the system

could be further optimized with the use of a region or interest point detector that

uses general position estimation techniques to estimate a feature’s position in the next

frame. Tracking fewer features from image to image like this as is done in SLAM will

lower the overall number of features in the database. This will not speed the algorithm

in terms of dimensionality complexity but will aid in lowering the number entries in

the overall database. Another method to decrease the size of the database is to use

variations of features as in [18]. Similar to SLAM feature tracking techniques, when

a feature is tracked in an environment, variations of that feature in subsequent scenes

are combined and associated with a covariance. This ensures that changes in changes

in feature appearance as it gets closer done hinder tracking and data association.

This also minimizes the number of additional features that need to be saved in the

database when tracking features through the environment.
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Appendix A. Supplementary Math

A.1 Hamming Distance Metric

Given a dataset P , let C be the largest coordinate across all dimensions and

all samples. This allows P to be embedded into the Hamming cube with d′ = Cd.

This is done by representing each point p by a binary vector in the form of the unary

representation. The unary representation of a number, x1 is a vector of ones with

length(x1) followed by C − x1 zeros.

If C = 10, x1 = 5, the UnaryC(x1) = [1111100000]

The resulting binary representation of a point in P is

v(p) = UnaryC(x1), ...,UnaryC(xd). (A.1)

Consider the 2D, point p = [3 5]. The resulting Unary representation based on

C = 5 is:

v(p) = [ 1 1 1 0 0 1 1 1 1 1 ] (A.2)

The Hamming distance, dH of points p, q in the set {1, ..., d′} is

D(p, q) = dH(v(p), v(p)) (A.3)

in which the function dH is the sum of the XOR of the input terms.

A.2 Central Limit Theorem

Consider a sequence of i.i.d. random variables each with a finite mean, � and a

finite non-zero variance, �2. The sum of the first n is represented by

Sn = X1 +X2...+Xn (A.4)

A zero-mean, unit variance random variable, Zn can then be calculated as
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Zn =
(Sn − n�)

�
√
n

(A.5)

The central limit theorem states that as the number of states, n in a sample

becomes large, the cdf of the normalized Sn will resemble that of a Gaussian random

variable.

lim
n→∞

P [Zn ≤ z] =
1√
2�

∫ z

−∞
e
−x2
2 dx (A.6)

This Gaussian approximation holds true for any distribution as long as there is

a finite mean, finite non-zero variance and a properly normalized sum [45].

A.3 2D Homography Estimation

Figure A.1: Homography Example.

Consider the 2 images in Fig. A.1, P and P ′ taken of the same scene who’s only

differences may include rotation, translation and scale. Since the points in these two

images are in different planes or spaces, linear comparisons based on position cannot

be completed. A homography is a point to point mapping between two spaces. In

this example, a homography enables this pair of images to be compared to complete

tasks such as seeing how alike they are or more commonly, image mosaicking. This

enables multiple images of the same scene to be ”pieced together” in the event they

were cropped apart as in Fig. A.2 or paired together to produce wide angle panoramic

views. This type of image registration is known as image mosaicking.
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(a) (b) (c)

(d) (e) (f)

Figure A.2: Mosaicking example. Orginal image (a). Various crops with
rotation (b-e). Mosaicked image (f)

Fig. A.2 is an example of the image scenario discussed above. The two images are

from the same scene however, the second varies in translation and scale. The following

derivations calculate the homography estimation for mapping two images [23].

The mapping of the points p in the first image to the corresponding points p′

in the second image defines the homography as

wp′ = Hp (A.7)

where H is a 3×3 transformation matrix. It is important to note that the scale

between the images is arbitrary and not defined in the matrix leaving 8 degrees of

freedom. A 2D point has 2 degrees of freedom per point mapping. Therefore a

minimum of 4 points are required to solve. The system can be solved with more than

4 points; this is known as an overdetermined system in which an approximate solution

can be determined by least squares.

Let p = (x, y, 1) and p′ = (x′, y′, 1) be corresponding points in images P and P ′.

Solving the homography estimation given in equation (A.7) yields
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⎡⎢⎢⎢⎣
wx′

wy′

w

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x

y

1

⎤⎥⎥⎥⎦ (A.8)

As mention above, the scale parameter cancels when writing out the equations leaving

ℎ11x+ ℎ12y + ℎ13 − ℎ31xx
′ − ℎ32yx

′ − x′ = 0

ℎ21x+ ℎ22y + ℎ23 − ℎ31xy
′ − ℎ32yy

′ − y′ = 0
(A.9)

Expressing this as the linear system Aℎ = 0 yields the following 2n×9 matrix A, in

which n is the number of points used to calculate the homography in each image

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1 −x′1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1 −y′1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2 −x′2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2 −y′2

...
...

...
...

...
...

...
...

...

xn yn 1 0 0 0 −xnx′n −ynx′n −x′n
0 0 0 xn yn 1 −xny′n −yny′n −y′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.10)

ℎ, then is a 9×1 vector comprising the terms of the homography matrix H. Solving

for H is now accomplished using singular value decomposition on A yielding

A = UΣV ′ (A.11)

in which U and V are the eigenvectors of AA′ and A′A respectively and Σ, the singular

values which are the square roots of the above eigenvectors. The ℎ vector is equal

to the eigenvector corresponding to the smallest eigenvalue of A. This value is 0
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if the system is exactly determined, or has only 4 points, or is closest to 0 in an

overdetermined systems.

The ℎ vector forms the homography matrix, H as follows:

H =

⎡⎢⎢⎢⎣
ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

⎤⎥⎥⎥⎦ . (A.12)
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