
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

9-15-2011

Twitter Malware Collection System: An Automated
URL Extraction and Examination Platform
Benjamin B. Kuhar

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer and Systems Architecture Commons, and the Digital Communications and
Networking Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Kuhar, Benjamin B., "Twitter Malware Collection System: An Automated URL Extraction and Examination Platform" (2011). Theses
and Dissertations. 1405.
https://scholar.afit.edu/etd/1405

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277524381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1405?utm_source=scholar.afit.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

TWITTER MALWARE COLLECTION SYSTEM: AN AUTOMATED URL

EXTRACTION AND EXAMINATION PLATFORM

THESIS

Benjamin B. Kuhar

AFIT/GCO/ENG/11-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.

AFIT/GCO/ENG/11-07

TWITTER MALWARE COLLECTION SYSTEM: AN AUTOMATED URL

EXTRACTION AND EXAMINATION PLATFORM

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Benjamin B. Kuhar, BS

August 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

iv

AFIT/GCO/ENG/11-07

Abstract

As the world becomes more interconnected through various technological services

and methods, the threat of malware is increasingly looming overhead. One avenue in

particular that is examined in this research is the social networking service Twitter.

This research develops the Twitter Malware Collection System (TMCS). This system

gathers Uniform Resource Locators (URLs) posted on Twitter and scans them to

determine if any are hosting malware. This scanning process is performed by a cluster of

Virtual Machines (VMs) running a specified software configuration and the execution

prevention system known as ESCAPE which detects malicious code. When a URL is

detected by a TMCS VM instance to be hosting malware, a dump of the web browser

used is created to determine what kind of malicious activity has taken place and also how

this activity was allowed.

After collecting over a period of 40 days, and processing a total of 466,237 URLs

twice in two different configurations, one consisting of a vulnerable Windows XP SP2

setup and the other consisting of a fully patched and updated Windows Vista setup, a

total of 2,989 dumps were created by TMCS based on the results generated by ESCAPE.

v

Acknowledgments

I would like to thank my good friends and family members both near and far.

Without you, I don’t believe this research effort would have been possible.

vi

Table of Contents

Table of Contents ... vi

List of Figures .. ix

List of Tables ... x

I. Introduction .. 1

1.1 Problem Background .. 1

1.2 Goals ... 2

1.3 Document Outline .. 2

II. Literature Review ... 4

2.1 Malware Overview .. 4

2.1.1 Defining Malware ... 4

2.1.2 Trojan Horses .. 5

2.1.3 Rogueware ... 5

2.2 Malware and Exploit Collection Systems ... 5

2.2.1 Strider HoneyMonkey .. 6

2.2.2 SpyProxy .. 8

2.2.3 HoneyIM .. 9

2.2.4 Caffeine Monkey .. 11

2.4 Payload Delivery Methods .. 13

2.4.2 Clickjacking .. 13

2.4.3 Drive-By Download .. 14

2.5 Malware Delivery and Execution Prevention .. 15

2.5.1 Data Execution Prevention ... 15

2.5.1 Nozzle ... 16

2.5.2 Gatekeeper .. 17

2.6 History of Twitter Vulnerabilities .. 18

2.6.1 SMS Authentication Vulnerability .. 18

2.6.2 Clickjacking Vulnerability .. 19

2.6.3 XSS Worms ... 19

2.6.4 MouseOver Vulnerability .. 19

2.7 Twitter’s Malware Countermeasures ... 20

vii

2.7.1 Malicious URL Filtering ... 20

2.7.2 Additional Filtering after Bit.ly Partnership .. 20

2.8 Summary .. 20

III. Methodology ... 21

3.1 Problem Definition .. 21

3.1.1 Goals .. 21

3.1.2 Approach ... 22

3.2 System Boundaries ... 23

3.3 System Services .. 24

3.3.1 Status Collection .. 24

3.3.2 URL Extraction from Statuses ... 25

3.3.3 Storage of Extracted URLs .. 25

3.3.4 URL Unshortening .. 25

3.3.5 URL Processing through the TEH module ... 26

3.4 Metrics .. 28

3.5 Parameters ... 28

3.5.1 System Parameters. .. 28

3.5.2 Workload Parameters. .. 30

3.6 Factors ... 31

3.6.1 Considered but excluded factors... 31

3.6.2 VM Software Configurations. ... 31

3.7 Evaluation Technique .. 32

3.8 Workload ... 33

3.9 Experimental Design ... 33

3.10 Methodology Summary ... 33

IV. Results ... 34

4.1 Total Statuses Examined ... 34

4.2 Total URLs Collected .. 35

4.3 Total URLs Determined To Contain Malware .. 36

4.3.1 Windows XP Configuration Results... 36

4.3.2 Windows Vista Configuration Results. ... 37

viii

4.4 Examining Vista and XP Results ... 38

4.5 Processing Errors ... 41

4.6 Manually Identified Malware ... 42

4.7 Results Summary .. 44

V. Conclusions .. 45

5.1 Accomplishments ... 45

5.2 Contributions .. 45

5.3 Future Work ... 45

5.3.1 Integration of User Input ... 45

5.3.2 Prescreening Application ... 46

5.3.3 Expanding Social Network Compatibility ... 46

5.3.4 Incorporating Additional Detection Methods .. 46

5.3.5 Automate Analysis of Captures ... 47

5.3.6 Processing URLs in Parallel within a Single VM ... 47

5.3.7 Develop Focus on Semantically Relevant Information ... 47

5.5 Conclusion .. 47

Bibliography .. 49

ix

List of Figures

Figure 1: Twitter Malware Collection System ... 24

Figure 2: Total Statuses Examined .. 34

Figure 3: Total URLs Collected .. 35

Figure 4: Potentially Malicious XP URLs ... 37

Figure 5: Potentially Malicous Vista URLs .. 38

Figure 6: XP vs. Vista Box Plot .. 39

Figure 7: XP Ratios ... 40

Figure 8: Vista Ratios .. 40

Figure 9: Identified Infection... 42

Figure 10: Cycbot Packet Capture ... 43

Figure 11: Cycbot Trojan’s “conhost.exe” .. 44

x

List of Tables

Table 1: Chosen Factor and Levels ... 32

Table 2: Windows XP ESCAPE Results ... 36

Table 3: Windows Vista ESCAPE Results ... 37

Table 4: Processing Errors... 41

1

TWITTER MALWARE COLLECTION SYSTEM: AN AUTOMATED URL

EXTRACTION AND EXAMINATION PLATFORM

I. Introduction

Imagine for a moment that a famous comedic movie actor has a Twitter account

with a massive number of followers, say, in excess of 1,200,000. These followers all

receive updates when this actor posts an update to Twitter. With this large of a

following, something posted by this actor is “heard” by a large audience. Now, assume

that someone has come up with a scheme to steal from people using a method that

requires a significant number of trusting people is able to gain control of the actor’s

Twitter account. This thief, now having the ability to send a message to over 1.2 million

users, decides to take advantage of this massive group of admirers by posting a link that

is said to contain a screensaver for the actor’s upcoming new movie. The link instead

contains a piece malware that steals from the victim’s banking account. There’s no need

to imagine, this event has actually taken place. The actor Simon Pegg’s Twitter account

was hijacked and used to spread a banking Trojan [1]; and this is not the first time such

an event has occurred and will likely not be the last time.

1.1 Problem Background

As consumer technology advances and becomes more affordable, more users are

able to experience the amazing and revolutionary things made possible that were not

previously. The global Internet is an example of such technology. Through the use of

the Internet, information spreads to far away destinations at incredible speeds. This

world-wide connection hosts both legitimate and illegitimate actions. A website can host

2

an online store through which tangible products can be purchased and shipped half way

across the globe while another website can deceive users into downloading and installing

fake anti-virus scanning software. Phone calls can be made using the Voice over Internet

Protocol to family members across the ocean or malicious executables can be spread

through a link contained within a status posted to the social networking service Twitter.

As time marches on, the ability to discern whether or not something stumbled upon while

using the Internet as advantageous or malicious becomes increasingly difficult. The

reason for this is that the creators of the illegitimate actions are progressively able to take

advantage of not only a computing system, but also the user of the system. Determining

ways to deal with these sorts of malicious actions proves problematic and requires much

effort and thought.

1.2 Goals

The primary goal of this research is to create a system to scan hyperlinks posted

on the social networking service Twitter. The system determines whether or not

malicious activity is detected at these links.

An additional goal of this research is to create an archive of the offenders that are

deemed malicious to study the means and methods by which the malicious activity takes

place.

1.3 Document Outline

Chapter 2 of this document provides a literature review relevant to this research

effort. Chapter 3 provides the experimental methodology for the system. Chapter 4

3

provides analysis on the results generated by the system. Chapter 5 provides a

concluding summary of the findings of the system as well as future research endeavors.

4

II. Literature Review

2.1 Malware Overview

This section of chapter two provides a short history of malware as well providing

some pertinent definitions.

2.1.1 Defining Malware

Malware, short for malicious software, is software whose purpose is to exfiltrate

data or cause damage to one or more computer systems without the system owner’s

explicit permission [2]. The existence of malware is common knowledge as the media

frequently describes wide-spread attacks [3].

Malicious software itself, though, is not new. It has become more prevalent due

to the wide spread connectivity information via personal computers and the Internet [3].

One of the earliest notable pieces of malicious software is the fork bomb. A fork bomb is

a program or shell script that rapidly creates new processes via the fork() system call.

The goal of a fork bomb is to consume entries in the process table and thereby cause a

denial of service which will bring the affected computer to a halt [4].

Malware is increasingly becoming more sophisticated, stealthy, and even weapon-

like as was recently seen with the so-called “cyber weapon” Stuxnet [5]. Malware

authors take advantage of things such as delays between patch creation and patch

installation, user susceptibility to social engineering, and the likeliness of users to pursue

“attractive” material. These authors realize that systems, as well as their users, are

vulnerable.

5

2.1.2 Trojan Horses

A Trojan Horse is a piece of software that appears legitimate to the user, but

contains unknown functionality which can be leveraged in order to gain a level of control

on the victim’s computer [6]. This type of malware, along with others that provide

unauthorized access to a user’s computer, have the potential for dire consequences.

2.1.3 Rogueware

Within the past three years, fake anti-virus products, also known as rogueware,

have skyrocketed in popularity among malware distributors. These pieces of rogueware

trick the affected user into paying money for a license to remove what the programs

identify as “infected” files. As a result, the false licenses that are purchased add up to a

significant amount of capital for the malware distributors. The ability to play on the fears

of people rather than the vulnerabilities contained within a user’s system itself allows the

creators of these rogueware items to scam bystanders for their money [7].

2.2 Malware and Exploit Collection Systems

There are many different variations of malware and exploit collectors, or

crawlers, in existence. Of particular interest with regards to this research effort are the

ones that use crawlers to identify Uniform Resource Locators (URLs) with malicious

content. Some of these crawlers are explored in the following sections to determine how

they are useful in different applications and how similar methods may be applied to this

research.

6

2.2.1 Strider HoneyMonkey

The Strider HoneyMonkey project is a Microsoft sponsored system. This system

visits various websites with the intent of finding zero-day exploits as well as established

exploits that can compromise an unpatched system [8].

The Strider system checks for the illegitimate and unsanctioned creation of files

and system configuration changes and is combined with a HoneyMonkey, which is

essentially a proactive honeypot, to determine when an exploit has successfully executed.

With this system, multiple variations of the HoneyMonkey execute on different Virtual

Machines to test different levels of patches and the levels of “aggressiveness” from

various websites [8].

The HoneyMonkey system detects exploits through a three step process. The first

step, known as scalable mode, visits a configured number of URLs at the same time from

a single virtual machine. If an exploit is detected, the system will check one URL per

virtual machine and re-test each of those URLs to determine which specific URL

contains the exploit. In the second step, the HoneyMonkeys determines what pages are

malicious through recursive redirection analysis by examining the URLs contained within

the initial page. Then, in step three, HoneyMonkeys continuously scan the results from

step two within fully updated virtual machines to determine if any exploits are leveraging

zero-days [8].

Since signature-based detection tends to be a cat and mouse process, Strider

HoneyMonkey uses a black-box non-signature based approach. A HoneyMonkey is run

that launches a new instance of a browser to defeat any code containing a timer that

delays execution of said code. Since user interaction is not incorporated into the

7

HoneyMonkey, any modifications made to the system outside of the browser’s authorized

area of operation indicate that an exploit has successfully run. This approach detects

exploits that leverage both known and unknown vulnerabilities. After the HoneyMonkey

has visited a requested URL, the virtual machine is examined to detect if there are any

noticeable executables created, if any files have been modified outside the permitted

folders, if any new processes have been created, if any windows registry configuration

changes have occurred including both the addition and modification of keys, if any

known vulnerabilities have been leveraged, and finally, if any redirect-URLs have been

visited [8].

Within redirection analysis, a large number of URLs deemed malicious in step

one were content providers serving up attention-getting items to lure in potential victims.

If successful, traffic is redirected to the actual exploit providers which infect or

compromise the victims’ machines [8].

In generating URLs to crawl, the Strider HoneyMonkey team used URLs from a

search for sites that were known to host malicious content, a search for hosts files, and a

further crawling of the exploit containing URLs discovered from these two groups [8].

Of the 16,190 URLs generated from URLs suspected to host malicious content in step

one, 207 of these URLs, which equates to approximately 1%, were identified as

containing exploits [8]. For the top 1,000,000 websites that were examined, based on

their popularity rankings, 710 of these URLs were found to contain exploits. In step two,

once recursive redirection analysis had taken place, the list of malicious URLs from the

suspicious list had increased by 263% to 752 URLs [8]. For the popular site list, the

number of exploit URLs increased to 1,036, or 46% [8]. In stage three, one of the virtual

8

machines successfully captured a zero-day exploit, the JView [8] profiler in javaprxy.dll,

when instantiated within Internet Explorer contained a remote code execution

vulnerability totally compromised the victim’s system [9].

2.2.2 SpyProxy

SpyProxy is an extended web proxy system that protects users from malicious

URLs. It consists of a system containing virtual machines to process requested URLs on-

the-fly in a similar manner to previously discussed Strider HoneyMonkey. It is unique in

that it functions within a proxy server and serves as a defense platform rather than just a

measurement tool. SpyProxy ideally should keep clients safe from malicious content and

it also should not reduce the usability of a browser, for example, by generating large

delays between requests. SpyProxy downloads content on the requesting client’s behalf

and evaluates it to verify whether the URL is malicious or benign. During experimental

trial runs of SpyProxy, the average delay from when a client requests a URL to when the

client’s browser begins to render was a surprising 600ms [10].

SpyProxy first performs a static analysis of the requested URL. If it is unable to

identify or process an object, which would be the case for any non-HTML content types,

it forwards the object to a virtual machine which visits the URL and checks for any

system state changes such as newly created processes, modifications to the file system,

registry modifications, or Operating System crashes [10].

Various optimizations have increased the performance of the SpyProxy system.

One of the first is the caching of the post-security checking of the requested page which

produces a hit rate that is competitive with a typical web cache. These hits are only

9

generated if all of the requested content is served from the proxy cache which eliminates

the possibility of an unexpected outcome from as dynamically generated content [10].

Another optimization to the system is pre-fetching requested content for the client

delaying execution until the SpyProxy system allows the page to be rendered. A further

optimization technique is the periodic release of content to the client from the proxy by

processing part of a page and then immediately sending it to the client if it is non-

malicious thereby making the process more streamlined [10].

2.2.3 HoneyIM

Instant Messaging (IM) malware can spread very quickly making it a significant

security risk for users. A variant of the Kelvir worm caused Reuters to disable its Instant

Messaging service back in 2005. Two main methods of malware spreading through IM

clients are URLs linking to malicious websites and file transferring. Once a machine has

been compromised, the malware spreads by sending similar messages with malicious

URLs or through file transfer to the users on the infected client’s buddy list which

spreads the malware at an exponential rate [11].

There are some protection schemes that enhance IM security such as using

CAPTCHA to counter the spread of IM malware. The burden of such security can

dissuade a user from using the service [11].

The HoneyIM system detects the spread of malware through “dummy buddies”

on a users buddy list. This essentially eliminates false positives since fake buddies

should never receive messages from a legitimate user. HoneyIM is based on the open-

source IM client, Pidgin, and the client honeypot, Capture. In simulated executions of

10

HoneyIM with only 5% of total users comprised as fakes on the Instant Message

network, HoneyIM was able to detect the spreading malware after only 0.4% of the users,

on average, had been infected [11].

The HoneyIM system has four components: the communication module, the

detection module, the suppression module, and the notification module. The

communication module parses IM traffic sent to decoy buddies on the network. It relays

messages to the detection module which determines whether a URL was included in a

message or if a file transfer request was made. This module then notifies the suppression

module which examines network traffic and filters out messages with malicious intent.

The notification module alerts network administrators when spreading malware has been

identified [11].

The communication module supports all of the functions a normal IM client

supports and also supports all of the various IM protocols available. The detection

module identifies clients as compromised if a URL or file transfer request is received.

Encryption will not circumvent the detection module as the final message received within

an IM conversation must be in plain-text. If a URL is received by the detection module,

it can use HoneyMonkey to detect system anomalies post visit. Taint analysis could also

determine if an executable can compromise the system and generate a signature of the

file. The suppression module acts as a network filter by denying traffic generated from

identified offensive clients. The notification module informs network administrators

when malware has been detected [11].

11

2.2.4 Caffeine Monkey

Caffeine Monkey contains a JavaScript engine “based on extensions to the open

source Spidermonkey JavaScript implementation” [12]. It uses a MySQL database to

store retrieved documents, the results of analysis, as well as organizing crawls [12].

Although the Caffeine Monkey focuses on JavaScript, similar ideas can be

applied to other scripting languages. Techniques to obfuscate the true functionality of

scripts are numerous. One obfuscation technique is called whitespace randomization.

This simple method omits whitespace which causes the scripts to appear different when

traversing the internet but retains the exact same functionality to be performed. This

technique does not hide what the scripts are actually doing during execution but rather

changes the raw data which could defeat filters that match content [12]. Similarly,

comment manipulation serves a very similar purpose as whitespace randomization. It

leaves the code unmodified but changes the binary representation of the script which

could potentially fool systems put in place to detect malicious activity. Comments could

also be used to bewilder a human analyst examining the code by giving inaccurate or

misleading guidance [12].

String obfuscation is another abashment-inducing technique which ranges from

various encoding methods, to XOR functions, to Caesar Ciphers. These techniques

render signature based detection impractical as a result of the myriad number of possible

combinations in which strings can be represented and still induce the same result [12].

Variable name randomization and function pointer reassignment reassigns objects

to a different variable or function with the intent of obfuscating the true functionality of

the actual variables and functions utilized. Real-time security devices would not be able

12

to tell the difference between the built-in functions of JavaScript and a user-created

function of the same name [12].

Integer obfuscation bypasses security mechanisms looking for memory addresses.

For example, the address “’0x04000000’ could be expressed as 16,777,216 * 42, or any

number of other ways” [12].

Block randomization changes the structure of a script’s statements and changes

the code syntactically but performs the same actions. This is a more sophisticated

technique that alters if/else and loop constructs. The combination of various obfuscation

techniques can make detection potentially very tedious and taxing [12].

Heritrix, an Internet-scale crawler developed by the Internet Archive, is used to

collect JavaScript. The Heritrix crawler “collected approximately 225,000 web

documents over a continuous period of about three and a half days, with a total yield of

7.9GB” [12]. Of these, 364 documents which comprised 4.5MB (0.2%) of the total data

collected were JavaScript files [12].

Once the JavaScript documents were ready for analysis, they were submitted to

the Caffeine Monkey JS engine and the runtime logs were examined but provided no

malicious results. Four malicious examples were obtained from security researchers of

which SecureWorks made requests. These results were scaled to the results from the

MySpace crawl. There was an apparent difference in the ratios of the various actions

performed by the benign MySpace JavaScripts and the known malicious JavaScripts.

Benign scripts made much more use of the document.write() method while malicious

scripts made more use of string instantiation and objects. In the malicious scripts, DOM

13

(Document Object Model) elements were created with a higher frequency and the eval()

function was used less than in the benign scripts [12].

The Caffeine Monkey JS Engine hooked functions that were determined to be the

most likely to be obfuscated in JavaScripts and created logs at runtime. Thus, the flow of

execution was seen in the logs without the need for script debugging [12].

2.4 Payload Delivery Methods

The following sections describe some of the different ways that malware can be

distributed to victim machines.

2.4.2 Clickjacking

Clickjacking occurs when a user is persuaded to mouse click on an unapparent

element of a page that has been placed there by the attacker but is not noticeable to the

user [13]. This kind of attack could lead to the unintentional and undesired consequences

of transfer of funds, interacting with fraudulent advertising, posting messages, or other

actions that could be triggered by the click of a mouse [14].

The most common known form of clickjacking uses an invisible iframe overlaid

on top of the user’s desired content [13]. For example, JavaScript can be used to align

framed content in real time with the user’s mouse cursor which allows an attacker to have

the victim perform actions that require multiple clicks [14].

One of the most notable things about clickjacking is that it is not based on an

exploitable vulnerability or a bug in a web-based application. It is simply an abuse of

features inherent within HTML and Cascading Style Sheets (CSS) [14].

14

An extension named ClickIDS, which as the name suggests is a clickjacking

intrustion detection system, in the No-Script browser plug-in, which prevents scripted

elements from executing, detects if an event is triggered by an obscured or invisible

element after a user has made a click. Currently, an annoying side effect of this plug-in is

a large number of false-positives are generated [14].

ClickIDS detects if clickjacking is taking place within a test environment by

identifying coordinates on a page where clickable elements exist and then manipulating

the mouse to click on each of these individual elements. If two or more elements are

overlapping during the click event, a suspicious behavior alert is generated. The

ClickIDS examines both frames and iframes during the detection process [14]. Since it

only interacts with elements that are deemed clickable. The possibility of detecting

clickjacking that is occurring elsewhere within web pages cannot be done [14].

2.4.3 Drive-By Download

A drive-by download occurs when malicious software is installed on a victim’s

machine without his or her knowledge or consent [15]. These types of downloads are

successful due to leveraging some vulnerability, which in many cases occur in a web

browser.

In 2004, the drive-by download attack known as the “Download.ject attack”

successfully compromised a large number of well known business websites. These

compromised sites downloaded such software as key loggers as well as Trojan Horses in

order to steal user credentials and private information [16].

15

2.5 Malware Delivery and Execution Prevention

The following sections examine different methods to prevent the successful

delivery of malicious payloads to a user’s system. When considering how to defend

against malware, a lot of questions come to mind. One is how can software automatically

be identified as malicious. A second question is what can be done to prevent both the

system and the user from acquiring and executing malware. These and other such

questions are quite difficult and there tends to be only partial solutions rather than

complete answers.

2.5.1 Data Execution Prevention

Data Execution Prevention (DEP) technology, implemented in both hardware and

software, examines memory to prevent malware from executing. If running in Physical

Address Extension mode, the hardware version of DEP sets all of the memory regions

within a process to be non-executable unless there is code that is recognized as

executable. This eliminates malicious code that attempts to execute from these locations

by blocking these attempts and throwing an exception [17].

Hardware DEP implementations vary by architecture (AMD utilizes NX, or no-

execute page-protection while Intel utilizes XD, or the Execute Disable bit) but serve the

same purpose. Usually, DEP is used on a per-virtual-memory-page basis by modifying a

bit within the PTE (page table entry) [17].

The software implementation of DEP functions without a direct dependence on

hardware. This version of DEP is limited compared to the hardware version. It can

prevent Structured Exception Handler (SEH) overwrites and is generally used on

16

computers without the hardware features previously described. Software-based DEP is

applied at compile-time and typically limited to Windows system libraries [18].

The main benefit of DEP is the prevention of code execution from pages in

memory classified as data, such as the default heap, stacks, and memory pools. DEP will

raise an exception when code attempts to run from these defined-data sections and if the

exception is unhandled, will terminate the program [17].

There are four configuration options for DEP: OptIn, OptOut, AlwaysOn, and

AlwaysOff. The OptIn option means DEP is enabled for only those applications that are

explicitly specified, which by default are the Windows system files. In the OptOut

option, DEP is always on and is only off for those applications specified. The AlwaysOn

option enables DEP for each individual application, while the AlwaysOff option will not

use DEP for any application [17].

Although DEP mitigates the effectiveness of malware, it cannot be solely relied

on to protect a system. In previous research, ways were found to bypass DEP. One was

to run code from sections of memory that are designated executable to modify the flags

of the non-executable memory. This was using ret2libc to call NtSetInformationProcess

and the ProcessExecuteFlags which would disable the non-executable support for the

calling process [18].

2.5.1 Nozzle

Heap-spraying is a technique that manipulates even type-safe languages to an

attacker’s advantage. It creates a large number of objects containing an exploit within a

process’s heap. One common method uses a web browser and JavaScript. A website

17

containing malicious JavaScript uses the interpreter to allocate and place malicious

objects in the process’s heap [19].

It is quite difficult for standard signature based detection methods to detect heap-

spraying as it is easy to represent the same functionality in a variety of ways via

techniques such as polymorphism and encoding. Instead of using a signature-based

method, Nozzle takes a two-level approach to detect heap-spraying. It scans “objects

locally while at the same time maintaining heap health metrics globally” [19].

Nozzle scans objects locally by performing a sandboxed interpretation of heap

objects as if they were code and seeing if there are any signs of malicious intent. One of

the most notable cues of malicious intent is the detection of a NOP sled. These sleds can

contain an arbitrary set of commands as long as their execution does not result in

termination or alter the payload [19].

The types of instructions Nozzle deemed invalid are I/O or system calls,

interrupts, privileged instructions, and jumps external to the current object’s range.

Nozzle attempts to find objects that modify control flow assuming an attempt to arrange

flow so a seemingly random jump will execute the malicious code [19].

2.5.2 Gatekeeper

Gatekeeper enforces reliability and security policies for JavaScript code via a

subset of acceptable and safe JavaScript. This subset is based on a collection of 8,379

JavaScript widgets rather than analysis of the language itself [20].

The number of items Gatekeeper prohibits is relatively small. In particular, it bans

the use of eval, Function, setTimeout, setInterval, and with. These constructs accept

18

string parameters and then executes said parameters. The first four items present a

problem because strings can be interpreted as code but this is not known until run time

which makes it impossible for a static analysis to detect. Specifically, the symbol lookup

scope could be altered. The reflective constructs of Function.call, Function.apply, and

the arguments array are allowed since they can be statically analyzed. One of the most

prevalent risky features of JavaScript that needs to be addressed at runtime are

innerHTML assignments as well as filed references that are unresolved [20].

During runtime, the safe JavaScript subset and another Gatekeeper subset are

used. The difference between the two is the Gatekeeper subset allows non-static field

stores as well as innerHTML assignments. The widget is checked against the safe

JavaScript subset. If it fails this test, it is checked against the Gatekeeper subset; if this

fails the program is deemed unsafe and will not be considered any further. If either the

safe or the gatekeeper subset tests pass, the program undergos pointer analysis and is

checked to see if any established policies are broken [20].

2.6 History of Twitter Vulnerabilities

Although the main focus of this research is on the effects URLs external to

Twitter may have on a user browsing said links, the Twitter service itself has been

vulnerable to malicious attacks. The following sections examine some of these

vulnerabilities.

2.6.1 SMS Authentication Vulnerability

A vulnerability in the Short Message Service (SMS) authentication service, which

allows a user to access their Twitter account via text message, was leveraged by spoofing

19

caller ID’s. This is because the caller ID was the only thing used to validate a user. This

vulnerability made it possible for anyone who could spoof a caller ID to post a message

to an account if they possessed the caller ID information that was tied to the specified

account [21].

2.6.2 Clickjacking Vulnerability

In February 2009, a vulnerability was discovered on Twitter that propagated a

button labeled “Don’t Click” on a Twitter user’s page without the user manually posting

the URL themselves by using an invisible iframe to perform a clickjacking attack. This

vulnerability was deemed a “prank” and did not cause the compromise of any accounts

[22].

2.6.3 XSS Worms

In April 2009, many “worms” were found spreading throughout the Twitter

service via a Cross-Site Scripting (XSS) vulnerability within the Twitter Profile CSS.

Like the previously mentioned clickjacking vulnerability, these XSS worms

automatically posted statuses to a user’s page [23].

2.6.4 MouseOver Vulnerability

In September 2010, a “MouseOver” vulnerability allowed a XSS attack to occur.

The vulnerability triggered when a user would move their mouse over a hyperlink posted

within a status. This executed custom CSS or JavaScript which leaves open the

possibility for the unintended visiting of URLs hosting malicious content or other such

malicious activities [24].

20

2.7 Twitter’s Malware Countermeasures

2.7.1 Malicious URL Filtering

Utilizing Google’s Safe Browsing API, Twitter enabled a URL prescreening

service that looks for URLs known to host malicious content. If a user were to attempt to

post a URL that has previously been identified as malicious, the filter would display a

prompt to the user stating "Oops! Your tweet contained a URL to a known malware site!"

[25]. Including this filtering process in the submission of URLs is a positive step

forward, but the problem with this approach is that it only detects known malicious URLs

rather than both known and unknown malicious URLs.

2.7.2 Additional Filtering after Bit.ly Partnership

In 2010, Twitter and URL shortening service Bit.ly partnered. As part of this

partnership, Twitter announced a new URL filtering mechanism. In-depth details on the

algorithms and monitoring services used for this filtering are not public [26].

2.8 Summary

This chapter contains relevant definitions for terms related to this thesis, a review

of various methods of crawlers that scan for malware, some previously known

vulnerabilities found within the Twitter service, as well as measures that Twitter has

taken to reduce the potential malware that is present. Using this information, a

methodology is created in Chapter 3 to create a system that collects and examines URLs

from Twitter for malware.

21

III. Methodology

3.1 Problem Definition

With the release of the Department of Defense’s (DoD) Directive-Type

Memorandum on 25 February 2010, social networking sites have been deemed accessible

for use within the various DoD organizations and on the Non-Classified Internet Protocol

Router Network (NIPRNET) [27]. Since these social networking sites have the potential

to facilitate the spread of malware, as is described in Chapter 2, determining how great

the risk is of contracting malware on these sites and also to develop a system that can

potentially prescreen said sites to prevent the compromise of government information

systems would be very beneficial.

3.1.1 Goals

The main goal of this research is to develop a system that can automatically

gather URLs from statuses, which are commonly referred to as tweets, posted on Twitter,

and analyze those URLs to determine whether malware is present at the specified

locations. This goal will provide a prototype system to ascertain the risk of being

exposed to malware when visiting URLs found using social networking services, and in

particular to this research, Twitter.

Another goal of this research is to create a Twitter Malware Repository (TMR)

which can be further examined in subsequent studies to identify the different classes of

malware present, the methods of delivery of the malware, the specifics of the assumedly

various functionality of the malware, and so on.

22

3.1.2 Approach

Twitter statuses are collected via a Python script. A custom web crawler, also

written in Python, is used to determine the safety of the collected URLs. A database

tracks the gathered statuses, the results generated by the crawler, as well as other

statistical information.

The status collecting script sends requests to Twitter, using Twitter’s Streaming

and Search Application Programming Interfaces (API) to retrieve current statuses based

on the most popular trends at the time of collection. The URL examiner determines

whether the gathered URLs are using any of the various URL shortening services that are

publicly available. URL shortening services are used for statistical tracking, making the

sharing of URLs easier by only requiring a relatively short URL (generally the service’s

URL followed by a few characters), and also to make the most of the 140 characters that

statuses are limited to on Twitter. If the URL examiner determines that a status-gathered

URL is in fact utilizing a shortening service, it will store the “unshortened” URL in the

database for analysis as the full URL is what is actually being visited, besides which the

shortened URL has the potential to be reused and reassigned pointing to a different

location depending on the service [28]. The custom made crawler visits the URLs

contained within the gathered statuses to determine whether the site contains malware.

The results of this study will primarily include drive-by download as described in

Chapter 2 as simulated user-interaction is not within the scope of this study. That is,

malware that does not require manual intervention or input is captured.

23

3.2 System Boundaries

The System Under Test (SUT), which is named the Twitter Malware Collection

System (TMCS), is composed of two server-grade rack mounts that provide global

Internet connectivity to Twitter and the URLs investigated. Its data storage ability and

virtualization hosting platform allow simultaneous execution and management of a series

of Virtual Machines (VMs) on which the different components of TMCS execute (Figure

1).

One of the rack mounts is designated strictly for collection and storage purposes.

A lone VM running on this hardware is responsible for a number of functions. One of the

Python scripts running on this VM, named the Twitter Status Fetcher (TSF), creates the

API requests through the use of the PycURL library, which fetches objects identified by a

URL [29]. The results from the trends query using the Search API are URL encoded and

used as a query parameter for the Streaming API which provides statuses based on the

given trending parameters. Twitter’s Streaming API responds to this query with a stream

of JavaScript Object Notation (JSON) objects. These objects are parsed within the

Python script which determines whether the URLs within the collected statuses contain

shortened URLs, composes e-mail messages consisting of the systems current progress

and stores the collected URLs as well as the results generated by the crawler components

in a file-share and a MySQL database which are housed on the second rack mount.

The Component Under Test (CUT) within the SUT, is named the TMCS

ESCAPE Handler (TEH) module. The TEH module has two main parts: a Python script

and the ESCAPE system. The Python script controls much of the actions performed by

the VM client and the ESCAPE system traps the execution of malicious code. The parts

24

of the TEH module are described in more detail within the system services section of this

chapter.

Figure 1: Twitter Malware Collection System

3.3 System Services

3.3.1 Status Collection

One of the services TMCS provides is the collection of statuses from Twitter. This is

accomplished through the TSF module as previously described. The possible results of

status collection are: 1.) successful status and 2.) formatting error. The formatting error

results in the status being discarded due to malformation.

25

3.3.2 URL Extraction from Statuses

Once a status has been retrieved from Twitter, the TSF module parses the JSON

data and extracts any URLs that are contained within. The outcomes of this service are:

1) URL(s) found and 2) No URLs are found.

3.3.3 Storage of Extracted URLs

Extracted URLs are stored within a MySQL database. In conjunction with these

extracted URLs are: the Twitter ID associated with the status the URL was found in the

URL itself, and the date the URL was collected. The outcomes of storing the extracted

URLs include: 1) URL(s) successfully stored and 2) URL(s) already in database. When

the second outcome occurs, a counter column, which is assigned to each URL, is

incremented to keep track of the total times each URL is witnessed.

3.3.4 URL Unshortening

Since a large majority of URLs found in Twitter statuses use a URL shortening

service, such as bit.ly, the URLs are “unshortened” to determine what location the

shortened URLs point to. This process also allows additional analysis to be performed

based on the URLs themselves. Initially, use of the various shortening services’ APIs

were considered, but since a myriad of these shortening services are in operation and are

found within Twitter statuses, an alternative method was chosen. The URL Unshortener

sends a Hypertext Transport Protocol (HTTP) request to the URL in question and if the

response received contains an HTTP redirect status code, typically 301 or 302, it searches

via a regular expression through that same response’s header and stores the redirection

destination URL. The possible outcomes of URL Unshortening are: 1) URL is

26

unshortened and stored and 2) URL is not unshortened. The first outcome occurs when

the URL in question uses a URL shortening service or if an external redirection occurs (a

redirection to a different domain). The second outcome occurs when a shortening service

is not being used, the domain name cannot be resolved, or if a relative redirection occurs

(a redirection using a relative path that is located within the local domain).

3.3.5 URL Processing through the TEH module

The TEH module is responsible for multiple tasks with regards to the processing

of URLs gathered by the TSF module. The Python script portion of TEH performs the

following actions:

 Requesting URLs from the TMCS database for processing

 Handling instances of Internet Explorer

o Launching Internet Explorer

o Visiting specified URLs for a specified time

o Closing Internet Explorer

 Scanning ESCAPE’s output log for malware positive indicators

 Creating and storing dump files of Internet Explorer when malicious code has been

detected

 Reverting the current VM to a clean snapshot and restarting through SSH

o When malware has been detected and collected

o When a preset timer has expired

The revert and restart timer value for the script of 30 minutes is chosen to prevent any

potentially undetected malware from tainting results and also to clear out any other

27

unforeseen abnormalities that could be experienced while also minimizing the total

overhead experienced when reverting and restarting a VM client.

The ESCAPE system portion of TEH actually determines whether or not a URL

contains malicious content. The ESCAPE system is comprised of the following:

 A kernel-mode driver monitoring code execution

 A list of Hash-based Message Authentication Codes (HMACs)

 A configuration file

 An execution result log file

The list of HMACs is generated by the user on a trusted baseline system, that is, a system

comprised of approved files for execution. These HMACs are signatures of the

executable portions of the Windows programs allowed to execute. The HMACs are used

by the kernel-mode driver to determine when suspected malware attempts to execute.

The following flags produced by ESCAPE are stored in its log file are indicative of

malware:

 When the Windows Error Reporting feature triggers (werfault.exe)

 When unsigned code that is not part of the signed executable attempts to

execute

 When unsigned code that is part of the signed executable attempts to execute

 When a new process is created

The outcomes of the URL processing are: 1) No potential malware detected and

2) Potential malware detected.

28

3.4 Metrics

The metrics that assess the performance of TMCS are:

Total statuses examined: The total statuses examined determine how quickly

TMCS is able to retrieve statuses to scan through from Twitter.

Total URLs collected: The total URLs collected determine the available pool of

potential malware-hosting URLs to be scanned.

Total URLs determined to potentially contain malware: This metric is the one of

most interest.

Speed of URL collection: This metric is largely reliant on throttling by Twitter.

Processing Errors: This metric measures the number of errors encountered while

processing URLs.

3.5 Parameters

The following system parameters affect system performance including the metrics

and system responses.

3.5.1 System Parameters. The system parameters are those parameters that

when changed alter the system responses and/or the metrics.

3.5.1.1 Network Utilization. The amount of available network bandwidth

consumed corresponds to the number of collected URLs and also the rate at which URLs

are visited by the web crawlers. The available networking resources are changed with

respect to other research being conducted due to a lack of an independent networking

source. In addition, the availability of the social networking service, in this case Twitter,

also affects the ability to obtain URLs, although this is not something that can be

29

controlled by TMCS. This parameter is closely linked to the number of active TEH, TSF,

and URL Unshortener instances parameters.

3.5.1.2 Number of Active TEH Instances. Since this research is

conducted with shared networking resources, the number of active web crawlers also

determine how fast URLs are processed and results are gathered.

3.5.1.3 TEH Web Crawler Wait Timers. The time each VM waits on a

particular visited URL determines the overall amount of time that must be allotted to

process each URL collected. Choosing a length of time appropriate for each web crawler

to pause at each URL is influenced by two factors. The first of is the time required to

start up an instance of Internet Explorer. This value is manually calculated and 5 seconds

was deemed adequate. The second factor is the time to load individual URLs. According

to a report by Google, the average page consists of 320KB of data [30]. Given that there

are an unknown number of other variables that could affect the wait time of the crawler,

10 seconds was chosen to allow data to download and any other processing, including

execution delay timers, to occur when a URL is visited. Processing many include

interpreting JavaScript or executing other outlets for malicious payload delivery. This, in

total, sets the web crawler wait timer to be 15 seconds per URL visited. A longer timer

could have been selected, but the length of time required to wait at each URL directly

affects the total time required to process the entirety of the collected URLs.

3.5.1.4 Number of TSF Instances Active. As more instances of the TSF

module are run, the total number of URLs scanned simultaneously increases. This

number is capped based on the ability to obtain IP and account white listing privileges

30

from Twitter or the use of available IP addresses and accounts. For this research, a white

listed status could not be obtained, and only one IP address and one Twitter account were

used.

3.5.1.4 Number of URL Unshortener Instances Active. When more

instances of the URL Unshortener module are running, the number of fully realized

URLs increases at a greater rate.

3.5.1.5 VM Software Configuration. Since some malware may only

affects a particular version of a web browser or a certain patch level of an Operating

System, multiple configurations for the processing VMs are considered. In addition,

different versions may benchmark differently than others in terms of speed which has the

potential to impact the system in various ways.

3.5.2 Workload Parameters. The workload parameters, which consist of the

characteristics of the service requests made to the system are listed below.

3.5.2.1 Duration of URL Collection. This is the total amount of time

allotted for the purpose of gathering URLs. The more time available for collection

results in more URLs gathered. The chosen length of time for URL collection from

statuses was approximately 40 days. This time period allows a relatively large number of

statuses to be processed while also allowing enough time for analysis once complete.

This period also determines the total number of URLs that are collected and processed.

3.5.2.2 Number of URLs processed. As the total number of URLs

increases, the number of URLs infected with malware also potentially increases.

31

3.6 Factors

3.6.1 Considered but excluded factors

Due to the fact that white listed privileges were not obtained for this research

from Twitter, the number of TSF instances was not considered as a factor for testing.

Therefore, the TSF was limited to one active instance as Twitter would only allow one

streaming connection at a time. The number of active TEH instances was also considered

as a potential factor, but to be courteous and fair to others using the shared networking

resources, this value changed from time to time at the operator’s discretion typically with

fewer instances running during the day when utilization by others was apparent. Had this

not been an issue, a set number would have been chosen to run throughout the entirety of

the research process.

The factor chosen to test the performance of the system is:

3.6.2 VM Software Configurations.

Initially, three configurations were selected for the different VM Software

Configurations. However, due to a configuration error, there was realistically only

enough time to test two of the VM software configurations. The first configuration is

comprised of Windows XP SP2, Adobe Reader 8.0.0, Internet Explorer 7.0.5730.13

Update Versions: 0, and Office 2007 version 1.2.0.4518.1014. The software versions

were chosen because they contain known exploitable vulnerabilities. Windows XP is

chosen as the Operating System for this configuration as it still has the largest share of

Operating Systems in use, comprising approximately 40% of active Internet computers as

identified by user-agents [31]. The second configuration chosen consists of Windows

32

Vista SP2, Adobe Reader X 10.0.1, Internet Explorer 9.0.8112.16421 Update Versions:

RTM (KB982861), and Office 2007 version 12.0.6545.5000. Windows Vista SP2 was

chosen as the operating system for this second configuration because at the present time it

has been adopted alongside Windows XP for use throughout the Air Force. All versions

of the software tested in the Vista configuration are fully patched and up-to-date at the

start of testing (Table 1).

Table 1: Chosen Factor and Levels

VM Software Configuration 1 Windows XP SP2, Adobe Reader 8.0.0, Internet

Explorer 7.0.5730.13 Update Version: 0, Office 2007

ver. 1.2.0.4518.1014

VM Software Configuration 2 Windows Vista SP2, Adobe Reader X 10.0.1, Internet

Explorer 9.0.8112.16421 Update Versions: RTM

(KB982861), and Office 2007 version 12.0.6545.5000

3.7 Evaluation Technique

The evaluation technique used for this research is direct measurement.

Measurement is chosen for this research because models and simulations are not used,

but rather a live, real-world social networking system is used.

The testing environment consists of two Dell PowerEdge R710 server-grade rack

mounts. These rack mounts each have two quad-core Intel® Xeon® E5530 CPUs @

2.40GHz, three 15k RPM hard disk drives giving a total usable storage capacity of 271

GB, and 32 GB or RAM. The VM running the TSF module on one of the rack mounts

used Ubuntu 10.10, MySQL 5.1.41, and Python 2.6. The VMs running the TEH

instances were described in the factors section. The VMs were managed and hosted

using VMWare ESXi 4.1.0.

33

3.8 Workload

The workload for TMCS is the total number of URLs processed by the TEH

module. This is ultimately determined by how long URLs are collected, which in this

research is set at approximately five weeks.

3.9 Experimental Design

A full factorial design is chosen for this research. Since there is only one factor

with two levels, two experiments are required. The expected variance in the responses of

the system is unknown, and since such a large workload is used, only one replication is

performed. This results in a total two experiments to be executed.

3.10 Methodology Summary

Through the use of Twitter’s APIs, a system is developed to collect an extensive

number of URLs, which are processed by a series of VMs to determine if malicious code

is present at the given locations.

34

IV. Results

The metrics outlined in the previous chapter determine the performance of TMCS

which consists of total statuses examined, total URLs collected, total URLs determined to

contain malware, and processing errors.

4.1 Total Statuses Examined

After running for approximately 40 days and 16 hours, the final count of statuses

examined by TMCS is 19,309,417. This is an average of 474,822 statuses examined per

day, and 19,784 statuses examined per hour. While the total number of statuses

examined may seem rather large, it in reality only represents a small fraction of the total

number of statuses that are posted on Twitter. Based on statistics provided by Twitter,

the total statuses examined by TMCS represents approximately 0.4% of the total number

of statuses posted on Twitter during the time of collection [32]. Figure 2 below is a

histogram showing the total URLs collected each day.

Figure 2: Total Statuses Examined

Date

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

2
/2

4
/2

0
1

1

2
/2

6
/2

0
1

1

2
/2

8
/2

0
1

1

3
/2

/2
0

1
1

3
/4

/2
0

1
1

3
/6

/2
0

1
1

3
/8

/2
0

1
1

3
/1

0
/2

0
1

1

3
/1

2
/2

0
1

1

3
/1

4
/2

0
1

1

3
/1

6
/2

0
1

1

3
/1

8
/2

0
1

1

3
/2

0
/2

0
1

1

3
/2

2
/2

0
1

1

3
/2

4
/2

0
1

1

3
/2

6
/2

0
1

1

3
/2

8
/2

0
1

1

3
/3

0
/2

0
1

1

4
/1

/2
0

1
1

4
/3

/2
0

1
1

4
/5

/2
0

1
1

4
/7

/2
0

1
1

N
u

m
b

e
r

o
f

St
at

u
se

s
Ex

am
in

e
d

Statuses Examined

35

4.2 Total URLs Collected

The final total of unique URLs that were collected by TMCS is 466,237 URLs.

The total number of URLs witnessed by TMCS, including duplicates, is 1,363,935.

Therefore, only about 34.18% of the URLs gathered were unique. The total number of

URLs witnessed came from approximately 1,315,077 separate statuses, indicating that

multiple statuses included multiple links. This last figure is not an exact number as it was

generated solely from the status update Emails, which were sent hourly, implying that

some may have been missed during the final hour of collection since a total number of

status containing URLs was not stored in any other fashion. Figure 3 below displays the

URLs collected on a per-day basis.

Figure 3: Total URLs Collected

Date

0

10000

20000

30000

40000

50000

60000

2
/2

4
/2

0
1

1

2
/2

6
/2

0
1

1

2
/2

8
/2

0
1

1

3
/2

/2
0

1
1

3
/4

/2
0

1
1

3
/6

/2
0

1
1

3
/8

/2
0

1
1

3
/1

0
/2

0
1

1

3
/1

2
/2

0
1

1

3
/1

4
/2

0
1

1

3
/1

6
/2

0
1

1

3
/1

8
/2

0
1

1

3
/2

0
/2

0
1

1

3
/2

2
/2

0
1

1

3
/2

4
/2

0
1

1

3
/2

6
/2

0
1

1

3
/2

8
/2

0
1

1

3
/3

0
/2

0
1

1

4
/1

/2
0

1
1

4
/3

/2
0

1
1

4
/5

/2
0

1
1

4
/7

/2
0

1
1

U
R

Ls
 C

o
lle

ct
e

d

URL Collection

36

4.3 Total URLs Determined To Contain Malware

The following sections display in detail the different types and also the totals for

the URLs determined to potentially contain malware.

 4.3.1 Windows XP Configuration Results

The number of URLs flagged as running suspected malicious code when visited

by a Windows XP instance of the TEH module was 1,271. After examining the

configuration for the Windows XP VMs, it was determined that the Windows Error

Reporting feature was accidently disabled. This explains why there were zero results for

this data set. Table 2 displays the different ways the ESCAPE system was triggered.

Table 2: Windows XP ESCAPE Results

Windows Error Reporting 0*

Unsigned code not from the executable 217

Unsigned code from the executable 878

New Process Creation 176

Total 1,271

Figure 4, below, shows the number of URLs identified as potentially malicious on

a daily basis. An interesting point is the noticeable spike of URLs detected for the date of

March 3, 2011. This was the day in which Tōhoku earthquake and tsunami struck Japan

[33].

37

Figure 4: Potentially Malicious XP URLs

4.3.2 Windows Vista Configuration Results.

The number of URLs flagged as containing suspected malicious code when

visited by a Windows Vista instance of the TEH module came to 1,718. Table 3

displays how the ESCAPE system was triggered.

Table 3: Windows Vista ESCAPE Results

Windows Error Reporting 633

Unsigned code not from the executable 745

Unsigned code from the executable 3

New Process Creation 337

Total 1,718

Figure 5 below shows the number of URLs identified as potentially malicious by

date collected.

Date

0

50

100

150

200

250

2
/2

4
/2

0
1

1

2
/2

6
/2

0
1

1

2
/2

8
/2

0
1

1

3
/2

/2
0

1
1

3
/4

/2
0

1
1

3
/6

/2
0

1
1

3
/8

/2
0

1
1

3
/1

0
/2

0
1

1

3
/1

2
/2

0
1

1

3
/1

4
/2

0
1

1

3
/1

6
/2

0
1

1

3
/1

8
/2

0
1

1

3
/2

0
/2

0
1

1

3
/2

2
/2

0
1

1

3
/2

4
/2

0
1

1

3
/2

6
/2

0
1

1

3
/2

8
/2

0
1

1

3
/3

0
/2

0
1

1

4
/1

/2
0

1
1

4
/3

/2
0

1
1

4
/5

/2
0

1
1

4
/7

/2
0

1
1

U
R

Ls
 Id

e
n

ti
fi

e
d

XP Malicious URLs

38

Figure 5: Potentially Malicous Vista URLs

A similar pattern is shown when comparing the results of the Windows Vista trial

run to the Windows XP trial run. The noticeable spike at March 3, 2011 is again present.

4.4 Examining Vista and XP Results

A t-test is conducted to assess whether the number of malicious URLs from both

the Windows XP and Windows Vista runs were statistically different from each other.

The resulting p-value of 0.2829 suggest that the two data sets are not different. Figure 6

displays a box plot of the two data sets.

Date

0

50

100

150

200

250

300

350

2
/2

4
/2

0
1

1

2
/2

6
/2

0
1

1

2
/2

8
/2

0
1

1

3
/2

/2
0

1
1

3
/4

/2
0

1
1

3
/6

/2
0

1
1

3
/8

/2
0

1
1

3
/1

0
/2

0
1

1

3
/1

2
/2

0
1

1

3
/1

4
/2

0
1

1

3
/1

6
/2

0
1

1

3
/1

8
/2

0
1

1

3
/2

0
/2

0
1

1

3
/2

2
/2

0
1

1

3
/2

4
/2

0
1

1

3
/2

6
/2

0
1

1

3
/2

8
/2

0
1

1

3
/3

0
/2

0
1

1

4
/1

/2
0

1
1

4
/3

/2
0

1
1

4
/5

/2
0

1
1

4
/7

/2
0

1
1

U
R

Ls
 Id

e
n

ti
fi

e
d

Vista Malicious URLs

39

Figure 6: XP vs. Vista Box Plot

The ratios of malicious URLs to total URLs collected were examined to see if any

day had a significantly higher percentage of malicious URLs than any other for both runs.

A visible spike is seen on March 6, 2011 for Windows XP and April 2, 2011 for

Windows Vista. Figure 7 shows the ratio of malicious to total URLs for the Windows

XP configuration.

40

Figure 7: XP Ratios

Figure 8 is the ratio of malicious to total URLs for the Windows Vista

configuration.

Figure 8: Vista Ratios

Date Collected

0

0.2

0.4

0.6

0.8

1

1.2

2
/2

4
/2

0
1

1

2
/2

6
/2

0
1

1

2
/2

8
/2

0
1

1

3
/2

/2
0

1
1

3
/4

/2
0

1
1

3
/6

/2
0

1
1

3
/8

/2
0

1
1

3
/1

0
/2

0
1

1

3
/1

2
/2

0
1

1

3
/1

4
/2

0
1

1

3
/1

6
/2

0
1

1

3
/1

8
/2

0
1

1

3
/2

0
/2

0
1

1

3
/2

2
/2

0
1

1

3
/2

4
/2

0
1

1

3
/2

6
/2

0
1

1

3
/2

8
/2

0
1

1

3
/3

0
/2

0
1

1

4
/1

/2
0

1
1

4
/3

/2
0

1
1

4
/5

/2
0

1
1

4
/7

/2
0

1
1

P
e

rc
e

n
t

M
al

ic
io

u
s/

To
ta

l U
R

Ls

Ratios of Malicious to Total URLs for XP

Date Collected

0

0.2

0.4

0.6

0.8

1

1.2

2
/2

4
/2

0
1

1

2
/2

6
/2

0
1

1

2
/2

8
/2

0
1

1

3
/2

/2
0

1
1

3
/4

/2
0

1
1

3
/6

/2
0

1
1

3
/8

/2
0

1
1

3
/1

0
/2

0
1

1

3
/1

2
/2

0
1

1

3
/1

4
/2

0
1

1

3
/1

6
/2

0
1

1

3
/1

8
/2

0
1

1

3
/2

0
/2

0
1

1

3
/2

2
/2

0
1

1

3
/2

4
/2

0
1

1

3
/2

6
/2

0
1

1

3
/2

8
/2

0
1

1

3
/3

0
/2

0
1

1

4
/1

/2
0

1
1

4
/3

/2
0

1
1

4
/5

/2
0

1
1

4
/7

/2
0

1
1

P
e

rc
e

n
t

M
al

ic
io

u
s/

To
ta

l U
R

Ls

Ratios of Malicious to Total URLs for Vista

41

Visually, there are noticeable spikes on March 6, 2011 for the XP configuration

and on April 2, 2011 for the Vista configuration. A t-test performed on the above ratios

of malicious to total URLs results in a p-value of 0.007898. This p-value suggests that

these two sets of data are in fact statistically different.

The URLs collected on the days with the noticeable ratio spikes were examined to

see if there are any similarities between the two groups. This examination was

inconclusive.

4.5 Processing Errors

The total number of tracked errors during this research is 20,376. These errors are

comprised of HTTP connection failures during the URL unshortening process,

unshortening parsing failures when a redirection URL could not be found due to relative

redirects and Twitter feed errors when the TSF module encountered malformed JSON

data sent from Twitter. The HTTP connection failures comprise a large majority of the

total errors experienced. These connection failures were caused by such things as DNS

timeouts. Table 4 contains the totals of each distinct type of error experienced through

the research process.

Table 4: Processing Errors

HTTP connection failure 18,844

Unshortening parsing failure 833

Twitter feed error 699

Total 20,376

42

4.6 Manually Identified Malware

During the initial run of TMCS, a configuration error caused the result from the

processed URLs to be ignored. During this run though, one of the processing VMs was

found to be infected with malware. The malware that infected this specific VM has been

categorized as the “Cycbot Trojan” [34]. It became apparent that the VM may have been

compromised when an error window appeared stating that a VBScript did not have the

correct permissions to execute. There was also a command prompt visible which was not

manually launched. The third visible identifier was that the Windows Help window was

opened. Figure 9 portrays the above scenario.

Figure 9: Cycbot Trojan

43

 The distinguishing characteristics of this Trojan were identified while examining

the VM. This malware attempted to make NetBIOS connections to the domain

“xibudific.cn”. Figure 10 below shows a packet capture of this described action.

Figure 10: Cycbot Packet Capture

An executable associated with this malware was also found running and

consuming a large amount of system resources. Figure 11 shows the “Cycbot” associated

“conhost.exe” process running in Windows Task Manager. This finding provides

substantial evidence, even without examining the collected dump files in detail, that

URLs containing malware are able to bypass the Twitter filtering as discussed previously

in Chapter 2.

44

Figure 11: Cycbot Trojan’s “conhost.exe”

4.7 Results Summary

The experimental results show TMCS provides the services of URL collection,

URL examination, and potential malware storage as well as keeping track of statistical

values and errors experienced. The methodology used and the analysis performed

support the findings.

45

V. Conclusions

5.1 Accomplishments

The TMCS system successfully obtained and analyzed URLs contained within

Twitter statuses. Using Twitter’s APIs, a MySQL database, Python scripts, and multiple

VMs running on VMWare ESXi, statuses are gathered, and URLs are extracted, stored,

and examined. Dump files are successfully created for the URLs determined to be

malicious by the ESCAPE system creating a repository of malware. These dump files

can be further examined to determine the root of malicious activity. After processing a

total of 466,237 URLs, TMCS found that 2,989 of them were deemed malicious between

the two examination runs using the Windows XP and Windows Vista configurations.

5.2 Contributions

The TMCS system provides a means for researchers to automatically collect

instances of malware found on the social networking service Twitter. This collection can

be used to develop signatures, examine potentially novel methodology contained within

the malware, and be used as testing data for new malware protection schemes. TMCS

can also provide data on how prevalent URLs hosting suspected malicious content are on

Twitter as shown in Chapter 4.

5.3 Future Work

5.3.1 Integration of User Input

By integrating user input, whether performed by actual people or simulated by

some form of automated functionality, the TMCS system could capture more instances of

46

malicious activity. This additional input would trigger events that are not required by

drive-by downloads, which were the sole focus of this research. Malware that may

require user interaction for successful delivery and execution of a malicious payload,

such as fake anti-virus rogueware products, could be witnessed and analyzed with this

additional integration.

5.3.2 Prescreening Application

Extending the functionality for more practical purposes is not outside of the realm

of possibilities for TMCS. It could be altered to examine links contained within Twitter

statuses on the fly as a user requests them. This sort of functionality could be

implemented in a proxy-like fashion, or as a host-based protection scheme.

5.3.3 Expanding Social Network Compatibility

As the focus of TMCS is on social networks, specifically Twitter, adding the

ability to analyze URLs posted on various other social networking platforms, such as

Facebook or newer Google+, would be beneficial. Since Twitter is not the only social

networking service available, and since it only makes up a fraction of the total traffic

generated by users for the purposes of social networking, this expansion would

encompass a potentially larger number of URLs to process.

5.3.4 Incorporating Additional Detection Methods

The only system used within this research for detecting potentially malicious

activity was the ESCAPE system. While this system generated a fair amount of results, it

would be interesting from a research standpoint to compare and contrast the results that

are generated by other methods of detection.

47

5.3.5 Automate Analysis of Captures

The dump files generated when a URL was deemed as hosting potentially

malicious content are not examined in-depth because the manual analysis of these dump

files requires a considerable amount of time. Implementing or creating a methodology to

reliably examine these dump files automatically would significantly reduce the diagnosis

process time.

5.3.6 Processing URLs in Parallel within a Single VM

The TMCS system is able to process multiple URLs at a time through the use of

multiple VMs. With some refinement of the ESCAPE log parsing portion of TMCS, it

could be possible to have multiple URLs checked at the same time within a single VM.

This type of enhancement could significantly increase the speed at which URLs are

processed.

5.3.7 Focus on Semantically Relevant Information

When collecting statuses to extract URLs, TMCS would request statuses that refer

to the most popular trending topics. These topics were disregarded after using them as

search parameters. Storing and examining these topics may be able to provide more

insight into the distribution of malware on Twitter.

5.5 Conclusion

The TMCS system is a successful URL collection and examination platform. It is

able to gather and process URLs from the social networking service Twitter, and store

dump files of detected malware. The possibilities for future additions and applications of

TMCS are promising. Malware research stands much to gain by using such a system for

48

the purposes of malware collection and examination. By applying this methodology,

social networking platforms can become a safer venue for communication.

49

Bibliography

[1] Graham Cluley. (2011, June) Simon Pegg is Twitter-hacked, warns fans of Trojan horse

threat. [Online]. http://nakedsecurity.sophos.com/2011/06/26/simon-pegg-itwitter-hacked/

[2] Robert Moir. (2003, October) Microsoft TechNet. [Online]. http://technet.microsoft.com/en-

us/library/dd632948.aspx

[3] SecureList. History of malicious programs. [Online].

http://www.securelist.com/en/threats/detect?chapter=77

[4] Rishabh Dangwal. (2010, January) Simplest Virus - Fork Bomb. [Online].

http://viralpatel.net/blogs/2010/01/simplest-virus-fork-bomb.html

[5] Nicolas Falliere, Liam O Murchu, and Eric Chien, "W32.Stuxnet Dossier," Symantec, 2011.

[6] Carnegie Mellon University. (1999, February) CERT (R) Advisory CA-1999-02 Trojan

Horses. [Online]. http://www.cert.org/advisories/CA-1999-02.html

[7] Sean-Paul Correll and Luis Corrons, "The Business of Rogueware: Analysis of the New

Style of Online Fraud," pp. 3-7, 2010.

[8] Yi-Min Wang, Doug Beck, Xuxian Jiang, and Roussi Roussev, "Automated Web Patrol

with Strider HoneyMonkeys: Finding Web Sites that Exploit Browser Vulnerabilities,"

January 20, 2006. [Online]. http://research.microsoft.com/en-

us/um/redmond/projects/strider/honeymonkey/

[9] Microsoft. (2005, July) Microsoft Security Bulletin MS05-037. [Online].

http://www.microsoft.com/technet/security/bulletin/ms05-037.mspx

[10] Alexander Moshchuk, Tanya Bragin, and Damien Deville, "SpyProxy: Execution-based

Detection of MaliciousWeb Content," pp. 2-13, 2007.

[11] Mengjun Xie, Zhenyu Wu, and Haining Wang, "HoneyIM: Fast Detection and Suppression

of," pp. 2-8, 2007.

[12] Ben Feinstein and Daniel Peck, "Caffiene Monkey: Automated Collection, Detection and

Analysis of Malicious JavaScript," pp. 1-12, 2007.

[13] OWASP. Clickjacking. [Online]. https://www.owasp.org/index.php/Clickjacking

[14] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti, and Christopher Kruegel,

"A solution for the automated detection of clickjacking attacks," ASIACCS '10 Proceedings

of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 2-

http://nakedsecurity.sophos.com/2011/06/26/simon-pegg-itwitter-hacked/
http://technet.microsoft.com/en-us/library/dd632948.aspx
http://technet.microsoft.com/en-us/library/dd632948.aspx
http://www.securelist.com/en/threats/detect?chapter=77
http://viralpatel.net/blogs/2010/01/simplest-virus-fork-bomb.html
http://www.cert.org/advisories/CA-1999-02.html
http://research.microsoft.com/en-us/um/redmond/projects/strider/honeymonkey/
http://research.microsoft.com/en-us/um/redmond/projects/strider/honeymonkey/
http://www.microsoft.com/technet/security/bulletin/ms05-037.mspx
https://www.owasp.org/index.php/Clickjacking

50

6, 2010.

[15] Microsoft. Security Intelligence Report. [Online].

http://www.microsoft.com/security/sir/guide/default.aspx#!section_7_1

[16] Mark A. Barwinski, Cynthia E. Irvine, and Tim E. Levin, "Empirical Study Of Drive-By-

Download Spyware," Naval Postgraduate School, Monterey, California, USA, 2006.

[17] Microsoft. Microsoft TechNet. [Online]. http://technet.microsoft.com/en-

us/library/cc738483%28WS.10%29.aspx

[18] Skape and Skywing, "Bypassing Windows Hardware-enforced Data Execution Prevention,"

nologin, pp. 2-8, 2005.

[19] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn, "NOZZLE: a defense

against heap-spraying code injection attacks," 2009.

[20] Salvatore Guarnieri and Benjamin Livshits, "GATEKEEPER: mostly static enforcement of

security and reliability policies for javascript code," SSYM'09 Proceedings of the 18th

conference on USENIX security symposium, pp. 151-168, 2009.

[21] Scott Gilbertson. (2007, April) Twitter Vulnerability: Spoof Caller ID To Take Over Any

Account. [Online].

http://www.webmonkey.com/2007/04/twitter_vulnerability_spoof_caller_id_to_take_over_

any_account/

[22] Daniel Sandler. (2009, February) Twitter: Don't Click (Explained). [Online].

http://dsandler.org/outgoing/dontclick_orig.html

[23] Lynne Pope. (2009, April) Mikeyy Twitter XSS Mutates & Continues to Attack. [Online].

http://lynnepope.net/mikeyy-twitter-xss-mutates-continues-to-attack

[24] Mike Butcher. (2010, September) Warning: Mouseover tweets security flaw is wreaking

havoc on Twitter [Updated]. [Online]. http://eu.techcrunch.com/2010/09/21/warning-

mouseover-tweets-security-flaw-is-wreaking-havoc-on-twitter/

[25] Lucian Constantin. (2009, August) Malicious URL Filtering on Twitter. [Online].

http://news.softpedia.com/news/Malicious-URL-Filtering-on-Twitter-118308.shtml

[26] Brian Prince. (2010, March) Twitter Fights Phishing, Malware with Link Scanning Service.

[Online]. http://www.eweek.com/c/a/Security/Twitter-Fights-Phishing-Malware-With-Link-

Scanning-Service-556715/

http://www.microsoft.com/security/sir/guide/default.aspx#!section_7_1
http://technet.microsoft.com/en-us/library/cc738483%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc738483%28WS.10%29.aspx
http://www.webmonkey.com/2007/04/twitter_vulnerability_spoof_caller_id_to_take_over_any_account/
http://www.webmonkey.com/2007/04/twitter_vulnerability_spoof_caller_id_to_take_over_any_account/
http://dsandler.org/outgoing/dontclick_orig.html
http://lynnepope.net/mikeyy-twitter-xss-mutates-continues-to-attack
http://eu.techcrunch.com/2010/09/21/warning-mouseover-tweets-security-flaw-is-wreaking-havoc-on-twitter/
http://eu.techcrunch.com/2010/09/21/warning-mouseover-tweets-security-flaw-is-wreaking-havoc-on-twitter/
http://news.softpedia.com/news/Malicious-URL-Filtering-on-Twitter-118308.shtml
http://www.eweek.com/c/a/Security/Twitter-Fights-Phishing-Malware-With-Link-Scanning-Service-556715/
http://www.eweek.com/c/a/Security/Twitter-Fights-Phishing-Malware-With-Link-Scanning-Service-556715/

51

[27] Deputy Secretary Of Defense, "Directive-Type Memorandum (DTM) 09-026 - Responsible

and Effective Use of Internet-based Capabilities," 2010.

[28] bitly. Does bitly ever re-use links? [Online]. http://bit.ly/pages/help#i_1_4

[29] PycURL. (2010, January) PycURL. [Online]. http://pycurl.sourceforge.net/

[30] Barry Schwartz. (2010) Google Web Report: Average Page Size 320 KB. [Online].

http://searchengineland.com/google-web-report-average-page-size-320-kb-46316

[31] Wikipedia. Usage Share of Operating Systems. [Online].

http://en.wikipedia.org/wiki/Usage_share_of_operating_systems

[32] Twitter. (2011, March) #numbers. [Online]. http://blog.twitter.com/2011/03/numbers.html

[33] Wikipedia. (2011) 2011 Tōhoku earthquake and tsunami. [Online].

http://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami

[34] ThreatExpert. (2010, December) ThreatExpert Report: Backdoor.Cycbot,

Backdoor.Cycbot!gen2, Backdoor.Win32.Gbot.bs. [Online].

http://www.threatexpert.com/report.aspx?md5=178a0b1875a1007349793b29f2e69580

http://bit.ly/pages/help#i_1_4
http://pycurl.sourceforge.net/
http://searchengineland.com/google-web-report-average-page-size-320-kb-46316
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://blog.twitter.com/2011/03/numbers.html
http://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami
http://www.threatexpert.com/report.aspx?md5=178a0b1875a1007349793b29f2e69580

	Air Force Institute of Technology
	AFIT Scholar
	9-15-2011

	Twitter Malware Collection System: An Automated URL Extraction and Examination Platform
	Benjamin B. Kuhar
	Recommended Citation

	tmp.1521652158.pdf.zqCGe

