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AFIT/GCO/ENG/11-07 

Abstract 

 

As the world becomes more interconnected through various technological services 

and methods, the threat of malware is increasingly looming overhead.  One avenue in 

particular that is examined in this research is the social networking service Twitter. 

This research develops the Twitter Malware Collection System (TMCS).  This system 

gathers Uniform Resource Locators (URLs) posted on Twitter and scans them to 

determine if any are hosting malware.  This scanning process is performed by a cluster of 

Virtual Machines (VMs) running a specified software configuration and the execution 

prevention system known as ESCAPE which detects malicious code.  When a URL is 

detected by a TMCS VM instance to be hosting malware, a dump of the web browser 

used is created to determine what kind of malicious activity has taken place and also how 

this activity was allowed.   

After collecting over a period of 40 days, and processing a total of 466,237 URLs 

twice in two different configurations, one consisting of a vulnerable Windows XP SP2 

setup and the other consisting of a fully patched and updated Windows Vista setup, a 

total of 2,989 dumps were created by TMCS based on the results generated by ESCAPE. 
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TWITTER MALWARE COLLECTION SYSTEM:  AN AUTOMATED URL 

EXTRACTION AND EXAMINATION PLATFORM 

 

I.   Introduction 

Imagine for a moment that a famous comedic movie actor has a Twitter account 

with a massive number of followers, say, in excess of 1,200,000.  These followers all 

receive updates when this actor posts an update to Twitter.  With this large of a 

following, something posted by this actor is “heard” by a large audience.  Now, assume 

that someone has come up with a scheme to steal from people using a method that 

requires a significant number of trusting people is able to gain control of the actor’s 

Twitter account.  This thief, now having the ability to send a message to over 1.2 million 

users, decides to take advantage of this massive group of admirers by posting a link that 

is said to contain a screensaver for the actor’s upcoming new movie.  The link instead 

contains a piece malware that steals from the victim’s banking account.  There’s no need 

to imagine, this event has actually taken place.  The actor Simon Pegg’s Twitter account 

was hijacked and used to spread a banking Trojan [1]; and this is not the first time such 

an event has occurred and will likely not be the last time. 

1.1  Problem Background 

As consumer technology advances and becomes more affordable, more users are 

able to experience the amazing and revolutionary things made possible that were not 

previously.  The global Internet is an example of such technology.  Through the use of 

the Internet, information spreads to far away destinations at incredible speeds.  This 

world-wide connection hosts both legitimate and illegitimate actions.  A website can host 



 

2 
 

an online store through which tangible products can be purchased and shipped half way 

across the globe while another website can deceive users into downloading and installing 

fake anti-virus scanning software.  Phone calls can be made using the Voice over Internet 

Protocol to family members across the ocean or malicious executables can be spread 

through a link contained within a status posted to the social networking service Twitter.  

As time marches on, the ability to discern whether or not something stumbled upon while 

using the Internet as advantageous or malicious becomes increasingly difficult.  The 

reason for this is that the creators of the illegitimate actions are progressively able to take 

advantage of not only a computing system, but also the user of the system.  Determining 

ways to deal with these sorts of malicious actions proves problematic and requires much 

effort and thought. 

1.2  Goals 

The primary goal of this research is to create a system to scan hyperlinks posted 

on the social networking service Twitter.  The system determines whether or not 

malicious activity is detected at these links. 

An additional goal of this research is to create an archive of the offenders that are 

deemed malicious to study the means and methods by which the malicious activity takes 

place. 

1.3  Document Outline 

Chapter 2 of this document provides a literature review relevant to this research 

effort.  Chapter 3 provides the experimental methodology for the system.  Chapter 4 
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provides analysis on the results generated by the system.  Chapter 5 provides a 

concluding summary of the findings of the system as well as future research endeavors.  
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II.   Literature Review 

2.1   Malware Overview 

This section of chapter two provides a short history of malware as well providing 

some pertinent definitions. 

2.1.1 Defining Malware 

Malware, short for malicious software, is software whose purpose is to exfiltrate 

data or cause damage to one or more computer systems without the system owner’s 

explicit permission [2].  The existence of malware is common knowledge as the media 

frequently describes wide-spread attacks [3]. 

Malicious software itself, though, is not new.  It has become more prevalent due 

to the wide spread connectivity information via personal computers and the Internet [3].  

One of the earliest notable pieces of malicious software is the fork bomb.  A fork bomb is 

a program or shell script that rapidly creates new processes via the fork() system call.  

The goal of a fork bomb is to consume entries in the process table and thereby cause a 

denial of service which will bring the affected computer to a halt [4]. 

Malware is increasingly becoming more sophisticated, stealthy, and even weapon-

like as was recently seen with the so-called “cyber weapon” Stuxnet [5].  Malware 

authors take advantage of things such as delays between patch creation and patch 

installation, user susceptibility to social engineering, and the likeliness of users to pursue 

“attractive” material.  These authors realize that systems, as well as their users, are 

vulnerable. 
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2.1.2  Trojan Horses 

A Trojan Horse is a piece of software that appears legitimate to the user, but 

contains unknown functionality which can be leveraged in order to gain a level of control 

on the victim’s computer [6].  This type of malware, along with others that provide 

unauthorized access to a user’s computer, have the potential for dire consequences. 

2.1.3  Rogueware 

Within the past three years, fake anti-virus products, also known as rogueware, 

have skyrocketed in popularity among malware distributors. These pieces of rogueware 

trick the affected user into paying money for a license to remove what the programs 

identify as “infected” files.  As a result, the false licenses that are purchased add up to a 

significant amount of capital for the malware distributors.  The ability to play on the fears 

of people rather than the vulnerabilities contained within a user’s system itself allows the 

creators of these rogueware items to scam bystanders for their money [7]. 

2.2   Malware and Exploit Collection Systems 

There are many different variations of malware and exploit collectors, or 

crawlers, in existence.  Of particular interest with regards to this research effort are the 

ones that use crawlers to identify Uniform Resource Locators (URLs) with malicious 

content.  Some of these crawlers are explored in the following sections to determine how 

they are useful in different applications and how similar methods may be applied to this 

research. 
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2.2.1   Strider HoneyMonkey 

The Strider HoneyMonkey project is a Microsoft sponsored system.  This system 

visits various websites with the intent of finding zero-day exploits as well as established 

exploits that can compromise an unpatched system [8]. 

The Strider system checks for the illegitimate and unsanctioned creation of files 

and system configuration changes and is combined with a HoneyMonkey, which is 

essentially a proactive honeypot, to determine when an exploit has successfully executed.  

With this system, multiple variations of the HoneyMonkey execute on different Virtual 

Machines to test different levels of patches and the levels of “aggressiveness” from 

various websites [8]. 

The HoneyMonkey system detects exploits through a three step process.  The first 

step, known as scalable mode, visits a configured number of URLs at the same time from 

a single virtual machine.  If an exploit is detected, the system will check one URL per 

virtual machine and re-test each of those URLs to determine which specific URL 

contains the exploit.  In the second step, the HoneyMonkeys determines what pages are 

malicious through recursive redirection analysis by examining the URLs contained within 

the initial page.  Then, in step three, HoneyMonkeys continuously scan the results from 

step two within fully updated virtual machines to determine if any exploits are leveraging 

zero-days [8]. 

Since signature-based detection tends to be a cat and mouse process, Strider 

HoneyMonkey uses a black-box non-signature based approach.  A HoneyMonkey is run 

that launches a new instance of a browser to defeat any code containing a timer that 

delays execution of said code.  Since user interaction is not incorporated into the 
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HoneyMonkey, any modifications made to the system outside of the browser’s authorized 

area of operation indicate that an exploit has successfully run.  This approach detects 

exploits that leverage both known and unknown vulnerabilities.  After the HoneyMonkey 

has visited a requested URL, the virtual machine is examined to detect if there are any 

noticeable executables created, if any files have been modified outside the permitted 

folders, if any new processes have been created, if any windows registry configuration 

changes have occurred including both the addition and modification of keys, if any 

known vulnerabilities have been leveraged, and finally, if any redirect-URLs have been 

visited [8]. 

Within redirection analysis, a large number of URLs deemed malicious in step 

one were content providers serving up attention-getting items to lure in potential victims.  

If successful, traffic is redirected to the actual exploit providers which infect or 

compromise the victims’ machines [8]. 

In generating URLs to crawl, the Strider HoneyMonkey team used URLs from a 

search for sites that were known to host malicious content, a search for hosts files, and a 

further crawling of the exploit containing URLs discovered from these two groups [8].  

Of the 16,190 URLs generated from URLs suspected to host malicious content in step 

one, 207 of these URLs, which equates to approximately 1%, were identified as 

containing exploits [8].  For the top 1,000,000 websites that were examined, based on 

their popularity rankings, 710 of these URLs were found to contain exploits.  In step two, 

once recursive redirection analysis had taken place, the list of malicious URLs from the 

suspicious list had increased by 263% to 752 URLs [8].  For the popular site list, the 

number of exploit URLs increased to 1,036, or 46% [8].  In stage three, one of the virtual 
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machines successfully captured a zero-day exploit, the JView [8] profiler in javaprxy.dll, 

when instantiated within Internet Explorer contained a remote code execution 

vulnerability totally compromised the victim’s system [9]. 

2.2.2   SpyProxy 

SpyProxy is an extended web proxy system that protects users from malicious 

URLs.  It consists of a system containing virtual machines to process requested URLs on-

the-fly in a similar manner to previously discussed Strider HoneyMonkey.  It is unique in 

that it functions within a proxy server and serves as a defense platform rather than just a 

measurement tool.  SpyProxy ideally should keep clients safe from malicious content and 

it also should not reduce the usability of a browser, for example, by generating large 

delays between requests.  SpyProxy downloads content on the requesting client’s behalf 

and evaluates it to verify whether the URL is malicious or benign.  During experimental 

trial runs of SpyProxy, the average delay from when a client requests a URL to when the 

client’s browser begins to render was a surprising 600ms [10]. 

SpyProxy first performs a static analysis of the requested URL.  If it is unable to 

identify or process an object, which would be the case for any non-HTML content types, 

it forwards the object to a virtual machine which visits the URL and checks for any 

system state changes such as newly created processes, modifications to the file system, 

registry modifications, or Operating System crashes [10]. 

Various optimizations have increased the performance of the SpyProxy system.  

One of the first is the caching of the post-security checking of the requested page which 

produces a hit rate that is competitive with a typical web cache.  These hits are only 
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generated if all of the requested content is served from the proxy cache which eliminates 

the possibility of an unexpected outcome from as dynamically generated content [10].   

Another optimization to the system is pre-fetching requested content for the client 

delaying execution until the SpyProxy system allows the page to be rendered.  A further 

optimization technique is the periodic release of content to the client from the proxy by 

processing part of a page and then immediately sending it to the client if it is non-

malicious thereby making the process more streamlined [10].   

2.2.3   HoneyIM 

Instant Messaging (IM) malware can spread very quickly making it a significant 

security risk for users.  A variant of the Kelvir worm caused Reuters to disable its Instant 

Messaging service back in 2005.  Two main methods of malware spreading through IM 

clients are URLs linking to malicious websites and file transferring. Once a machine has 

been compromised, the malware spreads by sending similar messages with malicious 

URLs or through file transfer to the users on the infected client’s buddy list which 

spreads the malware at an exponential rate [11]. 

There are some protection schemes that enhance IM security such as using 

CAPTCHA to counter the spread of IM malware. The burden of such security can 

dissuade a user from using the service [11]. 

The HoneyIM system detects the spread of malware through “dummy buddies” 

on a users buddy list.  This essentially eliminates false positives since fake buddies 

should never receive messages from a legitimate user.  HoneyIM is based on the open-

source IM client, Pidgin, and the client honeypot, Capture.  In simulated executions of  
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HoneyIM with only 5% of total users comprised as fakes on the Instant Message 

network, HoneyIM was able to detect the spreading malware after only 0.4% of the users, 

on average, had been infected [11]. 

The HoneyIM system has four components: the communication module, the 

detection module, the suppression module, and the notification module.  The 

communication module parses IM traffic sent to decoy buddies on the network.  It relays 

messages to the detection module which determines whether a URL was included in a 

message or if a file transfer request was made.  This module then notifies the suppression 

module which examines network traffic and filters out messages with malicious intent.  

The notification module alerts network administrators when spreading malware has been 

identified [11]. 

The communication module supports all of the functions a normal IM client 

supports and also supports all of the various IM protocols available.  The detection 

module identifies clients as compromised if a URL or file transfer request is received.  

Encryption will not circumvent the detection module as the final message received within 

an IM conversation must be in plain-text.  If a URL is received by the detection module, 

it can use HoneyMonkey to detect system anomalies post visit.  Taint analysis could also 

determine if an executable can compromise the system and generate a signature of the 

file.  The suppression module acts as a network filter by denying traffic generated from 

identified offensive clients.  The notification module informs network administrators 

when malware has been detected [11].   
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2.2.4   Caffeine Monkey 

Caffeine Monkey contains a JavaScript engine “based on extensions to the open 

source Spidermonkey JavaScript implementation” [12].  It uses a MySQL database to 

store retrieved documents, the results of analysis, as well as organizing crawls [12].   

Although the Caffeine Monkey focuses on JavaScript, similar ideas can be 

applied to other scripting languages.  Techniques to obfuscate the true functionality of 

scripts are numerous.  One obfuscation technique is called whitespace randomization.  

This simple method omits whitespace which causes the scripts to appear different when 

traversing the internet but retains the exact same functionality to be performed.  This 

technique does not hide what the scripts are actually doing during execution but rather 

changes the raw data which could defeat filters that match content [12].  Similarly, 

comment manipulation serves a very similar purpose as whitespace randomization.  It 

leaves the code unmodified but changes the binary representation of the script which 

could potentially fool systems put in place to detect malicious activity.  Comments could 

also be used to bewilder a human analyst examining the code by giving inaccurate or 

misleading guidance [12]. 

String obfuscation is another abashment-inducing technique which ranges from 

various encoding methods, to XOR functions, to Caesar Ciphers.  These techniques 

render signature based detection impractical as a result of the myriad number of possible 

combinations in which strings can be represented and still induce the same result [12]. 

Variable name randomization and function pointer reassignment reassigns objects 

to a different variable or function with the intent of obfuscating the true functionality of 

the actual variables and functions utilized.  Real-time security devices would not be able 
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to tell the difference between the built-in functions of JavaScript and a user-created 

function of the same name [12]. 

Integer obfuscation bypasses security mechanisms looking for memory addresses.  

For example, the address “’0x04000000’ could be expressed as 16,777,216 * 42, or any 

number of other ways” [12]. 

Block randomization changes the structure of a script’s statements and changes 

the code syntactically but performs the same actions.  This is a more sophisticated 

technique that alters if/else and loop constructs. The combination of various obfuscation 

techniques can make detection potentially very tedious and taxing [12]. 

Heritrix, an Internet-scale crawler developed by the Internet Archive, is used to 

collect JavaScript.  The Heritrix crawler “collected approximately 225,000 web 

documents over a continuous period of about three and a half days, with a total yield of 

7.9GB” [12].  Of these, 364 documents which comprised 4.5MB (0.2%) of the total data 

collected were JavaScript files [12]. 

Once the JavaScript documents were ready for analysis, they were submitted to 

the Caffeine Monkey JS engine and the runtime logs were examined but provided no 

malicious results.  Four malicious examples were obtained from security researchers of 

which SecureWorks made requests.  These results were scaled to the results from the 

MySpace crawl.  There was an apparent difference in the ratios of the various actions 

performed by the benign MySpace JavaScripts and the known malicious JavaScripts.  

Benign scripts made much more use of the document.write() method while malicious 

scripts made more use of string instantiation and objects.  In the malicious scripts, DOM 
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(Document Object Model) elements were created with a higher frequency and the eval() 

function was used less than in the benign scripts [12]. 

The Caffeine Monkey JS Engine hooked functions that were determined to be the 

most likely to be obfuscated in JavaScripts and created logs at runtime. Thus, the flow of 

execution was seen in the logs without the need for script debugging [12]. 

2.4   Payload Delivery Methods 

The following sections describe some of the different ways that malware can be 

distributed to victim machines. 

2.4.2   Clickjacking 

Clickjacking occurs when a user is persuaded to mouse click on an unapparent 

element of a page that has been placed there by the attacker but is not noticeable to the 

user [13].  This kind of attack could lead to the unintentional and undesired consequences 

of transfer of funds, interacting with fraudulent advertising, posting messages, or other 

actions that could be triggered by the click of a mouse [14]. 

The most common known form of clickjacking uses an invisible iframe overlaid 

on top of the user’s desired content [13].  For example, JavaScript can be used to align 

framed content in real time with the user’s mouse cursor which allows an attacker to have 

the victim perform actions that require multiple clicks [14]. 

One of the most notable things about clickjacking is that it is not based on an 

exploitable vulnerability or a bug in a web-based application.  It is simply an abuse of 

features inherent within HTML and Cascading Style Sheets (CSS) [14]. 
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An extension named ClickIDS, which as the name suggests is a clickjacking 

intrustion detection system, in the No-Script browser plug-in, which prevents scripted 

elements from executing, detects if an event is triggered by an obscured or invisible 

element after a user has made a click.  Currently, an annoying side effect of this plug-in is 

a large number of false-positives are generated [14]. 

ClickIDS detects if clickjacking is taking place within a test environment by 

identifying coordinates on a page where clickable elements exist and then manipulating 

the mouse to click on each of these individual elements.  If two or more elements are 

overlapping during the click event, a suspicious behavior alert is generated.  The 

ClickIDS examines both frames and iframes during the detection process [14].  Since it 

only interacts with elements that are deemed clickable.  The possibility of detecting 

clickjacking that is occurring elsewhere within web pages cannot be done [14]. 

2.4.3  Drive-By Download 

A drive-by download occurs when malicious software is installed on a victim’s 

machine without his or her knowledge or consent [15].  These types of downloads are 

successful due to leveraging some vulnerability, which in many cases occur in a web 

browser. 

In 2004, the drive-by download attack known as the “Download.ject attack” 

successfully compromised a large number of well known business websites.  These 

compromised sites downloaded such software as key loggers as well as Trojan Horses in 

order to steal user credentials and private information [16]. 
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2.5   Malware Delivery and Execution Prevention 

The following sections examine different methods to prevent the successful 

delivery of malicious payloads to a user’s system.  When considering how to defend 

against malware, a lot of questions come to mind.  One is how can software automatically 

be identified as malicious.  A second question is what can be done to prevent both the 

system and the user from acquiring and executing malware.  These and other such 

questions are quite difficult and there tends to be only partial solutions rather than 

complete answers. 

2.5.1   Data Execution Prevention 

Data Execution Prevention (DEP) technology, implemented in both hardware and 

software, examines memory to prevent malware from executing.  If running in Physical 

Address Extension mode, the hardware version of DEP sets all of the memory regions 

within a process to be non-executable unless there is code that is recognized as 

executable.  This eliminates malicious code that attempts to execute from these locations 

by blocking these attempts and throwing an exception [17].   

Hardware DEP implementations vary by architecture (AMD utilizes NX, or no-

execute page-protection while Intel utilizes XD, or the Execute Disable bit) but serve the 

same purpose. Usually, DEP is used on a per-virtual-memory-page basis by modifying a 

bit within the PTE (page table entry) [17]. 

The software implementation of DEP functions without a direct dependence on 

hardware.  This version of DEP is limited compared to the hardware version.  It can 

prevent Structured Exception Handler (SEH) overwrites and is generally used on 
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computers without the hardware features previously described.  Software-based DEP is 

applied at compile-time and typically limited to Windows system libraries [18]. 

The main benefit of DEP is the prevention of code execution from pages in 

memory classified as data, such as the default heap, stacks, and memory pools.  DEP will 

raise an exception when code attempts to run from these defined-data sections and if the 

exception is unhandled, will terminate the program [17]. 

There are four configuration options for DEP: OptIn, OptOut, AlwaysOn, and 

AlwaysOff.  The OptIn option means DEP  is enabled for only those applications that are 

explicitly specified, which by default are the Windows system files.  In the OptOut 

option, DEP is always on and is only off for those applications specified.  The AlwaysOn 

option enables DEP for each individual application, while the AlwaysOff option will not 

use DEP for any application [17]. 

Although DEP mitigates the effectiveness of malware, it cannot be solely relied 

on to protect a system.  In previous research, ways were found to bypass DEP.  One was 

to run code from sections of memory that are designated executable to modify the flags 

of the non-executable memory.  This was using ret2libc to call NtSetInformationProcess 

and the ProcessExecuteFlags which would disable the non-executable support for the 

calling process [18]. 

2.5.1   Nozzle 

Heap-spraying is a technique that manipulates even type-safe languages to an 

attacker’s advantage.  It creates a large number of objects containing an exploit within a 

process’s heap.  One common method uses a web browser and JavaScript.  A website 
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containing malicious JavaScript uses the interpreter to allocate and place malicious 

objects in the process’s heap [19]. 

It is quite difficult for standard signature based detection methods to detect heap-

spraying as it is easy to represent the same functionality in a variety of ways via 

techniques such as polymorphism and encoding.  Instead of using a signature-based 

method, Nozzle takes a two-level approach to detect heap-spraying.  It scans “objects 

locally while at the same time maintaining heap health metrics globally” [19]. 

Nozzle scans objects locally by performing a sandboxed interpretation of heap 

objects as if they were code and seeing if there are any signs of malicious intent.  One of 

the most notable cues of malicious intent is the detection of a NOP sled.  These sleds can 

contain an arbitrary set of commands as long as their execution does not result in 

termination or alter the payload [19]. 

The types of instructions Nozzle deemed invalid are I/O or system calls, 

interrupts, privileged instructions, and jumps external to the current object’s range.  

Nozzle attempts to find objects that modify control flow assuming an attempt to arrange 

flow so a seemingly random jump will execute the malicious code [19]. 

2.5.2   Gatekeeper 

Gatekeeper enforces reliability and security policies for JavaScript code via a 

subset of acceptable and safe JavaScript.  This subset is based on a collection of 8,379 

JavaScript widgets rather than analysis of the language itself [20].   

The number of items Gatekeeper prohibits is relatively small. In particular, it bans 

the use of eval, Function, setTimeout, setInterval, and with.  These constructs accept 
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string parameters and then executes said parameters.  The first four items present a 

problem because strings can be interpreted as code but this is not known until run time 

which makes it impossible for a static analysis to detect.  Specifically, the symbol lookup 

scope could be altered.  The reflective constructs of Function.call, Function.apply, and 

the arguments array are allowed since they can be statically analyzed.  One of the most 

prevalent risky features of JavaScript that needs to be addressed at runtime are 

innerHTML assignments as well as filed references that are unresolved [20]. 

During runtime, the safe JavaScript subset and another Gatekeeper subset are 

used.  The difference between the two is the Gatekeeper subset allows non-static field 

stores as well as innerHTML assignments.  The widget is checked against the safe 

JavaScript subset.  If it fails this test, it is checked against the Gatekeeper subset; if this 

fails the program is deemed unsafe and will not be considered any further.  If either the 

safe or the gatekeeper subset tests pass, the program undergos pointer analysis and is 

checked to see if any established policies are broken [20]. 

2.6  History of Twitter Vulnerabilities 

Although the main focus of this research is on the effects URLs external to 

Twitter may have on a user browsing said links, the Twitter service itself has been 

vulnerable to malicious attacks.  The following sections examine some of these 

vulnerabilities. 

2.6.1  SMS Authentication Vulnerability 

A vulnerability in the Short Message Service (SMS) authentication service, which 

allows a user to access their Twitter account via text message, was leveraged by spoofing  
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caller ID’s.  This is because the caller ID was the only thing used to validate a user.  This 

vulnerability made it possible for anyone who could spoof a caller ID to post a message 

to an account if they possessed the caller ID information that was tied to the specified 

account [21]. 

2.6.2  Clickjacking Vulnerability 

In February 2009, a vulnerability was discovered on Twitter that propagated a 

button labeled “Don’t Click” on a Twitter user’s page without the user manually posting 

the URL themselves by using an invisible iframe to perform a clickjacking attack.  This 

vulnerability was deemed a “prank” and did not cause the compromise of any accounts 

[22]. 

2.6.3  XSS Worms 

In April 2009, many “worms” were found spreading throughout the Twitter 

service via a Cross-Site Scripting (XSS) vulnerability within the Twitter Profile CSS.  

Like the previously mentioned clickjacking vulnerability, these XSS worms 

automatically posted statuses to a user’s page [23]. 

2.6.4  MouseOver Vulnerability 

In September 2010, a “MouseOver” vulnerability allowed a XSS attack to occur.  

The vulnerability triggered when a user would move their mouse over a hyperlink posted 

within a status.  This executed custom CSS or JavaScript which leaves open the 

possibility for the unintended visiting of URLs hosting malicious content or other such 

malicious activities [24]. 
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2.7  Twitter’s Malware Countermeasures 

2.7.1  Malicious URL Filtering 

Utilizing Google’s Safe Browsing API, Twitter enabled a URL prescreening 

service that looks for URLs known to host malicious content.  If a user were to attempt to 

post a URL that has previously been identified as malicious, the filter would display a 

prompt to the user stating "Oops! Your tweet contained a URL to a known malware site!" 

[25].  Including this filtering process in the submission of URLs is a positive step 

forward, but the problem with this approach is that it only detects known malicious URLs 

rather than both known and unknown malicious URLs. 

2.7.2  Additional Filtering after Bit.ly Partnership 

In 2010, Twitter and URL shortening service Bit.ly partnered.  As part of this 

partnership, Twitter announced a new URL filtering mechanism.  In-depth details on the 

algorithms and monitoring services used for this filtering are not public [26]. 

2.8  Summary 

This chapter contains relevant definitions for terms related to this thesis, a review 

of various methods of crawlers that scan for malware, some previously known 

vulnerabilities found within the Twitter service, as well as measures that Twitter has 

taken to reduce the potential malware that is present.  Using this information, a 

methodology is created in Chapter 3 to create a system that collects and examines URLs 

from Twitter for malware. 
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III.   Methodology 

3.1   Problem Definition 

With the release of the Department of Defense’s (DoD) Directive-Type 

Memorandum on 25 February 2010, social networking sites have been deemed accessible 

for use within the various DoD organizations and on the Non-Classified Internet Protocol 

Router Network (NIPRNET) [27].  Since these social networking sites have the potential 

to facilitate the spread of malware, as is described in Chapter 2, determining how great 

the risk is of contracting malware on these sites and also to develop a system that can 

potentially prescreen said sites to prevent the compromise of government information 

systems would be very beneficial. 

3.1.1  Goals 

The main goal of this research is to develop a system that can automatically 

gather URLs from statuses, which are commonly referred to as tweets, posted on Twitter, 

and analyze those URLs to determine whether malware is present at the specified 

locations.  This goal will provide a prototype system to ascertain the risk of being 

exposed to malware when visiting URLs found using social networking services, and in 

particular to this research, Twitter.   

Another goal of this research is to create a Twitter Malware Repository (TMR) 

which can be further examined in subsequent studies to identify the different classes of 

malware present, the methods of delivery of the malware, the specifics of the assumedly 

various functionality of the malware, and so on. 
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3.1.2  Approach 

Twitter statuses are collected via a Python script.  A custom web crawler, also 

written in Python, is used to determine the safety of the collected URLs.  A database 

tracks the gathered statuses, the results generated by the crawler, as well as other 

statistical information.   

The status collecting script sends requests to Twitter, using Twitter’s Streaming 

and Search Application Programming Interfaces (API) to retrieve current statuses based 

on the most popular trends at the time of collection.  The URL examiner determines 

whether the gathered URLs are using any of the various URL shortening services that are 

publicly available.  URL shortening services are used for statistical tracking, making the 

sharing of URLs easier by only requiring a relatively short URL (generally the service’s 

URL followed by a few characters), and also to make the most of the 140 characters that 

statuses are limited to on Twitter.  If the URL examiner determines that a status-gathered 

URL is in fact utilizing a shortening service, it will store the “unshortened” URL in the 

database for analysis as the full URL is what is actually being visited, besides which the 

shortened URL has the potential to be reused and reassigned pointing to a different 

location depending on the service [28].   The custom made crawler visits the URLs 

contained within the gathered statuses to determine whether the site contains malware.  

The results of this study will primarily include drive-by download as described in 

Chapter 2 as simulated user-interaction is not within the scope of this study.  That is, 

malware that does not require manual intervention or input is captured. 
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3.2  System Boundaries 

The System Under Test (SUT), which is named the Twitter Malware Collection 

System (TMCS), is composed of two server-grade rack mounts that provide global 

Internet connectivity to Twitter and the URLs investigated.  Its data storage ability and 

virtualization hosting platform allow simultaneous execution and management of a series 

of Virtual Machines (VMs) on which the different components of TMCS execute (Figure 

1). 

One of the rack mounts is designated strictly for collection and storage purposes.  

A lone VM running on this hardware is responsible for a number of functions.  One of the 

Python scripts running on this VM, named the Twitter Status Fetcher (TSF), creates the 

API requests through the use of the PycURL library, which fetches objects identified by a 

URL [29].  The results from the trends query using the Search API are URL encoded and 

used as a query parameter for the Streaming API which provides statuses based on the 

given trending parameters.  Twitter’s Streaming API responds to this query with a stream 

of JavaScript Object Notation (JSON) objects.  These objects are parsed within the 

Python script which determines whether the URLs within the collected statuses contain 

shortened URLs, composes e-mail messages consisting of the systems current progress 

and stores the collected URLs as well as the results generated by the crawler components 

in a file-share and a MySQL database which are housed on the second rack mount. 

The Component Under Test (CUT) within the SUT, is named the TMCS 

ESCAPE Handler (TEH) module.  The TEH module has two main parts: a Python script 

and the ESCAPE system.  The Python script controls much of the actions performed by 

the VM client and the ESCAPE system traps the execution of malicious code.  The parts 
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of the TEH module are described in more detail within the system services section of this 

chapter.   

 

 

Figure 1:  Twitter Malware Collection System 

3.3  System Services 

3.3.1  Status Collection 

One of the services TMCS provides is the collection of statuses from Twitter.  This is 

accomplished through the TSF module as previously described.  The possible results of 

status collection are: 1.) successful status and 2.) formatting error.  The formatting error 

results in the status being discarded due to malformation. 
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3.3.2  URL Extraction from Statuses 

Once a status has been retrieved from Twitter, the TSF module parses the JSON 

data and extracts any URLs that are contained within.  The outcomes of this service are: 

1) URL(s) found and 2) No URLs are found. 

3.3.3  Storage of Extracted URLs 

Extracted URLs are stored within a MySQL database.  In conjunction with these 

extracted URLs are: the Twitter ID associated with the status the URL was found in the 

URL itself, and the date the URL was collected.  The outcomes of storing the extracted 

URLs include: 1) URL(s) successfully stored and 2) URL(s) already in database.  When 

the second outcome occurs, a counter column, which is assigned to each URL, is 

incremented to keep track of the total times each URL is witnessed.  

3.3.4  URL Unshortening 

Since a large majority of URLs found in Twitter statuses use a URL shortening 

service, such as bit.ly, the URLs are “unshortened” to determine what location the 

shortened URLs point to.  This process also allows additional analysis to be performed 

based on the URLs themselves.  Initially, use of the various shortening services’ APIs 

were considered, but since a myriad of these shortening services are in operation and are 

found within Twitter statuses, an alternative method was chosen.  The URL Unshortener 

sends a Hypertext Transport Protocol (HTTP) request to the URL in question and if the 

response received contains an HTTP redirect status code, typically 301 or 302, it searches 

via a regular expression through that same response’s header and stores the redirection 

destination URL.  The possible outcomes of URL Unshortening are: 1) URL is 
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unshortened and stored and 2) URL is not unshortened.  The first outcome occurs when 

the URL in question uses a URL shortening service or if an external redirection occurs (a 

redirection to a different domain).  The second outcome occurs when a shortening service 

is not being used, the domain name cannot be resolved, or if a relative redirection occurs 

(a redirection using a relative path that is located within the local domain). 

3.3.5   URL Processing through the TEH module 

The TEH module is responsible for multiple tasks with regards to the processing 

of URLs gathered by the TSF module.  The Python script portion of TEH performs the 

following actions:  

 Requesting URLs from the TMCS database for processing 

 Handling instances of Internet Explorer 

o Launching Internet Explorer 

o Visiting specified URLs for a specified time 

o Closing Internet Explorer 

 Scanning ESCAPE’s output log for malware positive indicators 

 Creating and storing dump files of Internet Explorer when malicious code has been 

detected 

 Reverting the current VM to a clean snapshot and restarting through SSH 

o When malware has been detected and collected 

o When a preset timer has expired 

The revert and restart timer value for the script of 30 minutes is chosen to prevent any 

potentially undetected malware from tainting results and also to clear out any other 
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unforeseen abnormalities that could be experienced while also minimizing the total 

overhead experienced when reverting and restarting a VM client. 

The ESCAPE system portion of TEH actually determines whether or not a URL 

contains malicious content.  The ESCAPE system is comprised of the following: 

 A kernel-mode driver monitoring code execution 

 A list of Hash-based Message Authentication Codes (HMACs) 

 A configuration file 

 An execution result log file 

The list of HMACs is generated by the user on a trusted baseline system, that is, a system 

comprised of approved files for execution.  These HMACs are signatures of the 

executable portions of the Windows programs allowed to execute.  The HMACs are used 

by the kernel-mode driver to determine when suspected malware attempts to execute.  

The following flags produced by ESCAPE are stored in its log file are indicative of 

malware: 

 When the Windows Error Reporting feature triggers (werfault.exe) 

 When unsigned code that is not part of the signed executable attempts to 

execute 

 When unsigned code that is part of the signed executable attempts to execute 

 When a new process is created 

The outcomes of the URL processing are: 1) No potential malware detected and 

2) Potential malware detected. 
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3.4  Metrics 

The metrics that assess the performance of TMCS are: 

Total statuses examined:  The total statuses examined determine how quickly 

TMCS is able to retrieve statuses to scan through from Twitter. 

Total URLs collected:  The total URLs collected determine the available pool of 

potential malware-hosting URLs to be scanned. 

Total URLs determined to potentially contain malware:  This metric is the one of 

most interest. 

Speed of URL collection:  This metric is largely reliant on throttling by Twitter. 

Processing Errors:  This metric measures the number of errors encountered while 

processing URLs. 

3.5   Parameters 

The following system parameters affect system performance including the metrics 

and system responses. 

3.5.1  System Parameters.   The system parameters are those parameters that 

when changed alter the system responses and/or the metrics. 

3.5.1.1  Network Utilization.   The amount of available network bandwidth 

consumed corresponds to the number of collected URLs and also the rate at which URLs 

are visited by the web crawlers.  The available networking resources are changed with 

respect to other research being conducted due to a lack of an independent networking 

source.  In addition, the availability of the social networking service, in this case Twitter, 

also affects the ability to obtain URLs, although this is not something that can be 
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controlled by TMCS. This parameter is closely linked to the number of active TEH, TSF, 

and URL Unshortener instances parameters.   

3.5.1.2   Number of Active TEH Instances.   Since this research is 

conducted with shared networking resources, the number of active web crawlers also 

determine how fast URLs are processed and results are gathered. 

3.5.1.3   TEH Web Crawler Wait Timers.   The time each VM waits on a 

particular visited URL determines the overall amount of time that must be allotted to 

process each URL collected.  Choosing a length of time appropriate for each web crawler 

to pause at each URL is influenced by two factors.  The first of is the time required to 

start up an instance of Internet Explorer.  This value is manually calculated and 5 seconds 

was deemed adequate.  The second factor is the time to load individual URLs.  According 

to a report by Google, the average page consists of 320KB of data [30].  Given that there 

are an unknown number of other variables that could affect the wait time of the crawler, 

10 seconds was chosen to allow data to download and any other processing, including 

execution delay timers, to occur when a URL is visited.  Processing many include 

interpreting JavaScript or executing other outlets for malicious payload delivery.  This, in 

total, sets the web crawler wait timer to be 15 seconds per URL visited.  A longer timer 

could have been selected, but the length of time required to wait at each URL directly 

affects the total time required to process the entirety of the collected URLs. 

3.5.1.4   Number of TSF Instances Active.   As more instances of the TSF 

module are run, the total number of URLs scanned simultaneously increases.  This 

number is capped based on the ability to obtain IP and account white listing privileges 
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from Twitter or the use of available IP addresses and accounts.  For this research, a white 

listed status could not be obtained, and only one IP address and one Twitter account were 

used. 

3.5.1.4   Number of URL Unshortener Instances Active.   When more 

instances of the URL Unshortener module are running, the number of fully realized 

URLs increases at a greater rate. 

3.5.1.5   VM Software Configuration.   Since some malware may only 

affects a particular version of a web browser or a certain patch level of an Operating 

System, multiple configurations for the processing VMs are considered.  In addition, 

different versions may benchmark differently than others in terms of speed which has the 

potential to impact the system in various ways. 

3.5.2   Workload Parameters.   The workload parameters, which consist of the 

characteristics of the service requests made to the system are listed below. 

3.5.2.1   Duration of URL Collection.  This is the total amount of time 

allotted for the purpose of gathering URLs.  The more time available for collection 

results in more URLs gathered.  The chosen length of time for URL collection from 

statuses was approximately 40 days.  This time period allows a relatively large number of 

statuses to be processed while also allowing enough time for analysis once complete.  

This period also determines the total number of URLs that are collected and processed. 

3.5.2.2   Number of URLs processed.  As the total number of URLs 

increases, the number of URLs infected with malware also potentially increases. 
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3.6   Factors 

3.6.1   Considered but excluded factors 

Due to the fact that white listed privileges were not obtained for this research 

from Twitter, the number of TSF instances was not considered as a factor for testing.  

Therefore, the TSF was limited to one active instance as Twitter would only allow one 

streaming connection at a time.  The number of active TEH instances was also considered 

as a potential factor, but to be courteous and fair to others using the shared networking 

resources, this value changed from time to time at the operator’s discretion typically with 

fewer instances running during the day when utilization by others was apparent.  Had this 

not been an issue, a set number would have been chosen to run throughout the entirety of 

the research process. 

The factor chosen to test the performance of the system is: 

3.6.2  VM Software Configurations.  

Initially, three configurations were selected for the different VM Software 

Configurations.  However, due to a configuration error, there was realistically only 

enough time to test two of the VM software configurations.  The first configuration is 

comprised of Windows XP SP2, Adobe Reader 8.0.0, Internet Explorer 7.0.5730.13 

Update Versions: 0, and Office 2007 version 1.2.0.4518.1014.  The software versions 

were chosen because they contain known exploitable vulnerabilities.  Windows XP is 

chosen as the Operating System for this configuration as it still has the largest share of 

Operating Systems in use, comprising approximately 40% of active Internet computers as 

identified by user-agents [31].  The second configuration chosen consists of Windows 
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Vista SP2, Adobe Reader X 10.0.1, Internet Explorer 9.0.8112.16421 Update Versions: 

RTM (KB982861), and Office 2007 version 12.0.6545.5000.  Windows Vista SP2 was 

chosen as the operating system for this second configuration because at the present time it 

has been adopted alongside Windows XP for use throughout the Air Force.  All versions 

of the software tested in the Vista configuration are fully patched and up-to-date at the 

start of testing (Table 1). 

Table 1: Chosen Factor and Levels 

VM Software Configuration 1 Windows XP SP2, Adobe Reader 8.0.0, Internet 

Explorer 7.0.5730.13 Update Version: 0, Office 2007 

ver. 1.2.0.4518.1014 

VM Software Configuration 2 Windows Vista SP2, Adobe Reader X 10.0.1, Internet 

Explorer 9.0.8112.16421 Update Versions: RTM 

(KB982861), and Office 2007 version 12.0.6545.5000 

3.7   Evaluation Technique 

The evaluation technique used for this research is direct measurement.  

Measurement is chosen for this research because models and simulations are not used, 

but rather a live, real-world social networking system is used. 

The testing environment consists of two Dell PowerEdge R710 server-grade rack 

mounts.  These rack mounts each have two quad-core Intel® Xeon® E5530 CPUs  @ 

2.40GHz, three 15k RPM hard disk drives giving a total usable storage capacity of 271 

GB, and 32 GB or RAM.  The VM running the TSF module on one of the rack mounts 

used Ubuntu 10.10, MySQL 5.1.41, and Python 2.6.  The VMs running the TEH 

instances were described in the factors section.  The VMs were managed and hosted 

using VMWare ESXi 4.1.0. 
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3.8   Workload 

The workload for TMCS is the total number of URLs processed by the TEH 

module. This is ultimately determined by how long URLs are collected, which in this 

research is set at approximately five weeks. 

3.9   Experimental Design 

A full factorial design is chosen for this research.  Since there is only one factor 

with two levels, two experiments are required.  The expected variance in the responses of 

the system is unknown, and since such a large workload is used, only one replication is 

performed.  This results in a total two experiments to be executed. 

3.10   Methodology Summary 

Through the use of Twitter’s APIs, a system is developed to collect an extensive 

number of URLs, which are processed by a series of VMs to determine if malicious code 

is present at the given locations. 
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IV.   Results 

The metrics outlined in the previous chapter determine the performance of TMCS 

which consists of total statuses examined, total URLs collected, total URLs determined to 

contain malware, and processing errors. 

4.1   Total Statuses Examined 

After running for approximately 40 days and 16 hours, the final count of statuses 

examined by TMCS is 19,309,417.  This is an average of 474,822 statuses examined per 

day, and 19,784 statuses examined per hour.  While the total number of statuses 

examined may seem rather large, it in reality only represents a small fraction of the total 

number of statuses that are posted on Twitter.    Based on statistics provided by Twitter, 

the total statuses examined by TMCS represents approximately 0.4% of the total number 

of statuses posted on Twitter during the time of collection [32].    Figure 2 below is a 

histogram showing the total URLs collected each day. 

 

Figure 2: Total Statuses Examined 
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4.2   Total URLs Collected 

The final total of unique URLs that were collected by TMCS is 466,237 URLs.  

The total number of URLs witnessed by TMCS, including duplicates, is 1,363,935.  

Therefore, only about 34.18% of the URLs gathered were unique.  The total number of 

URLs witnessed came from approximately 1,315,077 separate statuses, indicating that 

multiple statuses included multiple links.  This last figure is not an exact number as it was 

generated solely from the status update Emails, which were sent hourly, implying that 

some may have been missed during the final hour of collection since a total number of 

status containing URLs was not stored in any other fashion.  Figure 3 below displays the 

URLs collected on a per-day basis. 

 

Figure 3: Total URLs Collected 
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4.3   Total URLs Determined To Contain Malware 

The following sections display in detail the different types and also the totals for 

the URLs determined to potentially contain malware. 

 4.3.1 Windows XP Configuration Results 

The number of URLs flagged as running suspected malicious code when visited 

by a Windows XP instance of the TEH module was 1,271.  After examining the 

configuration for the Windows XP VMs, it was determined that the Windows Error 

Reporting feature was accidently disabled.  This explains why there were zero results for 

this data set.  Table 2 displays the different ways the ESCAPE system was triggered. 

Table 2: Windows XP ESCAPE Results 

Windows Error Reporting 0* 

Unsigned code not from the executable 217 

Unsigned code from the executable 878 

New Process Creation 176 

Total 1,271 

 

Figure 4, below, shows the number of URLs identified as potentially malicious on 

a daily basis.  An interesting point is the noticeable spike of URLs detected for the date of 

March 3, 2011.  This was the day in which Tōhoku earthquake and tsunami struck Japan 

[33]. 
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Figure 4: Potentially Malicious XP URLs 

4.3.2  Windows Vista Configuration Results. 

The number of URLs flagged as containing suspected malicious code when 

visited by a Windows Vista instance of the TEH module came to 1,718.   Table 3 

displays how the ESCAPE system was triggered. 

Table 3: Windows Vista ESCAPE Results 

Windows Error Reporting 633 

Unsigned code not from the executable 745 

Unsigned code from the executable 3 

New Process Creation 337 

Total 1,718 

 

Figure 5 below shows the number of URLs identified as potentially malicious by 

date collected.   
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Figure 5: Potentially Malicous Vista URLs 

A similar pattern is shown when comparing the results of the Windows Vista trial 

run to the Windows XP trial run.  The noticeable spike at March 3, 2011 is again present. 

4.4  Examining Vista and XP Results 

A t-test is conducted to assess whether the number of malicious URLs from both 

the Windows XP and Windows Vista runs were statistically different from each other.  

The resulting p-value of 0.2829 suggest that the two data sets are not different.  Figure 6 

displays a box plot of the two data sets. 
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Figure 6: XP vs. Vista Box Plot 

 

The ratios of malicious URLs to total URLs collected were examined to see if any 

day had a significantly higher percentage of malicious URLs than any other for both runs.  

A visible spike is seen on March 6, 2011 for Windows XP and April 2, 2011 for 

Windows Vista.  Figure 7 shows the ratio of malicious to total URLs for the Windows 

XP configuration. 
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Figure 7: XP Ratios 

Figure 8 is the ratio of malicious to total URLs for the Windows Vista 

configuration. 

 

Figure 8: Vista Ratios 
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Visually, there are noticeable spikes on March 6, 2011 for the XP configuration 

and on April 2, 2011 for the Vista configuration.  A t-test performed on the above ratios 

of malicious to total URLs results in a p-value of 0.007898.  This p-value suggests that 

these two sets of data are in fact statistically different. 

The URLs collected on the days with the noticeable ratio spikes were examined to 

see if there are any similarities between the two groups.  This examination was 

inconclusive. 

4.5   Processing Errors 

The total number of tracked errors during this research is 20,376.  These errors are 

comprised of HTTP connection failures during the URL unshortening process, 

unshortening parsing failures when a redirection URL could not be found due to relative 

redirects and Twitter feed errors when the TSF module encountered malformed JSON 

data sent from Twitter.  The HTTP connection failures comprise a large majority of the 

total errors experienced.  These connection failures were caused by such things as DNS 

timeouts.  Table 4 contains the totals of each distinct type of error experienced through 

the research process. 

Table 4: Processing Errors 

HTTP connection failure 18,844 

Unshortening parsing failure 833 

Twitter feed error 699 

Total 20,376 
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4.6  Manually Identified Malware 

During the initial run of TMCS, a configuration error caused the result from the 

processed URLs to be ignored.  During this run though, one of the processing VMs was 

found to be infected with malware.  The malware that infected this specific VM has been 

categorized as the “Cycbot Trojan” [34].  It became apparent that the VM may have been 

compromised when an error window appeared stating that a VBScript did not have the 

correct permissions to execute.  There was also a command prompt visible which was not 

manually launched.  The third visible identifier was that the Windows Help window was 

opened.  Figure 9 portrays the above scenario. 

 

Figure 9: Cycbot Trojan 
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 The distinguishing characteristics of this Trojan were identified while examining 

the VM.  This malware attempted to make NetBIOS connections to the domain 

“xibudific.cn”.  Figure 10 below shows a packet capture of this described action. 

 

Figure 10: Cycbot Packet Capture 

An executable associated with this malware was also found running and 

consuming a large amount of system resources. Figure 11 shows the “Cycbot” associated 

“conhost.exe” process running in Windows Task Manager. This finding provides 

substantial evidence, even without examining the collected dump files in detail, that 

URLs containing malware are able to bypass the Twitter filtering as discussed previously 

in Chapter 2. 
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Figure 11: Cycbot Trojan’s “conhost.exe” 

4.7  Results Summary 

The experimental results show TMCS provides the services of URL collection, 

URL examination, and potential malware storage as well as keeping track of statistical 

values and errors experienced.  The methodology used and the analysis performed 

support the findings. 

 

 

 



 

45 
 

V. Conclusions 

5.1  Accomplishments 

The TMCS system successfully obtained and analyzed URLs contained within 

Twitter statuses.  Using Twitter’s APIs, a MySQL database, Python scripts, and multiple 

VMs running on VMWare ESXi, statuses are gathered, and URLs are extracted, stored, 

and examined.  Dump files are successfully created for the URLs determined to be 

malicious by the ESCAPE system creating a repository of malware.  These dump files 

can be further examined to determine the root of malicious activity.  After processing a 

total of 466,237 URLs, TMCS found that 2,989 of them were deemed malicious between 

the two examination runs using the Windows XP and Windows Vista configurations. 

5.2  Contributions 

The TMCS system provides a means for researchers to automatically collect 

instances of malware found on the social networking service Twitter.  This collection can 

be used to develop signatures, examine potentially novel methodology contained within 

the malware, and be used as testing data for new malware protection schemes.  TMCS 

can also provide data on how prevalent URLs hosting suspected malicious content are on 

Twitter as shown in Chapter 4. 

5.3  Future Work 

5.3.1  Integration of User Input 

By integrating user input, whether performed by actual people or simulated by 

some form of automated functionality, the TMCS system could capture more instances of 
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malicious activity.  This additional input would trigger events that are not required by 

drive-by downloads, which were the sole focus of this research.  Malware that may 

require user interaction for successful delivery and execution of a malicious payload, 

such as fake anti-virus rogueware products, could be witnessed and analyzed with this 

additional integration. 

5.3.2  Prescreening Application 

Extending the functionality for more practical purposes is not outside of the realm 

of possibilities for TMCS.  It could be altered to examine links contained within Twitter 

statuses on the fly as a user requests them.  This sort of functionality could be 

implemented in a proxy-like fashion, or as a host-based protection scheme.   

5.3.3  Expanding Social Network Compatibility 

As the focus of TMCS is on social networks, specifically Twitter, adding the 

ability to analyze URLs posted on various other social networking platforms, such as 

Facebook or newer Google+, would be beneficial.  Since Twitter is not the only social 

networking service available, and since it only makes up a fraction of the total traffic 

generated by users for the purposes of social networking, this expansion would 

encompass a potentially larger number of URLs to process. 

5.3.4  Incorporating Additional Detection Methods 

The only system used within this research for detecting potentially malicious 

activity was the ESCAPE system.  While this system generated a fair amount of results, it 

would be interesting from a research standpoint to compare and contrast the results that 

are generated by other methods of detection. 
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5.3.5  Automate Analysis of Captures 

The dump files generated when a URL was deemed as hosting potentially 

malicious content are not examined in-depth because the manual analysis of these dump 

files requires a considerable amount of time.  Implementing or creating a methodology to 

reliably examine these dump files automatically would significantly reduce the diagnosis 

process time. 

5.3.6  Processing URLs in Parallel within a Single VM 

The TMCS system is able to process multiple URLs at a time through the use of 

multiple VMs.  With some refinement of the ESCAPE log parsing portion of TMCS, it 

could be possible to have multiple URLs checked at the same time within a single VM.  

This type of enhancement could significantly increase the speed at which URLs are 

processed.  

5.3.7  Focus on Semantically Relevant Information 

When collecting statuses to extract URLs, TMCS would request statuses that refer 

to the most popular trending topics.  These topics were disregarded after using them as 

search parameters.  Storing and examining these topics may be able to provide more 

insight into the distribution of malware on Twitter.   

5.5  Conclusion 

The TMCS system is a successful URL collection and examination platform.  It is 

able to gather and process URLs from the social networking service Twitter, and store 

dump files of detected malware.  The possibilities for future additions and applications of 

TMCS are promising.  Malware research stands much to gain by using such a system for 
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the purposes of malware collection and examination.  By applying this methodology, 

social networking platforms can become a safer venue for communication. 
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