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Abstract

Navigation in indoor and urban environments by small unmanned systems is a

topic of interest for the Air Force. The Advanced Navigation Technology Center at

the Air Force Institute of Technology is continually looking for novel approaches to

navigation in GPS deprived environments. Inertial sensors have been coupled with

image aided concepts, such as feature tracking, with good results. However, feature

density in areas with large, flat, smooth surfaces tends to be low.

Polarimetric sensors have been used for surface reconstruction, surface char-

acterization and outdoor navigation. This thesis combines aspects of some of these

algorithms along with a realistic, micro-facet polarimetric model and a Kalman fil-

ter approach to determine surface structure and platform orientation in an indoor

environment.

An iterative approach was taken to reach this goal. Several MATLAB graphical

user interfaces were developed to determine the ability to estimate surface material

parameters. The results of these tests demonstrated the need to constrain the ge-

ometry to a specular region. A more complex simulation software package was used

to estimate surface orientation given the full set of surface material parameters. An

additional set of simplifying assumptions was also developed to reduce the amount of

required information. Finally, a physical polarimeter was designed and built to test

the algorithms in a realistic environment.

There are three main points that can be taken from this thesis. First, a full set

of material parameters can only be determined for a single view by using a multiple

hypothesis testing method and only under known geometry conditions. Next, a mea-

surement model for the estimation of pitch angle showed an uncertainty in estimation

of 6∘ and a mean error dependent on the material and geometry of a particular situa-

tion. Finally, an improvement in attitude estimation of up to 50% was demonstrated.
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Polarimetric Enhancements to Electro-Optical Aided

Navigation Techniques

I. Introduction

Navigation in indoor and urban environments by small, unmanned systems is a

topic of interest for the Air Force. The Advanced Navigation Technology Cen-

ter at the Air Force Institute of Technology is continually looking for novel approaches

to navigation in GPS-deprived environments. GPS-deprived areas require alternate

methods of periodic positioning in order to constrain drift in inertial navigation sen-

sors. Inertial sensors have been coupled with image aided concepts, such as feature

tracking with good results [7, 27]. However, in areas with large, flat, smooth sur-

faces, there may not be enough features between frames to make an accurate position

update.

Polarimetric sensors have been used for surface reconstruction [10, 12, 37, 38],

surface characterization [4,17] and outdoor navigation [9]. However, these algorithms

tend to focus on a single aspect of the authors’ respective research areas and require

information about the aspect on which they are not focusing. For example, [17]

requires knowledge of surface geometry to determine surface characteristics and [38]

uses a simplified polarimetric model with known material parameters in order to

determine surface structure.

This thesis will combine aspects of some of these algorithms along with a realistic

polarimetric model and a Kalman filter approach to determine surface structure and

platform orientation in an indoor environment. This chapter continues by presenting

the approach to the study and some assumptions made along the way (Section 1.1). It
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then presents the set of contributions achieved from this research effort (Section 1.2).

Finally, the organization of the rest of the thesis is presented in Section 1.3.

1.1 Approach and Assumptions

An iterative approach was taken in this thesis. First, the estimation of partic-

ular parameters of the Shell target polarimetric model, described in Chapter II, were

tested individually. The results of these tests showed which parameters were most

important in intensity, degree of polarization and angle of polarization measurements

and which could be reasonably neglected. Once observable material characteristics

were determined, multiple parameter estimation techniques were explored to deter-

mine interdependencies in parameter and geometry estimation. These tests show that

the full set of polarimetric model parameters and surface geometry can not be deter-

mined simultaneously, as expected. However, with a reasonable geometry estimate,

a multiple hypothesis testing algorithm proved that surface parameters can be deter-

mined given a limited number of materials in a database and a specular geometry.

Given the results of the parameter estimation tests, constraints were placed on

subsequent testing geometries, such that only geometries in which a source is present

in the specular direction of the camera will be used. This assumption is necessary

because any geometry with an off-specular reflection will result in a low degree-of-

polarization measurement and will not produce useful measurements.

In order to determine surface orientation with the least amount of knowledge

available, a simplification of the Shell target model was created. This simplification

makes the assumption that any materials of interest are smooth, dielectric materials.

This allows the set of Shell parameters to be narrowed to only the complex index of

refraction. Generally, for a smooth dielectric surface, the index of refraction can be

reasonably assumed [17].

Finally, in order to determine camera orientation, the Manhattan World con-

straint was used. For an indoor hallway environment, it was assumed that most large

flat surfaces tend to have orthogonal surface normals. Using a Kalman filter approach,
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the camera orientation is known with limited uncertainty. This information is used to

determine surface parameters by way of the multiple hypothesis testing method, and

then used to determine relative geometry with surfaces in the scene. This relative

geometry is then used to update errors in the filter, and the cycle is repeated.

Three sets of tools are used throughout the thesis. These tools are described

in detail in Chapter III. The same iterative approach was taken using these tools.

In general, MATLAB graphical user interfaces are used to test a hypothesis. Then,

DIRSIG simulation software is used to test the algorithm in a more complex envi-

ronment. Finally, a physical polarimeter is used to determine if any anomalies exist

under real world conditions.

1.2 Contributions

The contributions from this research effort apply broadly to both polarimetric

and navigation technology fields of study. Because of the continued research efforts in

polarimetry, as mentioned above, the contributions from the tests to determine surface

parameters can be useful in image cuing and target detection algorithms. However,

the main contribution focus is the addition of a polarimetric measurement model to

a Kalman filter algorithm, common in navigation.

This modification is powerful in its simplicity and availability. The addition of

the measurement model to existing Kalman filters is a simple software update. Several

methods have been used to add a polarimetric capability to an existing camera, and

these additions add little or no weight or power requirements to the existing systems.

The polarimetric imagery complements feature tracking EO-aiding algorithms well,

because it thrives in environments in which feature tracking algorithms do not. Be-

cause each view is independent of previous views, it can be used to constrain drift in an

inertial system. Finally, by having an estimate of the camera orientation, previously

established algorithms can be used to determine additional surface structure.
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1.3 Organization

This thesis is organized as follows. Technical background information is pre-

sented in Chapter II. A description of the simulation software, design of a set of

MATLAB graphical user interfaces, and design and construction details of a physi-

cal polarimeter are presented in Chapter III. Test methodology and set up for each

experiment is presented in Chapter IV. Results from these tests are analyzed in Chap-

ter V. Finally, a set of conclusions and suggestions for future work is presented in

Chapter VI.
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II. Technical Background

This chapter presents technical background information required to understand

the material posed throughout the research. Variable notation is detailed in

Section 2.1. Section 2.2 will discuss various frames of reference common to navigation

and how to transform from one frame to another. Current electro-optically aided

navigation techniques, used to constrain drift in inertial navigation systems, is pre-

sented in Section 2.3. A brief background on polarimetry is given in Section 2.4, with

discussion of a few polarimetric models in Section 2.5. Section 2.6 will discuss some

polarimetric shape recovery techniques already in use. Finally, a brief overview of the

Unscented Kalman Filter is presented in Section 2.7.

2.1 Variable Notation

This section describes the variable types and notation used throughout this

thesis.

∙ Scalars are represented by upper or lower case letters in italic type (e.g., x or

X).

∙ Vectors are represented by lower case letters with bold font, (e.g., x). Each vec-

tor is composed of a column of scalar elements denoted by xi, where i represents

the element number.

∙ Homogeneous Vectors, vectors in which the last element is a 1, are denoted

by an underline (e.g., x).

∙ Matrices are given as upper case letters in bold font. The matrix X is com-

posed of elements Xij where i is the row index and j is the column index.

∙ Direction Cosine Matrices from frame a to frame b are given as Cb
a.

∙ Reference Frames are described by superscripts. For example, pa is a vector

expressed in the a frame.

∙ Mean values are defined by a bar, such as x̄.
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∙ Covariance of variables is defined by a capital P and two subscripts. The

subscripts describe the variables with which the covariance is taken. (e.g., P xy =
∑

(xi − x̄)(yi − ȳ)).

2.2 Frames of Reference

In navigation, relative positions of two objects need to be expressed in a com-

mon coordinate system. For example, the location of an object in an image can be

expressed in the camera’s frame of reference. The location and orientation of the

camera relative to a local navigation frame can then be used to help determine a line

along which the image feature is located in a localized coordinate system. In this

section, a few common coordinate systems will be presented along with a technique

for converting vectors from one system to another.

2.2.1 Coordinate Systems. A coordinate system can be defined at any

location and orientation. For this research, most coordinates will be expressed in

terms of a camera location and orientation in the local navigation frame. The local

navigation frame is generally described by a single position on the Earth and an

orientation. The orientation of the local navigation frame axes is arbitrary and can

be defined for a given problem.

Features and surfaces within an image are described in the camera coordinate

system. Figure 2.1 shows a typical camera coordinate system. This system is de-

scribed as being located at the optical center of the camera with the x-axis parallel

to the focal plane and pointed up, the y-axis parallel to the focal plane and pointed

out the right hand side and the z-axis perpendicular to the focal plane and pointed

out the center of the lens of the camera.

Using a camera coordinate system allows for a simple way to locate a feature

in an image. However, in order to build a 3-D model of a scene, feature locations in

the images must be transformed into a common coordinate system. The next section

will discuss how to convert vectors between coordinate systems.
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X a isX axis

Y axisY axis

Z axis

Figure 2.1: Common coordinate system for a camera reference frame. This figure
shows the x-axis pointed out the top of the camera, the y-axis pointed out the right
hand side and the z-axis pointed out the front of the camera from the center of focus
through the optical center of the lens.

2.2.2 Coordinate Conversions. There are several methods of converting

position and orientation vectors from one frame of reference to another. Two types

will be presented in this section, Direction Cosine Matrix (DCM) Transformations

and Euler Angles.

2.2.2.1 Direction Cosine Matrix. The DCM is a 3 × 3 matrix whose

columns represent vectors in the body axis projected onto a reference axis [32]. The

DCM presents a convenient way to transform vectors in one coordinate system into

another by simple multiplication. A vector quantity defined in body axes may be

expressed in another reference axes by pre-multiplying the vector by the DCM. Equa-

tion (2.1) shows how this is done, where pa is the position of an object in the ‘a’

reference frame, pb is the position of the object in the ‘b’ frame, and Ca
b is the DCM

to convert from reference frame ‘b’ to frame ‘a’.

pa = Ca
bp

b (2.1)
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Some useful properties of the DCM include [27]:

1. Det(Cb
a) = 1

2. Ca
b = (Cb

a)
−1 = (Cb

a)
T

3. Cc
a = Cc

bC
b
a

A DCM may be computed using individual rotations about orthogonal axes in

the body frame. These rotation angles are known as Euler angles and are covered in

the following section.

2.2.2.2 Euler Angles. Euler angles are a set of transformations which

relate to single rotations around each orthogonal axis in turn [32]. These transfor-

mations are then multiplied together to obtain the full transformation. They are

commonly used when converting from a body frame to a local navigation frame by

using the roll (�), pitch (�) and yaw ( ) angles of the body. The three rotations may

be expressed as three separate DCMs presented in Equations (2.2) - (2.4).

C1
n =

⎡

⎢

⎢

⎢

⎣

cos sin 0

− sin cos 0

0 0 1

⎤

⎥

⎥

⎥

⎦

(2.2)

C2
1 =

⎡

⎢

⎢

⎢

⎣

cos � 0 − sin �

0 1 0

sin � 0 cos �

⎤

⎥

⎥

⎥

⎦

(2.3)

Cb
2 =

⎡

⎢

⎢

⎢

⎣

1 0 0

0 cos� sin�

0 − sin� cos�

⎤

⎥

⎥

⎥

⎦

(2.4)

The DCM from the reference to the body axis can then be expressed as the

product of the individual transformations.
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Cb
n = Cb

2C
2
1C

1
n (2.5)

Once a common coordinate system is set, sensors must be used to determine

motion through the reference frame. The next section will discuss electro-optically

aided navigation techniques, used to determine location and orientation of an vehicle

in motion.

2.3 Electro-Optically Aided Navigation

Because of the drift errors associated with inertial navigation systems, described

in detail in [32], electro-optical (EO) aiding algorithms have been developed to assist

in navigation. These types of algorithms are meant to constrain the errors in inertial

sensors by providing periodic position information. Several algorithms exist for EO-

aided navigation [7, 19, 27]. The focus of this section is to describe the basics of a

feature matching algorithm, which allows for relative positioning between frames by

keeping track of a set of invariant features in the scene.

Two sets of geometric constraints used to determine camera motion are dis-

cussed. The epipolar constraint is covered in Section 2.3.1, and the homographic

constraint is discussed in Section 2.3.2. Each of these constraints requires point cor-

respondence between images. A feature detection and correspondence algorithm is

presented in Section 2.3.3. Finally, because these constraints require a pin-hole camera

model, a camera calibration technique is presented in Section 2.3.4.

2.3.1 Epipolar Constraints . The epipolar geometry between two views is

composed of the geometry of the intersection of the image planes with the pencil of

planes having the baseline as axis [16]. The baseline is the line joining the camera

centers. The epipole is the point where the vector from one camera to the other

camera intersects with the image plane. Figure 2.2 illustrates the epipolar geometry

relationships.
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TARGET 2 
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LINES

Figure 2.2: Two view geometry example. This figure shows the relationship between
a 3D point in space and two cameras. The epipole is shown as the intersection of the
line which connect the focal points of each image with each image plane. [27]

This can be used to better estimate matching features between images. A point

in the second image must lie on the plane constrained by the the baseline and the

vector pointing from the center of the camera to the image feature. The line in the

second image which is produced by the intersection of this plane and the focal plane

of the second camera is known as the epipolar line. A matching feature in the second

image must lie on this line.

2.3.1.1 Fundamental Matrix . By looking at the triangle made up of

the two camera locations and an object in each scene, it can be seen that there is a

simple relationship between the vector from the first camera to the object, sa, and

the vector from the second camera to the object, sb. This relationship is shown in

Equation (2.6).

sb = pb
ba +Cb

as
a (2.6)
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In this equation, Cb
a is a DCM from camera a to camera b. The translation

vector from camera b to camera a, pb
ba, is the vector pointing from camera b to camera

a, referenced to the camera b coordinate system.

These vectors are all illustrated in Figure 2.2. The vectors sa and sb are then

defined to be the homogeneous s vectors, or the s vector scaled so that s3 = 1. Their

relationship is therefore, sa = �as
a, where �a is a scaling parameter. Using this

relationship, Equation (2.6) can then be rewritten as:

�bs
b = pb

ba +Cb
a�as

a (2.7)

Pre-multiplying by the cross product of pb
ba and the dot product of sb will yield

Equation (2.8).

(sb)T (pb
ba×)Cb

as
a = 0 (2.8)

The middle term of Equation (2.8), (pb
ba×)Cb

a, is known as the Fundamental

matrix. These terms can also be written in the more useful form, Ca
b (p

a
ab×), where

Ca
b is the DCM from camera b to camera a and pa

ab is the translation of the camera

from position a to position b represented in the camera a coordinate system.

2.3.1.2 Determining the Fundamental Matrix . It has been shown that

the Fundamental matrix is constrained by

(sb)TFsa = 0 (2.9)

for any pair of matching points sa and sb [16]. Given enough matches, this equation

can be used to compute the unknown matrix F . By writing sa = (x, y, 1)T and

sb = (x′, y′, 1)T , each match gives a linear equation in the unknown entries of F . The

coefficients of this equation are easily written in terms of the known coordinates sa

and sb. Specifically, the equation corresponding to the pair of points is:
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x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (2.10)

Using this relationship, the algorithm for determining the Fundamental matrix

from a set of eight or more matching points can be broken down into four steps. The

first step requires normalization of the image coordinates. Then, a linear solution

to the matrix, F̂
′

, is determined by finding the singular vector corresponding to the

smallest singular value of A, where A is determined by Equation (2.11).

Af =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

x′2x2 x′2y2 x′2 y′2x2 y′2y2 y′2 x2 y2 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

f = 0 (2.11)

A constraint is then placed on the matrix such that ∣F̂ ′∣ = 0. This is done by

performing a singular value decomposition and recreating the matrix using only the

two largest singular values resulting in F̂ . Finally, a denormalization is performed

using the normalizing transformations found in the first step which yields the final

Fundamental matrix, F .

This Fundamental matrix algorithm is not very robust if it simply uses all

‘matches’ between images. A small mismatch will throw off the final DCM and po-

sition vector. The Random Sample Consensus, RANSAC, algorithm can be used to

further refine the matches found in Section 2.3.3. This algorithm starts by selecting

a random sample of normalized matching pairs and finds a Fundamental Matrix for

this set. If it finds an acceptable Fundamental Matrix for the set, it will then add and

evaluate the rest of the samples against the proposed matrix. If an acceptable number

of samples correspond with the proposed model, the RANSAC function will return
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the best fit for the function and the pairs that match the function within a threshold.

Otherwise, the function will start the process over with a new set of initial samples.

This continues until all options have been exhausted or an acceptable solution is found.

2.3.1.3 Decomposition of the Fundamental Matrix . The decompo-

sition of the Fundamental Matrix is what allows for the determination of camera

motion. Once the Fundamental Matrix is determined, a singular value decomposition

can be performed to decompose the 3× 3 Fundamental Matrix into a 3× 3 DCM and

a 3× 1 translation vector. A singular value decomposition converts the Fundamental

Matrix into a diagonal matrix, S, and unitary matrices, U and V . The matrix, W ,

a DCM for a �/2 rotation about the z-axis, is also required. Equation (2.12) shows

how these can be used to formulate the DCM, Ca
b . Equation (2.13) shows one way

to produce the translation vector.

Ca
b = ±UWV ′or ±UW ′V ′ (2.12)

pa
ab = ±UZU ′ (2.13)

where Z is defined to be:

Z =

⎡

⎢

⎢

⎢

⎣

0 −1 0

1 0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

(2.14)

These calculations yield four combinations of DCM and position vector. The

correct pair is the pair that produces only positive � values in Equation (2.7). These

�s can be calculated by manipulating Equation (2.7) into the form of Equation (2.15).
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−Cb
ap

a
ab =

[

Cb
as

a −sb
]

⎡

⎣

�a

�b

⎤

⎦ (2.15)

Equation (2.16) uses a least squares technique to find the estimate for �, in

which L =
[

Cb
asa −sb

]

⎡

⎣

�̂a

�̂b

⎤

⎦ = (LTL)−1LT

⎡

⎣

sa

sb

⎤

⎦ (2.16)

For a set of coplanar features, a special geometry constraint exists, known as

a homography, which can be used to more easily correspond points between images.

Section 2.3.2 describes how the homographic matrix is calculated, and how it can be

used to assist in determining camera rotation and translation parameters or a flat

surface normal.

2.3.2 Homographic Geometry . Through the homography a point in one

view determines a point in the other which is the intersection of the pointing vector

with the plane [16]. Given a set of matching points on a plane, the homographic

transformation for a pin-hole model is given as

sb = Hsa (2.17)

The Homographic transformation matrix, H , can be found by using a method

similar to that used for the Fundamental matrix in which a RANSAC algorithm is fed

a set of matching points and a best fit to the above equation is produced. In order

to use the following equations, this H matrix must be normalized. Equation (2.18)

shows how to normalize the H matrix by taking the singular value decomposition,

where �2 is the second singular value of H .

Hnorm =
H

�2
(2.18)
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Figure 2.3: Homographic Geometry Illustration. This figure shows how the series
of epipolar planes can be uniquely defined for a plane in the image [27].

Since Equation (2.6) still holds for any single point in the scene, it can be

rewritten as

sb = Cb
as

a + pb
ba (2.19)

in which Cb
a refers to the rotation matrix from the camera a frame to the camera b

frame. pb
ba is the vector describing the translation from the a frame to the b frame,

represented in the b frame. Figure 2.3 shows an example of the the homographic

relationship.

It can then be shown that there exists a relationship between the homography

matrix, H , the rotation and translation of the camera, and the surface normal vector,

n. This relationship is expressed in Equation (2.20).

Hnorm=̇Cb
a +

1

d
pa
abn

T (2.20)

2.3.3 Correspondence Between Images . Object correspondence between

images is a requirement for both sets of geometric constraints presented in the previ-
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ous sections. Several ways have been proposed for image point correspondence. The

method used throughout this thesis begins with the Scale Invariant Feature Transfor-

mation (SIFT) algorithm [20,21]. This particular algorithm categorizes image features

by a feature descriptor vector.

There are many ways to match these features between images. For the feature

descriptor vector given by the SIFT algorithm, a vector dot product is the most

convenient. The dot product of two large dimensional vectors like these will show how

well the vectors align. The pixel locations of the keypoints with the best alignment,

within a threshold, can be considered to be matching features. However a matching

algorithm which simply uses the largest dot product within a threshold can lead to a

small number of mismatches. In order to filter out mismatches, a minimal difference

measurement between the best two matches can be implemented.

Once a set of good matches has been found, the pixel locations still need to be

converted to vectors pointing to the features. Section 2.3.4 will show how distortion

is removed and pixel locations are converted to normalized pointing vectors.

2.3.4 Camera Calibration . Because line intersections are used to deter-

mine feature locations in the local navigation frame and most camera lenses will

distort these lines in a radial pattern, a camera calibration must be done to remove

these distortions. For the physical polarimeter, described in Chapter III, the Caltech

Calibration Kit was used. This calibration kit is described in great detail on their

website [6].

The output from this calibration is the set of intrinsic camera parameters:

∙ Focal length (fc)

∙ Principal point (cc)

∙ Skew (�c)

∙ Distortion (kc)
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∙ Pixel error (err)

Once a calibration is performed, these parameters can now be used to undistort

any images that are shot with the same lens parameters used in the calibration. The

intrinsic camera matrix presented in Equation (2.21) is a transformation matrix from

a line of sight vector to normalized pixel location.

T
pix
los =

⎡

⎢

⎢

⎢

⎣

fc(1) �cfc(1) cc(1)

0 fc(2) cc(2)

0 0 1

⎤

⎥

⎥

⎥

⎦

(2.21)

The inverse of T pix
los , T

los
pix, can be used to transform from normalized pixel loca-

tion to line of sight vector.

In areas with minimal features, an alternative approach to EO-aiding must be

applied. The next section describes the phenomenology of polarimetry and why it is

useful in such a situation.

2.4 Polarimetric Phenomenology

Polarization is the measurement of the electric field vector orientation in electro-

magnetic radiation. The electric field of light, E(t), can be defined by a time varying

vector represented in Equation (2.22). E0 is the amplitude of the electromagnetic

field, ! is the angular frequency, k is the wave vector, t is time, z is the direction of

propagation and � is a constant phase shift [14].

E(t) = E0 sin(k ⋅ z − !t+ �) (2.22)

Figure 2.4 shows an illustration of a light wave. The plane orthogonal to the

direction of travel of the light wave will be defined to have an arbitrary 0∘ point and an

angle relative to this point, �, representing the angle of the oscillation of the electric

wave and will be used to describe the orientation of the electric field.
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Figure 2.4: Electro-Magnetic Field Representation. The phase offset of the electric
and magnetic components of the wave directly relate to the polarization of light in
the wave. [15]

18



Figure 2.5: Representation of Linear, Circular, and Elliptical Polarization. Pro-
jections of the 2-dimensional electromagnetic vector onto the transverse path create
different degree and angle of polarization states based on the phase difference between
the two orthogonal components. [14]

2.4.1 Polarization States . The polarization state of a coherent light wave

represents the direction of oscillation of the electric field in the plane perpendicular

to the direction of motion. When the perpendicular components of the electric field

oscillate in phase, this is known as linear polarization. When these components os-

cillate with the same amplitude but at 90∘ out of phase, this is known as circular

polarization. Otherwise, the resulting polarization state is said to have elliptical po-

larization, in that the shape traced in the x-y plane through a full oscillation cycle is

an ellipse [14]. Figure 2.5 shows a representation of these states.

In a coherent light source, the polarization can be easily classified because there

is only one set of waves. However, a typical sensor will detect incoherent light in most

situations. Incoherent light will consist of a combination of polarization states. In

1852, George Gabriel Stokes developed a system for describing the polarization state

of incoherent radiation [14]. Section 2.4.2 covers the background of the Stokes vector.

2.4.2 Stokes Vector . The Stokes vector, S, is a 4-element column vector

which represents the polarimetric information in incoherent light. Equation (2.23)

shows the makeup of the vector.
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S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

S0

S1

S2

S3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.23)

The S0 component represents the total irradiance of light incident on an object,

such as a detector. It can be represented as the sum of the electric field in the 0∘ and

90∘ directions of the coordinate system described in Section 2.4.1, or S0 = E0 + E90.

S1 represents the amount of polarization in the 0∘ or 90∘ direction and is calculated by

S1 = E0−E90. A positive S1 represents light that is more polarized in the 0∘ direction,

while a negative S1 describes light that is more polarized in the 90∘ orientation. The

S2 element represents the amount of polarization between 45∘ and 135∘ and is defined

to be S2 = E45 − E135. Finally, the S3 element represents the amount of circularly

polarized light by, S3 = Erc−Elc, where Erc represents clockwise circular polarization

and Elc represents counter-clockwise circular polarization. These elements can then

be combined to describe the amount of linearly polarized light (DoLP) calculated us-

ing Equation (2.24), and the angle of polarization (AoP), Φ, found in Equation (2.25).

DoLP =

√

S2
1 + S2

2

S0

(2.24)

Φ =
1

2
arctan

S2

S1

(2.25)

These equations are the foundation of polarimetry for remote sensing. In order

to estimate a set of Stokes Vectors from the reflection of a surface, a model must be

constructed. Section 2.5 discusses some polarimetric models used in modern simula-

tion software.
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2.5 Polarimetric Models

A method of converting Stokes parameters from just before to just after a re-

flection is known as Mueller matrix calculus and is discussed in Section 2.5.1. Several

models have been proposed to find Mueller matrices for a wide variety of scenarios.

Each model uses the set of Fresnel equations described in Section 2.5.2. This basic

model is improved upon with the addition of a Bidirectional Reflectance Distribution

Function, BRDF, and micro-facet models presented in Sections 2.5.3 and 2.5.4. The

full model used in this paper is known as the Shell Target model and is described in

detail in Section 2.5.5.

2.5.1 Mueller Matrix . A Mueller matrix, M , is a 4 × 4 matrix describing

the transition of one state of Stokes vectors to another at an interface. The Mueller

matrix conversion is found in Equation (2.26), in which Si refers to the incident Stokes

vector and Sr is the reflected Stokes vector.

Sr = MSi (2.26)

This matrix can be used to find a reflected polarization state for a known situ-

ation given a set of parameters for the material. The main polarimetric component

of the Mueller matrix comes form the Fresnel reflectance coefficients presented in the

next section.

2.5.2 Fresnel Reflectance Equations . The Fresnel reflectance equations

define the amount of in-plane and out-of-plane reflection, rp and rs, respectively. The

parameters of importance for these equations include the complex index of refractions,

ñ, of both the object and the air, and the pitch of the surface relative to the incident

light, �i. The following equations describe these relationships.

rs(�i) =
2ñi cos �i

ñi cos �i +
√

ñ2
r − ñ2

i sin
2 �i

(2.27)
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Figure 2.6: In-plane and out-of-plane reflectance curves for a given index of re-
fraction are computed from Fresnel equations. The difference between these curves
constitutes the degree of polarization [5].

rp(�i) =
2ñiñr cos �i

ñ2
r cos �i + ñi

√

ñ2
r − ñ2

i sin
2 �i

(2.28)

In these equations, ñi represents the index of refraction of the medium containing

the light incident on the surface, in most cases air, ñr is the index of refraction of the

surface of reflection and �i is the angle of light incident on the surface [14]. Figure 2.6

shows a graphical representation of these equations for a given index of refraction

pair.

2.5.3 Bidirectional Reflectance Distribution Function . For a given irradi-

ance orientation, the Bidirectional Reflectance Distribution Function describes what

fraction of the incident irradiance will be reflected into a solid angle within the hemi-

sphere above the surface [14]. It is defined as the ratio of scattered radiance to the

incident irradiance, and is a function of two dimensional angles, �i, �r and Δ�, and

the intrinsic surface parameters. The incidence angle, �i, is the angle between the ray

of incident light and the surface normal. The angle between the reflected ray and the
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Figure 2.7: Micro-facet Model Large Scale Geometry Example. The 2-Dimensional
Angles �i, �r and Δ� relate the incident and reflected light off of the macro-surface
normal [31].

surface normal is �r. The angle between those two rays projected along the surface is

Δ�. Figure 2.7 shows an illustration of these angles.

Figure 2.8 shows typical BRDF models for white and black paint samples. No-

tice how the small highly specular spike in the white paint surface correlates to the

polarization signature of the surface. The same is true but less obvious for the black

paint sample.

2.5.4 Micro-facet Model . Many BRDF models may be segregated into

components which represent specular scattering and volumetric scattering. Figure 2.9

shows a representation of these types of scattering.

Priest and Germer further decomposed these models into a micro-facet repre-

sentation [28]. The micro-facet representation treats the specular scattering as the

result of the orientation of individual small facets on a material surface. Figure 2.10

shows an illustration of the relation of the micro-surface to the macro-surface. The

decomposition of a BRDF model into the micro-facet representation thus enables po-

larization of the model via the Fresnel reflectance off each individual micro-facet. In
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Incident Light

Specular Reflection

Diffuse Reflection

(a) White Paint BRDF

Degree of Polarizationg

(b) White Paint directional DoLP

Mix of Specular and Diffuse ReflectionsMix of Specular and Diffuse Reflections

(c) Black Paint BRDF (d) Black Paint directional DoLP

Figure 2.8: Bidirectional Reflectance Distribution Function Examples. Notice how
the small, highly specular spike in the white paint surface correlates to the polarization
signature of the surface. The same is true but less obvious for the black paint sample.

24



Figure 2.9: Example of Types of Scattering. There are two major types of scatter-
ing. Specular from planar surfaces and diffuse or volumetric scattering from multiply
reflected components. Specular reflections contribute to the polarization state of re-
flected light while diffuse components have no polarization [29].

addition, the volumetric scattering component is usually considered to be additive

and completely unpolarized.

Each micro-facet is considered to be oriented at an angle �N relative to the

macro-surface normal. Half the angle between the source and the receiver is known

as the bistatic angle, �. Equation (2.29) shows how to obtain � given �i, �r and �.

Figure 2.10 illustrates these angles.

� =
1

2
cos−1[cos �i cos �r + sin �i sin �r cos�] (2.29)

Given �, �N can be determined as

�N = cos−1[
cos �i + cos �r

2 cos �
] (2.30)

2.5.4.1 Jones Matrix . A Jones matrix is an adequate means of

transferring polarized energy when only Fresnel reflection is considered. The Jones

matrix transforms the incident electric field oriented in the s and p polarization states

to the reflected s and p polarization states. This matrix transformation is given by
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Figure 2.10: Geometry of the Micro-Surface Relative to the Macro-Surface. The
offset of a given micro-surface is defined by the angle between the normals, �N , and
the rotation angles for incident and reflected light, �i and �r. The angle � is the half
angle between the incident and reflected light [31].

⎡

⎣

Er
s

Er
p

⎤

⎦ =

⎡

⎣

rs 0

0 rp

⎤

⎦

⎡

⎣

Ei
s

Ei
p

⎤

⎦ (2.31)

where Ei
s and Ei

p are the magnitudes of the incident s and p polarization electric

field, rs and rp are the Fresnel coefficients, and Er
s and Er

p are the reflected s and

p polarization electric field magnitudes. This is equivalent to the Fresnel reflectance

equation, if the incident light is considered to be unpolarized, or the magnitudes of

the incident electric fields are equal.

2.5.4.2 Jones Matrix to Mueller Matrix Conversion. Given a Jones

matrix, an equivalent Mueller matrix may be developed, although the converse is not

true since a Mueller matrix handles the more general case of volumetric scattering.

It can be seen from Figure 2.10, two coordinate transformations are required to

maintain Poynting vectors in the same frame of reference. The first transformation
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rotates the incident light vector from the plane of reflectance to the plane of incidence

about the macro-surface normal and is given by �i. The second transformation rotates

the specular plane of incidence to the plane of reflectance about the micro-facet surface

normal and is given by �r.

cos(�i) =

cos(�i)+cos(�r)
2 cos(�)

− cos(�i) cos(�)

sin(�i) sin(�)
(2.32)

cos(�r) =

cos(�i)+cos(�r)
2 cos(�)

− cos(�r) cos(�)

sin(�r) sin(�)
(2.33)

The coordinate transformation of the electric fields is accomplished by multiply-

ing the incident electric field, which is defined in terms of the macro-facet coordinate

system relative to the incident illumination direction, by the �i coordinate transfor-

mation before the Fresnel reflectance. After the Fresnel reflectance, the �r coordinate

transformation is accomplished, which produces the reflected electric field components

in terms of the sensor coordinate system. The resulting Jones matrix is given by

⎡

⎣

Er
s

Er
p

⎤

⎦ =

⎡

⎣

cos(�r) sin(�r)

− sin(�r) cos(�r)

⎤

⎦

⎡

⎣

rs 0

0 rp

⎤

⎦

⎡

⎣

cos(�i) − sin(�i)

sin(�i) cos(�i)

⎤

⎦

⎡

⎣

Ei
s

Ei
p

⎤

⎦ (2.34)

⎡

⎣

Er
s

Er
p

⎤

⎦ =

⎡

⎣

Tss Tps

Tsp Tpp

⎤

⎦

⎡

⎣

Ei
s

Ei
p

⎤

⎦ (2.35)

Now the Jones matrix components are used to construct the Fresnel reflectance

Mueller matrix. The complete 4 × 4 Mueller matrix may be reproduced from these

elements, but only the 3× 3 matrix components relevant to linear polarization states

are shown. The elements of the specular component of the Mueller matrix, RFxx,

expressed in terms of the Jones matrix components and their complex conjugates,

represented by a superscript asterisk, are given as [28]:
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RF11 =
1

2
[∣Tss∣2 + ∣Tsp∣2 + ∣Tps∣2 + ∣Tpp∣2] (2.36)

RF12 =
1

2
[∣Tss∣2 + ∣Tsp∣2 − ∣Tps∣2 − ∣Tpp∣2] (2.37)

RF13 =
1

2
[TssT

∗

ps + T ∗

ssTps + TspT
∗

pp + TspT
∗

pp] (2.38)

RF21 =
1

2
[∣Tss∣2 − ∣Tsp∣2 + ∣Tps∣2 − ∣Tpp∣2] (2.39)

RF22 =
1

2
[∣Tss∣2 − ∣Tsp∣2 − ∣Tps∣2 + ∣Tpp∣2] (2.40)

RF23 =
1

2
[(TssT

∗

ps + T ∗

ssTps)− (TpsT
∗

pp + TpsT
∗

pp)] (2.41)

RF31 =
1

2
[TssT

∗

sp + T ∗

ssTsp + TpsT
∗

pp + TpsT
∗

pp] (2.42)

RF32 =
1

2
[(TssT

∗

sp + T ∗

ssTsp)− (TpsT
∗

pp + TpsT
∗

pp)] (2.43)

RF33 =
1

2
[(TssT

∗

pp + T ∗

ssTpp)− (TpsT
∗

sp + TpsT
∗

sp)] (2.44)

(2.45)

Torrance and Sparrow presented one of the first polarimetric BRDF, pBRDF,

models to capture the off-specular peak and to provide better predictions as �r be-

comes more glancing [33]. Maxwell and Beard improved upon this model in order to

better represent paint samples [23], and Shell furthered the model to incorporate more

target like materials [31]. The next three sections describe the differences between

these models and why the Shell model was chosen for this work.

2.5.4.3 Torrance-Sparrow Model. Torrance and Sparrow treat each

micro-facet as a specular surface for which the surface normal angular positions, �,

are distributed along a Gaussian function, P (�). The diffuse component of the BRDF

arises from multiple micro-facet reflections or internal scattering as seen in Figure 2.9.

The reflected radiance, Lr, is then expressed as the sum of the specular and diffuse

components.
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Lr = Lr,s + Lr,d (2.46)

The diffuse component is given in terms of the incident radiance by the Lam-

bertian reflectance equation

Lr,d = aLi cos(�i) (2.47)

where a is a fitting constant, Li is the radiance of the incident light and �i is the angle

of incident light.

The specular reflection is obtained by estimating the Fresnel reflection from each

micro-facet. The significant advancement made from this model was the introduction

of an attenuation factor, G, which accounts for masking and shadowing in the micro-

facet surface. Masking is the blockage of specular reflections by adjacent micro-facets,

while shadowing is the blockage of the illumination source to one micro-facet by

adjacent micro-facets. The resulting BRDF from the Torrance-Sparrow model is

M r = RF (�i, n̂)P (�)G+Lr,d (2.48)

where RF (�i, n̂) is the Fresnel reflectance associated with incident light. The distri-

bution of the micro-facets is described by the probability density function given in

Equation (2.49). A roughness parameter c that relates the distribution of the facet

slopes relative to the normal plane is required. The parameter � is a free fit parameter

for the function and is fit empirically to the surface.

P (�) = ce−c2�2

(2.49)

Torrance and Sparrow use a value of c = 0.05, which was justified based on

fitting the data to experimentally determined BRDFs [33]. The shadowing parameter

used by Torrance and Sparrow, G, is given in Equation (2.50). The G component
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describes an attenuation factor for the specular component. Therefore, when G = 1

there is no attenuation. The m and l parameters are functions of the incidence angle

and are free fit for a particular surface.

G(�i) = 1− m(�i)

l(�i)
(2.50)

While the Torrance-Sparrow model makes use of first principles to model the

BRDF, it nonetheless requires parameters to be fit to experimental data. Modifica-

tions to the Torrence-Sparrow model by Maxwell and Beard are covered in the next

section.

2.5.4.4 Maxwell-Beard Model. The Maxwell-Beard BRDF model was

originally developed for use on painted surfaces [23]. As with the Torrance-Sparrow

model, specular and diffuse contributions to the BRDF are considered separately.

The complete Maxwell-Beard BRDF model is given by the sum of the surface and

volumetric components given in Equations (2.52) and (2.54), or

M r(�i, �i; �r, �r) = M rspec +M rdif (2.51)

With the Maxwell-Beard model, only single reflections from the micro-facet

surface are considered. The specular component of the BRDF may be expressed as

M rspec(�i, �i; �r, �r) =
RF (�)

RF (0)

fZBS(�N) cos
2 �N

cos �i cos �r
SO(�,Ω) (2.52)

where � is the half angle between the source and the receiver, RF is the Fresnel

reflectance equation, expressed in terms of �, and SO(�,Ω) represents the shadowing

function, presented in equation (2.53). The distribution of the micro-facets is obtained

through a zero angle bistatic scan, fZBS, in which the detector and illumination source

are co-located, or as close to the same position as possible without subtending each

other. The surface normals of each micro-facet are defined as being oriented in the
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(�N , �N) direction. The measured signal of the ZBS scan is related to the density of

micro-facets. As in the Torrance-Sparrow model, reflections from the micro-facets are

given by the Fresnel reflectance equations.

All of the parameters needed for the Maxwell-Beard BRDF have to be assumed

or obtained experimentally. The Fresnel reflectance requires the complex index of

refraction ñ of the material. Maxwell and Beard were able to make some assumptions

in their studies. They assumed that the surfaces were dielectrics, which allowed them

to consider k = 0 or ñ = n. A value of n in their study was estimated as n = 1.65

and was based on experience with paint samples [23]. As an alternative, Maxwell and

Beard indicate the value of n may be calculated based on Brewster’s angle.

Maxwell and Beard found similar variations caused by shadowing and mask-

ing of the micro-facets, previously addressed in the Torrance-Sparrow model discus-

sion. However, they developed their own empirically derived function to account for

shadowing and obscuration, SO, which they found superior to the Torrance-Sparrow

function. The SO function has two free parameters, � and Ω, and is given by

SO(�,Ω) =
1 + �N

Ω
e−2�/�

1 + �N
Ω

(

1

1 + �N�i
Ω2

)

(2.53)

where �N adjusts the falloff rate of the shadowing and obscuration function.

The non-Lambertian volume component development was motivated by experi-

mental observation that the diffuse scatter component was in fact not Lambertian due

to both the angular dependency and the lack of complete depolarization. Derivation

of this volume component considers the exponential loss via scattering of energy as

the light propagates into the medium as well as the exponential loss of energy as the

light propagates back to the surface. It is assumed that there is no net transmission of

energy through the surface, and absorption in the medium is not explicitly considered.

Given these considerations, the diffuse component of the BRDF is given as
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M rdif =
2�vf(�)g(�N)

cos �i + cos �r
(2.54)

where f(�) and g(�N) include the � and �N dependencies and are treated as free

parameters for adjustment based on the empirical data. However, the model imple-

mented by Maxwell and Beard kept f(�) = ℎ(�N) = 1 and simply states that these

parameters may provide flexibility in future model development [23]. �v is experi-

mentally obtained by measuring the BRDF at �i = �r = 0∘ with the incident light

polarized orthogonally to the linear polarizing filter.

2.5.5 Shell Target Model . The basis of the Shell Target model follows from

the polarization of micro-facet BRDF models presented above. It is similar to each of

these models in that it has been decomposed into contributions from the specular and

volumetric components. The differences in this model are due to the makeup of each

of these components and the assumptions used to fit a model to a more broad ’target’

criterion which makes it ideal for the wide verity of man-made targets found in an

indoor environment. Another attraction to this model is that an extensive database

of materials exists with these model parameters. The National Geospatial Intelligence

Agency’s Nonconventional Exploitation Factors Database (NEFDS) contains param-

eters for the Maxwell-Beard model which may be polarized by the application of the

Priest-Germer micro-facet polarization technique.

The Shell Target model can be broken into four sub-equations consisting of the

Fresnel reflectance off a micro-facet, RF (�), given in Equation (2.45), the probability

density function of the orientation of micro-facets, p(�N), the shadowing term, SO,

and the diffuse component, M dif .

The effect of p(�N) is to place a ’peak’ in the specular direction. This model can

use one of two different fit functions for the micro-facet probability distribution func-

tion, p(�N), a Gaussian fit as in the Torrance-Sparrow model and a Modified Cauchy

fit. The micro-facet probability distribution function may be thought of as providing
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the ’spread’ of the specular micro-facet reflections according to the surface roughness

statistics. This distribution function uses two parameters: a surface roughness pa-

rameter, �, and a bias parameter, B. A smaller � corresponds to a smoother or more

specular surface. The B parameter provides an overall magnitude adjustment.

The Gaussian micro-facet probability distribution function pG(�N) is used by

the Priest-Germer model and is given by Equation (2.55). The Modified Cauchy

probability distribution function pC(�N) is adapted from that used by the more recent

versions of the NEF Maxwell-Beard BRDF model and is shown in Equation (2.56).

pG(�N) =
B

2��2 cos2(�N)
e

− tan2(�N )

2�2 (2.55)

pC(�N) =
B

cos(�N)(�2 + tan2(�N))
(2.56)

The shadowing function is meant to factor in shadows caused by surface rough-

ness and glancing angles. The Shell Target model uses a simplified version of the

Maxwell-Beard Shadowing function, given by

SO(�N) =
1 + �N

Ω
e−1�/�

1 + �N
Ω

(2.57)

Finally, the diffuse scattering component of the generalized micro-facet model

is considered. The only representation given is that from the NEF Maxwell-Beard

BRDF model. This term is completely randomly polarized and is expressed as

M dif = �D +
2�v

cos(�i) + cos(�r)
(2.58)

where �D and �V are two empirical fit parameters. The nomenclature used is identical

to the NEF, and is an adaptation of that originally proposed by Maxwell, where �D is

the diffuse or Lambertian component and �V is the volumetric scattering parameter.
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The Maxwell-Beard model does allow for non-physical, negative values of �D and �V ,

in order to provide a better fit to the empirical data.

As with each of the other micro-facet models, the resulting Mueller matrix may

be expressed as the sum of the specular and diffuse components.

M = RF (�)p(�N)S + F vol (2.59)

In general the surface parameters for the Shell Target model are fit empirically

and are unknown for a particular surface. However, some simplifications can be made

in the equations in order to better estimate surface geometry. Chapter IV, Section 4.3

describes a set of simplifying assumptions that are common in indoor environments

and may be used to better estimate the geometry of a scene.

The broad range of materials that work with the Shell model along with the

availability of an extensive list of surfaces and the fact that this particular model is

used in the simulation software presented in Chapter III make this the ideal model to

use for this research.

2.6 Polarimetric Shape Recovery

The first paper in computer vision to use polarization information was by

Koshikawa, who used an ellipsometry technique to constrain surface normals on di-

electric surfaces [18]. Koshikawa used a polarization reflectance model based on the

Mueller calculus for specular reflection and the Stokes vector representation for po-

larization. Two other sets of researches followed in similar work but used different

models or constraints for their work. The first was Lawrence Wolff who’s work is

described in Section 2.6.1. A significantly different approach was taken by Pablo

d’Angelo and Christian Wohler and is described in Section 2.6.2.

2.6.1 Lawrence Wolff . Wolff developed a polarization reflectance model

that is called the Fresnel reflectance model because it is a geometric reflectance model
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that utilized the Fresnel reflection coefficients directly [34,35]. The Fresnel reflectance

method is similar to the degree and angle of polarization equations, but bypasses the

Stokes vector math by fitting a sine function of frequency two hertz to the intensity

measurements as a function of polarization angle. Equation (2.60) shows the equation

of the Fresnel reflection ratio.

Fr =
Imax − Imin

Imax + Imin

(2.60)

The angle of polarization is then simply the phase offset of the sine wave. Wolff

uses this ratio to segregate materials in an image into dielectric and metal compo-

nents [36, 38].

Another useful technique developed by Wolff to determine surface structure was

a binocular polarization-based technique which determines surface orientation from

the intersection of two specular planes, each constraining the surface normal in two

of three dimensions [37].

The advantage of the binocular method over a monocular polarization-based

methods for unique determination of surface orientation is that no knowledge of the

index of refraction for the material surface is required. The disadvantage is that

points need to be corresponded between images. This is less of a problem when

determining surface orientation for a flat surface where the intersection of any two

specular planes determined from two points with the same surface orientation will

compute the correct surface orientation. However, smooth curved surfaces without

any distinctive markings pose a problem.

Wolff suggests that his binocular method could be very useful in conjunction

with other surface correspondence techniques such as depth from shading or depth

from defocus [37].

2.6.2 d’Angelo and Wohler . Pablo d’Angelo and Christian Wohler use

an analysis of reflectance and polarization properties to reconstruct rough metallic
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surfaces [10–12]. These surfaces are regarded as being composed of micro-facets of

random orientation. However, d’Angelo and Wohler implement their own empirically

fit functions for intensity and degree of polarization.

They create models for intensity, degree of linear polarization and angle of

polarization measurements to fit to the rough metallic surfaces with which they are

working. Their method of photo-stereo imaging relies on a pair of polarization images

in which d’Angelo and Wohler make the assumption that the scene is illuminated by

unpolarized point light sources at known locations. They then use a Levenburgh-

Marquardt algorithm to estimate surface gradients.

Each of these methods has advantages and disadvantages. Some require a struc-

tured environment or stationary image frames while others require model parameters

to be fit for a specific material. In order to produce the most realistic results, this

paper proposes the use of the Shell Target model as the primary non-linear model for

simulation and estimation.

The Shell Target model will be used to estimate camera attitude. These attitude

states are maintained and updated through a Kalman filter approach. The next

section described the Unscented Kalaman filter used in this research.

2.7 The Unscented Kalman Filter

A Kalman filtering technique is used to maintain estimates of the state of a

system as sets of measurements become available [24]. For the problem of naviga-

tion, uncertainty in position, velocity, and attitude grow unless constrained by stable

measurements. The measurement used in this thesis constrains the attitude estima-

tion by providing periodic measurements of relative angles between the camera and

interior surfaces. This section explains a basic background needed to understand the

uncertainty in state estimation and how the measurement update process improves

the uncertainty.
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One algorithm for solving the problem of non-Gaussian, non-linear filtering is

the extended Kalman filter [3]. This filter is based on the idea of linearizing the

required models. However, these approximations can lead to poor representations of

non-linear functions and cause divergence. Another algorithm for generalized filtering,

known as a particle filter, is performed by using a set of Monte Carlo simulations [25].

This type of method allows for a complete representation of the posterior distribution

of the states, so that a full statistical distribution can be computed. However, this

method requires a great computational capability.

Julier and Uhlmann present the unscented Kalman filter as a method of ap-

plying Kalman filtering techniques to non-linear systems [3]. The unscented Kalman

filter addresses some of the approximation issues of the extended Kalman filter with-

out the computational requirements of the particle filter. The UKF uses the set of

true non-linear models for state propagation and measurement updates and approx-

imates the distribution of the states by a Gaussian random variable. This section

explains the basics of the unscented Kalman filter by first describing the unscented

transform, in Section 2.7.1, and then the presenting the Kalman filter update process,

in Section 2.7.2.

2.7.1 Unscented Transform . The unscented transform is a way of calculat-

ing the statistics of a random variable after a non-linear transformation. In the case

of this thesis, the non-linear transformation converts the state estimate to a measure-

ment prediction through the set of measurement equations presented in Chapter IV.

A set of state variables, x, with mean x̄ and covariance P xx, is passed through the

non-linear equation, y = ℎ(x). The random variable, y, then has mean ȳ and covari-

ance P yy, which can be found using the unscented transform.

Given a state vector of length n, the first step of this process is to create a

2n+ 1 set of weighted sigma points such that they capture the mean and covariance

of the prior random variable. In order to better capture higher order terms of the

probability density function, and to maintain a positive definite state uncertainty, the
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scaling parameters � and � must be chosen properly. The � factor is set to be greater

than or equal to 0, so that the state uncertainty will remain positive definite. The �

weighting factor determines the extent of spread for the sigma points. Reference [25]

for more information on the best choices for these terms for a particular problem.

The scaling parameter � can be found using Equation (2.61).

� = �2(n+ �)− n (2.61)

The sigma point selection and scaling can then be performed through

X0 = x̄ (2.62)

X i = x̄+ (
√

(n+ �)P xx)i i = 1, . . . , n (2.63)

X i = x̄− (
√

(n+ �)P xx)i i = n+ 1, . . . , 2n (2.64)

W
(m)
0 = �/(n+ �) (2.65)

W
(c)
0 = �/(n+ �) + (1− �2 − �) (2.66)

W
(m)
i = W

(c)
i = 1/2(n+ �) i = 1, . . . , 2n (2.67)

where X0 is the mean sigma point, X i are the additional sigma points and W
(m)
i

and W
(c)
i are the weights associated with those points, used to determine the mean

and covariance, respectively. The weighting of the zeroth sigma point affects errors in

higher order terms of the probability density function. The � term is a weighting term

which allows for minimization of these errors if prior knowledge of the distribution is

available. For the Gaussian distributions assumed throughout this thesis, a value of

� = 2 is used.

These sigma points are propagated through the true non-linear transformation,

such that Y i = ℎ(X i). Then, the mean and covariance of the transformed sigma

points are calculated using Equations (2.68) - (2.69).
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ȳ =
2nx
∑

i=0

W
(m)
i Y i (2.68)

P yy =
2nx
∑

i=0

W
(c)
i (Y i − ȳ)(Y i − ȳ)T (2.69)

The information presented in this subsection is a general form of the unscented

transform. The specific form associated with the unscented Kalman filter is presented

next.

2.7.2 Kalman Filter Process . The general Kalman filter process can be

broken down into a state transition and state measurement model. In this case, the

set of nonlinear equations has the general form of

x(t−i ) = f(x(t+i−1),v(ti−1)) (2.70)

z(ti) = ℎ(x(t−i ),n(ti)) (2.71)

where x(t−i ) is the current state of the system just before a measurement update,

v(ti) is the propagation noise, z(ti) is the set of measurement observations and n(ti)

is the measurement noise.

The work presented in this thesis is primarily concerned with the state mea-

surement model. More information on the unscented Kalman filter state transition

algorithm can be found in [3]. For the work presented in this thesis, an initial con-

dition for states and uncertainty are given to represent those found just prior to a

measurement.

When a measurement becomes available, the first step is to make a prediction of

the measurement from the current state estimates. This is done through the unscented

transform presented in the previous section. The generalization of the measurement
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equations is Zi(ti) = ℎ(X i(t
−

i )). Equations (2.72) and (2.73) show the mean and

uncertainty for the predicted measurement, z̄ and P zz, respectively.

z̄(ti) =
2n
∑

i=0

W
(m)
i Zi(ti) (2.72)

P zz(ti) =
2n
∑

i=0

W
(c)
i [Zi(ti)− z̄(ti)][Zi(ti)− z̄(ti)] (2.73)

The uncertainty between the prediction of the measurement and the observed

measurement, known as the residual covariance, is determined through Equation (2.74).

P xz(ti) =
2n
∑

i=0

W
(c)
i [X i − x̄(t−i )][Zi(ti)− z̄(ti)] (2.74)

The state update is then performed by first finding the Kalman gain, K(ti), in

Equation (2.75).

K(ti) = P xz(ti)P
−1
zz (ti) (2.75)

The Kalman gain is used to weight the error between the predicted and observed

measurements in order to determine the new state estimate, x̄(t+i ), in Equation (2.76).

It is also used to determine the new state uncertainty, P xx(t
+
i ), in Equation (2.77).

x̄(t+i ) = x̄(t−i ) +K(ti)[z(ti)− z̄(t)] (2.76)

P xx(t
+
i ) = P xx(t

−

i )−K(ti)P zz(ti)K
T (ti) (2.77)

In general, at this point, the filter would continue to propagate and update as

measurements become available. However, the algorithms presented in this thesis only

use the measurement update component. Each time the Kalman filter is used, a state
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estimate and associated uncertainty are given to the algorithm. A full Kalman filter

algorithm could be developed in the future if a dynamics model could be determined,

either using an inertial navigation system or a platform with predicable motion.

The information presented throughout this chapter is meant to give the reader

an understanding of the basic concepts used for the research effort. Additional ref-

erences have been provided to direct a reader to more in-depth information on each

subject. Chapter III discusses the tools built using these basics in order to perform

the tests presented in Chapter IV.
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III. Builds and Simulations

Chapter II showed the sets of complex models which will be used to estimate

surface geometry and camera orientation. Due to the complex nature and wide

verity of parameters to estimate, it is beneficial to run simple simulations before

proceeding to physical tests. Simulation software can be modified to easily test new

ideas, then physical tests can be used to confirm the simulation or to show any

additional anomalies.

For these reasons three sets of tools were used for this research. These tools are

described in detail in this chapter. Section 3.1 shows a series of MATLAB graphical

user interfaces, used for quick manipulation of algorithms and simple scenarios. The

DIRSIG simulations software shown in Section 3.2 was used to form complex simula-

tions. Finally, the physical polarimeter, used to perform real world tests, is described

in Section 3.3

3.1 MATLAB Simulation Models

MATLAB Graphical User Interfaces, GUIs, were built because of their ease of

use and quick adaptability. They are built to give a user an interactive feel of the

dynamics of the Shell Target model, the observability of its parameters, and the ability

of the estimation techniques. Descriptions of particularly helpful GUIs are presented

in this section.

3.1.1 Single Parameter Estimation . The GUI shown in Figure 3.1 allows

a user to determine the errors between measurements using actual and estimated

surface parameters. It was seen in Chapter II that the Shell Target model of the

polarimetric-BRDF is a complex function of geometry and surface parameters. This

GUI was developed to determine how each parameter effects the intensity, degree of

polarization and angle of polarization. It also gives a user a better understanding of

how estimation of a single parameter is effected by other parameters.
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Shell Parameters

Known Materials

Types of Plots

Geometry

Parameters of

Interest

Figure 3.1: MATLAB GUI to give a user a feel for how parameters affect the intensity, degree and angle of polarization
measurements. This GUI also allows a user to determine viable constraints for estimation.
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This GUI can be used to determine constraints that can be used to better

estimate a set of parameters. Using an estimation technique to iteratively determine

a final solution of a surface parameter given an initial estimate relies on a surface plot

like the one shown in Figure 3.1. Valleys in this plot are where an estimate would

eventually converge. Starting with an estimate on the wrong side of a peak in this

image would lead to a wrong final estimation.

There are many settings for the user to manipulate in this GUI. The types of

measurements or measurement errors are selected in the drop down menu in the top

center. Once the type of plot is selected, the Shell Target parameters are chosen from

the left hand side. For convenience, a drop down menu with common materials is

available for use. The selection of one of these materials will automatically fill in the

Shell parameters. On the right hand side of the figure, the user can define source-

surface-camera geometry in two different ways, either by selecting absolute position

or by selecting relative geometry. Finally, the parameters of interest for a given test

are selected through the drop down menus on the lower right hand side. The user can

select an actual and estimated parameter and a range of values to vary them across.

Once the calculations are completed, the graph of results is displayed in the center

window. This figure is a 3-dimensional representation and can be manipulated with

the figure tool-bar at the top of the GUI.

3.1.2 Multiple Parameter Estimation . Once a user has an understanding of

how a single parameter can affect the measurements, the GUI shown in Figure 3.2 can

be used to determine the extent to which multiple parameters may be estimated. It

also allows for a user to determine observability of parameters under certain conditions

and allows for determination of a viable set of constraints in order to estimate the

desired parameters.

This GUI allows a user to define an actual set of surface parameters and ge-

ometry and an estimate of ’known’ and unknown parameters. It allows the user to

chose the parameters to estimate and even allows for multiple measurements at user
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Actual Shell Values Estimated Values Final Estimates and Errors

Parameters to Estimate

Geometry and Measurements Used

Figure 3.2: MATLAB GUI to estimate a user defined set of parameters given knowledge of the set of known parameters.
This GUI allows a user to determine observability of parameters and limits of viable constraints in order to create better
estimation techniques.
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defined geometries. The left hand side of the GUI has the same options as the single

parameter estimation GUI. It allows a user to define a full set of Shell parameters

for actual and estimated values of a surface. It also includes the same drop-down

menus for easily filling in the Shell parameters for known materials. A single source

and up to six cameras can be placed in absolute coordinates using the options on the

right hand side. The set of measurements to use can be selected with the check boxes

next to each camera measurement. The set of parameters to estimate are selected by

checking the boxes in the center of the figure. Once the calculations are complete,

the final estimates and errors in these estimates are displayed in the center columns.

3.1.3 Multiple Hypothesis Testing . Figure 3.3 shows a multiple hypothesis

testing GUI used to return a best fit surface for a given situation from a list of known

surfaces. This GUI allows a user to define actual surface parameter values and a

’known’ geometry. It will then calculate errors in actual and estimated measurements

and chose the material that best correlates to the measurements.

This GUI allows the user to input the actual Shell parameters in the same

manner as the previous GUIs, with the values on the left hand side. A big difference

in this GUI is the option to corrupt the actual surface geometry values with estimated

values. This option, shown in the upper-center portion of the figure, allows a user

to determine how well the geometry must be known for a given example in order

to arrive at the correct solution. The same source-surface-camera geometry options

are available in this GUI, noted on the right hand side of the figure. The best fit

calculation is then displayed in the drop-down display in the center of the figure.

3.1.4 Estimation of beta angle GUI . The GUI found in Figure 3.4 shows

the tool used to determine how the estimation of � angle is affected by errors in

estimated Shell parameters and geometry. A simplified version of this GUI is also

developed using the assumptions presented in Section 4.3. The estimation of pitch,

or �, angle is a main part in both the estimation of surface orientation and camera

attitude estimation presented in Chapter IV.
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Actual Values

Best Fit Material

Estimated Geometry

Actual Geometry and Measurements Used

Figure 3.3: Multiple Hypothesis GUI Example. This GUI allows a user to input actual parameters and geometry for a
surface. It will calculate the expected measurement for a given set of targets known to be in the scene and return the target
material that most closely fits the given measurement.
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Actual Shell Values Estimated Values

Degree of polarization as a function of beta

angle for estimated and actual parameters

Starting estimate for beta,

to alleviate ambiguity

Errors in Geometry

Figure 3.4: Estimation of � angle Using Shell Parameter Values.

The left hand side of this figure allows the user to define the actual and esti-

mated Shell parameters. In the simplified version, the estimated parameters column

is replaced by estimations of the complex index of refraction only. The right hand

side of the figure allows a user to choose errors in relative geometry. The starting

estimation of �, chosen in the upper right hand side of the figure, accounts for the

ambiguity in the estimation algorithm. Once the results are computed, a figure of the

degree of polarization as a function of � angle is displayed in the center pane and the

final estimation and error are given in the lower right hand portion.

3.1.5 Uncertainty in the Estimation of beta GUI . The envelope of the un-

certainty in � estimation, used in the Kalman filter approach found in Section 4.4.1,

can be seen in Figure 3.5. This figure allows a user to define the actual Shell param-

eters for a surface and an actual geometry. Then, for descrete � angles, it will create

300 particles with random errors of up to 1% for the set of parameters. The particles’

values are used to estimate a � angle, and the mean and standard deviation of the

errors in these estimates are plotted in the center pane.
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Actual Shell Values

Actual Geometry

Mean and Standard Deviation for Errors in the

Estimation of beta for 300 particles with parameter

and geometry error strength of 1%

Figure 3.5: Uncertainty in Estimation of Beta. Shell model 1% error. 300 particles.
Glossy Black Paint.

This GUI allows a user to choose the actual set of Shell parameters in the same

manner as the previous GUIs, by setting the individual values or choosing a material

from the drop-down menu on the left hand side of the figure. The actual geometry is

chosen on the right hand side of the figure.

Although MATLAB GUIs are easy to change and can be used to test new

ideas quickly, they can be limited in their complexity. A simulation software package

developed at the Rochester Institute of Technology has recently added a polarimetric

capability. The Digital Imaging and Remote Sensing Image Generation (DIRSIG)

software package was originally designed for spectral analysis of complex scenes, but

recently implemented the Shell Target model into its repertoire. The next section

describes the fundamentals of the DIRSIG software package.
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Figure 3.6: Example output image from the DIRSIG software. This image shows
the intensity of three glossy black objects being illuminated by the sun.

3.2 DIRSIG Simulation Software

The DIRSIG software is a synthetic image generation model developed by the

Digital Imaging and Remote Sensing Laboratory at the Rochester Institute of Technol-

ogy [30]. Thanks to the work of several graduate students, this software has recently

added a polarimetric imaging capability [14,26,31]. Detailed information on the inner

workings of this software can be found in the literature and will not be discussed here.

This section describes the simulations that were built using this software to verify the

MATLAB simulations and to solidify the tests explained in Chapter IV.

A set of simple objects with known geometry was the main target for these

simulations. A cube, a sphere, and a cylinder were given attributes of glossy black

paint. The camera location and orientation were then set as needed to capture angles

of interest. Figure 3.6 shows an example image produced from the software.
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The software outputs a set of Stokes images inW/cm2sr, so that Equations (2.24)

and (2.25) in Section 2.4 are all that are required to compute degree and angle of po-

larization images.

Atmospheric conditions were neglected in these simulations, due to the close

proximity of the camera to the objects of interest, the broad spectral band of the

camera and the interest in indoor environments. For images taken outdoors, this

could lead to differences between the simulation and reality. Polarization of the visible

spectrum from the atmosphere would be important to take into account for images

taken outdoors [13]. However, for the tests in Chapter IV, small distances between

the source, object and receiver mean there is little or no polarization imparted during

propagation.

In order to verify the MATLAB and DIRSIG simulation models and to perform

tests on more complex and realistic scenes, a physical polarimeter was built. The

next section describes the construction and calibration of a visible, digital single lens

refracting (dSLR) camera with a linear polarizer mounted to a rotation stage.

3.3 Physical Polarimeter

In order to validate the MATLAB and DIRSIG simulations and to determine

the usefulness of the algorithms in real world scenarios, a physical polarimeter was

designed and built. This important tool is instrumental in validating these simulations

as well as showing additional anomalies that can arise from real world scenarios and

complex conditions with multiple light sources and reflections.

3.3.1 Components . A Sony �330 dSLR was chosen as the backbone of

the physical polarimeter because of the range and controllability of its input settings.

Because of the large number of camera settings and the requirement for spectral

and spatial calibration for each setting, only a few complete settings were chosen for

this research. The most practical setting included an F-stop of 5.7, focus at infinity,

shutter speed of 1/30s, and ISO of 100. These settings were chosen because of the
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typical amount of light found in an indoor environment, the desire for minimization

of electrical noise between images and a long depth of focus.

The polarizer used in this system is a commercial off the shelf (COTS) item

from Newport Optics. The 20LP-VIS Precision Linear Polarizer is constructed by

laminating a polymer polarizing film between two fused silica windows with high-

efficiency broadband antireflection coating mounted in a 2-inch housing with a well-

labeled transmission axis.

In order to obtain images at different polarization orientations, the polarizer

is mounted in a COTS rotation stage from Newport. The RSP-2T Rotation Stage

features a retaining ring to secure the optic. The polarizer can be coarsely aligned

using the knurled edge of the rotating platform while fine adjustment is achieved with

a precision adjustment knob. Angular position is indicated on a 360∘ scale graduated

in 2∘ increments [1].

The full set of components was mounted using optical posts and post holders

fastened to an optical rail and attached to a sturdy tripod for portability. Figure 3.7

shows the full assembly.

Figure 3.7: Physical System Setup. A visible Sony CCD camera mounted behind
a linear polarizer in a rotation stage.
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3.3.2 Calibration . Two types of calibration are required for this system. A

radiometric calibration is done to change the digital counts given by the camera to

a measurement of radiance in order to use the Stokes equations from Chapter II. A

spatial calibration allows images to be rectified in order to use a pinhole model for

multiple view geometry techniques.

3.3.2.1 Radiometric Calibration. In order to calculate the Stokes

vectors and subsequently the degree and angle of polarization, the measurements

must be in the form of a radiance measurement. The Sony camera used for this

polarimeter outputs 8-bit unsigned integer, digital count data. In order to convert

these digital counts to radiance, a radiometric calibration must be performed.

To perform this calibration, the system was set up behind an integrating sphere

with radiometric output known in terms of W/cm2sr. The output of the integrating

sphere was adjusted to 10 different levels and images were taken at each camera setting

of interest. Figure 3.8 shows an image of the calibration setup.

There are many factors which can affect the digital output of the camera for a

given radiance. Therefore, all camera settings were manually set and the compression

techniques inherent in the digital system were included as part of the unknown system.

Figure 3.9 shows the full image chain described by the calibration done in this section.

A known radiance is input into the system in front of the polarizer, and digital counts

are measured after processing.

In order to determine the radiance from a future image, a function is fit which

corresponds the input and output of the system. Figure 3.10 shows the response of

the camera as a function of shutter speed.

This figure shows that the response for this image chain is not a simple linear

gain and offset, and that a more complex curve must be fit to the function. The log

scale shown in Equation (3.1) was used for this purpose. This equation shows how

the output from the camera in digital counts, D, is converted to radiance, R. The
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Figure 3.8: Spectral Calibration Setup. The camera system is placed behind an
integrating sphere. Images are then taken at multiple settings.

Di it lLi ht Digital

Counts

Light

Radiance

Lens

Optics
Electronics

Compression

Techniques
Polarizer

Figure 3.9: Physical Image Chain. Individual components are not calibrated in this
paper. Instead the system is treated as a whole and a single calibration is done for
one set of camera settings.
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Figure 3.10: Camera Responses for given camera settings. These are the non-linear
responses of the camera versus input radiance for different shutter speeds.

free parameters a and b are fit to each pixel for each camera setting to account for

any differences due to camera parameters or compression techniques.

R = 10aD+b (3.1)

Each pixel of the camera has a slightly different response to radiance as it is

processed through the image chain. Therefore, each pixel has its own calibration curve

fit to it. Figure 3.11 shows the camera response for a subset of pixels with radiance

fit equations overlaid on them. This figure shows a reasonable fit between the camera

response and the log scale equation.

A concern over polarization imparted due to camera optics and camera noise was

quickly laid to rest. Results of the radiometric calibration show that there is minimal

additional polarization imparted by the camera. By finding the degree of polarization

for a scene known to be completely unpolarized, the polarization imparted by the

camera optics and noise can be determined. Figure 3.12 shows a DoLP image of
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Figure 3.11: Typical camera response and corresponding calibration equation.
These calibrations are found using MATLAB’s polyfit function.

the integrating sphere for one camera setting. There is a slight radial pattern in the

image, however, the degree of polarization only ranges from 0− 0.1%.

3.3.2.2 Spatial Calibration. The methods described in Chapter II for

non-polarimetric shape recovery require a pin-hole camera model. Image distortion,

due to optics, is removed through a spatial calibration. A calibration software package

developed at CalTech was used for the spatial calibration and the results of that

calibration are presented here.

Information on the CalTech calibration software can be found in [6]. The soft-

ware requires a user to take images of a flat, checkered calibration board at a number

of relative orientations. An image of the calibration board can be found in Figure 3.13.

The software allows a user to input any number of images. It will then ask the user

to find the four corners of the checkerboard pattern. A corner detection algorithm

is performed by the software to find the corners within the user-defined square. Dif-

ferences in the actual corners and the interpolation from the extreme corners relate
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Figure 3.12: Degree of polarization measurement of the integrating sphere. This
figure shows that there is minimal polarization imparted from the optics, electronics
and compression from the imaging system. The degree of polarization in this image
ranges from 0− 0.1%

Figure 3.13: Camera Calibration Board. Imaging this board from multiple views
allows the Caltech Calibration software to determine intrinsic camera parameters that
can be used to remove image distortion.
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directly to the distortion parameters of the lens. The software calculates the best set

of distortion parameters which fit all given images and outputs a best estimate of the

camera parameters and the errors associated with these estimates.

The CalTech software outputs four main intrinsic parameters for the camera.

The focal length is given, in terms of pixel size, for the x and y direction. The principal

point defines the center of the focal plane given in pixel number. The skew defines

the angle between the x and y orientations of the focal plane. A skew of 0 relates to a

90∘ angle between these axes. The distortion parameters are a set of five coefficients

used to define the radial and tangential distortion.

A calibration is only good for a particular set of lens parameters. The zoom, fo-

cus, and aperture all affect these characteristics and must be noted carefully. In order

to determine any distortion effects imparted by the linear polarizer, a calibration was

done using the same set of camera locations at each of the four polarizer orientations.

Results of these calibrations can be found in Table 3.1. These results show that there

are no differences in distortion as a function of the angle of the linear polarizer. This

means that a single spatial calibration can be used for all four orientation images as

well as the degree and angle of polarization images.

3.3.3 Processing and Products . The image processing chain is accomplished

through a spectral calibration, computation of the Stokes images and calculation of the

degree and angle of polarization. Once the radiometric calibration is done for a par-

ticular set of camera parameters, images of calibration coefficients are stored. These

images are then processed through the radiometric calibration using Equation (3.1).

The calculation of the Stokes images are done by incorporating the relationships of

the 0, 45, 90 and 135∘ orientation images found in Section 2.4.2. Finally, the de-

gree and angle of polarization images can be found from the Stokes images by use of

Equations (2.24) and (2.25). Examples of these products are found in Figure 3.14.

In general, these images work for computer based algorithms. However, they

are sometimes difficult for a human to interpret. In order to advance human un-
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Table 3.1: Spatial Calibration Results. These parameters show that here is little
difference in the spatial calibration due to the angle of the linear polarizer. This
allows for a single calibration to be used for each image.

Orientation Focal Length

(

x
y

)

Principal Point

(

x
y

)

Distortion

0∘ 1154.20± 1.83 386.91± 2.39 −0.11372± 0.00831
1156.66± 1.73 256.57± 2.69 0.08415± 0.07144

−0.00135± 0.00052
0.00035± 0.00048
0.00000± 0.00000

45∘ 1155.14± 1.83 386.52± 2.39 −0.11230± 0.00830
1157.48± 1.72 255.30± 2.69 0.08152± 0.07152

−0.00135± 0.00053
0.00038± 0.00048
0.00000± 0.00000

90∘ 1154.81± 1.81 385.16± 2.36 −0.11280± 0.00818
1157.13± 1.70 255.06± 2.65 0.07480± 0.07045

−0.00143± 0.00052
0.00013± 0.00047
0.00000± 0.00000

135∘ 1154.87± 1.81 385.22± 2.36 −0.11415± 0.00818
1157.22± 1.70 254.12± 2.65 0.08920± 0.07047

−0.00169± 0.00052
0.00019± 0.00047
0.00000± 0.00000
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(a) Intensity (b) Degree of Polarization

(c) Angle of Polarization

Figure 3.14: Polarization Products Examples. These images show the intensity,
degree and angle of polarization for a glossy black painted sphere on a wooden table
in a well lit room. The degree of polarization increases towards the edges of the sphere
and the angle of polarization changes gradually around the sphere from 0∘ to 180∘,
both as expected.
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Figure 3.15: Hue, Intensity, Saturation Pseudo-color representation of the black
ball shown in Figure 3.15.

derstanding in a single image a pseudo-color interpretation was developed [5]. This

image uses a hue, intensity, saturation color map to produce an image, which shows

the intensity, degree and angle of polarization in a single image. The hue of the im-

age is related to the angle of polarization. The intensity is simply the Stokes S0, or

intensity image. The saturation is related to the degree of polarization. Therefore,

images with a deeper color convey a higher degree of polarization.

Figure 3.15 shows an example of this color product applied to the glossy black

ball shown in Figure 3.14. This image shows the same increase in degree of polarization

toward the edges of the sphere and continuous rotation of the angle of polarization.

In order to show color overlaid on the black sphere, the intensity image has been

reversed so that dark objects show up lighter and lighter objects look darker.

The tools presented in this chapter describe the foundational tools needed for an

efficient research effort. Simulations provide an easy medium to test algorithms, while

the physical system allows for more complex environments and anomalies not covered

in simulation. The next chapter describes the tests performed with these tools. It
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shows how the ultimate goal of attitude estimation is achieved through understanding

of multiple steps and simpler problems.

62



IV. Methodology of Tests

An iterative approach is taken to reach the goal of using polarimetric measure-

ments to achieve attitude estimation. The first set of tests are performed to

determine how well Shell model surface parameters can be estimated given limited

information about the test subject (Section 4.1). It was determined that without a

complete set of surface parameters, the only useful surfaces for simple reconstruction

and navigation would be flat surfaces. An algorithm is developed to find flat surfaces

in an image (Section 4.2). A set of constraining assumptions is used to simplify the

Shell model and determine surface orientation (Section 4.3). Finally, assumptions are

made about an indoor environment which allowed for camera orientation to be esti-

mated (Section 4.4). Each previous test proves useful in providing vital information

for the next test. This Chapter describes the methodology used for each of these

tests. Results for each test will be discussed in Chapter V.

4.1 Estimation of Intrinsic Surface Parameters

In order to perform the ultimate goal of estimating receiver geometry, some

information must be known about the intrinsic surface parameters. A set of MATLAB

GUIs were developed to test the limits of estimation of the surface parameters, and to

determine how much must be known about a situation prior to estimating the surface

geometry.

The simulations started slowly, with a GUI developed to determine estima-

tion of a single surface parameter given knowledge of the other parameters and the

camera-surface-source geometry. More GUIs were built in succession to try to esti-

mate multiple parameters, to use multiple measurements in the estimation, and to

try a multiple hypothesis testing algorithm.

The estimation algorithm used for these tests is presented in Section 4.1.1. Each

MATLAB GUI used for parameter estimation is described in detail in Section 4.1.2,

and results of these tests can be found in Chapter V Section 5.1.
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4.1.1 Algorithm . Surface parameters are estimated through the Levenburg-

Marquardt method [22]. In simple terms, the Levernburg-Marquardt algorithm is a

non-linear minimization algorithm. The algorithm used here determines a Jacobian

numerically. It then uses this information to determine a state change which most

efficiently converges to a minimum.

This algorithm is used to reduce the error in measurements between actual

and estimated values for surface parameters or geometry. Given a set of ’known’

parameters, an initial guess at the parameters of estimation can be processed through

the non-linear set of equations in the Shell target model. The output of these equations

is subtracted from the given measurement, or the measurement determined from the

actual parameter set. The difference in measurements, known as the residual, is the

parameter to be minimized by the Levenburgh-Marquardt algorithm.

Figure 4.1 shows the error in the degree of polarization measurement as a func-

tion of error in estimation of the real part of the index of refraction, n. A linearization

is shown at the starting estimate for the index of refraction and illustrates how the

algorithm eventually converges to a minimum in the measurement error.

4.1.2 MATLAB GUIs . Three distinct GUIs were developed to determine

the limits of estimation of intrinsic surface parameters. The first GUI shows how

errors in a single parameter relate to errors in individual measurements given the

rest of the parameters and the surface geometry are known (Section 4.1.2.1). The

same GUI allows a user to show the final error in estimation as a function of the

actual parameter and the starting estimate. The second GUI allows a user to choose

the set of known and unknown parameters in order to estimate multiple parameters

(Section 4.1.2.2). The final GUI uses the concept of multiple hypothesis testing to

determine a best fit set of parameters and therefore a best material, given actual and

estimated conditions (Section 4.1.2.3).
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Figure 4.1: Illustration of the Levenburgh-Marquardt Algorithm. The linearization
and residual determine which way and how far to propagate the estimation. This is
done iteratively until the algorithm finds a local minimum.
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4.1.2.1 Single Parameter Estimation . There are eight parameters in

the Shell Target Model that are used to represent the surface parameters. These pa-

rameters were described in detail in Chapter II, Section 2.5. This GUI was developed

to determine how estimation of a single parameter is affected by other parameters.

It also gives a user a better understanding of how each parameter affects the inten-

sity, degree of polarization and angle of polarization. The GUI shown in Figure 4.2

also allows a user to determine the errors between measurements using actual surface

parameters and estimated surface parameters.

This GUI can be used to determine constraints that can be used to better

estimate a given parameter. Using an estimation technique to iteratively determine a

final solution of a surface parameter given an initial estimate relies on a surface plot

like the one shown in Figure 4.2. Valleys in this plot are where an estimate would

eventually converge. Starting with an estimate on the wrong side of a peak in this

image would lead to a wrong final estimation.

A non-linear least squares algorithm such as Levenburg-Marquardt can be used

to try to estimate all or some of these parameters. However, these techniques require a

relatively ’close’ starting estimate. An option within this GUI was used to determine

how far off a starting estimate for a single parameter could be and still converge to

the correct solution. This option, shown in Figure 4.3, allows the user to set the

geometry and each of the ’known’ surface parameters. It then varies a single surface

parameter and a starting estimate for that parameter and outputs a graph displaying

the error in the final estimate. The limit of starting estimates can easily be seen.

4.1.2.2 Multiple Parameter Estimation . Once a user has an under-

standing of how a single parameter can affect the measurements, the GUI shown in

Figure 4.4 can be used to determine the extent to which multiple parameters may be

estimated. It also allows for a user to determine observability of parameters under

certain conditions and allows for determination of a viable set of constraints in order
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Figure 4.2: MATLAB GUI to give a user a feel for how parameters affect the intensity, degree and angle of polarization
measurements. This GUI also allows a user to determine viable constraints for estimation.
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Figure 4.3: Single Parameter Estimation GUI esample. This GUI shows a user the extent of starting estimates that
converge to a true value for a given parameter.
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to estimate the desired parameters. The estimation algorithm used for the GUI is the

same as estimating parameters in Section 4.1.

This GUI allows a user to define an actual set of surface parameters and ge-

ometry and an estimate of ’known’ and unknown parameters. It allows the user to

choose the parameters to estimate and even allows for multiple measurements at user

defined geometries. Using this GUI, it is easy to determine which parameters are

most important in the estimation of other parameters or geometry. This allows a user

to determine constraints that can be placed on Shell parameters such as the material

makeup, smoothness, reflectance or shadowing of a surface.

4.1.2.3 Multiple Hypothesis Testing Method . The ultimate goal of this

thesis is to determine camera orientation using what little is known about the scene.

It was shown using the GUI from Section 4.1.2.2 that the best results for geometry

estimation are given when a full set of surface parameters are known. Given that a

limited number of known materials can be found in an indoor environment, a multiple

hypothesis test can be performed to determine a full set of surface parameters.

The GUI developed in this section, shown in Figure 4.5, allows a user to define

actual surface parameter values and a ’known’ geometry. It will then calculate er-

rors in actual and estimated measurements and chose the material that best fits the

measurements.

Even given a full set of Shell target parameters, the above GUIs show that there

is some error in geometry estimation for certain orientation and lighting conditions.

In order to simplify the estimation of orientation of a surface, only large flat surfaces

were considered. The next section describes the techniques and tests done to identify

flat surface in an image.

4.2 Determining if a Surface is Flat

It was shown in Chapter II Section 2.3 that there are already techniques to

determine relative orientation of sequential images and surface geometries if a surface
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Figure 4.4: MATLAB GUI to Estimate Multiple Parameters. This GUI is used to estimate a user defined set of parameters
given knowledge of the set of known parameters. This GUI allows a user to determine observability of parameters and limits
of viable constraints in order to create better estimation techniques.
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Figure 4.5: Multiple Hypothesis GUI Example. This GUI allows a user to input actual parameters and geometry for a
surface. It will calculate the expected measurement for a given set of targets known to be in the scene and return the target
material that most closely fits the given measurement.
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can be identified as flat. It is also easier to determine surface orientation using these

large flat structures, and they happen to be prevalent in man-made environments.

The goal of this section is to determine which parts of an image contains large flat

structures.

Two methods of determining flat surfaces were employed. The first uses a

windowing technique in which windows with a standard deviation for degree and

angle of polarization below a set threshold are considered to be flat. The second

method uses a gradient of the degree and angle of polarization images. Any pixel

with a combined weighted gradient below a given threshold is considered to be flat.

Pixels are then binned by angle of polarization and grouped by connected components.

With the windowing method, for illustration, arrows are placed at the center

of windows that are determined to be flat. The orientation of the window points in

the direction of the surface normal, projected into the focal plane. The orientation

is given by the angle of polarization, and the length is proportional to the degree of

polarization.

This method was tested with the physical polarimeter on two glossy black ob-

jects, a flat, painted plate and a painted ball. As a demonstration, a point was

manually selected on each image and surface flatness was determined. Figure 4.6

shows the points chosen on each surface. The flat plate shows an arrow in the direc-

tion of the surface normal because it was determined to be flat. The ball only shows

an outline of the window, without an arrow, because it was determined to be curved.

These tests were then expanded to a more complex indoor environment. Fig-

ure 4.7 shows an image of hallway that was used with the windowing algorithm. It

can be seen immediately that not all surfaces that are flat are determined to be flat.

The hallway does not present a complete set of specular geometries. However, for

areas with specular reflections, it does find flat surfaces. It also does not present any

false positives. That is, it does not determine that any location is flat if it is in fact

curved.
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Figure 4.6: Glossy Black Ball and Plate in Flatness Test. These images show how
the windowing test performed against a ball and a flat plate. The red box on the ball
shows that it was determined to be not flat, while the arrow on the flat plate shows
that it was determined to be flat with a surface normal in the direction of the arrow.

The second method of determining if a surface is flat, the gradient test, is

generally easier for a human to interpret. Figure 4.8 shows the same hallway having

gone through the gradient flatness algorithm. Regions of connected flat components

with similar angles of polarization are grouped and colored. Arrows are placed at the

center of these groups and point towards the surface normal of the group.

The grouped flatness test tended to be more reasonable for use in determining

surface or camera orientation. The smaller number of flat areas and larger number of

pixels per area mean that there are fewer and less noisy measurements.

4.3 Estimation of Surface Orientation

The goal of the following tests is to explore the limits of estimation of pitch

and tilt angle. These limits along with the assumptions presented in Section 4.4
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Figure 4.7: Typical hallway results for the standard deviation of a sliding window
test. The arrows show the places that were determined to be locally flat and are
pointed in the direction of the surface normal. Arrows in the image may be pointing
in a direction opposite to the surface normal due to the ambiguity of the angle of
polarization.

Figure 4.8: Typical hallway results for the gradient of degree and angle of polariza-
tion threshold. Connected components with similar angle of polarization are grouped.
The arrows are at placed at the center of the groups and points towards the center
of the groups surface normal. Arrows in the image may be pointing in a direction
opposite to the surface normal due to the ambiguity of the angle of polarization.
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will ultimately be used to determine camera orientation and the uncertainty in the

estimation of that orientation.

Numerous tests were performed using all of the tools described in Chapter III.

The MATLAB GUIs created for these tests are described in Section 4.3.2.1. These

GUIs are verified using DIRSIG simulation software in Section 4.3.2.3. Finally, the

physical polarimeter was used to determine any inconsistencies between simulation

and reality (Section 4.3.2.4).

The preferred method of representing surface orientation up to this point was

by surface gradient in the x and y directions of the camera frame of reference. This

allowed a single global frame of reference for the surface, source and multiple cameras.

However, for a single view with specular geometry, it is easier to describe the relative

orientation between the surface and source in terms of a pitch and tilt angle. Instead of

estimating the surface gradient in the camera Cartesian coordinates, as in Section 4.1,

it is beneficial to think of the surface geometry in terms of pitch angle, or the angle

between the focal plane of the camera and the surface normal, and tilt angle, or the

angle between the zero degree angle of polarization and the surface normal. The angle

of polarization describes the angle of the in-plane polarization state, and is therefore

directly related to the surface tilt. Estimation of the surface pitch is more complicated

and is the main contribution of this section.

Two algorithms are presented in Section 4.3.1 to describe the estimation of pitch

angle. An algorithm to be used if a full set of Shell parameters are available, and a

simplified method if the full set of parameters are unknown but the surface is known

to fall within a set of constraints generally found in indoor environments. These

algorithms are then tested using each of the tools presented in Chapter II.

4.3.1 Algorithm for Model Simplification . If a full set of Shell target param-

eters are known and a specular geometry exists, the Levenburg-Marquardt estimation

techniques from Section 4.1 were shown to provide good results in the estimation

of pitch angle. The equation used to predict degree of polarization, used in the
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Levenburg-Marquardt algorithm, was changed to allow an input of pitch angle, as

opposed to surface gradient and source and receiver pointing angles, as in Section 4.1.

This algorithm only works if a source is considered to be in a specular direction.

This is a reasonable assumption considering that for very smooth or glossy materials

the vast majority of polarization is only presented in a specular direction and off-

specular geometry will normally yield little polarimetric information. Given that

there is a light source in the specular direction, the source-surface-camera geometry

is such that �i = �r = � and Δ� = 180∘, and all other geometric parameters can be

neglected.

It was shown using the GUI in Section 4.1 that if a full set of Shell parameters

are not known well, that errors in guessing these parameters will quickly lead to errors

in estimation of geometry. If the full set of Shell Target model surface parameters are

unknown, but the surface is known to be composed of a smooth dielectric, the Shell

model can be reduced back to the Fresnel Reflectance Model and assumptions can be

made about the complex index of refraction.

If the material is smooth relative to the wavelength of light used, the surface

roughness and shadowing parameters of the Shell model can be reasonably neglected

and the polarization component of the Shell Target model can be simplified back to the

Fresnel Reflectance equations. This reduces the parameters required to describe the

degree of polarization to only three, the angle of reflection, �, and the two components

of the complex index of refraction, n+ ik. If a dielectric surface can be assumed, the

values of n and k can be constrained to n ≈ 1.5 and k ≈ 0.

Given these assumptions, the Fresnel reflectance equations, shown in Equa-

tions (2.27) - (2.28), reduce to

rs =

√

(A− cos(�))2 +B2

(A+ cos(�))2 + B2
(4.1)
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rp =

√

�s
(A− sin(�) tan(�))2 + B2

(A+ sin(�) tan(�))2 + B2
(4.2)

where A, B, C and D are functions of the complex index of refraction and are given

by

A =
√

(C +D)/2

B =
√

(C −D)/2

C =
√
4n2k2 +D2 (4.3)

D = n2 − k2 − sin(�)2

The Mueller matrix, which describes how the Stokes vector changes through a reflec-

tion is then reduced to

M =

⎡

⎢

⎢

⎢

⎣

r2s+r2p
2

r2s−r2p
2

0
r2s−r2p

2

r2s+r2p
2

0

0 0 rsrp

⎤

⎥

⎥

⎥

⎦

(4.4)

4.3.2 Tests . Each of the tools described in Chapter II was used in the testing

of this algorithm. Several MATLAB GUIs were developed to quickly determine how

well the estimation of � could be performed. These GUIs were validated using a

DIRSIG simulation and then the physical polarimeter was used to determine if there

were any differences between the simulation and reality.

4.3.2.1 MATLAB GUIs . Two sets of GUIs were designed and built

to show how estimation of � angle changes as a function of model parameters. The

first GUI was developed to compare differences between DoLP for a material with an

actual set of Shell Target parameters and an estimate of these parameters. Figure 4.9

shows a representation of this GUI.
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Figure 4.9: MATLAB GUI to Estimate � Using a Set of Actual and Estimated
Shell Parameters. This GUI allows a user to input a set of actual and ’known’ shell
parameters and determine how error in estimation of the actual parameters related
to error in estimation of �.

If a full set of Shell parameters are not known, but if the assumptions of a

specular geometry and a smooth specular surface are upheld, there are still two surface

factors that are not generally precisely known. The complex index of refraction of a

surface contains the only two factors left unknown before estimating �.

The MATLAB GUI shown in Figure 4.10 shows a simulation design that allows

a user to input Shell Target parameters and geometry for a surface and starting

estimations for the complex index of refraction of the surface and the angle of reflection

off the surface. The figure within the GUI shows the actual degree of polarization as

a function of �r and the estimated degree of polarization as a function of � using the

Fresnel Reflectance Equations.

This application allows the user to input actual and estimated values for the

complex index of refraction. The user can then visualize the differences in DoLP

as a function of �. It can also be seen that the initial guess for � is an important

factor in this estimation. Choosing a � on the wrong side of the angle of maximum

polarization, Brewster’s angle, will yield an incorrect final result.
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Figure 4.10: GUI to Show Estimation of �. This GUI estimates � angles given the
actual Shell Target Model parameters and geometry and estimates of the complex
index of refraction.

When the assumptions in Section 4.3.1 are violated, errors will result in the

estimation of the surface normal. Two more GUIs were created to determine the

extent of errors in the estimation of � given either an estimate of the full set of Shell

Target parameters or a set of Fresnel parameters and an uncertainty in the actual set

of Shell parameters.

4.3.2.2 Envelope of Errors in Estimation of Beta . Given an uncer-

tainty in the actual Shell target parameters, there is some uncertainty in the error

of the estimation of �. These uncertainties in error will eventually be used to de-

termine measurement error strength when using � to estimate camera orientation in

Section 4.4.

The GUIs shown in Figures 4.11 and 4.12 allow a user to define an actual set

of Shell surface parameters and surface geometry. The GUI in Figure 4.11 will then

vary the actual Shell target parameters and estimate a � angle using the simplified

Fresnel method. It does this for 500 trials at each 1∘ interval of � and plots the mean

and standard deviation of error in the estimate.
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Figure 4.11: Envelope of the Estimation of � Angle Given Fresnel Model. This
GUI is used to estimate the mean and standard deviation of errors in the estimate
of � given the Fresnel estimation method. The center line represents the mean of
the error in � estimation, while the surrounding lines represent the mean plus a 1�
standard deviation.
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Figure 4.12: Envelope of the Estimation of � Given the Shell Model. This GUI
estimates � angles given an estimate of the full set of Shell parameters. The center
line represents the mean of the error in � estimation, while the surrounding lines
represent the mean plus a 1� standard deviation.

The GUI in Figure 4.12 gives the user the same input controls and assumes

that the estimates for the Shell parameters are close to the actual parameters. It will

vary the actual parameters and estimate � angle using the full Shell target model

estimation technique. It then creates a plot of mean and standard deviation of error

in these estimates, similar to the previous GUI.

A set of simulations and physical experiments were performed to prove the

results found in Section 4.3.2.1. The simulation was performed in DIRSIG using a

set of glossy black objects and positioning the camera and sun at various Δ� and �

angles. An explanation of the DIRSIG implementation is presented in Section 4.3.2.3.

An explanation of the experiments performed with the physical polarimeter are shown

in Section 4.3.2.4.

4.3.2.3 DIRSIG Simulation . The simulations for this experiment

show a set of three glossy black objects: a cube, a cylinder and a sphere. The
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Figure 4.13: DoLP vs � for the DIRSIG Simulation of Fresnel and Shell Models.
The DIRSIG simulation results show more agreement with the Fresnel model than
with the Shell model with perfect geometry.

geometry of the system is set up at seven different � angles between 20 − 80∘. The

source and camera are positioned at a specular orientation relative to the tops of the

cube and cylinder.

For each of these images, the average DoLP of the top of the cube was taken and

plotted versus the � angle. Figure 4.13 shows this plot along with the plots from the

Fresnel and Shell estimates for a perfect geometry. It can be seen that the DIRSIG

estimation, which does not have perfect geometry, still falls between the two models.

Three-dimensional surface normals were then found at user-defined positions.

The surface normal can be found in the camera reference frame by using the angle

of polarization to get the x and y vector components, and the estimation of � to get

the z component. Figure 4.14 shows a representation of the surface normal on top

of the cube. Since camera location and orientation are known perfectly in DIRSIG,

a transformation of the surface normal can be done to get the normal in the local
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Figure 4.14: DIRSIG DoLP Image of Glossy Black Objects. Surface Normal is
given at a point chosen by the user.

navigation frame. The geometry of the surface in the local navigation frame is also

known to be perfectly up and as such can be directly compared to the estimate.

Results for the DIRSIG simulations can be found in Section 5.2. In the next

section, the linear polarimeter is tested against the simulations presented in this

section.

4.3.2.4 Physical System Tests . The physical system test consisted of

placing a glossy black painted plate on a turntable and rotating it through a series

of � angles. Images were taken at nine angles between 10 − 80∘. The � angles used

for this test are given to within ±2∘. Although the room was well lit, a lamp was

used as the primary source and was placed at a specular orientation from the camera.

Average degree and angle of polarization values were determined for the specularly

reflected section of the plate and plotted against the � angle. Figure 4.15 shows this

plot along with the plots of the Fresnel and Shell models. This curve shows similar

results to the DIRSIG simulation. It can be seen that the model fits well but that

there appears to be a phase offset. This is likely due to misalignment of the linear

polarizer in the rotation stage.
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Figure 4.15: DoLP vs � for the Fresnel Assumptions, Shell Target Model and
Physical Measurements.

Figures 4.16 and 4.17 show typical angle and degree of polarization images for

the physical system test. It is easy to see the importance of geometry in these images.

The degree of polarization tends to fall off fast for non-specular angles.

Figure 4.18 shows a histogram of the DoLP along the vertical line in Figure 4.17.

It can be seen that around pixel 300 the line is still on the black plate, but the degree

of polarization starts to fall off as the specular geometry assumption is violated.

The same surface normal algorithm used in the DIRSIG simulation was tested

with the physical system also. User defined points in the image and a � angle is

estimated and surface normal computed in the frame of reference of the camera.

Figure 4.19 shows an example of this surface normal on the glossy black plate.

A comparison of � angles was completed for each image in the simulation and

physical system tests. Results of each of these tests are presented in the Section 5.2.

The surface normal of an object relative to the camera reference frame was

determined using the method in Section 4.3.1 and was proven in the test described in
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Figure 4.16: Example of an Angle of Polarization Image from the Physical System
Setup.

Figure 4.17: Example of DoLP Image from the Physical System Setup.
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DoLP along a vertical line in the image

Vertical pixel location

Figure 4.18: Histogram of DoLP for the Line in Figure 4.17. The non specular
falloff can be seen around the center of the image.

Figure 4.19: Example of a Surface Normal Estimation Given a Point Chosen by
the User.
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Section 4.3.2. This is simply a relative orientation between the camera and surface.

Therefore, if the orientation of the surface is known relative to a local navigation

frame. The orientation of the camera can be found with respect to the navigation

frame. Figure 4.20 shows an illustration of this relationship.

X!Axis

Z!Axis

n

 

!

Y!Axis

(a) Surface Orientation in Camera Frame

CameraCamera

Roll Angle

Z!Axis

Y!Axis

Camera

Pitch Angle

X!Axis

(b) Camera Orientation in Local Navigation
Frame

Figure 4.20: Estimation of Surface and Camera Orientation. These images show
how the estimation of pitch and tilt angles can be used to estimate the surface orien-
tation in terms of the camera reference frame or the camera orientation with reference
to a local navigation frame if the orientation of the surface is known relative to the
navigation frame.
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4.4 Estimation of Camera Orientation

In the last section, the receiver was assumed to contain the reference coordi-

nate system. In this section, the reference coordinate system will be given in terms

of the surface and the camera orientation will be estimated relative to that surface.

Man-made surfaces tend to be constructed according to the Manhattan World Con-

straint [8]. By aligning the axes of the local navigation frame with the corridor of

a hallway or room, many large flat surfaces tend to be found with surface normals

pointing in cardinal directions. Using these assumptions about surfaces in the scene

allows predictions to be made of the measurements of � and �. Differences between

these predictions and the measurements can then be used to update an initial estimate

of the orientation of the camera.

The Unscented Kalman Filter approach found in Chapter II Section 2.7 is em-

ployed in this section to improve the estimate of the camera orientation. It determines

which direction a surface faces and uses the measurements of � and � to decrease the

uncertainty in estimation of the DCM between the local navigation frame and the

camera frame.

4.4.1 Algorithm . The algorithm used in this section is a build up of al-

gorithms used in all sections leading up to this. This algorithm requires a series of

steps to be performed in order. This section describes the steps taken to perform a

measurement update to estimate the camera orientation given only an image, taken

in a well-lit environment, with a known material or smooth dielectric, having flat

surfaces facing cardinal directions.

The UKF algorithm, described in Section 2.7, requires that the orientation of the

camera be known with some uncertainty prior to incorporating the measurements. In

order to get an initial estimate of the DCM for use in the UKF, the true measurements

of the DCM are corrupted by random angle errors.

The flat surface grouping algorithm presented in Section 4.2 was used to find

each side of the cube. The mean degree and angle of polarization of each side of
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the cube were used to estimate candidates for � and � angles. Recall that there are

ambiguities in each of these angles and that there are two methods of determining �

angle.

The candidates for surface normal orientation, � and � are analyzed using the

current estimate of the camera orientation. Predictions are made for what the surface

normal vector in the camera frame would look like given these estimates and the

estimates of the Shell parameters or estimates from the Fresnel model. A dot product

is taken between the prediction and the measurements with the smallest dot product

within a threshold revealing the most accurate surface normal orientation along with

the correct � and � angles.

Two models must be built in order to use the Unscented Kalman Filter approach,

a measurement model, and a measurement uncertainty model. Sections 4.4.1.1 and 4.4.1.2

describe the models used for the measurement update portion of this UKF.

4.4.1.1 Measurement Model . The measurement model specifies the

functional relationship between the true state vector and the observation. Given

an a-priori state estimate, the measurement model can be used to predict the mea-

surement realization. The predictions from this model will be compared to the best

measurements of � and � as shown in Chapter II Section 2.7.

In order to get a prediction of � and � from the model, the orientation of the

surface and the initial estimate of the camera orientation must be known.

Equations (4.5) - (4.7) were used for this prediction. They show that the surface

normal in the navigation frame, xn, is rotated through the DCM of the estimate from

the camera orientation, Cb
n. This gives the surface normal vector in the camera frame,

ab, in Cartesian coordinates. It was shown in Section 4.3 that the pitch and tilt angles

of the vector of the surface normal are simpley the altitude and azimuth angles of

the vector. A simple Cartesian-to-spherical coordinate transformation will yield the

predictions for the � and � angles.
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ab = Cb
nx

n (4.5)

� = arctan(

√

a2
1 + a2

2

a3

) (4.6)

� = arctan(
a1

a2

) (4.7)

In these equations, the elements of the vector a are given as a1, a2 and a3.

4.4.1.2 Uncertainty Model . The second piece that needs to be built

is the measurement uncertainty model. In Section 4.3.2, the algorithm for deter-

mining the relative pitch and tilt angles between the surface and camera are shown.

Uncertainties in these estimations are evaluated in Section 5.3.1.

Using these errors in estimation of � as starting estimates and tuning the

Kalman Filter to give uncertainties aligned with true errors, the measurement er-

ror used for � was a Gaussian random variable with zero mean and a 6∘ standard

deviation. These values represent the general uncertainty for a variety of materials,

found using the MATLAB GUI described in Section 4.3.2.2.

The uncertainty in � was determined through a transformation from uncertainty

in angle of each intensity measurement to uncertainty in �. This initial uncertainty

was then tuned with the UKF to determine a zero mean uncertainty with 2∘ standard

deviation.

Using these values for � and �, the uncertainty matrix, R, used in this UKF

was given as

R =

⎛

⎝

⎡

⎣

6 0

0 2

⎤

⎦

�

180

⎞

⎠

2

(4.8)
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4.4.2 Test Setup . Two tests were done to determine the effectiveness of the

UKF algorithm. The DIRSIG simulation software was used to determine feasibility

in a well-controlled environment. This test is discussed in detail in Section 4.4.2.1.

Then, a test was done with the physical polarimeter in a real-world environment

(Section 4.4.2.2).

4.4.2.1 DIRSIG Test . In order to test the algorithm presented in

Section 4.4.1, a single cube was given attributes of glossy black paint and placed in the

center of the navigation frame with surface normals for each side of the cube pointing

in the cardinal directions of the navigation frame. This cube was then surrounded

with large flat surfaces with attributes of a totally reflective white paint in order to

conform to the assumption that there is a well-lit environment with a source in each

specular direction. A source was then placed in the positive z-direction, in an area

that would reflect off of each of the white walls. The camera was initially placed

in a position that would allow it to view three surfaces of the cube at even angles,

and was then moved around to determine effectiveness of the algorithm at different

orientations. Figure 4.21 shows the intensity, degree of polarization and angle of

polarization images from the first camera view.

Recall from Chapter III Section 3.2 that DIRSIG outputs a set of Stokes images.

These images were used to determine degree and angle of polarization using the

method shown in Chapter II Section 2.4. Once degree and angle of polarization

images were formed, the algorithm described in Section 4.4.1 can be used. Actual

camera orientation is given in the DIRSIG simulations and can be compared with the

estimations from the UKF.

4.4.2.2 Physical System Test . A similar test was performed with the

physical polarimeter. A glossy black cube was constructed using painted ceramic tiles.

This cube was placed in the center of a set of bright white poster board sections. The

source used was a desk lamp using a single, frosted 100-watt bulb and was placed

close to the camera in a position that allows for as much lighting on the cube and

91



(0;0;0)

(a) Intensity

(0;0;0)

(b) Degree of Polarization

set

Environment

specularspecular

(0;0;0)(0;0;0)

(c) Angle of Polarization

Figure 4.21: DIRSIG Initial Orientation Images for Camera Orientation Estimation
Test. These images show the intensity, degree and angle of polarization of the glossy
black cube placed in a white box with an illumination source placed above. The initial
orientation was set to give the camera the best view of three side of the cube in order
to test the best case scenario for the UKF.

white walls as possible. Images were then taken from five vantage points similar to

the DIRSIG vantage points. Figure 4.22 shows an image of the camera, source, cube,

and white walls.

Degree and angle of polarization images were computed using the method de-

scribed in Section 3.3. Figure 4.23 shows one example of the degree and angle of

polarization images from the physical system.

In order to determine actual camera orientation for this test, a Vicon motion

capture system was used [2]. The Vicon motion capture system works by using mul-

tiple cameras to track a fixed set of reflective targets. The targets are placed on an

object and an object model is created. This model location and orientation can then

be determined using similar methods to those described in Chapter II Section 2.3.

Figure 4.24 shows a section of the Vicon motion capture area and the camera with

reflective targets on it. To simplify the geometry of the truth comparison, the origin

of the Vicon reference frame was set to be at the center of the cube, with cardinal

directions pointing in the direction of the surface normals, just as in the DIRSIG

simulation.

92



Figure 4.22: Camera orientation test setup in the Vicon lab. This image shows the
camera, the light source, reflection panels and the glossy black cube test subject.

Each of the algorithms and tests done in this chapter was used to build on top

of the previous tests in order to culminate in a set of models and measurements that

were able to be used in a Kalman Filter in order to determine camera orientation. The

constraints on the algorithm depend on the amount of information known about the

scene. If a full set of Shell parameters are known, the only constraints are a well-lit

environment with sources given in specular directions. If a full set of Shell parameters

are not known, the constraints of a smooth dielectric material must also be upheld.

Results for each of the above tests and an examination of errors that arise when these

assumptions are violated are presented in the next chapter.
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(a) Degree of Polarization (b) Angle of Polarization

Figure 4.23: Glossy Black Cube Images taken with the Physical System. These
images show the degree of polarization and angle of polarization of the glossy black
painted cube, imaged by the physical polarimeter, used in the camera orientation test.
These images look similar to the DIRSIG images show in in Figure 4.21 .

Figure 4.24: Camera Orientation Setup In Vicon Lab. This image shows another
view of the test setup. The reflective Vicon targets, placed on the camera, were used
to determine actual camera orientation.
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V. Test Results

There were several tests presented in Chapter IV, each with significant results

presented in this chapter. Section 5.1 explores the limits of estimation of each

surface parameter and relative geometry by showing the effect that each parameter

has on the available measurements of intensity, degree of polarization, and angle of

polarization. It also presents the results of attempts to estimate multiple parame-

ters and explores the usefulness of each measurement by presenting the Jacobian and

initial state change vector at a few key points. Section 5.2 then shows the results

of estimating the surface geometry. Section 5.2 focuses on the limits of the Fresnel

simplification algorithm presented in Section 4.3 but also shows an improvement in

estimation of pitch angle if the full set of Shell parameters are known. Finally, Sec-

tion 5.3 shows the results of the Unscented Kalman Filter implementation presented

in Section 2.7.

5.1 Parameter Estimation Results

The set of Shell target model parameters is fit using a large set of measure-

ments [31]. However, using these tools, it was determined that the estimation of a full

set of parameters could only be done with a reasonable set of locations for navigation

purposes if a multiple hypothesis testing method was used. Even then, this is only

possible under specular geometry conditions. Given a full set of Shell target parame-

ters, the surface geometry can be estimated well. Two sets of results are presented in

this section. First, single parameters are analyzed individually to determine observ-

ability and envelopes of estimation. Then multiple parameter estimation results are

presented in Section 5.1.2.

5.1.1 Single Parameter Estimation Envelopes . The algorithms and GUIs

developed in Section 4.1 were first used to determine how well individual Shell pa-

rameters could be estimated. The results of this test show that the boundaries for

estimation of a single parameter depend on the involvement of the parameter in the

set of Shell target model measurement equations. This section describes the results of
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Figure 5.1: Error in Intensity as a Function of Actual and Estimated Surface Param-
eter. This illustration shows how the Levenburg-Marquardt algorithm will converge
into valleys in the error curve. For the intensity measurement in this scenario, there
are no incorrect valleys for the algorithm to converge into.

efforts to estimate single parameters with correct information about all other surface

and geometry parameters. These results are key in determining which parameters

can and can not be determined using a reasonable number of measurements.

The following figures show typical results for errors in the measurements as a

function of a single parameter and are meant to demonstrate the usefulness of that

measurement in the estimation of a single surface parameter. General limits of each

parameter’s starting estimates are presented in the following subsections.

Figure 5.1 shows that, using intensity as a measurement, there are no practical

limits to the starting estimate of the real part of the index of refraction, n. For each

individual slice of the actual parameter, there are no peaks or flat valleys in the graph

with would cause errors in the estimate. However, this graph is misleading in the fact

that the source is presented as a single point source at a precisely known location with

a precisely known initial Stokes vector. If the source location or source Stokes vector

is not known precisely, the estimates from the intensity alone are highly inaccurate.
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Figure 5.2: Error in Degree of Polarization Measurement as a Function of Actual
and Estimated Surface Parameter. For this example, a starting estimate less than
about 1.5 will cause the algorithm to converge into the wrong valley and give an
incorrect estimate of the parameter. For some areas, starting estimates that are too
far away will give initial change vectors that are too large. These large changes will
jump over the correct alley and converge to an incorrect solution.

Figure 5.2 shows the error in degree of polarization measurements as a function

of the same actual and estimated real part of the index of refraction. This graph

shows that there is a peak for each actual value at around n = 1.15. This means

that an initial estimate less than n = 1.15 will results in an incorrect estimate of the

parameter. Also, for low values of the actual parameter, there are large errors in the

measurement which can lead to an overshoot of the valley and will result in incorrect

estimates as well. This was confirmed with the multiple parameter estimation GUI.

For intrinsic surface parameters, Figure 5.3 shows that using the angle of polar-

ization measurements has no impact on the estimation. The lack of peaks and valleys

means that the non-linear regression techniques will not move the initial estimate at

all. This is intuitively obvious since the angle of polarization equations, shown in

Chapter II, rely only on the geometry of the surface.
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Figure 5.3: Error in AoP Measurement as a Function of Actual and Estimated Sur-
face Parameter. This figure shows that there is no effect on the angle of polarization
as a function of this estimated and actual parameter. This is intuitive, since angle of
polarization is simply a function of surface geometry.

Using this GUI and the multiple parameter estimation GUI, general limits for

starting estimates of each individual parameter are given in the following subsections.

Because of the possible uncertainty in source position or Stokes vector, the limits on

starting estimates given in the subsequent sections are dependent only on the degree

of polarization measurement.

5.1.1.1 Real and Complex Components of the Index of Refraction.

The components of the index of refraction, n and k, can be estimated individually

with an accuracy proportional to the actual value. That is, for a dielectric material

with n ≈ 1.5 or k ≈ 0, the starting estimate must be within 0.2 of the actual value

in order to converge to the correct solution, and that convergence will generally yield

an estimation within 0.01 of the actual solution. As these actual values grow (e.g.,

for a metallic surface), the requirement for a starting estimate is relaxed to a wider

range. However, the overall accuracy of the final estimation, though reasonable, is

not as accurate, generally presenting results within 0.1 of the actual value.
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5.1.1.2 Surface Roughness Parameters. The components of the sur-

face roughness parameters, B and �, were more difficult to estimate. The B and

� components did not demonstrate observability using only the degree of polariza-

tion measurements. As a double check, it was shown that both parameters are very

observable when the intensity measurement is taken into account.

5.1.1.3 Shading Parameters. The Shading parameters, Ω and � ,

showed no observability at relevant geometries. Since these parameters only make

contributions at very glancing angles, where the degree of polarization is already low,

their contribution to the measurement is low, and therefore, they are impossible to

estimate at relevant geometries.

5.1.1.4 Reflectance Parameters. Finally, the diffuse reflectance pa-

rameters, �D and �V , were generally the most difficult of the parameters to observe.

These parameters greatly affect the overall diffuse return. It was determined that

they were easier to estimate using brighter materials such as white paint, but that

the starting estimates must be close to the actual parameter value. For darker paints,

these parameters are very hard to estimate. However, common values for darker

painted materials are on the order of 10−6 or smaller.

A summary of the results of each individual parameter test is shown in Table 5.1.

It was determined that some parameters are not observable at relevant geometries,

while others could be easily estimated. Correct estimation, however, requires correct

knowledge of the other Shell parameters and the geometry of the system. In general,

this is not a realistic scenario and either the full set of parameters are known or none

of the them are known. The next section details the results of attempts to estimate

a full set of Shell parameters and relative geometry. It also demonstrates how much

must be known about a scenario in order to estimate unknown portions.

5.1.2 Multiple Parameter Estimation . It was determined using the multi-

ple parameter estimation GUI from Section 4.1.2.2 that only specular geometries are
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Table 5.1: Table of Single Parameter Estimation Results. This table summarizes
the results from the single parameter estimation tests.
Parameter Notes
Complex Index of Re-
fraction (n) and (k)

These can be estimated individually with a starting le-
niency and accuracy proportional to their actual value.
They are easiest to estimate with only the degree of po-
larization measurement.

Surface Roughness Pa-
rameters (B) and (�)

These parameters are more difficult to estimate with de-
gree of polarization alone. However, for most situations
there were very observable using both degree of polar-
ization and intensity measurements.

Shading Parameters (�)
and (Ω)

These parameters were not observable under any rele-
vant conditions or with any set of measurements. This
is due to the fact that they have the largest affect at
very glancing angles.

Reflectance Parameters
(�D) and (�V )

These parameters are best estimated using the intensity
measurement. There is some observability with the de-
gree of polarization measurements, due to the fact that
additional diffuse reflection will dampen the degree of
polarization. However, using only the degree of polar-
ization measurement requires a very close starting esti-
mate.
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useful in the estimation of surface parameters, only some of the parameters can be

estimated using relevant geometries, and that fewer unknown states or more measure-

ments generally led to closer estimates of the unknown states. This section describes

the parameter sets that are best estimated. It also shows the results of the multiple

hypothesis testing algorithm from Section 4.1.2.3 and its capability to capture a full

set of Stokes parameters given a limited number of materials to chose from and an

accurate geometry.

5.1.2.1 Interdependency of Parameters. As a whole, the interdepen-

dence of free-fit parameters presented a challenge when trying to estimate multiple

parameters simultaneously. The correlation between parameters and measurements

generally caused the Jacobian space to present a minimization vector in an incor-

rect direction in order to more quickly reduce the residual of the measurement. This

quickly led to an estimation which increased the error in a subset of the parameters.

Whereas, in the last section, if all other parameters were maintained constant close

to actual values, the estimate of the other parameter produced better overall results.

The multiple parameter estimation GUI was first used to estimate flat black

painted material parameters and surface geometry with starting estimates consistent

with a glossy black painted material and an accurate geometry. The sets of surface

parameters for each of these materials can be found in Appendix A.

Figure 5.4 shows the multiple parameter estimation GUI results for trying to

estimate flat black painted material parameters as well as surface geometry by starting

with state estimates for a glossy black painted material, which has close parameters,

and an accurate geometry. In order to understand how these errors come about,

Table 5.2 presents the starting measurement influence matrix from the Levenburgh-

Marquardt algorithm. This table shows how small changes in each of the parameters

affect each of the measurements at the initial estimate values. The errors may also

be understood by looking at Table 5.3, which shows the initial change in each state

determined by the Levenburgh-Marquardt algorithm.
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Table 5.2: Table of the Measurement Influence Matrix for intensity, degree of po-
larization and angle of polarization influence from Shell parameters near glossy black
paint with unknown geometry. This table demonstrates how small changes in each
parameter will affect each of the measurements.

Meas x-grad y-grad (n) (k) (B)
Intensity low low high high high
DoLP none none low med none
AoP none none none none none
Meas (�) (�) (Ω) (�D) (�V )

Intensity high none none med med
DoLP none none none low med
AoP none none none none none

Table 5.3: Table of relative initial state changes of the complete set of Shell param-
eters and geometry for glossy black paint. Notice the large changes in geometry even
though those parameters are initially estimated correctly.

x-grad y-grad (n) (k) (B)
high high low low low

(�) (�) (Ω) (�D) (�V )
low none none high high

Since each parameter has a different range of values, the terms in these tables

are given as qualitatively. Values are determined to be low if they are within 10% of

the actual value or if they affect the measurement by less than 10%. Medium values

range between 10% and 100%. High values are any values with an error greater than

100% of the actual value or change in measurement of more than 100%.

This table shows the percent change which would most quickly reduce the resid-

ual is achieved by changing the geometry estimates. It also shows that motion in the

shading parameters will cause no effect in the residual, which is intuitive since it was

shown in Section 5.1.1 that the shading parameters are completely unobservable in

this geometry.

By reducing the state estimates to only observable states and providing a known

geometry, Figure 5.5 shows some improvement in the estimates of the remaining sur-
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Figure 5.4: Multiple Parameter Estimation GUI Using an Estimate of Surface Geometry. The actual material is a flat
black paint. It is being estimated as a glossy black paint with correct geometry, and all three measurements are being used
at a single location. The result is major errors in all of the surface parameters and geometry.
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Table 5.4: Table of state change vector of the observable parameters of glossy
black paint with known geometry. The initial changes in each state are much more
reasonable compared to the initial changes for the unknown geometry example.

(n) (k) (B) (�) (�D) (�V )
low low low low high high

Table 5.5: Table of Jacobian for observable parameters of concrete with known
geometry. This set of states shows a much smaller influence on the measurements
for small changes in the parameters. This leads to large initial changes in parameter
estimates in Table 5.6.

Meas (n) (k) (B) (�) (�D) (�V )
Intensity low low low low med med
DoLP low low med low high high
AoP none none none none none none

face parameters. Using all three measurements yields an initial change in estimation

shown in Table 5.4. These changes are much more reasonable but still exhibit large

changes in estimates which are already close to the actual values.

However, if starting estimates are not close to the actual estimates, the set of

unknown parameters can be thrown off in the wrong direction, as seen in Figure 5.6

and Tables 5.5 and 5.6. These figures show an example of estimating only observable

parameters with a known geometry, but starting with a material that is not close to

the actual material. In this case, the actual material is a flat black paint and the

estimated material is concrete. Table 5.6 shows that initially the algorithm pulls the

complex index of refraction the furthest, even though it is the closest to the actual

value. This is because at this set of parameters, the intensity measurement has the

largest impact on the state change and it shows that the index of refraction has little

affect on the intensity measurement.

Because the changes to degree of polarization measurement as a function of each

parameter are much closer than changes to the intensity measurement, only using the

degree of polarization measurement will cause the initial change vector to be much

smaller and not to exhibit such large jumps in close estimates.
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Figure 5.5: Multiple Parameter Estimation GUI Using Only Observable Materials and Known Geometry. Notice the
dramatic reduction in error from the unknown geometry example.
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Figure 5.6: Multiple parameter estimation GUI using observable parameters and known geometry but with highly ero-
nious initial estimates. The estimation of multiple parameters still requires reasonable starting estimates, similar to those
determined in Section 5.1.1
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Table 5.6: Table of state change vector of the observable parameters for concrete,
which is far from the actual material, black paint. Large initial changes in the observ-
able states cause overshoot of the correct solution and give erroneous final estimates
for all parameters.

(n) (k) (B) (�) (�D) (�V )
high high med med med med

As it was discussed in Section 5.1.1, the intensity measurement is highly sus-

pect without absolute knowledge of the source. It is also shown in Figure 5.6 that

the intensity measurement, even with absolute knowledge of the source, can have a

negative impact on the estimate of observable parameters. The results of using the

multi-parameter estimation GUI with only one degree of polarization measurement,

in which the starting estimates are close and the user is only trying to estimate the

observable parameters with a known geometry, shown in Figure 5.7, show a reduction

in overall error of the estimates by about half. It is also intuitive, and can be seen

by using this GUI, that multiple measurements of degree of polarization at different

geometries will further reduce the errors in estimation of observable parameters so

long as the geometry of the system is known.

It was shown in this section that not all of the Shell parameters can be estimated

using a small number of measurements, that fewer unknown parameters and more

measurements will lead to better estimates. These results mean that in order to

estimate surface geometry using the Levenburg-Marquardt algorithm another method

must be used to determine the full set of Shell parameters. The next section presents

results from the multiple hypothesis testing GUI described in Section 4.1.2.3.

5.1.2.2 Multiple Hypothesis Testing . The results of the multiple hy-

pothesis tests show that correct estimation of geometry plays a crucial role in estima-

tion of surface type. When correct geometry is not known precisely, it was determined

that multiple hypothesis testing leads to close, but incorrect, surface determination

when only using the degree of polarization measurement. Using multiple measure-
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Figure 5.7: Multiple parameter estimation GUI using a known geometry, close initial estimate and only degree of polar-
ization measurement. This example shows a reduction in final error of the observable parameters by removing the intensity
measurement.
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ments can mitigate this issue to an extent, but the final determination is that geometry

must be known with a certainty relative to the specular spread of the material. It

is also shown that incorrect initial estimates of surface parameters within 1 − 2% of

the actual value will still yield correct results for the surface estimate, given a correct

geometry.

For targets without a specular spread, using only the degree of polarization

measurement meant that the correct estimation of the surface is highly dependent on

a correct geometry estimate. This can be seen in Figure 5.8 in which a glossy black

paint is mistaken for a flat black paint with a small error in estimation of geometry.

Figure 5.9 shows that using the intensity measurement at off specular peaks

causes errors in surface estimation given any error in geometry or surface parameters.

This is due to the fact that specularities tend to cause glares and large changes in

intensity at very particular angles. This can be seen by any observer that has noticed

the glare off a window or a body of water.

Finally, Figure 5.10 shows the results of multiple hypothesis testing using a

correct geometry but slightly incorrect parameters. This example shows a surface that

is close to the glossy black paint material in the catalog, but with some differences

in actual surface parameters. This GUI shows that multiple hypothesis testing will

yield correct results even with errors in surface parameters of about 10%.

The results of the parameter estimation tests presented in this section show that

it is only possible to estimate the full set of Shell parameters correctly, within the

limits of a navigation scenario, using the multiple hypothesis testing method and that

this method requires geometry to be well known. It also shows that the only usable

geometry configurations are ones which present with specularities. These results were

crucial in determining which constraints and assumptions could be made to simplify

the determination of surface orientation. The following constraints are then practical

and useful for determination of surface structure in an indoor environment. A surface
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Figure 5.8: Multiple Hypothesis GUI Showing the Results of Error in the Estimate of Geometry. The actual material,
glossy black paint, is determined to be flat black paint.
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Figure 5.9: Multiple hypothesis testing GUI example showing how the use of the intensity measurement with errors in
the estimation of geometry leads to an unknown material estimate.
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Figure 5.10: Multiple hypothesis testing GUI showing the results of errors in the estimates of surface parameters, but with
a correct estimate of geometry. The algorithm is fairly resilient with these types of errors, allowing parameter estimation
errors of 10%.
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must be be composed of a relatively smooth dielectric material and there must be a

source which gives a specular reflection into the receiver.

5.2 Surface Orientation Estimation Results

Given the results from Section 5.1, it can be seen that, with a limited set of

measurements, a full set of surface parameters can only be determined using a multiple

hypothesis method and that a close estimate of the surface geometry must be known

in order to use this method. Using these results, a set of constraints was implemented

to alleviate the requirement for a full set of Shell parameters. These constraints are

defined in detail in Section 4.3.

This section describes the results of comparing the simplified Fresnel algorithm

to the Levenburg-Marquardt algorithm, which uses a full set of Shell parameters

(Section 5.2.1). It then goes on to explore the limits of estimating the pitch angle

given errors in the underlying assumptions (Section 5.2.2).

5.2.1 Results of Surface Orientation Tests . Section 4.3 demonstrated the

setup for a test which used the DIRSIG simulation software and the physical po-

larimeter to estimate tilt and pitch angles of a surface relative to the camera with the

assumptions that the surface is composed of a fairly smooth dielectric material and

that there is a source present in the specular direction. This section describes the

results of that test. Recall that both the DIRSIG and physical system tests placed a

flat plate of glossy black painted material in a specular geometry with the camera and

then used the degree of polarization measurement to estimate the angle of reflectance

of light off the surface, �.

The estimation of tilt and pitch angles in the DIRSIG simulation and the phys-

ical system were similar to the types of errors shown in the MATLAB simulation

software. Figure 5.11 shows the actual and estimated � angles for both tests. The

estimation of � is typically within 4∘. For the DIRSIG simulation, it becomes worse

near Brewster’s angle, which is to be expected considering that the Fresnel estimation
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Figure 5.11: Results of the DIRSIG and Physical System Tests for Estimating �.
This figure shows that the least amount of error occurs when the Shell target model is
used with the DIRSIG simulation software. The Fresnel simplification model causes
the highest errors around Brewster’s angle for the DIRSIG simulation. The physical
system shows more overall errors, but that there is little difference between the Shell
model and the simplified Fresnel model, and that these errors are constrained to less
than 4 degrees.

of the DoLP at that point tends to be much higher than the Shell target model values

found around those angles. Errors for the physical system test were also under 4∘,

but show a different shape than the DIRSIG simulations. This is likely due to the

parameters of this particular paint sample being slightly different than the assumed

values. However, unlike the DIRSIG simulation, the differences between the Shell

target model estimation and the simplified Fresnel are much smaller.

This limited test gave rise to questions about how the estimation of � would

fare for materials outside of the given assumptions. For example, could this method

work with a metal instead of a dielectric, or just how smooth must the surface be

for this method to work. The following section explores the limits of each individual

parameter and the resulting error in the estimation of /beta as a function of that

parameter.
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5.2.2 Envelope Analysis of Estimation Errors . Having verified the MAT-

LAB simulation software, a set of tests was conducted to determine the extent of

errors in estimation due to invalidations of the principle assumptions. Each parame-

ter of the Shell target model, as well as the source-surface geometry was varied one by

one and the error in estimate of the pitch was plotted against the actual pitch angle.

For this example, the remaining parameters were left at the parameters for a glossy

black paint. This example shows how a material that fits the assumptions may be

varied by a single parameter and to what extent that parameter may be varied and

still result in a reasonable estimation of the pitch angle.

The real part of the index of refraction was varied from 1 to 10 and results of

the error in estimation are shown in Figure 5.12. These results show that the small-

est errors in estimation occur around n = 1.5 and that errors increase as this value

changes. This is due to the fact that the point n = 1.5 was used in the assumption in

the simplification of the scenario. It can be seen from the graph that for a dielectric

material, 1.4 < n < 1.6, the errors tend to remain small, but that as n increases into

ranges of, n > 5, the assumptions are severely violated and errors become unaccept-

able. These errors may be mitigated by using another assumption for the n and k

values, given that those values for a particular material were known.

The complex component of the index of refraction, k, corresponds to the amount

of light absorbed when an electromagnetic wave propagates through a material. A

small k value then relates to a material with a low conductivity. This graph shows

that for small values of k, the algorithm works well, but for values much more than 0.8

the errors start to spread into large geometries. These errors may also be mitigated

for materials with a high k value by starting with an estimate higher than k = 0.

The � parameter represents the spread of the specular probability density func-

tion (pdf) found in Equation (2.55). A lower /sigma value represents a smoother,

more specular surface. The graph in Figure 5.14 shows that as the spread of the

specular pdf increases the error in � estimation increases. This is due to the DoLP
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Figure 5.12: Error in Pitch Estimate vs Change in Real Component of Index of
Refraction (n) and Actual Pitch Angle. As the index of refraction becomes larger
than 1.6 the errors in the estimate of � become large.
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Figure 5.13: Error in pitch estimate vs change in complex component of index of
refraction (k) and actual pitch angle. Errors in the estimation of � become large as
k becomes greater than 0.8.

116



0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ThetaR

Error in Beta

p
d
f 

V
a
ri
a
n
c
e
 (

s
ig

m
a
)

5

10

15

20

Figure 5.14: Error in Pitch Estimate vs Change in Specular pdf Spread (�) and
Actual Pitch Angle. Larger values of � relate to a more rough surface. As the surface
becomes more rough the assumptions break down and the errors in the � estimation
become large.

being decreased in a particular direction because of this spread. This effect can not

be mitigated by changing the estimates of the n and k values and shows that the

assumption of a smooth specular surface should not be violated to any extreme.

The B parameter represents the bias in the spectral reflectance pdf and provides

an overall magnitude adjustment to the pdf. Figure 5.15 shows that as B becomes

larger, the error in � estimation decreases. This is due the the probability of spectral

reflection increasing in direct correspondence. This allows for more of the overall

DoLP to propagate past the interface and creates a DoLP curve close to the simplified

assumption curve. As B is set closer to zero, the probability of spectral reflectance

becomes almost zero and the estimate of the DoLP then becomes close to zero, which

leads to large errors in the estimate of �.

The shading parameters, Ω and � , are directly related in the shading equation

given in Equation (2.57). This equation accounts for facets shadowed by other facets

and can therefore diminish the reflected DoLP. Figures 5.16 and 5.17 show that these

parameters have no effect on the estimation of �. They tend to correspond to depth
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Figure 5.15: Error in Pitch Estimate vs Change in Specular pdf Bias (B) and
Actual Pitch Angle. As the pdf bias decreases the degree of polarization measurement
decreases and the errors in the estimate of � rise.

of surface roughness and only have effects at very glancing angles where the DoLP is

already minimal.

The reflectance parameters used in the volumetric scattering equation given in

Equation (2.58) can have a major effect on the estimation of �. The Fresnel reflectance

equations assume only specular reflection in the computation of DoLP. Additionally,

unpolarized light will add to the S0 component of the Stokes vector and serve to

reduce the overall DoLP. A material with a highly reflective diffuse component to the

surface, such as white paper, would therefore not be ideal for this method. However,

dark or glossy objects will still work well. The effects of the diffuse or Lambertian

component, �D, are shown in Figure 5.18. It can be seen that as this factor increases,

estimates can quickly become unusable.

The effects of the volumetric parameter, �V , are shown in Figure 5.19. This

parameter shows a similar response to the diffuse scattering parameter. These errors

can not be mitigated by simply changing the index of refraction estimates, however,

they may be less of a problem in larger wavelengths where diffuse and volumetric

reflectivity is not as apparent.
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Figure 5.16: Error in pitch estimate vs change in shading parameter (Ω) and actual
pitch angle. For a given goemetry, changes in this parameter have no effect on the
estimation of �.
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Figure 5.17: Error in Pitch Estimate vs Change in Shading Parameter (�) and
Actual Pitch Angle. For a given geometry, changes in this parameter have no effect
on the estimation of �.
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Figure 5.18: Error in Pitch Estimate vs Change in Diffuse Reflectance Coefficient
(�D) and Actual Pitch Angle. This shows that materials with a large diffuse reflection
coefficient do not work well for this technique.
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Figure 5.19: Error in Pitch Estimate vs Change in Volumetric Reflectance Coeffi-
cient (�V ) and Actual Pitch Angle. This shows that materials with a large volumetric
scattering component do not work well for this algorithm.
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Figure 5.20: Error in Pitch Estimate vs Change in Phase Angle Between the Source
and Receiver (�R) and Actual Pitch Angle. This shows some leniency in the phase
angle of the source for this glossy black paint example.

The specular assumption requires that a light source is directly in line with

the receiver such that Δ� = 180∘. Figure 5.20 shows the errors presented when the

light source is moved out of this phase. This graph shows that for this material,

glossy black paint, there is some leniency in the line of sight parameter and that the

algorithm can withstand errors in this geometry of 20− 30∘ without much increase in

estimation error.

The specular assumption also maintains that the incident light angle, �I , is

the same as the reflected light angle, �R, and therefore the same as the estimation

parameter, �. Figure 5.21 shows the effects of an error in the incidence angle. This

graph shows that a difference between �I and �R simply changes the rising or falling

slope of the DoLP curve and changes where the Shell target model curve intersects

with the simplified Fresnel reflectance curve.

This section showed that, even without a full set of Shell parameters, the pitch

and roll of a surface relative to the camera can still be estimated within a few degrees

so long as the underlying assumptions of the Fresnel simplification model are not

violated. It shows that the error in the pitch estimate was typically greatest around
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Figure 5.21: Error in Pitch Estimate vs Change in Difference Between �I and �R
and Actual Pitch Angle. This shows that as long as there is a specular geometry, the
error in the estimation of � is not affected by an error in pitch angle of 2− 3∘.

Brewster’s angle, due to the fact that most parameters of the Shell target model

are used to dampen the degree of polarization measurement used in the estimation.

However, it was shown that a full set of Shell parameters will result in a better

estimation of the pitch angle. The next section describes the results of the Kalman

Filter implementation and the estimation of the receiver orientation.

5.3 Camera Orientation Estimation Results

The results of the camera orientation test, though limited, show an improvement

in certainty of camera orientation of roughly 25%. Improvement in estimation of

camera orientation using degree of polarization measurements is a complex function

of the number of measurements available, the material used in the estimation and

the geometry of the scenario. The results presented in this section are based on an

admitedly limited test set. However, given results presented in the rest of the chapter,

it can be shown which scenarios should be more or less useful.

Although it was shown in Section 5.2 that it is possible to estimate the pitch

angle of a surface without knowing the full set of Shell parameters, it was also shown
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Table 5.7: Summary of results for shape estimation tests using simplified Fresnel
model.

Parameter Errors Effects of Estimation of Pitch Angle
Difference between �i
and �r

For the glossy black paint example, which has a moder-
ate � value, there is some lenience in the phase angle of
the source. This is because the degree of polarization is
spread along fairly broad area.

Offset in Phase angle � Within the specular geometry, the error in the estima-
tion of � is not affected much by an error in incident
light angle within 2− 3∘.

Real part of index of re-
fraction (n)

As the index of refraction becomes larger than 1.6 the
errors in the estimate of � become large. This is due to
the fact that the estimate of the real part of the index
of refraction for a generic dielectric material is n = 1.5.

Complex part of index of
refraction (k)

Errors in the estimation of � become large as k becomes
greater than 0.8. This is due to the dielectric estimate
of k = 0.

Surface roughness Pa-
rameter (B)

Smaller values tend to cause larger errors. As the pdf
bias decreases, the degree of polarization measurement
decreases and the errors in the estimate of � rise.

Surface roughness Pa-
rameter (�)

Larger values of � relate to a more rough surface. As
the surface becomes more rough the assumptions break
down and the errors in the � estimation become large.

Shading Parameters (�)
and (Ω)

For a given geometry, changes in this parameter have
no effect on the estimation of �. There parameters were
both shown to be unobservable in the last section.

Reflectance Parameters
(�D) and (�V )

Materials with large diffuse or volumetric reflections
dampen the degree of polarization and cause large er-
rors in the estimation of �.
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that errors in the estimation can become very high around Brewster’s angle and as

materials and geometry violate the assumptions given in Section 4.3.

It was also shown in Section 5.1.2.2 that if relative geometry is known within

a few degrees, and a limited set of materials are found in the scene, that the full set

of Shell parameters can be found using the multiple hypothesis algorithm. One of

the benefits of using the Kalman filter approach in this section is that the camera

orientation is always known, with limited uncertainty.

It was determined that using the Levenburg-Marquardt estimation algorithm for

the � angle would be possible and would yield better results than the simplified Fresnel

model. To this point, the � measurement uncertainty using the Levenburg-Marquardt

algorithm has not been shown. Section 5.3.1 shows the results of the uncertainty in

� estimation as a function of uncertainty in Shell parameters and geometry. The

results of testing the filter with the DIRSIG simulations, described in Section 4.4.2.1,

are shown in Section 5.3.2. Finally, the physical system test results are presented in

Section 5.3.3

5.3.1 Uncertainty In Pitch Angle Estimates . In Section 4.4.2, it was shown

that the uncertainty in � measurement used in the Kalman Filter was 6∘. This

section shows how that number was determined and provides alternative solutions

given a different scenario. The results for this section are also used to determine

which scenarios might work better or worse in the estimation of camera orientation.

Recall from Section 4.4.2 that this test was conducted by using 300 particles

with a 1% random error in Shell parameters at 1∘ intervals of �. The mean and

standard deviation of the estimates of � were compared to the actual values and

errors were plotted.

The results of five different materials are presented in this section. Figure 5.22

shows the error in � measurement for a flat black paint. Notice that the standard

deviations of error are never more than 6∘, but that there is a mean in the error around

� = 55∘. It has been shown before that most parameters in the Shell target model

124



Figure 5.22: Mean and Standard Deviation of Error in Estimation of � for Flat
Black Paint. This figure shows that the mean error of flat black paint increases near
Brewster’s angle, but that in general the standard deviation of error is less than 6∘.

serve to dampen the degree of polarization measurement and that any geometry off

of �i = �r and � = 180∘ will also result in a less than expected degree of polarization.

This smaller than expected value causes the � measurement to fall to the left or right

of Brewster’s angle depending on the starting estimate. This figure shows that the

flat black paint sample would be a good candidate for this algorithm if the mean error

could be mitigated.

Figure 5.23 shows the results of a glossy black paint sample. This appears to

be the best candidate for this algorithm. The errors in /beta are almost entirely less

than 1∘ and the bias is close to zero except for a few degrees around Brewster’s angle.

Figure 5.24 shows a tan paint example. This figure shows a much more stable

material with a mean error close to zero and a standard deviation of error of 5∘ at

most geometries. This material would prove to be very useful in the Kalman filter for

� angles less than about 80∘.
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Figure 5.23: Mean and Standard Deviation of Error in Estimation of � for Glossy
Black Paint. This figure shows that glossy black paint would be a great candidate for
the Kalman filter algorithm because the mean and standard devations of error in the
estimation of � are typically very low, with the exception of right around Brewster’s
angle.
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Figure 5.24: Mean and Standard Eeviation of Error in Estimation of � for a Tan
Paint Sample. This sample shows that it would also be a good candidate for the
Kalman filter algorithm. It has a steady mean in error around zero and a standard
deviation of error less than 5∘ for all actual � angles less than 80∘.

A much worse example is shown in Figure 5.25. This is an example of a white

paint sample. Recall from Section 2.5 that the white paint sample does not have a

very broad specular peak and therefore any small error in geometry can lead to almost

total loss of polarization. This would in turn cause the � measurement to fall far from

the actual value, as seen in the graph. This figure shows that white paint would make

a poor material for use in the algorithm.

Finally, Figure 5.26 shows the surprising results of a concrete sample. This

image shows that this sample of concrete would make a good candidate for the al-

gorithm. It shows almost no bias for most geometries and a standard deviation of

error of less than 4∘. The reason for this material acting so well is mostly due to the

large polarization spread parameter (� = 0.85). It will be shown in Section 5.3.2 that

the error in geometry far outweighs the error in estimation of surface parameters,

but because this material has such a large spread of degree of polarization it is less

susceptible to such errors.
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Figure 5.25: Mean and Standard Deviation of Error in Estimation of � for a White
Paint Sample. This figure shows that white paint would be a poor candidate for the
Kalman filter algorithm. There are very large errors due to a very small spread in
the degree of polarization off of the surface. A small error in angle thus has a higher
impact on the degree of polarization measurement and causes a large error in the �
measurement.
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Figure 5.26: Mean and Standard Deviation of Error in Estimation of � for a Con-
crete Sample. This figure shows, surprisingly, that concrete would make a good can-
didate material for the Kalman filter algorithm. It has a steady mean error around
zero and a standard deviation of error less than 5∘. This result is due to the fact that
this particular sample has a large � value which spreads the degree of polarization
measurement. It will be shown in a later section that geometry plays an important
role in the � measurement and this spread makes concrete more resilient to these
types of errors.
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These figures show that it may also be possible to predict the measurement bias

and remove it. However, that test was left for future work. Given these results, a

glossy black painted material was chosen for the DIRSIG and physical system tests.

However, this � measurements uncertainty was left at 6∘ as a generalization.

5.3.2 DIRSIG Test Results . The results of the DIRSIG simulations confirm

the expected improvement from the Kalman filter model. Given a 6∘ uncertainty in

the � measurement and a 2∘ uncertainty in the � measurement, the expectation is a

slight improvement in the x and y axes of the camera frame and a more pronounced

improvement in the z axis of the camera frame.

Recall from Section 4.4.2.1 that the DIRSIG tests were set up at 25 altitude

and azimuth angles between 15∘ and 75∘. A glossy black painted cube was set at

the center of the local coordinate frame with surface normals pointing in cardinal

directions.

Each test sample was analyzed to determine which flat surfaces to use and

measurements were limited to one per side. Though the algorithm was allowed to

determine the orientation of each measurement in the local navigation frame, these

decisions were compared to the actual orientations. Of the measurements used in

this test, a very small number of incorrect orientations were chosen by the algorithm

and these were at extreme geometries and extreme initial errors. Table 5.8 shows the

altitude, azimuth and number of measurements used for each test.

Using these measurements, the first test was conducted to determine the mea-

surement errors as a function of geometry alone. Figure 5.27 shows the results of this

test. For each image, the correct orientation was initially fed into the filter. Errors in

the measurements would then cause the correct orientation to be pulled in an incor-

rect manner. This figure shows that error caused by geometry alone is generally less

than the filter expects. However, this is not the only source of measurement error to

be tested.
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Table 5.8: DIRSIG test conditions. This graph shows the randomized altitude and
azimuth conditions for the DIRSIG tests. For some geometries, measurements could
not be taken on some sides of the cube. The number of measurements relates to the
final uncertainty in camera orientation.

Geometry Elevation Azimuth # of Meas.
1 25 35 2
2 35 60 3
3 30 45 3
4 60 60 3
5 35 35 2
6 20 35 3
7 45 65 3
8 60 70 3
9 70 40 2
10 60 30 2
11 40 50 3
12 65 40 3
13 40 55 3
14 30 55 3
15 25 55 2
16 65 65 1
17 55 65 3
18 15 30 0
19 25 70 2
20 70 40 3
21 40 35 3
22 65 15 2
23 20 70 1
24 15 70 1
25 55 35 3
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Figure 5.27: Error in Final Attitude Estimates for the 25 DIRSIG Geometries.
This graph shows how a set of correct initial conditions for attitude are pulled off by
incorrect measurements of � and �.

Figure 5.28 shows the same results as Figure 5.27, but for ten trials at each

image. In comparison, Figure 5.29 shows the results of adding uncertainty in the

surface parameters at each geometry. Ten tests were run on each image with a 10%

random error in each surface parameter. This figure still shows clusters of erroneous

final estimates similar to the ones in Figure 5.28. However, most of these errors in

the x and y axes now have a small spread. It can be seen, however, that this small

spread is not close to the spread of errors due to geometry. It can also be seen that

these types of errors hardly affect the z axis esimatiton. This is due largely to the

fact that most of the angle of polarization, or � measurement, is applied to the z axis

angle and the � measurement is not affected by errors in surface parameters.

Finally, Figure 5.30 shows the results from using a corrupted initial estimate of

camera orientation in the filter. The final spread of error is slightly worse than the

ones shown in Figure 5.29, but falls mostly in line with the expected uncertainty from
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Figure 5.28: Error as a Function of Geometry with Multiple Tests. This figure
shows that with the same initial orientation and same measurements, the final errors
are the same. This figure should be compared with Figure 5.29 which shows the final
errors given random errors in surface parameters as well.

Figure 5.29: Error as a Function of Geometry and a 10% Error in Shell Parameters.
This figure shows that errors due to errors in surface parameter estimation are not as
bad as errors due to bias in the estimation of the � angle.
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Figure 5.30: Errors as a Function of Random Initial Error in Orientation, Bias
in Estimation of � and a 10% Random Error in Shell Parameters. This shows final
uncertainties close to the expected uncertainties from the Kalman Filter.

the filter. Table 5.9 shows the results for mean error in each angle, standard deviation

in error from the Monte Carlo runs, and expected uncertainty from the filter.

These results show an average decrease in error of about 25% in the x and y

axes and about 50% in the z axis. There is a bias in the x axis of almost 1∘, but this

might be mitigated by removing bias in the � measurement in future work.

Table 5.9: Final Error Results for the DIRSIG Simulations. These results show
that there is a mean error in the x-axis of almost 1∘, but that otherwise, the Monte
Carlo errors and uncertainty from the Kalman filter match. These results show
an improvement in error of about 25% in the x and y axes and about 50% in the z-axis.

x-error (deg) y-error (deg) z-error (deg)
Mean Final Error (deg) 0.88 -0.30 -0.46
Std of Monte Carlo Runs (deg) 2.47 2.35 1.79
Kalman Filter Uncertainty (deg) 2.48 2.59 1.36
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Table 5.10: Table of Final Error Angles for the Physical System Test. This table
shows a bias in the z-axis estimate of about −5∘ due to a misalignment of the polarizer
in the rotation stage. Otherwise the mean and standard deviations of these er-
rors fall in line with the DIRSIG tests and the expected errors from the Kalman filter.

Test Run x-error (deg) y-error (deg) z-error (deg)
1 0.80 1.42 -5.72
2 0.29 -1.20 -5.26
3 -2.76 3.06 -5.96
4 2.95 0.85 -4.53
5 -2.72 -0.56 -6.23

5.3.3 Physical System Test Results . The limited physical system tests,

described in Section 4.4.2.2, show similar results to the DIRSIG test. Table 5.10

shows the results of five test orientations completed with the physical system.

The first observation to be made is that the errors in the z axis appear to be

much larger than those found in the DIRSIG tests. However, the spread of these errors

is about the same. There is a bias in the angle of polarization measurement of almost

5∘, due to the coarse alignment of the polarizer in the rotation stage. Beyond the

polarizer bias, it appears that the physical system test and the DIRSIG simulation are

in line and that there is improvement in attitude estimation from degree of polarization

measurements.

Ideally, more measurements would be made with proper random errors placed

on all unknown components. However, given the time constraint and the nature of

the simulation software, these types of tests are left to future work. Ideas on further

research and expected results are covered in the next chapter.
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VI. Conclusions and Future Work

This thesis presented a way to determine camera orientation from a single view

using a passive polarimetric sensor. This chapter wraps up the thesis by dis-

cussing conclusions made from the results in Chapter V (Section 6.1). It goes on to

discuss some thoughts on the limited testing conditions with the DIRSIG simulation

software and the physical system, their implications in the results and how the full

set of tools developed in Chapter III may be used to draw further conclusions (Sec-

tion 6.2). It then presents ideas and expected impact from future work (Section 6.3).

6.1 Conclusions

Though the main focus of this thesis was the improvement in navigation solution

using a passive polarimetric sensor, many conclusions were made along the way. It

was shown that the interrelationship between geometry and surface parameters limits

the full estimation of material and relative orientation. However, it was also shown

that, with information about one of these, the other may be estimated well. These

results were then used to develop a set of constraints on a material that would allow

for the structure to be determined without knowing the full set of Shell parameters.

This algorithm worked well under certain conditions but was improved upon when

the full set of Shell parameters was known.

Given that a full set of Shell parameters could be determined from a catalog

using the multiple hypothesis technique, and that the Kalman filter would provide an

adequate geometry estimation for the multiple hypothesis test to work, a material was

chosen from the catalog of known Shell materials. The chosen material was based on

material parameters that would provide a good candidate material to test the Kalman

filter algorithm.

In general, the results presented in Chapter V show that a this algorithms

works well with materials and geometries with a fairly large degree of polarization, a

broad spread in the degree of polarization, from a large � parameter, and low diffuse

and volumetric parameters. These parameters showed the most impact on degree of
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polarization measurements when errors were present in either the estimate of the set

of Shell parameters or estimated geometry.

6.2 Ideal Testing Conditions, Caveats and Impact on Results

A word of caution must be made about the results derived from the testing

conditions used for the DIRSIG and physical system tests. It is admitted that these

test conditions are limited. The nature of the complex equations and sheer number

of parameters to test makes a full Monte Carlo test a hefty task.

Though the DIRSIG simulation software is easy to use for particular conditions,

the nature of the software does not make it easy to test multiple random conditions.

The physical system conditions are also not ideal. The limited availability of materials

with known Shell parameters makes it difficult to test multiple materials. The balance

required between the Vicon camera system and largely scattered lighting conditions

has to be taken into account when setting up usable test conditions that require truth

data. Also, non-perfect reflecting materials used to diffuse and scatter the sources

when using the physical system can also be a hindrance.

Although the main focus of this thesis was aiding camera orientation estimates

using passive polarization imaging, the way it was achieved was through a ground up

research method. The results presented in Section 5.3 are correct for those particular

conditions, but they can not be used to determine how well the Kalman filter algo-

rithm would work under other conditions. However, the full set of tools developed

throughout the research process can easily be used to determine expected results for

another situation. This type of easy simulation was intentional and saves time in

determining which situations are useful before undertaking the task of setting up a

full DIRSIG or physical system test.
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6.3 Future Work

Given additional time, the following endeavors would be of interest for continued

work. There were several constraints used throughout the work that were required to

make useful simplifications for specific tests. However, some of these constraints may

be able to be relaxed in future work with the incorporation of other related research.

Using a camera that can capture multiple polarizer orientations and calculate

degree and angle of polarization in a single snapshot would be useful in integration

with other navigation aid sensors. A camera such as the ones found in [5] could be

combined with inertial sensors to complete the Kalman filter cycle and determine

update accuracy at a larger number of conditions.

Longer wavelengths of light may have benefits for particular scenarios. Wave-

lengths in which sources are predominantly thermal would mean that there should

be a specular reflection under all geometries. These longer wavelengths are also more

resilient to rough surfaces since surface roughness is a function of wavelength and

surfaces becomes more specular at longer wavelengths. Also, according to the Shell

parameter table found in [31], the diffuse and volumetric components of the model

tend to become smaller at larger wavelengths. This would be ideal since it was shown

in Section 5.1.1 that these two parameters have a large influence on degree of polar-

ization measurements and that smaller values are more satisfactory.

These images are not only useful for degree and angle of polarization measure-

ments. Other electro-optically aided navigation techniques can be used on the same

images. Many of these techniques are useful in areas where the techniques presented

in this thesis break down and vice versa. A few specific EO-aided navigation tech-

niques that could be useful additions to this Kalman filter algorithm include feature

matching techniques using epipolar constraints, which use areas of dense features, ho-

mographic constraints, which use flat areas, and vanishing point detection algorithms,

which use lines in areas that may not have dense features and may not be flat.
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Finally, the corresponding requirements between the Kalman filter and the mul-

tiple hypothesis testing algorithm present an opportunity for a symbiotic relationship.

The requirement for the Kalaman filter to have a full set of Shell target parameters can

be fulfilled by the multiple hypothesis algorithm. Likewise, the multiple hypothesis al-

gorithm’s need for an accurate relative geometry can be fulfilled by the Kalman filter.

The two methods may then be able to be combined in a simultaneous localization and

mapping technique. This method could be further improved through implementation

of a correspondence algorithm, which would allow for multiple measurements of the

same surface from different geometries.

6.4 Summary

The results of this thesis show that a simple adaptation to a readily available

camera system can be used as an additional measurement for the purposes of attitude

estimation. This information is only a building block in between existing algorithms

and future integration techniques. However, these tools showed great promise and

demonstrate the need for further exploration into EO-aided navigation techniques

using polarization measurements.
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Appendix A. Material Parameters

This appendix presents a list of the materials and their associated Shell target pa-

rameters [31].

Table A.1: Material Properties. This table shows the Shell target model parameters
for each of the materials used throughout this thesis. A description of each parameter
can be found in Chapter II.
Material (n) (k) (B) (�) (�) (Ω) (�D) (�V )
White Paint 1.515 .112 .022 .008 0.134 1.459 0.364 −5.01× 10−1

Concrete 1.498 0.4071 0.2644 0.8574 55.36 0.0606 2.29× 10−2 2.25× 10−2

Tan Paint 1.43 0.3573 0.1093 0.8029 58.79 52.39 0.1114 2.31× 10−2

Green Paint 1.39 0.3371 0.1048 0.4563 18.54 36.57 6.914× 10−3 1.552× 10−3

Aluminum 5.92 0.3045 0.129 0.0018 0.2145 4.639 5.16× 10−3 3.466× 10−3

Flat Black
Paint

1.405 0.2289 0.0056 0.3331 1.717 119.3 −1.762× 10−4 5.427× 10−4

Glossy Black
Paint

1.4 0.4 1.3 0.05 5 10 1.1× 10−5 10−7
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