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Abstract

A definite certainty in the future of Unmanned Aircraft Systems is demand. The

potential capabilities of these systems far exceed those of manned aircraft. Without

a human on-board, aircraft limitations are diminished and endurance potential in-

creased. An endurance limitation that persists is a trait inherent to all aircraft: the

balance between performance and fuel capacity. The ability of an unmanned aircraft

to refuel in flight will limit the impact of that balance.

Refueling an unmanned aircraft in flight is an engineering challenge that has

demanded the better part of a decade. Some successful approaches have used Differ-

ential Global Positioning System (DGPS) between aircraft. Optical sensor tracking

has shown potential as a viable alternative, or augmentation, to DGPS for refueling

unmanned systems.

This research investigates the feasibility, accuracy, and reliability of a predictive

rendering and holistic comparison algorithm with the use of an optical sensor to pro-

vide relative distance and position behind a lead or tanker aircraft. Using an accurate

model of a tanker, an algorithm renders image(s) for comparison with collected images

by a camera installed on the receiver aircraft. Based on this comparison, information

used to create the rendered image(s) is used to provide the relative navigation solution

required for autonomous air refueling.

Building on previous work, this research reduced the number of required ren-

dered images to 15 or less for each collected image while requiring no modification

to the tanker aircraft. The accuracy of this research is considered good enough for

autonomous operations. The average error was two feet or less at distances of 62.5

feet and closer. A remaining limitation of this approach is the length of time to cal-

culate a measurement, which can take up to four seconds. Although improvements

are warranted, the methods presented are viable for autonomous air refueling.
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Image Dependent Relative

Formation Navigation for

Autonomous Aerial Refueling

I. Introduction

The motivation driving this research is to expand the utility of Unmanned Aircraft

Systems (UAS) by incorporating passive, vision-based sensors that enable the

system to conduct autonomous aerial refueling (AAR). The Department of Defense

(DOD), who operates more than 6,800 UAS, has come to rely on their capabilities in

everyday operations [26]. The use of a vision-based sensor to AAR is also motivated

by the DOD’s emphasis on both non-emissive equipment and system redundancy (to

other on-board equipment that can enable AAR), ensuring continued operations in

combat environments.

Combat commanders use UAS on the battlefield, because they significantly

reduce human exposure to risk, they do not require expenditures for life support

equipment, and they are not limited to tolerances of the human body.

Removing human physiological needs from on-board the aircraft eliminates the

endurance limitations previously imposed by manned flight. The UAS can potentially

loiter (remain airborne) indefinitely, significantly reducing the fuel and time it costs

to transit from an operating field to a point of interest and back. The fuel carried

on the aircraft is currently the limitation of loiter time. A UAS aerial refueling

(AR) capability will increase their endurance, a necessity to expanding their utility.

Transmission delays, limited control fidelity, and inadequate feedback between the

system operator and the system aircraft currently limit safe AR operations with UAS.

Accomplishing AR autonomously, using on-board sensors, is a more probable and

desirable alternative method to a system-operator, manually-controlled UAS AR.
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Currently the Air Force Research Laboratory (AFRL) is researching and advanc-

ing the science of AAR. The bulk of that research is aimed at utilizing Differential

Global Positioning System (DGPS) to determine the relative position between a re-

fueling platform (tanker) and the UAS. This research is ongoing and testing with the

actual transfer of fuel is forthcoming. DGPS is a proven navigational tool and pro-

vides adequate precision to AAR, but could be subject to limitations during wartime

conditions, such as Global Positioning System (GPS) jamming or spoofing. As a re-

sult, AFRL is currently exploring other sensors to augment and provide dissimilar

system redundancy, leading to the secondary motivation for this research.

The DOD has a vested interest to make certain its systems have an inherent

redundancy to ensure continued operation despite degradation to the system’s sensors

or equipment. A combination of solutions including DGPS, integrated navigation

solutions, and other measurement devices provide the desired redundancy and ensure

both the survivability of the UAS and its ability to conduct AAR. Additionally, the

DOD places an emphasis on passive sensors (sensors that do not emit any electro-

magnetic energy) to reduce the likelihood of detection when operating in unfriendly

areas of interest. This would hinder information sharing between the aircraft unless

transmissions could be limited in scope, duration, or power. Finally, minimizing

the number of modifications to the existing tanker fleet, such as targets, lights, or

transmission devices, would dramatically reduce the fielding costs as well as long

term operational and maintenance costs. A low emissive, cheap alternative, that is

dissimilar to DGPS, characterizes a vision-based AAR approach.

The ability of an UAS to achieve AAR using passive on-board sensors will

enhance the UAS’ ability to operate for longer periods of time independent of external

signals (such as GPS or broadcasted information from other airborne systems or

platforms). AAR using vision-based capabilities and other position and orientation

estimation (pose) equipment is a capability that will aid the DOD.
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1.1 Problem Definition

Even with the current knowledge base and computer processing capabilities, it is

difficult to attain precise navigation using vision information alone. The information

provided from a typical, non-modified picture is limited to two-dimensions. It is pos-

sible to determine in what direction a specific reference point is located, but without

additional information, range to that point is not immediately available. Mathemat-

ically based algorithms can process collected images and infer a relative position of

the point. The science of image-aided navigation is ever expanding and the required

precision is currently possible with enough time, information, and processing of the

image(s).

The critical problem is a method of real-time, accurate pose. Real-time estima-

tion allows incorporation of a navigation solution into an autopilot response. Accurate

estimation introduces fewer errors in the solution and ultimately in the autopilot re-

sponse. Both real-time and accurate estimations are necessary to conduct safe UAS

AAR operations.

There are currently two methods employed by the DOD to accomplish AR. The

U.S. Air Force preferred method uses a refueling boom attached to the rear of the

tanker aircraft. The boom is controlled with flight control surfaces attached to it.

To refuel using this method, the receiver pilot flies the aircraft to within a defined

refueling envelope surrounding the refueling boom. A boom operator on the tanker

aircraft then flies the boom into a receiver port on the receiver aircraft. Both pilot

and boom operator are responsible for the refueling connection.

The U.S. Navy prefers the probe and drogue method of air refueling. Instead of

a boom, this method uses a drogue: a basket at the end of a fuel hose that extends

behind the tanker aircraft. The receiver aircraft has a probe that extends into the

wind stream and mates with the drogue. The tanker aircraft crew has no visibility of

the location and movements of the receiver aircraft. The pilot on the receiver aircraft

is completely responsible for making the refueling connection. The basket on the end
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of the drogue allows the pilot some margin for error and guides the probe into the

drogue.

Both methods have strengths and weaknesses, and some aircraft have both a

receiver port for a boom as well as a probe for a drogue. Heavy aircraft (aircraft

certified to take off weighing more than 255,000 pounds) do not normally refuel with

the probe and drogue method because of their lack of maneuverability. The U.S. Navy

does not operate large tanker aircraft, or many large receiver aircraft. Their aircraft

are generally too small to accommodate the bulky and heavy equipment required for

boom refueling.

Demonstrations and research of AAR with UAS vary between the two methods,

and currently some UAS are being built with equipment for both [28]. As of this

writing, no tanker has yet to transfer fuel to an unmanned aircraft.

Flying aircraft in close proximity to each other is an inherently dangerous op-

eration. Human operators require considerable training to perform adequate AR

formation maneuvers and incidents between a tanker and receiver continue to occur.

An AAR capability for an UAS will necessarily be complex to ensure safe operations

at all times.

Even when fully implemented, human operators will still be integral to the

AAR process, just as they are for all UAS activities. They will have oversight of the

refueling and provide safety measures until the reliability of the AAR system process

is adequately determined.

To limit the focus of this research, the author has assumed a boom-refueling

method and that a receiver aircraft maintaining a position within the envelope with

less than five feet of error will be able to perform AAR. This research will not in-

vestigate autopilots or controllers to fly a receiver aircraft. Instead, the research will

focus on the navigation solution that will eventually allow an autopilot to maneuver

the aircraft into the envelope.
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At a minimum, it is assumed that at least one camera is on-board the receiver

aircraft and it has an unobstructed view of the tanker (minor discrepancies from

limited dirt and grime on the lenses and coverings are acceptable). Estimating an

initial relative position between the UAS and refueling platform will be possible with

the method researched here, but is not a focus area. To demonstrate the AAR ca-

pability, the research assumes that an initial, relative position between the aircraft

is known. Finally, no computations will be completed on-board the aircraft and all

determinations of potential solutions will be post-processed.

1.2 Research Solution

This preliminary background has demonstrated that a need exists for a dis-

similar approach to AAR to augment the DGPS approach or to serve as a backup.

The method presented in this thesis will use collected images of a tanker as well as

computer-rendered simulated images. The camera, installed on the receiver aircraft

looking up at the tanker aircraft, collects images throughout the refueling process.

Multiple renderings of a three-dimensional tanker model permit a comparison

between a collected image and rendered images. This comparison determines a match-

ing likelihood of each rendered image. The information used to create the most likely

image updates a Kalman filter that tracks the position of the tanker. This approach

builds on many successful methods [5, 15, 18, 23, 27, 29, 30] that use similar vision-

dependent techniques to estimate the position of a vehicle. The method outlined in

this thesis has four specific goals to overcome some of the problems discovered in the

previous efforts.

The first goal is to decrease the average time required to determine a solution.

Solutions presented in the cited research range from hundredths of a second to 30

seconds for each pose determination. A real-time approach during AR would need

updates consistently less than one second apart.
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Increasing the accuracy of this approach with the use of inertial navigation so-

lutions and Kalman-filtering is the second goal. An accurate solution requires average

pose errors of five feet or less [16].

The third goal is implement the solution with an efficient programming language

(e.g., C) as quickly as possible, requiring the use of open-source libraries. The use

of open-source libraries dramatically reduces the time to develop a solution. The

libraries are efficient and provide many tools that would otherwise require extensive

development and validating.

A final goal to prove this approach as a viable alternative is to accomplish the

three previous goals without the need for any modification to the tanker aircraft.

Achieving this last goal will increase the utility of this solution by minimizing the

cost required for implementation.

1.3 Thesis Outline

This thesis is broken into six chapters. The first chapter details the background

motivating the research, the problem definition, and the general approach taken to

solving the problem. Chapter 2 will introduce the mathematical description of key

terms and relationships used throughout the paper. Nomenclature and equations will

explain some of the basics of navigation, lenses, and cameras. Chapter 2 also discusses

the programming language, the open-source libraries, and the Kalman filtering used in

the research. Chapter 3 outlines the nature of AR and characterizes it not only for this

research but future projects and explains position realization for formation navigation.

Chapter 4 introduces the concept of pose, previous work addressing pose, and this

research’s approach to AAR. The experimental portion of the research is presented

in Chapter 5, including laboratory work at the Air Force Institute of Technology

(AFIT) and flight research at the United States Air Force Test Pilot School (TPS) at

Edwards AFB, CA. This includes setup, collection, and validation of the research’s

approach and the results of these tests. Finally, Chapter 6 contains conclusions and

recommendations for future research.
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II. Navigation, Programming, and Mathematical

Background

This thesis relies on accurate navigational relationships, programming that cre-

ates real-world representations and interpretations, and mathematical relation-

ships. This chapter introduces the background of these concepts in three sections.

The first presents a discussion of the appropriately used nomenclature, assumptions,

and concepts used in navigation. The second section describes the two C program-

ming libraries (collections of programming resources) used, how they are used, and

what information they provide. The final section provides an overview of Kalman

filtering.

The thesis uses the following mathematical notation:

• Scalars: Italic type (e.g., x) represents scalars.

• Vectors: Bold font, lower case letters (e.g., x) represent vectors.

• Matrices: Bold font, upper case letters (e.g., T) represent matrices, except for

X, Y, and Z which represent the axes of coordinate frames.

• Estimated Variables: The hat character (e.g., x̂) denotes an estimate.

• Computed Variables: The tilde character (e.g., x̃) denotes computed vari-

ables.

• Homogenous Coordinates: An underline (e.g., x) denotes homogeneous co-

ordinates.

2.1 Navigation

This section presents many aspects of navigation and wherever possible, ex-

plains them with images and represents them with symbols. This is done to help

the reader understand key relationships applicable to other scientific disciplines. Sec-

tion 2.1.1 presents the fundamentals of position, followed by the reference frames used

to define those positions in Section 2.1.2. Section 2.1.3 expands those fundamentals
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to conversions and transformations between frames and a discussion on lenses and

cameras.

2.1.1 Position. In navigation, an object’s location relative to a coordinate

system and reference frame determines its position, denoted as column vector p.

There are many different reference frames based on their origin and rotation, which

are explained in further detail in Section 2.1.2. Each frame has two or three axes,

denoted as Xframe, Yframe, and as necessary, Zframe. For these three symbols only,

a subscript following the axis denotes the frame it is associated with. A position’s

translation, measured along each one of these axes, determines the location of the

position referenced in that specific frame. This distance along a coordinate axis is

denoted as x, y, and as necessary, z. Together they are the coordinates of that

position. Positions in this research require coordinates that are annotated in both

Cartesian and homogeneous representation.

Cartesian coordinates are unique; the translations along a reference-frame axis

are fixed for the instant of time they are referenced. The following notation abbrevi-

ates a position referenced with Cartesian coordinates:

pframe
identifier =

[
x y z

]T
=


x

y

z

 =


pframe
x, identifier

pframe
y, identifier

pframe
z, identifier

 (2.1)

where the superscript frame denotes the coordinate frame of reference used to define

the position, identifier denotes the name of the position, and T denotes a transpose of

any array or matrix. When obvious which point is being referenced, or for non-specific

points, the identifier subscript is dropped.

Homogenous coordinates contain an additional scaling term, k. The basis of

homogenous coordinates allows scaling the coordinates for projective geometry oper-

ations. A scaling that reduces the k coordinate to a value of one is referred to as

normalizing it and is accomplished by dividing all the coordinates by the value of k.
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The following notation abbreviates a three-dimensional position in homogeneous

coordinates:

p frame
identifier =


kx

ky

kz

k

 =


p frame

x, identifier

p frame
y, identifier

p frame
z, identifier

p frame
k, identifier

 (2.2)

for any non-zero value of k.

Positions referenced in two-dimensional coordinate frames are similar, but do

not include the z or kz term.

2.1.2 Navigational Reference Frames. A reference frame introduces the idea

of an observer of a position. Standing at the origin of a reference frame and locating an

object based on its distance along the axes of the reference frame defines the position

of that object in that frame. For simplicity, the frames in this thesis are orthogonal

(all axes of the frame are perpendicular). As needed, introductions of other frames

that are not in this section occur throughout the thesis.

2.1.2.1 Inertial Frames. The universally true inertial-frame (I-frame)

is the only non-accelerating frame discussed. Using the I-frame would unnecessarily

complicate aircraft navigation that, by definition, is limited to altitudes relatively close

to the surface of the Earth. As such, a locally defined inertial frame, Earth-centered

inertial frame (ı-frame), approximates the I-frame for the short durations of time

associated with aircraft navigation. This frame is defined with an origin at the Earth’s

center of mass, the Z axis through the North Pole, the X axis pointing at the vernal

equinox, and the Y axis completing the right-handed orthogonal system along the

equatorial line. The i-frame does not rotate with the Earth, but its origin translates

with the Earth as it orbits the Sun. In contrast, the I-frame never accelerates or

rotates.
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2.1.2.2 Earth Frame. A reference frame anchored permanently to

ground-based locations on the Earth permits navigation with respect to the surface

of the Earth. This frame, known as the Earth-centered Earth-fixed frame (e-frame),

shares its Z axis with the ı-frame while its X and Y axes rotate about the Z axis at

the same rate as the Earth. The location of these axes are fixed to the surface of the

Earth, with theX axis extending from the center of the Earth through the intersection

of the Prime Meridian and the Earth’s equatorial line [13], and the Y axis complet-

ing the right-handed orthogonal system. The e-frame components used were those of

the World Geodetic System - created in 1984 (WGS 84), as defined by the National

Geospatial-Intelligence Agency (NGA) [13], further discussed below. Positions refer-

enced in this frame are realized in spherical coordinates as latitude, longitude, and

height above ellipsoid (HAE) or in rectangular coordinates as x, y, and z translations.

In the e-frame these are more commonly referred to as u, v, and w.

Many regional and local variations of the Earth’s surface make a mathematical

model difficult to create and use. The definition of an equipotential surface partially

compensates for these variations. This surface is perpendicular to the local gravity

vector, with equal gravity magnitudes throughout [25]. The shape is called the geoid

and approximates the mean sea level (MSL) across its surface. The definition of a

geometric surface called an ellipsoid, or oblate spheroid, approximates the geoid and

permits mathematical computations that define position and positional relationship

with respect to the actual surface of the Earth or the geoid.

A datum defines a reference ellipsoidal surface for geographic regions of the

Earth. Defining the ellipsoid regionally makes use of an average MSL that minimizes

the altitude deviations from the reference geoid surface. It is important to note that

when discussing an object’s position on the Earth it is impossible to tell where the

precise location is without information about the datum used to define that location.

In order to make world-wide navigation seamless across geographic boundaries

and multiple datum, a geodetic datum exists. This global datum, known as WGS 84,
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serves as a best fit for many local systems, enabling reliable world-wide navigation.

The NGA is responsible for maintaining the model of the ellipsoid and the gravita-

tional model needed to create this datum. The NGA determines and tracks precise

position of several world-wide locations that influence the precision of the model [13].

This tracking allows updates to the model based on changes of the Earth from tectonic

motion, tides, etc. [13]

2.1.2.3 Navigation Frame. The navigation frame (n-frame) has its

origin located on a platform of interest (aircraft) and is defined with the X axis

pointing toward true north. The Z axis points in the direction of the gravitational

pull of the Earth and the Y axis completes the right-handed orthogonal system. This

is also referred to as north, east, down or NED orientation. This frame does not

rotate with the platform. Its orientation is dependent on the platform’s location with

respect to the e-frame. The i-frame, e-frame, and n-frame are shown in Figure 2.1.

Figure 2.1: The i-frame, e-frame, and n-frame. The i-frame and e-frame both have
their origin at the center of the Earth and the n-frame has its origin on the platform
of interest [27].
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2.1.2.4 Body Frame. Defining the orientation of an airborne platform

using heading, pitch, and roll requires the use of the body frame (b-frame). For an

aircraft, the b-frame is defined with the X axis projected through the nose of the

aircraft, the Z axis through the bottom of the aircraft and the Y axis completes

the right-handed orthogonal system, generally assumed to be from the origin out the

right wing. The origin can be arbitrarily chosen. Typical choices include: the center

of gravity of the aircraft, a truth collection device, or an inertial sensing unit. This

frame rotates in conjunction with the platform on which it is defined and is shown

in Figure 2.2, on an aircraft in a formation. The subscript W on the frame identifier

denotes the aircraft’s position in the formation, the wing aircraft, further explained

in Section 2.1.4. The cube in the figure denotes the origin of this aircraft’s b-frame

and n-frame.

Figure 2.2: The b-frame of a wing aircraft. Denoted as bW -frame, the bW -frame and
nW -frame share a common origin.

2.1.2.5 Camera Frame. Referencing a position with respect to a cam-

era requires the camera frame (cam-frame) as shown in Figure 2.3. The origin of

the frame is located at the optical center of the camera, denoted with a circle in the
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Figure 2.3: The cam-frame. The camera and the cam-frame are shown as installed
on an aircraft’s dashboard.

figure. The frame is defined with the Z axis out of the front of the lens. The X axis

projects out of the right of the lens and the Y axis projects out of the bottom of the

lens. This frame references the position of objects in the camera’s field of view that

are projected onto images. This process is further discussed in Section 2.1.3.5.

2.1.2.6 Image Frame. There are three different two-dimensional frames

associated with images used in this research and two different types of images. The

three frames are the image-frame, the GLimage-frame, and the CV image-frame; the

latter two are further discussed in Sections 2.2.1 and 2.2.2. The symbol I represents

an image and the two types of images are rendered and collected. The symbol Ir refers

to images that are rendered with the use of the OpenGL library, further detailed in

Section 2.2.1. The symbol Ic refers to images that are collected with the camera.

The optical center of the camera is shown in Figure 2.3 and is the origin of

the cam-frame. The cam-frame origin projected onto an Ic (along the Z axis of the
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cam-frame) is typically close to, but not always, the center of the Ic. Referenced to

the image-frame, translations xo and yo denote the location of this projection, known

as the principal point. The origin and axes of the image-frame, the location of the

principal point, and their relation to a generic Ic are shown in Figure 2.4.

Additionally, Ic images and potentially Ir images are not necessarily square.

Denoted in Figure 2.4 as θs [11], a skew angle is the angle between the top and sides

of these images and is a concern when it is not 90◦. 1

Figure 2.4: The image-frame. The origin and axes of the frame for a generic Ic are
shown with the principal point (projection of the cam-frame X and Y axes on the
Ic). The generic Ic has a width of N pixels and a height ofM pixels. For a non-square
Ic, θs represents the angle between the top and left side of the Ic.

The origin of the image-frame is in the top-left corner of the Ic, eliminating

negative translation values (along the X and Y axes) and the need to have access

to the coordinates of the principal point when referencing positions on the Ic. The

origin is actually 0.5 pixels up and 0.5 pixels to the left of the top left corner of the

Ic [27], allowing the center of the first pixel to be annotated as shown in Figure 2.4.

1The subscript s is added to avoid confusion with θ associated with the roll angle of an aircraft.
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The X axis of the image-frame defines the pixel location to the right of the

origin and the Y axis defines the pixel location below the origin. An Ic is typically

determined by dimensions measured in both a standardized unit of measurement (cen-

timeter, millimeter, inches, etc) as well as camera-dependent dimensions measured in

pixels. The terms W and H denote standardized units of measurement for width and

height respectively, the terms N and M denote the pixel units of width and height

respectively.

This section covered many of the frames used throughout this thesis. The next

section explains the relationship between frames.

2.1.3 Reference Frame Conversions. There is a limit to the utility of under-

standing an object’s position in a single frame of reference if that position cannot be

referenced in other frames for further analysis and computation. This section presents

various reference-frame conversions to increase the utility of both the reference frames

and positions.

This thesis references points in both three-dimensional and two-dimensional

space, and in both Cartesian and homogeneous coordinates. This requires the abil-

ity to convert between them all. The reference-frame conversion between Cartesian

coordinate systems can require a translation and a rotation. Translation accounts

for differences in the origins of the frames. Rotation accounts for the difference in

orientation between the frames. The reference-frame conversion between homogenous

coordinates requires a transformation or camera matrix accounting for both origin

and orientation differences. Mapping or projecting describes these transformations

and they are detailed in Section 2.1.3.5.

Direction Cosine Matrices (DCMs, Section 2.1.3.1) and Euler Angles (Sec-

tion 2.1.3.2) convert Cartesian coordinates of a position referenced in one frame to

Cartesian coordinates of the same point referenced in another frame. As shown in

Figure 2.5, the actual position of an object (a camera) does not move during the

conversion. The difference in translations along each axes is evident by orienting the
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Figure 2.5: Reference frame conversion. Referencing a point in a different frame,
does not change the location of the point. The b-frame is rotated to have the same
orientation as the n-frame, in the right side of the image.

two frames in the same manner (right side of the image).

2.1.3.1 Direction Cosine Matrix. A DCM is a 3x3 matrix that sim-

plifies the rotations from one reference frame to another. The matrix is created by

expressing each axis unit-vector of one frame as vectors with respect to the other

frame. Generally, the nomenclature for a DCM uses the Cto
from symbol, where the

superscript immediately following designates the reference frame being converted to

and a subscript letter immediately following designates the reference frame being

converted from.

As an example, consider a camera with a known position ([-1,+1,-1]T) in the

n-frame, pn
CAM shown in Figure 2.6. This figure, shows the position of the camera

referenced in both frames.

The symbol Cb
n is a DCM that rotates a position in the n-frame to a position

in the b-frame (assuming collocated origins). Cb
n multiplied by the position pn

CAM

determines the location of the camera in the b-frame, or pb
CAM = Cb

np
n
CAM .

16



Figure 2.6: Reference frame conversion, DCM. A point with a known location in the
n-frame is rotated to be defined in the b-frame. The b-frame is rotated to have the
same orientation as the n-frame, in the right side of the image.

Equations (2.3) and (2.4) expand this relationship for the defined frames in

Figure 2.6:

pb
CAM = Cb

n · pn
CAM , Cb

n =

1 0 0
0 −1 0
0 0 −1

 (2.3)

pb
CAM =

1 0 0
0 −1 0
0 0 −1

 ·

−1
1
−1

 =

−1
−1
1

 (2.4)

DCMs are by definition orthonormal and non-singular and have the following

properties:

Det(Cn
b) ↔ |Cn

b | = 1 (2.5)

Cb
n = (Cn

b )
T = (Cn

b )
−1 (2.6)

Cb
e = Cb

nC
n
e (2.7)
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2.1.3.2 Euler Angles. Euler Angles are a second method to describe

the rotation between reference frames by specifying an angle of rotation in a single

two-dimensional plane at a time. By projecting a three-dimensional frame onto a two-

dimensional plane of another reference frame, the XY plane for example, the rotation

between the two frames is a single angle. This angle is the first rotation, shown as

the ψ rotation in Figure 2.7. Projection onto a second plane defines another angle

and then again, such that three angles (ψ,θ,ϕ) are attained.

Figure 2.7: Rotational Euler angles for a n-frame to b-frame conversion. The n-frame
has been offset from the b-frame intentionally. The angles are determined and applied
in series [20].

Euler angles have some limitations. The angles are computed in series and must

be utilized in the same order. A common convention and the one used in this research

is that of 3-2-1 - first the XY plane (yaw), then the XZ plane (pitch), and finally the

YZ plane (roll). If the same order is not maintained throughout, attitude errors will

occur.

For n-frame to b-frame conversions, the Euler Angles are defined as (in order of

3-2-1):

• ψ = rotation about the Zb axis (heading or yaw)

• θ = rotation about the Yb axis (pitch)

• ϕ = rotation about the Xb axis (roll)
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In this thesis, the terms heading and yaw are interchangeable. A positive Euler

angle corresponds to a positive rotation about that axis defined by the right-hand

rule. The rotation described by the example in Section 2.1.3.1 was a roll rotation of

180◦.

Conversions also exist between DCMs and Euler angles. The following in-matrix

computation uses the Euler angles to create the b-frame to n-frame DCM, Cn
b [25].

Cn
b =


cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ

sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ

− sin θ cos θ sinϕ cos θ cosϕ


(2.8)

The substitutions, ψ = 0◦, θ = 0◦, and ϕ = 180◦ result in the same DCM (Cb
n

or Cn
b , equivalent in that example through the relationship in Equation (2.6)) shown

in Equation (2.3). With a known DCM, the following computations determine the

Euler angles:

θ = − sin−1 (Cn
b(3, 1)) (2.9)

ϕ = sin−1

(
Cn

b (3,2)

cos(θ)

)
(2.10)

ψ = sin−1

(
Cn

b (2,1)

cos(θ)

)
(2.11)

where Cn
b (i,j) represents the coefficient in the ith-row and jth-column of the DCM.

From these equations, a singularity occurs when θ (pitch) is close to or equal to

±90o (cos(±90o) = 0, causing Equations (2.10) and (2.11) to be undefined). This is

not a concern in this research because an aircraft at this attitude would be completely

vertical; the test flights did not put the aircraft in this condition.

When the origins of the reference frames are not collocated, the translation

between frames is performed prior to the rotations previously described.
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The following equation represents an e-frame to n-frame conversion:

pn
CAM = Cn

e [p
e
CAM − pe

NAV ] (2.12)

where pe
NAV is the location of the new coordinate system with respect to the former,

in this case the origin of the n-frame as it is located in the e-frame.

The transformations and projections of homogenous coordinates expand on the

rotation and translation operations presented between Cartesian coordinates. The

next section presents the transformation matrices describing this process.

2.1.3.3 Transformation Matrix. A transformation between coordi-

nates is a linear relationship, represented in this thesis by a matrix, T. The DCMs

presented in Section 2.1.3.1 are a special type of 3×3 transformation.

Transformation matrices permit general mapping and projections of points be-

tween coordinate frames. Beyond the specific rotational transformation of a DCM, a

general transformation matrix can scale or shear points in addition to rotating them.

The term perspective projection is a specific type of transformation. This transfor-

mation projects three-dimensional positions onto a two-dimensional plane along lines

that emanate from a single location, or the center of the projection.

The effects of homogeneous coordinates in a perspective projection transfor-

mation are best illustrated with an example. To illustrate, the origin of the cam-

frame is designated as the center of projection. Figure 2.8 depicts two distinct

points in three-dimensional space, with the Cartesian coordinates shown in the image,

(p cam
1 = [x,y,x]T and p cam

2 = [2x,2y,2x]T). The plane the points are projected onto

is parallel to the Y and X axes at a distance of one unit. Through a perspective

projection, both points project to the same position on this two dimensional plane.

Because the coordinates of these points all share the same ratio, 2:1, the points repre-

sent two of an infinite number of points, along the same line, that will also project to

the same point on this plane. The scaling term, k = 1, included into the homogenous
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Figure 2.8: Projecting three-dimensional points onto a plane. All the points along a
line emanating from the center of the projection (the origin of the cam-frame) project
to the same position using a perspective projection transformation.

coordinates permits the scaling needed to project these point to the same position on

the plane using a single matrix. The correct homogenous coordinates to use in this

projection are p cam
1 = [x,y,x,1]T and p cam

2 = [2x,2y,2x,1]T.

This projection of points is shown mathematically for the example points in

Figure 2.8. Consider the transformation matrix, T:

T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

 (2.13)

Projecting these points onto this plane with the use of the transformation has

the following results:

p cam
1∗ = T · p cam

1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

 ·

xyz
1

 =

xyz
z

 (2.14)

p cam
2∗ = T · p cam

2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

 ·


2x
2y

2z
1

 =


2x
2y

2z
2z

 (2.15)

where the * represents the new location of the point.
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These two points can be normalized by the value of their k scaling term; in other

words, scaled by 1

p plane
k, 1∗

= 1
z and 1

p plane
k, 2∗

= 1

2z , respectively. The resulting points p
cam
1∗

= p cam
2∗ = [x

z
,y
z
,1,1]T occupy the same position, located on the plane.

A camera can be represented in a similar manner. A camera uses a lens to

capture visible points along lines emanating from the origin of the cam-frame onto a

two-dimensional plane, or Ic. This information is a two-dimensional representation of

the three-dimensional world where this camera exists. A 3×4 transformation matrix,

referred to as the camera matrixK, represents a perspective projection transformation

specific to a given camera and lens. Mathematically, K describes the mapping of

three-dimensional positions onto two-dimensional images attained through the lens

[8]. Before fully introducing the camera matrix, the next section presents a basic

understanding of lenses.

2.1.3.4 Pinhole Camera Model. The understanding of projective ge-

ometry is the basis for the projection of a three-dimensional world onto a two di-

mensional image by a lens. Understanding the geometries involved with lenses helps

develop precise mathematical relationships between an object and an image. These

mathematical relationships permit real-world determinations of positions based on

information contained in an image. A pinhole camera model approximates the rela-

tionship between the real world and an image collected by an ideal pinhole camera.

Using this model, the necessary relationships are developed for a generic camera.

A typical lens used by a camera (biconvex) alters parallel light incident on its

surface towards a point that is a fixed distance away, known as the focal length (f),

behind the lens. An example biconvex lens is shown in Figure 2.9.

The lens also alters non-parallel light, but in a different manner that is better

understood by examining the fundamental equation of the thin lens from [12], as

acquired from [27] and shown in Figure 2.10.
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Figure 2.9: A biconvex lens. Parallel light hitting a biconvex lens focuses at a single
point that is a fixed distance behind the lens. This distance is the focal length of the
lens.

Figure 2.10: Thin lens model. The fundamental equation of the thin lens explains that
light incident on the lens from a point source (on the top of the arrow) a distance
(do) in front of the lens arrives at the same point a distance (di) behind the lens.
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From the thin lens theory, light that is incident on the lens and not parallel does

so in a predictable manner, such that all light that irradiates from a point source (the

tip of the arrow in the figure) arrives at the same point a certain distance behind the

lens.

The following relationship between the distances in Figure 2.10 can be shown:

1

di
+

1

do
=

1

f
(2.16)

where do is the distance from the object in the scene to the lens, di is the distance from

the lens to the image, and f is the focal length of the lens. Moving the object farther

away (do increases), from a lens with a fixed focal length (f constant), the distance

to the image (di) decreases and its relative image size (or the image translation in the

Y axis) decreases.

The pinhole model reduces the size of the lens in Figure 2.10 to the size of a tip

of a pin. All of the light from the scene that is incident on the lens passes through the

optical center of the lens and is projected on to an image plane located a focal-length,

f , behind the lens. This is shown in Figure 2.11, where p1 is an arbitrary point source

at the tip of the arrow.

Figure 2.11: Pinhole model. Light from the scene, incident on the lens, is projected
to an image a distance f behind the lens.
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The physical location of p1 does not actually move to the image plane. Anno-

tating the subscript identifier with an * differentiates this visual representation of a

point from the physical location of a point.

From the pinhole model depiction in Figure 2.11, the two triangles created by

dotted lines on either side of the lens are geometrically similar. The angles in the

triangles are the same, the ratio between the sides are the same, and the locations

of the triangles’ vertices are related by the negative of that same ratio, or −f
z
. This

analogy shows that the translation of the visual presentation along the Z axis, pcamz,1∗ , is

equal to the ratio −f
z
times the translation of the original point in the scene pcamz,1 , or

pcamz,1∗ = −f
z
· pcamz,1 . The following equation expands this relationship to all the position

coordinates of the points [27] [12]:

pcam
1∗ = −f

z
pcam
1 (2.17)

Individually, all the scalar translations of pcam
1 are scaled by the same ratio

and negated. It is typical, for visual simplicity and to minimize the mathematical

conversions required, to place the image plane in front of the camera frame (such that

pcamz, 1∗ = +f) [8], as shown in subsequent figures. This also removes the need for the

negative sign in Equation (2.17).

The physical effects of a lens create a perspective projection transformation

matrix, detailed in Section 2.1.3.3, described as a linear mapping of homogenous

points in [8]. The following equation expands the relationship of Equation (2.17)

into a matrix that transforms three-dimensional homogenous coordinates to the two-

dimensional homogenous coordinates:

p cam
1∗ =

fxxfyy
z

 =

 fx 0 0 0

0 fy 0 0

0 0 1 0

 ·

xyz
1

 = T · p cam
1 (2.18)

where fx and fy are the focal lengths in the Xcam axis and the Ycam axis respectively.
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The normalization of the resulting two-coordinate homogenous point (divide the

coordinates by the k value, which is z) in Equation (2.18), is the same as the division

by z in Equation (2.17). Expanding the two axis pinhole model to show all three axes

shows the relationship between the cam-frame and the image-frame in Figure 2.12.

Figure 2.12: The cam-frame and image-frame relationship. A three-dimensional pin-
hole camera model demonstrates this relationship.

This relationship is valid for the pinhole model; however, real-world lenses are

not ideal pinhole lenses. Real lenses distort the image [9]. Distortion effects of a

lens, specifically a camera lens, are examined in the next section. In addition, the

transformation between the real-world and images collected by a camera (Ic images)

are expanded to include the conversion to the image-frame.

2.1.3.5 Camera Model and Camera Matrix. Locating an object in an

image involves three characteristics of a camera. The first set of characteristics is

called the extrinsic parameters of the camera. These parameters locate the object in

the external reference frame of the camera, or the cam-frame. The second character-

istics set is the distortion effects from a non-pinhole lens. The third characteristics
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set is called the intrinsic parameters of the camera. These parameters locate the ob-

ject in the internal reference frame of the camera, or the image-frame. This section

details the parameters used to create this entire transformation.

The external relationship between the camera and other navigation frames uses

the same rotations and translations as described in Section 2.1.3. The following

equation expands the relationship of Equation (2.12), but not the specific values, to

account for homogenous coordinates [8]:

pcam =

Ccam
e −Ccam

e pe
CAM

01×3 1

pe (2.19)

where pe is any point referenced in the e-frame, pe
CAM is the location of the camera

in the e-frame, and 01×3 is a row vector of three zeros. This matrix is the same as

translating and then rotating the location of the point into a new reference frame. This

transformation is the extrinsic relationship of the camera to other reference frames.

The next section presents the distortion effects of the camera.

A simple model for the distortion effects of the lens approximates the trans-

formation of the normalized points in the cam-frame to distorted positions in the

cam-frame. A calibration process for a specific camera determines these distortion ef-

fects [2]. Two components, radial and tangential, comprise the total distortion model.

The first component, radial, affects both the x translation and the y translation in

the same manner, as a function of their distance from the Zcam axis [9]:

xr = x
(
1 + c1r

2 + c2r
4 + . . .

)
(2.20)

yr = y
(
1 + c1r

2 + c2r
4 + . . .

)
(2.21)

with the temporary substitutions: x for pcamx and y for pcamy , xr and yr are the po-

sitions of the point in the cam-frame, accounting for radial distortion; c1 and c2 are

arbitrary coefficients that a calibration of the camera and the lens determines. This
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distortion model estimate of the actual distortion of the lens depends on the number

of coefficients used. For this thesis, three coefficients were sufficient.

The tangential distortion model affects the x translation and the y translation

differently. This part of the distortion model accounts for non-symmetric distortion

between the two axes, the tangential distortion in each axis is dependent on both

translations:

δxt = 2c3xy + c4(r
2 + 2x2) + . . . ) (2.22)

δyt = 2c4xy + c3(r
2 + 2y2) + . . . ) (2.23)

where δxt and δyt are the change in position of the point in the cam-frame, accounting

for tangential distortion. Common practice is to limit these coefficients to two.

One overall distortion model combines the effects of the two distortion models,

with the addition of the third radial-distortion coefficient, c5 [9]:

xd = x+ c1r
2x+ c2r

4x+ c5r
6x+ 2c3xy + c4(r

2 + 2x2) (2.24)

yd = y + c1r
2y + c2r

4y + c5r
6y + 2c4xy + c3(r

2 + 2y2) (2.25)

where xd and yd are the normalized positions of the point, accounting for distortion.

Through a calibration process, the determination of these coefficients creates the

distortion model for a particular camera and lens combination at a fixed focal length.

With a defined distortion model a common practice is to un-distort the image. An un-

distorted image approximates the image a pinhole camera would have collected. This

is accomplished by moving individual pixels in an Ic through the reverse of the above

equations. The result is a better estimate of the normalized locations of the points in

the cam-frame. Because the intrinsic transformation of the camera (presented next)

is a linear transformation, this un-distortion process can be applied directly to the Ic.

For the remainder of this thesis, the theory presented assumes un-distorted images.
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The final characteristics of a camera, the intrinsic parameters, determine the

transformation on a position in the cam-frame to its representation on the Ic as

referenced in the image-frame. Equation (2.18) detailed the projection from the

scene to the image plane, with both points referenced in the cam-frame. To convert

the visual representation into the image-frame, an additional scaling and translation

occur. This transformation can be seen in Figure 2.13.

Figure 2.13: Mapping cam-frame to image-frame. The intrinsic camera parameters
determine the projection of an object, located physically in the cam-frame to a visual
represented location in the image-frame.

The scaling terms account for the difference in the units of measurement. Frames

external to the camera denote translations in a standardized measurement unit (feet,

meter, miles, etc.), the image-frame denotes translations in pixels. To scale the

locations, two ratios are used, one for each the X and Y axis. The ratio of the

width in pixels over the width in standardized measurements, or N
W
, scales the X axis

translation, similarly M
H

scales the Y axis translation. Additionally, the term skew,
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or s, accounts for the possibility of a non-orthogonal Ic, defined as:

s = −
N
W
M
H

cot(θs) (2.26)

The translation between frames accounts for the location of the principal point

in the image-frame, [xo, yo]
T.

The addition of the scaling and translation to Equation (2.18), provides the

complete transformation from cam-frame to image-frame:

p image =

 fx N
W

s xo 0

0 fy
M
H

yo 0

0 0 1 0

p cam (2.27)

The fx
N
W

term represents the focal length of the lens in the Xcam axis, in pixels ;

it is replaced by a single symbol α. The fy
M
H

term represents the focal length of the

lens in the Ycam axis, in pixels ; it is replaced by β.

The camera matrix K is defined:

K =

 α s xo 0

0 β yo 0

0 0 1 0

 (2.28)

Combining the intrinsic and extrinsic transformations of the camera, and as-

suming the removal of distortion effects, the following complete transformation relates

real-world locations to their location in an image:

p image = K

[
Ccam

e −Ccam
e pe

CAM

01×3 1

]
p e (2.29)

This section demonstrated the relationship between Cartesian and homogenous

coordinates, including conversions, rotations, translations, and transformations be-

tween frames. This information is the basis for the navigational relationship used
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throughout the thesis. The next section expands on some of these concepts as they

relate to aircraft formation.

2.1.4 Formation Coordinate Frames. Two aircraft known as the lead aircraft

and the wing aircraft define a basic formation. Multi-element and multi-ship can

define extended formations that involve any number of additional aircraft. Navigation

within a formation is always a complex endeavor that involves extensive planning and

discussion between all involved operators to ensure safe operations.

Formation also complicates the aircraft’s navigation. Position and orientation

with respect to an Earth-referenced navigation frame is now coupled with position

and orientation with respect to single or multiple formation aircraft frames. Location

in the formation dictates when reference to one frame will have priority over the

other, though neither is used completely independent of the other. For a two-ship

formation, the lead aircraft is usually the only additional navigational reference point

for the wing aircraft.

The lead aircraft has two separate coordinate systems. The first is that of lead

navigation frame or nL-frame. This frame is independent of aircraft orientation, and

was further described in Section 2.1.2.3.

The second coordinate system defined with respect to the lead aircraft is that of

lead body frame, or bL-frame. This frame is rigidly attached to lead, and was further

described in Section 2.1.2.4.

Other aircraft within the formation define their location based on one of the

frames of the lead aircraft. While there is not an established rule on which frame is

preferred, in practice it is dependent on the distance away from the lead aircraft. The

farther an aircraft is away, the harder it becomes to visually determine the attitude

of the lead aircraft and appropriately, the nL-frame is used. When close and the lead

aircraft’s attitude is readily apparent, navigation is typically done with the use of

the bL-frame. For the purposes of AAR, the aircraft will be close, and normally the

bL-frame is used.
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The other aircraft in the formation also have coordinate frames associated

with them. The wing aircraft have both a b-frame, or bW -frame, and a n-frame,

or nW -frame. They are both similarly defined as the coordinate frames of the lead

aircraft.

The aspects of formation navigation, as they relate to AAR will be further

discussed in Chapter 3. The next section details the background information on the

programming, including the open-source libraries used in the research.

2.2 Programming Libraries

A large portion of this research is facilitated by the programming code that

ultimately provides the navigational solution. The programming for this research

used the C programming language.

Within the C language, two powerful image rendering and image processing

libraries exist, OpenGL and OpenCV. Both libraries provide critical capabilities to

their respective areas, and ultimately to this research. OpenGL is a graphics rendering

library that is an industry standard and provides fast, accurate, and flexible images.

OpenCV is a computer vision library that utilizes quick operations on matrices and

allows real-time analysis of images. Many terms, especially the names of reference

frames, are not industry standard but were chosen to minimize confusion between

the different disciplines covered in this research. To limit the depth of this section,

many important steps and processes are not presented. The intent of this section is to

provide a general understanding of these libraries for readers unfamiliar with them and

to demonstrate relationships with physical cameras and images. This section looks

at the basics of both libraries and their interactions. More in-depth explanations

throughout the thesis further expand on the libraries interaction with the research.

2.2.1 OpenGL. OpenGL is a programming library that interfaces with

a platform’s graphics hardware. The “GL” portion of the library name stands for

Graphics Library. Because of its platform-independence, ease of use, and rendering

32



accuracy and speed, OpenGL is used throughout the computer graphics industry.

Using OpenGL to render a virtual image (Ir) of objects involves setting up a scene

with objects defined by collections of small polygons and applying appropriate lighting

conditions in a customizable viewing-volume. In other words, it involves defining a

volume of space (called a frustum) and placing objects inside the frustum to see them

on the screen.

The main assumption behind the OpenGL library is that a collection of poly-

gons can approximate any object in a scene. As the number of polygons increase,

and their size decrease, the smoothness of textures and surfaces increase towards a

representation where individual polygons are not recognizable because of their minute

size. Various editing programs exist to create the objects in a polygon representation.

Coloring individual polygons to match the actual or desired texture of the object adds

realism to the scene.

Orientation in the OpenGL world requires coordination frames, similar to those

described in Section 2.1.2. The user determines the location of the OpenGL world

frame (GL-frame), anywhere in the OpenGL world, in whatever units are required by

the user. It is simply defined by referencing other items in its coordinate frame.

Likewise, the user is free to determine other frames. A camera in the OpenGL

world can exist wherever the user determines and typically the optical center of the

camera is co-located with the origin of the GL-frame, but this is not required. The

camera has a frame associated with it: the GLcam-frame. In contrast to the camera

defined in Section 2.1.2.5, the GLcam-frame has the negative Z axis projecting into

the viewing area, the Y axis defines the vertical axis in the up direction, and the

X axis defines the horizontal axis to the right. More OpenGL-specific frames will be

introduced when needed.

Using the parameters of a camera, detailed in Section 2.1.3.5, customizes the

Ir produced by OpenGL to mimic the Ic collected by the camera. By modifying the

OpenGL frustum to approximate the viewing characteristics of a camera and lens,
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renderings of an object can approximate what the object would look like if a camera

collected the images. The bulk of this research relies on the correct creation of an Ir

for comparison with an Ic of the same object. The following sections describe a basic

OpenGL setup.

2.2.1.1 OpenGL setup. There are two different types of views available

in OpenGL, orthographic and projective. An orthographic view maintains the aspect

of parallel lines. For example, an image of railroad tracks would never show the two

rails intersecting. Orthographic views are used when a fixed relative scale is required,

regardless of the distance from an object. For example, engineering diagrams of a

building would use an orthographic view to keep the floors parallel and the intersection

of floors and walls perpendicular.

A projective view is what lenses, including the human eye, capture. A projective

view does not maintain parallel lines, instead the view introduces the concept of a

vanishing point. Those same railroad tracks eventually intersect at a theoretical

distance of infinity in a projective view. Humans understand this concept naturally;

as an example train conductors do not slow down trains because the tracks appear to

narrow. Although both views are available in OpenGL, a projective view produces

images that represent a real world scene.

Defining the projective view in OpenGL requires the creation of a projective

frustum, best understood visually in Figure 2.14. The definition of a frustum requires

defining a near and far plane (zNear and zFar), a Field of View (FOV) (typically the

FOV in the Y direction, FOVY , in degrees or radians), and an aspect ratio between

FOVX and FOVY . Alternatively, through trigonometric relationships of the truncated

four-sided pyramid, defining left, right, top, and bottom of the near clipping plane can

also define the frustum. Both methods are similar; however, the latter allows a little

more customization of the scene. The term clipping planes describes the imaginary

walls of the frustum because they clip objects from the eventual Ir of the scene.

Figure 2.14 shows these terms visually with the orientation of the GLcam-frame.
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Figure 2.14: OpenGL viewing volume [21]. Using the respective FOVs or the defini-
tion of the zNear plane defines the space in the OpenGL world that the camera can
potentially see.

OpenGL contains a few different functions that create a projective frustum. A

simple view would utilize the glFrustum( ) command as shown in Listing 2.1 [19,21]. It

is important to note that the values, zNear and zFar, are distances, not translations.

Listing 2.1: glFrustum ( ) function declaration

void g lFrustum ( GLdouble l e f t , GLdouble r i g h t , GLdouble bottom ,
GLdouble top , GLdouble zNear , GLdouble zFar ) ;

To simulate the view as though a lens of a camera created it, the following solves

for the respective FOVs:

FOVY = 2 · tan−1

(
H
2

fy

)
= 2 · tan−1

(
M
2

β

)
(2.30)

FOVX = 2 · tan−1

(
W
2

fx

)
= 2 · tan−1

(
N
2

α

)
(2.31)

which can be used to solve for the parameters in Listing 2.1.
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To understand how an object in the frustum appears on the screen, another

important frame critical to the use of OpenGL is introduced: the normalized device

coordinate frame. For consistent notation, it is represented in this thesis as the

NDC-frame. The OpenGL engine uses this frame to determine what, where, and

how to place objects on the eventual Ir. Located in this frame is a cube termed

the canonical viewing volume (CVV). It has a size of two units by two units by

two units with the NDC-frame origin at its center. This frame has the unfortunate

characteristic of being left handed with theY axis projected out the top of the viewing

volume, the X axis out the right, and the Z axis into the frustum. Every part of a

scene transforms into this frame for at least two simple determinations.

As an over-simplification of this process, the NDC-frame is shown co-located

with the GLcam-frame in Figure 2.15. Because of the involved transformations, from

the cam-frame to NDC-frame, the conversion is not as simple as negating the Z axis

of the two frames.

Figure 2.15: OpenGL canonical viewing volume. The OpenGL engine uses this volume
to determine what objects in the scene can be placed on the Ir. At the center of the
cube is the origin of the NDC-frame.
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OpenGL first uses the CVV to determine what objects, or parts of an object,

should appear on the screen. If the transformed position falls within the cube, it has

the potential to be seen on the screen. Second, OpenGL determines which objects

within the cube obscure other objects. If two objects, or more precisely if two pixels

from the scene, have the same x and y translation in this frame then the pixel with

the lower z translation will be shown (those with z translations less than negative one

were already discarded in the first step.)

As a simplified overview of the complete OpenGL rendering process, the follow-

ing steps occur. First, the projective GL world is transformed such that the projective

viewing volume shown in Figure 2.14 becomes a rectangular shape that is then scaled

to the shape of the CVV shown in Figure 2.15. Second, collapsing the contents of

the cube onto the rear wall (located at z = -1 in the NDC-frame) creates a two unit

by two unit image of the scene. Third, scaling that image to the Ir size required by

the user (nominally, the on-screen window size) completes the process. Figure 2.16

details the entire transformation that is presented in the following sections. The first

two transformations T1 and T2 from the figure are modified slightly in Chapter 5.

2.2.1.2 GLcam-frame to CVV. The transformation from GLcam-

frame to the NDC-frame and the projective frustum to the CVV is a two-step process.

The first step transforms the lines emanating from the GLcam-frame origin to lines

that are parallel (T1) and then scales the perspective to the scale of the CVV (T2).

For simplicity, an intermediate coordinate frame is not defined for the intermediate

step between GLcam-frame to NDC-frame; instead both are referenced in the NDC-

frame with an understanding that a secondary transformation occurs.

This first step does not create an orthographic view of the scene; rather it allows

the projective view to be scaled such that it becomes rectangular in shape. Since the

computer does not have a lens to create this view, it does it digitally by increasing

the scale of objects closer to the zNear clipping frame while decreasing the scale of

those closer to the zFar clipping frame.
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Figure 2.16: Overview OpenGL process. The OpenGL process starts with a defined
viewing frustum and transforms it into a 2x2x2 cube, the contents of the cube are
placed on a 2x2 image that is expanded to the necessary size.

As an example, compare the relative size of the two arrows in Figures 2.17 and

2.18. In the projective view, they are both located close to the zNear and zFar clipping

planes, but within the defined projective frustum. Additionally, both have the same

height (visually, the length in the y translation). Because Arrow 1 is closer to the

camera frame it spans a larger angle of the frustum’s FOVY . In contrast Arrow 2 is

farther away and spans a smaller angle. The first transformation converts all the lines

emanating from the center of projection (the GLcam-frame origin) into parallel lines.

This transformation appropriately scales the entire scene in the GLcam-frame

such that the four sided, truncated pyramid-shaped frustum becomes rectangular in

shape. A transformation matrix (T1) represents the first transformation:

T 1 =


zNear 0 0 0

0 zNear 0 0
0 0 zNear + zFar zNear ∗ zFar
0 0 −1 0

 (2.32)
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Figure 2.17: Two arrow example, projective frustum. In this example, the two arrows
referenced in the GLcam-frame appear to have the same height.

Figure 2.18: Two arrow example, NDC-frame. The example scene from Figure 2.17
is transformed, such that the lines emanating from the origin of the GLcam-frame
become parallel. Arrow 1 is now scaled larger than Arrow 2.
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This first transformation does not account for scaling (the projective view frus-

tum scale to the cube scale). This is illustrated in Figure 2.18 as the arrows do not

reside within the CVV. The second step (T2) scales the transformation accomplished

in the first step appropriately; in other words the rectangular-shape frustum becomes

cube-shaped. For completeness, there is a final step that normalizes the homogenous

coordinates. In the second step, shown in Figure 2.19, the two arrows both fall within

the CVV and both have the potential to be seen on the Ir. However, in this example

arrow 1 would most likely cover up arrow 2 and arrow 2 would not be seen on the Ir.

Figure 2.19: Two arrow example, CVV. The second step in the transformation process
scales the scene in the NDC-frame, such that the projective viewing volume defined
by glFrustum ( ) is transformed to the CVV.

The second transformation is represented as a transformation matrix (T2):

T 2 =


2

right−left
0 0 − right+left

right−left

0 2
top−bottom

0 − top+bottom
top−bottom

0 0 2
zNear−zFar

zFar+zNear
zNear−zFar

0 0 0 1

 (2.33)
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This transformation (T2) is the same transformation required if the original

scene was an orthographic view and not projective. It can be created with a call to

the OpenGL library function glOrtho( ), shown in Listing 2.2 [22].

Listing 2.2: glOrtho( ) function declaration

void g lOr tho ( GLdouble l e f t , GLdouble r i g h t , GLdouble bottom ,
GLdouble top , GLdouble zNear , GLdouble zFar ) ;

OpenGL also creates a similar transformation with the call to glFrustum( ). The

transformation created by glFrustum( ) is the same as the combination T2·T1 (placed

in this order because the original points are pre-multiplied by the transformations).

The transformation created by glFrustum( ) is shown in Equation (2.34). This

transformation accomplishes the two steps of the GLcam-frame to CVV transforma-

tion.

glFrustum =


2∗zNear
right−left

0 right+left
right−left

0

0 2∗zNear
top−bottom

top+bottom
top−bottom

0

0 0 zFar+zNear
zNear−zFar

2∗zFar∗zNear
zNear−zFar

0 0 −1 0

 = T2T1 (2.34)

This one step transformation is seen in Figure 2.20, with the inclusion of the

lines emanating from the center of projection in each viewing volume.

For an example of this transformation, consider a projective viewing-volume

that is symmetric both horizontally and vertically (equal viewing area on both sides

of the Z axis). The function call terms can be replaced with width (W) and height

(H) values, such that left = −W
2
, right = W

2
, bottom = −H

2
, and top = H

2
, causing the

first two values in the third column in Equation (2.34) to be zero. With that setup,

consider a point in the GLcam-frame with the following translations:

p GLcam
1 =

[
−W

2
H
2

−zNear 1
]T

(2.35)
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Figure 2.20: The glFrustum( ) transformation. The function creates a transformation
matrix that maps the eight corners of the projective viewing volume into the shape
of a cube.

This point is located in the projective-view frustum on the near clipping plane in

the top left corner, shown as a circle on the pyramid in Figure 2.20. Pre-multiplying

this point by the transformation created by glFrustum( ), the intermediate point results

in:

p NDC
1 =


2∗zNear

W
0 0 0

0 2∗zNear
H

0 0

0 0 zFar+zNear
zNear−zFar

2∗zFar∗zNear
zNear−zFar

0 0 −1 0

 ·


−W

2

H
2

−zNear

1

 =


−zNear

zNear

−zNear

zNear


(2.36)

which normalizes to:

p NDC
1 =

[
−1 1 −1 1

]T
(2.37)

This position is located on the top, left, rear corner of the eight unit3 CVV cube

and would be seen on the image. Similarly, the other seven coordinates that make
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up the pyramid would transform to the other seven corners of the cube. This section

covered the first step the next section details the second step of the OpenGL process.

2.2.1.3 CVV to GLimage-frame. The final transformation of an object

to an Ir is now presented. Locations on an Ir are referenced in the GLimage-frame.

This frame is located with the origin at the bottom-left corner of the resulting Ir. The

X axis projects out the right side of the image, parallel to the X axis of the GLcam-

frame and the Y axis projects out the top of the image, parallel to the Y axis of the

GLcam-frame.

To demonstrate the transformation first requires the GLimage′-frame as an

intermediary frame. This frame is similarly defined as the NDC-frame but is located

at the bottom, left, rear corner of the CVV cube, or one unit below, one unit to

the left, and one unit behind the NDC-frame origin as shown in Figure 2.21. The

transformation of a point located in the NDC-frame to the same point referenced in

the GLimage′-frame requires adding one unit to all three coordinates.

Similar to the cam-frame to image-frame transformation (Section 2.1.3.5), the

projection of the NDC-frame on to the Ir is shown in Figure 2.21 to visualize the

conversion process. To make the transformation into the GLimage-frame, the image

is scaled to the size of the user-defined window, typically not accomplished using the

OpenGL library (however, various utility wrappers exists, such as OpenGL utility

toolbox (GLUT) that will create these windows). As shown in Figure 2.22 the scaling

for the X axis uses the ratio of the desired width in pixels, N , over the current

width, two, or (N
2
), with similar scaling used for the Y axis (M

2
). This is the default

transformation for OpenGL, while additional customization can be used to move the

origin anywhere in the image and to define a new width and height for a smaller

viewing window.
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Figure 2.21: The GLimage′-frame. The frame is located at the bottom, left, rear
corner of the CVV cube. The projection of the NDC-frame is shown projected on to
the image.

Figure 2.22: The GLimage′-frame to GLimage-frame. The image in the GLimage′-
frame is stretched to the user’s need to create the Ir.
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The mathematical transformation from CVV to GLimage-frame is shown:

p GLimage
x =

N

2
(p NDC

x + 1) (2.38)

p GLimage
y =

M

2
(p NDC

y + 1) (2.39)

The total transformation from an object in the GL world to an image combines

the two transformation, GLcam-frame to CVV with CVV to GLimage-frame.

To render a scene in OpenGL, the typical process starts with the origin of

the model located at the origin of the GLcam-frame, shown in Figure 2.14 as the

intersection of the three axes. The process then translates and rotates the model into

the frustum, at which point the conversion process presented in this section occurs.

If portions of the model, in its final position prior to rendering, fall outside of the

frustum, the process clips it from the resulting rendered image, Ir, detailed further in

the next section.

2.2.1.4 OpenGL Image. An advantage of OpenGL rendering is that it

is efficient. The OpenGL rendering engine creates and displays an Ir quickly, typically

without extensive modification, and then discards it (clearing memory space for the

next image). To efficiently operate, OpenGL references an Ir as a 1-dimensional

array [1]. An array for a simple Ir with a height of six pixels and a width of nine

pixels is shown in Figure 2.23.

As a drawback to OpenGL accessing images in this manner, the ability to access

a single pixel, or the color value of a single pixel, is not as efficient as it is with an

OpenCV image (shown in the next section). To access a pixel in the OpenGL image

structure requires some knowledge of the image, additional programming to access

it, and again to modify it. A simplistic example is increasing the value of the green

component for every pixel in the image represented in Figure 2.23. The value in the

second array storage location (G in pixel one) and the value in every third array

storage location thereafter would be accessed directly, modified, and then the image
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Figure 2.23: OpenGL image storage configuration [1]. OpenGL accesses pixel infor-
mation from an image using a single array with a length equal to the total number of
image pixels x three.

could be displayed. Additionally, the rendering process must be complete and the

image located on the visual producing hardware before access to pixels is available.

Of note, the bottom left of an image (the origin of the GLimage-frame) is the

location of the first pixel in an OpenGL image, contrary to the location of the first

pixel in an OpenCV image, which is in the top left.

This completes the introduction to OpenGL, more specifics of the library are

presented throughout the thesis. The next section presents the details of the OpenCV

library, followed by the interaction between the two libraries.

2.2.2 OpenCV. OpenCV is a programming library that provides tools for

analyzing images; typically an Ic acquired from an optical-type sensor, such as a

camera, infrared sensor, radar, etc. The “CV” portion of the library’s name stands

for Computer Vision. The tools the library provides extract quality information from

the images.

The basis behind the OpenCV’s analysis is creating access to an image as a

matrix with a width and height equal to the number of pixels. For color, the matrix

has an additional dimension with additional layers for color components as shown in

Figure 2.24. Each value in the matrix corresponds to the color or grayscale intensity

of the corresponding pixel. By realizing images in this way, quick, effective, and

accurate analysis is possible. As an example, to increase the value of the green

component in every pixel in an image, the entire memory for the green component

(a single level of the matrix) can be accessed at one time and modified collectively,

a more efficient method than OpenGL would implement. The language also allows
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Figure 2.24: OpenCV image storage configuration [1]. OpenCV accesses pixel infor-
mation from an image using a single or multiple level matrix.

for efficient modification and analysis of the images in other ways. By modifying the

values of the pixels, images can be sharpened, smoothed, darken, lightened, and more.

Storage of an image in the OpenCV library is done with the use of a data struc-

ture. The structure is referenced as IplImage, originally defined as part of Intel’s Image

Processing Library (the Ipl in IplImage) [3]. This structure is shown in Listing 2.3.

The actual memory storage locations of the pixels of an image are contained

in the imageData portion of the IplImage (a pointer to the first pixel of image data).

The other variables of the structure provide useful information about the image, most

of which are intuitive. Values in some of the variables determine the most efficient

memory allocation and storage. A black and white image uses fewer layers of the

storage matrix and generally less memory than a color image.

The images accessed by OpenCV are referenced in the two-axis CV image-frame.

The origin of the frame is in the top left corner of the image, with the X axis denoting
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Listing 2.3: OpenCV image structure

typedef s t ruc t I p l Imag e
{

i n t nS i z e ;
i n t ID ;
i n t nChanne l s ;
i n t a lphaChanne l ;
i n t depth ;
char co lo rMode l [ 4 ] ;
char channe lSeq [ 4 ] ;
i n t dataOrder ;
i n t o r i g i n ;
i n t a l i g n ;
i n t width ;
i n t h e i g h t ;
s t ruc t I p lRO I ∗ r o i ;
s t ruc t I p l Imag e ∗maskROI ;
void ∗ image Id ;
s t ruc t I p l T i l e I n f o ∗ t i l e I n f o ;
i n t imageS i ze ;
char∗ imageData ;
i n t widthStep ;
i n t BorderMode [ 4 ] ;
i n t BorderConst [ 4 ] ;
char∗ imageDataOr ig in ;

}
I p l Image ;

horizontal pixel location to the right and the Y axis denoting vertical pixel location

below. The first pixel in the top left corner is at position [0, 0] in the image.

The benefits of the OpenCV image structure are evident in the speed at which

the library processes images. Some of the useful functions used by this research are

presented in the next portions of this section.

2.2.2.1 OpenCV Find Contour. As the name of the function implies,

cvFindContours( ) accomplishes just that. A collection of points found in an image

that somehow appear connected, such as a line or curve, define a contour. Often
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an outline of an object or identifiable marks on the object define these curves. This

function searches through an image and returns a collection of contours.

As an example, the code snippet in Listing 2.4 demonstrates the use of cvFind-

Contours( ). The snippet takes an IplImage (defined as image), thresholds the image

(effectively reduces the effects of strong illumination and reflection), finds the con-

tours, and then draws the contours on a new IplImage (contour image) which can be

displayed as needed. The results of this function call can be seen in Figure 2.25.

2.2.2.2 OpenCV Match Template. Another important function that

OpenCV provides is a template matching function. This function accepts two IplIm-

ages regardless of size. If the images are different sizes, the smaller IplImage is the

template, and the larger IplImage is what the template is matched against. If the

images are the same size they are simply matched against each other. The symbol It

represents the template image, Im represents the larger image to match against. Using

a matching algorithm (detailed next), the function systematically compares It with

every possible portion of Im. The function returns to the user a matrix of values that

result from the matching. The dimensions of the returned matrix are equal to the

difference in dimensions between the two original IplImages plus one. If the two images

were the same size, the returned matrix is a single value. As an example, the two

images in Figure 2.26 are exactly 100 pixels different in size (scaled to fit on the page).

The resulting 101×101 matrix would return 10,201 values for every possible location

of It in Im. The symbol R represents the resulting matrix, and R(i, j) represents the

value in the matrix at the ith-row and the jth-column. A subscript following the R

denotes the method used to compute it (such as Rcorr, subscript notation matches the

methods presented in [3].)

Typically, information gathered from cvMatchTemplate( ) is the location in the

Im where the It most likely matches and the result at that location of the cho-

sen matching function. The returned locations of the match are referenced in the
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Listing 2.4: OpenCV cvFindContours( ) function pseudocode

// An OpenCV Ip l Image a l r e a d y e x i s t s named image
I p l Image contou r image ( width x h e i g h t ) // Crea te an OpenCV image
Memory g s t o r a g e ( width x h e i g h t x 3) // Crea te contou r s t o r a g e

// Thre sho ld the image and p l a c e the r e s u l t s i n con tou r image
cvAdap t i v eTh r e sho l d ( image , con tou r image )

// Find con tou r s and p l a c e i n s t o r a g e
cvF indContou r s ( contour image , g s t o r a g e )

// C l e a r the c r e a t e d image
cvZero ( con tou r image )

// Draw the con tou r s on contou r image
cvDrawContours ( contour image , g s t o r a g e )

Figure 2.25: OpenCV cvFindContours( ) function. This function finds the contours
of an image (left side), and in this application of it, places the contours in another
image (right side).
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Figure 2.26: OpenCV cvMatchTemplate function. This function matches the template
on the right side It with the image on the left Im.

CV image-frame. The symbol r denotes a two by one position vector of the location

of the most likely match.

There are six different matching functions available in cvMatchTemplate( ) [3];

however, three of them are normalized versions of the other three. These normalized

versions help reduce the effects of lighting and shading on the images. Two of the six

were used in this research, both of which were normalized and the details of those two

are presented. The following nomenclature is used in this section: Wt and Ht are the

width and height of the template, Wm and Hm are the width and height of the image

to match against. x and y represent the translations of specific pixels in R, and x′, y′

and x′′, y′′ represent the translations of specific pixels in It (referenced twice in one

equation). All the translations are referenced in the CV image-frame.

The first matching method is the correlation matching method [3]. This method

determines a match by multiplying the values in the images together and then squaring

them. This is similar to a sum squared difference, with a multiplication instead of a

difference. A perfect match will be large, and bad matches will be small or zero:

Rcorr(x, y) =
∑
x′, y′

(It(x
′, y′) · Im(x+ x′, y + y′))

2
(2.40)
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The second method is the correlation coefficient matching method [3]. This

method matches the It relative to its mean against the Im relative to its mean. A

perfect match would be one and a perfect mismatch would be negative one. The

process determines the mean value of It and Im and subtracts the respective mean

from the pixel values of each image. This creates new images denoted as I
′
t and I

′
m,

detail in the following equations:

I
′

t(x
′, y′) = It(x

′, y′)− 1

(Wt ·Ht)
∑
x′′, y′′

It(x
′′, y′′)

(2.41)

I
′

m(x+ x′, y + y′) = Im(x+ x′, y + y′)− 1

(Wm ·Hm)
∑
x′′, y′′

Im(x+ x′′, y + y′′)

(2.42)

These intermediate images are then multiplied, squared, and summed in the

same manner as the first method to provide a value between negative one and positive

one for each location in the R matrix:

Rcoeff (x, y) =
∑
x′, y′

(
I
′

t(x
′, y′) · I′m(x+ x′, y + y′)

)2
(2.43)

The normalized versions of these matching methods divide the resulting matrix

by a normalized coefficient. The resulting Rs are shown:

Rcorr normed(x, y) =
Rcorr(x, y)√∑

x′, y′

(It(x′, y′))
2 ·
∑
x′, y′

(Im(x+ x′, y + y′))2
(2.44)

Rcoeff normed(x, y) =
Rcoeff (x, y)√∑

x′, y′

(It(x′, y′))
2 ·
∑
x′, y′

(Im(x+ x′, y + y′))2
(2.45)

Figure 2.27 shows an example of the correlation coefficient matching method

applied to the two sample images shown in Figure 2.26.

52



Figure 2.27: OpenCV cvMatchTemplate( ) result. The result of the
cvMatchTemplate( ) applied to the images in Figure 2.26 is a matrix of dimensions
equal to the difference in dimensions between the It and Im plus one. The negated
values of the matrix, from the correlation coefficient matching method, are shown
here as height in the plot.

The values of Rcoeff normed(x, y) are plotted as negative heights, the images are

closer to exact opposites (values close to negative one). From both Figures (2.26 and

2.27), it appears that the best match (or best mismatch) of the two images is near

the middle of Im. The next section introduces the interaction between the libraries.

2.2.3 OpenGL to OpenCV. The benefits of both libraries are evident as they

were designed to be efficient at what they do best. Fortunately, both can accomplish

portions of the other’s capabilities when needed, but not as efficiently as the other. To

utilize the rendering power of OpenGL in combination with the image manipulation

and comparison power of OpenCV it is necessary to pass information between them.

In this research, the interaction between the two libraries was limited to passing

images. It was required that images rendered by OpenGL be compared with images

collected from the camera. To make the comparison, the OpenGL images had to be

converted to OpenCV images. Because of the different storage methods of the two

libraries, and the lack of available applications requiring both OpenGL and OpenCV,

an open-source conversion process was not available.
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According to [1], a possible solution requires accessing the color value of each

pixel in the OpenGL image and arranging it in the proper sequence of a blank OpenCV

image of the same size, as shown in Listing 2.5. In this example, an OpenGL image is

rendered to the screen (not shown in the listing), and an OpenCV image (CVimage)

is created and memory allocated with the same memory size as the OpenGL image.

The OpenGL image is then read into the memory location with the glReadPixels( )

function. The for loop cycles through all the pixels of the OpenGL image, now

stored in the memory location GLimage, and copies them to the correct location in

CVimage. The memory location GLimage(0) would access the R component of the

first pixel. Similarly, the CVimage−>imageData (0,0,0) variable would point to the

memory location of the first pixel of the initially blank OpenCV image.

The pixel transfer does not account for the difference in first pixel location

between an OpenGL and OpenCV image, a flip of the image is accomplished with

cvFlip( ). The other variables in the listing are used to systematically move through

Listing 2.5: OpenGL to OpenCV image conversion pseudocode [1]

I p l Image CVimage ( width x h e i g h t ) // Crea te an OpenCV image
Memory GLimage ( width x h e i g h t x 3) // Crea te memory s t o r a g e
g lR e a dP i x e l s ( width , he i gh t , GLimage ) // Screen image i n t o s t o r a g e
wIndex , h Index = 0
// wIndex i s the width index , h Index i s the h e i g h t i ndex

f o r i from 0 to width ∗ h e i g h t ∗3 by 3
// Cyc l e through a l l the p i x e l s i n the image

IF wIndex >= width
wIndex = 0
h Index = hIndex + 1

// P lace the p i x e l s o f GLimage i n t o CVimage
CVimage−>imageData ( hIndex , wIndex , 0) = GLimage ( i +2) // B
CVimage−>imageData ( hIndex , wIndex , 1) = GLimage ( i +1) // G
CVimage−>imageData ( hIndex , wIndex , 2) = GLimage ( i +0) // R

wIndex = wIndex + 1
end
c v F l i p ( CVimage ) ; // Account f o r d i f f e r e n t o r i g i n s
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all the pixels in both images.

This is the initial method of image conversion between programming libraries

used in this research. This concludes the background section on programming, some

of the areas are revisited in Chapter 5. To finalize this chapter, a introduction to

Kalman filtering is presented.

2.3 Kalman Filtering

Kalman filtering is a statistically based method to update, propagate and es-

timate the state (mean and uncertainty) information for a system with noise. By

assuming a statistical knowledge of the noise and a model of the system process, the

filter estimates state information that tends to be closer to true values than a system

without a Kalman filter. The filter also assumes some knowledge of the available mea-

surements, how they relate to the process, and their accuracy. The research presented

in this thesis made use of a linear Kalman filter. As an introduction, the following

terms are defined:

• x → state vector (nx1 vector)

• ẋ → derivative of the state vector (nx1 vector)

• F → homogeneous, continuous-time, system-dynamics matrix (nxn matrix)

• Φ → discrete-time state transition matrix (nxn matrix)

• B → input matrix (nxb matrix)

• u → input (bx1 vector)

• G → noise transformation matrix (nxq matrix)

• w → white noise processes (qx1 vector)

• Q → process covariance (qxq matrix)

• z → measurement vector (mx1 vector)

• H → observation matrix (mxn matrix)
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• v → white noise processes (mx1 vector)

• R → measurement covariance (mxm matrix)

• P → state covariance (nxn matrix)

• K → Kalman gain (nxm matrix)

In the introduction of terms, n is the number of states to be tracked, m is the

number of measurements available, b is the number of inputs into the system, and q is

the number of noise sources in the system model. A subscript k after the above values

denotes a discretized version of the term. The noise processes are white, Gaussian,

zero-mean noise (WGN) processes. A white noise source has constant power across

all frequencies, the WGN is a random process with a mean of zero and standard

deviation from zero of σ.

In a Kalman filter, the states are represented as random variables characterized

by a Gaussian distribution. Gaussian distributions allow the filter to characterize

the state with only two values, their mean (x) and their covariance (P). The state

mean is the filter’s estimate of the true value of the state, while the covariance is

representative of the uncertainty in that estimate.

Without any noise in the system, and no inputs, the basic relationship between

ẋ and x is the F matrix as expressed in the difference equation ẋ = Fx. Additionally,

if deterministic external influences exist in the form of inputs into the system, they

relate to ẋ by the B matrix, or ẋ = Fx + Bu. This relationship assumes zero noise

in the system; therefore, this relationship does not introduce uncertainty. With a

determined initial condition, this process model would know the state at any instant

in time without any uncertainty.

Since most systems have noise of some intensity, the Kalman filter characterizes

the noise in the process as a WGN process w(t) with covariance Q(t), defined as:

E{w(t)wT(t+ τ)} = Q(t)δ(τ) (2.46)
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where δ(τ) is the Dirac delta function, and E{·} is the expectation operator. This

represents zero-correlation in time of the noise source; the noise value at any instant

is not dependent on the noise value at any other time.

The basic Kalman filter denotes the relationship between these terms in a

continuous-time, stochastic differential equation:

ẋ(t) = Fx(t) +Bu(t) +Gw(t) (2.47)

This equation models the system dynamics in continuous time. The WGN processes

in the model do not actually introduce noise into the states, rather they characterize

the noise that is already present as a function of the process.

It is more common, and necessary when implementing in digital computers, to

represent a model in discrete-time for implementation in a Kalman filter, such that

Equation (2.47) is represented as:

xk = Φk−1xk−1 +Bk−1uk−1 +wk−1 (2.48)

where k is an instant in time, k − 1 is one instant before k, and Φk−1 is the state

transition matrix for time k − 1. The state transition matrix is a function of F and

the sampling interval (∆t) of the process, such that:

Φ(∆t) = eF∆t (2.49)

Implementing this system into a Kalman filter is possible without measurement

updates. The filter tracks the mean and covariance of the state, x and P. The Kalman

filter makes the following predictions at every sampling interval:

x̂−
k = Φk−1x̂

+
k−1 +Bk−1uk−1 (2.50)

P−
k = Φk−1P

+
k−1Φ

T
k−1 +Qk−1 (2.51)
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where x̂−k and P−
k indicate the estimation and uncertainty immediately before time

k (a priori), while x̂+
k−1 and P+

k−1 indicates the estimation and uncertainty immedi-

ately after the previous time k − 1 (only referenced as an a posteriori estimate if a

measurement update was incorporated.) This is the propagation step of the filter, as

time progresses, the uncertainty in the state estimation increases (P increases).

Decreasing the uncertainty in the state estimation requires the inclusion of mea-

surements into the Kalman filter. The discrete measurement process is modeled:

zk = Hkxk + vk (2.52)

where v is a WGN process with covariance R(t):

E{v(t)vT(t+ τ)} = R(t)δ(τ) (2.53)

The key to the Kalman filter updating x and P with measurement information

is determining the Kalman gain at the current time:

Kk = P−
k H

T
k

(
HkP

−
k H

T
k +Rk

)−1
(2.54)

The Kalman gain is based on the current covariance of the system, P, and the

covariance of the measurement, R. Based on those values the Kalman filter updates

the estimate of x and its uncertainty, P, with the measurement update

x̂+
k = x̂−

k +Kk

(
zk −Hkx̂

−
k

)
(2.55)

P+
k = (I−KkHk)P

−
k (2.56)

where I is an identity matrix of size n× n. This is the update step of the filter.

These are the basic relationships of the linear Kalman filter. The process con-

tinually repeats as needed: propagate then update. Every system is unique, some

include measurements at every sampling time, others only have access to measure-
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ments periodically and continually propagate until a measurement is available. This

general set of equations can be tailored to many different situations and adapted to

more advanced filters (the extended Kalman filter and unscented Kalman filter are

both based on these basic equations).

To implement the Kalman filter, an analysis of the system is needed to gain

some knowledge of the noise in the system process and the measurements. This, in

addition to a process and measurement model of the system, permits the Kalman

filter to estimate the state information better than not using a filter at all.

This chapter has presented the background needed for this thesis. The follow-

ing chapter adapts the information presented here to the AAR problem outlined in

Chapter 1.
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III. The Nature of Air Refueling

The general nature of air refueling is dynamic and the interactions between air-

craft are non-deterministic. The dynamics of flight, compounded by aerody-

namic influences between aircraft, unpredictable atmospheric, and environment con-

ditions, variations in lighting, and partially predictable human responses, all make AR

a stochastic process. In AR, the human operator innately understands the balance

between the possible and the probable. He applies this knowledge to render accurate

and timely decisions that impart motions to the aircraft based on their estimations

of current conditions.

The best way to portray this information to an autonomous system is with

models. By modeling the dynamics of a tanker aircraft, the autonomous solution can

apply some of the same innate knowledge in an attempt to match the effectiveness of

its human counterpart.

This chapter has two sections: the first details some key AR assumptions applied

to the development of a process model and the second presents the AR positions and

the information needed to determine them for autonomous operations and render them

as images in OpenGL. This chapter assumes two aircraft in formation, a lead aircraft

and a wing aircraft, and no knowledge of the lead aircraft’s position or attitude.

3.1 Air Refueling Dynamics

In a very basic sense, the number of degrees of freedom (DOF) of two individual

aircraft is twelve. Each aircraft has six DOF, three translations from a coordinate

system origin, and three attitudes with respect to that coordinate system. By placing

the reference coordinate system on one of the aircraft, three DOF are eliminated

because the aircraft with the coordinate system has a translation of zero in all three

axes. Using the b-frame as the coordinate system, the attitude information is zero

in all three axes as well. Using the n-frame as the coordinate system, the attitude

information is not zero, but the system has access to the attitude of the aircraft with
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an INS. Using either frame reduces the total unknown DOFs to six: the attitude of

the lead aircraft and the translation of the lead aircraft from the wing aircraft.

The first portion of this section presents the theoretical and empirical motions

of a simulated tanker aircraft in these six DOF and how they relate to AR. The second

portion builds on this knowledge to create a model of the lead aircraft’s dynamics.

3.1.1 Air Refueling Assumptions. Of these six DOF, a few have less vari-

ation during air refueling. The first, and most identifiable, is the lead aircraft’s yaw

attitude, or heading. A typical refueling consists of straight tracks, with very small

heading changes and turning tracks with constant roll-angle turns and predictable

heading changes. During the straight tracks, verification of the lead aircraft’s head-

ing is not required very often.

During turns, verification of the lead aircraft’s heading is accomplished more

often. With a good estimate of the roll attitude of the lead aircraft, a change in

heading (or yaw rate, ψ̇) can be predicted [29]. An aircraft’s turn rate, often related

to standard rate (3◦/second) or half standard rate (1.5◦/second), is dependent on the

bank angle and true airspeed of the aircraft, VT :

ψ̇ =

g

√
1

(cosϕ)2
− 1

VT

=
g tanϕ

VT

(rad/sec) (3.1)

where g is the acceleration due to gravity. This relationship assumes coordinated

flight and can be used to update the estimated heading of the lead aircraft, at ∆t

sampling times, through the following relationship:

ψk = ψk−1 +∆ψ (3.2)

where, ∆ψ is the amount of change between sampling times, such that ∆ψ = ψ̇ ·∆t.

With this equation as a predictor of heading, only a slightly higher verification rate

of heading is required during turning tracks, as compared to straight tracks.
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Empirical truth data, representative of tanker maneuvers, verify the yaw motion

of a lead aircraft during AR and the estimation of the heading from Equation (3.2).

During the data collection for this thesis the lead aircraft flew these maneuvers up to

an approximately 30o roll angle. Data were collected at 100Hz, and evaluated at 0.1

second intervals (∆t). The data collected was over a 250-second time segment during

which operationally representative refueling maneuvers were performed by the lead

and wing aircraft. Further details on data collection are presented in Chapter 5.

The data is shown in Figure 3.1 and demonstrates two things: the benign head-

ing changes of the aircraft and the accuracy of the heading predictions. The aircraft’s

heading with respect to the n-frame is shown as a continuous line, referenced to the

left axis, and the maximum change in heading between ∆t is shown in small circles,

referenced to the right axis. Additionally, the estimated heading is shown as a dotted

line also referenced to the left axis.

Figure 3.1: Lead aircraft ψ (solid line), ∆ψ (small circles), and estimated heading
(dotted line). Heading, change in heading, and estimated heading during a represen-
tative profile of a tanker aircraft during a rendezvous maneuver, including an initial
roll angle to roll-out. The max change values are presented as absolute values.

The change in heading is shown as absolute values. The time period of interest

includes a 33◦ roll angle turning track in the first 25 seconds leading to a roll-out on

heading, followed by a straight track. The maneuvers were hand flown by experienced
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pilots and the actual heading of a tanker aircraft will vary depending on the use of

an autopilot and pilot skill. Based on 10 years of AR experience, it is the author’s

opinion that these maneuvers represented actual refueling maneuvers.

Data analysis of this figure determined that the change in heading is approxi-

mately 0.02◦ per ∆t (0.2◦/second) during the straight track. During the turning track

the change in heading is approximately 0.15◦ per ∆t (1.5◦/second), or half standard

rate. These values will change with differing bank angles and true airspeeds flown.

Additionally, the estimation of heading initially does a good estimation over short

durations. Later in the data run, without updates, the estimation drifts away from

the actual true heading.

In conclusion, Figure 3.1 demonstrates that ψ verification is not required often,

especially during a straight track, and Equation (3.2) predicts ψ as a function of

ϕ even during turning tracks. If verifications were accomplished every two to three

seconds, the lead aircraft’s heading change would be less then 0.5◦ during that time.

Another low-variation DOF, is the lead aircraft’s pitch attitude. Tanker aircraft

attempt to maintain a constant altitude during AR. A constant altitude requires small

periodic motion in the pitch attitude causing a direct influence on the velocity in the

down axis in the n-frame. In Figure 3.2 the lead aircraft’s pitch attitude, with respect

to the n-frame, during the same time period in flight as Figure 3.1, is shown with

similar markings.

The tanker pitch range during this entire time period is 2◦ and the largest

change in pitch was 0.04◦ per ∆t (0.4◦/second). Even during the turn accomplished

during the first 25 seconds, the pitch did not change dramatically. As an example,

two aircraft, one with 7.5◦ and one with 5.5◦ pitch with respect to the n-frame, as

seen from the cam-frame of a wing aircraft, are shown in Figure 3.3. Typically, a

human operator is not able to recognize this subtle a difference over the time spans

of interest. As a result of these AR assumptions and the empirical data, this thesis
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Figure 3.2: Lead aircraft θ (solid line) and ∆θ (small circles). Pitch and change in
pitch during a representative profile of a tanker aircraft during a rendezvous maneuver,
including an initial roll angle to roll-out. The max change values are presented as
absolute values.

Figure 3.3: Lead aircraft at θ = 7.5◦ and θ = 5.5◦. The visual difference in an aircraft’s
pitch as viewed from a camera below, looking up at approximately 30◦. The image
on the left is at θ = 7.5◦, the right is at θ = 5.5◦, both with respect to the n-frame.
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assumes that θ is constant and ψ is a function of ϕ, and thereby verifies these DOFs

less frequently than the other DOFs.

The same run from the previous figures is shown depicting the down velocity of

the lead aircraft with respect to the n-frame in Figure 3.4, as a direct result of the

pitch inputs by the pilot (witnessed in the similarity between the peaks and values

of the two Figures 3.2 and 3.4). The lead aircraft was generally within 10 feet per

second (fps) of holding constant altitude (or zero fps). Additionally, the change in

down velocity was typically less than 0.2 fps per ∆t. The relationship between down

velocity and θ is non-linear, but over short periods a linear approximation can be

made. The algorithm presented in this thesis does not leverage this relationship;

however, by accurately predicting one of the two DOFs an estimate of the other is

possible, in a similar manner to the ψ̇ and ϕ relationship shown earlier.

Of the two remaining translation DOFs, north and east velocities, the same

data is shown for east velocity only in Figure 3.5. Both are similar, and the difference

between actual values depends only on current heading, ψ. These two DOFs have

Figure 3.4: Lead aircraft V down (solid line) and ∆Vdown (small circles). Down velocity
and change in down velocity during a representative profile of a tanker aircraft. The
max change values are presented as absolute values.
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Figure 3.5: Lead aircraft V east (solid line) and ∆Veast (small circles). East velocity
and change in east velocity during a representative profile of a tanker aircraft. The
max change values are presented as absolute values.

larger variation than the down velocity, but together they are constrained by the fairly

constant true airspeed of the lead aircraft.

Finally, the most dynamic DOF during AR is roll, shown in Figure 3.6. The

majority of the time this attitude stays constant; however, large changes periodically

occur that must be verified more frequently. Based on these lead aircraft assumptions

and empirical data, the next section presents a dynamic model of the process.

Figure 3.6: Lead aircraft ϕ (solid line) and ∆ϕ (small circles). Roll and change in
roll during a representative profile of a tanker aircraft. The max change values are
presented as absolute values.
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3.1.2 Air Refueling Model. The Kalman filter presented in Section 2.3

requires an estimated model of a system’s dynamics. Analyzing the motion of the

aircraft determines an approximate model for the filter. This section analyzes the

empirical data of a lead aircraft with respect to the n-frame and determines that

model. Many of the coordinate frames presented in Chapter 2 are justifiable for this

analysis. The n-frame was chosen for its proximity to the aircraft and independence

from the motion of the wing aircraft. The created model is based on the dynamics of

the lead aircraft in the n-frame and can be tailored to the other frames, based on the

knowledge of the wing aircraft’s motion.

Analysis of the data in the previous figures along with other similar data runs

(15 total), provides the data needed for creation of a model of the lead aircraft in the

n-frame. Analysis of the magnitude and frequency characteristics of the data leads

to a model that approximates the motion, or potential motion, of the aircraft.

The plots in Figure 3.7 are a culmination of 15 empirical runs. Figure 3.7a shows

the velocities in the representative axis. These are the same plots as the previous

figures of NED velocity, without the change per ∆t shown. Figure 3.7b is a similar

plot of the accelerations of the lead aircraft in the n-frame. The acceleration data is

more noisy then the velocity. The analysis of this data is shown in Table 3.1.

The north and east velocities show large variation about mean values that are

not similar to each other. Down velocity is centered near zero with a low standard

deviation. All the accelerations have a near-zero mean. Since the Kalman filter

requires the modeling of the noise in the system to be WGN, the accelerations and

potentially the down velocity can be modeled as noise sources for the Kalman filter.

However, the accelerations for north and east do not actually appear to be white

noise sources, they appear to have a random, but constrained motion to them, not a

characteristic of a white noise source. To help further characterize this motion, the

data from the runs were placed in a Power Spectral Density (PSD) plot shown in

Figures 3.8 (a) and 3.8 (b).
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(a) (b)

Figure 3.7: Velocity and acceleration motion of a lead aircraft.
(a) The aircraft’s NED velocities for 15 runs; data analysis shown in Table 3.1.
(b) The aircraft’s NED accelerations for 15 runs; data analysis shown in Table 3.1.

NED Mean velocity STD velocity Mean acceleration STD acceleration
Direction (fps) (fps) (fps2) (fps2)
North -36.0 186.0 0.3 5.0
East -6.0 183.0 -0.3 4.0
Down -0.1 4.0 0.0 0.7

Table 3.1: Analysis of empirical data. STD is the standard deviation of the value.
Absolute values greater than one were rounded to the nearest integer.
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(a) (b)

Figure 3.8: PSD of the lead-aircraft’s velocity and acceleration data. A PSD of the
culmination of data runs details the magnitude and frequency of the aircraft’s motion.
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The velocity PSDs are close to a straight line (similar to a PSD of integration).

The acceleration PSDs show a break point common to all three axes around 30 rad/s.

This information, coupled with the data from Table 3.1, defines a possible model for

the tanker. A first-order Gauss-Markov (FOGM) is a process that can represent the

accelerations as a noise source with two values: a time constant and a variance [4].

For a generic acceleration, a, an example FOGM process is shown:

ȧ = − 1

T
a+ w(t) (3.3)

where T is the time constant, and w(t) is a WGN such that:

E{w(t)wT (t+ τ)} = Q(t)δ(τ) (3.4)

where Q is the variance of the noise. Modeling a system state as a FOGM process

represents a time-related statistical limit to the variability of the state. The FOGM in-

troduces the concept of a time-correlated random walk best illustrated with a counter

example shown in Figure 3.7b. The down acceleration is a process that does not im-

mediately appear to have limited variability in its values. The down acceleration has

indiscriminately-sized random motions over short periods of time. In fact, the down

acceleration could be modeled directly as a WGN source, with a covariance equal to

the standard-deviation, determined from the empirical-data, squared:

...
p n
z = w(t) (3.5)

E{w(t)wT (t+ τ)} = σ2δ(τ) (3.6)

where
...
p n
z is the change in down acceleration of lead in the n-frame. This is the

equivalent of zero correlation in time between any two values of
...
p n
z . Modeling a state

as a noise source in this manner portrays to the Kalman filter that the value of the

state will most likely (statistically) be anywhere between ±σ at any given instance
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in time and the value has no dependance on time; in other words the value at one

instance in time is not dependent on the value at any other instance in time.

In a FOGM process, a value in time is dependent on other values in time.

This is demonstrated in Figure 3.7 (b). Both the north and east accelerations have

a time-correlated random walk. The accelerations do not jump to the extremes of

the figure, instead they are limited to smaller motions near their previous values. As

seen in the figure, over time, they can randomly walk to the extremes of the figure.

With a time constant incorporated into the model of the system, the filter assumes a

statistically-based limitation to the change in value with respect to time.

Finally, since the PSD of the velocities are similar to an integration, the veloci-

ties are modeled as an integration of acceleration and position as a double integration

of acceleration:

ṗnx = ṗnx (3.7)

p̈nx = p̈nx (3.8)

...
p n
x = − 1

T
p̈nx + w(t) (3.9)

ṗnx

p̈nx
...
p n
x

 =


0 1 0

0 0 1

0 0 − 1
T



pnx

ṗnx

p̈nx

+


0

0

1

w(t) (3.10)

where ṗnx is the north change in position of lead in the n-frame. Of note, the w(t)

noise is still a WGN process; it is shaped into a FOGM process with the use of the

time constant.

The down acceleration was shown as a process that might be better modeled as

a WGN source; however, it has a corner frequency similar to the other accelerations.

Additionally, climbs and descents were not accomplished on these runs, those types

of motions would be better modeled with a FOGM process as well.
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The acceleration PSD plots in Figure 3.8 had a similar corner frequency of

approximately 30 rad/s. The time constant of the FOGM is the inverse of the corner

frequency, T = 1/30. Since there is a non-unity gain shown in the PSD, the following

relationship is used for the covariance of the noise:

Q =
2σ2

T
(3.11)

where σ is the standard deviation determined in Table 3.1 [4].

As verification, analysis of 30 Monte Carlo runs of this dynamic process model

are shown as a PSD of the FOGM in Figure 3.9. Of these 30 runs, the mean accel-

eration was zero and the standard deviation was five, matching the values from the

empirical data. The FOGM has more gain than the empirical data in the one to ten

rad/s range. This extra noise, portrays to the filter a dynamic process less accurate

than the actual process. The uncertainty in the state estimate will grow faster than

the actual accuracy of the process, possibly weighting the measurements more than

they should during measurement updates. However, this also portrays to the filter

that larger deviations from the state estimate are reasonable, allowing motions, larger

than σ, to be accepted with less uncertainty. This extra noise should not be a concern

for this process; a higher-order model of the aircraft motion would possibly match the

system dynamics better.

Assuming the only difference between north and east velocities is current head-

ing, this FOGM model will be adequate for those two DOFs. The down component

shares the same time constant with a lower σ. Finally, a similar analysis was con-

ducted for roll. Unfortunately only the roll attitude was collected empirically. Based

upon the empirical data the mean roll angle was 3.5◦ with a standard deviation of

6.0◦. Inferred from empirical data was a mean roll rate of 0.0◦/sec with a standard

deviation of 0.5◦/sec. As a result, the roll rate was modeled as a FOGM as well, but

a time constant for the roll was not determined from the empirical data.
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Figure 3.9: PSD of 30 Monte Carlo runs. A model of the dynamics of the tanker
approximates the possible motions of the aircraft. The mean acceleration of all the
runs was zero, with a standard deviation of five, matching the empirical data.
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The following continuous-time process model represents the lead aircraft in the

n-frame:

ẋ(t) =



ẋ
ẏ

ż
ẍ
ÿ

z̈
...
x
...
y
...
z

ϕ̇

ϕ̈


11x1

=


ṗ

p̈
...
p

ϕ̇

ϕ̈


11x1

= Fx(t) +Gw(t), F =


03 I3 03 03x2

03 03 I3 03x2

03 03 − 1
T
· I3 03x2

02x3 02x3 02x3
0
0

1
− 1

Tϕ


11x11

(3.12)

G =

06x3 06x1

I3 03x1

02x3
0
1


11x4

Q(t) =



2σ2
ne

T
0 0 0

0
2σ2

ne
T

0 0

0 0
2σ2

d
T

0

0 0 0 Qϕ


4x4

(3.13)

where 0M is a MxM matrix of zeros, 0MxN is a MxN matrix of zeros, IM is a MxM

identity matrix, σne is the standard deviation for north and east, σd is the standard

deviation for down, and Tϕ and Qϕ will be determined through the tuning of the

filter. To apply the Kalman filter equations, the matrices are converted to discrete

time matrices, to resemble Equation (2.48). This continuous-time, dynamic-process

model is valid for tracking a lead aircraft performing tanker-type maneuvers in the

n-frame. Accounting for the dynamics of another aircraft updates this model to track

in another frame, such as the bL-frame or cam-frame of a wing aircraft. The tracking

accomplished in this report, the lead aircraft in the cam-frame of the wing aircraft,

accounted for the additional motion of the wing aircraft by simply modifying the time

constants and σs used in the model.
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The dynamics of the lead aircraft, including a model to represent those dynamics

has been presented. The next section details the formation positions of AR and the

necessary information required to determine those positions without knowledge of the

lead aircraft’s position or attitude.

3.2 Formation Position

The premise of the algorithm in this thesis is to determine the location of the lead

aircraft in the cam-frame on a wing aircraft in order to determine where the receiver

is in relation to the bL-frame as presented in Section 2.1.4. A few of the various AR

positions are introduced as positions in the bL-frame to understand the requirements

to effect AAR and to quantify the precision needed at the various positions.

For this research, the lead aircraft (a T-38 as a simulated tanker) had a promi-

nent rotating beacon underneath the aircraft that was visible in the images collected

by the wing aircraft (an LJ-24 as a simulated receiver). This beacon was located

approximately 17.0 feet from the nose of the aircraft, or 29.0 feet from the tail of the

aircraft. The beacon was designated as the origin for both the bL-frame and nL-frame,

denoted as a cylinder (approximate shape of the beacon) in Figure 3.10.

The wing aircraft had a length of approximately 43.0 feet and the coordinate

frames, bW and nW , were originated at the center of the truth data collection device

(for simple determination of errors in the algorithm), denoted as a cube in Figure 3.10.

This device was located approximately 23.7 feet from the nose of the wing aircraft

and one foot left of centerline. With a coordinate system defined, aircraft within the

formation can navigate with respect to predefined positions in the bL-frame.

3.2.1 Rendezvous Position. When aircraft are not in visual contact with

each other or otherwise knowledgeable about the other aircraft’s position, the wing

aircraft proceed to and/or maintain a position that provides both lateral and vertical

separation between aircraft. This position allows for safe maneuvering until the wing

aircraft can attain visual contact with lead and initiate a rejoin or rendezvous. The
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definition of this position is 1,000 feet below and 1 nautical mile (NM) in trail of

the lead aircraft. Typically, this is a transient position and held constant only when

the lead aircraft is not in sight. The position translations are no closer than values

(that a receiver aircraft can not proceed closer than without visual contact with the

tanker). In the bL-frame, this position can be represented as a position vector pbL
1NM

with the following coordinates in feet :

pbL
1NM =

[
−6076 0 1000

]T
(3.14)

At this distance, the reference frame origin locations of each aircraft are not a

significant influence on this position.

3.2.2 Pre-Contact Position. After passing the rendezvous position with the

lead aircraft in sight, the wing aircraft proceeds to a position known as pre-contact.

The wing aircraft reduces the separation between the aircraft both vertically and

horizontally in a straightforward maneuver. The wing aircraft initiates the maneuver

with 20 knots greater airspeed than the lead aircraft and reduces the closure rate to

zero as a climb to lead’s altitude is accomplished. The definition of this position is

50 feet aft of lead and slightly below. The position is dependent on the size of the

aircraft and where the appropriate coordination frames are located; 50 feet describes

the distance from the nose of the wing aircraft to the tail of the lead aircraft.

The down component is approximated by using a 30◦ aspect angle measured

from the bL-frame’s negative X axis in the direction of its positive Z axis. This

position can be represented as a position vector pbL
PRE with the following coordinates:

pbL
PRE =

[
−96 −1 25

]T
(3.15)

At this distance the origin locations are accounted for in the position definition.

The negative one foot offset in theY axis of the bL-frame accounts for the off-centerline

location of the two coordinate frames’ origin on the wing aircraft.
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Figure 3.10: AAR coordinate system. The coordinate systems used for AAR, demon-
strated in the pre-contact position (pbL

PRE) (Note: not to scale)

The pre-contact position is a static position that a wing aircraft maintains for

a period of time and is used for a few tasks. First, it allows the wing aircraft to

stabilize while matching the lead aircraft’s airspeed. Second, it demonstrates to the

boom operator on the lead aircraft that the pilot of the wing aircraft is under control

and it is safe to approach. Third, it allows the pilot of the wing aircraft to prepare

for the impending maneuver. The position translations are no closer than values.

3.2.3 Contact Position. Once the wing aircraft sustains a stable pre-contact

position, the wing aircraft is cleared to a contact position, denoted as pbL
CONTACT .

With a desired one foot per second closure rate, maneuvering from pre-contact to

contact should last 30-60 seconds. The contact position is defined as a position on a

30◦ aspect angle measured from the bL-frame’s negative X axis in the direction of its

positive Z axis. For a KC-135 aircraft, this position is denoted as 12 feet slant range

from the end of the refueling boom (before extension) of the lead aircraft to the Uni-

versal Air Refueling Receptacle Slipway Installation (UARRSI) of the wing aircraft.

This is the fuel port where the boom of the lead aircraft connects to transfer fuel. For

this research, the UARRSI is approximated with the origin of the cam-frame and the
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end of the refueling boom is approximated with the tail of the lead aircraft; however,

the position is still defined to the coordinate-frame origins of the wing aircraft:

pbL
CONTACT =

[
−63 −1 6

]T
(3.16)

This position is intended to be held statically, but for human operators, it is

often challenging to do so. Changing conditions in airspeed, altitude, attitude, wind,

visibility, turbulence, etc., require constant inputs to the controls of the wing aircraft,

requiring constant attention and focus. A maneuvering envelope about the position

permits fluctuations, inherent in this position. For a KC-135 aircraft the envelope

allows the aspect angle to vary from 20◦ to 40◦. The distance envelope is 6 to 18 feet

and the azimuth angle (degrees left and right from center) is allowed to vary up to

10◦. An experienced pilot does not require the full envelope; however, initial-training

student-pilots will approach and often exceed these limits causing a disconnect (either

manually or automatically initiated) of the boom from the UARRSI. Exceeding these

limits can and has led to severe aircraft damage and loss of life.

Figure 3.11 shows the envelope with a B-52 aircraft in the contact position.

The distance from the base of the boom to the end of the refueling boom (before

the extension) is approximately 27 feet, 7 inches, and the slant range envelope starts

6 feet, 1 inch aft of that or the tip of the extension (33 feet, 8 inches total). The

envelope extends 12 feet 3 inches, allowing a full envelope of 6 to 18 feet slant range.

3.3 Position Realization

It is possible to train a human pilot to recognize the above formation positions

and determine deviations from those positions using both visual and aircraft instru-

mentation cues. From the author’s AR instructing experience, experienced aviators

can typically estimate the contact position within 1 to 2 feet of accuracy and the

pre-contact position within 10 to 20 feet of accuracy. Pilots often rely on aircraft

instrumentation (such as radar) for distances further than 3,000 feet range, with a
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Figure 3.11: KC-135 refueling envelope [14]. This research assumes this envelope.

transition to visual-only references at closer distances. For a computer-vision solu-

tion, determining these positions is more involved. Starting with the most general

difference equation between two navigating bodies, this section presents a derivation

that details the information needed to determine the position of the wing aircraft in

the bL-frame:

pi
L⇒W = pi

W − pi
L (3.17)

where the symbol, pi
L⇒W denotes the position vector from the lead aircraft to the

wing aircraft, referenced in the i-frame. This equation relates the difference in inertial

position of the aircraft in the i-frame. It is generally accepted that navigation on the

Earth’s surface and sub-orbital atmosphere can be accomplished in the e-frame. This

is the navigation frame used by aircraft with the aid of GPS and is the frame used in

this research:

pe
L⇒W = pe

W − pe
L (3.18)

79



If the rotation between the e-frame and bL-frame is known, the difference can

be rotated into the bL-frame, pbL
L⇒W = CbL

e pe
L⇒W .

pbL
L⇒W = CbL

e (pe
W − pe

L) (3.19)

The DCM CbL
e is separated into realizable transformations with the following

results:

pbL
L⇒W = CbL

bW
CbW

nW
CnW

e pe
W −CbL

nL
CnL

e pe
L. (3.20)

Critical navigation will only be required when the aircraft are relatively close

to each other, so the e-frame to n-frame conversion of both aircraft is assumed to be

equal (CnL
e = CnW

e ). Furthermore, the position errors resulting from this assumption

will not add significantly to the findings in this research. If, in the future, the ap-

proach presented here can reduce the error below an appropriate threshold then this

assumption can be re-evaluated. To reduce confusion, these two frames have been

replaced with a general n-frame:

Cn
e , CnL

e = CnW
e (3.21)

pbL
L⇒W = CbL

n Cn
e (p

e
W − pe

L) (3.22)

Dealing with a frame located at the origin of the lead aircraft allows the subscript

L to be dropped, it is assumed that the position vector is from the frame origin to

the identifier subscript:

pbL
W = CbL

n Cn
e (p

e
W − pe

L) (3.23)

This is the basic equation needed for a DGPS approach and requires the orien-

tation of the lead aircraft to compute the n-frame to bL-frame conversion (CbL
n ). The

wing aircraft has access to its own position in the e-frame, pe
W , and also the rotation

Cn
e as a function of pe

W . By broadcasting the lead aircraft’s navigation position (pe
L)
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and attitude (CbL
n ) to the wing aircraft, the wing aircraft can compute its position

relative to the lead aircraft and navigate successfully.

For justifications addressed in Chapter 1, it would be useful if a camera and its

associated reference frame, cam-frame, could provide an alternative approach to this

equation. The following equations determine the necessary information needed for

this alternate approach. In a similar manner to the DGPS equation derivation shown

above, the following equations are presented:

pcam
CAM⇒L = Ccam

n Cn
e (p

e
L − pe

CAM) (3.24)

pbW
W⇒CAM = CbW

n Cn
e (p

e
CAM − pe

W ). (3.25)

Solving for pe
CAM in Equation (3.24):

pe
CAM = pe

L −Ce
nC

n
camp

cam
CAM⇒L (3.26)

Substituting Equation (3.26) into Equation (3.25) and solving for pe
W , results in:

pe
W = pe

L −Ce
nC

n
camp

cam
CAM⇒L −Ce

nC
n
bW

pbW
W⇒CAM (3.27)

Substituting pe
W from Equation (3.27) into Equation (3.22), results in:

pbL
L⇒W = −CbL

n (Cn
camp

cam
CAM⇒L +Cn

bW
pbW
W⇒CAM) (3.28)

The DCM Cn
cam is separated into realizable transformations:

pbL
L⇒W = −CbL

n Cn
bW

(CbW
camp

cam
CAM⇒L + pbW

W⇒CAM) (3.29)

Again, the subscripts can be dropped:

pbL
W = −CbL

n Cn
bW

(CbW
camp

cam
L + pbW

CAM) (3.30)
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Instead of using the e-frame locations of the aircraft, this approach makes use

of the position of the camera in the bW -frame (pbW
CAM) and the estimated position

of lead in the cam-frame (pcam
L ). These positions are converted into a common ref-

erence frame, summed, and converted into the bL-frame to determine the estimated

position of the wing aircraft in the bL-frame, (pbL
W ). Critical components of Equa-

tions (3.23) and (3.30) are shown graphically in Figure 3.12.

Figure 3.12: The critical components required for autonomous air refueling navigation.
pbL
W can be determined from the difference of pe

W and pe
L through the use of differential

GPS or the summing of pcam
L and pbW

CAM through the use of image-aided relative-
formation navigation.

In Equation (3.30), pbW
CAM and CbW

cam are assumed constant and known before

flight. In contrast to the information needed in Equation (3.23), the DCM Cn
bW

is needed and will be known from an on-board Inertial Navigation System (INS).

However, without a broadcast transmission from the lead aircraft, a wing aircraft will

not have access to two components of this equation: the three Euler angles of the lead

82



aircraft to compute CbL
n , or pcam

L . Estimating these two components using the images

provided from the on-board camera and the INS of the wing aircraft is the focus of

this research.

The final section outlines transferring these position realizations into the OpenGL

world. The algorithm in this thesis creates Ir images based on the Kalman filter’s

estimation of the two required components of Equation (3.29) and the following sec-

tion demonstrates how potential positions and attitudes of the tanker are created as

Ir images.

3.3.1 Rendering Positions. At its simplest, the OpenGL rendering process

requires six parameters: the position of an object in the GLcam-frame (three) and

their rotation with respect to that frame (three). OpenGL allows the object to be

rotated first and then translated or translated first then rotated, resulting in much

different scenes and images. To adhere to the coordinate-reference-frame translation

and rotation process detailed in Section 2.1.3, the rendering process shown here will

always translate first and then rotate. The rotation between the GLcam-frame and

the b-frame of an object is accomplished in the following manner: rotation about

the YGLcam axis, rotation about the XGLcam axis, and finally rotation about the

ZGLcam axis. Additionally, since this process is intended to represent actual images

collected by the camera, the cam-frame and GLcam-frame share the same origin as

demonstrated in Section 2.2.1.2.

The necessary attitude information of the lead aircraft is different then that

required for the navigation solution in Section 3.3. Instead, the attitude of the lead

aircraft with respect to the GLcam-frame, or CbL
GLcam, is needed. This DCM can

be computed by combining four different DCMs; two created from the Euler angles

of each aircraft (CbL
n and Cn

bW
), one determined before flight (the rotation of the

wing aircraft bW -frame origin to camera, CbW
cam), and the transformation between the
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cam-frame and GLcam-frame (Ccam
GLcam) as shown:

CbL
GLcam = CbL

n Cn
bW

CbW
camC

cam
GLcam (3.31)

Of these four DCMs, only one will be unknown to the algorithm, CbL
n .

The translation of the lead aircraft will be referred to as pGLcam
L , similar to that

described in Section 3.3 and accounting for the rotational difference between frames.

Equation (3.29) is modified to:

pbL
W = −CbL

n Cn
bW

(CbW
camC

cam
GLcamp

GLcam
L + pbW

CAM) (3.32)

and solving for pGLcam
L yields:

pGLcam
L = −CGLcam

cam Ccam
bW

(CbW
n Cn

bL
pbL
W + pbW

CAM) (3.33)

Of these parameters, only six will be unknown to the algorithm, Cn
bL

and pbL
W .

The vector pGLcam
L and matrix CbL

GLcam with six total parameters (or six DOFs)

determine where to place the aircraft in the frustum, and at what attitude. The

algorithm predicts these six parameters from a combination of state estimations from

the Kalman filter and their final values at the previous time instant, then verifies

them with a measurement process detailed in the next chapter.

This chapter introduced the dynamics of AR, the model that describes those

dynamics, and the position requirements of AR including the OpenGL representation

of those positions. The next chapter presents this thesis’ solution to Autonomous

Aerial Refueling.
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IV. Pose and Air Refueling

Building on the knowledge of the previous chapters and incorporating the research

accomplished by others, this chapter presents a novel approach to AAR. The

chapter is broken into three sections: the first details the position and orientation

estimation, commonly referred to as pose estimation: a process alluded to in previous

chapters of this thesis. The next section is a background investigation into other

approaches taken to solve AAR, and those using a rendered model approach to pose.

The final section presents the works and techniques of this thesis.

4.1 Pose

In computer vision disciplines, it is often necessary to determine an object’s

position and orientation with respect to a specified coordinate system. Estimating

an object’s attitude and translation in the cam-frame (Cb
cam and Pcam) is this thesis’

interpretation of pose estimation. The pose of an object allows the system to make

determinations about the object, interact with the object, or in the case of AAR, track

the object. This field of study encompasses many different methods to determine the

pose of an object with the desired accuracy. The pose process incorporates single or

multiple image collection devices and may incorporate other sensors (such as distance

measuring or three-dimensional scanning), which are real-time or post-processed for

various lengths of time.

The research presented in this thesis focuses on finding the pose of a lead air-

craft based on images alone to determine a relative navigation solution between the

two aircraft. The inherent difficulty with pose from images is estimating depth, or

translation of the object along the Zcam axis, as described in Section 2.1.3.5 (the

camera matrix, K, discards this information). To aid the process, a system often has

some predetermined knowledge of the camera, environment, and object (typically the

object’s scale).

With this a priori knowledge, a common vision-based approach (not used in this

research) determines the pose of an object with trigonometric calculations based on a
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specific number of surveyed features of the object that are located in an image. This

approach usually involves matching, from image to image, these determined features

on the object. This is typically referred to as point or feature tracking.

Tracking individual points visually on an object presents a few challenges. The

first difficulty is in accounting for features departing the FOV of the camera. If not

handled appropriately, the system will match the features to similar but incorrect

features on the object, causing residual error in the estimation. The second difficulty

concerns the lighting and shading on an object. Features that are easy to determine in

one lighting condition might not be as easy to detect in other conditions. Changes in

lighting can also introduce confusion between similar but incorrectly matched features.

A final difficulty is in updating the visual appearance of the feature with changes in

orientation. When tracking an antenna on the bottom of the aircraft, the antenna’s

appearance changes depending on which side of the aircraft the camera is on.

These difficulties are not insurmountable and this approach works for many ap-

plications. The next section details a small sampling of visual-based pose in addition

to differing methods to conduct AAR.

4.2 Current Science

This section presents various approaches to AAR and the vision based approach

to pose. AFRL has done and continues to do extensive research in the area of AAR,

and many projects sponsored by AFRL have aided this research immensely.

4.2.1 AFIT. Research at AFIT began in the early 1990s and concentrated

mainly on formation flight controllers [16]. Starting with simple controllers and lim-

ited freedoms by the lead and wing aircraft, investigations focused on real-time au-

tonomous controllers.

4.2.1.1 Spinelli and Ross. AFIT research into AAR reached a mile-

stone with thesis work done by Spinelli and Ross in 2006 [16, 24]. Both worked
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independently to create a combined DGPS-dependent formation controller. Spinelli’s

research focused on a combination transmitter and receiver from the lead aircraft

broadcasting real-time GPS data to the receiver aircraft. This information was pro-

cessed by a computer on-board the receiver aircraft. Algorithms devised by Ross

plotted a relative navigation solution. This solution provided control inputs to the

receiver’s autopilot controller, resulting in autonomous formation flight at ranges from

10 to 100 feet and up to 30 degrees of bank.

The research was demonstrated using a TPS C-12 Huron as the simulated tanker

and a Calspan LJ-24 Learjet as the receiver, shown in Figure 4.1. The wing aircraft

maneuvered through three positions, based off the lead aircraft: contact, pre-contact,

and awaiting AR (wing aircraft immediately off the right wing of lead). Average

error was calculated to be approximately one to two feet with a maximum of approxi-

mately four to five feet [16]. These test flights represented a tremendous step towards

achieving AAR.

Figure 4.1: Differential GPS AAR between a C-12 and a LJ-24 [16]. This successful
demonstration proved the capability of AAR and led to many future projects.

While this work became a benchmark for AAR, many improvements to the

approach were desired. Specifically, the incorporation of a vision-based sensor to aid

the navigation solution.
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4.2.1.2 Spencer. Following the success of Spinelli and Ross, Spencer

also used a C-12 and LJ-24 to conduct test flights in 2008 using optical tracking of the

lead aircraft [23]. The test flights were not autonomous, but accomplished real-time,

with on-board processing and data collection for additional post flight analysis.

Spencer utilized an electro-optic (EO) sensor in conjunction with a Harris corner

detector algorithm to track multiple feature points of the lead aircraft (more than 12

per frame, as shown in Figure 4.2). The EO sensor was able to collect real-time

images for processing by an on-board computer. By making predictions of where the

corners should be with a Kalman filter, point tracking of the corners used a gating

technique. This technique limited the field of view around each tracked point that a

feature could match to, so antennae on the rear of the aircraft could not match to

antennae on the front of the aircraft. An initial position and attitude was provided

to the algorithm via a non-passive sensor [23].

Figure 4.2: Visual AAR using feature tracking [23]. A visual approach to determining
the relative position between aircraft by tracking individual points, surveyed to known
locations, of a lead aircraft.
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This process found and updated a relative position of the wing aircraft with

respect to the lead aircraft using known distance and direction between the tracked

points (a three-dimensional model of surveyed points on the aircraft). Spencer’s

research demonstrated the feasibility of the vision-based navigation concept. As a

result, future research can now address some of the problems discovered in his re-

search. Specific errors relating to the vision-based approach to AAR are: the loss of

tracking features due to poor visibility, delays in position estimates because of image

processing time, errors related to camera calibration, and pose errors from incorrect

corner tracking.

Perhaps one of the most important lessons learned concerned camera attitude

(ψ, θ, ϕ). The receiver aircraft’s attitude is very important in determining the re-

ceiver’s position in relation to the tanker. Failing to account for yaw, pitch, and roll

of the receiver aircraft dramatically detracts from the algorithm’s ability to identify

the correct relative position.

Spencer suggested, as a potential solution to a few of the problems, to apply

group tracking instead of individual points. While individual points are prone to

misinterpretation by the detection algorithm, tracking groups of points can potentially

limit those errors. He discovered that multiple point errors were not common in an

individual frame. The group of points recommendation was expanded to include the

entire tanker (designated here as the whole aircraft approach) in subsequent research

efforts.

4.2.1.3 Weaver. As a follow up to Spencer’s work, Weaver pursued

an alternative approach to the aircraft tracking problem [29]. Weaver’s work utilized

a long-wave infrared video representation of a KC-135R (acquired from an AFRL

research initiative) in conjunction with a three-dimensional rendered model of the

same aircraft type (obtained commercially). Using an extended Kalman filter (EKF),

Weaver was able to make a priori predictions about the KC-135R’s position relative

to the receiver. These predictions became images produced through the rendering
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of the three-dimensional computer model. A sum-squared difference between the

pixel intensities of the rendered and collected image determined an error between the

predicted position and the actual position. However, the calculation only provided the

magnitude of the error. Determination of the relative direction of the error required

an iterative process to correct the image for the next update. This process continually

perturbed (change in magnitude and direction) the estimated position and orientation

of the KC-135R. This created a new image for each perturbation to compare with the

true collected image of the tanker. An example of a collected image with the predicted

image overlaid (intentionally offset) is shown in Figure 4.3.

Figure 4.3: AAR using whole aircraft tracking with infrared images [29]. A vision
based approach determines the relative position between aircraft by comparing a
collected image with rendered images of the same aircraft. The prediction image is
intentionally offset from the true image for visual clarity.

Weaver’s research was a departure from the feature and point tracking methods

found in many research efforts. By forging this new direction he discovered new sets

of problems including errors in tanker-body X-axis, roll errors, and length image

processing time.

Images associated with a pitching movement by the tanker were difficult to

distinguish from images representing a relative acceleration forward. This resulted
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in Weaver’s system having position estimates with 1-meter accuracy in the Y and Z

directions, but 2-meters in the X direction. In addition, this system did not respond

well to turns by the tanker, potentially because of the values predicted by the Kalman

filter for the tanker’s roll position. When a turn occurs, an incorrectly modeled filter

wants to return to, or maintain, a nominal wings level state instead of accepting

the change in roll measurement. The majority of the time, the tanker maintains

constant speed, heading, and roll angle. Eventually, however, the aircraft does make

large roll angle changes. If the Kalman filter permits large variations to the state (a

large covariance in the dynamic-model process-noise), accurate solutions are difficult.

Conversely, allowing only small variations can minimize the effects of measurements

on the Kalman state.

Suggestions by Weaver for future research included additional sensors such as

ranging or GPS data link (as introduced by Spinelli and Ross) and potentially an

Unscented Kalman Filter (UKF). The UKF could enhance the speed of the updates

to the navigation solution by potentially reducing the processing time to determine

the direction of error between the two images.

4.2.2 Georgia Institute of Technology. Researchers at Georgia Tech have

done considerable work in the area of vision-based navigation [5, 15, 30]. In 2005,

Wu, Johnson, and Proctor used images of an object seen by an unmanned helicopter

to aid in the helicopter’s navigational solution. Information determined from the

images consisted of a center point and total area. Using an EKF, these measurements

provided updates to the state and covariance of the navigation solution. This system

assumed that the pose algorithm knows the position, size, and orientation of the

object before the flight. Using an object (a window of 36 ft2) the system was able to

track its position within a mean error of about six feet [30].

Further research at Georgia Tech involved whole aircraft tracking. Aircraft

were tracked using their center and wingtips (designated in their research as the

center tips approach) [15]. The information about the aircraft’s center estimated
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the target’s relative azimuth and elevation, while its tips estimated the aircraft’s

distance. The UKF, as implemented, tracked the target’s position, velocity, size, and

acceleration using measurements attained from the image. Results from this research

were satisfactory and one of the future research suggestions was to incorporate a more

sophisticated representation of the target, such as a predicted rendering of the whole

target, as opposed to estimation of just the three tracked points.

4.2.3 Visual-Model Based POSE. Researchers de Ruiter and Benhabib

expanded the whole aircraft approach to include visual or textual models of the target

[17, 18]. By utilizing a priori, visual, and an adaptive model of a rigid body, the

researchers were able to track the body and determine the orientation and position

of the object. A comparison between the rendered predictive images, utilizing the

model in OpenGL, with the actual image collected by the camera, determines the

accuracy of the prediction. The difference between the two images was calculated

and combined with the information used to render the initial predictive image to

determine an accurate pose of the target.

Image-based tracking is computationally demanding and difficult to use in or-

der to attain accurate navigation information in real-time. However, de Ruiter and

Benhabib were able to attain rates of 80-100 frames per second and sub-pixel accu-

racy by reducing unnecessary computations. Reduced gradient computation time was

possible by setting a region of interest around the target in the image and reducing

three color gradient images to single color gradient images [18]. The target used in

this research was a simple cube with a simple texture/image on each side.

The background research provides a baseline of the current approaches to pose

and AAR. The method of this thesis builds on these techniques, combining the benefits

of some while addressing the limitations of others. The next section presents a generic

rendered-image approach to vision-base pose, followed by the specific implementation

in this research.
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4.3 RIPE

A few of the researchers in the previous section and some others are indepen-

dently developing a sub-discipline of pose that proposes a whole object method of

tracking. This type of approach addresses some of the difficulties of point tracking

alluded to in the background research by tracking an object as a whole instead of in-

dividual features. Weaver’s approach to whole object tracking made use of rendered

images of the object. The premise of a rendered image position and orientation esti-

mation, RIPE2, approach to navigation requires a three-dimensional computer model

of an object (a priori or created real-time) that can be rendered as a two-dimensional

Ir. This notional approach can involve one or more Ir images. The time allotted for

pose and the required accuracy determines the desired number of images.

The method employed by Weaver [29] in his research consisted of creating mul-

tiple Ir images, comparing each with a single Ic for every measurement update. The

six DOF information to create each Ir initially came from the EKF’s state estimation

in the n-frame (rotated and translated into the cam-frame) of the tanker aircraft’s

attitude and translation from the camera, CbL
cam and pcam

L respectively.

The Kalman filter’s a priori state estimation was rendered in addition to several

Ir images created with perturbations in each DOF about the estimate. Computations

on the uncertainty in the state estimation (a Cholesky decomposition of the covari-

ance, c
√
P) determined the necessary magnitude of the perturbations about the CbL

cam

and pcam
L estimates.

A sum-squared-difference calculation on the pixel intensities of each Ir and the

Ic found an error value for each resulting perturbation image as well as the original

state-estimated image. Combined, a set of the errors created a gradient of likelihood

for each of the six DOFs. The DOF gradient with the most potential improvement

in matching likelihood updated the estimate. This update replaced the DOF’s value

2The term RIPE was introduced as part of the data collection project facilitating this research
and is used in this thesis as a label for this newly developing approach to pose.
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in the original estimate with the more-likely value (based on the gradient likelihood),

creating a new estimate. From this new estimate, a new set of perturbation were

determined and new set of Ir images were rendered. The process iterated until no

more improvements were possible, such that no perturbation Ir images appeared more

likely than the estimate’s Ir.

Next, a more precise, or fine-pose measurement determination was initiated.

The fine process mimicked the coarse process with perturbations one tenth the size,

until no further improvements were possible. This final estimate represented a global,

most-likely pose of the tanker aircraft. The information required to create the final,

most-likely Ir provided a measurement update to the filter.

The approach was iterative; large perturbations along one DOF at a time were

rendered to determine coarse estimations of the object and then smaller perturbations

were rendered for fine estimation [29]. An assumption made in that research was the

decoupling of the six DOFs. Without this assumption, the matching process would

require 729 Ir images per iteration; the state estimate plus two perturbations in each

DOF coupled (3n, n = number of coupled DOFs). This important assumption reduced

the required Ir images to 13 for each iteration, the initial estimate plus a single positive

and negative perturbation in each DOF (2*m+1, m = number of decoupled DOFs).

Unfortunately this assumption also limits the precision of the estimation.

Decoupling the DOFs assumes the motion of an object in any DOF is indepen-

dent of the other five. Visually, a decoupling assumes that motion in one DOF can

be determined without concern of other motions. For example, if an object translates

left and up in an image, the decoupling assumes the left translation is distinguishable

in the image without accounting for the translation up.

This assumption is valid when the required perturbations about the estimated

position to make an image match are small. When large motions occur between

collected images this assumption introduces additional error. Large visual matching

errors do not necessarily relate to position errors in the linear manner necessary
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for this assumption. Weaver’s work relied on a single Ir resembling Ic more than

other Ir images and that the iterated perturbations would eventually find a global

maximum likelihood Ir as a match to the true Ic. However, with large motions and

decoupled DOFs, local maximum-likelihoods can occur at locations removed from the

true location. At these local maximums, all other potential Ir images appear less

likely and the perturbation and iteration process stops, accepting the local maximum

as the incorrect position and orientation of the tanker. These errant positions became

incorrect measurements that disrupted the estimation of the filter. Fortunately, in

his approach the perturbations about future state estimations grew because of the

bad measurements (larger covariance entailed larger perturbations) allowing the filter

to eventually recover. The cost of the assumption was both processing time and

temporary inaccuracies in the state estimate.

The next section presents an efficient rendered image approach to pose with a

focus on minimizing the required number of Ir images to as few as possible while

attempting to maintain the accuracy of a coupled DOF approach.

4.3.1 Quick-RIPE. To address some of the problems encountered in previous

efforts, the quick-RIPE approach uses template matching to reduce the number of Ir

images necessary for a pose estimation of an object while not completely decoupling

the DOFs for faster and accurate estimations. Determined from the background

research, and laboratory experiments, there is a discernable balance between speed

and accuracy. With more images rendered, the pose accuracy increases but so does

the time required for determination. The first section details a general quick-RIPE

approach, while the second section tailors this approach to AAR.

4.3.1.1 Quick-RIPE Methodology. With the use of a template match-

ing function, such as the one described in Section 2.2.2.2, the total number of Ir

images needed to determine the image location of an object in the Ic reduces to one,

while effectively coupling two or more DOFs. For the rest of this thesis, the term

image location refers to the translation of the object in the Ximage and Yimage axes
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(the object’s coordinates in the image-frame). Through the linear relationship of the

camera matrix (K, Section 2.1.3.5) the object’s translations in Xcam, Ycam, and Zcam

determine the image location of the object in the Ic. The term position still refers to

the actual position of the object in the desired reference frame. This section references

two positions, the real-world position of the object, po, and the algorithm’s predicted

position of the object, pr. The process involves estimating pr close enough that a

template match corrects it to po. This section details the template matching process.

Quick-RIPE template matching separates the DOFs of an object into the two

following groups, which are broken down into their components:

• Attitude plus image location: Rotation in all three cam-frame axes plus

translation in the Ximage and Yimage axes.

• Size plus image location: Translation in the Zcam, in addition to Ximage and

Yimage axes.

In this grouping, size denotes the object’s translation in the Zcam axis. Effec-

tively, this grouping creates a group of five DOFs and a group of three respectively.

At first glance, this does not appear to be much of a decoupling. However, with tem-

plate matching it reduces the rendering cost to an equivalent grouping of three DOFs

coupled and one DOF uncoupled respectively. The grouping reduces the number of

required Ir images while permitting partial coupling of the DOFs.

As a general overview, the quick-RIPE template matching renders an object ap-

proximately close to and with approximately the same attitude as the actual object

in the camera’s FOV. First, the coupled attitude-DOFs of the object are perturbed

and each rendered as an Ir. Each Ir is then template matched to the Ic determining

the most likely combination of attitudes. Second, the process is repeated with pertur-

bations along the Zcam axis, determining the most likely size of the object and, as a

result of the template matching process, the most likely image location of the object.

The combination of the translation in the Zcam axis, pcamz,o , and the image location of

96



the object determines the translation in the Xcam axis and Ycam axis, pcamx,o and pcamy,o ,

through an approximated, linear, trigonometric relationship.

4.3.1.2 Quick-Ripe Template Matching. To help introduce the tem-

plate matching approach the following, incorrect but temporary, assumption is made:

the attitude and size of the object are known. The reason this assumption is in-

correct and the compensation for it being incorrect is addressed in Section 4.3.1.3.

Additionally, as a necessary assumption for the template matching process to work, it

is assumed that the actual image location of the object is near the currently rendered

object image location (pr ≈ po from an initial condition or from a recent update).

As a result of these assumptions, within a region around po, or with small Xcam and

Ycam translational errors in the estimate, pr, the rendered object looks similar to the

actual object.

This can be seen in the sample images of Figure 4.4, the top of the image is an

Ic and the bottom two images are perturbation Ir images, along the Xcam axis. With

such noise-free backgrounds, both will match with the aircraft in the Ic. However,

with the better image location estimate (the Ir on the left), the rendered image comes

closer to resembling the actual object. Visually, this is distinguishable in the figure,

by the difference in appearance of the two Ir images. With the Ir closely resembling

the Ic, the template matching function’s coordinates of the most-likely match (r)

is an estimator of pcamx,o and pcamy,o through an approximated, linear, trigonometric

relationship.

Presented next are the necessary components of this relationship, which include

the pixel FOV in both the Xcam and Ycam axis, the approximate pcamz,o , and the dif-

ference in size between the template image and the image it is matched against. Pre-

sented after these three components is an overview of the template matching process

and the complete equation demonstrating the relationship.
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Figure 4.4: An example Ic and two perturbation Ir images. The template matching
approach requires the initial estimate to be relatively close to the true estimate.
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The first necessary component is the pixel FOV, or instantaneous FOV (IFOV),

of the camera and lens in both the Xcam and Ycam axis. Dividing the entire FOV

(Equation 2.31) by the number of pixels in the array, determines the pixel IFOV.

IFOVY =
FOVY

M
(4.1)

IFOVX =
FOVX

N
(4.2)

The second item required, pcamz,o , is approximated with the -ZGLcam translation

of the rendered object, -pGLcam
z,r .

Finally, the difference in size between the template image and the associated

matched image is known because they both are user defined sizes. The method applied

for this research was to create a template based on the contours of the rendered object

in the Ir. Because the image is clean, with no background or foreground noise, the

contour program finds the contours of the object only. The extreme contours in both

the XCV image and YCV image axes create a bounding box around the rendered object.

The bounding box defines a region of interest (ROI) in Ir labeled the template and

denoted as It. The template is shown as the rectangle around the aircraft in the left

side image of Figure 4.5. The center of It is shown as a white circle in the figure.

The center of It, found in the Ir (left image of Figure 4.5), but now placed on

the Ic, defines the center of a second bounding box, shown as the small white square

in the right image. This second bounding box is labeled the match ROI, denoted as

Im. The Im is shown as the larger rectangle around the aircraft in the right image

of Figure 4.5. The smaller rectangle in the right image has the same center and size

as It, simply copied onto the Ic. From this setup, the two aircraft do not occupy the

same position in their respective images; the rendered aircraft is half a wing length

to the left of the actual aircraft location.

The size of the Im is arbitrary. The approach in this thesis increased all four

sides equally. The symbol ∆box denotes an integer number of pixels added twice to
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both dimensions of the It, increasing the size of the Im. Passing these two images to

the matching program creates an R matrix with dimensions: (2∆box+1) × (2∆box+1).

The template matching process, detailed in Section 2.2.2.2, compares the It to

the Im by starting in the top left corner. The It is then slewed, one pixel at a time

until reaching the right edge of the Im. It then returns to the top left corner, one pixel

down, and repeats. A comparison between the two images is made at every possible

location, determining the location of the most likely match.

Figure 4.5: Template (It) and match ROI (Im) creation. The center of the It in the
Ir, white dot, left image, is placed in the same coordinates on the Ic to determine the
center of the Im in the right image, a white square. Each dimension of the Im is 2∆box

greater than It.

The result of the template match is R. When accessing its values, the top

left-most coordinate of R is referenced as R(0,0). This value in R represents the

value of the matching method (Section 2.2.2.2) applied to the It and the top, left-

most portion of Im. Similarly, the bottom right-most position in R, referenced

as R(2∆box+1, 2∆box+1) represents the value of the matching method applied to

the It and the bottom, right-most portion of Im. The center of R, referenced as

R(∆box+1,∆box+1) represents the center of the Im and the original center of the It.

Important relationship: if the most-likely match of the entire R is at the center po-

sition, rmatch=(∆box+1,∆box+1)T, the translations along the Xcam and Ycam axes of
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the object are the same as the translations used to create the rendered object, or

pcam
x,o = pGLcam

x,r and pcam
y,o = -pGLcam

y,r .

Finally, combining the necessary components into an approximate trigonometric

relationship, an estimation for pcamx,o and pcamx,o is determined:

p̃camx,o = pcamx,r − pcamz,o · tan((∆box + 1− rx) · IFOVX) (4.3)

p̃camy,o = pcamy,r − pcamz,o · tan((∆box + 1− r y) · IFOVY) (4.4)

where, rx is the x coordinate of the most likely match (r) and r y is the y coordinate.

The conversion from GLcam-frame (required to render the image) to cam-frame has

already occurred. To implement in OpenGL:

p̃camx,o = pGLcam
x,r + pGLcam

z,r · tan((∆box + 1− rx) · IFOVX) (4.5)

p̃camy,o = −pGLcam
y,r + pGLcam

z,r · tan((∆box + 1− r y) · IFOVY) (4.6)

This relationship depends on a key principle, the linear mapping of K. This

linear relationship is essential, because the center of It and Im are arbitrarily chosen.

The center of the chosen template can be anywhere on the rendered object or not on

it at all. However, it should overlay the same relative position of the real object in

the most-likely match. The position of the template center referenced to the b-frame

of the object remains constant during the matching. Because of this, the linearity

of the K matrix allows the translation difference between the center of the template

and the center of the most likely match to be the same as if the physical origin of the

object had been matched in the images.

As an example, it is assumed the center of It in the Ir was the wingtip of an

aircraft. The position of the wingtip is a fixed translational distance in all three axes

from the defined origin of the object (in the b-frame). When matching the It to an

Im, the wingtips will match. The difference in translation (between the It and the Im)
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in the Xcam and Ycam axes of the wingtip is the same as the difference in translation

of the origin of the object.

Equations (4.3 - 4.6) are simply trigonometric relationships, relating the change

in translation in pixels to a unit of measurement based on the distance an object is

from the origin of the cam-frame. The completion of the example, from Figure 4.5,

is shown to demonstrate.

Figure 4.6 shows the It box overlayed on the most likely matching portion of

the Im (right image of the figure). The aircraft in the Ir needed to move to the right

and down slightly to match the actual aircraft in the Ic. The star in the right image

denotes the center of the most likely ROI in Im that matches It, the square denotes

the center of the Im. Both of these symbols are placed on their related coordinates

on the R matrix in the bottom image of Figure 4.6. The distance in pixels between

them (in both the Ic and the R matrix) represents the angular difference between po

and pr.

This relationship is an approximation because the distance ratios, p
cam
z,r /pcamx,r and

pcamz,r /pcamy,r , determine the accuracy of the calculation. The larger the ratios, the more

accurate it becomes. This is best seen in Figure 4.7 which continues the previous

example with only a Xcam translation difference between the positions. The square

and the star represent the same change in angular positions. Because the triangle,

created with the line of sight lines emanating from the origin of the cam-frame to

both the square and star, is oblique, the tangent function used in the equation is an

approximation. Cameras with a larger FOV that are locating objects relatively close

along the Zcam axis must use an expanded trigonometric relationship.

As a result of this relationship, the matching function effectively couples two

DOFs, the translations in the Xcam and Ycam axes. One Ir accomplishes the equiva-

lent of (∆box+1)2 perturbation Ir images. The next section revisits the assumptions of

this section and details the effects of this coupling on the attitude plus image location

coupled group.
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(a)

(b)

Figure 4.6: Results of template matching.
(a) The template from Ir, left image, is matched to every possible position in Im,
right image.
(b) The results of the matching values are returned in the R matrix. The star denotes
the most likely match position, rmatch. The square denotes the center of the Im and
the center of R.

Figure 4.7: Template match accuracy. The template match approximation, requires a
large ratio between pcam

z,r and both pcamx,r and pcamy,r , to be accurate. The triangle created
between the origin of the cam-frame and the square and star is oblique, the tangent
function is a close approximation for larger ratios.
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4.3.1.3 Attitude Plus Image Location. This section revokes the as-

sumption of correct initial attitude of the object. Instead it is assumed that the

rendered object’s attitude is close to the actual object’s attitude. If the attitude of

the predicted object is grossly inaccurate in comparison to the actual object, the

visual appearance of the Ir will most likely be different from the object in the Ic.

This does not apply if the object is highly symmetric in some manner, like a

sphere, where the attitude or portions of the attitude do not influence the visual

appearance. Assuming a non-symmetric object, visually inaccurate templates will

not correctly identify the image location of the object with template matching.

For small motions along the Zcam axis (the only DOF not addressed in this

group), the relative size of the object is of less importance to the visual appearance of

the object. It is possible to get an accurate image location in a template match with

correct attitude information and small errors in the size of the object. Determining

the size of an object is presented in the next section.

This attitude coupling reduces the perturbations required to three DOFs. With

small attitude motions of the object between Ic images and the attitude DOFs allowed

to remain coupled, the accuracy of the attitude estimation increases, iterations are

eliminated, and the process requires fewer Ir images than coupling all six DOFs. Two

perturbations, plus the initial state estimate, for the three DOFs equates to 27 Ir

images (33) compared to the 729 required to perturb all six DOFs with the same

number of perturbations in each DOF (or 243 to perturb five DOFs, 35).

The complete process renders each possible combination of attitude, the esti-

mate plus two perturbations, for each of the three DOFs. Each resulting Ir is then

template matched against a suitable ROI of the Ic. The attitude values associated

with the most-likely match become the attitude measurement update. It is also pos-

sible to attain the image location with this most-likely attitude match at this point.

Although, if an update requires the translation in the Zcam axis, determination of

the size of an object should occur before determination of the image location of the
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object. This will permit a more accurate image location. Hence, this decoupled group

might more appropriately be titled attitude; however, all together the process is the

equivalent of coupling five DOFs at the rendering cost of coupling three.

A box diagram of this step in the process is shown in Figure 4.8 for two pertur-

bations in each attitude DOF. The inputs to the system are shown on the left side

of the diagram and consist of the initial estimate in orientation (Cr
cam), the initial

estimate in position (pcam
r ), and the image collected by the camera (Ic). The later

two are unchanged by this step in the process. The most likely attitude plus image

location results are the 6×1 vector used to render the Iri (i ∈ {1, 2, ..., 27}) image

Figure 4.8: RIPE: attitude plus image location. The orientation of the rendered
object in the cam-frame (Cr

cam) is annotated with three euler angles between the
cam-frame and the b-frame of the rendered object: α, β, and γ. The position of the
rendered object in the cam-frame (pcam

r ) is annotated with three individual transla-
tions in the cam-frame: x, y, and z. The contents of the six DOF array below each
Iri (i ∈ {1, 2, ..., 27}) are the parameters required to create the respective image. The
perturbations are denoted as a ∆ for each of the respective DOF. Each possible com-
bination of attitude is rendered and a ROI of each becomes an It to match against the
ROI of Ic (Im.) The attitude values used to render the most likely It are recombined
to create the attitude measurement of the object, (C̃o

cam).
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that produced the highest matching value with Ic (such as the correlation coefficient

from Section 2.2.2.2.) Because the translations in position are the same for all the

Iri images, that portion of the vector does not add any new information. The atti-

tude measurement of the object, (C̃o
cam), is the unique output from this step. As a

reference, rendering and comparing only the first seven Iri (i ∈ {1, 2, ..., 7}) images

without template matching is an example of a decoupled approach.

Gross inaccuracy in size does diminish the accuracy of this approach. Fortu-

nately, the inaccurate size affects the matching of all the Ir images equally, diminishing

the overall effect of the error as a result of decoupling the single DOF. The next section

presents the other decoupled group.

4.3.1.4 Size Plus Image Location. With correct attitude of an object,

solving for the size and image location of the object remains. This process simply

repeats the attitude plus image location process with only translational perturbations

along the Zcam axis. Because motions along this axis are typically challenging to

determine in an image, decoupling the DOFs in this manner permits more, total

perturbations about this DOF without an exponential increase in the required number

of Ir images. The final step of this process determines the size and image location of

the object (p̃cam
o ) based on the most-likely value of all the templates matched, and

the position in R of that most-likely match. The benefit of this process effectively

couples the three translation DOFs.

A box diagram of this step in the process is shown in Figure 4.9 for four per-

turbations in the Zcam axis DOF. With the better orientation estimation from the

previous step, a rendered image should have a closer resemblance to the collected

image. The most likely size plus image location results are the 6x1 vector used to

render the Iri (i=1:5) image that produced the highest matching value with Ic. The

rmatch of the most likely match are recombined to create the position measurement of

the object, (p̃cam
o ).
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Figure 4.9: RIPE: size plus image location. The orientation of the rendered object
in the cam-frame (Cr

cam) is now closer to the actual orientation of the object. Each
perturbation about the z translation (∆z) is rendered and a ROI of each becomes an
It to match against the ROI of Ic (Im.) The z value used to render the most likely
It and the x and y values attained through the rmatch of the most likely match are
recombined to create the position measurement of the object, (p̃cam

o ).

By decoupling the DOFs in this manner, five DOFs are coupled at the rendering

cost of three, and three DOFs are coupled at the rendering cost of one. Overall, the

entire six DOF estimate is completed at the cost of three coupled and one uncou-

pled DOF with an increase of precision in the Xcam and Ycam axes. The equivalent

perturbations about these axes are much smaller than the perturbations of the other

four. The effective size and number of the perturbations in these axes depend on the

IFOV and the size of ∆box respectively.

An example of a complete RIPE process diagram is shown in Figure 4.10 with

the incorporation of a Kalman filter and INS updates (which are detailed further in

Section 4.4.)
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Figure 4.10: The RIPE process. The complete process with incorporation of a Kalman
filter and INS updates. The process uses an a priori estimate converted into the cam-
frame and incorporates the INS update to create an initial estimate of orientation and
position. This initial estimate (Cr

cam and pcam
r ) is rendered and template matched with

Ic in addition to perturbations about the initial estimate. The most likely attitude,
size, and image location of the object is combined into a measurement update (zk)
for the Kalman filter to determine the relative position of the object.

Two other alternative template matching options are presented as examples of

additional coupling possibilities. Because of time limitations, they were not further

explored for this research.

A digital zoom of the Ir images (expanding and contracting the size of the

object) can create a three-dimensional template matching, with a known relationship

between the zoom and perturbations in the Zcam axis. A scale-invariant template

matching process would reduce the entire six DOF estimation to three DOFs while

increasing the precision in the Zcam axis.

Second, the first rotation of the object in the scene could be a rotation about the

ZGLcam axis, instead of the YGLcam axis used in this research. Digitally rotating the
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template about its center, and creating a circular match-ROI, removes an additional

DOF rendering cost and increases the precision in that rotation.

As a last note on the quick-RIPE process, it also accounts for objects near the

edge of the Ic by artificially clipping the four sides of the Ir by the size difference

∆box. This partially limits the usefulness of the Ir, but allows the Im to always be

2∆box larger than the It in both dimensions. This also allows the matching process

to determine translations in both axes equally, instead of artificially limiting the

matching to directions toward the center of the image. For example, if the edge of

the It was allowed to be the edge of the Ir, the Im would be on the edge of the Ic as

well (since there is no image beyond this point to create a match-ROI around) and

the template matching could only match the current location or translational motion

towards the center of the Ic.

After determining the entire six DOFs, the pose of the object in the cam-frame

is complete. The next section applies this process to AR, further reducing the number

of Ir images required.

4.3.2 RIPE Tailored to AR. The knowledge of a tanker aircraft’s relatively

benign and predictable motion during AR allows further tailoring of the RIPE ap-

proach. The analyzed statistical motions of the aircraft determine the necessary range,

direction, and magnitude of the perturbations about the nominal state. Decreasing

the number of perturbations about one or more states permits more perturbations in

other more dynamic states with the same cost to rendering, processing, and matching

time.

In AR, the states with the most motion as determined through empirical data

are roll and translation in the XbL axis, as presented in Chapter 3. Even when the

frame of motion is rotated to the cam-frame, the motions are shown to be related.

The forward motion of the aircraft (a combination of north and east motion,

depending on the heading of the aircraft) rotates to a combination of motion in the

Zcam and Ycam axes. For this research, the angle between the Zcam of the camera on
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the wing aircraft and the XbL axis was approximately 30◦. At this angle, a majority

of the change in forward motion is rotated into the Zcam axis (cos(30◦) = 0.866). The

motion in this axis of the camera is modeled the same as the north or east motion in

the n-frame.

Fifty percent of the change in forward motion is rotated into the Ycam axis

(sin(30◦) = 0.5); however, motion in both this axis and Xcam axis are accounted for

with the template matching, as long as ∆box is large enough to cover the potential

motion in these axes.

The roll motion of the lead aircraft is accounted for in the cam-frame through

the following relationship: CbL
cam = CbL

n Cn
bW

CbW
cam. Separating the rotations in this

manner, allows the known dynamics of CbL
n to be realized in CbL

cam. This separation

also allows the inclusion of INS data, detailed in the next section. Since CbW
cam is

constant and known and Cn
bW

is known from the INS, the remaining DCM, CbL
n , can

be modeled as presented in Chapter 3. This relationship allows the lead aircraft to

be tracked in the cam-frame using the dynamics demonstrated in the n-frame. In

other words, the actual values of CbL
n and CbL

cam will be different, but the unknown

variability of CbL
cam will be the same as CbL

n , with the knowledge of the other two

DCMs.

Modeling the lead aircraft in this manner tailors the quick-RIPE process. The

attitude plus image location reduces to perturbations in the roll DOF only. With

this reduction to one DOF, increasing the number of perturbations, incrementally

increases the number of Ir images required. The algorithm’s approach used four

perturbations about the state estimate, ±1◦ and ±2◦. The other two rotations are

checked less often when necessary. The algorithm presented in this research updated

yaw every second during straight and level flight and every half second during turns,

pitch was updated every two seconds. These were added as an additional attitude plus

image location group and not included in the initial group with the roll DOF. This

required, at some cost to precision, only five additional Ir instead of 20 additional to
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couple the rotations with roll (roll already required five Ir, two DOFs coupled requires

25 Ir total)

The size plus image location group retains the translation about the Zcam axis

perturbations. The RIPE algorithm’s approach used four perturbations about the

state estimate, ±5 inches and ±10 inches. This can eventually be tailored as a

function of distance between the camera and aircraft. Perturbing by such a small

amount for aircraft farther away, might not change the visual appearance of the

aircraft. In fact, for aircraft farther away, the algorithm can be reduced to attitude

plus image location, with only periodic updates to size.

The DOFs used and their perturbation amounts partially account for the po-

tential motions of the wing aircraft, which can vary depending on the platform and

pilot. Without other sources of data, proof of this process and the values chosen is

limited to the system it was designed for.

Through this approach, the entire quick-RIPE process requires ten Ir images

per single Ic with extras required periodically and at an increased rate during turns.

Thus, the process is reduced to attitude, size, and location. The final portion of this

chapter, details the implementation of this process with a Kalman filter.

4.4 Integrated RIPE

Applying the RIPE process to tracking a tanker can include an interaction

with a Kalman filter designed to track the aircraft. The Kalman filter dynamics in

Chapter 3, modified appropriately for tracking the lead aircraft in the cam-frame,

uses the output of the modified-RIPE algorithm, three translational DOF, and the

roll DOF, as measurement updates, z. The remaining items of the filter, not already

presented, consist of INS attitude updates and the noise of the measurement, R.

4.4.1 INS Update. The INS interaction with the filter included attitude

updates only. Other useful information is available from the INS; however, additional

mechanization in the filter is necessary to incorporate it. To ensure the statistical
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continuity of the Kalman filter, the INS does not modify the state information directly,

rather it uses the a priori state of the filter, x̂−
k to create the initial estimate for the

RIPE process. The state is updated to x̂+
k after the RIPE measurement and does

not directly include the updated INS information. This effectively separates the INS

update from the statistical accuracy of the filter, while using the information as a

better initial estimate for the RIPE process.

The INS information updates the estimate by separatingCbL
cam intoCbL

n Cn
bW

CbW
cam.

The INS information updates the Cn
bW

rotations. The other values (CbL
n and CbW

cam)

are kept constant, and then recombined to create the initial attitude estimates for the

next RIPE measurement. Other state information from x̂−
k is used to create pcam

L for

the initial translational estimate in the RIPE process.

Incorporation of the INS attitude information accounts for some of the attitude

motion of the wing aircraft in the tracking process. Without the inclusion of the

INS information, the movement of the tanker aircraft in the cam-frame would not

as closely resemble the predicted motion from the analysis as in the n-frame. If INS

information were not available, increasing the noise dynamic model of the filter (Q)

could partially account for this unpredicted motion of the lead aircraft.

4.4.2 Kalman Filter Measurement Noise. The last remaining requirement

of the Kalman filter is the noise of the measurement (R). The value of R depends

on the independent accuracy of the RIPE algorithm. To determine the accuracy of

RIPE, a sample run of AR collected images was processed by RIPE with no filtering,

producing relative position estimates. Without a filter, the estimate of position and

attitude from a previous time epoch became the initial six DOF estimates for the next

time epoch. Yaw and pitch were estimated every two and three seconds respectively.

The data had minimal noise in the image and minimal extraneous movements of both

aircraft.

The results of the sample run are shown in Figure 4.11. The run lasted 77.6

seconds, and accomplished 776 measurement updates at ranges from -1500 to -740
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inches in the XbL axis. As a reference, the pre-contact position is approximately

-1150 inches and the contact position is in the range of -830 to -690 inches. The

wing aircraft maintained a near constant YbL axis translation at approximately 13

feet. The run was accomplished at 30◦ aspect angle, typical for AR. Portions of the

aircraft were occluded from the camera FOV from approximately 46 seconds to 51

seconds. There was a loss of truth data at 10 seconds, denoted with a spike in the

graphs. The data were rotated into the bL-frame for determination of the AR positions

presented in Chapter 3. The analysis of the data is shown in Table 4.1.

4.4.3 RIPE Errors. First the errors in XbL and ZbL both decrease with

decreasing range between the aircraft. The errors in XbL are approximately 3-4% of

the range, 24 inches in error at 700 inch range (two feet error in contact position), and

50 inches in error at 1500 inch range. The YbL can be seen to have the same trend,

if the removal of the bias placed the errors on the positive side of the error scale (the

YbL error would start with a higher positive error, reducing as the aircraft closed).

This is a function of resolvable distance at further distances where the blurring of

the aircraft in the Ic accounts for a larger percentage of pixels of the aircraft. This

blurring area of pixels makes it harder to make a precise match compared to closer

distances. This is also witnessed in the noisiness in error at those further distances.

The error in YbL is smoother because motion in this axis was minimal.

Second, the error in roll has a definite discrete aspect to it. This is attributed to

the discrete perturbation allowed in roll (±1◦ and ±2◦). This error can be decreased

with smaller perturbation values. Further discussion on the viability of the RIPE

approach will be discussed in Chapter 5.

From the error analysis, only errors in roll met the Kalman filter requirement

of zero mean. The origins of the biases in the errors presented, and the errors to be

presented in Chapter 5, were not fully determined. The standard deviation of the

accuracy of the truth data was 18 inches, the biases shown are, at least partially,

truth data biases. Visually, the Ic and Ir are similar, as shown in Figure 4.12. The
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Figure 4.11: Accuracy of RIPE algorithm. A test run of the RIPE algorithm, with
no filtering of the measurements, a statistical analysis of the performance, shown in
Table 4.1, determines the values of R in the Kalman filter. The top chart is the
position of the wing aircraft in the XbL axis, as the solid and dotted lines move
towards the top of the chart, (time = 45 through 50 seconds), the wing aircraft is
closer to lead, similar for the third chart, the position of the receiver in the ZbL axis.
The second chart is the wing aircraft in the YbL axis, or translations left and right.
The final plot is the roll position of the lead aircraft.
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DOF Max (-) Error
(inches)

Max (+) Error
(inches)

Mean Error
(inches)

Standard Deviation
(inches)

XbL axis 6.0 42.0 21.0 7.0
YbL axis -16.0 -5.0 -10.0 2.5
ZbL axis -15.0 3.0 -3.5 3.0
Roll -2.0 0.5 0.0 0.5

Table 4.1: Data analysis of RIPE measurement error. Data was rounded to the
nearest half inch.

standard deviations shown in Table 4.1, squared, determined the appropriate values in

R. From experimental experience the best match possible, rcoeff normed, was approx-

imately 0.85 (unit-less) and the worst value that appeared (visually) to still match

was approximately 0.55, a sliding scale between these values increased the value of

R. This accounted for measurements with increased visual noise.

This concludes the chapter on pose, background information on AAR including

pose applied to AAR, and finally this thesis’ approach to AAR using RIPE. The

next chapter presents the application of RIPE to real-world collected data and error

analysis.
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Figure 4.12: The RIPE algorithm tested with no filtering. The contour of the Ir is
shown overlayed on the Ic at around 48 seconds in the data run shown in Figure 4.11.
The images are close enough for a measurement update, but not perfect.
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V. Experimental Results

Relative navigation using images for the purposes of air refueling an aircraft au-

tonomously, involved every aspect of the previous four chapters. The algorithm

as presented in Chapter 4 estimated the position of a lead aircraft in the camera’s field

of view enabling the accurate determination of a relative position of the wing aircraft

for AAR. With a Kalman filter and INS updates, the research algorithm successfully

met three of the four goals of this research; it increased the accuracy of the RIPE

approach with open source libraries and did not require modification to the lead air-

craft. However, the time required to implement the solution exceeds what the author

believes is acceptable for an autopilot response. This chapter covers the creation of

the models, laboratory and field work, experimental data collection, estimation errors,

and analysis of the process.

The first step in both experiments involved creating a model of the intended

target. While it is possible to apply the RIPE process without an a priori model, an

attempt was made to ensure that the errors in this approach to pose were not from

modeling. The first section covers the creation of models for both the laboratory and

field work.

The laboratory work consisted of a basic box-shape aircraft in a Vicon R⃝ envi-

ronment. The work was a risk management step to ensure a rendered image approach

to pose was possible and ultimately the work led to the development of the quick-

RIPE algorithm. The Vicon R⃝ system provided both a very controlled environment

and a precise truth collection process. Images of the box-aircraft were collected si-

multaneously with its true position and the true position of a camera relative to a

locally defined Vicon R⃝ navigation frame. While collecting the images, the camera

was randomly moved at different angles and distances to the box-aircraft. The work

evaluated the RIPE method applied to two independently moving objects without

the use of INS data or a Kalman filter and with partially occlusion of the box-aircraft

(up to half of the object out of the FOV) in the images. Because of background and

foreground noise, the early version RIPE algorithm used contour images of both the
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Ir and Ic for template matching. Lessons learned in the lab improved the algorithm

for the field work.

The field work mimicked the laboratory work in a real-world stochastic, non-

deterministic environment. This work focused on the incorporation of differing data

sources, INS data, and a Kalman filter into the navigation solution. This portion of

the process entailed flights with a TPS T-38A Talon aircraft as a simulated tanker

and a Calspan LJ-25 Learjet as a receiver. The aircraft flew maneuvers representing

those flown by actual tanker and receiver combinations in the operational realm. The

aircraft were flown by experienced pilots enrolled in TPS. A camera mounted on

the dash of the LJ-25 captured images of the the T-38A while flying representative

refueling maneuvers. Multiple truth collection sources provided an initial position

for the RIPE algorithm and a validation of the process and its accuracy. The RIPE

algorithm was then executed using the recorded data after landing. The algorithm

was causal, but slowed to allow processing.

5.1 Model Creation

The models used in this research are simply a collection of coordinates for each

individual polygon that make up the entire model. When a program renders the

model, the OpenGL library produces a visual representation on screen, as detailed

in Section 2.2.1. In modeling the aircraft for the predictive rendering portion of the

algorithm, absolute precision is not a requirement. However, accuracy and scale are

important [18].

Accuracy is necessary to provide quantitative comparisons between the collected

and rendered images because incorrectly placed items on the aircraft will negatively

affect the solution. The approach presented in this research depends on determining

which rendered image out of a certain number most likely resembles the collected

image. If an engine pod is modeled at the wrong position on the aircraft, images

of this incorrect model, rendered at incorrect locations relative to the camera may

appear more likely to the algorithm than those rendered at the correct location.
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Scale is very important when determining the distance between aircraft. Using

an aircraft modeled with a shorter wingspan than the actual aircraft will result in

a shorter estimate than the actual solution. Incorrect scaling of other parts of the

aircraft will affect the solution similarly. As shown in [18], an error of 20% in the

model resulted in a four-fold increase in the tracking error.

Creating a model from engineering diagrams is not always possible. Assuming

such diagrams exist, they would not necessarily include modifications, alterations, or

even paint schemes. Completing the model requires determining and including these

items. Some of the options to create three dimensional models of aircraft include laser

scanning, photogrammetry, and collecting point measurements.

Laser scanning is very accurate but currently requires expensive equipment and

training. As the costs continue to drop and equipment evolves to become more user-

friendly, this option may become viable in the future. Models created using laser

scanning still need textures or images added to produce a rendered image represen-

tative of the actual aircraft.

At the cost of some of the precision of laser scanning, advances in photogram-

metry software allow very accurate three-dimensional modeling with the use of images

from a known calibrated camera. Photogrammetry utilizes the science of multi-view

perspective geometry. This science is similar to triangulating a navigation position

based on distances from three or more known reference points. Photogrammetry

requires combining several images of an object, each with an image location of a

characteristic feature or defined point of the object. Enough features identified in

multiple images determines the relative positions of all the characteristic points in

three-dimensional space. Combining the relative position of the characteristic points

creates a three-dimensional model. Correct scaling of the entire model only requires

the addition of a single verified distance between any two points on the object being

modeled.
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This software imports the images of the object to be modeled and the user ref-

erences characteristic points in as many images as possible. When referenced across

a few images, the software automatically computes epipolar lines drawn on unrefer-

enced images. These lines help the user visually see where the point should be in the

image and determine how close the points match up with the model the software is

creating.

A benefit of photogrammetry is the automatic inclusion of images with the

model creation. Multiple images texture mapped to the object creates a more realistic

model.

The laboratory work of this research utilized PhotoModeler R⃝, a commercial

software suite, to build a basic three-dimensional model of a simple wooden airplane.

Such a process was not necessary for such a basic shape, but was a proof of concept

for potential use on an actual aircraft. An overview of the PhotoModeler R⃝ process is

shown in Figure 5.1.

A problem encountered with the use of photogrammetry is the difficulty in

locating specific points to reference between photos, a problem of correspondence.

Various textures, dots, or symbols, applied to an object, can make the process easier,

and in some cases automated. Covering an entire aircraft with these textures is

difficult and time consuming.

Because of the limited downtime in the aircraft’s flight schedule, the field work

modeling effort attempted to use PhotoModeler R⃝ without the use of the dots or

symbols. Unfortunately, the lack of distinguishable features on the aircraft (almost

completely white) made the process impossible without considerable effort to locate

individual rivets and joints in multiple portions of the aircraft. This method was

abandoned because of the failure to place characteristic points to reference on the

aircraft.

Eventually, two other modeling methods created two different types of models,

one of which was used for the RIPE algorithm. Both models began with a wire frame
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(a) (b)

(c) (d)

Figure 5.1: Creating a 3-D model with PhotoModeler R⃝.
(a) To minimize estimation errors associated with an object, a simple box frame
aircraft was constructed out of spruce plywood.
(b) Pictures of the box-aircraft were taken from various angles and distinguishable
features were cross-referenced in PhotoModeler R⃝. Including, but not shown, pictures
taken from underneath.
(c) After referencing the same feature in multiple images, PhotoModeler R⃝ presents
the user with epi-polar estimation-lines for reference-point determinations.
(d) After exporting the model as a collection of polygons, the aircraft can be rendered
using the OpenGL library.
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diagram built with the original specifications from Northrop Grumman, shown in

Figure 5.2. Over its lifespan, the aircraft was altered with one particular alteration

visible in some of the rendered images. A flat disk around the top of the vertical

stabilizer at the rear of the aircraft was not in the original design. This could possibly

contribute to some errors in roll when highlighted by the sun during flight. The error

in the model was not noticed initially and was never corrected.

Figure 5.2: Initial wire frame model. This was the beginning model used in the
research, created using the original aircraft specifications from Northrop Grumman.

A model created and used for this research projected and then attached an

underside photo of the aircraft to the bottom surface of the wireframe model. This

only necessitated a single photo collected during flight. The photo was applied in

individual sections so it did not appear as a flat image on the bottom of the aircraft.

This is important during the rendering process because flat surfaces will not change

appearance in the same manner as contoured surfaces. By maintaining the shape of

the wire frame model with the photo texture, realistic lighting and shading can appear

on the aircraft. This model, with a close up view from underneath the aircraft, is

shown in Figure 5.4 (a) and (b).

There are a few caveats with this approach. First, and probably most impor-

tantly, the process requires a picture of the bottom side of the aircraft. Unless a hoist
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Figure 5.3: Texture image. This image, taken in flight, was projected on and applied
to the underside of the wireframe model of the same aircraft (shown in Figure 5.2) to
create the model shown in Figure 5.4 (a) and (b).
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(a) (b)

Figure 5.4: 3-D model with texture mapping.
(a) A photo taken of the bottom of the aircraft in flight was applied to the wire frame
model shown in Figure 5.2.
(b) A close up view of the texture-mapped model, showing the changes in contour of
the aircraft.
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or crane can lift the aircraft (with the gear retracted) or stitching together multi-

ple individual-pictures from underneath the aircraft is possible, the process involves

collecting the image(s) in flight. Even with photos taken on the ground, an aircraft

looks different on the ground (wings bend down) than it does in flight (wings bend up)

due to aerodynamic effects, this was minimized in this research but still noticeable.

In-flight photography is expensive and it’s difficult to determine the distortion effects

of the windscreen that the photographer will use. As a solution, the same camera

used in the research with a known distortion model also collected the image for the

texture mapping.

Second, attaining a good perspective image of the aircraft is difficult. In Fig-

ure 5.4 (a), the image appears smeared near the nose of the aircraft. This smearing

occurs, because it would be difficult to fly directly below the aircraft and take a pic-

ture from underneath; therefore, the image was taken at an angle from behind. The

rotated model shows the projective distortion in the photo applied to the bottom

surface. In Figure 5.4 (b) the perspective of the aircraft is similar to the perspective

when it was taken, reducing the effect of the distortion.

Another modeling technique facilitated the creation of a backup model. For

this model, the entire wire frame was colored white and specific visual-textures were

applied to the aircraft and colored black. For accurate truth collection in the research,

it was necessary to know the location of the truth-data and image collection equip-

ment by boresighting their location and orientation. The FaroR⃝ arm equipment used

to boresight those devices also precisely mapped some of the paint schemes of the

aircraft. Applying the determined positions of the paint schemes to the model and

coloring them appropriately created a more accurate textured-mapped model than

other techniques. The completed model is shown in Figure 5.5.

This process also has problems. First, it’s expensive; the equipment, technician,

and the aircraft down-time is almost as costly as flying. Second, the paint scheme

locations were precise but not absolute and minor errors in their locations were dis-
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Figure 5.5: A model created with precise paint scheme points. This model was not
ultimately used for this research, but is a better representation of the aircraft for
future research.
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covered. This presented issues when applying the color to the skin of the aircraft.

If a coordinate is incorrect towards the inside of the skin, the color is not visible

when rendered (the white skin of the wire model covers it). Similarly, if a coordinate

is incorrect to the outside of the skin, the color appears to float, unattached to the

body of the aircraft. To correct this, many of the points had to be translated along

a line normal to the surface of the aircraft, so they could be on the skin and seen in

renderings.

Finally, the natural curves of the aircraft makes this process challenging. Be-

cause of the sheer number of points required, it’s difficult and time consuming to

collect every point, of every aspect of the paint scheme. Because of this, the FaroR⃝

arm collected only well defined features. Instead of collecting the entire left side of

the “U” at the front of the aircraft, the Faro R⃝ arm only determined the corners that

define the straight lines of the “U”. Unfortunately, the “U” is not straight at all, as

it curves along the side of the aircraft. When inputting these two points onto the

model, the straight line between them would pass through the skin of the aircraft.

These lines were hand-curved to the side of the aircraft as well as translated to the

surface.

No attempt was made to determine if the quality or type of model affected the

results of the navigational approach presented in this thesis. With a model created,

the next step involved preliminary evaluation of the process in a laboratory setting,

detailed in the next section.

5.2 Laboratory Work

The laboratory work made use of the Vicon R⃝ motion capture system to provide

the true location of the simulated aircraft. The Vicon R⃝ system has an advertised ac-

curacy of approximately 1 mm. Images were collected using a Prosilica R⃝ GC 1290C

camera with an 8 mm lens (simulating a wing aircraft). With this setup, represen-

tative refueling motions were hand flown, by moving the camera only, at distances
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ranging from 60 to 160 inches. Images of the box aircraft were collected at 10 Hz

during the simulated flight.

The model was constructed out of spruce plywood and was 24 inches wide, 32

inches long, and 16 inches tall (shown in Figure 5.6(b) and Figure 5.1). To allow

the camera to collect images below and aft of the box-aircraft, it was suspended with

fishing wire to minimize the visibility of the suspension wires in the collected images.

The process discussed in Section 5.1 details the creation of the virtual representation

of the model.

The camera had a 4.8 mm by 3.6 mm sized sensor with 1280 by 960 pixel

resolution. The camera and lens combination provided a FOVX of 33.4◦ and a FOVY

of 25.4◦ for an aspect ratio of 1.317. Images were collected of a standard checkerboard

and a distortion model was constructed using the theory demonstrated in [9] and the

Camera Calibration Toolbox for Matlab R⃝ [2].

The use of the Vicon R⃝ system was invaluable for this testing. Small tracking de-

vices (reflective balls), placed on the box-aircraft and the camera, allowed the system

to collect accurate position and orientation of both. The system’s cameras projected

and then detected the reflection of infrared light off the reflective balls on the objects,

triangulating their position. Figure 5.6 shows pictures of the equipment used with

the reflective balls attached and the Vicon R⃝ environment.

Collecting the Vicon R⃝ data simultaneously with the images created a time-

stamped data source for each collected image. A single laptop computer with two

ethernet connections collected both the Vicon R⃝ data and the images.

For various reasons, mainly because of visual noise in the scene, the images were

preprocessed prior to matching. A contour function, applied to both the collected and

rendered images, created a contour representation before initiation of the template

matching. This process was described in Section 2.2.2.1.

The simulation simplified a few aspects of AAR. No bw-frame was defined, only

a cam-frame. The origin of the Vicon R⃝ system simulated the e-frame for relative
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(a) (b)

(c)

Figure 5.6: Vicon R⃝-tracked objects. The cameras of the system detect infrared light
reflecting off of the balls on the objects.
(a) The camera did not meet the minimum size requirement for the Vicon R⃝ system
to track its orientation, requiring the addition of an extension.
(b) The aircraft was hung with fishing wire that was barely visible in the Ic images.
(c) The Vicon R⃝ cameras surround the tracked objects for optimum triangulation.
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position error determination and also the n-frame for attitude information and error,

which minimized unnecessary translations and rotations. The system as defined and

used is shown in Figure 5.7.

Collection of data simulated the receiver at various positions behind and below

the box-aircraft and accomplishing various random motions. These motions did not

necessarily represent true AR motions, additionally, the box-aircraft had a natural

sway motion from a single attachment point for the fishing wire. Because of this

natural sway of the aircraft, the RIPE process included both roll and yaw in every

matching update. The algorithm periodically updated the pitch of the box, but the

suspension of the box limited the pitch motion considerably. An example result of

the algorithm’s matching is shown in Figure 5.8, with the contour overlay of the Ir

on the Ic.

Post-processed data runs were tracked by the RIPE process. An initial value

was given to the algorithm from the truth source. The algorithm did not make use of a

filter, the initial estimate of a measurement update was simply the final measurement

from the previous update determined by the RIPE process. The error associated with

this process without INS and without a Kalman filter is shown in Figure 5.9.

The analysis of the laboratory data is shown in Table 5.1. It was assumed that

the addition of an INS and filter should only increase the accuracy of the system.

They were excluded from the laboratory work because of time limitations.

For this single run of 520 frames or measurement updates at ranges from 80 to

110 inches, the algorithm performed well with an error of approximately ±1%, as a

function of the range between aircraft, in all three axes. There is an obvious delay

in the Z axis of the cam-frame (seen in the top of Figure 5.9) which is attributed to

the small range of perturbations allowed to that axis. The algorithm could simply

not adjust the translation in that axis fast enough to match the actual motion of the

target, it used the maximum perturbation allowed in each frame. The errors in the

Y axis and X axis are attributed to the contouring process. The contour function
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Figure 5.7: Laboratory work navigation setup. The laboratory work environment
with the simplified AAR-associated reference-frames.

Figure 5.8: The laboratory work example match. The contour overlay of the Ir is
shown on the Ic.
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Figure 5.9: The laboratory work error. The work in the lab demonstrated the viability
of the RIPE approach. This error is shown in the cam-frame because there was no
bW -frame defined nor defined AR positions in this setup.

DOF Max (-) Error
(inches)

Max (+) Error
(inches)

Mean Error
(inches)

Standard Deviation
(inches)

Zcam axis -2.0 3.5 1.0 1.0
Xcam axis -5.0 0.5 -1.5 1.0
Ycam axis -3.0 3.5 0.5 1.0

Table 5.1: Data analysis of RIPE laboratory error. Data was rounded to the nearest
half inch.
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as implemented found the interior and exterior contours of the box-aircraft. When

this contour was displayed, the exterior edges of the box-aircraft had two lines, for

both the interior and exterior contours found. To compensate, the line-width used

to draw the contours was increased (creating a single line), blurring the true edge of

the box-aircraft slightly. This can be seen in Figure 5.8; the contour lines are thicker

than the actual edge of the box-aircraft. As a result, the pure black and white (with

no grey) contour Ic and Ir images had more of a line-width to match, decreasing the

precision.

Finally, during the data run shown here, the box-aircraft temporarily and only

partially exited the field of view around frame number 365 (witnessed in Figure 5.9 as

a large change in the translation in the Xcam axis.) Figure 5.10 shows an image of the

farthest occlusion of the box-aircraft. While the box-aircraft was only at this extreme

position for a few frames, the algorithm was able to consistently track it throughout.

The laboratory work demonstrated that such a process was viable. Predictions

from the errors seen in the lab were estimated to be similar in flight, with an er-

ror increase from the additional complexity of flight including motion relative to the

ground, more maneuverable objects, and significant increase in range between them.

Unfortunately, the process was too slow to be implemented in real-time. Because of

the extra time required to create contours of each image in addition to the discov-

ered inefficiency of the OpenGL to OpenCV conversion, every measurement required

approximately four seconds. Most likely, this is unacceptable for close formation air-

craft navigation. A discussion on the OpenGL to OpenCV conversion is presented in

Section 5.5.3. The next section details the RIPE approach to the field work.

5.3 Field Work

The field work entailed flights with a TPS T-38A Talon aircraft as a simu-

lated tanker and a Calspan LJ-25 Learjet as a receiver [10]. The data collection was

part of a test management project (TMP) for the students in the TPS class 10 Al-

pha. The Here’s A Visually-Enabled Guided Air refueling System (HAVE GAS) TMP
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Figure 5.10: Partial aircraft occlusion. To test the algorithm’s ability to track with
partial occlusion, the camera was moved limiting the amount of the box-aircraft seen
in the field of view.

group flew the aircraft through representative refueling formations, rejoins, closures,

and separations as demonstrated in Figure 5.11. The LJ-25 had a digital Prosilica R⃝

monochrome camera, model GE1660, installed behind the windshield. The camera

images were collected by an on-board computer for post-flight download. The aircraft

were flown at various distances, offsets from centerline, and aspect angles. Truth data

for 36 different parameters were collected at 100 Hz and images were collected at

10 Hz.

The data collection devices consisted of GPS Aided Inertial Navigation Ref-

erence (GAINR) units, configuration 2B (C2B) located on the two different aircraft.

These units had an internal IMU (HG-1700) and dual (L1/L2) frequency GPS antenna
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Figure 5.11: HAVE GAS TMP data collection flights. The data collection process
doubled as a curriculum event for the TPS course.

mounted on the outside of the aircraft. A picture of the installed unit on the LJ-25 is

shown in Figure 5.12. The data were filtered post flight and partially corrected with

the boresight locations of the devices. The two GAINR units were time-synced with

GPS and recorded their data stamped with GPS time. The LJ-25 had an additional

truth collection system installed, used as a backup to the GAINR. The data attained

from the LJ-25 on-board computer created the INS source for the RIPE algorithm,

allowing for independence of the truth source from the algorithm. The truth data

had a reported accuracy in position of 18 inches and in attitude of 0.1◦ and were only

used for an initial position and a final comparison [7].

The collected images were time-stamped with a file name based on the inter-

nal clock of the Prosilica R⃝ camera. When power was applied to the camera, the

internal clock started counting from zero at a rate of 79,861,111 Hz. Because the

camera was within the pressurized cabin and the temperature was relatively constant
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Figure 5.12: Truth collection device installed on the project LJ-25. A similar unit
was installed in the nose of the T-38.

(±5◦F ), very little environmentally-induced variability influenced the camera tim-

ing. Converting the camera timestamps into GPS seconds, to match the truth data

timestamps, required the number of counts per second plus the time the camera was

initially powered. It would be challenging to determine the exact time power was

applied, so time-sync maneuvers were flown in flight. The maneuvers were visually

identifiable in both the Ic and the truth data and consisted of bank to bank rolls in

both aircraft. Ultimately, only the first bank maneuver by the T-38 was required, the

other rolls were less crisp then the first T-38 roll. The time sync was accomplished at

the beginning and end of the flight to determine if there was any time drift. During

these maneuvers the camera collection rate was increased to 30 Hz to minimize the

time between collections to pinpoint the exact time of maximum bank angle in the

images. An example of the T-38 at maximum roll angle with the truth data as a

contour overlay is shown in Figure 5.13.
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Figure 5.13: Time sync maneuver. Four different data sources were synced together
using a few time sync maneuvers through the flight. The contour overlay is from the
combination of the two GAINR unit’s truth data. A position bias between aircraft in
the truth data is visible by the non-intentional offset.

For the second flight (the data used in this thesis), the camera was determined

to be turned on 56,204.464 seconds after 0000.000 local time with a 95% confidence

level of ±72 milliseconds [10]. Accounting for this possible error in time correlation

between the three data sources resulted in a corresponding range error of ±3.5 inches

with an assumed maximum closure or separation rate of 4 feet per second [10].

The Prosilica R⃝ camera used was 1200 by 1600 pixel resolution with 5.5 microm-

eter pixel size for a sensor size of 6.6 millimeter by 8.8 millimeter. The lens was a VS

Technology Cooperation Mega Pixel Closed Circuit Television (CCTV) SV-0814MP

with a fixed 8.3 millimeter focal-length lens. Focus and aperture were set on the

ground before flight; however, the pilot could adjust if required in flight. Typically,

only one or two adjustments of the aperture were necessary in flight, once the tanker

aircraft was in the FOV.

Images of a checkerboard were taken with the system camera as mounted in

a fixed location on the windshield. The images combined with the calibration soft-

ware [2] determined a calibrated camera model and distortion model. The field work
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checkerboard collection was slightly more cumbersome and had to be partially re-

peated. The combination of a wide field of view and high pitch angle of the camera

limited the use of a planned lifting device from getting close enough to the camera.

Additionally, the checkerboard was too flexible when held from one corner as shown

in Figure 5.14. A reinforcement grid of wood was attached to the back for stiffening,

which made it heavy to hold and position correctly.

The camera calibration determined the K matrix to be:

K =

1562.95 −0.0127 767.84 0
0 1528.77 607.709 0
0 0 1 0

 (5.1)

where the values (except skew, K(1,2), which is dimensionless) are in pixels. These

values are presented with 99.7% confidence in focal length of ± 5.5 pixels and in

principal point of ± 3.0 pixels, both rounded to the nearest half pixel. The skew value

was within ± 0.00036 with 99.7% confidence.

It is important to note the distinction between empirical values and manufac-

tured specifications. The specified focal length of the lens was 8.3mm, which should

have allowed a FOVY = 44.83◦ according to Equation (2.30). However, using the

empirical values from Equation (5.1) in Equation (2.30), a smaller FOVY = 43.36◦

results. The focal length in pixels for the Y axis was 1528.77 pixels with 5.5µm sized

pixels, the empirical focal length was actually 8.4mm (1528.77pixels x 5.5µm/pixel) and

8.6mm for the X axis. This is an important distinction when using the OpenGL

setup and must be accounted for. Additionally, the non-center principal points and

skew of the K are not accounted for in the normal OpenGL setup and is addressed

in Section 5.5.1.

The resulting pixel error from the distortion removal process was approximately

one pixel in both axes. This distortion-model pixel error was a result of the difficulty

in modeling the visual warping through the windshield. The camera was not initially

rotated correctly on the dash and a final correction to rotate the camera to a higher
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Figure 5.14: Collecting camera calibration images. This process was more difficult
than the average laboratory setting, flexing in the original board caused errors in the
model.

pitch angle brought the lens very close to the very curved windshield. The effects of

this pixel error are not significant and are not attributed to the errors of this process.

The data were collected in the Edwards AFB, CA R-2508 complex during

September 2010. Collection was conducted during the daytime with minimal weather

impact (clouds, rain, etc.) Two flight test engineers operated the camera collection

laptop and LJ-25 truth collection system. Collections were accomplished in two to

four minute segments due to limitations in airspace and to minimize possible corrup-

tion or data loss on a single run. Actual AR maneuvers can possibly be longer in

duration and most likely, less dynamic.
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5.4 Data and Errors

After the data were collected, the RIPE algorithm was tuned for the most

difficult run that involved the Sun in the FOV, included a turn and a crossing from

one side of the aircraft to the other. This run was non-typical for AR, so more benign

representative runs characterize the quality of the RIPE approach, while the others

are presented for a determination of its robustness.

The first run demonstrates the effects of the Kalman filter on a turning track

AR maneuver. Figure 5.15 shows the error from run ten of the second flight. In this

run, the wing aircraft started at 168 feet aft of the lead aircraft, closed to 62 feet

and maintained it for 15 seconds before backing out. The run was conducted at a

40◦ elevation, the bottom of the refueling envelope (witnessed in the more negative

ZbL axis translation, compared to Figure 4.11) and translated across the YbL axis

(witnessed in the YbL axis position crossing zero feet translation). Additionally, the

lead aircraft maintained above 30◦ of roll angle throughout the maneuver and the tail

of the aircraft was occluded from view for a portion of the run (approximately 43 to 66

second marks). This result appears to resemble the errors of the measurement only

run in Figure 4.11; however, this maneuver was more dynamic and started farther

back. The analysis of the data from Figure 5.15 is shown in Table 5.2.

The errors visible in the figure and table for run number ten have characteristics

worth examining. First, the roll errors appear less discrete than the measurement only

run in Figure 4.11. Instead, the roll error now has an oscillation to it. This oscillation

is still attributed to the discrete capability of the RIPE in the roll axis. The roll

angle has to go beyond 0.5◦ before the next closest integer degree appears more likely

(the perturbation amounts in roll were ±1◦ and ±2◦). This affects the roll rate of

change in the Kalman filter. Large discrete jumps in roll angle appear as large rates

of changes to the filter. The filter updates the roll rate of change state appropriately

and predicts a similar rate of change for the next propagation step. For small motions

in bank angle, this causes an overshoot and the oscillation seen in the roll position.
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Figure 5.15: Flight two, run ten RIPE error.

DOF Max (-) Error Max (+) Error Mean Error Standard Deviation
XbL axis -76.0 inches 38.0 inches -10.0 inches 21.0 inches
YbL axis -16.0 inches 2.5 inches -10.0 inches 2.5 inches
ZbL axis -20.0 inches 36.0 inches 4.0 inches 9.0 inches
Roll -2.0◦ 1.5◦ 0.0◦ 0.5◦

Table 5.2: Data analysis of flight two, run ten. Data was rounded to the nearest half
inch or half degree respectively.
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The error in the roll is not an important concern, since it is just a means to

create a better visual representation of the aircraft to determine the relative position.

With such a small standard deviation and limited impact on the relative position no

improvement to the Kalman filter’s roll estimates was attempted. For brevity, roll

errors are left out of the remaining error plots.

Other errors are visible in run number ten. Similar to Figure 4.11, a bias is

visible in the YbL axis, attributed to a bias in the truth collection. Also, interaction

betweenXbL and ZbL axis is apparent. This is a difficult problem in AAR [29] and pose

in general, differentiating between motions in the different DOFs. Evident throughout

the run, most notably at the beginning, is the compensation of the RIPE algorithm.

When an error appears in one axis, a visual compensation to maintain the correct

appearance of the aircraft appears in the other axis. This is most pronounced at

further distances between aircraft and when partial occlusion of the aircraft occurs.

Because of the relatively small changes in the YbL axis, the interaction errors are

generally not as evident in this axis, a later example will demonstrate this interaction.

The theory of template matching should reduce the effects of this interaction; if

the theory is correctly implemented, it will. It is compromised when implemented in

Cartesian coordinates. Unless the object is in the center of the image, any perturba-

tions in the Zcam axis appear in the image as a change in size and a change in image

location. This change affects the visual appearance of the aircraft. This change to

the visual appearance for each perturbation in the Zcam axis changes the template

matching likelihood comparison. The theory requires for the size plus image location

group that the appearance of the aircraft remains the same while allowing a change

to its size only. If correctly implemented, the errors witnessed in the ZbL axis could

resemble those seen in the YbL axis.

Next, two common trends were witnessed in most of the data runs. First a

large jump in error was present near the beginning of the runs. Second, a steadily

increasing, and uncorrected error was observed as the aircraft separate.
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The large jump in error at the beginning is partially from the incorrect initial

state provided to the Kalman filter. The initial state provided to the filter are the

three translation values and the roll value, the rates of change to these states and their

derivatives were set to zero. The filter takes some time to determine those values from

the measurement updates provided by the RIPE process. Additionally, the large error

at the beginning of the run is attributed to the size of the allotted perturbations at

the farther distances. The perturbations in the Zcam axis were arbitrarily chosen to

be constant throughout the run (±5 and ±10 inches). At the farther distances, the

visual appearance of the rendered aircraft does not change dramatically, if at all, with

such small perturbations. This allows all five of the possible Ir images in the size plus

image location group to appear equally likely. With the Kalman filter determining

the rate of change of these states at the same time errant measurements are likely,

the error is exacerbated until the aircraft are close enough together that a correction

is possible. A worst case example of this error is presented later.

Additionally, affecting the beginning as well as the ending of the runs, the

distance between aircraft influences the errors. On average the errors are typically

3-4% of the distance between the aircraft or less, with the maximum error values less

than 7% of the distance between the aircraft (both measured in the XbL axis). As

an example, the maximum error in the XbL axis near the beginning of the run in

Figure 5.15 is 2% of the distance (38in/1900in), and at the end of the run, the error

is 4.75% of the distance (76in/1600in.) This is a resolvable distance limitation of the

images as discussed in Section 4.4.

The second trend in the data runs is the steady, increasing, and uncorrected

error at the end of the run. This is attributed to the template matching. For an

unknown reason, the algorithm does not match the size of the receding aircraft as

accurately as it does when the aircraft is closing. This is a potential limitation to the

template matching function.
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The error analysis in Table 5.3 characterizes the error in run number ten for

just the pre-contact position (1150 inches) and closer, when accuracy is most critical

(between 38 seconds and 82 seconds in Figure 5.15.) In general, most of the errors

are reduced. The most notable changes are the errors in the XbL and ZbL axis, both

are reduced in max errors and standard deviation of error. The mean error in the

XbL axis is reduced dramatically as well; however, this is because the interaction with

the ZbL axis caused the error to transition negative for half the time. The root mean

square error is 13 inches in the pre-contact position or closer.

DOF Max (-) Error Max (+) Error Mean Error Standard Deviation
XbL axis -30.0 inches 18.0 inches 0.0 inches 13.0 inches
YbL axis -16.0 inches -10.0 inches -12.0 inches 1.0 inches
ZbL axis -8.0 inches 18.0 inches 5.0 inches 6.0 inches
Roll -2.0◦ 1.5◦ 0.0◦ 1.0◦

Table 5.3: Data analysis of flight two run ten, pre-contact (1,150 inches) and closer.
Data was rounded to the nearest half inch and degree respectively.

Figure 5.16 shows run 18, another example run of maneuvers resembling AR.

This error plot shows only the run’s pre-contact to contact transition and back. De-

terminations of the error during run 18 are shown in Table 5.5. With a few differences,

the errors in this run are similar to the errors in run ten, pre-contact position and

closer (Table 5.3). The interaction between the two axes (XbL , ZbL) is evident as well

as the bias in the YbL axis. The largest differences between the runs is the mean error

in the ZbL axis, which is now negative and an outlier in the YbL axis affected the

maximum (+) error in that axis. The XbL axis error has a slightly reduced standard

deviation because of a slower separation rate between aircraft.

A final AR representative run, number 12, is shown in Figure 5.17. This run

shows a larger error in the beginning (6.5% as a function of XbL axis distance between

aircraft) that is able to correct before the pre-contact position. This is shown as

an example of a worst case for the representative AR maneuvers. The error is a

combination of incorrect implementation of the template matching theory, resolvable

distance limitation, and incorrect initial conditions to the filter.
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Figure 5.16: Flight two, run 18 RIPE error.

DOF Max (-) Error
(inches)

Max (+) Error
(inches)

Mean Error
(inches)

Standard Deviation
(inches)

XbL axis -30.0 17.0 -0.5 9.5
YbL axis -12.0 1.5 -8.5 1.5
ZbL axis -18.5 6.0 -5.0 5.0

Table 5.4: Data analysis of flight two, run 18 pre-contact position (1,150 inches) and
closer. Data was rounded to the nearest half inch.
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Figure 5.17: Flight two, run 12 RIPE error.

DOF Max (-) Error
(inches)

Max (+) Error
(inches)

Mean Error
(inches)

Standard Deviation
(inches)

XbL axis -25.0 29.0 15 8.0
YbL axis -15.0 -9.0 -12 1.5
ZbL axis 0.0 15.0 10 2.5

Table 5.5: Data analysis of flight two, run 12 pre-contact position (1,150 inches) and
closer. Data was rounded to the nearest half inch. Demonstrating a worst case for
representative AR maneuvers.
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As a challenge to the algorithm, two atypical AR maneuvers were flown. The

first tested the algorithm’s ability to handle extreme dynamic motions. The sec-

ond tested the algorithm’s ability to handle difficult visual situations in addition to

dynamic motions.

The first challenge required the wing aircraft to initially maintain the pre-

contact position with approximately 30◦ roll angle. After stabilizing, the wing aircraft

initiated a rapid roll reversal causing the lead aircraft to quickly exit the FOV of the

camera. Because of the speed at which the lead aircraft left the FOV, this maneuver

was captured and processed by the RIPE algorithm at 30 Hz. Because these dynamics

were not modeled, the Kalman filter was not used (witnessed in the discrete errors in

Figure 5.19).

Figure 5.18 shows a few sample images from the maneuver, with the RIPE

estimated position contoured overlayed. Figure 5.19 shows the errors resulting from

this maneuver. The errors associated with this dynamic maneuver are mainly realized

in the ZbL axis.

The second challenge included both visual and dynamic motions in a difficult

AR situation. Sample images from this maneuver are shown in Figure 5.20. The

maneuver began with the wing aircraft displaced to the left of the lead aircraft with

approximately 30◦ roll angle. The wing aircraft transitioned sides when the sun

started to appear in the camera FOV. The sun streaks on the windshield were a

challenge to the template matching, and the algorithm adapted the contouring-first

method used in the laboratory work. This obviously adds to the time required to

compute a measurement and is not optimal; however it does allow the algorithm

to continue working even with difficult visual noise. Figure 5.21 shows the errors

associated with this visually challenging maneuver. It would be very difficult to

navigate with the large errors at the end of the run. A better image processing

technique, such as a Local Illumination Normalization Filter, might produce better

results with the sun in the FOV [17]. Tracking at all through the sun was very
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difficult and the important aspect is the capability of the RIPE process, not the

image processing technique. As a note, all the errors presented in Figure 5.21 are 9%

or less as a function of distance between the aircraft.

As discussed previously, the interaction between the YbL axis and the XbL is

more apparent in Figure 5.21 than previous error charts.

Through all the runs presented in this chapter, the average processing time was

between 1.5 to 4 seconds, depending on the size of the aircraft in the image. When

the aircraft was farther away, a smaller region of interest for the template matching

allowed faster processing.

The following are potential solutions to the errors presented in this section:

• Template Matching Theory: The theory requires independence of Ximage

and Yimage from changes in Zcam during the size plus image location group. The

RIPE digital zoom alternative approach, or the use of spherical coordinates in

the cam-frame (adjusting only the distance between the aircraft) might correct

these errors.

• Resolvable Distances: Correctable with a higher resolution camera and

lens. This will increase the number of pixels representing the aircraft. At

farther distances, this will allow small perturbations in the Zcam axis to make

visual changes to the appearance of the aircraft, minimizing measurement errors

to the filter.

• Kalman Filter: Better initial estimates plus potentially tracking in the n-

frame where the motions of the aircraft were modeled [29]. Account for transla-

tional changes of the wing aircraft by incorporating INS velocity or acceleration

values into the filter.

Improvements are necessary to this approach; however, the errors are man-

ageable for implementation into an autopilot solution. This concludes the section on

experimental data and error analysis. The next section presents process improvements

discovered through the research and experimentation.
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(a) (b)

(c)

Figure 5.18: Field work, dynamic motion. The collected images are shown with the
most-likely, rendered, perturbation images shown as overlays.
(a) Initial position, the wing aircraft maintained pre-contact position with approxi-
mately 30◦ roll angle.
(b) 0.5 seconds after the wing aircraft initiated a rapid roll angle reversal.
(c) 1.3 seconds later the lead aircraft exits the cameras FOV.
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Figure 5.19: Flight two, run 28 RIPE error. The error associated with the field work,
dynamic motion shown in Figure 5.18.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 5.20: Field work, visual challenge. Entire run conducted with approximately
30◦ roll angle. The collected images are shown with the most-likely, rendered, pertur-
bation images shown as overlays (except (g)).
(a) Initial position.
(b) Occlusion, lead on the right.
(c) Cross to the other side.
(d) Occlusion, lead on the left.
(e) Sun covers a good portion of the wing and elevator.
(f) Backing away.
(g) Actual view of image (d) used by the algorithm.
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Figure 5.21: Flight two, run 20 RIPE error. The error associated with the field work,
visual challenge shown in Figure 5.20
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5.5 Areas of Improvement

Throughout the laboratory and field work, many improvements and refinements

to the process were discovered and warrant presentation for future experimentation.

They include a better representation of a camera in OpenGL, a validation process

that should be considered when using OpenGL, and a slightly more efficient method

of converting images from OpenGL to OpenCV.

5.5.1 A More Accurate OpenGL Camera Representation. As mentioned

in Section 2.2.1.2, the transformation matrix created by glFrustum( ) is actually the

combination of two transformation matrices, T 1 and T 2 [22]. The transformations

are labeled in their order of occurrence and shown in the equation as pre-multipliers.

glFrustum = T 2T 1 (5.2)

T 2 =


2

right−left
0 0 − right+left

right−left

0 2
top−bottom

0 − top+bottom
top−bottom

0 0 2
zNear−zFar

zFar+zNear
zNear−zFar

0 0 0 1

 (5.3)

T 1 =


zNear 0 0 0

0 zNear 0 0
0 0 zNear + zFar zNear ∗ zFar
0 0 −1 0

 (5.4)

The first matrix, T 1, transforms the pyramid frustum into a rectangle shape.

This process is similar to the mapping of the cam-frame to image-frame by the K

matrix shown in Section 2.1.3.5, with a few exceptions: the T1 transformation main-

tains the Z axis translation information and there is no skew or principal points. The

principal points are accounted for in the translation from CVV to GLimage-frame in

Equations (2.38 and 2.39). If we label the transformations with the same notation as

the DCMs, they become: K → Kimage
cam and T 1 → TNDC

GLcam.

Because the location of frames in OpenGL are decided by the user, the GLcam-

frame is collocated with the cam-frame. As a result, instead of using T 1 to map the
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points to the rectangle shape the parameters of Kimage
cam can be used, accounting for

the difference in orientations of the frames. However, because OpenGL maintains the

ZGLcam translation information until placing the contents of the CVV onto an image,

an additional row is needed in the matrix Kimage
cam . It can be shown that the third row

would be similar to the third row in T 1, with a negative sign for the difference in z

translation directions.

To facilitate the transformation, the cam′-frame is introduced. This frame is the

projection of the cam-frame onto the near clipping plane, and is shown in Figure 5.22.

Figure 5.22: The GLcam-frame and cam-frame. They are collocated to permit the
use of the camera parameters to transform the pyramid frustum to the rectangular
shape. The projection of the cam-frame onto the near clipping plane denotes the
cam′-frame.
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By maintaining a symmetric viewing window (not accounting for off-center prin-

cipal points), the transformation can be broken down into components:

PNDC = T 2 T
NDC
cam′ K cam′

cam T cam
GLcamP

GLcam (5.5)

T 2 =


2
W

0 0 0

0 2
H

0 0

0 0 2
zNear−zFar

zFar+zNear
zNear−zFar

0 0 0 1

 (5.6)

TNDC
cam′ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


,

T cam
GLcam =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (5.7)

K cam′

cam =


α 0 0 0
0 β 0 0

0 0 −zFar − zNear zNear · zFar
0 0 1 0

 (5.8)

where, TNDC
cam′ and T cam

GLcam account for the difference in orientation of the frames; T 2

does not convert frames and only scales the points in the NDC-frame, and Kimage
cam , as

described in Section 2.1.3.5, was 3x4 and the 4x4 K cam′

cam is required in this equation.

To account for off-set principal points, the creation of T 2 (or glOrtho( )) is

offset by the width and height of the desired image, (right=W, left=0, top=0, and

bottom=H) and K cam′

cam is offset in the opposite direction by the amount of the prin-

cipal points:

T 2 =


2
W

0 0 −1

0 2
H

0 −1

0 0 2
zNear−zFar

zFar+zNear
zNear−zFar

0 0 0 1

 (5.9)

K cam′

cam =


α 0 xo 0

0 β yo 0

0 0 −zFar − zNear zNear · zFar
0 0 1 0

 (5.10)
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The two translations (TNDC
cam′ and T cam

GLcam) can now be accounted for in a single

K matrix, relabeled K GL, including the addition of the skewing value which is solved

in the same manner as the skew in Section 2.1.3.5:

P NDC
1 = T 2 K GLP

GLcam
1 (5.11)

T 2 =


2
W

0 0 −1

0 2
H

0 −1

0 0 2
zNear−zFar

zFar+zNear
zNear−zFar

0 0 0 1

 (5.12)

K GL =


α −s −xo 0

0 β −yo 0

0 0 −zFar − zNear zNear · zFar
0 0 1 0

 (5.13)

In place of the function call to glFrustrum( ), glLoadMatrixf( ) loads the combina-

tion of these two matrices. As an important note, contrary to the matrix multiplica-

tion conventions presented here, OpenGL post-multiplies matrices, so the combination

of these two matrices has to be transposed before using the glLoadMatrixf( ) command.

The next section introduces a validation concept for future work using OpenGL.

5.5.2 Validation. Because of the many transformations, units, data sources,

and people involved in this research effort, many items were not overseen by the

author. Many items were assumed accurate until proven otherwise, which proved to

be an incorrect assumption. Because of the many sources of information, an ad-hoc

validation process was created to address some these problems. The validation process

amounted to rendering the truth data and visually determining the accuracy of the

entire process: the truth data, the model, and the OpenGL rendering process. It

was quickly determined that matching images in an un-validated process introduced

significant errors in the ultimate solution.

The truth data collected were also used in this validation process. For future

work this data should be from a dissimilar truth-data set. Because of this, errors
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associated with the validation of the process can not be separated from the navigation-

solution algorithm.

The validation process involved rendering images using the truth data and com-

paring them with collected images from the same time instant. Because of the fol-

lowing issues: errors in boresighting, data collection equipment, truth data collection,

model creation, and OpenGL implementation, there will be some visual differences

between rendered and collected images. The goal of validation is to minimize the

visual difference between the two types of images by determining these process errors,

truth-data biases, and incorrect process operations. The validation process defined

here was based on human estimation of image-match comparison, because this was

an unforseen complication in the research. Better comparison methods are available

and should be addressed more in-depthly in future projects involving OpenGL. Com-

parisons methods such as those described in Section 2.2.2.2 (non-template matching

versions) can be used for this validation process.

A quick description of the validation process is presented, with an example

shown in Figure 5.23, followed by the determined errors.

Taking truth data from various times throughout the data collection process, Ir

images were created with the same parameters as the collected Ic image. A contour

function (Section 2.2.2.1) was used to determine the outline of the rendered aircraft in

the Ir. This outline was added to the Ic for a visual analysis of similarity. A created

graphical user interface (GUI) perturbed the rendered aircraft in all six degrees of

freedom to allow a more accurate overlay of the Ir on the Ic. The perturbations in

the GUI could be accomplished in the cam-frame or b-frame of either aircraft, as

changing translation and attitude in these each of these frames results in different

visual changes.

By perturbing the truth values of multiple images at different times during the

flight (at different attitudes and different distances between the aircraft) a validation

of the OpenGL rendering process was determined. The validation process discovered
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(a) (b)

(c) (d)

(e)

Figure 5.23: OpenGL validation process.
(a) Ic from the test flights.
(b) Truth data collected with each Ic is used to create an Ir.
(c) An edge detector was used to determine the contour of the Ir.
(d) The contour outline was added to the Ir for visual similarity comparison.
(e) Required perturbations about the truth state determine the validity of the process.
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that there were, at least, five biases consistent throughout the flight. The first two

were obviously caused by errors in the boresighting of the C2B and/or the inclusion

of those values into the truth data. Neither of these two processes involved the author

and no determination about them could be made. These biases were confirmed at

various other portions of the flight, during cruise, landing, and takeoff. Aircraft

in these flight phases are generally at zero degrees of bank, yet both aircraft were

consistently showing approximately five degrees of bank during these times.

After removing the roll biases, the other three biases were between the truth

sources. Throughout the validation process, the required translational perturbations

at each position were fairly consistent in each axis. These translational differences

were averaged across the flight for an overall estimated bias. The cause of these biases

was never determined; however, they were fairly constant throughout the flight (the

standard deviation between the determined biases was between five and ten inches).

They were most likely from errors in the addition of the boresighting values to the

truth data.

The perturbation required for correcting the Ir in Figure 5.23 to overlay on the

Ic was approximately ten inches in both the camera Y axis and Z axis. Because of the

difficulties in determining translations in the X axis for both humans and computers,

the visual-estimate validation process is not as accurate as it could be.

As part of the entire process, an improvement to the conversion between OpenGL

to OpenCV images is presented next.

5.5.3 OpenGL to OpenCV improvements. It was evident early in the re-

search that the process detailed in Section 2.2.3 is not as efficient as it needs to be.

Rendering multiple images by OpenGL is quick and so is the comparison of those

images (once converted) in OpenCV. However, to utilize the benefits of each library,

a quicker conversion between them is needed.

This research used a slightly more efficient method as a partial solution, shown

in Listing 5.1. This method uses an OpenGL function, glReadPixels( ) (also used
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in the example in Section 2.2.3) to copy pixels of the image to another memory

location. However, instead of the pixel-parsing process of Section 2.2.3, the entire

image transfers to OpenCV collectively, in one step, with the image still requiring a

flip.

Listing 5.1: Simpler OpenGL to OpenCV image conversion pseudocode

g lR e a dP i x e l s ( width , he i gh t , CVimage−>imageData )
c v F l i p ( CVimage )

This warrants some explanation. Even though the OpenCV references the pixels

of an image in a matrix as shown in Figure 2.24, the memory storage used is similar

to the OpenGL image storage as shown in Figure 2.23. OpenCV simply accesses

those memory locations for the user, through the IplImage structure. This does not

completely eliminate the delay needed to transfer the image, mainly because of the

inefficiency of the glReadPixels( ) function. This function was created to copy a portion

of the screen. It was not created to read an entire image. The image must first be

rendered, placed into the video buffer, and all other OpenGL commands completed

before glReadPixels( ) is allowed to run and find the pixels in the user’s region of

interest. A more efficient solution would possibly render the OpenGL image directly to

the memory location of a blank OpenCV image, skipping the video buffer completely.

Finding an efficient conversion between the two libraries was not further researched,

but will be critical to the success of this approach to navigation.

5.6 Summary

The RIPE algorithm as presented was able to meet three of the four goals

outlined in Chapter 1. The presented algorithm, despite multiple discovered sources

of error met the following goals: it increased the accuracy of whole-aircraft tracking,

required no modification to the lead aircraft, and used only open source programming

libraries. The algorithm did not satisfactory complete the fourth goal: complete

navigation updates in a timely manner.
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The errors relating to the position estimation of RIPE ranged from 0-9% based

on distance between the aircraft, including the most dynamic of maneuvers and chal-

lenging environmental noise. Average error in the pre-contact position and closer was

2-3%, or less than two feet error at a distance of 62.5 feet. Based on the author’s

experience with AR, this is as accurate as most pilots in the contact position and more

accurate than pilots in the pre-contact position. Because the errors were often close

to or less than the accuracy of the truth data, an accurate characterization is difficult;

however, this process consistently showed less than five feet of error in the contact

position, meeting the objective. The assumption that a boom operator can fly the

boom as needed in the envelope to effect the rendezvous, this accuracy is sufficient to

permit AAR.

From the pictures taken of the aircraft, no texture or paint modifications were

done to the lead aircraft. A model of the aircraft using current paint schemes was

determined to be adequate.

The open source C programming libraries worked well for this process and within

each library, operations were quick enough to accomplish the necessary processing.

However, the conversion between libraries was not efficient enough to permit real-

time processing. Until an efficient method is determined, or other processing time

efficiencies are discovered, the RIPE process using OpenGL and OpenCV will be

difficult to implement real-time.
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VI. Conclusions

This thesis presented a method of image-aided navigation for AAR. This chap-

ter concludes the thesis with a final assessment of the methods presented and

recommendations for future research.

6.1 Conclusions

Many aspects of the RIPE algorithm worked well: the rendering aspects of

OpenGL in conjunction with the image manipulation and comparison functions of

OpenCV provided accurate representations and analysis of the real-world. Other

aspects of the RIPE approach were not optimally implemented: the incorrect use

of size in template matching, perturbations which were too small to cause visual

differences in appearance, and most obviously processing speed.

6.1.1 OpenGL. With a new method to represent a camera in OpenGL,

the renderings produced were remarkably similar to the camera images. With a

photo textured bottom on the aircraft, high matching values between the two images

were possible. But, as noticeable in many of the photos throughout the thesis, the

OpenGL lighting never accurately represented the real-world. This is because of time

limitations in this thesis, not because of OpenGL. In fact, this limitation drove the

algorithm to miss-match images (find the direct opposite image), requiring a very

light background in the renderings instead of the dark background of the collected

images. This ultimately added to the errors reported in Chapter 5. A better lighting

environment, including ambient and direct sunlight will create a better representation

of the real-world, thus reducing a portion of the estimation error. With the location

of the aircraft known in addition to the time of day flown, the sun’s trajectory with

respect to the aircraft can be modeled and included in the lighting scheme. By mod-

eling a better lighting environment, it might be possible to use the simple matching

algorithms presented in Chapter 2 rather than developing more complex ones.
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Other limitations to the OpenGL process was the model itself. It was never

fully completed. Many aspects of the aircraft were not accounted for in the model

used - most notably the remaining paint schemes including the vertical tail and sides

of the fuselage in addition to the oblong, curved disk at the top of the vertical tail.

The backup model accounts for a few of these aspects, but is still not complete and

was not validated in time for completion of this thesis.

After incorporating the new camera representation, the partially completed

model, and after the validation process, the location, attitude, and size of the ren-

dered aircraft closely matched the true aircraft. There was some residual error as a

result of the arbitrarily located zFar clipping plane. Because of the scaling involved in

the OpenGL process, an infinite zFar clipping plane is not possible and recreating a

real-world scene at far distances was challenging (beyond the distances of contact and

pre-contact). The errors at this far distance were exacerbated by the relatively small

sized perturbations at the farther distance. This either limits the distance away an

object can be for the RIPE approach to be valid, or dynamic zNear and zFar clipping

planes are needed to compensate.

6.1.2 OpenCV. The performance of OpenCV was remarkable. The contour-

ing and template matching function were essential to the RIPE approach. Improve-

ments to the template matching process are possible: a more thorough trigonometric

equation might possibly reduce some of the estimation errors. Overall it worked very

well for the position and orientation estimation. The template matching did suffer

at farther distances, mainly because of resolvable distances of the images. Another

method, such as the center and tips approach in [15], might improve performance at

farther distances, with a transition to RIPE at closer distances. This would also allow

the zFar plane to remain a fixed distance, closer to the camera origin.

6.1.3 RIPE. The research presented, including the resulting errors, demon-

strated RIPE as a valid approach to AAR and potentially pose in general. Admittedly,

aircraft motion in AR is relatively benign and the RIPE approach leverages the actual
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dynamics of the aircraft to balance speed with accuracy. It was intended that the

process would estimate the position in the Ycam axis as well as it did in the Xcam

axis. They are essentially very similar; however, the size group (Zcam axis) influence

on the Ycam axis was apparent. This was a result of implementing the template

matching process with Cartesian coordinates. Another method, such as the digital

zoom alternate method presented in Chapter 4 or the use of spherical coordinates in

the cam-frame, could eliminate errors associated with this interaction. Ultimately,

the approach adequately performs as needed. Further projects involving accurate

implementation of the RIPE method are required to understand fully its capabilities

and limitations.

6.1.4 Processing Speed. The slow processing speed of transferring images

between libraries was unexpected. The process was exacerbated by the number of

required images to render and the size of each image. No efficiencies, other than the

OpenGL to OpenCV process presented in Chapter 5 were pursued. Recommendations

for decreasing the time to make estimations is presented in the next section.

6.2 Future Research

Currently, the main limitation to the RIPE process applied to AAR is the

processing speed to make estimations based on the images. Other limitations have

been presented and possible improvements are discussed in this section. In addition

to improvements of the RIPE process, broadening applications and adaptations of its

potential are presented.

6.2.1 Processing Speed. To improve the processing speed of the RIPE esti-

mation, a few aspects can be considered: reduce the number of transfers from OpenGL

to OpenCV per update, reduce the size of the required images, improve the transfer

process, and change the coordinate frame for tracking to improve the tracking process

such that less measurements are required.
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The first option is to reduce the number of image transfers needed per update.

This could be realized in two different methods: either reduce the number of ren-

dered images used by the RIPE process or pre-render a batch of images. Since the

presented process only required 10-15 images per update, reducing this number any

further requires one of the presented alternate methods to RIPE (Section 4.3.1.4.)

Additionally, this would only solve the problem for AAR, not for RIPE in general.

Another method, pre-rendering images, could be accomplished completely prior to

flight, or real-time with a parallel processor making estimates of where the aircraft

might be and the images required. Either option has potential to help reduce a portion

of the processing time.

A second option is to reduce the size of the required images. This method has

potential to decrease the processing time dramatically. By halving both dimensions

of the images used in the field work (1200 x 1600 to 600 x 800), the processing time

could potentially be reduced by 3/4. A thorough analysis on the impact to precision

would determine the viability in this approach. Most likely the largest impact would

be to the farther distances, the pre-contact and contact position would not increase in

error dramatically. Incorporating a secondary technique for further distances was also

suggested for improving errors from the zFar clipping plane and resolvable distances

and could also compensate for the smaller image size impact at further distances.

The next possible improvement, with the least impact on the theory presented,

is to create a better transfer process. With a better understanding of the inner

workings of both libraries and the video processing hardware, a more efficient method

should be possible. The OpenGL process was built for speed, and getting an image

to screen is the priority. If the renderings could be re-directed to a more appropriate

memory location, accessible by OpenCV, the true limit to the number of rendered

images would mainly be from hardware capacity.

Finally, by changing the coordinate frame to the n-frame, the benign nature of

AR presented in Chapter 3 can be exploited. This method was used in other research
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efforts [29], and is probably a more effective coordinate frame for this navigation.

In this frame, the tanker is less dynamic, the required measurement updates can be

reduced, permitting a longer processing time to make measurement updates.

Other improvements to the process have been discussed in the thesis: access the

full potential of OpenGL lighting, determine a better image processing technique when

the environmental model does not represent the real-world well enough (full sun in

FOV), create a standardized validation process similar to a camera calibration process,

and investigate the use of spherical coordinates in the cam-frame to implement the

template-matching theory. With the spherical coordinate system, the distance from

the camera origin can be adjusted without movement to the two angles that make up

the position.

With these improvements, the theory presented here can make improvements to

the current pose estimation with a point tracking process. With improving processing

speed and a maturing method, the RIPE process can be applied to a wide variety of

pose estimation problems.

6.2.2 Alternate Applications and Adaptations. With the full capability of

the theoretical RIPE process, many applications including AAR could benefit.

Within OpenGL, multiple cameras can be defined with different viewing angles

and positions from a rendered object. Incorporating a two (or more) camera cluster

with the RIPE process could decrease many of the errors presented. With the cameras

separated by a large enough distance, determining the image location could potentially

bypass the sizing group completely. This could be accomplished through epi-polar

line estimation, or triangulating the objects position, without the need to determine

its distance from either camera. Two or more cameras with known position and

orientation with each other can improve the RIPE process by reducing the number of

rendered images required, while improving accuracy.

Also within the OpenGL capabilities is rendering multiple objects, including rep-

resenting multiple objects that are connected (articulated). Multiple-object OpenGL
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scenes can represent dynamic environments accounting for each object’s additional

degrees of freedom, including objects that are attached to a single aircraft. Objects

such as flight controls or the tanker boom or drogue can be represented in OpenGL

and their state information determined through a parallel RIPE process. With the

knowledge of a boom’s location and extension, the visual representation of the tanker

is improved and the pose on the aircraft is more accurate. The work in [6] demon-

strated articulated objects in both single and multiple camera arrangements with a

wire frame model of an object. While this did not utilize OpenGL, many of the

same principles apply. Such a process would increase the number of rendered images

required and many process improvements would be required to operate it real-time.

Other adaptations of the RIPE process include different types of cameras (in-

frared, 3D, fisheye lens), applications (manufacturing, space vehicles, missile defense),

or model types (simple or symmetric). A different kind of camera or lens, such as an

infrared combination, would permit operations in night and in poor visibility. Man-

ufacturing applications could further tailor the quick-RIPE method, reducing the

needed rendered images for faster operations. Objects on an assembly line, for ex-

ample, might only have two DOFs to make perturbations about. Highly-symmetric

object applications (such as tracking missiles) could make use of a priori collected

photos, instead of renderings, of the object with perturbations in only one or two axis.

This would create a database of images of the object in these DOFs. This database,

in conjunction with a digital zoom, could bypass the rendering and transferring of

images real-time completely.

With the current processing capabilities of contemporary computers, areas that

could benefit immediately would have fewer DOFs of the object(s) in the scene or an

object with limited dynamic motion potential. For example, land or naval-based nav-

igation applications would operate faster with a decreased number of rendered images

because of the limited capability of objects in these environments. These environments

would have fewer DOFs, fewer required perturbation images, and therefore quicker
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processing. In conclusion, the current limitations notwithstanding many applications

requiring pose could be improved with a RIPE-type process.

6.3 Summary

The science of image-aided navigation is still in its infancy. Many methods

and alternatives provide specific solutions to specific problems as a balance of each

method’s benefits and weaknesses. As a viable method, the theory of this thesis has

been proven adequate in some areas and weak in others. As an approach to AAR, the

theory has identified those aspects that limit its full capability. With the proposed

improvements, an efficient RIPE process can serve as augmentation and backup to

DGPS in solving not only the AAR problem, but pose in general.
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