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Abstract

There are many mechanisms that can cause inadequate or unreliable informa-

tion in sensor networks. A user of the network might be interested in detecting and

classifying specific sensors nodes causing these problems. Several network layer based

trust methods have been developed in previous research to assess these issues; in con-

trast this work develops a trust protocol based on observations of physical layer data

collected by the sensors. Observations of physical layer data are used for decisions

and calculations, and are based on just the measurements collected by the sensors.

Although this information is packaged and distributed on the network layer, only

the physical measurement is considered. This protocol is used to detect faulty nodes

operating in the sensor network. The context of this research is Wireless Network

Discovery (WND), which refers to modeling all layers of a non-cooperative wireless

network. The focus in particular is the localization of transmitters, and detection of

sensors affecting the localization. To accomplish this, a model for faulty sensors and

two methods of detection are developed. Detection rates are analyzed with Receiver

Operating Characteristic (ROC) curves, and the trade-off of detection versus local-

ization error is discussed. Classification between faulty sensors is also considered to

determine appropriate response to potential network attacks.
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Malicious and Malfunctioning

Node Detection via Observed

Physical Layer Data

I. Introduction

This chapter will cover relevant background material to this research, includ-

ing the development of localization via different methods and trust metrics in

wireless networks. The motivation and research objectives for this work will also be

discussed.

1.1 Background

With the abundance of wireless devices in use today, there is a need to identify

essential pieces information about them. Examples of this type of information include:

• The frequency the device is communicating at

• Location of the device

• Communication patterns

• Type of information being shared

• Antenna patterns on the device

• Transmission power

• Environmental fading

This work in discovering information is called Wireless Network Discovery (WND) [1].

A primary user can use WND to discover information about two different types

of devices. The first is a Non-cooperative Network (NN), a network or single device

being operated by an outside actor. Information about the NN is not accessible to an

outside network directly. The second case is a Cooperative Network (CN), under the
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control of the primary user. Information about a NN may be shared or not. The CN

might also not have the capabilities to share the information needed.

A device in the CN might not be complex enough to know its own location or

other important statistics. This is often the case with large, cheap sensor networks.

In this situation the CN can use known transmitter locations to locate its own sen-

sors. An example of this might be a mobile cell phone user locating itself by using

transmitted signals from cell towers.

This research focuses on one of the previously mentioned areas of interest, the

location of the transmitter. WND, in particular the localization of a transmitter, can

be completed using several different methods. These methods, including benefits and

how they are completed, will be described in more detail in the literature review.

In this case the localization is done by using the Received Signal Strength (RSS)

measurements. Although it is useful information, the location of the transmitter is

not the final goal of this research. Using the calculated location of the transmitter and

the RSS values from the sensors in the CN, the objective is to determine if any of the

nodes in the CN are not performing as expected. Differences between the expected

RSS and the actual RSS could point to a variety of problems in the CN, including an

attack on the network or poorly performing sensor nodes.

This type of WND may be used for many different reasons, but one particular

area of interest is physical security. A user might want to deploy a sensor network

along a perimeter of a secured area, and monitor Radio Frequency (RF) traffic from

a transmitter. Trust in the sensor network measurements is important in maintaining

a secure site. The user would like to accurately know the location as well as other

information about the RF transmitter. Using the location already found, this research

gives methods to determine trust and classify types of attacks on the sensor network.

These anomalies on the network are classified into two categories and have

different implications. The first is when a sensor has been reprogrammed or attacked

by someone with the intention of affecting the localization accuracy of the SN. This

2



type of node will be referred to as a malicious nodes. The sensors in the network

can also have a variety of physical problems not caused by intentionally. This type of

node is called malfunctioning nodes. The malfunctioning nodes can have low battery

power, obscured communication paths, or any other environmental factors that are

causing the sensor to not accurately report the RSS. The details will be described in

the methodology section of this report.

1.2 Research Objectives

The main research objective is to determine trust in sensors in a network that is

controlled by a user. This includes identifying faulty nodes and classifying the type of

problem each is experiencing. This involves several different smaller objectives that

must also be met to achieve the overall goal. One of these additional objectives is

creating models that match both realistic situations and plausible scenarios where

this system will be operated in. Models of the types of attacks the sensor network

might suffer and the physical environment are important to correctly identifying ma-

licious sensors. The trust being discussed here is the trust in the accuracy of the

RSS measurements used to locate a transmitter of interest. Locating the transmitter

is an important step in determining trust; therefore another research objective is to

accurately locate a transmitter using plausible and applicable environmental and sit-

uational factors. The final objective is to develop an algorithm that takes the RSS

measurements from the CN and uses them to determine trust. The algorithms will be

applied and their ability to detect and classify will be compared. The final outcome

is an algorithm that is able to be used in a sensor network deployed to monitor RF

traffic, that is able to detect and classify anomalies in said network based on the

physical layer data it is collecting.

1.3 Motivation

There are several motivating factors that provide the background for this work.

One such factor is the increase in availability of wireless sensors. They can have uses

3



from monitoring industrial machines to observing weather and RF patterns [2]. With

the growth in availability and use comes more interest in new applications for these

sensors.

A second key motivation is the need for low complexity trust metrics. As it

is described in the background, simple low power sensors are often better for this

type of network. As a result of this it is beneficial to use simple algorithms and data

collections to achieve as many objectives as possible.

The third motivation is a need to monitor or track RF activity near an area

of interest. This could applied anywhere from a personal security system to military

base level security. Using these three motivating factors the focus of the research was

determined. A large majority of people carry some sort of RF transmitter on their

person. By utilizing this knowledge, it is possible to locate or track people near an

area of interest. Since these devices may not have similar communication protocols or

willingly share information the RSS gives a way to locate a device for a large majority

of potential transmitters. In using RSS to both locate and determine trust in the

network, a more simple sensor can be used to accomplish both tasks.

1.4 Organization

In Chapter II, the literature review and key technical background research areas

are discussed. This includes previous work in similar disciplines and how this research

differs. In Chapter III, the derivations and simulation details are described. Chapter

IV provides the results for simulations and analyzes how the proposed algorithms

perform. Finally, Chapter V describes the future potential of this work and where

this research stops and other research should begin.
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II. Literature Review

This chapter will discuss related theory and experimental results to this research.

The review will address several main areas that are covered in this work. The

first of these areas is Wireless Network Discovery.

2.1 Wireless Network Discovery

As discussed in the introduction WND is one key area of related research. The

objective of a sensor network, such as the type being studied here, is often to obtain

information about the RF environment that it is operating in. One specific research

area in this field is Cognitive Radio (CR). In the case of CR information discovered

about the environment can help better utilize the RF spectrum [3]. Cognitive radio

uses environmental monitoring along with cooperative communication to change and

adapt the communication frequency, protocol, and other important signal character-

istics, depending on the RF spectrum usage in the area. This is done through a

combination of adaptive hardware and software. There are many examples of where

cognitive radio is used in current technology [4].

Being able to adapt to a changing RF environment requires building a model of

the environment to predict and adapt to. In [5] they develop two methods of radio

spectrum information being shared in the network. The first is a Radio Environment

Map (REM). REM is a priori information that is gathered and stored at one location

and shared with other users in the network. The type of information included in REM

could be locations, geographical information, service and networks, regulation and

policy, activity profile of radio devices, and previous experience [6]. For this research

building a REM type of database would not be likely because the transmitter is not

part of the network, so little to no information is given freely. All information about

the transmitter needs to be obtained through another sensor network. The second

type of network map better suits this type of application. An Available Resource Map

(ARM) is described by [4] as a map of the radio frequency spectrum obtained and

updated by a sensor network. In previous work, [4], building an ARM has been done

5



with non-RSS based techniques. The idea of using physical layer data localization

techniques has been proposed as an alternative to more traditional methods [7]. The

advantage is that RSS based ARM building requires less sophisticated sensors in the

network, reducing cost and power consumption. Next, a description of localization

techniques and the building of a RF map with these methods will be described.

2.2 Localization

Technological advances have led to the use of Wireless Sensor Networks (WSN)

in many different practical areas [8]. Localization in these WSN can come in many

forms, from locating a cell phone using RSS for emergency purposes [9], to using an

array of acoustic sensors to locate a vehicle [10].

Often it is useful to have a large group of sensors working together to accomplish

tasks [2]. Due to the large number of sensors and the desire to be cost effective, low

power and complexity sensors are used if possible. It is undesirable to need to change

sensors repeatedly because of battery life. In [2] it is shown that in many cases the

location of the device is essential in the functionality of the network. Conventional

ways of determining locations of sensors such as Global Positioning System (GPS)

require a more complex sensor and have higher power consumption. These concerns

present a need for a method to determine the location of sensors without conventional

methods. If the user is trying to locate or obtain information about a sensor that is

not in the network, information will not be shared with the CN willingly, even if the

transmitter has GPS available. Both situations provide motivation for research in the

area of sensor localization.

The need for alternative localization methods has resulted in several different

approaches being developed and researched. In [11] it is shown that there are four

common measurements using communications signals to gain information about the

sensors transmitting them. They are the RSS, Time of Arrival (TOA), Angle of

Arrival (AOA), and Time Difference of Arrival (TDOA). The common theme of these

methods is that they utilize the physical layer data being collected by the sensor.
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Each method uses a different aspect of the signal, and has distinct advantages and

disadvantages over the other methods. Each method will be discussed, including how

they are able to locate a transmitter and benefits and disadvantages.

2.2.1 Time of Arrival and Time Difference of Arrival. TOA and TDOA are

very similar location techniques. Both methods utilize the time it takes to receive a

transmitted waveform and the known speed of propagation of the signal to determine

the distance. These techniques also can work in two distinct cases. The first is where

the location of multiple transmitters is known, but a single receiver is unknown. This

is called navigation. In the other case multiple receivers with known locations are used

to receive the signal from a single transmitter. This is called source localization [12].

The research is focused on the latter, source localization.

TOA and TDOA require a high level of synchronization on the network to

achieve realistic error measurements [11]. TOA uses the time of flight from the known

transmitter to the receiver. TDOA on the other hand shares the arrival time with

another transmitter or receiver, depending on the type of location or navigation, and

the distance is based on the difference between the two arrival times.

Figure 2.1 demonstrates the concept behind a system using TOA to determine

a location.

There are several important considerations and assumptions when using TOA

for location. The first is that the locations of the receiver or transmitter are known.

When using a TOA system for locating a transmitter, the location of the receivers are

assumed to be known, and when navigating using multiple transmitters their location

is assumed known. TOA and TDOA systems also rely on synchronization and timing

to be accurate [2]. The sensors also need to be able to determine characteristics in

the waveforms so the time of arrival for the signal can be determined.

In general a sensor using this type of localization will need to be more com-

plex. Timing and synchonization, along with the necessary hardware and software

to compute when the same message arrives at two different sensors requires added

7
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Figure 2.1: Concept drawing for a TOA system.

complexity and bandwidth. The benefit of this is that the TDOA systems are more

accurate than other methods that will be discussed. It is less susceptable to noise in

the atmosphere than RSS systems. The main source of error in this type of system is

multi-path. In multi-path, the signal takes not only the direct path from transmitter

to receiver, but also several other indirect paths off objects.

2.2.2 Angle of Arrival. Angle of Arrival is a method that uses an array of

sensing devices to determine the direction of the arrival of the signal. This information

is often used in addition to TDOA and RSS methods to provide an additional piece

of information [2]. The array of sensors, acoustic or antennas, can collect two types

of information to determine the angle of arrival. Using differences in signal arrival

between sensors the phase delay information can be used to determine the angle of

arrival [13]. The signal measurements can be averaged prior to computing the AOA,

or AOA estimates can be made then averaged. In [14], the authors compare these

two approaches.

The downfall of using AOA is similar to that of TDOA, noise and multi-path

effects cause error in the estimation. Another key point is that AOA is able to
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determine the direction, but not the distance to the transmitter of interest. Depending

on the situation, this might not be sufficient information about the transmitter.

Figure 2.2 demonstrates how the AOAmethod works using a phase delay system.

The four circles represent sensors that record the information in the waveform f(t).

Each sensor experiences a different phase delay. This comparison of phase delay allows

the user to determine the direction of arrival for the waveform.

f(t)

f(t+Ʈ )

f(t+Ʈ )

f(t+Ʈ )

f(t+Ʈ )

1

2

3

4

Figure 2.2: This figure demonstrates the concept behind AOA based techniques.

2.2.3 Received Signal Strength. This method of localization uses the power

contained in the communication signal measured at the receiver. A sensor with the

ability to collect the power in a signal can be utilized for this method. RSS local-

ization relies on the fact that in free space signal power fades as the square of the

distance, d2. If the transmission power is known or estimated, the distance from the

receiver can be estimated from the RSS. Using multiple receivers provides the ability

to more accurately estimate the location of the receiver. This approach is used for this

research. More details on how the location is determined from the RSS measurements

are included in Chapter III.
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The main advantage to using the signal power to determine location is the low

complexity sensors. In RSS, the necessary data is more easily collected than other

methods. As a result it can be used with a greater number of sensors for the same

cost.

There are several downsides to using an RSS based localization technique. The

first is that it is more susceptible to noise or interference affecting the estimation.

Noise in the environment will directly impact what the measured RSS value is. How-

ever in TDOA, the important quantity, time, is indirectly affected by noise. Also,

many effects on the signal power such as interference from objects are grouped to-

gether and modeled as random noise. Therefore the model for received power does

not exactly model the propagation of the wave.

2.3 Received Signal Strength Research

There is a lot of research ongoing in the area of RSS and localization. The

topics in this area can be broken down into three main focus areas: the RSS model,

optimizations and algorithms, and applications and feasibility. In [15], a sequen-

tial Monte-Carlo simulation is used to model a mobile RSS sensing network, and

performed favorably versus a Maximum Likelihood Estimation (MLE) method, with

40% improved localization error. In [16], a model is built to estimate the 2-D posi-

tion with the presence of nuisance parameters such as a third dimension of position

or number of sensors in the network. RSS localization is also used in a variety of

applications from an alternative to more complex cell phone location algorithms [17],

to using acoustic energy for multiple source vehicle location [10].

Optimization and more efficient algorithms to utilize RSS based localization is

the major focus of research in this area. This has a large subset as well. In [18],

for instance, an algorithm is developed to deal with physical layer data attacks on

the SN. The authors discuss how reflective or absorbing materials can affect the RSS

measurements. The proposed algorithm deals with any type of attack on physical

layer data. The Signal Strength Difference (SSD) is used between two sensors with
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known locations. The SSD method maintains accuracy while the previous methods

were degraded by the attacks. In [19], localization was improved by utilizing outlier

theory. To more accurately compare algorithms, research has been done to include

the error in RSS measurement [20]. This helps to compare location algorithms at

multiple distances because RSS error might have a different effect on each algorithm.

2.4 Detection and Estimation

Another key area of development relevant to this research is detection and esti-

mation. The data is collected by all of the sensors in the network and reported back to

a command center. This is where the decisions are made by detection and estimation

theory. To determine the location from a collection of power measurements Maximum

Likelihood Estimation (MLE) is used. MLE is asymptotically unbiased and efficient

for large data sets [21]. Other methods have been used in estimating position from

data [15, 18]. The derivations for how this estimator is used are included in Chapter

III. The MLE of θ, a parameter of vector X, is found by:

θ̂ML = argmax
θ

L (2.1)

L = ln p(X|θ) (2.2)

After using the MLE to find the location of the transmitter, the same data

that was collected is also used to determine trust. To do this, hypothesis testing is

applied. Hypothesis testing uses data collected to decide between two or more claims

or assertions about population characteristics or parameters [22]. In this case the

claim is that the node is trusted or not trusted.
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2.5 Trust Metrics

In a WSN, the sensor nodes and data are vulnerable to attacks and sources of

error. To help determine when attacks or errors happen a trust metric is calculated.

Trust is found in different networking research areas. In [23], the authors describe trust

as having two important categories; communication trust and data trust. The first of

these is the trust in the sensor node that it is communicating as expected. Network

attacks can cause sensor nodes to not report packets, misdirect packets, and a variety

of other communication issues. These issues affect the performance, and cause the

communication to not be as expected. The second area is data trust. The purpose

of most WSNs is to monitor an area and gather data. The information collected can

also be attacked. This could involve the hardware attacks, changing the environment,

or causing the sensor to report false or misleading data points. The authors in [23]

argue that a trust metric based on both categories gives a better determination of a

sensor’s overall trust level.

Trust in a WSN can be obtained by several methods. In [24] intruders in a net-

work are detected by comparing a sensors decisions about neighboring sensor nodes.

Other proposed methods in use include majority voting [25], and using witnesses to

verify correct data transfer from a sensor network to the data center [26]. Another

approach is to build a trust metric that suits the particular need of the network.

In [27] the authors describe important aspects to the network functionality and then

build a model that account for how each sensor in the network is performing in each

area. This includes both communication and data metrics. In general these tech-

niques build trust metrics based on many observations of occurrences in the network.

This work on the other hand uses observations of data that is collected at the phys-

ical layer. The difference is that this method uses the collected data to make binary

decisions on specific sensors. Other techniques may use trust for other purposes then

a binary decision. For example if a sensor is always reporting high RSS values, the

pattern may lead to the sensor being identified and the RSS values can be included

but corrected.
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2.5.1 Outlier Detection. An outlier in the context of a WSN is sensed

data that differs from the normal pattern [28]. The authors also describe how outlier

detection can be broken into three sources and categories:

• Fault Detection, where errors cause large deviations from expected results. This

can be short or long term depending on the type of error. Errors also have a

high probability of occurring.

• Events, where a physical phenomenon that will cause a sensor to be a long term

outlier. The probability of occurrence for an event is low in general.

• Malicious Attacks, where an intruder will intentionally change the functionality

of the sensor. A sensor subject to a malicious attack is diffuclt to classify as an

outlier. The intruder will attempt to be hard to notice.

Outliers have been detected using statistics, nearest neighbor, cluster, classifi-

cation, and spectral decomposition based approaches. Taking into account the low

cost and low battery life of the WSN that this research is focusing on, the statistic

based method of determining the outliers is used. This method is specifically tai-

lored to this application, because the physical measurements are used to determine

another quantity, the location of a transmitter. Although these techniques are similar

to outlier detection, these metrics will not correlate directly with them.

2.5.2 Physical Layer Trust. The goal with physical layer trust is to de-

termine the trust in a sensor node without using high level network communication

protocol. The metric is based on the information gathered from the physical signal.

In this case, the signal power. Many of the approaches described in the previous sec-

tion require more information to determine trust. The advantage of the physical layer

trust metric is that it utilizes data that is already collected for the localization, the

main objective of the sensor network. Therefore there are no additional requirements

on the sensors in the network. This type of information would lead to the data trust

mentioned earlier. This research does not specifically utilize data trust. Decisions
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are made over a set of observations, but no patterns of behavior are shared between

sets of observations. To truly consider data trust, a metric would be placed on a

sensor of how much trust it contains based on multiple sets of observations and the

determination of if it is faulty or correctly functioning.

2.6 Contributions

This research utilizes many different disciplines to detect malicious nodes with

only observations of physical layer data. These methods are combined and used to

create an algorithm that is able to accomplish the research objectives. The RSS

localization theory used to find the location of the transmitters of interest is used

from [2,7], the model is applied to the specific potential scenarios that were developed

in this research. Models of potential malfunction or malicious nodes were created.

This is a main area of contribution of this research. These models describe how a

potential attack on a network might appear in data. Detection and estimation theory

such as MLE and hypothesis testing were used to develop an algorithm that applied

to this specific model and Receiver Operating Characteristic (ROC) theory is used

to analyze and compare results. This method of determining trust also differs from

previous outlier detection techniques [19]. The authors use a window operation prior

to their localization technique. The window gives a value of confidence in each data

set. The filter consists of a Hampel Filter, to detect outliers in the data, and a Kernel

Density Estimator. In this research two approaches are used based on distributions

of sensor models and propagation models.
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III. Methodology

This chapter will detail the methodology used to develop and test the algorithms

used to detect and classify broken and malicious sensor nodes. A system model

description is given to demonstrate the model used. Following the system model, a

description of the development of algorithms is given.

3.1 System Overview

The system consists of three major components: the cooperative sensor network

deployed by the user, the command center used for collecting and processing data,

and the “hostile” transmitter that is being tracked.

• Cooperative Neetwork : The first component is the cooperative network. This

network is a group of sensors that are able to measure the signal power con-

tained in a signal they receive. For this research, the sensors have knowledge

of the frequency that the transmitter is operating at. This could be possible

by a few methods; a separate process to find any devices communicating in a

predetermined area, WND, or prior knowledge of the device. The latter is the

case here, and it can be reasonably assumed that someone wanting to track a

transmitter of interest would know details about the device, e.g cell phone. The

sensors in the cooperative network also have independent knowledge of their

location and are stationary. The location could be from a GPS unit on each

sensor, or the command center could have a priori knowledge of their location

from the user deploying the sensors in the field.

• Transmitter : The second key aspect of the system is the transmitter. In reality,

there are many unknown aspects to the device and channel that will affect how

accurately the sensor network will be able to locate the transmitter. Some of

the factors are the polarity of the antenna, the original transmission power,

and various channel and environmental factors. In [7] techniques are shown to

estimate these factors without prior knowledge of them. For this research, these

factors are considered known either from estimation or prior knowledge.
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• Command Center : The command center is the final part of the system. All

data is reported back and collected here. The algorithms will be implemented

and decisions will be made here. In simulation this is done with MATLAB,

but in theory it would be done with a device that is able to communicate with

the sensor network, and has enough processing power to complete the necessary

calculations.

Each of these components are shown in Figure 3.1, a layout of how this system may

be used.

Secured Area

Non-cooperative

Transmitter

Processing

Center

Cooperative Sensor

Network

Search Space

Figure 3.1: A system block diagram of how the sensor network, transmitter, pro-
cessing center, and area of interest all interact.

The system shown in Figure 3.1 is implemented into MATLAB, and it can be

seen in Figure 3.2. In this figure the sensors in the CN are distributed randomly in a

predefined area. The faulty sensor is also noted with a large trianle. The plot shows

the transmitter moving along a path for each time step T . Finally, the estimation
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of the transmitter location is shown both with the faulty sensor included and the

non-faulty sensor data.
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Figure 3.2: A simulation diagram example.

Figure 3.2 shows the effect faulty sensors can have on the localization ability of

the network. The lines show the potential distance error introduced by just one fauly

sensor in the network.

3.2 RSS Model

Table 3.1 is a collection of variables used in this research.

3.2.1 RF Signal Propagation. The derivation begins with the model for

signal power. In free space, a RF signal will decay with respect to the distance

squared. In previous research [7] the model for received power in dB can be shown to

be:

ms(ds) = P0 − η10 log10

(
ds

do

)
(3.1)
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Table 3.1: Table of variables used in this research
Variable Definition Dimensionality Units
S Number of sensors Scalar Unitless
T # of Observations Scalar Unitless
K # of Independant Trials Scalar Unitless
V0 Deterministic RSS reported from

faulty sensor
Scalar dBm

θ Location of transmitter 1 × 3 Unitless

θ̂ Estimated location of transmitter 1 × 3 Unitless

θ̂ML ML estimate of location of trans-
mitter

1 × 3 Unitless

φs Location of sth sensor 1 × 3 Unitless
p0 Probability of reporting true RSS

measurement
Scalar Unitless

Ps Power received at sth sensor in-
cluding AWGN

Scalar dBm

P0 Logarithmic transmitted power Scalar dBm
d0 Reference distance Scalar meters
ds Euclidean distance between emit-

ter and sth sensor
Scalar meters

m(φ, θ) Received power at sth sensor with-
out noise present

Scalar dBm

m Received power vector of all sen-
sors without noise present

1 × S dBm

P Received power vector of all sen-
sors with AWGN

1 × S dBm

n Additive White Gaussian Noise 1 × S dBm
Γ0 Power transmitted Scalar mW
IS, IT Identity matrix S × S, T × T Unitless
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where η is the path loss exponent and P0 is the reference received power at a known

reference distance, d0. The effect of noise in this log-normal model is assumed to

be Gaussian with a standard deviation of σe. Noise in this model is error due to

log-normal fading, not interference. The distance between two objects in this method

is the three dimensional distance between the transmitting sensor and the receiving

sensor, ds = ||φs − θ||, where [x0, y0, z0] = θ is the location of the transmitter and

[xs, ys, zs] = φs is the location of the sth sensor. After this point the received power

will be described by the locations of the sensors and transmitters, m(φs, θ̂) if the

transmitter is estimated or m(φs, θ) for derivations where the transmitter location is

known. Using this model, the S × 1 received power vector, P , has a distribution of

P = m(φ, θ) + n (3.2)

n ∼ N (0, σ2
eI) (3.3)

Where I is an S × S identity matrix. For this research S is defined as the number

of sensors in the cooperative network, K is the number of independent trials, and T

is the number of observations per trial. At each new observation the transmitter is

moved one meter along a specified path.

3.2.2 Data Creation and Variation. To obtain data to test the theories

proposed, the RSS model and pseudo random number generation are used. Creating

synthetic RSS values in simulations requires access to some truth values that will not

be known to the user. The location of the transmitter is not known, but used in

the data creation and it gives the simulated RSS values. Then ms(ds) from Equation

(3.1) is calculated, the ideal RSS value. The value is then corrupted with the modeled

noise, n.

Pi = ms(ds) + nsim (3.4)
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where nsim is AWGN generated by MATLAB. The noise is zero mean with unit

variance, but is multiplied by the simulated variance, σe. Data is created for each

independent trial of the simulation. To vary the simulations, the variance can be

changed. Or as will be described later in the sensor node behavior section 3.2.5, the

simulated RSS can be changed to have the malicious or malfunctioning node behavior.

3.2.3 Transmitter Localization. Using this distribution, and knowledge of

the system model described above, a MLE can be made on the transmitter loca-

tion θ. First a Probability Density Function (PDF) is built across all of the sensor

observations

p(P |θ) =
S∏

s=1

1√
2πσe

e
−

1

2σ2
e
(Ps−m(φs,θ))

(3.5)

To find the MLE the log likelihood function, L, needs to be maximized. L is found

by taking the logarithm of the joint distribution and finding the argument θ that

maximizes it [21].

L = ln [p(P |θ)] = ln

[
S∏

s=1

1√
2πσe

e
−

1

2σ2
e
(Ps−m(φs,θ))2

]
(3.6)

L = ψ − 1

2σ2
e

S∑

s=1

(Ps −m(φs, θ))
2 (3.7)

θ̂ML = argmax
θ

[L] (3.8)

where ψ is a scalar, and does not depend on θ. To find the values of θ that maximize

L, the gradient with respect to θ is found and set equal to 0. This is analogous to

finding a maximum by taking the derivative and setting it equal to 0.

∇θL = 0 = ∇θ

(
ψ − S

2σ2
e

||P −m(φ, θ)||2
)

(3.9)
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Since ψ does not depend on θ, it will drop out of the gradient. Solving (3.9) for θ gives

the MLE of the position of the transmitter, θ̂ML. This is difficult to solve analytically.

To find the MLE, a numerical approach is used. Combining and reducing (3.8) and

(3.9) the MLE can be found by

θ̂ML = argmin
θg

||P −m(φ, θg)||2 (3.10)

Where θg is a possible transmitter location that will be searched. From here, the

MLE can be found numerically. This is done by using a search grid and calculating

the cost for each θg, and finding the coordinates of the minimum value.

3.2.4 Location Estimation in Simulation. As mentioned above, solving

analytically for the location is difficult. In MATLAB simulation, determining the

MLE can be done more simply. First, a search space is defined. In this research an

area of 100 meters in both x and y are used as well as 50 meters of elevation. The

transmitter can be located anywhere in the search grid. To find the location, each

index of the matrix in MATLAB is simulated as 1 meter. At each index the simulated

RSS, Pi, is used to calculate cost C:

C = ||P i −m(φ, θg)||2 (3.11)

After the matrix is populated, the minimum value is found. Then the three coor-

dinates that correspond to the minimum value of C give the values that minimizes

(3.10). The three coordinates when put into a vector give θ̂ML.

3.2.5 Sensor Node Behavior. An objective of this research is to detect and

classify two types of non-functioning sensors in a SN, malfunctioning and malicious

based on the data trust. When referring to a sensor that is not working correctly,

either malfunctioning or malicious, that sensor will be called faulty.
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A faulty sensor in this model is a sensor that is not reporting the correct RSS

between itself and the transmitter. The first example of this is a malfunctioning

sensor. A malfunctioning sensor is a sensor that is not performing correctly, but it

does not have the intent to disrupt the function of the SN localization. Examples of

this type of classification might be physical damage, low battery power, and abnormal

interference. The goal with this type of sensor is to detect and classify it so it can

either be replaced, or the reported values can be ignored or adjusted. If the RSS is

consistent with the true value plus an offset, this can be estimated or corrected in

processing until the sensor can be fixed. For the sth sensor in the network the RSS

can be shown to be

Ps = V0 + n (3.12)

where V0 is false RSS value. This values is considered constant throughout a simula-

tion. V0 represents a signal stregth that is independent of the distance between the

transmitter and sensor.

The second type of non-functioning sensor being considered is a malicious node.

This type of node is trying to intentionally disrupt the localization of the transmitter.

A sensor with this intent could report values that greatly affect the location estima-

tion, but this would be easy to detect. The sensor might try to report false values

a specified percentage of the time to prevent detection. A malicious user trying to

disrupt the localization would need to weigh the benefits of localization error with

the cost of detection. A malicious sensor will report a RSS value of the attackers

choosing. This value V0 is then corrupted with artificial noise, n̂, and reported as the

measured RSS value to the processing center. The artificial noise is chosen to have

the same distribution as the noise in the environment, (3.3). This noise is to prevent

the user from being able to easily detect the difference between malicious and true

values. If the same value is reported for multiple time observations, it would be very

easy to detect.
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Table 3.2: Table of faulty sensor characteristics
Characteristic Malfunctioning Malicious

% of Sensors X X
V0 X X
p0 X

Ps = V0 + n̂ (3.13)

The model is developed to consider both of these cases. The probability p0 is

defined as the probability of a sensor to report the true RSS between itself and the

transmitter. A correctly working sensor would utilize (3.13) with p0 = 1. If there

is a malicious sensor in the network, it might use a p0 value somewhere between 0-1

depending on the amount of localization error needed versus the cost of detection,

(3.12). A malicious sensor with p0 of 0 can be considered a malfunctioning sensor.

It always reports the false RSS value, Vo. Combining (3.12) and (3.13) with p0 as

described gives:

P [Ps = m(φs, θ) + n] = p0 (3.14)

P [Ps = V0 + n̂] = 1− p0 (3.15)

Once each sensor is determined malicious or broken, it will remain in that state

for each time step t. For each independent trial K, different sensors are randomly

selected.

3.2.6 Simulating Sensor Behavior. To simulate the effect these types of

sensor will have on the performance of the localization, both needed to be simulated.

There are several key characteristics of the sensors. These parameters and which

sensors they can be used on are shown in Table 3.2.
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In both situations the percentage of fault out of the total sensors is needed. To

decide which sensors are faulty, a random number is selected for each faulty sensor.

These numbers each represent a vector index of a sensor in the network. Once the

sensors are selected to be faulty, the next step is determining whether they are ma-

licious or malfunctioning. This is determined prior to the simulation. In Equation

(3.4), it is shown how data is generated for a non-faulty sensor. For a faulty sensors,

the simulated data is overwritten with the new values.

Both the original synthetic RSS data and the replaced false RSS data with faulty

nodes are kept. They are utilized to determine errors in localization for comparison

in techniques.

3.2.7 Power Map. After estimating the location of the transmitter, the

RF propagation model is used to map the RSS values throughout the search space.

The location of the sensor nodes are known, so the power map gives an expected

RSS value for each sensor location. The expected RSS, when compared to the actual

RSS, provides one method of determining trust in each sensor node. Figure 3.3

demonstrates how the power from the transmitter can be modeled.

The transmitter is modeled with an omni-directional antenna, as seen in the

figure. The signal is propagating in all directions equally.

3.3 Algorithm Development

After all the data is collected and the transmitter location has been estimated,

the data is used again to determine trust in the network. Two separate methods

of determining trust from the data will be derived and tested. The first method

compares errors between the expected and actual RSS, and the second method uses

a GLRT to test each sensor against a threshold.

3.3.1 Generalized Likelihood Ratio Test. In this method, a Likelihood Ratio

Test (LRT) is used. A LRT compares two hypotheses made about a set of data.
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Figure 3.3: A simulated power map that demonstrates power contour levels in the
search space.

When one of the parameters is estimated, the LRT becomes a Generalized Likelihood

Ratio Test (GLRT) [29]. In this case, the estimate of the transmitter location, θ̂ML,

is not the hypothesis being tested, but is still unknown. It needs to be estimated and

included in the LRT.

In this model there are two possible hypotheses for the RSS of a specific sensor,

s.

H0 : Ps,t = ms,t(φs, θ) + ns,t, t = 1, 2, ..., T (3.16)

H1 : Ps,t = V0 + ns,t, t = 1, 2, ..., T (3.17)
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where ns,t is Additive White Gaussian Noise (AWGN) for both cases. In the case of

H1, the noise is generated by the malicious sensor to simulate the noise in the true

RSS measurements. In both cases the noise is considered independent.

ns,t ∼ N (0, σ2
e) (3.18)

In the H0 hypothesis the sensor is assumed to be working correctly. In the H1

hypothesis the sensor is assumed to be faulty. Using these two hypotheses to create

distributions yields the following:

Ps,t|H0 ∼ N (ms,t(φ, θ), σ
2
e) (3.19)

Ps,t|H1 ∼ N (V, σ2
e) (3.20)

As stated earlier one method to differentiate between the two hypotheses is a

LRT. In this case the LRT compares the two hypotheses to a threshold γ:

p(P s|H1)

p(P s|H0)

H1

≷
H0

γ (3.21)

This is the case for each sensor s. The likelihood ratio can be compared to a

threshold γ to decide between the two hypotheses.

αs(P s) =
T∏

t=1

p(Ps,t|H1)

p(Ps,t|H0)

H1

≷
H0

γ (3.22)

Where S represents the number of sensors in the cooperative network and T is how

many observations are taken from each sensor. These observations can be made on

a moving transmitter, as is the case in this simulation, or a stationary transmitter.

Using the distributions (3.19) and (3.20) and the LRT (3.22), the following can be

shown:
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αs(P s) = ln




∏T

t=1
1

√

2πσ2
e

−(Ps,t−V0)
2

2σ2
e

∏T

t=1
1√
2πσ2

e

e
−(Ps,t−ms,t(φs,θ))

2

2σ2


 (3.23)

αs(P s) =
T∑

t=1

(−(Ps,t − V0)
2

2σ2
e

− −(Ps,t −ms,t(φs, θ)
2

2σ2
e

)
(3.24)

αs(P s) =
T∑

t=1

(
−2Ps,t(ms,t(φs, θ)− V0) +ms,t(φs, θ)

2 − V 2
0

)
(3.25)

In 3.25, αs(P s) can be considered optimal if there is only one faulty sensor in

the network, the transmitter locations are known to the user, and the value of V0 is

known. In reality there are usually more than one faulty sensor, and the parameters

are estimated.

In the previous equations, the received power without noise, ms,t(φs, θ), depends

on which sensor, s, and which observation, t, are being tested. For each sensor, a

three dimensional location, φs, is needed and for each observation, the estimate of the

transmitter location, θ̂ML. Combining (3.21) and (3.25) yields a final GLRT to use

to compare various system components and conditions. Also, the factor of 1
√

2πσ2
is

divided and included in the γ term, because it does not change with s or t. A GLRT

is used in this case because the offset value, Vo is estimated and then used in the LRT.

αs(P s)
H1

≷
H0

γ (3.26)

The offset value V is estimated with MLE. The distribution of a faulty sensor with

false RSS value V0 is shown in 3.13. Building a joint distribution of the sth sensor

over T observations can determine the MLE for that sensor.

p(P s|V0) =
T∏

t=1

1√
2πσe

e
−1

2σ2
e
(Ps,t−V0)2

(3.27)
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Taking the log likelihood function and setting the derivative to zero gives:

L = ln

[
T∏

t=1

1√
2πσe

e
−1

2σ2
e
(Ps,t−V0)2

]
(3.28)

L = 0 =
d

dV0

[
ψ − 1

2σ2
e

T∑

t=1

(Ps,t − V0)
2

]
(3.29)

where ψ does not depend on V0. Solving for V0 gives the MLE.

0 =
d

dV0

[
T∑

t=1

(P 2
s,t − 2Ps,tV0 + V 2

0 )

]
(3.30)

V̂0 =
1

T

T∑

t=1

Ps,t (3.31)

where the V̂0 does not depend on knowing the parameters of the distribution, partic-

ularly σe.

The threshold test in (3.26) is used to compare to a sliding threshold γ, to

determine the Receiver Operating Characteristic (ROC) for this method.

3.3.2 Mean Squared Error. Another method used to determine the ability

to identify and classify working and non-working sensors is the Mean Squared Error

(MSE). In this method the RSS is compared to the expected value of the RSS, given

the coordinates of the sensors and the MLE of the transmitter. In this case there are

also two hypotheses that are used

H0 : es = (m(φs, θ) + n)︸ ︷︷ ︸
Ps,t

−m(φs, θ̂ML) (3.32)

H1 : es = (V0 + n)−m(φs, θ̂ML) (3.33)
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The distributions here depend on a couple of things that may be changed by

the attacker. The value of θ̂ML is used to determine the expected RSS. If the attacker

controls enough of the sensors, this estimate becomes so poor the correctly working

sensors appear to have high error measurements. Similarly, the value of V0 is assumed

known, and error in the knowledge or estimation of this value determines how accurate

this method is. Although the model for errors is defined, this model does not take

them into account. Instead, the MSE is used. The logic is that the error between

faulty sensors actual and expected RSS is higher than the error for a non-faulty sensor.

The second algorithm is shown below:

βs(Ps,t) =
1

T

T∑

t=1

es,t
2

H1

≷
H0

γ (3.34)

where es,t is the error between the actual RSS value, Ps,t, and the expected value

based on the power map, m(φs, θ̂ML) as shown in equation (3.32)

This MSE for each sensor is also compared to a threshold γ to create a ROC

curve. It is important to note that this method does not account for the different

distribution for possible errors in (3.32) and (3.33). This method determines the error

regardless of distribution. As stated earlier, this method is not an optimal detector;

it assumes several key factors that may hamper the detection ability. This will be

seen in the results section as the performance degrades under specific circumstances.

In simulation, a matrix e is created using each sensor s and observation t. The

MSE is taken across observations to give an error measurement for each sensor.

3.4 Identification, Classification, and Correction

Once the two algorithms are derived, they needed to be tested against metrics

to determine their accuracy in detection and other important factors. The first of

these is the probability of detection, Pd, and the probability of false alarm, Pf . The

vectors of test statistics for the two methods, αs and βs are compared to a threshold γ.

This threshold helps determine the ROC. In simulation the threshold slides between
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Figure 3.4: Example threshold test showing normalized α and β versus sorted sensor
index.

max(αs) and min(αs) in equal steps. Figure 3.4 demonstrates an example threshold

test with both normalized algorithms and the sensor index.

As Figure 3.4 shows, there are sensors that are below or above the threshold

that are incorrectly categorized. As the threshold starts at the maximum value of the

test statistic, all of the values are less than the threshold. As a result, they are all

categorized as not broken. At this point the Pd is zero because there are no sensors

classified as faulty, but there are also no false alarms, Pf . When the threshold is at

the minimum value, all sensors are classified as faulty so Pd = 1, but the false alarm

rate is also 1. The ROC values in between these points help classify how well the

algorithm works.
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3.4.1 Sensor Classification. As described in section 3.2.5, there are two

different types of faulty sensor nodes. They do not have the same implications on the

network. The first type, malfunctioning nodes, will affect the localization but have no

intention of doing so. The second type, malicious nodes, have the intent of disrupting

the functionality of the network. They may or may not be more difficult to detect

depending on what the objective of the attack is. There are two possible methods of

classifying a sensor into these types of problems.

The first method of classification is observing the variation in the RSS values

reported by the sensor. After a sensor has been deemed a faulty node, the standard

deviation gives insight on the type of faulty node. As previously stated, a malicious

sensor is modeled to report the true RSS value with probability p0 which can vary

between 0 and 1. The attacker might want to be more or less likely to be detected,

or may want more or less localization error. Since the sensor is reporting from two

sets, the false value and true value, there is a deviation between the two. Taking

advantage of this the user of the network can determine the standard deviation of the

RSS values reported by each sensor.

σ̂s =

√√√√ 1

T − 1

T∑

t=1

(Ps,t − P̄s) (3.35)

where P̄s is the sample mean of the RSS values for the sth sensor.

Figure 3.5 shows both types of faulty sensors. To show differences in the two

sensor types a histogram is built. The standard deviation, σ̂s is taken across all

observations of each sensor s ∈ {1 : S}. Each σ̂s is then placed in the correct bin.

In (a), the sensors are malicious with p0 = 0.50, meaning they report the correct

measured RSS 50% of the time. In (b), the sensors are malfunctioning, and always

report the incorrect value V0. A correctly functioning sensor would be the same as

(b). A malfunctioning sensor has the same σ̂s, but may have a few sensors with a

different mean RSS, V0.
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Figure 3.5: Comparison of standard deviation between a malicious sensor (a), and
a malfunctioning sensor (b).

The histogram of the observed standard deviation, σ̂s, shows a clear distinction

between the two types of faulty sensors. In the first case (a) the distribution of

the measurements shows two distinct lobes. This is because the malicious sensors

are reporting between two values giving two possible sets of standard deviations.

In (b) the standard deviations are distributed as more Gaussian. When classifying

sensors, only the nodes detected as faulty will be considered in determining the average

standard deviation.

The second method is estimating the offset V0. As shown in Equation (3.31),

the offset can be estimated from the RSS values. In the case of a malfunctioning

node, estimating the offset is helpful in determining how much the sensor is affecting

the localization. From here, the user can determine the course of action; whether it
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is removing the sensor from the localization, physically replacing or fixing the sensor,

or accounting for the known offset. Combining these two techniques gives a way

of determining the probable cause of the faulty sensor and information about the

problem sensor.

3.5 Simulation Flow

Figure 3.7 is a block diagram of the simulation flow. With each new simulation

a variety of parameters need to be determined. The first of these is whether the faulty

sensor is malicious or malfunctioning. After this has been determined, the number of

faulty sensors is chosen. This is done as a percentage of the total number of sensors

S.

When S is chosen, the locations of the sensors are determined. For simulations

in this research, the sensors are distributed randomly in a specified space. The search

space is 10m in x and 100m in y. The sensors can also be in a 5m vertical space. The

space replicates sensors being randomly placed along a fence or building. After the

sensor locations are known, the time steps begin. At each time step the transmitter

is moved a specified amount. With each new transmitter location, new RSS data is

created, and MLE of location is computed. After all time steps, T , the data is used

to calculate the algorithm values αS and βS. These values are used to complete a

threshold test to determine Pf and Pd. After one complete time step, the process

begins again. After all independent trials, Pf and Pd are averaged to get a final ROC

curve for that simulation. Figure 3.6 is a list of the process described here, showing the

process of a simulation. Figure 3.7 is a block diagram showing important simulation

blocks.
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(c) T Time steps
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(e) Find αS and βs

(f) Complete threshold test

3. Average Pf and Pd over K trials

Figure 3.6: Simulation flow with steps shown.
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Figure 3.7: Flow diagram of how the simulation is run.
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IV. Results and Analysis

This chapter presents the results from the simulations described previously. The

results will be analyzed and discussed in reference to the objectives of the re-

search.

4.1 Experimental Parameters

To keep track of the parameters being tested, and values of the parameters,

Table 4.1 was developed. Several important factors need to be tested to show that

the algorithm can work in a sensor network. The simulations used to gain insight

on the system are shown. Each parameter value is given, and in some cases the

simulation is run to compare several different parameter values. The figure that the

simulations correspond with are also given.

Table 4.1: Table of experimental parameters
Test # S # Malic # Malf p0 V0 σe Figure

1 50,100, 0 20 0 -25 12 4.1
200

2(a) 100 0 20 0 -25 6 4.2(a)
2(b) 100 20 0 0.75 -25 6 4.2(b)
3 100 0 25 0 -40 2,6,12,25 4.3
4 100 0 20 0 -40,-30,-20, 4,8,12 4.4

-10,0,10
5 100 20 0 0,0.25,0.50, -25 12 4.5

0.75,1.0
6(a) 100 5,25,50, 0 0 -25 12 4.7(a)

75,95
6(b) 100 0 5,25,50, 0.25 -25 12 4.7(b)

75,95
7 100 0 20 0 -40,-30,-20, 12 4.9

-10,0,10
7 100 20 0 0.50 -40,-30,-20, 12 4.9

-10,0,10
8 100 20 0 0.25,0.50, -40,-30,-20, 12 4.10

0.75 -10,0,10

Where:

35



• S: Number of sensors in SN

• # Malic: Number of malicious sensors simulated

• # Malf: Number of malfunctioning sensors simulated

• p0: Probability of reporting true RSS measurements in malicious sensors

• V0: Offset RSS value reported in malfunctioning and malicious sensors (dBm)

• σe: Simulated noise standard deviation (dB)

4.2 Algorithm Detection Capabilities

This section will cover how well each algorithm, the GLRT and MSE algorithms

are able to detect faulty sensors based on three important factors. The first factor

is the size of the sensor network being used. The second factor is the RSS value

offset reported by the faulty sensor, and the final factor is the noise variance in the

environment. The algorithms will also be compared against each other to determine

if one has a distinct advantage in detection over the other.

There are some aspects of the simulation that are necessary for simulation, but

aren’t considered when evaluating the performance. The first of these variables is η,

the path loss exponent. This can range from 2 in free space, to 5 in dense urban

environments [7]. The second variable is the transmitted power, P0. This is the

original transmitted power from the transmitter. This was not tested because the

model did not include the accuracy of the RSS sensors. Therefore, all values of RSS

can be accurately measured by the system, and the original transmission power does

not affect the detection capabilities. One distinction is that the RSS value offset V0

can be varied to be in or out of the expected RSS value based on P0.

The first important consideration is how the algorithms are able to detect a

faulty sensor in different sized sensor networks. In Figure 4.1, sensor networks of

different sizes are used, with 20% malfunctioning sensors and V0 = −25 dBm.
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Figure 4.1: ROC for varying sizes of sensor networks(S). In simulation 20% of
sensors are malfunctioning with an offset of V0 = −25 dBm.

The ROC curves for the three sizes of sensor networks are similar. The GLRT

and MSE algorithms both perform similarly in the sizes of sensor networks simulated.

The difference is ROC changes for different sized networks. As the number of sensors

increases the performance of both algorithms decreases. The highest ROC curve is

for 50 sensors, while the ROC curve for 200 sensors is the lowest.

The offset value, V0 might also have an impact on which algorithm is more able

to detect faulty sensors. To determine this, a simulation is run with several potential

offsets for malicious and malfunctioning sensors. Figure 4.2 shows two separate cases.

In (a) the offset value V0 is set to three different values, and 20% of sensors are

simulated to be malfunctioning. In (b) 20% of sensors are simulated to be malicious

with p0 = 0.75.
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Figure 4.2: ROC for varying V0. In (a) the sensors are simulated to be 20% mal-
functioning, and in (b) 20% of sensors are simulated to be malicious with p0 = 0.75.
In both cases S = 100 sensors are used.

Looking at the ROC curves in Figure 4.2 (a), both algorithms have similar

performance for all values of V0. The difference in detection ability is with the value

of V0 the sensor is using. The transmitter has an initial transmitted power of 20 dbm.

When the signal reaches the sensors typical RSS values are between -5 and -20 dBm.

When the sensor reports that a received value is outside that range (30 and -30 dBm),

the algorithms are more likely to be able to detect these large difference in expected

and actual RSS. This is reflected by how both ROC curves for these values perform

much better than the V0 = 0 case. In (b) the sensors are simulated as malicious, and

report the actual measured RSS value 75% of the time. As a result the V0 value does

not have as much of an impact because it is used only one quarter of the time. All

the ROC curves in (b) are lower than (a) for the same V0 values. There is also less
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of a difference in detection rates between the three values of V0. The GLRT performs

0.05% better on average for V0 = 30.

The standard deviation of the noise also affects the ROC for both types of

sensors. Changing the simulated standard deviation σe between several values allows

analysis of algorithm comparison and performance. In Figure 4.3 σe is varied between

2 and 25 dB. A sensor network with S = 100 nodes is used, with an offset of V0 = −40

dBm. The faulty sensor nodes are simulated to be malfunctioning with 25% of total

being malfunctioning.
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Figure 4.3: ROC for varying σe values. 25% of S = 100 sensors are simulated to
be malfunctioning, with an offset V0 = −40 dBm.

As Figure 4.3 shows, the value of σe affects the detection ability of both algo-

rithms. The GLRT and the MSE perform similarly for all σe values. As in most cases

simulated, the algorithms perform very similarly. The advantages besides detection
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rate of each algorithm will be discussed later. The lower the noise variance, the bet-

ter both methods perform. As the noise is increases to 25 dB, the detection rate

becomes close to a guess, with the detection rate and false alarm rate being equal.

Noise variance rates of 4 -12 dB can be found in many potential environments [7]. In

that range, with Pf = 0.20 the probability of detection can range from 0.55 to 0.95.

Depending on the environment there can be up to 40% difference in ability to detect

a faulty sensor. This demonstrates the susceptibility of RSS measurements to noise.

Figure 4.4 shows the detection rate for several different values of σe and V0.

This demonstrates the detection ability for several different possible configurations.

The detection rate shown is for a false alarm rate of Pf = 0.15.
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Figure 4.4: Plot of detection rate for various values of V0 and σe. The GLRT
algorithm is used, along with 20% malfunctioning sensors out of a total of S = 100.
The detection rate Pd, is found with Pf = 0.15 in all cases.
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The first component of information shown is how the detection rate decreases

as the standard deviation of the noise increases. The detection rate also has a loose

correlation with the false RSS measurement reported, V0. The values that are farther

outside of the expected range have higher detection rates than those in the expected

range. In simulations using P0 = 20dBm, and the plausable distances from the

transmitter to receivers in the sensor network, RSS measurements range from -5 to

-20 dBm.

4.3 Detection of Malicious Sensors

As described in Chapter III, a malicious sensor can have three adjustable proper-

ties. The first property is p0, how often the sensor correctly reports the true measured

RSS. The attack on the network would have to weigh the trade-off of this parameter

for two reasons: the probability that it will be detected, and the ability to affect

localization error by the network. Table 4.2 demonstrates this concept. Simulating

25% malicious sensors in the network, the localization error De was found for varying

probabilities of p0.

Table 4.2: Error (De) for varying probability of reporting correct value (p0)
Malicious Probability (p0) 0.0 0.25 0.50 0.75 1.0
De (meters) 20.8 17.0 10.9 5.8 5.4

De =
1

T

T∑

t=1

||θ̂t − θt|| (4.1)

where De is computed for each independent trial K, and averaged. [x0,t, y0,t, z0,t] = θt

is the truth location at observation t, and [xs,t, ys,t, zs,t] = θ̂t is the MLE. This metric,

a Mean Absolute Error (MAE), uses truth data (the location of the transmitter)

which in practice the processing center will not have. This value is a good metric

in determining the ability to detect the sensor node verses the error in localization

it causes for specific conditions. De does not account for any detection and removal
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of any sensors in the network. This metric measures strictly the error caused by the

faulty sensor.
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Figure 4.5: ROC for varying values of p0. The simulation uses S = 100 sensors
20% of which are malicious and an offset of V0 = −25 dBm.

Figure 4.5 is a ROC plot of varying p0 values for malicious sensors in a network.

The first detail of note is that as p0 is increased, the probability of detection for the

same probability of false alarm drops. As the attacker reports the true RSS value

more, the ability to detect the sensor decreases. In Table 4.3 this is shown. If the user

of the network wants a Constant False Alarm Rate (CFAR) of Pf = 0.20, then the

probability of detection can be compared for each p0. Values of detection for a given

CFAR, Pd|Pf are also shown in the table. A CFAR would be used when false positive

detections have a significant impact. For example, if the cost to go out and replace a

sensor that is falsely classified as a malicious sensor is high, the user of the network

might want a lower CFAR to decrease cost. As a result of this, the probability of
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detection goes down, so it is more likely that there will be localization error on the

network.

Table 4.3: Error (De) and metrics for varying probability of reporting correct value
(p0)

Malicious Probability (p0) 0.0 0.25 0.50 0.75 1.0

De (meters) 20.8 17.0 10.9 5.8 5.4
Pd|Pf=0.2 0.62 0.51 0.41 0.30 0.20
Pd|Pf=0.5 0.85 0.73 0.63 0.57 0.48
GPf=0.2 (meters) 8.02 8.43 6.51 4.12 4.36
GPf=0.5 (meters) 3.52 4.94 4.34 2.77 3.04

To quantify the relationship between localization error and probability of detec-

tion a new metric is used. The expected localization error in meters for a given false

alarm rate, G(Pf ), is this metric.

G(Pf ) = De(1− Pd|Pf
) +De|m(Pd|Pf

) (4.2)

where Pd|Pf
is the detection rate at the specified false alarm rate, Pf , and De is the

localization error at the specified p0 value. De|m is the localization error when the

sensors have p0 = 1.0, meaning 100% of the sensors are malicious.

G(Pf ) gives a number for each p0 value that combines the error and detection

probability. In Table 4.3, G(Pf ) is shown for two particular CFAR. For each Pf value

chosen, the probability of detection, Pd, that corresponds is found. The lower the

CFAR required by the user of the network, the higher G(Pf ) is. This means that

the attacker is able to more successfully attack the network without being detected.

When Pf is increased allowing for more false alarms, the attack will be less likely to

have the same effect on the network for the same Pd. Figure 4.6 shows a plot of G(Pf )

for different values of Pf .

Figure 4.6 shows that in general, G(Pf ) decreases as p0 increases, or as the

true value is reported more. As p0 approaches 1, G(Pf ) begins to increase again. At

p0 = 1.0, the true RSS value is always reported, therefore the detection becomes a
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Figure 4.6: Plot of G(Pf ) for varying p0. Plots are shown for several values of Pf .
Data is simulated with S = 100 sensors 20% of which are malicious and V0 = −25
dBm.

guess. At this point De still exists, but is not affected by the malicious sensors. When

p0 = 1.0 there is still error in the localization due to noise and multi-path. This

metric G(Pf ) does not have much meaning because the attacker no longer has any

control of the errors in the localization. The attacker would want to determine the

best trade-off between detection capability and localization error, and this plot gives

a metric to determine that.

The metric G(Pf ) does not alter characteristics as a function of Pf . All four

plots have a similar shape and give approximately equal decrease with p0. This is

important because the choice of a threshold for the test does not affect how G(Pf )

more in some cases. The values of G(Pf ) are different for each Pf , but decrease at a
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constant rate. The user of the network should make a choice for the threshold based

on costs associated with false alarms.

4.4 Number of Faulty Sensors

The number of faulty sensors in the network also has an effect on the detection

ability of the network. The control center does not have knowledge of how many

sensors in the network are faulty. The algorithms described thus far are based on the

fact that a small percentage of the sensors are faulty.

The GLRT is built to optimally detect a single faulty sensor in the network.

As more are added, the algorithm is no longer ideal. Similarly, the MSE algorithm

is based on creating a power map. This power map uses all sensors to locate the

transmitter, and then recreate what the RF power is like in the environment. Any

outliers from this power map are considered faulty. If however, a larger percentage

of the sensors are faulty, the correctly functioning sensors will appear to the decision

center as the outlier. This will allow the malicious user to completely control the

localization ability of the network.

This type of attack can cause huge problems with the sensor network. To demon-

strate how the percentage of faulty sensors in the network can affect the efficiency

of the algorithms, a simulation is done to determine the detection capabilities. In

this simulation, two cases were considered. In the first case, the network has varied

numbers of malfunctioning sensors (a). The second case is simulated to have varying

numbers of malicious sensors (b). In (b), the probability to report actual RSS mea-

surements from the malicious sensors is p0 = 0.25. In both cases values of σe = 12

dB and V0 = −25 dBm are used.

Figure 4.7 shows ROC curves for both types of faulty nodes. In (a), the mal-

functioning case, there are five simulations run. Each simulation runs with a different

percentage of the total sensors considered malfunctioning. In the 5% case, the ROC

is the highest, because the small number of total sensors allows for the majority of
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Figure 4.7: ROC plot for varying number of faulty sensors. In (a) the sensors
are malfunctioning, and in (b) the sensors are malicious with p0 = 0.25. Both are
simulated using S = 100 sensors with σe = 12 dB and V0 = −25 dBm.

other sensors to detect it. At 25% malfunctioning sensors the algorithms are still able

to detect the faulty sensors adequately. The detection rate at Pf = 0.20 is approxi-

mately 10% lower. When the malfunctioning sensors are half of the total the detection

becomes much more difficult. It is essentially a guess which sensors are the correctly

functioning ones, because the detection rate and false alarm rate are equal. When

more than half of the sensor network is malfunctioning, it presents a major challenge

to the localization. Now the malfunctioning sensors are the majority, and cause the

correctly working sensors to appear out of place. In the MSE algorithm, the power

map is now largely based on false readings, and the correct RSS values appear to be

the outliers. As a result, the detection now performs less effectively than a guess.
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In (b) the same five simulations are run, but with the sensors modeled as mali-

cious. The first observation to note is that the detection rate for the same false alarm

rate is lower for malicious nodes, approximately 15% at Pf = 0.20. This is true when

the malicious nodes are less than half of the total sensor network. At 50% malicious

nodes, the algorithms are also more able to detect these nodes when compared to

malfunctioning nodes. While malfunctioning nodes have equal Pf and Pd at 50%,

malicious are able to obtain Pd = 0.60 at Pf = 0.40 with the same percentage of

faulty nodes.

In the case of (a), the malfunctioning nodes in both algorithms perform equally

on all percentages of faulty sensors. When the faulty sensors are modeled as malicious,

there is some separation between the two methods. For 75% malicious sensors, the

GLRT performs significantly better than the MSE. At Pf = 0.20 the GLRT has 25%

better detection than the MSE. As the malicious percentage approaches 100%, the

algorithms again have the same performance.

Similar to the probability of reporting a true value (p0), developing a metric to

understand the relationship between errors in the localization and the total percentage

of faulty sensors can provide insight into the system. Table 4.4 gives the localization

error for the simulations in 4.7. The GPf
metric is used to obtain a number to relate

the error and detection rate.

Table 4.4: Error (De) and metrics for varying percentages of faulty sensors
Percent Faulty (%) 5 25 50 75 95
De Malicious (meters) 7.7 20.6 38.5 71.4 63.0
De Broken (meters) 5.2 29.8 58.2 105.4 121.7
G(Pf = 0.20) (meters) 2.19 8.27 23.50 64.27 59.85
G(Pf = 0.60) (meters) 1.18 3.88 7.87 37.29 49.81

Table 4.4 shows that as the percentage of faulty sensors in a network increases,

the localization error increases as well. This is to be expected, because if a larger

number of sensors aren’t performing and reporting the actual RSS, the localization
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will be affected. GPf
shows that for the same false alarm rate, the more effective the

error is, taking into account the probability of detection.

Figure 4.8 is a plot of the G(Pf ) metric for varying values of Pf . This plot

shows how effective changing the number of faulty sensors can be in compromising

the localization functionality of the network.
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Figure 4.8: Plots of the G(Pf ) metric for varying percentages of malicious sensors
with p0 = 0.25. This data was simulated with S = 100 sensors with σe = 12 dB and
V0 = −25dBm.

Figure 4.8 shows that having knowledge of the possible attack can help to im-

prove the detection of malicious nodes in the network. If the user has a low CFAR

due to the high operation cost of false alarms, the attack can be more effective with

the same percentage of malicious nodes. For low percentages of malicious nodes, all

four CFAR are similar in the effectiveness metric G(Pf ). As the malicious percentage

increases, the lower CFAR requirements have a much larger G(Pf ) value. For exam-
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ple, if the user specifies a CFAR of Pf = 0.20 and the attacker is able to maliciously

attack 60% of the sensors in the network, G(Pf ) is 276% more effective than if the

user specified a CFAR of Pf = 0.40. On the other hand Pf = 0.40 is only 144% more

effective than a Pf = 0.60.

4.5 Classification

The analysis thus far has been involved with how well each method is able to

handle different conditions. This section covers the next step after the sensors have

already been determined. The algorithms will mark each sensor as either faulty or

working correctly. This may not be sufficient information to the user of the network.

As previously discussed, the two different sensor models influence how the prob-

lem may be dealt with. If a sensor is malicious, it is intentionally misleading the

localization. This could compromise the operation of the network and allow someone

with a RF transmitter to get inside the gate without knowledge. On the other hand,

a malfunctioning sensor node affects the localization without the intent of doing so.

After the RSS data has been collected and the algorithms have made decisions

about all of the sensors in the network, the sensors are classified. The first possibility

considered is whether they are malicious or not. As stated in the sensor model, a

malicious sensor reports between a false value V0 and the actual RSS value with

probability p0. The more frequently the attacker reports a false value, the more they

are able to affect the localization.

Figure 4.9 shows a plot of the measured standard deviation versus the two types

of faulty sensors. This data was generated with σe = 12. The GLRT algorithm is

used to detect faulty sensor nodes, and the sensors are noted. The average observed

standard deviation is then plotted for each case. The two cases are malfunction and

malicious. In each simulation multiple RSS value offsets, V0 are used. The dotted

line represents the expected observed standard deviation of 12. The average observed

noise standard deviations, σ̂e can be found by:
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σ̂e =

√√√√ 1

T − 1

T∑

t=1

(PF
s,t − P̄F

s ) (4.3)

where PF
s,t is the t

th observation of RSS by the sth sensor detected as faulty, and P̄F
s

is the sample mean for sth sensor detected as faulty.
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Figure 4.9: Plot of the classification for malicious and malfunctioning sensors. Using
Pf = 0.15 the average noise variance, σe of sensors classified as faulty are shown. The
classification is tested for several different offset values V0. Values of p0 = 0.50 and
σe = 12 were used, and 20% of sensors are faulty. A line is used to demonstrate the
simulated noise variance.

The first observation is that the standard deviation is lower on average in the

malfunctioning sensor simulation. This is because in this case the sensors, if the

sensors are malfunctioning, they are consistently reporting the same value. In the

malicious sensors, the standard deviation is higher because the faulty sensors now
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report two different numbers, which may be far apart in value. The line that depicts

simulated σe is the “cutoff” for what might be considered malicious sensors. If the

observed standard deviation is much higher than the cutoff, the user can conclude

that the faulty sensors are malicious. If the values are close to expected, the sensors

can be classified as malfunctioning.

The value of V0 is an important factor in the ability to classify sensors for

two reasons. As shown previously, V0 can affect the ability of the GLRT algorithm

to detect faulty sensors. If correctly working sensors are included in the average

standard deviation, the values will likely be lowered, causing sensors to seem more like

malfunctioning ones. The second consideration is that the larger separation between

V0 and the expected RSS values, the larger the standard deviation will be. At V0 =

−40, there are very few RSS measurements close to this value. However, with a

V0 = −20, the difference between reporting true information and false information is

small.

Figure 4.10 is a plot of observed noise standard deviation versus the probability

to report true values for a malicious sensor. For this data all faulty sensors are

considered malicious. The goal is to determine the ability to classify for various

values of V0 and p0.

Once again Pf = 0.15 is used with the GLRT algorithm to detect the faulty

nodes, in this case malicious. The average standard deviation of these detected nodes

is shown. In the first case p0 = 0.25 is used, and the standard deviation is calculated

for five V0 values. For V0 outside the expected range, the σe observed are higher than

the values in the expected range. This is the case for all three p0 simulations.

As expected, the standard deviation is highest when p0 = 0.50. This is because

the RSS measurement reported is changed with the highest probability. For lower

or higher p0, one of the true or false RSS measurements is being reported with a

higher probability. The closer to p0 the attacker is using, the higher the probability

of correctly classifying the sensor as malicious.
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Figure 4.10: Plot of malicious sensors average noise variance. The value is shown
for three cases of p0, and varying levels of RSS offset V0. A simulated noise variance
of σe = 12 is used, and 20% of sensors are faulty. The line shows the simulated noise
value.

4.6 Conclusions

This section summarizes the results and provides an overview of how they meet

the objectives of this research. The first key component to consider is the feasibility

of this concept as a whole. It is necessary to determine if it is a practical thing to use

a system like this to accomplish faulty node detection. The algorithms developed are

the other key objective of the research. The two algorithms will be compared in their

performance in the simulated conditions.

4.6.1 Malicious Node Detection Feasibility. The system model and algo-

rithms described here are able to detect malicious node behavior in a network just via
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physical layer data alone. One of the objectives of this research is to determine the

feasibility of this system to determine trust in sensors, and detect malicious attacks

on them.

The first criteria is that the detection utilizes only observations of physical

layer data. This means that the information used to make decisions is the RSS

measurements collected from the sensors on the node. This data is packaged and sent

back to the processing center, so it involves some layer of network interaction. The

only information considered are the physical measurements taken by the sensors. This

allows for low complexity and low power sensors to be used to assess the performance

and functionality of this system, without considering network layer occurrences. These

could include missing packets, misrouting information, and other techniques.

The functioning of this system depends on sevearl key assumptions. These will

be addressed to show that the assumptions are practical.

• Transmitter power known: The original purpose of the network is to locate a

transmitter of interest. It is safe to assume the user would know what the device

being operated is. For example, the object might be a cell phone with a known

average transmission power.

• Omni-directional antenna: Many of the devices that might be tracked have

small or omni-directional antennas. At the distances used in this research, it is

assumed that they all could be accurately modeled as omni-directional.

• Log-normal fading model : This model has been developed and is used for many

different environments and purposes. It has also been tested in physical systems.

• Sensor models : The sensor models developed detail two potential ways that sen-

sors might not be correctly working. There may be other methods of attacking

a sensor that affect the ability to communicate, but this research was limited to

attacks on the physical data collection and reporting.
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• Environmental factors : The environmental factors including the path loss ex-

ponent and the noise variance used were taken from typical measurements of

these values.

• RSS measurement errors : The error in RSS measurement will change the over-

all detection rate of the system, but not the comparisons between the two algo-

rithms. These errors would be a next step to include in future research.

Under these assumptions, the system is able to detect both malicious and mal-

functioning sensors. This research began without a directive of achieving a specific

detection rate for a certain false alarm rate. As a result, the feasibility is not able to

be concretely determined from a set of data. The feasibility of the system depends

instead on a large variety of details involved with the system.

The first area tested is the detection ability in varying sized sensor networks.

The sizes tested ranged from 50-200 sensors. There are slight variations in the detec-

tion ability of the network, around 5%, but all of the sizes were able to detect more

than 90% of the faulty sensor nodes with Pf = 0.20. The number of the sensors has

a greater effect on the localization accuracy. As a result, an important consideration

for number of sensors is not the detection ability, but the accuracy that is needed for

detection.

The system is also viable in varying levels of the RSS measurement offset, V0.

This implies that the system could detect varying levels of error due to battery life

in a malfunctioning sensor, or false RSS values in malicious sensors. In the malfunc-

tioning nodes, the detection workes extremely well in conditions where the offset is

significantly outside the expected RSS range. When V0 is inside the expected range,

the detection capabilities decrease 30% at Pf = 0.25, but is still within an acceptable

range. In malicious nodes, the detection rates are also acceptable within the expected

range, but are lower than the malfunctioning sensor case. The difference here de-

pends on the p0 used. In the simulation, comparing malicious and malfunctioning in
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V0, p0 = 0.75 is used. Values closer to one make the malicious sensor more difficult

to detect.

In varying levels of noise, the physical layer data is also a feasible method of

detection. In the realistic range of noise simulated, 4-12 dB, the detection rates for a

Pf = 0.20 were between 0.55-0.90. The final factor that was tested is the probability

of malicious sensors to report the correctly measured RSS value.

Table 4.5 outlines the ranges of values where the system will achieve viable

detection rates, accomplishing the goal of the research.

Table 4.5: Comparison of the feasibility based on detection rates for simulations.
x refers to an area where the algorithm has an advantage.

System Parameter Feasible Value

p0 (%) 0 - 50
V0 (dBm) Any
σe (dB) 4 - 12
S 50 - 200

4.6.2 Algorithm Comparison. A key objective is to develop and evaluate

algorithms that are able to detect malicious sensor nodes. Table 4.6 gives an overall

qualitative comparison of the two techniques in a variety of categories.

Table 4.6: Qualitative comparison of the two developed algorithms, GLRT and
MSE.

System Characteristic GLRT MSE

Sensor Network Size x x
Algorithm Complexity x
Varying % Faulty x
Noise Variance x x
V0 Estimate x
Malicious Attacks x
Power Map Creation x
Knowledge of Distribution x
Improve with Knowledge x

Both algorithms have a few benefits that might be useful depending on the

situation. The GLRT and MSE both perform equally well in all sensor size networks
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and noise standard deviations that are simulated. If the user of the network is looking

for extra information about the situation, there are benefits to each. As part of the

process of detection, the MSE builds a power map of the area of interest. If the user

is interested in knowing that information as well, the MSE might be a good option.

Similarly if the value of the RSS measurement offset V0 is of interest, the GLRT

method estimates the value. This can be used to help classify the sensors severity of

damage.

The GLRT method performs better in one area. For large percentages of the

network under attack, the GLRT has better detection ability. It has equal Pf and Pd

rates, but is an improvement over the MSE.

The MSE has the benefit of reduced complexity. The algorithm does not depend

on a hypothesis specific to the sensor model. If the malicious attack on the network

has a different model, the MSE will not need to change. On the other hand, the

GLRT is built on the specific sensor model and hypothesis.

The GLRT algorithm has the ability to improve with more knowledge about

the system. While the MSE can only improve with knowledge of the environmental

factors such as σe, η, and P0, the GLRT can improve with knowledge of these factors

as well as V0, p0, and the number of faulty sensors. This means that if the sensor is

more complex and other factors can be estimated the accuracy of the GLRT would

improve.

Overall, both methods are feasible to use in a sensor network. As described in

this research, they are able to detect reasonable amounts of faulty sensors in a RF

localization network. This is done using only physical layer data that is already being

collected for the purpose of the network. No extra data needs to be collected, and

no extra hardware is needed. The GLRT algorithm is more complex and tailored to

specific models and conditions, while the MSE performs similarly in most simulations,

but can be limited in the detection ability due to the lack of usage of important

information.
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V. Recommendations and Future Work

This chapter will discuss the contributions of this research, and future research

possibilities in this area of study. Current research discussed in Chapter II,

along with work the research outlined in Chapter III and IV will be the basis for

future research.

5.1 Summary

This research began with the goal of determining trust in a CN by using only

physical layer data. The framework consists of a sensor network in place to localize

a transmitter of interest. The background information for this thesis is from several

different disciplines. These included localization techniques and applications, RSS

based models and applications, network trust, and detection and estimation.

The work begins with finding and utilizing existing RSS based localization tech-

niques and implementing and expanding them in simulation. Once the RSS localiza-

tion is able to be simulated, the next task is to describe potential physical layer data

attacks on the network. These attacks are grouped into two categories and models

are developed for both. The next step is to use detection theory to find methods of

determining which sensors in a network are faulty. With this research the GLRT and

MSE algorithms are developed.

After the development of the algorithms, they are tested in a variety of potential

situations. The goal is to determine the feasibility of the system as a whole and the

algorithms comparatively. The results showthat both algorithms have benefits, and

that this type of physical layer data is able to be used in the system described.

The work in this thesis was presented at the 2010 Asilomar Conference on

Signals, Systems, and Computers [30].

5.2 Future Work

There are areas within this subject matter that justify future research. Each

topic will be listed along with what future work might be interesting within that
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area. These areas will be discussed in context of this research as well. The first area

of potential future work is hardware implementation.

5.2.1 Hardware. The next logical step would be to implement these algo-

rithms and derivations on physical data, rather than simulated data. Sentilla motes

have been used to collect the necessary RSS measurements, and report them back to

a command center. This is done by using one of the motes as a transmitter and the

other motes as the receivers in the sensor network. The hardware implementation can

be done in multiple steps. The first is replacing the synthetic RSS data with actual

RSS data collected by the Sentilla motes. The rest of the processing can be done

exactly the same as the simulation is done now. The faulty sensors will still be chosen

in simulation. This would allow the researcher to determine the ability to use these

specific sensors for the localization.

The next step would be to model how the hardware fails. In this research,

two cases are considered. The malfunctioning and malicious models can be tested in

hardware. The important questions for malfunctioning sensors would be:

• What is the model of battery life effect?

• What is the impact of interference RSS measurements?

• What level of physical damage causes bad RSS measurements?

• Does RSS measurement fail before the communication ability of sensor?

Questions that impact malicious sensors include:

• What ability does the sensor have to report different values?

• How much can a sensor affect localization in hardware?

• Can a sensor be reprogrammed without notice?

• Are there other models that affect localization more?

These questions would help to improve the models developed in this research.
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5.2.2 Malicious Attack Modeling. Although malicious sensors are an impor-

tant part of this research, more attention could be focused developing a model that

would has the greatest effect on localization error. To better understand what types

of attacks might occur on the network a researcher with the mindset and knowledge

of attacking a network would be useful. Once these types of attacks are developed,

the detection and classification of sensors can be done on these new malicious node

models.

5.2.3 Parameter Estimation. Some of the quantities that are assumed

known in this research are able to be estimated with the data available. In previ-

ous research [7], quantities such as antenna patterns, environmental fading, multiple

transmitters, and transmission power have been developed. Including these estima-

tions along with the ability to locate a transmitter and determine trust in the network

would provide a well rounded and trustworthy RF map of an environment.

5.2.4 Localization Error Reduction and Faulty Node Handling. Another

potential area of research in the future is using the detection of faulty sensors to

improve the localization error. This might include various ways of disregarding, or

correcting for false data. The metric would be the ability to improve the localization

given the same environmental and network attack parameters.

Overall, this research demonstrates the feasibility of this type of system. The

implementation in hardware would provide a final proof of concept, and other research

could be included to give a broader scope.
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There are many mechanisms that can cause inadequate or unreliable information in sensor networks. A user of the network might be
interested in detecting and classifying specific sensors nodes causing these problems. Several network layer based trust methods have been
developed in previous research to assess these issues; in contrast this work develops a trust protocol based on observations of physical layer
data collected by the sensors. Observations of physical layer data are used for decisions and calculations, and are based on just the
measurements collected by the sensors. Although this information is packaged and distributed on the network layer, only the physical
measurement is considered. This protocol is used to detect faulty nodes operating in the sensor network. The context of this research is
Wireless Network Discovery (WND), which refers to modeling all layers of a non-cooperative wireless network. The focus in particular is the
localization of transmitters, and detection of sensors affecting the localization. To accomplish this, a model for faulty sensors and two
methods of detection are developed. Detection rates are analyzed with Receiver Operating Characteristic (ROC) curves, and the trade-off of
detection versus localization error is discussed. Classification between faulty sensors is also considered to determine appropriate response to
potential network attacks.
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