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Abstract

LADAR (LAser Detection and Ranging) systems can be used to provide 2-D

and 3-D images of scenes. Generally, 2-D images possess superior spatial resolution

due to the density of their focal plane arrays, but without range data. A 3-D LADAR

system can produce range to target data at each pixel, but lacks the 2-D system’s

superior spatial resolution. The 3-D system is limited by its hardware, specifically its

imaging array. Currently developers are investigating ways to change the pixel size

in the 3-D LADAR imaging array, but the cost of this research is quite expensive and

technically challenging. It is the goal of this work to develop an algorithm using an

Expectation Maximization approach to estimate both range and the bias associated

with a 3-D LADAR system. The algorithm developed demonstrates both spatial and

range resolution improvement over standard interpolation techniques using both real

and simulated 3-D and 2-D LADAR data.
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A Statistical Approach to Fusing 2-D and 3-D LADAR

Systems

I. Introduction

This chapter describes the problem to be addressed by this research. The back-

ground of the problem and goals for this research are given, as well as assump-

tions used to limit the scope of the research. A discussion of previous related research

is provided as well as the organization for the rest of the thesis.

1.1 Background

FLASH 3-D LAser Detection and Ranging (LADAR) systems represent an im-

portant advancement in imaging technology in that they capture an entire scene

simultaneously as opposed to the way scanning systems form imagery. 3-D FLASH

systems suffer from spatial resolution problems due to pixel pitch fabrication limita-

tions. A 2-D system can produce high spatial resolution images but without range

data. The 3-D system can produce range to target data, but lacks the 2-D system’s

superior spatial resolution. The 3-D system is limited by its hardware, specifically its

imaging array’s pixel pitch. Pixel pitch is the distance between each pixel in an array.

The pixel pitch of many 3-D systems is 100 micro-meters while the 2-D system pos-

sesses a pixel pitch of 10 or 25 micro-meters. Currently developers are investigating

ways to improve the pixel size in the 3-D LADAR imaging array, but the costs of this

research is quite expensive and technically challenging.

Obtaining better spatial resolution from a 3-D LADAR system would improve

LADAR systems with potential United States Air Force (USAF) LADAR applica-

tions. Some defensive systems use LADAR for navigation, target recognition, and

reconnaissance. Currently researchers are trying to develop LADAR systems that

help autonomous vehicles navigate around unfamiliar terrain. One technology allows
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a 3-D LADAR system to communicate with a vehicles inertial measurement unit to

provide motion estimates to the vehicle using absolute orientation [6]. Collections of

these motion estimates provide navigation to the vehicle as well as other systems.

Automatic target recognition is a big focus for the USAF. This type of technol-

ogy opens up the use of loitering munitions, munitions’ miniaturization, and target

recognition. In 2007 Lockheed Martin developed a LADAR based seeker head for tar-

get recognition, known as E-LADAR [13]. This technology improves the accuracy of

many munitions, which improves the lethality of force and decreases collateral dam-

age of the munitions. Pilots also use target recognition, a 3-D target image allows

them to make better decisions to discern a target from a non-target. Improvement of

the system’s range estimation would make it more accurate and would increase the

munitions resolution of a target.

Intelligence plays a big role in today’s battlefield; knowing where to go and

the location of the enemy are keys to maintaining dominance of a battlefield. Re-

connaissance by LADAR can create 3-D maps of whole scenes on the ground from

airframes. After the aerial LADAR data is collected terrain maps are developed which

aid change detection in battlefield environments. Commanders use the 3-D terrain

maps in conjunction with other intelligence to develop battle plans or investigate ad-

versaries. Improving both range estimation and spatial resolution of a 3-D LADAR

system would allow autonomous vehicles to fly closer to targets and through urban

areas, create pinpoint accuracy for munitions, and improve battlefield intelligence as

well as air and space dominance.

One method for obtaining better spatial and range resolution from 3-D LADAR

systems is to interpolate the images through various techniques. While this may

suffice as a solution to the 3-D pixel size problem, it is not as accurate in reference

to spatial and range resolution of the 3-D images. Interpolation may introduce errors

due to aliasing effects.
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1.2 Research Goals

The primary goal of this research is to prove that fusing both 2-D and 3-D

LADAR images through Expectation Maximization (EM) will increase the spatial

and range accuracy of the 3-D system.

1.3 Assumptions

For this research, the following assumptions were made:

• The LADAR pulse returns exist within the range gate of the system

• The total LADAR system point spread function (PSF) stays fixed and is known

or can be measured

• The LADAR location is known in simulated data

• The 2-D and 3-D LADAR system’s images are pre-registered and aligned

1.4 Related Research

This section describes other methods to improve 3-D LADAR resolution and

range estimation. The methods discussed are interpolation, microscanning, texture

mapping, and blind deconvolution.

1.4.1 Interpolation. Interpolation is a method in which new data points

are created from a set of sampled data points. Data interpolation can be done in

numerous ways, for the purpose of this work we will focus on the pixel replication

(zero-order), linear (first-order), and cubic interpolators. An interpolator takes the

data given to it and creates new data to a desired range. The new data created is an

approximation based on surrounding information. Through image interpolation, each

pixel and its surrounding pixels are used to determine the new pixels. This smoothes

the data out and allows one to expand the resolution of an image. Interpolating the

data is a quick process and is a standalone method. The interpolators only rely on

the 3-D LADAR data and they do not take into account the 2-D LADAR data. These

3



attributes make data interpolation an attractive method for extracting information

from the 3-D LADAR system. Interpolation does not reduce aliasing that already

exists in an image [8].

1.4.2 Microscanning. Microscanning is a method that involves registering

numerous 3-D LADAR data cubes in every dimension. It has been proven to increase

spatial resolution and reduce range estimation error of 3-D LADAR systems. The

microscanning process registers the images of all the data cubes at sub-pixel resolution

and then uses interpolation to estimate the range of the target [1]. While under some

circumstances microscanning may suffice, the system can have some latency, due to

waiting on the many frames it requires. If the target ends up changing during the

microscanning process, frames could get misregistered and ultimately produce an

unwanted image. The algorithm proposed takes a single 3-D data cube and improves

its spatial resolution and range accuracy.

1.4.3 Texture Mapping. Texture mapping is the process of taking high

resolution 2-D images and overlaying them onto 3-D LADAR scenes or aerial stereo

imaging. This method improves the way 3-D images aesthetically look but does not

improve the range accuracy [5]. The method registers the 2-D image with a 3-D

scene and wraps the 2-D image around the 3-D scene. The data fusion proposed in

this research is very different from texture mapping. The data fusion proposed uses

statistics to estimate ranges based on both 3-D and 2-D images.

1.4.4 Blind Deconvolution. There are two previous research efforts that

used blind deconvolution to improve 3-D LADAR range estimation, McMahon’s [7]

and Cain’s [2] both use a blind deconvolution method. Cain’s blind deconvolution

method was developed strictly using the Richardson-Lucy algorithm to estimate the

pulse shape and then extract the range from the shape. Cain’s work did not estimate

the intensity of the signals and assumed it was known. McMahon’s work is similar,

it uses the EM process to come up with an algorithm to estimate pulse shape and
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extract the range from it. McMahon’s work deals with critically sampled data. The

data used in this study has been aliased to properly set up a case for 3-D LADAR

systems, e.g. munitions’ seekers, machine vision, etc. The proposed algorithm also

estimates the range directly without extracting it from the pulse shape.

1.5 Thesis Organization

Chapter II provides a description of the LADAR sensor model and data de-

velopment used for this research. Chapter III explains the mathematical derivation

of the algorithm and methodology of the research. Chapter IV details the results

from the simulations described in Chapter III. Finally, Chapter V gives a summary of

the research and lists conclusions of the thesis as well as potential follow-on research

areas.

5



II. LADAR Sensor Model

This chapter provides the technical background necessary for understanding the

overall concepts of this research. A description of the LADAR sensor model is

provided and describes how data was developed for this work.

2.1 LADAR Sensor Models

2-D and 3-D LADAR systems interrogate scenes through optics as well as the

atmosphere using laser pulses. Models exist for each system that relate the target

plane coordinates (x, y), to the system’s focal array plane coordinates (u, v). The

coordinates represent pixels in the arrays. The following subsections will describe the

sensor models and how the data was developed for this work.

2.1.1 LADAR Hardware. Before discussing the details of modeling a FLASH

LADAR system one must understand its hardware. Most 3-D FLASH LADAR sys-

tems contain the same components as shown in figure 2.1. When a scene is shot, the

laser transmits through a diffuser (beam spreader) in order to cover the area of the

scene. The lasers clock rate determines the pulse width of the laser. In this research,

the pulse width of the measured data is 2.5 nanoseconds. Using the diffuser ensures

uniform illumination of the target. Once the beam hits the target, the beam reflects

off the target creating a return pulse back to the system. This pulse is put through

lensing that sizes the pulse down to the focal array (array of receivers). Focal array

sizes vary from system to system. The light hitting the focal array goes through a

data processor that determines the ranges contained in the scene shot. The processed

data then becomes the 3-D scene of the target.

2.1.2 LADAR sensor models. A 2-D LADAR system produces 2-D intensity

image of a target. Most 2-D systems can achieve a 25 micrometer or smaller pixel

pitch which can produce high resolution intensity images. The intensity received

from the target is not the same as the intensity of the target. A relationship exists

between target intensity and the received intensity in the focal plane and is shown in
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Figure 2.1: The components of a 3-D LADAR system while receiving a pulse.

Eq. (2.1) [2]. The target intensity is A(x, y), and the focal plane intensity is i(u, v).

N is the number of pixels in the high-resolution image plane in each dimension.

i(u, v) =
N∑

x=1

N∑
y=1

A(x, y)h(u− x, v − y) (2.1)

Equation (2.1) is a convolution of the target intensity with the PSF, h(x, y).

This intensity model is used to find the intensity of an incoherent system [4]. The

LADAR laser light is coherent in nature, but its detected light return is modeled as

incoherent therefore the use of Eq. (2.1) is justified.

The PSF represents the effects of all the optics as well as the atmosphere. The

optical transfer function (OTF) of the optics, Hopt(fx, fy), is the effect the optics have

on the pulse or lightwave coming through the system. Hopt(fx, fy) can easily found

by autocorrelating the pupil function (tlens) as shown in Eq. (2.3) [4]. The variables

(fx, fy) represent the spatial frequencies in two dimensions.
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tlens(x, y) =





1, for (x, y) in the aperture

0, for (x, y) outside the aperture

(2.2)

Hopt(fx, fy) =

∑J
x=1

∑J
y=1 tlens(x + λ flfx

2
, y + λ flfy

2
)tlens(x− λ flfx

2
, y − λ flfy

2
)

∑J
x=1

∑J
y=1 |tlens(x, y)|2

(2.3)

The variable λ represents the laser wavelength and fl is the focal length of the

system. J represents the number of pixels in each dimension of a system’s pupil.

Hopt(fx, fy) may have range dependency but for this research it will stay fixed for

simplicity. The atmospheric OTF, Hatm(fx, fy), is an average and is found using

Eq. (2.4) [10]. The equation represents the average effects of the atmosphere through

short exposure. The equation uses the wavelength of the laser, the focal length of

the system, Fried’s seeing parameter (ro), and diameter of the lens (Dr). Fried’s

seeing parameter is formed by weak and strong atmospheric turbulence. A high ro

will dictate weak turbulence, while strong turbulence is represented by a small ro.

Hatm(fx, fy) = e
−3.44

[
λ2f2

l (f2
x+f2

y )

r2
o

]{
1−

[
λ2f2

l (f2
x+f2

y )

D2
r

]}

(2.4)

There is also spatial blurring that is caused by each detector due to most im-

ages being bigger than a single detector. This blurring has its own transfer function

Hdet(fx, fy). Hdet(fx, fy) is created from taking the Fourier transform of a 2-by-2 rect

function which is a sinc function. Multiplying the optics’ OTF, atmospheric OTF, and

the detector transfer function creates Htot(fx, fy) (Eq. (2.5)) in the Fourier domain.

Taking the inverse Fourier transform of Htot(fx, fy) results in the PSF, h(x, y).

Htot(fx, fy) = Hdet(fx, fy)Hatm(fx, fy)Hopt(fx, fy) (2.5)
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The pulses from the 3-D LADAR system will be modeled as Gaussian in time

as shown in Eq. (2.6). By keeping A(x, y) fixed the 3-D pulse becomes a function of

the range at each pixel, r(x, y). The variable rk represents discrete ranges each time

the pulse is sampled by the 3-D system, for each sample a 2-D image is made which

combine to make a 3-D image. The variable σ is the pulse width in meters.

P (x, y, rk) =
A(x, y)√

2πσ
e

(rk−r(x,y))2

2σ2 (2.6)

The 3-D data’s focal plane intensity is found by convolving the PSF, h(x, y),

and the pulse as shown in Eq. (2.7). Equation (2.7) also contains the bias, B(u, v),

that is present in the measured data. The bias is generated is a result of dark current

added to the signal. This research assumes that the bias follows a Poisson distribution

due to its discrete nature [7]. L is the under sampling factor between the 2-D and

3-D data. The pixel pitch of each system determines the undersampling factor.

I(u, v, rk) =
N∑

x=1

N∑
y=1

P (x, y, rk)h(Lu− x, Lv − y) + B(u, v) (2.7)

The 3-D data (d(u, v, rk)) is a Poisson random variable with a mean of I(u, v, rk).

The 3-D data model was chosen because incoherent light can be modeled as a Poisson

random variable. The LADAR laser light is coherent which makes the modeling of

the system robust. The choice to treat the laser light as incoherent light is based

on the success of previous works modeling the LADAR light as incoherent [7], [2].

Assuming every pixel and every time instance in the 3-D data is independent the

joint probability (p(d)) of the data is shown in Eq. (2.8). The variable M is number

of pixels in the 3-D image plane (low resolution plane) in each dimension and has

the relationship M = N
L

. The variable K represents the total number of 2-D images

contained in the 3-D data. Summing the all the images contained in the 3-D data

creates the 2-D images that will be used for the data fusion. The subsections below

discuss the two types of data used in this work.
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p(d) =
M∏

u=1

M∏
v=1

K∏

k=1

I(u, v, rk)
d2(u,v,rk)e−I(u,v,rk)

d2(u, v, rk)!
(2.8)

2.1.3 Simulated data. The simulated images generated for use in testing

the proposed algorithm will be 50-by-50 (high resolution) for the 2-D case and 13-

by-13 (low resolution) for the 3-D case. These resolutions produce an undersampling

factor of approximately four (L ≈ 4). The undersampling factor and resolutions

were chosen because currently 2-D LADAR systems can easily achieve a pixel pitch

of 25 micrometers while 3-D LADAR systems possess a 100 micrometer pixel pitch

which produces an undersampling factor of four. The simulated 3-D data contains 20

simulated pulse returns.

The first target used to produce the simulated data is shown in figure 2(a).

The figure depicts a two building target that is imaged onto a 50-by-50 target plane.

The top of the buildings are located at 10000 meters and the ground is located at

10002 meters. The raw under sampled 3-D data produced an estimated range shown

in figure 2(b). The estimated range is the result of using a cross-correlation range

estimator (matched filter) which will be discussed in detail in section 3.2.
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Figure 2.2: (a) The 50-by-50 target area. (b) The 13-by-13 raw estimated range
from the undersampled 3-D data on the low resolution grid.
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The 3-D data can also be represented by its 2-D images at each time instance.

A time instance is governed by the pulse width of the laser. For the simulated systems

the pulse width is two nanoseconds. The pulse width dictates the time it takes the

pulse to hit the target and return back to the receiver. Figure 2.3 shows the 2-D

images of the data cube for every other time instance. The images represent the

image received by the LADAR system every four nanoseconds.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.3: 2-D intensity images of the 3-D data cube over the course of 36 nanosec-
onds. Each image is shown on a 13-by-13 pixel grid and represents the data slice taken
every 4 nanoseconds.

An enlarged image at the second time instance is shown in figure 2.4, the figure

includes both high and low resolution images. The low resolution image is what a 3-D

11



LADAR system provides in 2-D. The sampling in this example makes it difficult to

discern the actual structure of the object. The 3-D data is 13-by-13 and is pictorially

different from the original target area. This provides the motivation for trying to

improve the 3-D data through various methods. Figure 2.3(c) shows the 2-D image

intensity which represents what a 2-D camera would see. The image was created by

summing the high resolution images in the high resolution 3-D data cube.

Pixels

P
ix

el
s

2 4 6 8 10 12

2

4

6

8

10

12

(a)

Pixels

P
ix

el
s

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b)

(c)

Figure 2.4: (a) The low resolution (13-by-13) data slice. (b) The high resolution
(50-by-50) data slice. (c) The 2-D data to be fused with the 3-D data.

The second target used to produce the simulated data is more complicated.

The target contains numerous buildings at different heights while the ground is still

located 10002 meters from the LADAR system. The second target’s profile is shown

in figure 2.5.
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Figure 2.5: (a) 50-by-50 target area of the second simulation. (b) The 2-D image
resulting from summing the second targets high resolution 3-D data cube.

Figure 2.6: Setup to obtain measured data.

2.1.4 Measured data. The measured data was obtained from a 3-D LADAR

system that shot a scene of a 3 bar cut out (third target) as depicted in figure 2.6.

The system used 17 time samples to build a 3-D data cube. The system possesses a

128-by-128 grid of detectors. The system created 20 separate 3-D data cubes. Each

image in the cube was cropped down to 64-by-64 in order to focus on the target area.

Unlike the simulated data, the measured data exhibits non-ideal behavior which

includes but is not limited to gain variation and electronic noise. When the LADAR

system shoots a scene a gain drop exists due to the laser being incident on a larger

area in the detector array [11]. This phenomena causes a gain variation between

13



the first and second surfaces. The LADAR system used to create the data is not a

photon counting system. In photon counting systems every detected return equals one

photon. The proposed algorithm does not take into account gain variation or photon

counting conversion factors in order simplify the algorithms development. [11] shows

how to correct for this behavior. The data used is raw data that contain these effects

in it without correction.

Another parameter is needed to use the measured data and it is the system’s

optical cutoff frequency, fc. The cutoff frequency of the system is determined by using

Eq. (2.9) [4]. The diameter (D) and focal distance (Z) are shown in figure 2.6 and

the wavelength (λ) of the system is 1.55 micrometers. In order to achieve the correct

sampling rate the Nyquist rate must be used which is two times the cutoff frequency.

This makes the sampling rate 116.25 micrometers [10]. Since The pixel pitch is 100

micrometers, the 3-D cube from the data is oversampled.

fc =
D

λZ
(2.9)

Since the measured data is critically sampled the true range can be extracted

from it. The true range is created from averaging all the ranges from each data cube

and subtracting the mean of the analyzed cube. The fifth data cube was used for this

research. The measured data range information is in terms of pulse returns (samples).

The true range for the measured data is shown in figure 2.7.

Downsampling the measured data creates under sampled data that will be used

for analysis in this research. This downsampling effect captures the effect of a larger

pixel and data aliasing. The effect of downsampling an image in the cube is shown in

figure 2.8.

The downsampling effect shown in figure 2.6(a) is also seen in all the images of

the measured data cube. The images produced by every other pulse return are shown

in figure 2.9.
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Figure 2.7: Target area of measured data on a 64-by-64 grid.
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Figure 2.8: (a) The low resolution (16-by-16) data slice. (b) The high resolution
(64-by-64) data slice. (c) The 2-D data that will be fused with the 3-D data.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.9: 2-D intensity images of the 3-D measured data cube. Each image is
shown on a 16-by-16 pixel grid.
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III. Research Methodology

This chapter describes the methods used to derive the proposed sensor fusion al-

gorithm as well as interpolation methods used for comparison. The first section

will describe the use of the EM algorithm to estimate both the range and bias of the

LADAR signals. The second section will detail the types of interpolation that will be

used for comparison to the proposed algorithm. Using the equations in simulations

and the results of those simulations will be the subject of chapter 4.

3.1 Proposed Sensor Fusion Algorithm

The proposed algorithm is derived using an EM approach to estimate the range

r(x, y) to each pixel in the target area and bias B(u, v) for each detector in the array.

The proposed sensor fusion approach will estimate A(x, y) by using a Richardson-Lucy

deconvolution [9] of the properly sampled 2-D data as shown in Eq. (3.1). This tech-

nique is an iterative process in which each iteration produces an Anew(x, y). Aold(x, y)

represents the estimate for A(x, y), d2d(u, v) is the observed 2-D data, and i(u, v) is

the estimated focal plane intensity. h(x, y) represents the total optical point spread

function (PSF). For this work, it is assumed that the PSF is known. The initial

estimate for A(x, y) is a constant.

A(x, y)new = A(x, y)old

N∑
v=1

N∑
u=1

d2d(u, v)

i(u, v)
h(u− x, v − y) (3.1)

The GEM approach proposed by McMahon [7] is similar to the EM approach

in this work. They are not the equivalent because McMahon’s work does not deal

with undersampled data and does not feature the use of 2-D and 3-D data. The first

step of the EM approach is to create a statistical model for the measured data, which

is known as the incomplete data. Inventing a set of mythical data (complete data)

and its relationship to the incomplete data is the second step. The third step is to

select a statistical model for the complete data such that it adheres to the relationship

of the complete to incomplete data. Next is to form a complete data log-likelihood.
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In step five, the conditional expectation of the complete log-likelihood is computed

with respect to the incomplete data. The last step is to maximize the conditional

expectation with respect to the parameter that is being estimated. The following

subsections describe the EM approach to estimate the range [3].

3.1.1 Formulating complete and incomplete data. As stated in chapter 2,

the 3-D LADAR data (incomplete data) is a realization of a Poisson random variable

at each pixel. The joint probability of the incomplete data is shown in Eq. (2.8). Due

to the bias estimation the complete data will contain two variables, d̃1(u, v, x, y, rk)

and d̃2(u, v, rk). The incomplete data, d, has a relationship to the complete data as

shown in Eq. (3.2).

d(u, v, rk) =
M∑

x=1

M∑
y=1

d̃1(u, v, x, y, rk) + d̃2(u, v, rk) (3.2)

The variables (x, y) represent the target plane pixel locations and (u, v) repre-

sents the focal plane coordinates. The variable rk represents discrete ranges each time

the pulse is sampled by the 3-D system. The expectations (means) of the complete

data are shown in Eq. (3.3). The means were chosen based on the complete data’s

relationship to the incomplete data.

E[d̃1(u, v, x, y, rk)] =
A(x, y)√

2πσ
e

(rk−r(x,y))2

2σ2 h(Lu− x, Lv − y)

E[d̃2(u, v, rk)] = B(u, v)

Since the sum of two Poisson random variables is Poisson, the complete data

can be modeled as a Poisson random variable at each pixel, retaining the validity of

Eq. (3.3). Based on the chosen means, the complete data probabilities p1 and p2 are

shown in Eq. (3.3).
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p1[(d̃1(u, v, x, y, rk)] =

A(x,y)√
2πσ

e
(rk−r(x,y))2

2σ2 h(Lu− x, Lv − y)d̃1(u,v,x,y,rk)e
−A(x,y)√

2πσ
e

(rk−r(x,y))2

2σ2 h(Lu−x,Lv−y)

d̃1(u, v, x, y, rk)!

p2[d̃2(u, v, rk)] =

B(u, v)d̃2(u,v,rk)e−B(u,v)

d̃2(u, v, rk)!
(3.3)

Taking the product of the probabilities at each sample location (x, y, u, v) and

each range (rk) produces the joint probability (p3) for the complete data, Eq. (3.4).

p3 =

[
M∏

u=1

M∏
v=1

K∏

k=1

M∏
x=1

M∏
y=1

p1[(d̃1(u, v, x, y, rk)]

]
×

[
M∏

u=1

M∏
v=1

K∏

k=1

p2[d̃2(u, v, rk)]

]
(3.4)

Taking the natural log of Eq. (3.4) produces the complete data log-likelihood

shown in Eq. (3.5).

L =
M∑

x=1

M∑
y=1

M∑
u=1

M∑
v=1

K∑

k=1

[d̃1(u, v, x, y, rk)ln(
A(x, y)√

2πσ
e

(rk−r(x,y))2

2σ2 h(Lu− x, Lv − y))

−A(x, y)√
2πσ

e
(rk−r(x,y))2

2σ2 h(Lu− x, Lv − y)− ln(d̃1(u, v, x, y, rk)!)]

+
M∑

u=1

M∑
v=1

K∑

k=1

[d̃2(u, v, rk)ln(B(u, v))−B(u, v)− ln(d̃2(u, v, rk)!)](3.5)

3.1.2 Finding the expectation. The conditional expectation of the complete

data log-likelihood is found by taking the expectation with respect to the incom-

plete data, the pulse estimate (Pold(x, y, rk)), and the bias estimate (Bold(u, v)). The
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conditional expectation (Q) in general form is shown in Eq. (3.6).

Q =
M∑

x=1

M∑
y=1

M∑
u=1

M∑
v=1

K∑

k=1

[E[d̃1(u, v, x, y, rk)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]

×(ln(
A(x, y)√

2πσ
h(Lu− x, Lv − y)) + ln(e

(rk−r(x,y))2

2σ2 ))− P (x, y, rk)h(Lu− x, Lv − y)

−E[ln(d̃1(u, v, x, y, rk)!)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]]

+
M∑

u=1

M∑
v=1

K∑

k=1

[E[(d̃2(u, v, rk)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]ln(B(u, v))

−B(u, v)− E[(d̃2(u, v, rk)!|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]] (3.6)

The variable Iold is the image produced from the pulse estimate, Eq. (3.7), which

is needed to find each of the individual conditional expectations.

Iold(u, v, rk) =
N∑

x=1

N∑
y=1

Pold(x, y, rk)h(Lu− x, Lv − y) + Bold(u, v) (3.7)

The solution for the individual conditional expectations are shown in Eq. (3.8)

[12].

E[d̃1(u, v, x, y, rk)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)] =

d(u, v, rk)Pold(x, y, rk)h(Lu− x, Lv − y)

Iold(u, v, rk)

E[d̃2(u, v, rk)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)] =
d(u, v, rk)Bold(u, v)

Iold(u, v, rk)
(3.8)
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Substituting the previous result back into Q produces Eq. (3.9).

Q =
M∑

x=1

M∑
y=1

M∑
u=1

M∑
v=1

K∑

k=1

[
d(u, v, rk)Pold(x, y, rk)h(Lu− x, Lv − y)

Iold(u, v, rk)

×(ln(
A(x, y)√

2πσ
h(Lu− x, Lv − y))− (rk − r(x, y))2

2σ2
)

−A(x, y)√
2πσ

e
(rk−r(x,y))2

2σ2 h(Lu− x, Lv − y)

−E[ln(d̃1(u, v, x, y, rk)!)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]]

+
M∑

u=1

M∑
v=1

K∑

k=1

[
d(u, v, rk)Bold(u, v)

Iold(u, v, rk)
ln(B(u, v))

−B(u, v)− E[(d̃2(u, v, rk)!|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]] (3.9)

3.1.3 Maximizing the Expectation. With the conditional expectation found

the next step is to maximize it with respect to the range and the bias. Taking the

derivative of Q with respect to r(x0, y0), then setting the derivative equal to zero

and solving for r(x, y) will maximize the conditional expectation for the range at

each point in the scene. Doing the same with respect to the bias will maximize the

conditional expectation for the bias. The bias and range will be estimated separately.

In order to estimate the range an assumption is made that the pulse always exists

in the range gate. This removes all range dependence from the sum of I(u, v, rk) as

shown in Eq. (3.10). The variable C represents a constant.

M∑
x=1

M∑
y=1

M∑
u=1

M∑
v=1

K∑

k=1

A(x, y)√
2πσ

e
(rk−r(x,y))2

2σ2 h(Lu− x, Lv − y) = C (3.10)

Since the bias portion (second summation group of Eq. (3.9)) of Q does not

depend on r(x, y), its derivative with respect to the range goes to zero. Given this
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property and Eq. (3.10), Q reduces to Eq. (3.11).

Q =
M∑

x=1

M∑
y=1

M∑
u=1

M∑
v=1

K∑

k=1

[
d(u, v, rk)Pold(x, y, rk)h(Lu− x, Lv − y)

Iold(u, v, rk)

×(ln(
A(x, y)√

2πσ
h(Lu− x, Lv − y))− (rk − r(x, y))2

2σ2
)

−C − E[ln(d̃1(u, v, x, y, rk)!)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]] + 0 (3.11)

Taking the derivative of the first piece of Eq. (3.11) with respect to r(x0, y0)

results in Eq. (3.12)

∂

∂(r(x0, y0))
[
d(u, v, rk)Pold(x, y, rk)h(Lu− x, Lv − y)

Iold(u, v, rk)

×(ln(
A(x, y)√

2πσ
h(Lu− x, Lv − y))− (rk − r(x, y))2

2σ2
)] =

d(u, v, rk)Pold(x, y, rk)h(Lu− x, Lv − y)

Iold(u, v, rk)

∂

∂(r(x0, y0))

−(rk − r(x, y))2

2σ2
) =

d(u, v, rk)Pold(x, y, rk)h(Lu− x, Lv − y)

Iold(u, v, rk)

(2rk − 2r(x, y))

2σ2
)

∂(r(x, y))

∂(r(x0, y0))
=

d(u, v, rk)Pold(x, y, rk)h(Lu− x, Lv − y)

Iold(u, v, rk)

(rk − r(x, y))

σ2
)δ(x− x0, y − y0) (3.12)

The derivative of the second piece of Eq. (3.11) is shown to be zero in Eq. (3.13).

This result is due to the conditional expectation of the complete data, given the

incomplete data and old estimates, will not be a function of the new estimates thus

rendering zero dependency on r(x, y).

∂

∂(r(x0, y0))
E[ln(d̃1(u, v, x, y, rk)!)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)] = 0 (3.13)
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Using Eqs. (3.10), (3.12), and (3.13), the general form ∂Q
∂(r(x0,y0))

is shown in

Eq. (3.14).

∂Q

∂(r(x0, y0))
=

M∑
x=1

M∑
y=1

M∑
u=1

M∑
v=1

K∑

k=1

[
d(u, v, rk)

Iold(u, v, rk)
Pold(x, y, rk)h(Lu− x, Lv − y)

×(rk − r(x, y))

σ2
δ(x− x0, y − y0)

]
(3.14)

Applying the sifting property to Eq. (3.14) removes the summations over x and

y and results in the Q that will be maximized (Eq. (3.15)).

∂Q

∂(r(x0, y0))
=

M∑
u=1

M∑
v=1

K∑

k=1

d(u, v, rk)

Iold(u, v, rk)
Pold(x0, y0, rk)h(Lu−x0, Lv−y0)

(rk − r(x0, y0))

σ2

(3.15)

Setting Eq. (3.15) equal to zero results in Eq. (3.16).

0 =
M∑

u=1

M∑
v=1

K∑

k=1

d(u, v, rk)

Iold(u, v, rk)
Pold(x0, y0, rk)h(Lu− x0, Lv − y0)

(rk − r(x0, y0))

σ2
(3.16)

Distributing rk and r(x0, y0) makes Eq. (3.16) easier to manipulate (Eq. (3.17)).

0 =

r(x0, y0)
M∑

u=1

M∑
v=1

K∑

k=1

d(u, v, rk)

Iold(u, v, rk)
Pold(x0, y0, rk)h(Lu− x0, Lv − y0)

−
M∑

u=1

M∑
v=1

K∑

k=1

rk
d(u, v, rk)

Iold(u, v, rk)
Pold(x0, y0, rk)h(Lu− x0, Lv − y0) (3.17)

Moving the terms from one side to the other in Eq. (3.17), then separating the

terms provides a solution, Eq. (3.18), that is iterative and updates r(x0, y0) for each
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iteration.

r(x0, y0) =

∑K
k=1 rkPold(x0, y0, rk)

∑M
u=1

∑M
v=1

d(u,v,rk)
Iold(u,v,rk)

h(Lu− x0, Lv − y0)
∑K

k=1 Pold(x0, y0, rk)
∑M

u=1

∑M
v=1

d(u,v,rk)
Iold(u,v,rk)

h(Lu− x0, Lv − y0)
(3.18)

The same process is used to solve for the bias. The range portion (first summa-

tion group of Eq. (3.9)) of Q does not contain the bias variable and does not depend

on Q, its derivative with respect to B(u0, v0) is zero reducing Q to Eq. (3.19).

Q =
M∑

u=1

M∑
v=1

K∑

k=1

[
d(u, v, rk)Bold(u, v)

Iold(u, v, rk)
ln(B(u, v))

−B(u, v)− E[(d̃2(u, v, rk)!|d(u, v, rk), Pold(x, y, rk), Bold(u, v)]] (3.19)

Taking the partial derivative the first piece of Eq. (3.19) with respect to the

bias, B(u, v), is shown in Eq. (3.20).

∂

∂(B(u0, v0))

d(u, v, rk)Bold(u, v)

Iold(u, v, rk)
ln(B(u, v)) =

d(u, v, rk)Bold(u, v)

Iold(u, v, rk)

∂

∂(B(u0, v0))
ln(B(u, v)) =

d(u, v, rk)Bold(u, v)

Iold(u, v, rk)B(u, v)

∂(B(u, v))

∂(B(u0, v0))
=

Bold(u, v)d(u, v, rk)

Iold(u, v, rk)B(u, v)
δ(u− u0, v − v0) (3.20)

The partial derivative of B(u, v), second piece of Eq. (3.19), results in a Dirac

delta.
∂

∂(B(u0, v0))
B(u, v) = δ(u− u0, v − v0) (3.21)
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The derivative of the last piece of Eq. (3.19) is shown to be zero in Eq. (3.22).

This result is due to the conditional expectation not depending on new estimates.

∂

∂(B(u0, v0))
E[ln(d̃2(u, v, rk)!)|d(u, v, rk), Pold(x, y, rk), Bold(u, v)] = 0 (3.22)

Using Eqs. (3.20), (3.21), and (3.22), the general form of the derivative of Q

with respect to B(u0, v0) becomes Eq. (3.23).

∂Q

∂(B(u0, v0))
=

M∑
u=1

M∑
v=1

K∑

k=1

δ(u− u0, v − v0)

[
Bold(u, v)d(u, v, rk)

Iold(u, v, rk)B(u, v)
− 1

]
(3.23)

Applying the sifting property to Eq. (3.23) results in Eq. (3.24)

∂Q

∂(B(u0, v0))
=

K∑

k=1

Bold(u0, v0)d(u, v, rk)

Iold(u, v, rk)B(u0, v0)
− 1 (3.24)

Setting Eq. (3.23) equal to zero and separating terms results in the direct solu-

tion for estimating the bias, Eq. (3.25). The solution is iterative and updates B(u0, v0)

for each iteration. The solutions for both range and bias are iterative and must be

solved concurrently to estimate each one properly.

B(u0, v0) = Bold(u0, v0)

∑K
k=1

d(u,v,rk)
Iold(u,v,rk)

K
(3.25)

From the equations described in this section, the algorithm begins by estimating

properly sampled 2-D data. The algorithm then uses the 2-D and 3-D data to estimate

both range and bias. The estimates are then used to create new estimates with

each iteration. This provides for improved range and bias estimates every iteration,

ultimately improving the range accuracy of the raw 3-D data.
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3.2 Data Interpolation

Interpolation is a method in which new data points are created from a set of

under sampled data points. Data interpolation can be done in numerous ways, for

the purpose of this paper we will focus on the pixel replication (zero-order), linear

(first-order), and cubic interpolators [8]. An interpolator takes the data given to it

and creates new data to a desired range. In this paper, the interpolator will take a

13-by-13 image and create a 50-by-50 image. Interpolating the data is a relatively

quick process and is a standalone method. These attributes make data interpolation

an attractive method for extracting information from the 3-D LADAR system.

Each interpolator has a single basis equation, which is manipulated at each

higher order. The basis equation is representative of what an interpolator performs

on image i(n,m), an N1-by-M1 under sampled image. Eq. (3.26) shows the basis

equation for interpolating data. The first part of the equation is creating a comb

of the image, icomb, that is sampled at rate L. L is determined by the following

equality, M1L = M . For example, producing a 50-by-50 image from a 25-by-25 image

would dictate L = 2. The comb spreads the under sampled image out to the desired

resolution, placing zeros around each pixel. A sample comb and image pair is shown

in figure 3.1. Figure 1(b) shows how the comb spreads the under sampled image out

to the desired resolution, placing zeros around each pixel. Convoluting the comb with

a filter, g(n,m), produces the interpolated image. The filter type dictates the type of

interpolator being used.

icomb(n2, m2) =

N1∑
n=1

M1∑
m=1

i(n, m)δ(Ln− n2)δ(Lm−m2)

iint(n, m) =
N∑

n2=1

M∑
m2=1

icomb(n2,m2)g(n− n2,m−m2) (3.26)

For the case of the pixel replication interpolator the filter used is a rect that

is L-by-L. This means that the pixel replication interpolator takes the closest pixels
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(a) (b)

Figure 3.1: (a) 32-by-32 sample image. (b) Comb of the sample image on a 128
pixel grid.

and replicates them out to L pixels around that pixel. The linear interpolator uses

a triangle filter that is created by convoluting two L-by-L rect filters. This allows

for the use of another pixel’s information in the area of the interpolated pixel, rather

than just replicating it. Finally, the cubic interpolator uses a piecewise function as

its filter. Eq. (3.27) shows the piecewise function in the x-dimension. The coefficient

a is calculated based on the interpolation size, N -by-M .

g(x) =





(a + 2) |x|3 − (a + 3) |x|2 + 1, 0 ≤ |x| < 1

a |x|3 − 5a |x|2 + 4a, 1 ≤ |x| < 2

0, 2 ≤ |x|

(3.27)

The interpolators only rely on the 3-D LADAR data and they do not take into

account the 2-D LADAR data. Interpolation is not complete itself without a way
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to estimate the range. This research will apply a cross-correlation range estimator

(matched filter) to all the interpolated images. The matched filter uses a cross corre-

lation function shown in Eq. (3.28) [10] and assumes a target is detected. The C(R)

represents the correlation of the range, Dk is the data, Pt[k − 2R/(c∆ t)] is the wave

form. The value R represents a single range in a set of ranges. The range set deter-

mines how fine the range estimates become. The function produces a value for each

range in the set, the range affiliated with the maximum value is the range chosen.

C(R) =
Ns∑

k=1

DkPt[k − 2R/(c∆ t)] (3.28)
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IV. Results and Analysis

This chapter presents the results of applying the methods described in Chapter 3

to the data described in Chapter 2. Section 4.1 details the results found when

all four methods are applied to the simulated data. Section 4.2 discusses the results

of the methods applied to the measured data. The root mean square error (RMSE)

and graphs of the range will represent the results from each method. This analysis

will calculate the RMSE between the target area (true range) and estimated ranges

as shown Eq. (4.1). Rangeest is the estimated range of the reconstruction method and

Rangetruth is the target area described in Chapter 2. The variable M represents the

number of pixels in each dimension on the high resolution grid.

RMSE =

√∑M
x=1

∑M
y=1(Rangeest(x, y)−Rangetruth(x, y))2

M2
(4.1)

4.1 Simulated target results

The first target discussed in Chapter 2 was put through 400 iterations of the pro-

posed algorithm, starting at a flat range. After 400 iterations, the algorithm achieved

a root mean square error of approximately 222 milimeters. Figure 4.1 demonstrates

how fast the update moved to the achieved range RMSE. The number of iterations

where chosen based on the graph shown in figure 4.1, the full convergence of the

algorithm happens at approximately iteration 325.

After estimating the range of the first target with the proposed algorithm, the

Pixel Replication interpolator was used on the data. The Pixel Replication interpo-

lator takes the data and spreads it out from 13-by-13 grid of pixels to 50-by-50 grid.

This interpolator achieved a range RMSE of 333 milimeters. Then the linear interpo-

lator was applied to the data as well. The linear interpolator achieved a range RMSE

of 427 milimeters. The cubic interpolator achieved a range RMSE of 420 milime-

ters. The estimated ranges produced by the interpolators and proposed algorithm are

shown in figure 4.2. Figure 4.2 shows the range portrayed on to a 3-D grid. Table
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Figure 4.1: Range RMSE vs iterations after applying the proposed algorithm to
the first target. This graph shows the RMSE reducing drastically between zero and
fifty iterations. Due to the steady tail of the data, more than 400 iterations of the
algorithm would only make minor reductions in RMSE of the range.

4.1 shows the comparison of all methods of improving range estimation for the first

target.

The proposed algorithm then used to estimate the range to the second target

starting from a flat range. Due to the beam shape the error was taken within a 36-

by-28 box starting from pixel location (10, 14). The number of iterations completed

by the proposed algorithm was 800 and resulted in a RMSE of 132 milimeters. Figure

4.3 shows the RMSE as a function of iteration count.

Interpolators were then used to estimate the range of the second target. The

pixel replication interpolator achieved a range RMSE of 417 milimeters. The lin-

ear interpolator achieved a range RMSE of 451 milimeters. The cubic interpolator
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Figure 4.2: (a) 50-by-50 range truth of the first target. First target 50-by-50
estimated ranges: (b) Pixel replication estimated range. (c) Linear estimated range.
(d) Cubic estimated range. (e) EM algorithm’s estimated range.
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Table 4.1: Method comparison for the first target
Method Range RMSE
Proposed Algorithm 222 mm
Pixel Replication 333 mm
Linear Interpolation 427 mm
Cubic Interpolation 420 mm

achieved a range RMSE of 445 milimeters. Due to the high error of each interpolator’s

estimated range, the visual result of the range estimates will be shown on a 50-by-50

2-D range map and are shown in figure 4.4. The color bar in each subfigure represents

range in meters. Table 4.2 shows the comparison of all methods of improving range

estimation for the second target.

Table 4.2: Method comparison for the second target
Method Range RMSE
Proposed Algorithm 132 mm
Pixel Replication 417 mm
Linear Interpolation 451 mm
Cubic Interpolation 445 mm

4.2 Measured data results

The final results of this research were obtained by applying the methods dis-

cussed in Chapter 3 to the downsampled (16-by-16) measured data described in Chap-

ter 2. The results of the methods will be shown and compared on a 40-by-40 grid in

order to diminish the edge noise seen in figure 2.7. The algorithm ran for 130 itera-

tions and resulted in a range RMSE of 721 milimeters. The RMSE versus iteration

number is shown in figure 4.5.

The interpolators were then applied to the downsampled measured data. The

pixel replication interpolator achieved a range RMSE of 779 milimeters. The linear

interpolator resulted in a range RMSE of 787 milimeters. The cubic interpolator

achieved a range RMSE of 788 milimeters. The estimated range graphs of the inter-
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Figure 4.3: Range RMSE vs iterations after applying the proposed algorithm to the
second target. This graph shows a great reduction in RMSE happening between zero
and approximately seventy-five. The algorithm reached approximate convergence at
a slower rate for this target as compared to the first target.

polators and proposed algorithm are shown in figure 4.6. The comparison of all the

methods applied to the measured data is shown in table 4.3.
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Figure 4.4: (a) 50-by-50 2-D range truth of the second target. Second target 50-by-
50 2-D estimated ranges: (b) Pixel replication estimated range. (c) Linear estimated
range. (d) Cubic estimated range. (e) EM algorithm’s estimated range.
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Figure 4.5: Range RMSE vs iterations after applying the proposed algorithm to
the measured data. The graph shows the most RMSE reduction occurring between
zero and forty iterations. The algorithm reaches convergence after approximately the
hundredth iteration.

Table 4.3: Method comparison for the measured data
Method Range RMSE
Proposed Algorithm 721 mm
Pixel Replication 779 mm
Linear Interpolation 787 mm
Cubic Interpolation 788 mm
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Figure 4.6: (a) 40-by-40 3-D range truth of the measured data. Measured data
40-by-40 3-D estimated ranges: (b) Pixel replication estimated range. (c) Linear
estimated range. (d) Cubic estimated range. (e) EM algorithm’s estimated range.
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V. Conclusions and Future Work

This section details conclusions that were drawn from the results of this research.

Future research potential is also presented here.

5.1 Conclusions

This research proves that fusion of 2-D and 3-D LADAR images through EM

increases the range accuracy of 3-D images. The combination of 2-D high spatial

resolution images and 3-D FLASH LADAR images produces a new LADAR system

with improved resolution over current realizable FLASH 3-D sensors. The algorithm’s

direct solution for the range and bias allows it to be applied to both measured and

simulated data, as proved in this research.

Several conditions were used to create three data sets for this research. The

results for each data set show the EM solution’s range estimation is a vast improve-

ment over both no-processing and interpolation. This case is made clearer with the

results shown in the simulated multi-building target (second target), in which the

algorithm makes a sixty-five percent improvement over the best interpolation results.

The EM solution was created under the assumption that the 2-D and 3-D data was

statistically independent, while this was the case for the simulated data it was not

for the measured data. In most cases when using two cameras the data and noise

will be statistically independent. Given this finding the EM algorithm still was an

improvement over interpolation for the measured data. If the data was statistically

independent the proposed algorithm would have done better. While the EM solution

may be more computationally intensive and require a second 2-D camera, the range

accuracy would be a good trade-off given the inaccuracy of interpolation.

The one shot capability the fusion of 2-D and 3-D FLASH LADAR images

provides would work as fast or faster than microscanning LADAR systems. Again,

LADAR microscanning can involve latency due to the fact of the numerous cubes it

needs. The algorithm for fusing 2-D and 3-D LADAR images opens up the possibility

of new LADAR capabilities.
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5.2 Future Work

The algorithm proved successful using registered 2-D and 3-D images. Future

work involving a registration method built into the algorithm would further develop

this type of system as a stand alone system that includes a 2-D camera and 3-D

LADAR system. registration is not the only issue involved with using two different

cameras. In most cases the cameras do not possess the same sampling, as well as

the images from both cameras are uncorrelated. Some type of calibration as well as

statistical analysis of the systems would make the algorithm work better and make a

stand alone system.

As evidenced in the measured data, noise reduction in 3-D LADAR systems

would also make this algorithm work more effectively in range estimation. The mea-

sured data was very noisy and contained numerous spikes that if suppressed would

allow the algorithm to perform better. Estimating noise may be a possibility to reduce

noise in the images. Performing gain variation compensation and enacting a photon

counting algorithm would also improve the algorithm with respect to the measured

data.

The algorithm only considered a fixed OTF, using blind deconvolution to esti-

mate the OTF would only bolster the performance of the algorithm. The work only

considered range and bias estimation, the more estimation built into it the better

range accuracy the system would be able to achieve.

Future work involving a comparison of the algorithm to microscanning would

prove what the best method of processing LADAR images would be. The comparison

should take into account the time it takes to process imagery and range accuracy of

each method. Using measured data from LADAR cameras would be a fairer compar-

ison of the two processing types.
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