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Abstract 

 

The advancement in small unmanned aerial vehicle (SUAV) technology has 

brought a new revolution in the military domain. Their uses have become more 

synonymous with intelligence, surveillance, and reconnaissance missions. Concerns over 

their flight test safety and accountability have been addressed in multiple policies to 

mitigate mishaps and increase proper accountability. However, current DoD and FAA 

mandated regulations and policies concerning UAV flight tests are sometimes considered 

slow and time-consuming, which may lead to delays in UAV research and development.  

This study explores the quantitative and qualitative measure of benefits associated 

with an abbreviated flight test process for SUAVs. Specifically, it examines the current 

agreement between two major USAF research centers regarding the SUAV flight test 

approval process. This research utilized high-level multidisciplinary approaches and 

techniques including qualitative cost-benefit analysis, interviews, value stream mapping 

(VSM) analysis, and heuristic risk analysis to evaluate the current-state process. The 

findings conclude that there is a slight economic cost and schedule savings in an 

abbreviated process. Additionally, this research finds no correlation between SUAV 

flight mishaps and system maturity. This research proposes using a streamlined process 

for additional safety reviews to eliminate non-value added process steps considered 

unnecessary due to the nature of the SUAV complexity. Furthermore, this study 

recommends using a decision rule matrix based on the total cost of the SUAV and its 

weight and energy at impact for choosing an abbreviated flight test safety review process. 
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UNMANNED AERIAL VEHICLE FLIGHT TEST APPROVAL PROCESS AND ITS 

IMPLICATIONS: A METHODOLOGIAL APPROACH TO CAPTURE AND 

EVALUATE HIDDEN COSTS AND VALUE IN THE OVERALL PROCESS 

I.  Introduction 

“For once you have tasted flight, you will walk the earth with your eyes tuned skywards, 
for there you have been and there you will long to return.” – Leonardo da Vinci 

 

 
Historically, humans have approached flight test process and evaluation with 

scientific methods since the early days of aviation. Mankind has always been fascinated 

with flight and the ability to control the sky. Examples range from early attempts such as 

Greek mythology’s Icarus’ wings to real scientific approaches like Leonardo da Vinci’s 

ornithopter. By the late 19th century, the race was on to build the world’s first powered 

and controlled flying machine. Numerous flight designs and tests were done by scientists, 

engineers, and flight enthusiasts competing for the title of the first to sustain heavier-

than-air human flight; and in the process, all of them took some form of risks, including 

those to their own safety. In 1903, brothers Orville and Wilbur Wright took their first 

successful human-controlled airplane to the air in that historic twelve-second flight and 

created a new chapter in human innovation. There is no doubt that the Wright brothers 

had tested various methods for their conceptual flight and preliminary designs before they 

could control the craft with three-axis control and the correct airfoil design. These 

pioneers of aviation who experimented with gliders and biplanes laid the groundwork for 

later generations to build more sophisticated advancements in aerodynamics and engine 

technology that will power them to new frontiers. 
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 Fast forward a hundred years later, human ingenuity and breakthroughs in 

machinery have enabled mankind to travel to space and control the air from the ground a 

thousand miles away. The risks and safety involved in experimenting with new 

technology have always been a challenge to those who flight tested them; those who tried 

to experiment with aerial control will often find themselves confronted with failures that 

may result in putting their lives in harm’s way. Despite the risks associated with flight 

tests, many organizations and government centers continue to set improvement targets 

with different purposes to control the sky using various methods including the newest 

marvel of unmanned aerial vehicles (UAV). 

1.1  USAF Flight Test Process 

 Different sources and organizations reference their UAVs in different ways. The 

nomenclature for an unmanned aerial vehicle is not standard across the industry; some 

have termed these vehicles as remotely piloted vehicles (RPV), or remotely operated 

aircraft (ROA), or unmanned aerial systems (UAS). For the purpose of this paper, the 

term unmanned aerial vehicle (UAV) will be used to indicate any aircraft capable of 

flight without a human operator on board. Small UAVs (SUAV) specify vehicles that are 

measured a few feet across in length and wingspan, and these are typically found in 

surveillance, urban terrain operation, communications relay, and reconnaissance.  

Recent development and the ease of access to global positioning systems (GPS) 

and remote controlled instruments have led to an increase in SUAV research and 

development (R&D) in the United States (U.S.) and the world in general. It is now 

possible for a radio-controlled aircraft builder to manufacture SUAVs based on user 
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requirements and needs. The acceptable low risk and low cost in SUAV systems to 

operate in the battlefield have gained the attention of the military, causing it to engage in 

more R&D. Acceptable low risks and low costs are generally defined as the likelihood of 

an event whose probability of occurrence is subjected to an acceptable risk at a minimal 

loss but perceived as having greater benefits. The rapid pace of SUAV manufacturing 

processes has enabled many organizations and the military to conduct a different means 

of research that may prove critical to national defense and security by utilizing SUAVs to 

perform various missions, such as border patrol; intelligence, surveillance, and 

reconnaissance (ISR); and autonomous surveillance and patrol tasks on the battlefield. 

Presently, flight approval processes for SUAVs in the U.S. national airspace are 

mandatory in order to satisfy flight requirements as regulated by the Federal Aviation 

Administration (FAA). Routinely, this process can sometimes take a few weeks to a few 

months (FAA, 2011). 

 There is an abundance of literature that describes the flight test approval process 

for larger and manned aircraft, including those from the U.S. Air Force, U.S. Navy, FAA, 

and other national test ranges (Ward, 2006; Ingham, 2006; De Garmo, 2004). Similar to 

manned aircraft, the need to increase safety, reliability, and accountability on UAV 

performance necessitates flight test approval processes, as these SUAVs are becoming 

more autonomous. The purpose of a flight test approval process is to bring in multiple 

experts from different disciplines to strengthen the shared safety and technical 

responsibility between the approving authority and the operators. It is aimed at improving 

standards in aviation safety and technical feasibility of the vehicle. Normally, a flight test 

or ground test approval process accomplishes two main objectives: (1) finding and fixing 
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any identified aircraft design problems in the test plan and safety plan and (2) addressing, 

verifying, and documenting the flight test authority and the responsibility of the people 

involved in the process according to applicable standards and regulations (Ward et al., 

2006). These two main objectives bring the flight test process to a minimal level of 

acceptable risk, which is the lowest risk possible after all hazards have been eliminated or 

mitigated (Ward et al., 2006).  

1.2  Problem Statement 

 Currently, numerous safety requirements as well as lessons learned from previous 

tests have resulted in improved UAV design, engineering, and maintenance. Most flight 

test techniques and procedures for SUAVs are rather simple due to their designs and low 

cost and maintenance. However, regardless of how simple or complex these SUAVs can 

be, they are normally treated the same as manned aircraft when it comes to the flight test 

approval process in the USAF, and also by the FAA. There are also challenges created by 

flight mishaps that require additional time and resources to approve the “return to flight” 

of the mishap UAV. A return to flight approval is required once a vehicle is involved in a 

crash or mishap that results in property damage or injuries. The current UAV flight test 

approval process assumes the same resources and manpower are available that the 

majority of manned and larger aircraft projects have. Given the design and developmental 

scope of SUAVs and their lack of sophisticated hardware, it is hypothesized that the 

predominant flight test approval process for manned and larger aircraft may not be 

suitable for SUAVs.  
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 To improve the process for SUAV flight tests, a recommendation is needed to 

determine the overarching applicable standards and regulations for a SUAV flight 

approval process. This new recommendation should sufficiently increase the planning 

and development process for SUAVs that may be targeted for rapid product development 

for the warfighters, while adhering to safety and flight test regulations and risk 

management.  

1.3  Research Objectives 

In narrowing the scope of this study, the main objectives are to establish 

quantitative and qualitative measures of benefit for an abbreviated flight test process for 

SUAVs relative to its resource and schedule costs versus using the flight test process used 

primarily for manned and larger aircraft. In particular, the research will focus on the sizes 

and costs of the UAV as a way to determine the appropriate recommendation for a formal 

flight approval process. Additionally, this research will also determine whether or not 

SUAV flight tests should adhere to current standards and regulations based on their 

simplicity, cost, and urgency. Finally, this research will explore the benefits and risks 

involved when not using the current process as set out by the USAF.  

1.4  Assumptions and Limitations 

 Several significant assumptions were required for the comparison of the flight test 

approval process between SUAVs and larger manned aircraft to be feasible and practical. 

One primary assumption is the work value in resources and manpower added to each 

program will be different from each other; particularly, SUAV programs do not require as 

many resources and manpower as those of larger manned aircraft programs. Another 
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assumption is the system complexity and safety guidelines of both types of vehicles are 

assumed to be different due to the nature of manned versus unmanned aircraft (i.e., 

manned vehicles are more complex and require a higher standard of safety guidelines 

than unmanned SUAVs). Lastly, the risk assessment and management from both classes 

of vehicles are also assumed to be different, that is, SUAVs are sometimes expendable 

because of their low manufacturing and operating costs. 

 There are more than a few flight test processes nationwide (Ward et al., 2006), 

each with different approving authority and policies to make flight tests happen. Since 

this is exploratory research, this research will use the flight test process being utilized at 

Edwards Air Force Base (AFB) to make assessments and recommendations on the flight 

test approval process and its implications associated with SUAVs. It is recommended that 

future follow-on research should seek to validate and generalize this approach and 

methodology. 

1.5  Thesis Overview 

 Chapter 2: Literature Review, will examine the background in flight test approval 

process and its implementation, as well as the literature on the current flight test process 

and issues with traditional flight test methods for SUAVs. Chapter 3: Methodology, will 

discuss the methodology in collecting data and how each step in the process will be 

analyzed, as well as the scope of the projects involved. Chapter 4: Results and Analysis, 

provides analysis and results of this research. And finally, Chapter 5: Discussions and 

Conclusions, will summarize this research and present findings and recommendations for 

the flight testing SUAVs, along with recommendations for future research. 
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II.  Literature Review 

 

The purpose of this chapter is to understand the current literature on the small 

unmanned aerial vehicle (SUAV) flight test approval processes. This chapter starts with 

the history of flight test requirements and reviews the Memorandum of Agreement 

(MOA) between the Air Force Research Laboratory (AFRL) and the Air Force Flight 

Test Center (AFFTC) covering flight operations oversight of AFRL flight test programs 

and the authority and responsibilities from both organizations. The importance of flight 

tests will be discussed with factors affecting flight test methods. A short overview of the 

large potential military market for SUAVs will be presented. Lastly, a brief description of 

various popular known flight certification processes, including those from the FAA and 

other international agencies, will be discussed.  

2.1  MOA between AFRL and AFFTC 

 Before AFFTC involvement in AFRL’s flight test process, AFRL had been 

conducting a series of manned and unmanned flight tests ranging in various sizes from 

desk-sized UAVs to larger manned cargo aircraft. However, after a series mishaps and 

accidents (AFRL T&E Office, 2011), the Air Force Materiel Command (AFMC) directed 

that a rated Operations Group Commander provide oversight for all flying activities 

involving military, government civilian, or contractor flight operations (AFMC/A3, 

2006). By AFMC direction, the 412th Operations Group (OG) was identified as the Flight 

Operation Authority (FOA) for all AFRL flight test programs, except for the AFRL 

Munitions Directorate (AFRL/RW) for which the 46th OG (Eglin AFB) provides this 
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oversight. Edwards AFB is the home of AFFTC, including the 412th OG, and is one of 

the major flight test centers in the U.S. with the expertise to support and provide guidance 

to program managers (PM) at AFRL before approving any flight operations. The 

requirement for the 412th OG involvement in AFRL Test and Evaluation (T&E) is 

formalized in the MOA that was established in May of 2006 (2006-06-06MA). The MOA 

states: 

 
“The AFFTC has responsibility for the safe and effective conduct of flight 
operations for AFRL research programs requiring flight activities. The 
AFMC/A3 defers OPCON to the 412th Operations Group Commander 
(OG/CC) for AFRL research programs involving military, government 
civilian or contractor flight operations. To avoid duplicate reviews, 
inspections or evaluations, an integrated team approach for conducting 
program flight operation oversight will be used.” 

 
 
Deferring operational control (OPCON) to AFFTC for all AFRL flight operations 

includes a variety of programs ranging from small remote controlled (RC) aircraft, such 

as micro sensor test-beds, to full-scaled aircraft with advanced composite structures. The 

intent of the MOA is to have experienced flight testers review AFRL programs by 

providing insight and involvement on flight test programs by test pilots and flight test 

engineers. The personnel who review AFRL test plans are usually those who have 

experience with flight operations and also those who have graduated from the USAF Test 

Pilot School, which is also at Edwards AFB.  

There are certain requirements and procedures that AFRL and AFFTC must 

collaborate together on to have a flight test program approved for flight status. These 

responsibilities include AFRL providing monthly summaries for flight activities and 

notes, as well as UAV airworthiness from their safety review boards (SRB). Furthermore, 
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AFRL conducts technical review boards (TRB) and SRB in addition to documenting all 

flight authorizations from AFRL and AFFTC. AFFTC responsibilities include reviewing 

and approving test plans and safety plans in accordance with Federal Aviation 

Regulations (FAR), Air Force Instructions (AFI), and AFMC and AFFTC supplements. 

In the case of a flight mishap, AFFTC may provide assistance to the return to flight board 

and assist in technical and safety reviews (AFMC/A3, 2006). More information on the 

MOA between AFRL and AFFTC can be found in Appendix A. 

Normally, a flight test process begins at the AFRL T&E Office, as shown in 

Figure 2.1. The AFRL T&E Office accepts a flight test program from one of its 

directorates and begins coordinating within AFRL. Following AFRL SRBs and TRBs, 

the test package is submitted to the 412th OG for review. In almost all cases, the 412th OG 

provides comments and questions concerning flight safety and operational 

responsibilities and policies back to AFRL T&E Office for action. The review package 

can include a test plan, safety plan, crew qualifications, results from AFRL SBR, and 

flight authorizations. Comments and review procedures are usually handled over the 

phone or through email due to the two geographically separated locations. This overall 

process may take from three to six weeks for coordination to complete. Flight programs 

that are assessed as medium to high risks may take longer due to higher safety and 

technical requirements addressed by FAR, AFI, and AFFTC regulations.  
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Figure 2.1: AFRL and AFFTC Flight Test Approval Process 
(445th Flight Test Squadron, 2008) 

 
 

In addition to safety reviews from both AFRL and AFFTC, the PM is required to 

submit a vehicle airworthiness application for flight operations in accordance with AFI 

62-6 if the vehicle is to be flown outside restricted airspace. The airworthiness 

determination is independent from the PM’s chain of execution. The Technical 

Airworthiness Authority (TAA) is the authority to make these determinations for safe 

flight operations and approve all certification basis documents and issue Military Type 

Certificates (MTC) that prove the aircraft system type is in full compliance with the FAR. 

 
2.1.1  Risk Assessment and Test Approval Authority 

 As determined by the MOA presented earlier, the Test Approving Authority 

(TAA) from AFRL approves AFRL flight test programs while AFFTC approves the 

AFRL programs through the FOA. The AFI and Air Force Flight Test Center Instructions 

(AFFTCI) for flight tests mandate a higher authority review and approval for any 
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increase in risks. Per AFFTCI 91-5 and AFI 99-103, the signature authorities for low, 

medium, and high risk test plans are detailed in Table 2.1.  

 
Table 2.1: AFFTC Signature Authority 

 (AFFTCI 91-5 AFFTC Test Safety Review Process) 

ORGANIZATIONAL 
LEVEL 

LOW RISK MEDIUM 
RISK 

HIGH RISK 

Operations Group 
Commander (OG/CC) 
or equivalent 

Approve Coordinate Coordinate 

Test Wing Commander 
(TW/CC) or equivalent 

Information Approve Coordinate 

AFFTC Commander 
(AFFTC/CC) 

Information Information Approve 

 

Low risk test plans are approved by the 412th OG Commander (412 OG/CC) and 

the owning AFRL Division Chief or their deputies before the start of any flight 

operations. Medium risk test plans are jointly approved by the 412th Test Wing 

Commander (412 TW/CC) and the owning AFRL Technical Directorate Director. High 

risk test plans are jointly approved by the AFFTC Commander (AFFTC/CC) and the 

AFRL Commander (AFRL/CC). All coordination comments between AFFTC and AFRL 

must be resolved before a final approval for test execution. To avoid any duplicate 

reviews, inspections, or evaluations by both organizations, an integrated test team 

approach is used for conducting flight operations oversight. 

 
2.1.2  Performance Gaps  

 Although instructions were provided by the AFRL T&E Office PMs on 

procedural methods to conduct flight tests and flight approval process, most of the test 

plans and safety plans are deemed inadequate by the AFRL T&E Office, which can be 
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traced to the lack of flight test experience and details in the preparation of test plans. 

Additional problems are caused because the majority of the PMs never sent initial 

notifications of pending tests to the AFRL T&E office. In 2010, over 40 test plans were 

submitted from different directorates to the AFRL T&E office, 90% of which were 

deemed low risk status, but over 50% of the test plans submitted for coordination were 

only given a three-week notice in a process that normally requires six months of lead 

time (AFRL T&E Office, 2011).  

 Previous research efforts conducted by Homan, Parker, Wirthlin, and Pignatiello 

(2011) found that the number of test plans submitted to AFFTC creates a potential major 

work bottleneck at the FOA at Edwards AFB, who is also responsible for nine other local 

test organizations. Moreover, these local flight tests are the FOA’s main duties at 

Edwards AFB, and they do usually take precedence over approving AFRL flight test 

programs. Another major problem is the workload and how it flows through the AFRL 

approval process, thus further delaying the flow of the test plans. As seen in Figure 2.2, 

members at the AFRL T&E Office handle numerous test plans per year submitted from 

dozens of PMs from different AFRL directorates. These test plans are sometimes written 

in non-standardized formats and are usually submitted late. This tardiness in most of the 

test plans delays the AFRL T&E Office reviewing the test plans and hampers 

coordinating with the members at AFFTC.  
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Figure 2.2: AFRL and AFFTC Flight Approval Performance Analysis 
(Modified from Homan et al., 2011) 

 
 In the case of a mishap, the return-to-flight process also uses the same test 

approval process and is usually handled by the same members approving the original test 

plans. Upon learning of a mishap, the AFRL T&E Office and the test team are required to 

notify AFFTC of the mishap. To mitigate further risks, the test team is required to stop all 

tests and file a report on the mishap, which takes more time and effort away from any 

other on-going coordination with the AFRL T&E Office and AFFTC. The reporting 

process begins when the mishap investigation is initiated by an integrated test team from 

both AFRL and the test team. AFRL holds all accountability and investigation 

responsibilities during the mishap. The 412th OG is the ground and return-to-fly approval 

authority for mishaps that are considered Class A or Class B, which include permanent, 

partial or total disability or property damage of $500,000 or more (AFMC/A3, 2006, 

AFRLM 99-103).  
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2.1.3  Improvement Initiatives  

 The performance gaps and issues presented earlier reveal a need for change in the 

process, manpower, and resources for management and improvement. Collectively, there 

is room for improvement on both sides of the process. Any new PM to the AFRL flight 

test process would notice the work burden carried by the AFRL T&E Office; yet, there is 

still another side to the issue, which is the work of approval authority at AFFTC. The 

FOA at AFFTC is often times regarded as the single chokepoint and sometimes blamed 

for the failure to deliver on-time approval of flight dates (Homan et al., 2011). Although 

AFFTC’s main concern for AFRL flight test programs is the safe conduct of flight tests 

in accordance with applicable AFFTC, FAA, and USAF instructions and their 

supplements, their main duty lies with nine other local flight test organizations or 

squadrons (Homan et al., 2011). Therefore, any quick reviews from AFFTC may 

jeopardize the safety of the program.   

Many discussions for improvements and exchange initiatives have been raised by 

both sides to speed up the process, but few have come to full fruition (AFRL T&E Office, 

2011). One of the initiatives that started from both sides of the process was an agreement 

to draft an amendment to the original MOA to eliminate AFFTC oversight on low risk 

programs and allow AFRL the authority to approve its own flight test programs without 

full AFFTC involvement (AFMC/A3, 2006). This initiative was funneled up to 

AFMC/A3 asking for AFRL to assume full approval authority and responsibility for all 

low risk programs, with the 412th OG continuing to provide oversight for medium and 

high risk programs as defined in the MOA. However, the initiative was quickly rejected 
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at AFMC/A3 after weighing the risks and benefits of having no Operations Group 

Commander oversight of an AFRL flight test program (HQ AFMC/A3F). 

2.2  The Importance of Flight Tests 

 Flight testing in both piloted and unmanned aerospace vehicles is an ongoing 

activity that pushes the limits of aeronautical and aerospace knowledge. The primary 

purpose of flight testing, according to the AGARD Flight Test Manual (Perkins et al., 

1959), lists three fundamental reasons for flight testing:  

 
1. To determine the actual characteristics of the machine. 
2. To provide developmental information. 
3. To obtain research information. 
 
 

Although the reasons listed above do not specifically indicate that modern 

aerospace vehicles require teams of engineers and scientists, whether piloted or 

unmanned; they do, however, provide the classical reasons for conducing flight tests. 

From this perspective, the true purpose of flight testing is to reduce future uncertainties in 

the design and test processes before going to the operational stages and airworthiness 

certifications. Flight testing also provides practical experiences to the operators and 

involves interaction with other systems that increases interoperability (Williams & 

Harris, 2002).  

Recent advances in technologies and new procedures may have been successfully 

integrated into the stages of aerospace development, but basic flight tests are required to 

provide credibility, and these must be proven in the flight test environment including 

piloted aircraft and UAVs. Additionally, the involvement of humans in UAV missions in 
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flight tests ensures that the total UAV system functions correctly. Flight tests and 

evaluations must also determine the suitability of the UAV system for use by the end 

users, especially the operators and maintainers (Williams & Harris, 2002).  

Historically, military systems have relied heavily on prototypes of airplanes to 

provide valuable predictions for development efforts. Since the early 1970s, the YF-22 

and YF-23, the YF-16 and YF-17, the YA-9 and YA-10, and the X-32 and X-35 efforts 

were all head-to-head flight test comparisons of competing prototypes (Ward et al., 

2006). Prototyping does not always lead to production, but may instead lead to further 

development of an existing design. Subsystems technology must also be proven in the 

harsh flight environment (Ward et al., 2006). These subsystems include radar, 

navigational systems, flight management systems, integrated displays, flight control 

system, communication systems, etc.  

According to the UAV Task Force Final Report (2004), unlike manned aircraft 

which are integrated by a network communication with air traffic control (ATC), flight 

management, and flight operation from various flight control operators, UAVs are 

dependent on a network of remote systems and subsystems to make flight operations 

possible. It is for this reason that testing and evaluation needs to be executed on the entire 

system of the UAV and not on the vehicle alone. This could raise the magnitude of 

testing a relatively uncomplicated SUAV to that of testing a highly complex integrated 

system (Williams & Harris, 2002).  
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2.3  Factors in Flight Testing 

 It takes thousands of man-hours and resources to build a new aircraft, but to get 

certification to be airworthy for flights, every part of an aircraft has to meet standards set 

out by the military and certifications required from the FAA. Testing a flight vehicle is a 

complex process. It requires careful planning and measures of completeness and accuracy 

in the data to be safe, within budget, and on time. In any form of tests, the most 

significant cost for any program is the cost of safety. Therefore, almost all policies or 

redundancies address safety concerns throughout the planning and conduct of any series 

of flight tests. Ward, et al. (2006) discus the three primary factors in the test planning 

process as the dominant concerns for all PMs and testers alike. 

 
2.3.1  Safety 

 Every test carries some element of risk, whether it is a low, medium, or high risk 

of a new prototype or determining the performance of a new piece of software on an 

aircraft system. Risk elimination is a responsibility carried by all who are involved in 

flight testing. Almost all flight test centers endorse a checklist approach toward safety 

concerns based on the culmination of past experience and what seems to be the best 

methodology in risk management. There is no single way to manage risk in engineering 

processes; however, many flight test organizations (both government and industry) use a 

standard set of procedures common to flight tests to manage risks. The following 

summary is based on the AFFTC and NASA Procedures and Guidelines on T&E control 

and conduct of risk assessment and risk mitigation (Ward et al., 2006). Most of the risk 

management process includes the following steps:  
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1. Hazard definition 
2. Cause identification / Risk assessment 
3. Risk mitigation 
4. Emergency response 

 
 

Test specific hazards are those that arise as a direct consequence of the test 

activity. This step explores some of the “what if” questions that might increase the 

probability of the hazard event occurring (Ward et al., 2006). Cause identification lists 

the likelihood of occurrence ranging from improbable to frequent that the cause should 

occur at least once. The severity of consequence of the cause ranges from negligible to 

catastrophic, which includes injury and death. Table 2.2 shows an example of a matrix of 

the hazard probability and its severity category. 

 
Table 2.2: Example Risk Assessment Matrix 

(AFFTCI 91-5 AFFTC Test Safety Review Process) 
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Risk mitigation is the process by which risks are reduced, moving them down and 

to the right in the risk assessment matrix (Ward et al., 2006). According to Ward et al. 

(2006), reduction in the severity level usually requires specific hardware mitigations, 

which are modifications to hardware to enhance the test safety; other reductions in the 

severity level are procedural mitigations, which are intended to decrease the risk and the 

likelihood of occurrence. Finally, every hazard analysis should include a procedural 

response or corrective actions and some planning to address a mishap should it occur.  

 
2.3.2  Cost 

 The cost of flight testing can range from tens of thousands to millions of dollars 

depending on the scale and scope of each test. It is therefore up to the engineers and PMs 

to consider the cost of each test to be conducted and analyzed whether the test is 

manageable, and most importantly, why the test should be done. While this research does 

not specifically focus on the factors of cost and the efficiencies of cost control and 

visibility, it does, however, weigh the cost benefit and risk of not having SUAVs go 

through the formal flight test approval process that larger manned aircraft do in the 

USAF. 

Support for flight tests should be kept as simple as possible and consistent with 

the risk and complexity of the test. Sometimes, flight test support can be as simple as a 

flight mechanic on the ground servicing the aircraft and as complex as linked telemetry 

and continuous radio communication with all aircraft (Ward et al., 2006). Ignoring the 

technical expertise on instrumentation can lead to incorrect data and retest, which would 

add more cost to future tests. Finally, every second spent in the air must be used 
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productively. PMs should keep a focus on combining series of tests together as often as 

possible to reduce fuel costs. Productive flying time should be used wisely but also 

provide sufficient time to check for adequate data collection and test parameters (Ward et 

al., 2006).  

Costs may increase if advanced instrumentation is involved. A SUAV may have 

low manufacturing cost and is replaceable if damaged, but the sensor payload attached to 

the SUAV may cost even greater than the SUAV itself. This huge gap in the costs 

between the carrier and the payload is one of the challenges in the flight test community, 

and SUAV regulators have yet to define a definite risk analysis to the payload should the 

UAV experience a flight mishap. 

 
2.3.3  Schedule 

Time is money. Naturally, nearly all flight test programs have time and costs 

among their prime targets or objectives. One of the biggest challenges PMs must face is 

meeting the scheduled deadline. Flight certification and approvals usually take a while to 

get approved (DoD OSD, 2009), so it is wise to plan ahead and schedule many months in 

advance before any actual test is being done. A schedule slip can force an entire program 

to be up for review or face cancellation. When time and costs are measured, performance 

may be lost due to constraints in the cost and schedule. However, for other projects such 

as life critical systems, quality in the performance would be the overriding criteria for 

determining the value of the project (Ward et al., 2006). A major factor in meeting the 

test schedule is how many test vehicles are allocated to the flight test program. Increasing 
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the number of flights or the number of test vehicles may alleviate a schedule problem, but 

it may not be the answer when costs are at a limit.  

2.4  The Military Market 

Recently, a market study released by Teal Group Corporation, an aerospace and 

defense market analysis company, estimates that UAV spending will almost double over 

the next decade from current worldwide UAV expenditures of $5.9 billion annually to 

$12 billion, of which the U.S. will account for 77% of the worldwide R&D and T&E 

spending on technology and about 69% on procurement (Teal Group Coorporation, 

2009). Figure 2.3 shows that the U.S. will dwarf the rest of the world in UAV R&D 

technology and procurement in the years ahead, followed by European and Asian-Pacific 

countries.  

 

 

Figure 2.3: Worldwide UAV Forecast 
(Teal Group Corporation, COTS Journal Online, 2011) 
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Today, over 30 countries are investing and developing sophisticated UAVs for 

multiple purposes, including border patrol, global navigation, agricultural spraying, and 

planting operations (De Garmo, 2004). The most significant part of the U.S. R&D and 

procurement spending will be for the interests of the U.S. military. According to the 

Center for Advanced Aviation System Development (CAASD), since the 1950s, the U.S. 

military has spent more than $25 billion on UAV development. However, it has had 

difficulty in setting priorities, determining missions, and developing UAV standards, 

which has led to a number of programs being repeatedly modified, replaced, or cancelled 

(De Garmo, 2004). Despite the difficulty in setting UAV standards, the U.S. DoD is 

committed to setting the pace for UAV funding, research, and applications. In the last ten 

years alone, the U.S. military has increased over ten-fold the annual funding for UAVs, 

as shown in Figure 2.4. This figure is expected to keep rising, eclipsing robotic systems 

among the DoD’s top procurement priorities (Sully, 2004).  
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Figure 2.4: DoD Annual Funding Profiles for UAVs 
(De Garmo, 2004) 

2.5  Regulatory Requirements for SUAVs 

With a handheld GPS and a keen interest in aerodynamics, hobbyists and infantry 

alike are becoming attracted to SUAVs. SUAVs, normally powered by small electric or 

gas turbine engines, are often considered a subclass of UAVs. These SUAVs are 

becoming increasingly popular due to their sizes and simplicity in data fielding and 

operation. Traditionally, UAVs are primarily used by the military, but demands for UAV 

use have expanded to commercial and other governmental uses, which drives a 

considerable need for UAV flight regulations and operational requirements. However, 

because of the lack of airspace regulations and airworthiness and safety requirements, 
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access to UAV applications still present a major barrier and challenges to other markets 

other than the military (De Garmo, 2004).  

An airworthiness certificate is an FAA document which grants authorization to 

operate an aircraft in flight in compliance with the approved certification basis (FAA 

Website, 2011). According to AFI 62-601, airworthiness is defined as the “verified and 

documented capability of air system configuration to safely attain, sustain, and terminate 

flight in accordance with approved usage and limits.” A generic airworthiness defines 

whether an aircraft has been certified as suitable for safe flight without significant hazard 

to aircrew, ground crew, passengers (if relevant), or to the general public over which such 

airborne systems are flown.  

 
2.5.1  Issues with Traditional Flight Test Methods for SUAVs 

Not all R&D technology and procurement come without risks and mishaps. 

According to the DoD’s Airspace Integration Plan for Unmanned Aviation (2004), 

SUAVs have higher reported loss rates than manned aircraft, especially during takeoff 

and landing. Because of the nature of UAVs being unmanned, their loss could sometimes 

be regarded as acceptable in exchange for continuous data gathering and research efforts.  

Due to the nature of UAVs and their systems, safety aspects have yet to be 

defined and this leads to issues not normally considered for manned systems (EASA, 

2004). According to Ostler (2006), traditional flight testing methods may not be suitable 

for SUAVs for a number of reasons. First, in-flight engine power cannot be determined 

by measuring fuel flow (i.e., electric engines). Second, SUAVs that are electrically 
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powered do not decrease in weight over time as do conventional aircraft. Finally, data 

acquisition systems in SUAVs are limited in size and weight. 

Another area usually not considered in traditional flight test methods and the T&E 

of SUAVs is wind tunnel testing and aerodynamic analysis support. Although wind 

tunnel testing can provide data to predict and develop control surface designs, few SUAV 

operators opt to utilize wind tunnel testing, as it is generally accepted that flight testing 

out in the flight range is adequate enough and remains the most reliable method for 

SUAVs (Williams & Harris, 2002). In addition to SUAV hardware and autonomous 

system reliability, other flight test challenges include categorical flying qualities, flight 

performance, and avionics evaluations. Provisions for these SUAV flight tests may not 

completely follow conventional manned aircraft flight test techniques due to the nature of 

UAV flight cues and their sensitivities due to of their small physical sizes and weights 

(Williams & Harris, 2002).  

Another area of concern is the required region of airspace possessing the 

appropriate vertical and lateral limits to conduct flight testing of UAV systems (Williams 

& Harris, 2002). This region of airspace should have few obstructions, such as power-

lines, tall structures, and trees, and it should be located outside civil controlled airspace. 

Some SUAVs are now able to execute tasks autonomously, such as takeoff and landing. 

Unfortunately, the lack of UAV regulations has prevented these SUAVs from operating 

in unrestricted airspace alongside manned aircraft (Ingham et al., 2006). Furthermore, 

this restriction has more complications due to an unproven technical safety record where 

the data cannot be collected until more UAVs can operate alongside manned aircraft, 



 

26 

which results in a “chicken and egg” situation (Ingham, 2006; Kuke, 2004; De Garmo, 

2004).  

 
2.5.2  UAV Standards and Regulations in the National Air Space 

Standards and regulations are part of the flight test process and requirements for 

airworthiness. By definition, a standard is an accepted minimum requirement in which 

compliance must be shown to achieve certification or qualification status (Ingham, 2008). 

UAV standards are currently under development from the FAA for airworthiness 

certifications. A regulation, such as the FAR, is a set of legislative prescriptions that must 

be complied with prior to, as well as during, the operation of a UAV in the national 

airspace (Ingham, 2008). Such regulations are also under development for civil UAV 

flights in commercial airspace.  

Although UAV markets for military and civil applications have been steadily 

growing, the lack of regulatory framework in creating standards and regulations has been 

evident. With new UAV technology, major flight test organizations including the FAA 

must first determine the risks of any associated system failures before the new technology 

is considered safe to be put into the National Airspace Systems (NAS) (Ingham, 2008). 

Any unforeseen developments, technological improvements, and human factors play a 

role in whether the new technology is safe enough to be permitted into the NAS. Once 

the risks are addressed, flight safety and integration into the NAS are taken in stages, 

similar to the developmental testing and operational testing and evaluation (DT&E, 

OT&E) established by the DoD. The FAA is also using the same DT&E and OT&E 
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methodology to manage the integration of the UAV technology into the NAS (Kalinowki, 

2010).  

Current recreational use of the NAS limits UAV operations to below 400 feet 

above ground level and away from airports and air traffic (FAA Website, 2011). The 

FAA’s main concern is not only that UAVs might interfere with commercial and general 

aviation operations, but that they could also pose a safety problem for other airborne 

vehicles and persons or property on the ground. Developing and implementing new UAV 

standards and regulations is a long-term effort for the FAA, especially when there is little 

data available to integrate UAVs safely and efficiently into the NAS. The FAA also 

indicates that more safety data is needed before it can establish a decision to fully 

integrate UAVs into the NAS, where the general aviation public travels each day (FAA 

Factsheet, 2011).  

2.6  Possible Airworthiness and Certification 

The objective of UAV certification in an unrestricted airspace is to achieve “file 

and fly” operations, but in order to achieve flight operations, flight tests will have to be 

executed in order to prove compliance with relevant regulations and prove its 

airworthiness (Ingham, 2008). Flight testing for airworthiness in SUAVs is sometimes 

conducted to observe the usefulness of the latest developments for conventional aircraft. 

For example, a new control law or a novel wing structure was tested using SUAVs in 

aerial flight (Brinker, 2001; Murray, 2002). One of the major challenges in operating an 

SUAV is the capability to detect and avoid aircraft and other objects while airborne. 

Collision avoidance has become the most pressing concern, and is also the focus for 
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many studies and research institutions worldwide, including AFRL with its Auto 

Avoidance Collision System (De Garmo, 2004).  

To avoid collisions with other aircraft, UAVs must have a “sense and avoid” 

capability, which allows them to detect and safely stay clear of other aircraft and 

obstructions midair (De Garmo, 2004). This development of “sense and avoid” capability 

in UAVs has also provided significant benefits for both manned and unmanned operators 

(Ingham et al., 2006). While UAV proponents view this new technology as promising, 

the limited safety and operational data available does not support the full integration of 

UAVs into the NAS (FAA Website, 2011).   

 
2.6.1  Current Initiatives 

All UAVs and manned aircraft in the NAS are regulated by the FAA under 

jurisdiction granted by law (FAA, 2011). While it is unarguable that large and heavy 

UAV airframes require an airworthiness certification, the question yet remains for 

SUAVs that have wingspans measuring less than a few feet across and weighing less than 

a hundred pounds. Do these SUAVs need the same airworthiness certification as those of 

larger sized UAVs? Some UAV enthusiasts argue that if such regulations are mandated 

on SUAVs to meet the same requirements for airworthiness certification, it would 

negatively affect airframe vendors and the SUAV manufacturing industry (UAV 

MarketSpace). A recent safety study for UAV operation in the NAS from MIT’s 

International Center for Air Transportation (ICAT) (2005) concludes that “the results of 

the safety analysis indicate that it may be possible to operate small UAVs with few 

operational and size restrictions over the majority of the United States.”  
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In response to the influx of SUAV airworthiness applications, the FAA has 

developed a memorandum titled “Unmanned Aircraft Systems Operations in the U.S. 

National Airspace System – Interim Operational Approval Guidance” for guidance of 

UAVs in the NAS. The FAA is also moving forward with UAV regulations and 

guidelines to minimize accidents and failures. Furthermore, the FAA is working with the 

Radio Technical Commission for Aeronautics (RTCA) to develop technical UAV 

standards. Mainly, RTCA will address two key questions on UAVs regarding their 

handling of communication, command, and control, and how UAVs will “sense and 

avoid” other aircraft. According to a statement by Kalinowski before the Committee on 

Homeland Security (2010), these activities are targeted for completion before 2015.  

Other countries are also publishing or have already published regulations for 

SUAVs. The French Ministry of Defense has drafted UAV regulations which are being 

used by other organizations as a guideline (Ingham, 2008). The Joint 

JAA/EUROCONTROL Initiative on UAVs final report (2004) proposes fairness, 

equivalence, accountability, and responsibility as guiding principles for integrating UAVs 

operating in civil airspace. The report emphasizes the use of existing manned regulations 

while recognizing the need to tailor and complement them when considering the specific 

characteristic of UAV operations.  

Other national and international agencies are also proposing standards to bring 

UAV flight operations within the manned operational environment in conjunction with 

the military and civil airspace. Some of these various government and industry initiatives 

include: The Technical Analysis and Applications Center (TAAC), Joint Planning and 

Development Office (JPDO) UAV National Task Force (UNTF), UAV National Industry 
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Team (UNITE), American Society for Testing and Materials (ASTM) UAV Committee, 

and many other agencies worldwide with the objective of developing and introducing 

UAVs regulations in national and international airspace (De Garmo, 2004). 

In response to the growth and development of SUAVs, most organizations have 

already accepted a short cut by adopting manned aircraft regulations that are suitable for 

UAV flight operations (Ingham, 2008; DoD OSD, 2004; Williams & Harris, 2002). 

Different agencies or flight test organizations have different regulatory bodies that govern 

their policies regarding SUAVs. Some agencies have proposed relaxed regulations 

accordingly for academic institutions, research organizations, and UAV developmental 

organizations that design and test UAVs provided that these UAVs do not pose a threat to 

people and property on the ground (Ingham et al., 2006). For example, light UAVs 

weighing less than 150 kg with a kinetic energy of less than 95 kJ might not be required 

to be certified, provided that they will operate as radio controlled aircraft within the 

operator’s visual range in unrestricted airspace for missions such as telemetry and aerial 

photography. However, larger UAVs weighing more than 150 kg with a kinetic energy of 

more than 95 kJ and light UAVs flying in unrestricted airspace or outside the visual range 

of the operator will be required to be flight tested and approved in a similar manner to 

that of manned aircraft (CASR 1998, 2001).  

Other approaches to airworthiness and certification of SUAVs include the 

adaptation of a “safety target” from the European Aviation Safety Agency (EASA). 

Under this approach, the overall objective of the UAV is within the context of a defined 

mission and operating environment (EASA, 2004). The Safety Target approach is utilized 

when UAV operators are under the direct control of a single authority, which has 
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complete responsibility for safety, and is also the sole “customer.” EASA argues that 

“this direct control of operations is a significant advantage when accepting a safety case 

which relies upon the restriction of operations to compensate for uncertainties over 

airworthiness” (EASA, 2004).  

 
2.6.2  DoD Initiatives 

As more UAV flight tests are being conducted by the USAF, military standards 

have become restrictive regarding the safety and responsibility of the UAV programs, 

resulting in excessive costs in manpower and delays in schedule (Ingham et al., 2006). 

According to Ingham, et al. (2006), these same restrictions have often excluded suitable 

suppliers because of their non-compliance with such specifications, regardless of the 

rapid growth in the number of companies with high interests in the UAV business (Teal 

Group Corporation, 2011).  

In 1999, the DoD, working with the FAA, developed a flight approval process 

known as a Certificate of Authorization (COA) contained in FAA Order 7610.4, Military 

Operations, that permitted UAVs to operate in the National Airspace Systems (NAS) (De 

Garmo, 2004). According to the FAA Factsheet (2011), the FAA issues a COA based on 

the following principles: 

 
1. The COA authorizes an operator to use defined airspace and includes 

special provisions unique to each operation. For instance, a COA may 
include a requirement to operate only under Visual Flight Rules (VFR) 
and/or during daylight hours. Most COAs are issued for a specified time 
period (up to one year, in most cases). 

2. Most, if not all, COAs require coordination with an appropriate air traffic 
control facility and may require the UAS to have a transponder to operate 
in certain types of airspace. 
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3. Due to the UASs inability to comply with ”sense and avoid” rules, a 
ground observer or an accompanying “chase” aircraft must maintain 
visual contact with the UAS and serve as its “eyes” when operating 
outside of airspace that is restricted from other users. 

 

According to De Garmo (2004) and FAA regulations, this process requires a case-

by-case safety evaluation of each flight, which results in a lengthy process that can take 

up to three months to approve depending on the FAA region or regions where the UAV 

will be flown. Part of the approval process requires the FAA to issue a time and route of 

the UAV flight to avoid risks to other aircraft and persons in the area, which further 

limits the utility and missions of UAVs. The process is incapable of sustaining the high 

volume of UAV flight requests (De Garmo, 2004). The FAA recognizes that the 

processes is lengthy and has taken steps to streamline the process by standardizing the 

review process and increasing communication and transparency between the agency and 

the applicants (Kalinowski, 2010). Normally, COAs are worked on a first-come, first-

served basis, with the exception of emergency and disaster situations where the use of 

UAVs warrants humanitarian needs.  

2.7  Summary 

 This chapter detailed the importance of flight tests and the critical factors in flight 

testing. There is an abundance of literature on proposals for UAV regulations and safety 

standards, and this chapter briefly discussed the current initiatives carried out by the FAA 

and other agencies in promoting UAV technology in the common airspace. However, 

additional UAV data and flight requirements are needed to reach a decision for UAVs to 

fly in the commercial airspace. With an understanding of the complications of SUAV 
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flight test requirements and the background in the MOA between AFRL and AFFTC, it is 

clear that additional studies are necessary to evaluate the process and determine the 

benefits of additional safety reviews and the costs associated with it. The literature is 

silent on this subject and forms the basis of this research. 
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III.  Methodology 

 

This chapter reviews the methodology used in this research. The primary purpose 

of the methodology is to establish a quantitative and qualitative measure of benefit for an 

abbreviated flight test process for SUAVs based on the MOA between AFRL and 

AFFTC. This research’s methodology uses interviews, cost sensitivity analysis, and 

variability analysis using value stream mapping (VSM) techniques in the SUAV flight 

testing processes for the development of a notional decision rule matrix. This chapter also 

discusses the development of acceptable cost and optimal risk and the boundaries drawn 

from analysis to construct a decision rule. 

3.1  Research Design 

 This research is exploratory in nature using multidisciplinary approaches and 

techniques, both quantitative and qualitative. Quantitative research describes phenomena 

in numbers and measures instead of words; the focus of the research is usually 

predetermined and deducted from prior research (Krathwohl, 1998). Qualitative research, 

on the other hand, describes phenomena in words instead of numbers or measures and 

usually uses induction to ascertain what is important in the phenomena (Krathwohl, 

1998).  

By leveraging these multidisciplinary techniques (qualitative cost-benefit 

analysis, interviews, cost sensitivity, variability analysis, and heuristic risk analysis), this 

research will evaluate and quantify the current process used in the AFFTC review process 
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and create a decision rule for future test flights. Figure 3.1 shows an outline of this 

research’s methodology, which will be discussed in detail. 

 

 
 

Figure 3.1: Research Methodology Overview 
 
 

The use of these techniques, both quantitative and qualitative, offers a decision-

driven instead of hypothesis-driven methodology. A decision-driven methodology is 

intended to facilitate making a decision about the applicability or worth of the process in 

a given situation (Krathwohl, 1998). Such applicability to this situation may include the 

total cost of the SUAV, its total impact energy, and weight of the vehicle. This overall 

heuristic evaluation should offer the desired consensus or accepted basis for decision 

making. For example, if the cost of the SUAV is less than that of the total cost the test, 

then it may be necessary to reevaluate the total cost of the joint AFRL/AFFTC approval 

process. Adversely, if the cost of the UAV is greater than that of the total cost of the 

flight test process and execution, then the approval process is likely justified for greater 

accountability and safety reviews. This approach may prove to be useful when comparing 

the current UAV flight approval process to an abbreviated process.  

3.2  Qualitative Cost-Benefit Analysis 

A qualitative cost-benefit analysis is defined as the determination of the costs of 

achieving certain benefits (Krathwohl, 1998). Cost-benefit analysis methodologies have 

been used for multiple purposes in many different studies; its outcomes must be 
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translated into monetary or other measure of value so their relation to costs may be 

determined (Krathwohl, 1998). For a cost-benefit analysis conducted in this research, the 

benefit may be in the form of cost and time savings from an abbreviated flight test 

process. 

According to Krathwohl (1998), cost-benefit analyses are often greatly affected 

by the assumptions of difficult-to-estimate indirect costs and outcomes, such as the 

personnel costs of individuals with different levels of qualifications. By measuring 

outcomes across different programs according to the magnitude of their effects relative to 

their costs in comparable terms, cost-effectiveness analysis allows a comparison of 

choices of achieving certain benefits in relation to other methods of obtaining the same 

benefits (Krathwohl, 1998; Rossi & Freeman, 1985). 

 
3.2.1  Criteria Development and Assumptions for Cost-Benefit Analysis 

 In order to quantify the current process used by the USAF per the MOA between 

AFRL and AFFTC, a VSM of the flight test approval process is reused from a lean 

process improvement study conducted by Homan and colleagues (2011), as shown in 

Appendix B. To ensure this research quantifies the standard USAF flight test process and 

any abbreviated flight test process for SUAVs, a comprehensive holistic assumption was 

required for the comparison of both processes. It is assumed that all work has a value-

added and a non-valued-added component to it. First, any value-added (VA) work 

identified in resources and manpower is assumed to be valid—that an average hourly rate 

and time per person reviewing the flight test program was standard across all 

organizations. Second, any non-value-added (NVA) work time and resources consists of 
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waste and necessary waste, which include policy, regulations, and standard processing 

time. Non-value-added “pure waste” consists of the “cost of delays,” in which man-hours 

were considered “lost” due to queuing effects in the approval process and doing “no 

work” while waiting.  

Furthermore, other assumptions in the data gathering of this study include the 

value-added work in terms of resources and manpower for SUAV programs and those of 

larger manned aircraft are likely to be different from each other. It was assumed that 

SUAV programs do not require as much resources and manpower as those of larger 

manned aircraft programs. Another assumption is that system complexity and safety 

guidelines of both types of vehicles are assumed to be different due to the nature of 

manned versus unmanned aircraft (i.e., manned vehicles are more complex and require a 

higher standard of safety guidelines than SUAVs). Lastly, the risk assessment and 

management of both classes of vehicles are also assumed to be different—that SUAVs 

are sometimes expendable because of their low manufacturing and operating costs when 

compared to larger conventional aircraft.  

 
3.2.2  Notional Balance Statement 

By using the criteria for qualitative cost-benefit analysis and the comprehensive 

assumptions, a notional overall breakdown of the total cost of flight testing a SUAV is 

proposed in Table 3.1. The total cost of a SUAV flight test includes the costs of 

approving flight status from both organizations (AFRL and AFFTC) and the cost of test 

execution. 
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Table 3.1: Notional SUAV Flight Test Balance Statement 
 

SUAV Program Asset Cost  
  
Test Execution Cost  
AFRL Review Cost  
     AFRL Risk Abatement Cost  
     Value Added Work  
     Non-value Added Work  
          Waste  
          Necessary Waste  
AFFTC Review Cost   
     AFFTC Risk Abatement Cost  
     Value Added Work  
     Non-value Added Work  
      Waste   
      Necessary Waste  
    

Total SUAV Asset and Liabilities  

 

This flight test approval process can be summarized in its most basic and simple 

balance statement equation based on the assumptions and criteria discussed earlier: 

 
TestTotal Cost = AFRLReview Cost + AFFTCReview Cost + TEcost, where, 

AFRLReview Cost = AFRLRAC + VA + NVA 

AFFTCReview Cost = AFFTCRAC + VA + NVA 

 
The Test Total Cost is the total cost of the test. The Review Costs at AFRL and AFFTC 

include the Risk Abatement Cost (RAC) and the value-added (VA) and non-value-added 

(NVA) costs. The Risk Abatement Cost (RAC) represents the safety and technical reviews 

performed by the approving authority at AFRL and AFFTC prior to test execution. The 

respective VA and NVA costs at AFRL and AFFTC are directly and indirectly incurred 

from both organizations as part of approving process per regulations and policy, based on 
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their respective resources and manpower. Next, TEcost is the cost of test execution, which 

is the operating cost to fly the SUAV. Finally, the SUAV Asset Cost consists of the 

vehicle platform cost and the payload cost. However, for cost simplicity, this research 

will not differentiate between these two costs but assumes they are a single asset cost. 

The basic notional balance statement sheet presented may be elementary, as it 

only shows a very generic cost to the total SUAV flight test operation. Additionally, 

when comparing the two balance statements, one with AFFTC risk abatement cost and 

the other without AFFTC risk abatement cost, the PM would choose the lesser of the two 

for cost and schedule savings. However, further analysis in risk assessment, data 

variability, and cost sensibility may call into question this simple approach. 

 
3.2.3  Interviews 

The qualitative cost-benefit analysis for this study will be coupled with insights 

from qualitative interviews in order to elicit the processing costs of an abbreviated 

process. It is assumed that the cost-benefit analysis requires personal interviews for data 

validation and strengthening the results. Interviews are one qualitative research 

methodology that allows the interviewer to gain a depth of responses from individuals in 

the process, yet it has its own disadvantages. Interview responses are often reflected by 

individual biases, and may also be in a form of confidentiality unbeknownst to the 

interviewer (Krathwohl, 1998). These responses may be difficult to analyze due to the 

sensitivity of the subject and the predisposition of individuals to respond a certain way. 
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3.2.4  Cost Sensitivity 

Cost sensitivity measures how variations in the overall [SUAV] configuration 

affect the resource requirements and costs (Tenzer, 1965). As discussed earlier, there are 

always some forms of uncertainties and risks involve in flight testing, especially to 

SUAVs when its total cost is sensitive to its payload. One way to measure cost sensitivity 

is the design and operational parameters of the SUAV. The total flight test costs may 

greatly increase if an advanced sensor payload is attached to the SUAV, which may also 

significantly increase the risk factor and the costs associated with the whole program. 

Another way to look at cost sensitivity is the question of necessity in redundant reviews 

for SUAVs. SUAV flight parameters and their associated costs may be the driving factor 

in adding the flight approval review times, as these reviews may cause delays to the 

programs. To an extent, any changes in the associated costs of the program are sensitive 

to the decision rule used. 

3.3  Data Variability Analysis 

In addition to the qualitative cost-benefit analysis, personal interviews, and cost 

sensitivity analysis, data variability obtained using the VSM will be analyzed. A VSM is 

one the first products created when attempting a process improvement as described by 

Womack and Jones (2003). McManus (2005) states that a VSM is a tool for achieving an 

efficient process, and that its sole purpose is for process improvement by evaluating the 

process holistically.  The goal of the VSM is to depict material and information flows 

across and throughout all the value-adding and non-value adding (waste) processes 

required to produce the product (i.e., approval status) and deliver it to the customer (i.e., 



 

41 

the program manager and test team) (McManus & Millard, 2003). Therefore, the VSM is 

an appropriate approach due to its “all-in-one” top-level picture of all the processes that 

occur in the flight approval process, from the time a test plan is submitted to the time it is 

approved for flight status. 

 In a perfect process, every link in the approval chain should be synchronized, 

making the approval system as lean as possible. However, achieving a high level of 

synchronization requires a “smooth flow” process (Murman, 2002). The current flight 

test approval process involves moderate to high variability in the value flow streams, as 

organizations have variable flight test demands at different times and resources to 

approve fight tests. According to Oehmen and Rebentisch (2010), variability in process 

execution leads to widely varying process times and thus a low degree of 

synchronization. Oehmen and Rebentisch (2010) also argue that over utilized capacities 

(e.g., engineers) can also be a cause for such variations, as these disturbances cannot be 

buffered and immediately lead to delays.  

One of the purposes of VSM is to identify and predict locations of process 

variability. If variability cannot be controlled due to budget or schedule constraints in the 

program, then there should be enough takt time in the individual process steps so the end 

step in the process will not have high variability. Takt time is the number of units of work 

demanded by the customer divided by the available time (McManus, 2005); for this 

research effort, it is the number of days needed for a completed test plan review to get 

approved for flight test. According to McManus (2005), the single most important 

concept of lean product development is achieving a takt time, and that all tasks or steps in 

the process must then proceed at this pace. 
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For example, if the FOA’s average rate for approving a test plan is three days, 

then the takt time at the FOA step is three even if the actual data varies with the 

workload. The FOA must be able to support this average takt time of three days per test 

plan review, or the overall demand for work cannot be met, which would trigger 

bottlenecks and delays in the downstream processes. In summary, in an uncontrolled 

process with variations of any sort, queuing effects will tend to build delays between 

process steps and pile up work at bottlenecks (McManus, 2005). 

3.4  Managing Acceptable Cost and Optimal Risk 

 Many in the T&E community know the risk hazards present in the 

operation of any complex system, manned and unmanned systems included. This concern 

is probably one of the major reasons why UAV standards and regulations are being 

worked throughout many organizations in the development of UAV safety and 

airworthiness certification. Based on data from the T&E community, especially those 

coming from the military, UAVs have a poor safety record (De Garmo, 2004). According 

to an April 2003 Congressional Research Service report, the UAV accident rate is 100 

times that of manned aircraft (Bone & Bolkcom, 2003). Another study conducted by the 

USAF in 2002 concluded that the accident rate for UAVs is 50 times greater than that of 

an F-16 fighter jet (De Garmo, 2004).  

A more recent 2009 DoD Unmanned Systems Integrated Roadmap determined 

that UAVs have suffered mishaps at one to two orders of magnitude greater than the rate 

(per 100,000 hours) incurred by manned military aircraft. Figure 3.2 shows the mishap 

rates per 100,000 flight hours between manned and unmanned vehicles between 1986 to 
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2006. Notice that SUAVs such as the Hunter, Shadow, and Pioneer, whose wingspans 

and body lengths have an average from 10 feet to 20 feet, have higher mishap rates 

compared to those of other types of vehicles. Also noted is the decrease in mishaps as 

these SUAVs accumulate more flight hours. The decrease in SUAV mishaps shown in 

Figure 3.2 represents a steep learning curve from SUAVs as the technology matures. 

  

 

Figure 3.2: U.S. Military Aircraft and UAV Class A Mishap Rates 
(DoD FY2009-2034 Unmanned Systems Integrated Roadmap, 2009) 

 
It is for this very reason of UAV mishap rates that PMs and UAV operators 

should carefully manage the cost of these SUAVs and reduce the risk to an optimal level 

necessary for the continuation of flight tests in the program. As clearly stated in the 

previous chapter (Chapter 2: Literature Review), the primary goal of any flight approval 

process for airworthiness and flight certification is to reduce risks and increase safety 
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standards among SUAVs and other airborne vehicles, including those who flight test 

them. While it has always been the PM’s goal to reduce the costs in UAV flight 

operations and any overhead costs incurred while waiting for the flight approval process, 

the cost of risk abatement in time and resources is almost always never explicitly 

managed. However, with limited resources and time, the question becomes, “How much 

risk abatement is enough as part of the flight test approval process?” Figure 3.3 shows a 

classical answer from economics where the optimal level of risk is where the sum of the 

cost of risk abatement and the expected losses from risk is at a minimum (Morgan, 1981).  

 

 

Figure 3.3: Managing Cost and Level of Risk 
(Morgan, 1981) 

 
Two of the most common forms of risks are “acceptable risk” and “optimal risk.” 

(Morgan, 1981). Acceptable risk implies a predetermined criterion or standard for a 

maximum risk threshold level below which risk will be tolerated, and thereby permits the 
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evaluation of cost, national priority interests, and number of tests to be conducted (U.S. 

Army White Sands Missile Range, Morgan). Optimal risk implies a trade-off that 

minimizes the sum of all undesirable consequences (Morgan, 1981). It is this optimality 

that justifies careful attention, thus the basis of this research in terms of an abbreviated 

approval process for SUAVs where redundancy in the cost of risk abatement may be 

unnecessary.  

One way to reduce the cost of risk abatement is to actually reduce its cost by 

shortening some of the safety review times. However, reducing the cost of risk abatement 

in this way would likely increase the level of risks and the expected losses from risk, 

resulting in an increase to the total cost of the program because of the accompanying 

reduction in scrutiny of the safety review. Therefore, the primary method used in this 

study is to determine the cost benefit of an abbreviated flight test to achieve an optimal 

level of risk. This optimal level of risk should demonstrate an appropriate reduction in the 

cost of risk abatement while maintaining or decreasing the expected losses from risk, thus 

minimizing the total costs incurred from the flight approval process and UAV operation. 

In investigating the notional optimal level of risk, this study proposes shifting the total 

cost curve and the cost of risk abatement curve to the left, as seen in Figure 3.4.  

If a reduction in the cost of risk abatement is attainable, either through eliminating 

AFFTC reviews or decreasing the complexity of the vehicle, the abbreviated approval 

process may reveal that it can be condensed and shortened with probable cost savings to 

the total cost and expected losses from risk. Various features in the flight test approval 

process can be factored in when deciding how much risk abatement, or for the purposes 
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of this research, the degree to which safety reviews are modulated in the process to save 

time and money.  

 

 
 

Figure 3.4: Notional Optimal Level of Risk 

3.5  Summary 

 This chapter has detailed the methodology used in this study. The notional flight 

test balance sheet with proposed assumptions tailored by interviews and cost sensitivity 

analysis establish the conditions needed to create a better understanding of the costs 

associated with the flight test approval process. Furthermore, data variability analysis will 

be used to present a thorough overview of the current process depicted in the VSM and 

the issues that arise from it. Additionally, by combining the balance sheet and the 

analyses, this methodology seeks to expose the advantages and disadvantages of flight 

test process steps in the overall chain of reviews and approvals. Finally, this chapter 
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notionally identified the costs of risk abatement and the expected losses due to SUAV 

flight tests. The results and analysis using this methodology are presented in Chapter 4. 
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IV.  Results and Analysis 

 

This chapter describes the results and analysis of the data gathered from the flight 

test offices. The first section details the flight test balance statement with relevant 

assumptions in operational and personnel costs to determine the cost-benefit of the 

review process at AFFTC. The second section focuses on VSM analysis of cost 

sensitivity and time variability in the chain of approval process through a Variability 

Simulator. Next, the analysis on risk management with acceptable risk to costs and 

optimal risk in flight testing are shown. These cost benefits are then measured against the 

cost of risk abatement and expected losses to the UAV to determine the threshold where 

it makes sense that the review process at AFFTC adds value. 

4.1  Cost Measurement Analysis 

 Cost measurements are taken from labor hours and costs of operating and 

maintaining a SUAV. The intention of this analysis is to determine whether the extra 

reviewing and approval process at AFFTC is needed from the point of view of a 

simplistic SUAV flight test. These costs were taken from historical data and labor hours 

were assumed based on the rank and pay grade of the officer in charge of certain 

processes. Comparisons were made with significant assumptions due to the sensitivity of 

the SUAV costs and the difficult-to-estimate indirect costs. Nevertheless, the balance 

statement in the cost measurement analysis shows the financial resources available so that 

PMs may decide how to use cost information in the assessment of economic alternatives. 

It may sound elementary that the lower cost in the balance statement will most likely be 
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chosen, but it may be apparent that there are several other issues and problems that must 

be dealt with in order to develop further analysis for cost benefits.  

 
4.1.1  Estimated Cost Balance Statement 

 Historical data from 2011 shows 22 different SUAV tests within the continental 

United States, averaging $66,500 in costs per vehicle. Each program had an average of 

two SUAVs produced and flown during the life of the program, which can be added up to 

a total of $133,000 in SUAV program assets. Each SUAV also had an average of 23.8 

sorties and 9.9 flight hours (see Appendix C for SUAV costs and mishap data). The test 

execution cost, estimated at $30,000, was based off of the average range cost, fuel cost, 

and any extra burden and overhead costs including personnel involved in the flight test of 

the SUAV. The following processing days were taken from the current VSM flight test 

process (Appendix B) developed by Homan et al. (2011) and the AFRL T&E Office 

(Appendix C) to determine a conservative estimated cost of the review process. 

The AFRL technical and safety reviews (TRB & SRB) typically took four to five 

weeks (25 working days) prior to the actual test execution; therefore, it was possible to 

estimate the value-added (VA) time and costs of the review process. With a conservative 

assumption of a four-member team including those at the AFRL T&E Office working 25 

working days and one Lieutenant Colonel (O-5) or a GS-15 pay grade technical lead 

working two (2) days, the total TRB and SRB cost averaged $20,000. Since AFFTC does 

not normally take part in the TRB and SBR at AFRL for low risk test plans, this value 

was low; but nevertheless, an estimate of one (1) working day was added for any 

comments provided from the FOA to the AFRL TRB and SRB. 
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Next, the non-value added (NVA) work (waste and necessary waste) both at 

AFRL and AFFTC were greatly assumed as standard processing time with delays. These 

delays can sometimes be considered as buffer times or variations against uncertainties in 

the overall process. The assumption on AFRL waste and necessary waste was one (1) and 

two (2) working days, respectively. AFFTC’s non-value added waste work was assumed 

to be two (2) working days.  

Finally, the AFRL risk abatement cost (AFRLRAC) was also based on an average 

O-5 or a GS-15 pay grade combined with the current five (5) working days to approve a 

flight test at AFRL per the VSM. Likewise with AFFTC risk abatement cost 

(AFFTCRAC), except the current average processing time to approve an AFRL flight test 

at AFFTC was six (6) working days, which was based off of the data provided by the 

AFRL T&E Office. When combining all of this data together, the total average SUAV 

asset and liability has a total cost of $191,500.  

Table 4.1 summarizes the value-added (VA) time required at critical steps through 

the flight approval process. The first step requires the PM to meet with the AFRL T&E 

Office to conduct TRB and SRB and document mishap reporting procedures in the test 

plan—all of which happen four to five weeks prior to test execution. The second step 

requires the AFRL Technical Director Division Chief’s (GS-15) review and approval to 

start test, which normally takes five (5) working days. The third step, which is in 

conjunction with the second step, requires the FOA at AFFTC to review and approve the 

test plan in order to start the flight test, which averages six (6) working days. Table 4.2 

shows the balance statement of an average typical SUAV flight test. 
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Table 4.1: Estimated Time for AFRL/AFFTC Approval Review 

 
Process Step AFRL Processing 

Time (Work days) 
AFFTC Processing 
Time (Work days) 

PM meets with AFRL 
T&E Office to conduct 

TRB & SRB and 
finalizes test plan 

 
4 members take 25 WD 
1 O-5/GS-15 take 2 WD 

 
1 O-5/GS-15 take 1 WD 

Get AFRL Division 
Chief (GS-15) to review 
and approve to start test 

 
1 O-5/GS-15 take 5 WD 

 

 
n/a 

Get AFFTC FOA (O-5) 
to review and approve to 

start test 

 
n/a 

 
1 O-5/GS-15 take 6 WD 

 

Table 4.2: Notional SUAV Cost Balance Statement 

 
SUAV Program Asset Cost $133,000 
  
Test Execution Cost $30,000 
AFRL Review Cost  
     AFRL Risk Abatement Cost $2,100 
     Value Added Work $20,000 
     Non-value Added Work  
          Waste $1,200 
          Necessary Waste $1,500 
AFFTC Review Cost   
     AFRL Risk Abatement Cost $2,500 
     Value Added Work $400 
     Non-value Added Work  
      Waste  $800 
      Necessary Waste $0 
    

Total SUAV Asset and Liabilities $191,500 

 

TestTotal Cost = AFRLReview Cost + AFFTCReview Cost + TEcost 
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4.1.2  Initial Cost Results 

As previously emphasized, it is important to recognize that these monetary values 

are presented with significant assumptions based on empirical observations of only 

somewhat similar situations befitting an exploratory research such as this. From the data 

presented, with an average total value of $191,500 in SUAV asset and liabilities, the total 

AFFTC review costs ($3,700) did not represent any substantial impact to the total value 

of the SUAV. Not only was the AFFTC review cost less than anticipated, the average 

reviewing time was much shorter than previously expected.  

With regards to flight mishap data from the AFRL T&E Office (Appendix C), 

SUAV flights from 2011 had nine flights mishaps with a total of over $625,000 in 

damages, which translated into an average of $69,400 per flight mishap. Additionally, 

data from the AFRL T&E Office showed an average of five (5) working days for a return 

to flight approval from AFFTC upon learning of a mishap. In two mishap instances, the 

return to flight processing time AFFTC took to approve was three working days and six 

working days, respectively. By using similar assumptions and estimates on cost, these 

five working days had an estimated process cost of a little over $2,000 for a return to 

flight approval from AFFTC. Again, the average time and cost of a return to flight 

approval from AFFTC was insignificant compared to the total cost in mishap damages.   

In summary, the cost measurement analysis from the data given suggested that the 

process time and process cost from the AFFTC review was considerably less than 

previously expected. Moreover, the time to approve a return to flight following a mishap 

was reasonably less in terms of cost and time. This initial cost analysis shows that the 

AFFTC involvement in AFRL flight tests may be beneficial and instrumental in 
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mitigating AFRL flight mishaps, considering SUAV flight tests in 2011 had experienced 

a mishap with over $69,000 in damages for each mishap. The extra review at the AFFTC 

may cause additional time and overhead costs for the test management organization, but 

in the long run, it may be valuable in providing comments and insights to the PMs and 

the test teams at AFRL, thereby possibly reducing future flight mishaps. This perceived 

value of extra small dollars and time to “buy” a decreased chance of failure may be 

enough to convince the PMs to spend the additional funds to mitigate mishaps. However, 

given the nature of R&D in UAV test flights, mishaps that cost a few hundred to a few 

thousand dollars are sometimes considered negligible and acceptable in favor of 

improved research.  

Additional interviews were conducted with the AFRL T&E Office as more details 

on AFFTC review process were revealed. One of the primary reasons why the approval 

processing time from AFFTC was cut shorter than what was anticipated at the beginning 

of this research was the personnel changes that took place in the 412th OG at AFFTC 

since the Homan et al. (2011) study. Personnel at the AFRL T&E Office noticed the trend 

in approval review was slashed to almost half that from previous submissions. The AFRL 

T&E Office also noticed there were no additional re-work or additional value added 

feedback from the FOA. This decreasing trend in approval time and the lack of in-depth 

reviews from AFFTC suggested either an absence of interest in SUAV flight test reviews 

from the new personnel, or that the new FOA has come to fully trust the flight test 

organizations at AFRL with simple SUAV tests and designs. In addition to the new FOA 

personnel at AFFTC, the AFRL T&E Office also welcomed in a new Chief, who is a Test 

Pilot School (TPS) graduate from Edwards AFB. Both organizations have seen an 
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increase in direct communication on issues relating to SUAV tests. Perhaps the 

experienced TPS graduate and new Chief at the AFRL T&E Office brings new skills or 

“value-added” to the process, hence the decreased time in the approval process.  

 
4.1.3  Cost Sensitivity Results 

There is difficulty in estimating cost evaluations, especially given sensitivities 

associated with the programs. These sensitivities include the design and operational 

parameters of the SUAVs. As shown in Figure 4.1, of the 22 SUAV flight test programs 

in 2011, nearly half were new and prototypes with variable costs to each program, none 

of which are dependent on their system maturity. 

 

 

Figure 4.1: System Maturity vs. Cost 
 

Figure 4.1 also shows that costs are not sensitive to system maturity, but rather to 

the payloads carried by these SUAVs. The cost of some of these SUAVs can be high, 

mostly due to their expensive payloads such as radar sensors and imaging capabilities. 
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Since the initial results and mishap data have shown high vulnerability for SUAV 

mishaps at an average of $69,400 in losses, PMs and test teams are recommended to have 

initial estimates on the program’s feasibility and categorize test requirements in phases of 

testing in order to reduce risks to program cost. These phases of testing and development 

should be separated into a list of “must haves” and “good to haves” with user 

prioritization that can be used to conduct trade-off at later stages of acquisition 

development. These phases of testing and development should minimize cost 

uncertainties, whereas an “all-in-one” package (i.e., one expensive payload on a SUAV) 

may present a higher risk to cost should a mishap occur. This recommendation is in 

agreement with the industrial practice of involving customers early in program 

requirements with clear communication to separate their needs into “must haves” and a 

“wish list” (CNSTAT et al., 2011). CNSTAT et al. (2011) also recognizes some 

flexibility that allows for modifications responsive to users’ needs and changing 

environments. However, any changes to program requirements can result in considerable 

cost increases and schedule delays.  

A substantial part of the many levels of safety reviews in the USAF is the 

structure of accountability in the design and development of the system. A system that 

has mature technologies will likely experience safer operation than those that have 

immature systems. With SUAV payload costs that sometimes exceed the cost of the 

vehicle, it becomes a question of technology maturity of the SUAV itself. Technology 

immaturity such as those of SUAVs coupled with an expensive payload will certainly 

cause scrutiny in reviews. According to CNSTAT et al. (2011), technology immaturity is 

known to be a primary cause of schedule slippage and cost growth in DoD program 
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acquisition. The success of a system maturity strategy depends on the consistent and 

continuous definition of requirements and the maturation of technologies. This 

“evolutionary acquisition” or a spiral acquisition approach to transition new technology 

to operational capability is reflected in the DoD Instruction 5000.2. The objective of 

evolutionary acquisition is to balance the needs and available capability with resources, 

and to put capability into the hands of the user quickly (DoD AT&L).  

In summary, system maturity costs were varied with SUAV performance and 

payload cost. To minimize large mishap costs, a priority list of “must haves” and “good 

to haves” should be implemented and decided on what and when to test first instead of 

putting all eggs in one basket and risk it all from system failure. 

4.2  Value Stream Mapping Analysis 

 Value Stream Mapping (VSM) examines the business process and seeks to 

understand and improve such efforts. While this study does not focus on the efficiency of 

the process, it does examine the necessity of the extra reviews at AFFTC and the cost 

benefit of having such reviews. As Homan et al. (2011) described in the present-state 

VSM, it was apparent that one of the larger areas of waste was the specific loops between 

the different stakeholders (i.e., program managers) and the AFRL T&E Office. Other 

problems revealed by Homan et al. (2011) included the lack of initial notifications of 

pending tests and the absence of standardization in the test plans when submitted for 

approval. The five main problems identified by Homan (2011) were: 

 
1. Late notification and/or non-standard work (test plans or safety packages) 

by PMs 
2. Firefighting and heroics by AFRL T&E Office 
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3. Bottleneck at FOA (high throughput and low capacity) 
4. Lack of expected target timeline and non-standard work (mishap report) 

for return-to-flight process 
5. Lack of transparency throughout processes for all stakeholders 

 

In quantifying the present-state VSM and the cost measurements which were 

discussed in the previous result, initial data suggested that AFFTC involvement in AFRL 

flight tests may be beneficial in providing feedback and mitigating mishaps given that the 

costs and time required were miniscule compared to the total cost of the UAV program. 

However, further analysis was needed to verify and determine the threshold at which 

AFFTC involvement in low risk test plans adds value and that the extra review is 

desirable even though it presents a fairly minimal investment in time and cost to the 

program. Conversely, this threshold will also need to show that AFFTC’s involvement in 

low cost programs are sometimes inapplicable because of SUAV costs and complexity, 

and any program that falls below this threshold may not require additional reviews at 

AFFTC. 

 
4.2.1  Data Variability 

In this portion of the analysis, a Variation Simulator developed by the Lean 

Advancement Institute (LAI) at the Massachusetts Institute of Technology (MIT) Lean 

Academy was used to measure the impacts of variation on cycle time in the approval 

process. The intention of the variability simulation is to assess the impact that variability 

has on process performance. Any variability in the simulation value is used for the 

purpose of predicting relative differences in task execution at a particular step. Such 
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simulation is not designed to cast judgment or predict performance at AFFTC or AFRL 

T&E Office.  

Reducing process variation is a key component in process improvement 

methodologies such as lean Six Sigma. In an ideal process flow, where the input rate is 

equal to or less than that of the output rate at every task, the flow should not experience 

any delays and the process is deemed fully utilized. However, when variations in the 

process are considered, the process begins to experience delays and work begins to 

accumulate at various tasks. For the sake of simplicity, the process flow begins when the 

PM submits a draft test plan to the AFRL T&E Office, which then begins the safety and 

technical coordination approval process internally at AFRL and externally at AFFTC. 

Once the approval process is complete, test execution can begin.  

As demonstrated in Figure 4.2, the simulation assumed no output rate variations at 

the AFRL T&E Office nor the review authority panels; however, the PM station had 

variations per day in submitting test plans to the AFRL T&E Office. These test plans 

were varied from one to five per day, which could represent a lack of notifications of 

pending tests and lack of standardization in the test plans. These variations coming from 

the PM had the most direct impact on the AFRL T&E Office. Hence, the workload 

depicted in Figure 4.2 shows the accumulated test plans at the AFRL T&E Office over 

time when its capacity could only produce three test plans per day. 
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Figure 4.2: Variation at Program Management 
 

Homan et al. (2011) mentioned that the AFRL T&E Office was unable to 

eliminate the constant late notifications or tardy test packages arriving from the program 

manager, in addition to the non-standardized test packages. Homan et al. (2011) also 

discussed the effect of “firefighting” at the AFRL T&E Office where members defer 

resources to problematic (or late) programs and work harder to meet requirements and 

push completed programs to the next station. This effect causes the information to get 

“pushed” instead of “pulled.” According to McManus (2005), information flow should be 

pulled, not pushed. In other words, information should flow when it is needed by 

downstream processes, not when upstream processes are done. Repenning et al. (2001) 

also added that occasional “firefighting” may offer short-term gains, but these temporary 

gains will come at the expense of the long-run flow of the entire process. Firefighting can 
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also create bottlenecks for the downstream process, especially when the later process 

steps have variation, which possibility is discussed in the next simulation.  

As shown in Figure 4.3, the FOA at AFFTC had variations in approving SUAV 

test plans coming from AFRL. One of the main problems identified earlier was the 

bottleneck at the FOA in the overall process (Homan et al., 2011). This bottleneck was 

caused by the increasing number of test packages that were pushed to the FOA from the 

AFRL T&E Office, resulting in variations in approval time. In many instances where 

programs were deemed low risk, only a single approval authority at the AFFTC handled 

all of the test packages from AFRL. The problem was even worse when the single FOA 

at AFFTC was also responsible for nine other local test organizations. These notional 

results show that the pushed information was not needed by the recipient in the 

downstream process, and it would certainly not flow “at the right time” for PMs to 

execute their tests on schedule.  
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Figure 4.3: Bottleneck at AFFTC 
 

In all simulations conducted with variations of at least one task, the test execution 

schedule was greatly affected. The simulation could continue with multiple variables at 

different tasks, but the purpose was to demonstrate the process behavior over a long 

period of time. With reduced input variability and process variability, the simulation 

shows improvement in the flow process and allows stations to have excess capacity to 

pull work. Eliminating variability also allows straight-through flow to meet customer 

(i.e., program managers) demands.  

McManus (2005) specifies that bottlenecks can be caused by effects external to 

the process, such as the lack of resources, information, or authority to proceed. Such 

effects coincide with the current-state of the AFRL/AFFTC approval process. That is, if 

there is a lack of resources, typically the FOA personnel are not available to start a task 

and the task waits, thus creating a bottleneck. If the externally-provided information is 
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not available, typically because of the inadequate test plans from the PM, the tasks either 

wait or proceed with “bad” information (i.e., firefighting) only to be reworked later (after 

mishaps). Finally, if external approval authority other than from AFFTC is required to 

proceed, and it is not forthcoming, the task will wait.  

 
4.2.2  Value Stream Mapping Results 

In summary, the results from VSM analysis conducted with data variability 

support the five major problems which were first identified by Homan et al. (2001). Not 

only does this study support the identified problems, it also postulates that, based on 

McManus’s VSM manual (2005) and through MIT’s Variation Simulator, bottlenecks are 

caused by effects external to the process. The variability simulation uncovered the heavy 

workload and firefighting support that the AFRL T&E Office displayed when PMs failed 

to follow standardized guidelines. This led to firefighting from the AFRL T&E Office 

which ultimately led to the bottleneck at AFFTC when more than enough tests plans were 

compiled at the FOA for approval. 

4.3  Acceptable Cost and Optimal Risk 

In this portion of the analysis, a notional optimal level of risk is created to 

evaluate the value of each risk factor before reaching an optimal level of risk and the 

deciding cost in flight testing them. Risk is usually expressed in terms of probability of 

occurrence and impact, which leads to dollars and time, and each project will have to 

control its own destiny through factoring the different indications of risks. SUAV flight 

mishaps may be all too common for PMs who have flight tested them and those who have 

the experience to explain why flight mishaps happen. As discussed earlier in the accident 
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rates of SUAVs, it is all too familiar to the DoD and the FAA. Therefore, they require a 

thorough review in flight personnel policy, training, and operations for SUAV tests. 

Figure 4.4 shows the balancing between the level of risks and the costs of a SUAV 

program to the optimal level of risk, as discussed in Chapter 3. 

 

 

Figure 4.4: Acceptable and Optimal Risk  
(Morgan, 1981) 

 

4.3.1  Perceptual Factors in Assessing Risk  

From the previous analyses in cost measurement and variability, the cost of risk 

reduction at the AFFTC safety reviews have shown to be minimal compared to the 

overall costs of the entire program, suggesting that more reviews should be done to quell 

the increasing number of flight mishaps. Additionally, the time it took for additional 

reviews at AFFTC was less than anticipated, but that was because of recent personnel 

changes. Furthermore, personnel at AFFTC were experiencing variations in approving 
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low risk test plans when too many programs were pushed to the FOA for approval, 

causing major bottlenecks at AFFTC. 

In light of the two previous analyses, why would the PMs and the AFRL T&E 

Office want to de-scope the level of oversight from AFFTC on low risk programs given 

that the cost and time required for AFFTC to review them were not as high as originally 

thought? In other words, what is the reason why people are reluctant to perform risk 

analysis (i.e., mishap mitigations at AFFTC) for low risk programs when the process time 

is short and the cost is inexpensive? The key issue is one of perception. Cost 

measurement results show that the AFFTC processing time is organizational and 

personality-dependent—that personnel changes in the future may not have the same test 

plan approval rate, thus adding the uncertainty in the overall process. Additionally, the 

PMs and the AFRL T&E Office felt that there was no value added at the AFFTC review 

process. 

So why do SUAV programs have to spend a few thousand dollars and an extra 

week to get the approval from AFFTC when there is no perceived value added from the 

AFFTC review process? The answer lies in the optimal level of risk that the PM is 

willing to take. This optimal level of risk taking is non-quantitative and must be based on 

the perceptual factors that are relevant to the assessment of risk, as identified by Hillson 

and Hulett (2004). 

 
1. Familiarity: The extent to which an individual, team, or organization has 

previously encountered the situation drives whether the risk probability is 
perceived as high or low. Where there is little or no previous relevant 
experience, skill or knowledge, the degree of uncertainty is perceived as 
higher than that case when it is assessed by individuals or groups who 
have come across the situation before. 
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2. Manageability. The degree of control or choice that can be exercised in a 
given situation drives the assessment of uncertainty, even if the perception 
is illusory. Where a risk is seen as susceptible to control, risk probability 
is assessed as lower than in situations where controllability or choice are 
absent (or perceived to be so). 

3. Proximity. If the possible occurrence of a risk is close in time or space to 
those assessing its probability, it will be seen as more likely than risks 
which might occur later in time or further away in space. 

4. Propinquity. This term is used to describe the perceived potential for the 
consequences of a risk to affect the individual or group directly. The 
closer the impact is to those assessing the risk, the higher its perceived 
probability is. 

 
 

These factors are hard to recognize and address, as they and other perceptual 

influences operate subconsciously when individuals and teams assess risk probability and 

category (Hillson & Hulett, 2004). Another critical reason why low risk programs have to 

go through AFFTC approval review is to hold accountability and responsibility in the 

program; these “ways of seeing and understandings” of risk in organizational settings 

were seen as methods of deferring blame to any single organization with respect to issues 

of risk and responsibility (Hutter & Power 2005). After all, organizations’ and 

individuals’ interests may vary, but they address issues in test flights through 

considerations of commonalties in risk management.  

 
4.3.2  Heuristics and Biases in Risk Assessment 

 In assessing risk, other factors that influence the PMs’ decisions in the perception 

of risk are known as heuristics or rules-of-thumb. Hillson and Hulett (2004) define 

heuristics as internal frames of reference used by individuals and groups to inform 

judgment when no firm data are available. Hillson and Hulett (2004) emphasize the 

influence of introducing two types of heuristic bias into assessments in situations of 
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uncertainty. The first type of bias is motivational bias, where the assessor seeks to 

improve the apparent position of the situation by modifying the estimate of risk 

probability. The second type of bias is cognitive bias, which arises from unconscious 

attempts to rationalize the lack of certain knowledge (Hillson & Hulett, 2004). Of these 

two biases, it is observed that motivational bias is perhaps more commonly found in PMs. 

The author also noticed in the various interviews that PMs were more likely to exhibit 

motivational bias. This is a purely anecdotal impression from the author and this has no 

hard data to quantify this effect. 

Motivational bias is difficult to identify and manage as the person or organization 

assessing the risk has an interest in influencing the results of the analysis (Hillson & 

Hulett, 2004). SUAVs are distinct by their sizes, costs, and complexity. These factors 

often define the risk of their test flights. The presumption of motivational bias usually 

makes the probability of the risk of SUAVs seem to be smaller than what it really is, 

especially in order to reduce the perception of risk among key stakeholders. It is observed 

that PMs will use the notion of their SUAVs as being small, lightweight, and inexpensive 

to de-value the purpose of any extra safety reviews that may cause their programs to 

incur more costs and time. Granted, it is true from the data gathered that most SUAV 

programs were deemed as low risk, but the cost sensitivity in the payloads carried by 

SUAVs were often the deciding factor in categorizing risks. 

 
4.3.3  Notional Optimal Level of Risk 

From these perceptual and heuristics factors, PMs will argue that the absence and 

noninvolvement from AFFTC may create a reduction in the cost of risk abatement, which 
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reduces the total costs and time incurred from the flight approval process and SUAV 

operation. This reduction will create a new cost of risk abatement and a new optimal level 

of risk, as shown in Figure 4.5.  

 

 
 

Figure 4.5: Notional Optimal Level of Risk (without AFFTC involvement) 
 

This noninvolvement from AFFTC in low risk programs will be manifested by 

AFFTC giving full approval authority on low risk tests to the AFRL T&E Office. Not 

only would this new level of risk abatement reduce the time and costs for the PMs at 

AFRL, but it would also give the reviewers at AFFTC more time to perform their main 

duties at AFFTC, given that the FOA’s main duties come from the flight test 

organizations at AFFTC. Furthermore, since 90% of the tests coming from AFRL are low 

risk, it would assume that the costs are low and the risks can be negated. Additionally, the 

data variability analyses have shown a bottleneck at AFFTC when the FOA experiences 
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variation in approving SUAV test plans coming from AFRL. This new optimal level of 

risk results in a lesser total cost, and its expected losses from risk is even less due the 

overall factors from the PM’s presumption in the motivational bias and heuristic 

approaches. This notional optimal level of risk will be carried to the latter section of this 

chapter to create a notional common threshold and decision rule matrix. 

Noninvolvement from AFFTC would certainly increase the number of SUAV 

programs and increase R&D in SUAVs and their systems. However, risks are still 

inherently apparent to the PMs and the flight testers. Every project is unique and SUAV 

projects are no different when it comes to safety. The mishap rate is still high, and the 

technologies to improve SUAV safety records are still being developed; therefore, it is 

prudent to approach testing with attentiveness when no AFFTC involvement is granted. 

 
4.3.4  A What-if Scenario 

The problems of unintended consequences are high whether the program is 

categorized as low risk or not. Flight testers are fully aware that most of the accidents 

happen between test points or on low risk activities (Ward et al., 2006). Rules and 

regulations are in place for a reason, but in times of budget crunches, there is always 

pressure to eliminate unnecessary work and waste when results confirm non-added value 

work. However, when it comes to proper leadership (AFMC/A3, 2006), the thought was 

not in terms of what the testers in the T&E community characterize as low, medium, or 

high risk, but the thought stemmed from accountability and responsibility terms—that all 

flying incurs some level of risk and proper supervision is better to measure and mitigate 

risks. In an evocative scenario, it would be extremely uncomfortable and an 
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embarrassment for the test team to explain to leadership about how a low risk mission 

flown by an AFRL contractor experienced a Class A mishap when the mishap 

investigation revealed that no rated Operations Group Commander (O-6) oversight was 

discussed, as dictated by the MOA between AFRL and AFFTC. This thought-vignette 

was one of the arguments against an improvement initiative from both AFRL and AFFTC 

to reduce the scope of AFFTC oversight on low risk programs, and was quickly rejected 

at AFMC/A3. It is the very same reason why the MOA was put in place at the beginning 

of the joint AFRL/AFFTC flight safety reviews. 

 
4.3.5  Managing Risk Results 

 One of the challenging outcomes of risk assessment is that it is difficult to 

objectively quantify risks. Hence, the qualitative results discussed two main objectives. 

Two questions were answered in the optimal risk analysis section: Why is there a drive to 

de-scope the AFFTC oversight of low risk programs when AFFTC time and cost to 

review were short and less expensive than originally thought? And why do SUAV 

programs have to spend a few thousand dollars and the extra week to get the approval 

from AFFTC when there is no value added to the program? This research has also 

included the top level acceptable cost of optimal risk analysis in which the perceptual 

factors and heuristic factors were taken into account to determine whether or not the extra 

reviews at AFFTC is necessary. Motivational bias was seen as a tool that most PMs 

would use to assess risks on their programs based on the notion that their SUAVs were 

small, inexpensive, and can be replaced with commercial-off-the-shelf parts. The results 
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from cost measurement analysis, variability analysis, and optimal risk analysis will be 

tied together to come up with a threshold and reach a decision rule in the next section. 

4.4  AFFTC Threshold and Decision Rule 

 This part of the chapter will sum the previous three analyses and determine a 

recommendation for an acceptable threshold which would help PMs at test organizations 

reach a decision rule on a flight test approval process for SUAVs. According to Hillson 

(2004), an acceptable threshold defines a target against which the effectiveness of 

responses can be measured. Without such a target, too much effort might be spent on 

mitigating risk beyond what would be acceptable, or reviews might not go far enough in 

reducing threats and enhancing opportunities (Hillson, 2004). 

Several considerations and assumptions were made when attempting to estimate a 

notional cost balance statement for SUAVs. From previous estimates, the total SUAV 

assets and liabilities came to about $191,500 for a low risk program. This is roughly the 

same as a Class C mishap definition, which is the total cost of property damage, 

including all aircraft damage between $10,000 and $200,000. In addition to monetary 

loss, Class C mishaps also involve injuries that result in five or more workdays lost. 

Because of the approximate SUAV cost assets and liabilities, it is recommended that the 

decision rule threshold for cost remain at $200,000. The justification behind this cost 

threshold is that it holds true to the average cost of the SUAV flight test and anything less 

than $200,000 in total assets and liabilities is deemed a Class C mishap should an 

accident happen. In addition to the cost threshold, there is the size and weight of the 

SUAV’s airframe to consider should it crash to the ground and cause injury and damage 
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to people and property. A notional threshold in SUAV size and weight will also 

determine whether the program should go to the extra review at AFFTC.   

 It is unknown if the DoD or the FAA have rules and regulations for SUAVs based 

on their size and kinetic energy. However, research from other non-military agencies, 

such as the JAA and EUROCONTROL (2004), has proposed a cut-off line with respect 

to SUAV size and kinetic energy at impact. The JAA/EUROCONTROL reviewed the 

worldwide UAV fleet and judged the capability of existing SUAV models on their 

workload, masses, kinetic energy, airspeed, and UAV operator’s ability. The report 

proposed a guideline for the regulation of SUAV systems. Generally, most UAVs less 

than 150 kg are classified as light or SUAV systems (JAA, Weibel & Hansman, 2004). 

These SUAVs do not have to comply with the same regulations as manned aircraft, yet 

do not qualify as model aircraft in Europe. However, they are required to operate within 

restrictions, such as daylight operations and within the visual range of the operator, and in 

restricted airspace (JAA, 2004). Larger UAVs weighing more than 150 kg, with a kinetic 

energy at impact of more than 95 kJ flying in unrestricted airspace or outside the visual 

range of the operator will be required to be flight tested and approved in a similar manner 

to that of manned aircraft (JAA, 2004).  

 
4.4.1  Notional Threshold 

Based off of the notional cost threshold and the proposal from the 

JAA/EUROCONTROL report, this research proposes using the same standard and 

regulation based on the size and energy criteria as that of the JAA/EUROCONTROL, and 

recommends that the DoD and FAA adopt the same technique, or something similar. 
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Figure 4.6 provides a notional decision rule matrix incorporating size and energy criteria 

as it pertains to the evaluation of SUAV flight test approval process. The notional 

decision rule matrix is flexible and can be used given the dependencies of many heuristic 

factors based on risk assessment and the experience that comes with it. These factors 

include the environment in which the SUAV is flown, the maturity of the system, and the 

product weight, size, speed, and complexity. The decision rule matrix assumes that the 

SUAVs are flown in restricted airspace.  

 

 

Figure 4.6: Notional Threshold 
 

The framework for adoption of this decision matrix is based on the fact that low 

cost SUAVs with simplistic designs should require less review time. The framework also 

allows the test team and those at AFFTC and AFRL to assess the risks involved in some 

of these SUAV programs before a decision is reached. It provides test teams a notional 
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“tipping point” where AFFTC safety reviewers would essentially add value to the flight 

approval process. For example, the FOA may spend a greater amount of time on 

programs that are high cost and/or the systems involved are larger than the average sized 

UAV that is usually tested.  

 
4.4.2  Notional Decision Rule Matrix and Outcome 

Sometimes, decision-making follows a simple rule; people view the problem in a 

stereotyped way and often determine if the given situation is common or familiar based 

on their past experiences (Klein, 1998). Likewise, if people decide that the situation is 

uncommon or unfamiliar, then they follow an alternate safer decision (Klein, 1998). 

Quadrants 1 and 4 in the decision rule matrix clearly demonstrates Klein’s successful 

decision making model (1998), that the situation is either common (from past 

experiences) or uncommon (alternate safe decision). Quadrants 2 and 3 differ in their 

level of consequences, as the decision is to have either the extra review or no extra 

review. Quadrant 2 is deemed acceptable in daily operations because of its conservative 

decision which leads to low consequence (Klein, 1998). Quadrant 3 is not acceptable 

because it may lead to highly consequential damage or injury (Klein, 1998). Figure 4.7 

shows how decisions are made based on the PM’s experience with the program and the 

given situation. 
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Figure 4.7: Notional Decision Rule Matrix and Outcome  
(Modified from Klein, 1998) 

 
 
4.4.3  Meta-language and Heuristics 

 In order to better define the notional decision rule quadrant as shown in Figure 4.6 

and Figure 4.7, one may be inclined to describe risk using meta-language. Risk meta-

language is a structured description of a risk which separates cause, risk, and effect. 

Meta-language allows risk analysis to provide a three part structured risk statement that 

should ensure risk identification through a heuristic approach (Hillson, 2008).  The risk 

meta-language format can be written like this: “Because of [cause(s)], [risk] might occur, 

which would lead to [effect(s)].”  

 Causes are present facts or conditions which can give rise to risks (Hillson, 2008). 

Once the cause is identified, one can determine the risk by asking “so what?” which 

would lead to a decision on the uncertainties about the cause. The effects stem from the 
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conditional future state that the risk decision produces. With respect to the notional 

decision rule quadrant, the risk meta-language can be written in four separate formats for 

each quadrant, as shown in Table 4.3. 

 
Table 4.3: Meta-Language and Decision Rule 

 
1. “Because my UAV program is expensive and its impact energy is high [cause], I 

should increase my time and resources in risk reduction [risk decision], which should 
lead to low mishap probability and no losses [effect].” This meta-language implies 
the UAV program is expensive and heavy at impact, to which the PM would make the 
decision to have the extra review at AFFTC in order to mitigate future risks. 

2. “Because my UAV program is expensive and its impact energy is low [cause], I 
should make some effort in risk reduction [risk decision], which should lead to low 
mishap probability and expect low losses [effect].” This meta-language implies that 
the UAV, although lightweight, is still expensive, which would lead the PM to invest 
a conservative amount in risk reduction at AFFTC in order to reduce future mishaps, 
which would otherwise cause the expensive UAV to crash and incur greater losses. 
The effect is a lower expected loss due to the initial risk reduction effort. 

3. “Because my UAV program is inexpensive but its impact energy is high [cause], I 
should not invest too much time and effort in risk reduction [risk decision], which 
may yield high mishap probability from risk [effect].” This meta-language suggests 
that the UAV, although heavy, is inexpensive and probably simple to build. The risk 
decision is to forgo with the extra review due to its inexpensiveness; however, the PM 
should expect the risk of failure (mishaps) to be high since it does not go through the 
extra review. 

4. “Because my UAV program is inexpensive and its impact energy is low [cause], I 
should not invest too much time and effort in risk reduction [risk decision], which 
could lead to medium or low probability of a mishap [effect].” This meta-language 
suggests that the UAV is inexpensive and lightweight, therefore, the PM should not 
need the extra review before flying, however, the probability of a mishap is minimum 
or low due to the lack of reviews.   

 

An area of concern in the decision rule is where SUAVs exceed the proposed 

mass and kinetic energy at impact criteria but they are under the $200,000 threshold 

(decision quadrant 3). The big mass and high kinetic energy at impact may present a 

hazardous flying experience should a mishap occur on the ground with injury to 
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personnel involved. This would create a cautious choice for all personnel involved in 

deciding whether or not AFFTC is needed and if it would add any significant safety 

comments in the safety review process. Therefore, this framework and decision rule is 

based on an experienced judgment and heuristic ability of the UAV operator and the test 

team to control the vehicle. 

 In summary, risk meta-language is a useful tool for clarifying risk descriptions. 

The simple three-part framework and decision rule offer general guidelines and rule-of-

thumb principles that an experienced PM may be able to find risk, uncertainties, and the 

effects of risk decisions. There is no best approach in making a decision in whether or not 

to add the extra review from AFFTC. The best approach may be answered with “it 

depends.” It depends on the cost of the UAV, the level of sophisticated hardware 

involved in the UAV, the level of details and complexity of the risk process, and any 

external factors that play in UAV test flights.  

4.5  Application of Notional Threshold and Decision Rule Matrix 

 After collecting SUAV data with total cost, mass, and impact energy (see 

Appendix C), this research plots 16 AFRL SUAV programs using the notional threshold 

and decision rule matrix for further analysis, as shown in Figure 4.8. Notice that the 

majority of the SUAV programs from 2011 were lightweight (less than 150 kg) and less 

than $200,000. As seen in Figure 4.8, one SUAV program had cost, weight, and kinetic 

energy which exceeded the notional threshold. This program experienced a flight mishap, 

which was probably caused by the vehicle’s immaturity as data showed that the vehicle 

had less than one hour of total flying time. Another SUAV (quadrant 2) cost more than 
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$200,000, but its mass and kinetic energy were less than the notional threshold; it also 

experienced a mishap. However, unlike the SUAV mishap in quadrant 1, this vehicle had 

more flying time and was considered mature. The third SUAV mishap (quadrant 4) was 

under the cost threshold and proposed mass and kinetic energy. This particular vehicle 

was considered mature with four sorties and over nine hours of total flying time.  

 

 

Figure 4.8: 2011 SUAV Flight Tests 

 
 Based on the limited data and the three mishaps given, the above figure shows 

that there is no correlation between flight mishaps and an SUAV’s cost and their physical 

sizes and energy. Nor there is any correlation between system maturity (total flying 

times) and flight failures. Figure 4.8 also shows that the majority of SUAVs submitted for 

flight testing are less than $200,000 and below that of the proposed mass and kinetic 
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energy threshold. Furthermore, AFRL mishap data from previous years shown in Figure 

4.9 reveals that the majority of mishaps were deemed as Class E events, which are 

occurrences that do not meet reportable mishap classification criteria, but are important to 

investigate and report for mishap prevention. A total of 46 mishaps were Class E events, 

eight were considered as Class C mishaps, and only one resulted in a Class B mishap 

from 2007 to 2012.  

 

 

Figure 4.9: AFRL Mishaps by Fiscal Year 

 
Essentially, SUAVs are sometimes prone to system failure; therefore, the flight 

approval process for SUAVs should be based on the judgmental cost and the proposed 

mass and impact energy. After all, SUAVs are still a relatively new platform with many 

opportunities for research and development. An appealing aspect of SUAV development 

is the fact that the majority of AFRL SUAVs are inexpensive, simple, and tiny to build 

and assemble versus larger UAVs or manned aircraft.  
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With a total cost less than or equal to $200,000 and a small and light weight 

airframe, an experienced SUAV operator could fly the SUAV without experiencing a 

mishap or cause extensive damage to people and property. Therefore, in consideration of 

an SUAV program, it should not necessarily adhere to the extra scrutiny that takes extra 

time and spends additional resources of the flight test team. Innovations and 

breakthrough technologies should not be hampered by policy for the sake of a $200,000 

or less mishap. However, for programs that are well over $200,000, its size and 

complexity make them a primary target for safety reviews. Therefore, it is within reason 

to have the extra reviews and operational authority to approve the flying machine.  

4.6  Summary 

 This chapter has presented the results and analysis from data gathered from the 

flight test offices. Starting with the cost measurement analysis and the notional cost 

balance statement for an average SUAV program, the initial results revealed that the total 

time and cost in AFFTC review did not present a significant investment in time and 

money from the test team at AFRL. Although the cost and time were minimal, having the 

additional feedback from the FOA at AFFTC may also add some risk mitigations to the 

test plan. However, further interviews with the AFRL T&E Office revealed that the 

feedback coming from AFFTC often lacks interest and value to the test plan. 

Additionally, cost sensitivity analysis results confirmed that SUAV program costs are not 

sensitive to system maturity, but rather to the payloads carried by the SUAVs. Data from 

the variability analysis confirmed that there was heavy workload and firefighting support 

at the AFRL T&E Office when PMs and test teams failed to submit standardized test 
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plans on time with adequate notifications of upcoming tests. Variability simulation 

showed a bottleneck at the AFFTC support due to the push effect caused by accumulated 

tests and late notifications from the AFRL T&E Office. Lastly, a top level risk analysis 

was conducted using perceptual factors and heuristic factors to determine whether or not 

the extra reviews at AFFTC were necessary. A notional optimal level of risk, including 

the noninvolvement from AFFTC, which decreased the total costs and time incurred in 

the flight approval process and SUAV operation was developed, but includes a cautious 

warning.  

Finally, in combining all three earlier analyses, this study creates a top-level 

AFFTC threshold and decision rule recommendation, which was determined from the 

average $200,000 SUAV program cost and the weight and impact energy of the SUAV. 

The decision rule quadrant and the successful decision model should allow the test team 

and those at AFFTC and AFRL to assess the risks involved in SUAV programs before a 

decision is reached. It also allows test teams to determine a “tipping point” where AFFTC 

safety reviewers would essentially add value to the overall flight approval process. 
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V.  Discussions and Conclusions 

 

This chapter provides discussions and conclusions based on results and analysis 

of this research. Recommendations are provided with a threshold and decision rule 

approach in the critical chain of SUAV flight approval process. Meta-language and 

heuristics are used to identify and describe risks by separating the causes from uncertain 

events. The following section summarizes recommendations for SUAVs’ flight approval 

process and their typical characteristic attributes which include being inexpensive, 

simple, and often fast to acquire. Next, this chapter wraps up with the research objectives 

and answers the questions that were asked in the introductory chapter. Additional 

observations are made on risk management by leadership and the lack of buy-in from 

leadership to allow AFRL to have full authority on low risk programs. Lastly, this chapter 

summarizes its conclusions with limitations for this study and suggestions for future 

research. 

5.1  Capturing Research Objectives 

 This study provided an overarching analysis of the SUAV flight test process 

currently used by AFRL with oversight from AFFTC. The objective was to establish a 

measure of benefit for an abbreviated flight test process. While the objective has been 

met with the notional decision rule matrix, along with ranges for the cut-off cost and 

SUAV size and impact energy. However, it also revealed a management approach that is 

difficult to quantitatively measure, and requires years of program management and flight 

test experience in determining the risk of forgoing AFFTC involvement.  
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In approaching transparency and improving safety reviews of the flight test 

program, multiple layers of safety reviews add benefits to mishap mitigation and 

accountability, yet they may be time consuming for PMs who want to accelerate their 

tests. Therefore, is it necessary for SUAVs to have the same criteria applied as that of a 

larger, manned aircraft in flight test approval process? The short answer is yes and no. 

Safety and accountability are two critical issues in flight testing; however, they should 

not create an environment in which innovation and development are held back because of 

a simple mishap from a low risk test plan. This leads to another question which was 

raised at the beginning of this study: Do SUAVs have to go through the same mishap 

investigation and reporting process? Evidence from AFRL T&E Office has suggested 

that these mishaps were minimal, and sometimes they were expected. There is no doubt 

that flight safety and mishap mitigations are applied at every step of the flight approval 

process, as instructed in numerous AFIs concerning flight testing. Some of these mishaps 

can be as simple as a crash landing on an unpaved runway that caused damage to the 

propeller of the SUAV, but it still resulted in weeks of mishap investigation and going 

through the return to flight approval process. Nevertheless, not all mishaps are minute; a 

program at threshold price of $200,000 with expensive payload would certainly raise 

concerns if there was no oversight on safety reviews from an appropriate authority.  

In contrast to the traditional military standards on SUAV flight tests, the DoD 

ought to look into research from non-military specifications. This study has developed a 

notional decision rule based on the proposed JAA/EUROCONTROL (2004) technique on 

SUAV weight and kinetic energy at impact. The consequences of using such a technique 

would simplify the SUAV flight test approval process and could save money in the long 
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run. With a simplified approval process, R&D organizations might be able to increase 

and expedite the weapons development needed for the warfighters. This coincides with 

the current DoD policy of supporting intelligence, surveillance, and reconnaissance 

missions globally. Moreover, an abbreviated approval process for an SUAV is greatly 

needed for rapid reaction and rapid deployment to the theatre of operation to support the 

warfighters, as opposed to the generic flight test approval process. 

Additionally, data from cost sensitivity and variability analyses showed that 

system maturity costs were varied with SUAV payload costs. Program managers are 

always fighting system instability and the risk of uncertainties in the program. These 

uncertainties may be caused by outside influences such as technology, environment, and 

political and financial situations. By prioritizing a list of “must haves” and “good to 

haves,” test teams may be able to minimize the cost of the program and also make it more 

manageable in determining risks and use the decision rule to determine whether to 

include reviews by the AFFTC authority. The variability analysis showed a bottleneck 

occurring at the FOA due to variability in the process caused by the constant flooding of 

test packages coming from AFRL to the FOA. 

In summary, a generic standardized regulation for SUAVs may help the 

separation of risk assessment and risk management. Differentiating between the two may 

prove helpful in determining risk analysis when weighing the benefits of an abbreviated 

flight test process and the costs associated with going through the entire flight approval 

process. Using a current generic standardized regulation in flight test approval process 

may have the advantage of consistency, predictability, and administrative efficiency. 

However, there are also disadvantages in having SUAVs going through the same 
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standardized flight test approval process as those of larger manned aircraft. These 

disadvantages can include overgeneralizing SUAVs as having a complex integrated 

system like those of larger manned aircraft. Another disadvantage is the misallocation of 

resources and schedule; unlike larger manned aircraft, SUAVs are generally operated by 

a small team of engineers and observers. Lastly, by putting SUAVs through the same 

flight test approval process required of larger manned aircraft, there will be some delays 

which may eventually cause research and development to stop. This mixture of an overly 

unwieldy risk assessment policy and the potential for interrupted scientific research 

would probably cause delays and frustration for the PM and the test team. 

5.2  Impact of Leadership Risk Management Style 

One of the major surprises from this study was the unexpected perspective from 

AFRL on the lack of value and attention provided by AFFTC reviews. It should be noted 

that this study does not suggest that the FOA at AFFTC lacks the expertise to provide 

adequate reviews to the safety of the test missions. This study, however, advocates the 

notion of a “tipping point” where AFFTC safety reviewers would essentially add value to 

the overall flight approval process, as discussed in the previous chapter. This tipping 

point is determined using the notional decision rule matrix. With manning levels in the 

Air Force already strained, and the fact that 90% of AFRL’s flight test programs are 

considered by the AFRL and AFFTC as low risk, the level of authority and 

empowerment in low risk programs should be delegated to those personnel in the field. 

This delegation would greatly benefit both parties if low risk programs were approved at 

AFRL instead of AFFTC. It would also reduce the bottleneck problem at the FOA while 
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increasing opportunities for further flight testing by AFRL. Homan et al. (2011) also 

identified these issues and the potential opportunities to improve the flight test process. 

 A problem here lies in the risk adverse mismanagement style of leadership. Stulz 

(2009) and Taleb et al. (2009) discuss ways that organizations mismanage risk; one of 

them is the mistake of relying on historical data and becoming convinced that studying 

the past will help better manage risk in the future. In essence, leadership relies on these 

historical events (i.e., past mishaps from AFRL test flights) to control risk by predicting 

extreme events. However, low-probability, high-impact events are almost impossible to 

forecast, and “because of socioeconomic randomness, there is no such thing as a ‘typical’ 

failure or a ‘typical success’” (Taleb et al., 2009). Numerous joint AFFTC/AFRL 

proposals have been funneled up to leadership for the delegation of low risk programs to 

AFRL, yet their status is unknown or leadership refuses to consider them. This overly 

conservative risk management approach of leadership creates a non-empowered 

environment for those who want to test their programs and for those who review them. 

5.3  Conclusions 

This research effort sought to establish top-level quantitative and qualitative 

measures of benefit for an abbreviated flight test process for SUAVs. Issues such as cost 

sensitivity, process improvement, and risk management were discussed in this study. The 

literature review exposed performance gaps, cost and data variability, as well as buy-in 

from AFRL and AFFTC leadership to delegate low risk programs to AFRL; however, 

this was rejected due to the lack of accountability in small, low-risk AFRL programs. The 

literature also reviewed the importance of flight test and the factors that affect the 
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effectiveness of the flight testing. The increasing trends in SUAV technology 

development combined with the ever increasing DoD investment for SUAVs in the 

military has allowed greater R&D effort, yet it is sometimes limited and scaled back 

because of outdated policy and regulations on SUAV operations in the NAS and 

restricted airspace. The methodology section explained the research design for this study 

based on cost and time criteria, combined with data variability simulation and a heuristic 

approach to risk management. 

Research and development in new or un-tested technology often times is 

susceptible to additional risks, such as flight mishaps while airborne and during takeoff 

and landing. Often times, some form of risks in new R&D technologies may be 

acceptable in the pursuit of knowledge. For some risks, such as SUAV flight testing, it 

produces benefits to flyers and operators in the form of greater understanding of the 

vehicle’s flight characteristics and technological improvements. The findings from this 

research conclude with a SUAV threshold and decision rule matrix that will empower 

leadership to make decisions based on relevant data appropriate for SUAVs. 

5.4  Limitations and Future Research 

There is no doubt that the findings from this research are limited due to the 

assumptions that it has made. These limitations stem from the lack of adequate data in 

manpower and resources necessary to capture the entire SUAV business. A larger and 

broader examination of each SUAV program may give rise to improved assumptions. 

Another limitation is the data quality in this study, as such data are often limited in 

distribution due to the sensitivity of these programs. There are definitely more concerning 
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issues than what is captured in cost and SUAV weights and sizes in the flight test 

approval process. Approving routine and safe flight tests for SUAVs involve several 

issues that touch on nearly every aspect of the aviation field, including safety, security, 

air traffic, regulatory, and socio-economic. These categories should be addressed and 

assessed in future research to present a grander view of the factors and their impacts 

associated with SUAV flight tests. 

Although this study addresses some of the problems and shortcomings from both 

AFFTC and AFRL organizations and also provided a decision rule recommendation 

based on its methodology, there are still areas that can be improved and expanded upon. 

With better cost data from all previous years’ of AFRL flight test programs, future 

research would be improved on SUAV management costs and their estimates for further 

cost-benefit analysis. Another area of research that would greatly benefit the flight 

approval process for SUAVs is to study the variation of UAV sizes and costs and 

determine if there is variability in the processing time based on their sizes and 

manufacturing and operating costs.  

This research had difficulty determining the optimal level of risk when 

approaching the approval process in the critical chain. So the optimal level of risk and the 

new total cost presented in this study is merely an empirical experiment based on 

available data. Future research should utilize the notional optimal level of risk and 

determine the appropriate cost of risk abatement in order to find a more quantitative 

overall total cost and optimal level of risk. Future research should also conduct more 

appropriate interviews with the FOA at AFFTC, program leaders, and SUAV operators in 

the overall process. This is an area that would greatly benefit from further discussion and 



 

88 

could be broadened in future research that includes SUAV operators’ workload, 

situational awareness, and human effectiveness issues in SUAV operating environments. 

Lastly, since this research only focused on one flight test approval process being done per 

the MOA between AFFTC and AFRL, it is strongly recommended that future follow-on 

research should seek to generalize and validate this approach and methodology. 
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Appendix A:  Memorandum of Agreement between AFRL and AFFTC 

 

2006-06-06MA 

MEMORANDUM OF AGREEMENT 

BETWEEN 

AlRFORCERESEARCHLABORATORY 

AND 

AIR FORCE FLIGHT TEST CENTER 

I. PURPOSE. This memorandum of agreement is to establish a working relationship 
and J?rocesses to support the Air Force Flight Test Center (AFFTC), 412th Test Wing, 
412 Operations Group operational control (OPCON) for all flight activities conducted 
by the Air Force Research Laboratory (AFRL). The AFRL has overall responsibility for 
program management and administrative support for its research programs. The AFFTC 
has responsibility for the safe and effective conduct of flight operations for AFRL 
research programs requiring flight activities. The AFMC/A3 defers OPCON to the 412th 
Operations Group Commander (OG/CC) for AFRL research programs involving military, 
government civilian or contractor flight operations. To avoid duplicate reviews, 
inspections or evaluations, an integrated team approach for conducting program flight 
operation oversight will be used. 

2. REFERENCES. The responsibilities of flying operations under the supervision of 
the AFFTC and the 412th Operations Group are detailed in Air Force Instructions. 
Ground and flight activities will comply with applicable regulatory guidance. 
Modifications of and exceptions to AFI guidance must be coordinated through the 412th 
OG/CC, in writing, to the designated Office of Primary Responsibility for the specific 
instruction. Below is a list of the primary Instructions applicable to flight operations. 

AFI 91-206(1) 
AFI 91-204 and AFMC Sup 1 
AFI 91-202 and AFMC Sup I 
AFFTCI 91-5 
AFI 99-103 and AFMC, AFRL supplements 
AFI 11-401 and AFMC Sup 1 
AFI 11-202 volwnes 1, 2, and 3; AFMC supplements 
AFI 11-2FT volumes 1, 2, and 3 
AFJI 10-220 and AFMC Sup 1 
AFI 10-206 

3. SCOPE. This agreement shall apply to military, government civilian and contractor 
flight operations regardless of program size or location of actual flight operations. 

4. RESPONSIBILmES. AFRL will continue to use processes in place for managinl 
its test programs as outlined in AFI 99-103 and its supplements. The AFFTC and 412 
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Operations Group will provide effective flight operations ove~sight of all AFRL test 
planning and flight execution. As clarification, the following specifics apply: 

4.1 AFRL RESPONSffiiLITIES. 

a. Provide the 412th OG with program procedures and documentation to meet the 
intent of AFI 11-401 and its AFMC and AFFTC supplements. 

1) Monthly, prior to the last day of any month, the AFRL will provide the 
412th OG with an electronic summary of all program flight activity 
accomplished by each program over the last month, and the scheduled 
flight activity expected for the next month. 

2) As a minimum, each program will be required to document individual 
flight authorizations using Aeronautical Orders, IMT Form 81 or IMT 
Form 5416 through the 412th OG. This will be accomplished even ifthe 
aircraft to be flown is not USAF owned. 

3) Daily flight authorization will be accomplished locally using the 
procedures detailed in AFI 11-401 and its AFMC and AFFTC 
supplements. The owning AFRL Division Chief will act as the flying 
squadron commander and authorize the daily flying schedule, with copies 
faxed to the 412th OG before flight. 

b. Provide the 412th OG with appropriate and sufficient evidence of aircrew and 
operator qualifications, training and currencies required to perform in-flight duties 
as detailed in the program test plan and to meet the intent of AFJ ll-202V1, V2, 
V3 and their AFMC and AFFTC supplements. 

1) The specific approval for in-flight duties will be given by the 412th OG. 
It is the AFRL program manager's responsibility for ensuring individuals 
performing any in-flight duties are certified as qualified and current. 
Modifications of and exceptions to AFI guidance must be coordinated 
through the 412th OG/CC, in writing, to the designated Office of Primary 
Responsibility for the specific instruction. 

2) AFRL programs that fly with airborne and/or ground station assets 
valued at over $200,000, is assessed as MEDIUM or HIGH risk or fly 
under an FAA approved Certificate of Authorization (COA) as outlined in 
FAA regulation 7610.4 will comply with all AFI 10 and 11 series 
instructions. 
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c. Provide a rated billet at AFRL for the AFITC to fill with a Major or 
Lieutenant Colonel acting as a local Test Representative representing the 412th 
Operations Group. Test Representative responsibilities will be detailed in the 
positionjob description. Duties will be determined collaboratively with AFRL 
and the 412th OG. 

d. Coordinate the technical and safety review information obtained through 
standard AFRL Configuration Control, Technical Review and Safety Review 
Board (CCB!TRB/SRB) processes with AFFTC organizations. 

I) For all AFRL research programs involving flight operations, copies of 
CCBrrRB/SRB packages and test plans will be provided to the 412th 
OG/CC at least fourteen days prior to the first planned test activity. More 
time may be required for review and coordination if the program is 
assessed by AFRL safety as MEDIUM or HIGH risk. 

2) AFFTCI 91-5 details the signature authority for LOW, MEDIUM and 
HIGH risk test plans for AFFTC programs and is modified below to 
support this MOA . 

. 
Oos Grouo CC or cauivalent Aoorove Info Info 

I Test WinR CC or cauivalenl Coord ADo rove Info 
I AFFTCCC Coord Coord Approve 

LOW rislc.test plans will be apfroved by the owning AFRL Division Chief or their Deputy 
and coordinated through 4121 OG before the start of any flight operations. MEDIUM 
rislc. test plans will be /ointly approved by the ow71ing AFRL Technical Directorate 
Director and the 4 I 2' TWICC. HiGH rislc. test plans will be jointly approved by the 
AFFTCICC and the AFRUCC. A formal approval briefing may be requested by the 
approval authority for any test plan, but is required for all HIGH rislc.test plans. All 
coordination comments will be resolved before final approval of test execution and made 
available to both AFFTC and AFRL leadership. 

3) AFFTCI 91-5 details the signature authority for LOW, MEDIUM and 
HIGH risk test cards for AFFTC programs and is modified to support thls 
MOA as follows: 

The test cards must be approved before each mission but no earlier than one week before 
the mission. For LOW RiSK tests, the AFRL Division Chief (or equivalent) will approve 
the cards. For MEDIUM RISK tests, the AFRL Technical Directorate Director and the 
412"' Operations Group Commander (or equivalent). will approve the cards. For HIGH 
RiSK tests. the AF RUCC and the 41 i" Test Wing Commander (or equivalent) will 
approve the cards. 

Once a mission is briefed and the mission slips due to a non-safoty related reason. but 
otherwise remains unchanged, the appropriate approving official may elect to grant 
approval by telephone or on an "until-flown" basis for up to one weelc. after original 
approval. If more than one weelc. has passed since the original approval, the approval 
authority must be contacted and the date on the signature updated. 
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4) Test conduct will otherwise comply with AFFTCI 91-5 procedures 
unless modified or equivalent procedures are approved through 
AFFTC/SET and the 412th OG/CC. 

e. Provide a Government Flight Representative (GFR) for all AFRL programs 
that fall under this MOA and require GFR oversight. The assigned GFR will 
coordinate with both the AFRL and 412th OG when performing their duties. 

f. Act as the lead agent and liaison with the 412th OG in all cases where 
configuration control and aircraft modifications affect the research program's test 
plan approved baseline configuration. 

4.2 AFFTC RESPONSffiiLITIES. 

a. Provide the AFRL with a flight authority review and approval of all flight 
activities to ensure AFRL test plans are conducted in accordance with applicable 
Federal Aviation Regulations and/or Air Force 10 and 11 series instructions and 
their AFMC and AFFTC Supplements. This responsibility·may be delegated to a 
Government Flight Representative (GFR) when required by contract. 

1) Process all waivers to governing regulations concerning flight test 
operations. 

2) Assist AFRL with establishing and approving pilot and operator 
qualification, training and currency standards for AFRL research programs 
involving flight activities to meet the intent of AFI ll-202Vl, V2, V3, 
AFI 11-2FTV1, V2, V3 and their AFMC and AFFTC supplements. 

3) Assist AFRL with establishing and approving flight authorization 
requirements for AFRL research programs involving flight activities to 
meet the intent of AFill-401 and its AFMC and AFFTC Supplements. 

4) Assist AFRL with establishing and executing an Operational Risk 
Management processes associated with AFRL research programs. 

5) Establish processes to provide AFRL research programs involving 
flight activities with the Flight Crew Information File (FCIF). 

b. 412th OG will provide AFRL aircraft mishap reporting and accountability 
assistance as the flight authority for all flight operations. Reporting and 
accountability will be in accordance with AFI91-202, 91-204 and 91-206(1) and 
AFMC and AFFTC supplements. 
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1) 412111 OG will be the grounding and return-to-fly approval authority for individuals involved in a Class A or Class B mishap. 

2) AFRL will retain mishap accountability and investigation 
responsibilities unless transferred IA W AFI guidance. 

c. Coordinate and approve the technical and safety review information obtained through AFRL Configuration Control, Technical RevieW and Safety Review Board (CCBfTRB/SRB) processes with AFFTC organizations to support AFRL research programs while complying with the intent of Air Force 91 and 99 series Instructions and their AFMC and AFFTC supplements. 

1) Provide safety and technical assistance for AFRL research programs that. are outside the expertise of AFRL. This may include, but is not limited to, providing a representative from within tbe 412• OG to attend program planning meetings, assist with the preparation of safety and/or technical documentation or attend TRB and/or SRB boards. · · 

2) For all MEDIUM and HIGH risk assessed test plans, a 412111 00 member will be assigned to support the AFRL research program with test planning and integration with AFFTC technical, safety and flight test execution processes. 

5. TERM OF AGREEMENT AND RIGHT TO TERMINATE. This memorandum becomes effective on the date signed by both organizations and remains in effect indefinitely. Termination of this agreement is only valid if both the AFRllCC and the 412th 00/CC agree in writing to terminate the agreement Amendments to this agreement may be made with at least 90-days notification by either party, in writing, detail~g the procedures and processes to be amended. This agreement shall be reviewed annually. 

J4£/?@.5? 
TED F. BOWLDS, Maj Gen 
Commander, AFRL 

L D. NEW, Maj Gen 
· tor of Operations 

C.&~£'4 -CURTIS M.~ KE, Maj Gen 
Commander, AFFTC 
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Appendix B:  Current Flight Test Process VSM 
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Appendix C:  Small UAV Costs and Mishap Data 

SUAV  Cost Per Vehicle  Vehicles Flown  Total Amount  System Maturity  Sorties  Hours  Weight (kg)  Speed (m/s)  KE (KJ)  Mishaps  Quadrant 

Alpha 60   $                 800.00   7   $          5,600.00   Mature  78  20.33  7.7  24.7  2.3  4 

Alpha 60   $                 400.00   1   $              400.00   Mature  ‐  ‐  ‐  ‐  ‐  ‐ 

Arrow MAV Glider   $             1,200.00   1   $          1,200.00   Prototype  6  0.3  0.9  8.7  0.0  4 

Basset   $         390,000.00   1   $      390,000.00   Prototype  3  0.9  317.5  61.7  604.3  Yes  1 

Bat‐3   $         318,000.00   1   $      318,000.00   New  18  44  14.5  30.9  6.9  Yes  2 

Big Stik   $             1,100.00   5   $          5,500.00   New  80  23.3  9  31.4  4.4  4 

Blacktip   $             6,200.00   2   $        12,400.00   Prototype  73  14.85  5.4  49.9  6.7  4 

BVM HiVast   $           28,000.00   1   $        28,000.00   New  12  1.5  31.7  102.9  167.8  3 

DG303   $           17,800.00   2   $        35,600.00   New  23  20.8  ‐  ‐  ‐  ‐ 

Intimidator   $             1,100.00   5   $          5,500.00   New  35  12.9  9  44.8  9.0  4 

MOP MAV BDI   $           24,000.00   1   $        24,000.00   New  2  0.2  4.5  49.9  5.6  4 

Osprey (UAV)   $             2,333.00   7   $        16,331.00   Mature  40  22.15  27.2  33.4  15.2  4 

Radian RC   $                 250.00   1   $              250.00   Mature  7  0.3  0.9  8.7  0.0  4 

Rascal   $                 549.00   1   $              549.00   Mature  31  4.5  ‐  25.7  ‐  ‐ 

RMAX   $         380,000.00   2   $      760,000.00   Mature  0  0  93  11.3  5.9  2 

ScanEagle   $         100,000.00   1   $      100,000.00   Mature  1  1  20  41.2  17.0  4 

Silver Fox   $         100,000.00   1   $      100,000.00   Mature  4  9.5  16.3  28.3  6.5  Yes  4 

Skate   $           30,000.00   4   $      120,000.00   New  64  24.5  0.9  25.7  0.3  4 

Tandem Wing   $             3,000.00   2   $          6,000.00   Mature  7  0.6  ‐  14  ‐  Yes  ‐ 

Unicorn   $           17,000.00   1   $        17,000.00   Mature  39  15.9  4.5  24.7  1.4  4 

Unicorn   $           22,400.00   1   $        22,400.00   Mature  ‐  ‐  ‐  ‐  ‐  ‐ 

Unicorn   $           18,700.00   3   $        56,100.00   Mature  ‐  ‐  ‐  ‐  ‐     ‐ 

 $     1,462,832.00    $  2,024,830.00   523  218 
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SUAV Program Asset Cost  $133,000.00  $ 133,000.00 $66,500	x	2	SUAVs	
   

Test Execution Cost  $     30,000.00    $     30,000.00   Estimated	range	cost	
AFRL Review Cost 

     AFRL Risk Abatement Cost  $    2,054.79  $        2,100.00  1	GS‐15	with	5	working	days	($150K	salary)	
     Value Added Work  $  20,000.00  $     20,000.00   1	GS‐15	($150K	salary)	with	2	working	days	+	4	junior	member	($70K	salary)	with	25	working	days	
     Non-value Added Work 

          Waste  $        1,178.08   $        1,200.00  1	GS‐15	($150K	salary)	with	1	working	day	+	4	junior	members	($70K	salary)	with	1	working	day	
          Necessary Waste  $        1,534.25   $        1,500.00  4	junior	members	($70K	salary)	with	2	working	days	
AFFTC Review Cost  

     AFRL Risk Abatement Cost  $    2,465.75  $        2,500.00  1	O‐5	($150K	salary)	with	6	working	days	
     Value Added Work  $       410.96  $           400.00  1	O‐5	($150K	salary)	with	1	working	day	
     Non-value Added Work  

          Waste  $           821.92   $           800.00  1	O‐5	($150K	salary)	with	2	working	days	
          Necessary Waste  $                      ‐     $                      ‐   
         

Total UAV Asset and Liabilities  $   191,465.75  $   191,500.00 
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