# Air Force Institute of Technology AFIT Scholar

Theses and Dissertations

Student Graduate Works

3-22-2012

# Analysis of the Impact of Data Normalization on Cyber Event Correlation Query Performance

Smile T. Ludovice

Follow this and additional works at: https://scholar.afit.edu/etd Part of the <u>Computer Sciences Commons</u>, and the <u>Systems Engineering Commons</u>

**Recommended** Citation

Ludovice, Smile T., "Analysis of the Impact of Data Normalization on Cyber Event Correlation Query Performance" (2012). *Theses and Dissertations*. 1275. https://scholar.afit.edu/etd/1275

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.



#### ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER EVENT CORRELATION QUERY PERFORMANCE

THESIS

Smile T. Ludovice, Master Sergeant, USAF

AFIT/GIR/ENV/12-M03

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

# AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the United States Government and is not subject to copyright protection in the United States.

# ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER EVENT CORRELATION QUERY PERFORMANCE

### THESIS

Presented to the Faculty

Department of Systems and Engineering Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Information Resource Management

Smile T. Ludovice, BS

Master Sergeant, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

### AFIT/GIR/ENV/12-M03

# ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER EVENT

### CORRELATION QUERY PERFORMANCE

Smile T. Ludovice, BS Master Sergeant, USAF

Approved:

| $\blacksquare SIGNED$                            | 8 Mar 12 |
|--------------------------------------------------|----------|
| Michael R. Grimaila, PhD, CISM, CISSP (Chairman) | Date     |
| $\blacksquare SIGNED$                            | 8 Mar 12 |
| Robert F. Mills, PhD (Member)                    | Date     |
|                                                  |          |
| $\blacksquare SIGNED$                            | 8 Mar 12 |
| Brent T. Langhals, LtCol, PhD (Member)           | Date     |

#### Abstract

A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and when properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance, previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance. Database normalization improved majority of the queries performed using very large data sets of router events; however, performance is also dependent on the type of query executed. Queries performed faster on normalized table if all the necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall, normalization improved query performance and must be considered as an option when analyzing event logs using relational databases.

#### Acknowledgments

I would like to say many thanks to my thesis advisor, Dr. Michael Grimaila, for his unwavering support, mentorship, and patience throughout many months school and research effort. I would also like to thank Dr. Robert Mills and LtCol Brent Langhals for their guidance and support. I would also like to send my appreciation to the Information Resource Management program faculty and staff. Additionally, I want to acknowledge my fellow students and classmates for their fellowship and camaraderie.

Thanks for the support from my friends and family. Most importantly, I would like to say thank you to my wife for her love, support, and understanding all throughout this process. She gave me all the strength and encouragement to successfully graduate while taking care of our newborn son. It has been an awesome and unforgettable experience.

Smile T. Ludovice

### **Table of Contents**

|                                                                                                                                                                   | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Abstract                                                                                                                                                          | iv   |
| Acknowledgments                                                                                                                                                   | v    |
| Table of Contents                                                                                                                                                 | vi   |
| List of Figures                                                                                                                                                   | ix   |
| List of Tables                                                                                                                                                    | X    |
| List of Equations                                                                                                                                                 | xii  |
| I. Introduction                                                                                                                                                   | 1    |
| 1.1 Research Motivation                                                                                                                                           |      |
| 1.2 Problem Statement                                                                                                                                             | 2    |
| 1.3 Research Goals                                                                                                                                                | 3    |
| 1.4 Research Questions                                                                                                                                            | 3    |
| 1.5 Scope, Assumptions, and Limitations                                                                                                                           |      |
| 1.6 Thesis Overview                                                                                                                                               | 4    |
| II. Literature Review                                                                                                                                             |      |
| 2.2 Event Logs                                                                                                                                                    |      |
| 2.2.1 Types of Event Logs and Event Entries                                                                                                                       |      |
| 2.3 Current Standardization Effort                                                                                                                                |      |
| 2.3.1 Syslog Protocol                                                                                                                                             |      |
| 2.3.2 Common Event Expression (CEE)                                                                                                                               |      |
| 2.4 Purpose of Event Logs                                                                                                                                         |      |
|                                                                                                                                                                   |      |
| <ul><li>2.5 Log Analysis of Security Incidents and Complexity</li><li>2.6 Enhancing Situational Awareness, Information Assurance, and Mission Assurance</li></ul> |      |
| 2.6 1 Situational Awareness.                                                                                                                                      |      |
|                                                                                                                                                                   |      |
| 2.6.2 Information Assurance                                                                                                                                       |      |
| 2.6.3 Mission Assurance                                                                                                                                           |      |
| 2.7 Learning from Event Log Data                                                                                                                                  |      |
| 2.8 Event Correlation                                                                                                                                             |      |
| 2.9 Database Normalization.                                                                                                                                       |      |
| 2.9.1 Steps in Normalization                                                                                                                                      |      |
| 2.9.2 Linking Normalized Tables                                                                                                                                   |      |
| 2.10 Data Warehousing                                                                                                                                             |      |
| 2.11 Summary                                                                                                                                                      | 29   |
| III. Methodology                                                                                                                                                  | 30   |

# Page

| 3.1 Overview                                                          | 30  |
|-----------------------------------------------------------------------|-----|
| 3.2 Hardware and Database Configuration                               | 30  |
| 3.3 Overview of Steps in Normalization and Query Performance Analysis | 31  |
| 3.4 Loading Event Logs and Table Normalization                        | 32  |
| 3.4.1 Parsing Event Logs                                              |     |
| 3.4.2 Table Normalization with Index Table                            |     |
| 3.4.3 Table Normalization with Associative Tables                     |     |
| 3.5 Event Log Database Queries                                        |     |
| 3.6 Runtime Comparison of Normalized and Non-normalized Event Logs    | 44  |
| 3.6.1 Statistical Analysis                                            |     |
| 3.6.2 Preprocessing and Disk Space Requirements                       |     |
| 3.7 Summary                                                           | 47  |
| IV. Results                                                           | 48  |
| 4.1 Overview                                                          | 18  |
| 4.1 Overview                                                          |     |
| 4.2 Test Statistics Results                                           |     |
| 4.5 Query Performance Statistics                                      |     |
| 4.4.1 Preprocessing Time                                              |     |
| 4.4.2 Disk Space Requirement                                          |     |
| 4.5 Statistical Query Results                                         |     |
| 4.5 Statistical Query Results                                         |     |
| 1.0 Summary                                                           |     |
| V. Conclusion and Recommendations                                     | 65  |
| Chapter Overview                                                      | 65  |
| Conclusions of Research                                               |     |
| Significance of Research                                              | 66  |
| Recommendations for Action                                            |     |
| Recommendations for Future Research                                   |     |
| APPENDIX A                                                            | 69  |
| APPENDIX B                                                            | 70  |
| APPENDIX C                                                            | 71  |
|                                                                       |     |
| APPENDIX D                                                            | 118 |
| APPENDIX E                                                            | 121 |
| APPENDIX F                                                            | 122 |
| APPENDIX G                                                            | 123 |

# Page

| APPENDIX H   |     |
|--------------|-----|
| APPENDIX I   |     |
| APPENDIX J   |     |
| APPENDIX K   |     |
| APPENDIX L   |     |
| APPENDIX M   | 147 |
| APPENDIX N   |     |
| APPENDIX O   |     |
| APPENDIX P   |     |
| APPENDIX Q   |     |
| APPENDIX R   |     |
| APPENDIX S   |     |
| APPENDIX T   |     |
| APPENDIX U   |     |
| APPENDIX V   |     |
| Bibliography |     |

# List of Figures

|           | Page                                                       |
|-----------|------------------------------------------------------------|
| Figure 1: | CEE Architecture and Components9                           |
| Figure 2: | Priority for Collecting Logs12                             |
| Figure 3: | Threat Agents Yearly Trend by Percentage14                 |
| Figure 4: | Six Steps in Normalization27                               |
| Figure 5: | Example of Mapping Tables with an Associative Entity       |
| Figure 6: | Structured and Unstructured Segments of a Cisco Router Log |
| Figure 7: | Sequence of File Executions                                |
| Figure 8: | Visual Depiction of Normalized the Tables                  |
| Figure 9: | Table Structures of the Normalized Tables    38            |
| Figure 10 | : Table Structures of the Associative Tables               |
| Figure 11 | : Example of Mapping the TBaseName_Link Associative Entity |

### List of Tables

| Page                                    |
|-----------------------------------------|
| Table 1: Types of Event Logs            |
| Table 2: Core Fields                    |
| Table 3: Description of Files           |
| Table 4: Query Numbers and Purpose      |
| Table 5: SQL Queries                    |
| Table 6: Group Statistics               |
| Table 7: Independent Samples Test    51 |
| Table 8: Q1 Statistics   52             |
| Table 9: Q2 Statistics   53             |
| Table 10: Q3 Statistics    53           |
| Table 11: Q4 Statistics    54           |
| Table 12: Q5 Statistics    54           |
| Table 13: Q6 Statistics   55            |
| Table 14: Q7 Statistics    55           |
| Table 15: Q8 Statistics    56           |
| Table 16: Q9 Statistics    56           |
| Table 17: Q10 Statistics    57          |
| Table 18: Q11 Statistics                |
| Table 19: Q12 Statistics   58           |
| Table 20: Q13 Statistics   59           |
| Table 21: Q14 Statistics                |

# Page

| Table 22: Q15 Statistics          | 60 |
|-----------------------------------|----|
| Table 23: Types of Event Logs     | 62 |
| Table 24: Example Landscape Table | 63 |

# List of Equations

|            | Page |
|------------|------|
| Equation 1 |      |
| Equation 2 |      |
| Equation 3 |      |
| Equation 4 |      |

#### ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER EVENT CORRELATION QUERY PERFORMANCE

#### I. Introduction

#### **1.1 Research Motivation**

Virtually all modern organizations depend on Information and Communication technologies (ICT), collectively called "cyberspace", to accomplish their core mission processes. The United States (US) Department of Defense (DoD) uses cyberspace to conduct all aspects of military operations. The United States Air Force (USAF) is tasked to support the DoD cyberspace effort and provides a wide variety of cyber capabilities to the Joint Force Commander (JFC) (Donley & Schwartz, 2009). A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements (e.g., routers, intrusion detection systems, intrusion prevention systems, firewalls, VPNs, switches, desktop systems, servers) that comprise cyberspace. Event logs from cyber devices can yield significant information, and when properly stored, processed, and analyzed can provide timely situational awareness about the state of the cyber infrastructure. In addition, the ability to monitor cyber devices across multiple locations provides the ability to identify distributed attacks that may be missed when only viewing event logs from a single geographic location (Grimaila et al., 2011).

In cyberspace, situational awareness requires the ability to sense, understand the sensed data, and use it to determine future actions (Okolica et al., 2009). Cyberspace is an attractive unconventional domain for many nation states, terrorists, and hackers; as such, mission assurance in cyberspace is vital. For this reason, data gathered from event logs supports Information Assurance and Mission Assurance. Mission Assurance is critical to military strategies because it links several risk management programs including Information Assurance to

assure mission success (DoDD, 2010, p.19). Recent empirical studies have shown organizations are beginning to realize the importance of event logs to diagnose error and identify malicious activities (Shenk, 2009; Shenk, 2010). While the number of organizations with network event log database servers has steadily grown in the past few years, the top two reported challenges in exploiting the value of event logs are "Searching through Data" and "Analysis and Reports" (Shenk, 2010, p. 5). Difficulties in the implementation and maintenance of an event log analysis capability cause many organizations to under utilize their existing event logs (Baker et al., 2011). The USAF is not impervious to these log management challenges. Each day, millions of events are generated in USAF networks and are transported to centralized log servers where they are stored, processed, and analyzed to extract actionable information. Analysis methods must be carefully chosen as the number of stored events continues to grow monotonically. To exacerbate the situation, there is no standard for the storage of event logs, which explicitly enumerates all of the data elements present in event log that makes storage and analysis less efficient.

#### **1.2 Problem Statement**

In order to maintain situational awareness of the network, everyday USAF organizations must collect, transport, store, process, and analyze millions of events generated by cyber devices with limited resources. Analyzing millions of event logs can be cumbersome, inefficient, and resource intensive (Myers, 2010). For historical and intensive analysis, event logs are captured and stored in relational databases. Log analysts can then use database queries to conduct event correlation and search for actionable information. The logs must be analyzed in a timely manner and archived accordingly to save disk space. The efficient creation, storage, processing, and dissemination of log events are essential. Currently, the USAF employs commercial log analysis tools, which require large yearly licensing fees. However, proper Information Assurance

requires the validation and verification of the integrity of results generated by a commercial log analysis tool. To this end, organizations can use a relational database to collect and analyze event log data to provide the ability to validate results generated by commercial tools without paying additional licensing fees.

#### **1.3 Research Goals**

The primary goal of this research is to determine the impact of database normalization on database query performance in the context of analyzing events logs generated by routers in USAF networks. A study will be conducted to compare query performance between a nonnormalized database and a normalized database containing the same data for a set of representative simple and complex queries that would typically be conducted by network security personnel. The secondary objective of this research is to provide recommendations on when normalization should be used based upon tradeoffs in time, storage space, and query performance.

#### **1.4 Research Questions**

There are three primary research questions addressed in this thesis:

- What standards exist for the generation, transport, storage, and analysis of event log data for security analysis?
- 2) How does database normalization impact query performance when using very large data sets (over 30 million) of router events?
- 3) What are the tradeoffs between using a normalized versus non-normalized database in terms of preprocessing time, query performance, storage requirements, and database consistency?

#### 1.5 Scope, Assumptions, and Limitations

The scope of this research is limited to the analysis of router event logs provided collected in the Integrated Network Operations and Security Center West (INOSC-W) network from October 2010 to March 2011. A limitation of this work is that it deals only with router event logs, which is just one of many types of cyber event logs. Another limitation of the study is that it uses to a fixed number of events during the analysis. This resulted from a delay in developing and implementing the normalized database and queries. It is believed that increasing or decreasing the number of events in the database could yield dramatically different results.

#### **1.6 Thesis Overview**

This chapter describes the goals of this research and motivates the need for understanding how query performance is impacted by database normalization. Chapter 2 reviews background literature in the areas of event log management, event correlation, and the technologies being used to conduct the research. Chapter 3 presents the experimental design and the methodology used for conducting analysis of that design. Chapter 4 describes the results of the experiment and provides an analysis of those results. Finally, Chapter 5 presents the conclusions of the research, recommendation for action, and recommendations on future research.

#### **II.** Literature Review

#### 2.1 Chapter Overview

In this chapter, the literature relevant to the research objective will be reviewed. Specifically, the subject of event logs and event correlation will be explored, and a review of database performance will be covered.

#### 2.2 Event Logs

Event logs also known as audit trails, log files, audit logs, data logs are text streams recorded from information systems that contain a combination of the following data: timestamp, event number, type, source, destination, user identification, and message of the event that occurred (MITRE, 2010a; MITRE, 2010b). Initially, event logs were used as an industrial tool for monitoring, troubleshooting, and maintenance of machines. It was a source of information to diagnose internal technical issues without much added benefit for the enterprise network and organization as a whole (Sah, 2002). In 1973, the DoD issued an Automatic Data Processing (ADP) Security Manual specifically for protecting classified systems which required maintenance of audit log or file that records the historical use of ADP systems; this allowed administrators to regularly inspect system activities (Department of Defense, 1973). A 1980 technical report began to considered computer logs as a tool to monitor and audit security incidents (Anderson, 1980). During the same period, event correlations in combination with other techniques were used in artificial intelligence. Today, organizations value event logs for more than just a passive diagnostic tool; it is a security and an operational asset (Shenk, 2010). The advances in computer technology, techniques, and the amount of computer logs that can be collected presents a prime opportunity to analyze and learn from multiple event logs with millions of data using an effective and efficient methodology.

Essentially, there is no agreed upon format or industry standard for event logs as seen on the examples below, which makes it more difficult to analyze (MITRE, 2010). There are some similarities in the type of data however, for the most part each device or manufacturer has its own format and type of fields in their event logs.

Example of Cisco of event log (Cisco Understanding, 2011)

```
*May 1 22:12:13.243: %SEC-6-IPACCESSLOGP: list ACL-IPv4-E0/0-IN permitted
    tcp 192.168.1.3(1024) -> 192.168.2.1(22), 1 packet
*May 1 22:17:16.647: %SEC-6-IPACCESSLOGP: list ACL-IPv4-E0/0-IN permitted
    tcp 192.168.1.3(1024) -> 192.168.2.1(22), 9 packets
*May 3 19:08:23.027: %IPV6-6-ACCESSLOGP: list ACL-IPv6-E0/0-IN/10 permitted
    tcp 2001:DB8:3(1028) (Ethernet0/0 000e.9b5a.9839) -> 2001:DB8:1000::1(22), 1 packet
*May 3 19:13:32.619: %IPV6-6-ACCESSLOGP: list ACL-IPv6-E0/0-IN/10 permitted
    tcp 2001:DB8::3(1028) (Ethernet0/0 000e.9b5a.9839) -> 2001:DB8:1000::1(22), 9 packets
```

#### Example of Microsoft Windows Firewall (Microsoft, 2011)

2005-04-11 08:05:57 DROP UDP 123.45.678.90 123.456.78.255 137 137 78 - - - - - - RECEIVE 2005-04-11 08:05:57 DROP UDP 123.45.678.90 255.255.255.255 1631 2234 37 - - - - - RECEIVE 2005-04-11 08:05:58 OPEN UDP 123.45.678.90 123.456.78.90 500 500 - - - - - - - -2005-04-11 08:05:58 DROP UDP 123.45.678.90 123.456.78.255 138 138 299 - - - - - - RECEIVE 2005-04-11 08:06:02 CLOSE UDP 123.45.678.90 123.456.78.90 1027 53 - - - - - -2005-04-11 08:06:02 CLOSE UDP 123.45.678.90 123.456.78.90 137 137 - - - - - 2 2005-04-11 08:06:05 DROP UDP 123.45.678.90 123.456.78.90 137 137 - - - - - 2 2005-04-11 08:06:05 DROP UDP 0.0.0.0 255.255.255.68 67 328 - - - - - RECEIVE

#### Example of Blue Coat Firewall event log (Blue Coat, 2011)

2011-01-18 02:32:22+07:00ICT "Access Log (main): Unable to connect to remote server for log uploading" 0 E0008:1 ../alog\_facility\_impl.cpp:2726 2011-01-18 02:33:21+07:00ICT "Access Log FTP (main): Connecting to primary 192.168.4.66 server 192.168.4.66:21." 0 E0000:96 ../alog\_ftp\_client.cpp:110 2011-01-18 02:33:39+07:00ICT "Snapshot sysinfo\_stats\_2min has fetched /sysinfo-stats" 0 2D0006:96 ../snapshot\_worker.cpp:214 2011-01-18 02:33:39+07:00ICT "Snapshot CPU\_Monitor has fetched /Diagnostics/CPU\_Monitor/Statistics/Advanced" 0 2D0006:96 ../snapshot\_worker.cpp:214 2011-01-18 02:34:36+07:00ICT "Access Log FTP (main): Couldn't connect control socket to primary server 192.168.4.66" 3C E000A:1 ../alog\_ftp\_client.cpp:155

#### 2.2.1 Types of Event Logs and Event Entries

There are several types of cyber event logs including, computers, servers, routers,

firewalls, and intrusion detection systems. Each device can potentially capture and record events

into a file or log. Table 1 lists the different types of event logs, examples, and types of log entries and functions.

| Table 1. | Types of Eve | nt Logs (MITR | E, 2010; Hucaby | , 2005; Microsoft | Types, 2011)      |
|----------|--------------|---------------|-----------------|-------------------|-------------------|
|          | - /          |               | _,,,,           | , ,               | - ) r - ~ , - ~ / |

| Common Types of Event Logs | Examples                                  | Log Entry Types/Functions                                                        |
|----------------------------|-------------------------------------------|----------------------------------------------------------------------------------|
| Computer                   | Personal computers, portable devices      | Application, Security, System                                                    |
| Servers                    | Web servers, Email,<br>Database, Domain   | Application, Security, System,<br>Directory Service, DNS<br>Server, File Service |
| Network Layer Devices      | Routers, Switches                         | Alert, Warning, Error,<br>Information                                            |
| Network Security Devices   | Firewalls, Intrusion<br>Detection Systems | Allow and Deny Audit,<br>Protocol usage, Traffic Log                             |

#### 2.3 Current Standardization Effort

#### 2.3.1 Syslog Protocol

The creation of the syslog daemon and protocol is largely credited to Eric Allman of Sendmail and originally described in Request for Comments (RFC) 3164 The Berkley Software Distribution (BSD) syslog Protocol by the Internet Engineering Task Force (IETF) (Lonvick, 2001). RFC 3164 was categorized for informational purposes but has become the de-facto standard (Lonvick, 2001). The protocol allowed the transmission of event logs across IP networks to syslog servers. The simplicity of the protocol allowed programmers to write codes independently with no strict requirements on the type of source or format of the message. Simplicity is one of the reasons for its wide acceptance among industry leaders (Lonvick, 2001). Cisco Systems is one of the companies that have leniently adopted the syslog protocol. However, the flexibility of the protocol resulted in divergent formats that make correlation and analysis challenging for administrators.

The Syslog Protocol RFC 5424, which superseded RFC 3164, is a document in a Proposed Standard status of the IETF as opposed to informational (Gerhards, 2009). Although the BSD syslog protocol became a de-facto standard, it was never formalized. Actual industry implementations have many different variations for every platform (Gerhards, 2009). RFC 5424 provides a foundation for standard syslog format and transport methods using layered architecture. The three syslog conceptual layers are content, application, and transport. This research is primarily concerned with the content layer and to some extent the application layer. The syslog content layer deals with the "information contained in the syslog message" (Gerhards, 2009, p. 4) while the syslog application layer "handles generation, interpretation, routing, and storage of syslog message" (Gerhards, 2009, p. 4). Furthermore, the transport layer in RFC 3164 recommended utilizing user datagram protocol (UDP) port 514 could now use any transport protocol and port number as long as it does not alter the content. Another addition in RFC 5424 is a mechanism for structured-data that enable "easily parseable and interpretable data format" (Gerhards, 2009, p. 15). Some of the challenges when storing, sorting, and querying event logs are being able to efficiently and accurately parse the different data elements. Structured-data provides a standard format with vital meta-information in the log message such as IP addresses or event ID for efficient parsing. In addition to structured information format, it also permits vendor specific extensions and free-form text. RFC 5424 also provides flexibility to reformat contents for backwards compatibility with RFC 3164. In general, log messages compliant to RFC 5424 should be consistent and contain distinct field separations that are easily parseable.

#### 2.3.2 Common Event Expression (CEE)

Other organizations such as MITRE, a non-profit entity that receives sponsorships from government agencies and private enterprises, had also initiated log standardization effort known as CEE. The goal of CEE's architecture is to provide a foundation for "standardizing the creation and interpretation" of event logs particularly from computers and sensors (MITRE, 2010c, p. 4). A similar goal between RFC 5424 and CEE is to make parsing of event logs simple. Figure 1 shows the CEE architecture and components; the bidirectional arrows represent the ability not only to generate event logs but also to recreate the events based on the logs.

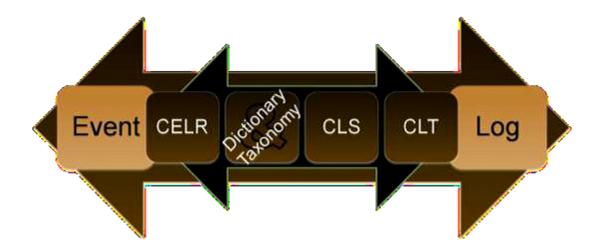



Figure 1. CEE Architecture and Components (MITRE, 2010c)

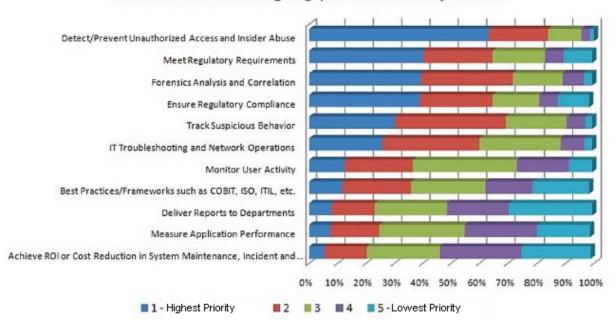

Four major components transform an event into a log and vice versa. Common Event Log Recommendations (CELR) provides recommendations on which events should be recorded and the type of situations it should be recorded. CEE Dictionary and Taxonomy (CDET) defines the event terminology such as field names and value types in the dictionary while taxonomy contains a collection of categories of events that provide common vocabulary and similarity of events. Common Log Syntax (CLS) describes the representation of the event and event data when it is produced by the source and processed by the event consumer. Finally, the Common Log Transport (CLT) provides specific guidance for reliable and secure transport of the log. CEE has identified six core fields, shown in Table 2, that are common to most logs; these are pre-defined fields to make processing simpler. Each CEE compliant event log must have all the fields specified. However, there could be cases where one or more fields do not have a value; in such cases, the field should represent a null value (Heinbockel, 2011). In Cisco logs, the ID, time, action, status, and p\_sys\_id fields are most common while the p\_prod\_id field is less common. RFC 5424 and CEE are possible standards that future event logs should comply with to make generation, transmission, storage, and analysis more efficient.

Table 2. Core Fields (Heinbockel, 2011; Heinbockel & Graves, 2011)

| Field     | Field Type | Description                 |
|-----------|------------|-----------------------------|
| id        | string     | Event ID                    |
| time      | timestamp  | Event start time            |
| action    | tag        | Primary action of the event |
| status    | tag        | Result of the event action  |
| p_sys_id  | string     | ID of the producing system  |
| p_prod_id | string     | ID of the producing product |

#### 2.4 Purpose of Event Logs

The National Institute of Standards and Technology (NIST), underscore the importance of event logs when investigating security incidents, fraud, policy breach, and auditing just to name a few (Kent & Souppaya, 2006). Federal law and regulations such as the Federal Information Security Management Act of 2002 (FISMA), the Health Insurance Portability and Accountability Act of 1996 (HIPAA), the Sarbanes-Oxley Act of 2002 (SOX), the Gramm-Leach-Bliley Act (GLBA), and the Payment Card Industry Data Security Standard (PCI DSS) require organizations to "store and analyze certain logs" few (Kent & Souppaya, 2006, p. 2-11). Furthermore, in the private sector, a 2006 report from a key organization in information security underlines five essential log reports: failed attempts to gain access through existing accounts, failed file access attempts, unauthorized changes, systems that are most vulnerable to attack, and suspicious or unauthorized network traffic patterns (Brenton, Bird, & Ranum, 2006). In a 2010 survey shown in Figure 2 of over 500 organizations of different sizes and information technology budgets, showed that 63% would like to use logs to "Detect/prevent unauthorized access and insider abuse" as their top priority. The second highest objectives which are all statistically tied at 40% include, "Meet regulatory requirements", "Forensic analysis and correlation", and "Ensure Regulatory Compliance" (Shenk, 2010, p. 4). These reports show that network security and compliance are top priorities for most organizations and they believe that event logs can be a very useful tool for this. In fact, an overwhelming number of the respondents (91%) suggest that logs were "useful or very useful for tracking suspicious behavior". Regardless of this optimistic view of event logs' usefulness, many still believe that searching and analyzing logs can be better. Thirty-six percent believe that "Searching through data" is cumbersome and 32% view "Analysis and reports (and ability to interpret results)" as very challenging, both ranking as the top obstacles (Shenk, 2010, p. 4).



#### Reasons for Collecting Logs, In Order of Importance

Figure 2. Priority for Collecting Logs (Shenk, 2010, p. 4)

There are several propriety solutions and services for event log management and analysis being offered presently. According to a review, leading hardware and software solutions for log management are NitroSecurity NitroView, ArcSight Logger, and LogRhythm, which varies in prices starting from \$20,000 up to \$40,000 for an initial price (Grimes, 2010). The pros and cons vary and it depends on the organization's goal and structure, which one fits them better. The USAF is currently using ArcSight as its log management tool and the licensing price could cost millions of dollars. There should be alternatives that are less expensive yet simple tools for analyzing event logs.

#### 2.5 Log Analysis of Security Incidents and Complexity

In a 2010 joint study by the U.S. Secret Service (USSS) and Verizon involving 761 investigated reports of network security breaches, found that 3.8 million known records were compromised (Baker et al., 2011). The study showed an exponential increase on the number of breaches based on previous years although there was a significant drop in the number of compromised data. The study could not conclusively pinpoint the reasons for this phenomenon. Figure 3 suggest that external threat had steadily increased according to the Verizon data and it significantly increased according to the USSS data from 2007 to 2010. Organized criminals mostly perpetrated the external threats based on the report. Additionally, investigators found that the number of unknown external attacks decreased, mostly in part, because larger organizations who managed their event logs adequately allowed the authorities to identify and prosecute the perpetrators. On the other hand, smaller companies who did not or could not keep sufficient log data were unsuccessful in identifying the attackers (Baker et al., 2011). Events logs added another tool that standard forensic methods would have missed. This report highlighted the importance of external security threats, why event logs are important in mitigating these risks, and potentially learning new information from the logs.

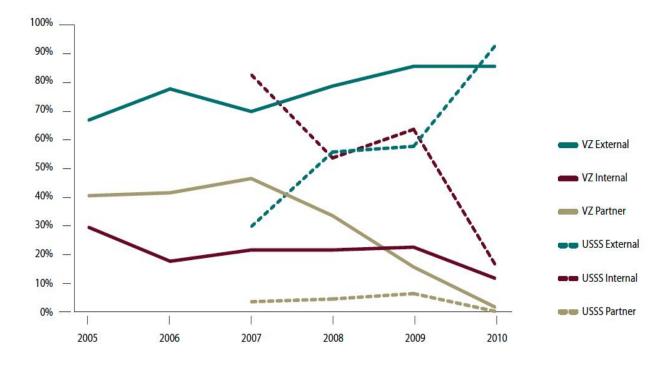



Figure 3. Threat Agents Yearly Trend by Percentage (Baker et al., 2011)

Each device on the network can produce hundreds of thousands of audit logs a day. A large organization with several firewalls, routers, and servers can easily generate hundreds of gigabytes a day. Sifting through this enormous amount of data can be a daunting task this is why an earlier study found that over 60% of the respondents consider either "Searching through data" or "Analysis and Reports" as the first or second most challenging tasks for them (Shenk, 2010, p. 4). The NIST Guide to Computer Security Log Management enumerated many of the challenges in log management; the three main categories are log generation and storage, log protection, and log analysis (Kent, & Souppaya, 2006). This research focuses on log analysis; however, the techniques also address some aspects of the other two categories. One of the main challenges in log analysis for administrators is that they do not have the proper tools to efficiently analyze security incidents and threats. Moreover, this additional task is not the most glamorous job, and administrators would rather perform other maintenance and troubleshooting duties (Kent, &

Souppaya, 2006). A simple and efficient process should make log analysis quick and easy. Additionally, when more logs are accumulated the more complicated analysis becomes, thus necessitating better methods (Kent, & Souppaya, 2006). Many of the current log analysis techniques are insufficient such as using predefined algorithms, frequent patterns, and algorithms that ignore patterns other than event types (Vaarandi, 2002). Based on the studies and surveys discussed previously, organizations have ample reasons to invest in event logs to improve information security, decision-making, and more importantly mission accomplishment.

#### 2.6 Enhancing Situational Awareness, Information Assurance, and Mission Assurance

#### 2.6.1 Situational Awareness

Situational awareness is "the perception of elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future" according to Endsley (1995, p. 1; Okolica et al., 2009, p. 47). A cyber situational awareness system must be able to sense the situation, interpret the sense data, and predict future outcome (Okolica et al., 2009, p. 47). To understand the sense data, the system depends on several types of event logs to construct a known "insider threat" profile, for example (Okolica et al., 2009, p. 47). Moreover, in Information Assurance, a process called System Security Engineering and Assurance (SSEA) involves managing complex interrelations between engineering, situational awareness, and maintenance (Capitan, 2008). SSEA combines mission assurance, information assurance, and security through systems engineering concepts (Capitan, 2008, p. 7). Using the systems engineering approach, event logs will provide better situational awareness hence improving both mission and information assurance. Archiving event logs in data warehouses could provide long-term use throughout the system's development life cycle. There could be several situations where more information is needed in the future, management

may come up with new questions, and network security personnel will have to retrieve archived event logs. In each case, proactively searching for valuable knowledge in a stack of logs remains challenging. Information systems personnel in general, could use built-in reporting templates or the Top 10 list of well-known security profiles to create an executive summary for upper management and later build on this report based on management and user feedback (Babbin, 2006, p. 16). There are tools and methods available to create standard and management-level reports that show the effectiveness of the security policies using event logs (Babbin, 2006, pg. 32). Management normally would require metrics and statistical data when new network security investments are needed or immediately after a new installation. Event logs can significantly contribute to management's cyber situational awareness through information system reports and feedback. Information Assurance personnel can provide reports to management on the effectiveness of the organization's security investment and policies by utilizing event logs. Event logs when properly utilized contributes to better situational awareness for the operators, leadership, and upper management.

#### 2.6.2 Information Assurance

Information Assurance and information security are similarly defined in the Committee on National Security Systems (CNSS) National Information Assurance Glossary (2010) and include the three tenets of information namely confidentiality, integrity, and availability (CIA). Information Assurance is defined as "measures that protect and defend information and information systems by ensuring their availability, integrity, authentication, confidentiality, and non-repudiation. These measures include providing for restoration of information systems by incorporating protection, detection, and reaction capabilities." (CNSS, 2010, p. 35) Information security, likewise, is defined as "the protection of information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, and availability." (CNSS, 2010, p. 37) Both definitions highlight three tenets of information. In most cases, the value of information as an asset depends upon maintaining its CIA (Pipkin, 2000, p. 14). Specifically, confidentiality is an Information Assurance attribute that limits access to those individuals or organizations on a need to know basis; integrity or accuracy of information guarantees that it is correct and has not been tampered with; and availability is access to information when and where it is needed (Pipkin, 2000, p. 14).

The value of event logs evolved from being just a passive diagnostic tool to a more valuable network security and operational asset (Shenk, 2010). Event logs today, can play a major role in the quality on each of the CIA attributes if manage properly. Confidentiality requires limiting access to information; event logs can record important information and track timestamps, usernames, IP addresses, port numbers, protocols, and whether access was permitted or denied. This information, if properly managed, can provide investigators valuable clues if someone tried to access a resource without proper authority. The integrity of information depends on two major components: known good source and accuracy of data (Pipkin, 2000, p. 14). Event logs support the first component of integrity by identifying the source such as the username, IP address, process, and product that produced the information. This is not a foolproof process; however, it can still provide valuable knowledge. The accuracy of the information, similarly, can be verified using event logs by recording modifications, transmissions, and storage of files. Accuracy can also be protected using the "tripwire" technique by creating and securely storing hash values of critical files. The hash value of each file is unique; hence, it can then be calculated and compared to the original value in a consistent manner to detect any unauthorized modifications. The tripwire methodology also produces logs

that records important events that can be analyzed for additional information (Tripwire, 2011). Availability is another attribute of Information Assurance which is arguably the most difficult to ensure because it involves wide range of resources and most of them may not be under the control of a single organization (Pipkin, 2000, p. 149). Availability means providing accessibility and usability of information to authorized personnel wherever and whenever requested. To maintain a high level of availability, an organization must prevent outages especially unscheduled interruptions such as long-lasting equipment failures. Network devices normally produce event logs that warn the administrator of an impending failure. For example, error messages could be generated stating if a fan is malfunctioning on a critical router. Total outage and lengthy downtime could be avoided if the hardware is repaired on time. Proper monitoring of event logs will avoid lengthy downtime. Another concern for information systems availability is Denial of Service (DOS) attack, which could be both intentional and unintentional. In a DOS attack, event logs can record the source of attack and assist investigators in finding and possibly prosecuting the perpetrators. Unintentional DOS attack can also be monitored and detected in different ways depending on its source.

#### 2.6.3 Mission Assurance

The heavy dependence of the United States military on information systems in accomplishing its goals and objectives makes it vulnerable to attacks from cyberspace. In today's modern warfare, cyberspace is an attractive unconventional domain for many nation states, terrorists, and hackers; as such, mission assurance in cyber domain is vital. Some authors described cyberspace as the "center of gravity" because of the reliance of mission essential functions on its capabilities (Jabbour & Mucio, 2011, pg. 62). Mission assurance is critical to military strategies because it links several risk management programs including Information

Assurance (DoDD, 2010, p.19). As discussed previously, proper event log management can lead to effective Information Assurance and therefore enhance mission assurance.

There are several definitions for mission assurance, which varies upon on the individual or organization's perspective. One definition by Alberts and Dorofee (2005, pg. 23) from a Carnegie Mellon University, defines mission assurance as "establishing a reasonable degree of confidence in mission success." According to the authors, it is not an on/off binary aspect, but rather, a continuous attribute that range from guaranteed failure to guaranteed success. The DoD defines Mission Assurance as "a process to ensure that assigned tasks or duties can be performed in accordance with the intended purpose or plan. It is a summation of the activities and measures taken to ensure that required capabilities and all supporting infrastructures are available to the Department of Defense to carry out the National Military Strategy." (DoDD, 2010, p.19)

Some authors suggest that traditional engineering focuses more on building complex systems that perform in a tolerant cyber environment; however, these systems fail when operating in a hostile environment (Jabbour & Mucio, 2011, pg. 63). Yet, this is the type of cyber warfare domain where the military is expected to operate. A reliable system does not equal a secure system especially in a hostile environment (Jabbour & Mucio, 2011, pg. 64). Risk is considered the loss of any of the three attributes of Information Assurance, namely, confidentiality, integrity, and availability of information (CNSS, 2010, p. 61); it is also the intersection of threat, vulnerability, and resource. Jabbour and Mucio (2011, p. 64) suggest that threat and vulnerability are dependent variables hence "there is no threat without vulnerability." Cyber security should therefore focus more on the vulnerabilities rather than the threat (Jabbour & Mucio, 2011, pg. 64). This may sound like a noble idea, however, vulnerabilities in software with millions of codes and hardware from thousands of manufacturers are difficult to avoid.

Nevertheless, developers have more control over limiting vulnerabilities on their products than the threats coming from hackers, terrorists, nation states, and criminals. Moreover, event logs can be useful both in limiting vulnerabilities and in detecting threats.

It is important to record and document events throughout the life cycle of information systems in order to maintain mission assurance. In today's military operations, most missions depend on cyberspace to attain a level of confidence for a successful mission. Jabbour and Mucio (2011) proposed 13 rules for building and designing future secure systems and a four-step methodology for already existing systems. In the 13 rules they proposed, event logs could be very useful for generation, processing, storage, communication, consumption, and destruction. Each stage could produce substantial amount of logs for documentation and analysis that could enhance system design, operation, and maintenance. The four-step stopgap methodology for existing systems includes prioritization, mission mapping, vulnerability assessment, mitigation, and an optional red teaming. Likewise, all these steps would benefit from proper use of event logs particularly in mission mapping, vulnerability assessment, and threat mitigation. Mission mapping identifies the military missions dependent on the functionality of cyber processes as well as their internal and external interactions with other processes (Jabbour & Mucio, 2011, pg 69). More specifically, event logs can be valuable in two particular steps, identifying "all data communication among cyber processes" and documenting "the data format, speed, and protocol for each data communication". In vulnerability assessment, event logs perform a major role during identification, documentation, and estimation of vulnerabilities. Additionally, event logs are also valuable in threat mitigation during threat identification and intrusion detection.

Event logs can be very instrumental tools to enhancing situational awareness, Information Assurance, and mission assurance. However, one must realize that raw event logs are simply

data generated by information systems. At present, system managers still need to collect, correlate, and analyze these logs to get meaningful information from them and possibly gain knowledge. Understanding how raw log data can turn into actionable information and useful knowledge is essential to analyzing event logs.

#### 2.7 Learning from Event Log Data

Computer systems use event logs to communicate to the users. Presently however, raw log data are still difficult to comprehend. Computers are still far from communicating system events in non-technical human understandable form. Event logs currently produced by most computers are nothing more than data. Davenport and Prusak (2000) defined data as "a set of discrete, objective facts about events" (p. 2). It is raw numbers, facts, and "a structured records of transactions" (Davenport & Prusak, 2000, p. 2; Alavi & Leidner, 2001). Computer logs by itself do not mean anything unless someone adds context to it. When context and structure is combined with facts, it turns into information (Tuomi, 2000). Information gathered from a single event log or even a collection of logs may still be insufficient to form a broader situational awareness of an organization's network. When a person or an analyst personally processes the information in his or her mind using concepts, procedures, understandings, experiences, judgments and given meaning then it becomes knowledge (Alavi & Leidner, 2001; Davenport & Prusak, 2000; Tuomi, 2000). Therefore, to effectively analyze these event logs and form actionable knowledge one should be mindful of these elements and their distinctions. Consequently, organizations should realize that current log analysis tools and technologies could only achieve so much. At some point personalized human knowledge and analysis of data that is beyond any computer or analytical technique becomes critical. Analyst must understand the organization's mission in order to gain a better understanding of the log data. Organizations who

over emphasize and set excessive expectations from these tools often leads disappointment (Davenport & Prusak, 2000; Feld & Stoddard, 2004; Van den Hoven, 2001). This could a reason why majority of organizations in the surveys, who after millions of dollars and years of investing in log management systems, still find analyzing data very challenging. Despite these challenges, information technology systems are still critical enablers in managing data and information to most organizations (Alavi & Leidner, 2001).

#### **2.8 Event Correlation**

Event correlation is the process of discovering the relationship between events for the purpose of finding the source of a fault and sorting out unnecessary information (Grimaila, et al., 2011; Hasan, Sugla, & Viswanathan, 1999). It is dependent on event-based management model were the system translate relevant information into form of events (Lee, 1995). Event correlators had become popular tools for managing complex enterprise network (Jakobson, Weissman, Brenner, Lafond, & Matheus, 2000). In the past, the main function of audit logs data communications network was for investigating faults and outages (Jakobson et al., 2000). A large organization would normally have several hundreds if not thousands of network devices that generates event logs. Event correlation can potentially make it simpler to digest all the different information. At present, log correlation can be used in tracing and discovering network security incidents. This technique in addition to case-based reasoning had also been proposed to assist in battlefield management, specifically in military planning and operations where situations are often fluid (Lee, 1995). In large networks were faulty equipments can produce large amount of logs in a short amount of time flooding the network, in these conditions event correlations can filter the data (Vaarandi, 2002). Obviously, event correlation provides

administrator with better knowledge of the status of an organization's network (Grimaila, et al.,

2011).

#### 2.9 Database Normalization

One of the fundamental first steps in learning and mining for information in databases is data normalization (Ogasawara, 2010). It is a process of refining the raw data sequentially into well-structured relations devoid of all the anomalies (Hoffer et al., 2009; Sanders, & Shin, 2001). According to Hoffer et al. (2009), these are the main reasons for normalization:

Minimize data redundancy, thereby avoiding anomalies and conserving storage space.
 Simplify the enforcement of referential integrity constraints
 Make it easier to maintain data
 Provide a better design that is an improved representation of the real world and a stronger basis for future growth. (p. 226)

Event logs are collected non-normalized without any well-defined structures, therefore redundancy and anomalies exist making analysis less efficient and more complex. This also adds to the difficulty of maintaining data. The lack of structure and standardization make mining and correlating data more challenging (MITRE, 2010c). Normalization takes several steps when filtering all the dependencies until all the anomalies are gone (see Figure 4).

Nonetheless, there are some drawbacks to normalization. Firstly, writing the queries will be more complex thus reducing the ease of use (Sanders, & Shin, 2001). Typically, whenever the number of tables increases, so as the number of joins and possibly the number of sub-queries, this makes queries more complicated. Secondly, normalization reduces system performance because of added query processing (Hoffer et al., 2009; Lee, 1995; Sanders, & Shin, 2001; Westland, 1992). This could be particularly true when the amount of data stored and being retrieved is relatively small (Westland, 1992). Hoffer et al., (2009) cited a report by William H. Inmon, which showed that fully normalized tables performed slower. However, the highest number of rows contained in each of the eight normalized tables in the study was only 50,000. If the amount of data being queried is rather large, it could be that query performance of normalized table will outperform non-normalized. Smaller normalized tables can be queried using SQL joins. According to Plivna (2008) databases are designed to handle joins very efficiently. Relational databases are also known for its power when processing multiple tables (Hoffer et al., 2009) such as in SQL queries.

Some database administrators may prefer the denormalized form. Denormalization is defined as "the process of transforming normalized relations into unnormalized physical record specifications" (Hoffer et al., 2009, p. 266). The idea is to reduce the number of tables and consequently the number of joins when writing queries. This research does not consider denormalization because it can only optimize certain queries but sacrifices the performance of others (Hoffer et al., 2009). Additionally, if for some reason the most frequently used query changes, then the tables will have to be denormalized again or the performance advantage will no longer apply. Further, developing or finding the most frequently used queries for event logs now can be short sighted as this list can change whenever new demands or threats come up which will make database maintenance complex and time consuming.

#### 2.9.1 Steps in Normalization

There are seven identified forms of normalization: first normal form (1NF), second normal form (2NF), third normal form (3NF), Boyce-Codd normal form (BCNF), and fourth normal form (4NF) as shown in Figure 4. The fifth normal form (5NF) and Domain-Key Normal Form (DKNF) are mentioned but not discussed in this paper. The goal in each step is to remove anomalies and dependencies. The first step is to remove multivalued attributes in a table in order to be considered in 1NF. Each cell in the table should only have one value and there are

24

no duplicate rows. To move into the 2NF, a table must not have any partial dependencies. Partial functional dependency is "a functional dependency in which one or more nonkey attributes are functionally dependent on part (but not all) of the primary key" (Hoffer et al., 2009, p. 233). Each nonkey attribute must be fully dependent on one primary key. The next step is 3NF; where in all transitive dependencies must be removed. A transitive dependency is a functional dependency of attributes to another attribute that is not the primary key. A quicker way to achieve 3NF is to create tables based on functional dependencies of determinants (Hoffer et al., 2009). After a table is in 3NF anomalies can still exist when there is more than one candidate key. The BCNF proposed by R. F. Boyce and E. F. Codd, makes certain that every determinant in the table is a candidate key. A determinant is an attribute that other attributes are functionally dependent on. For example, a person's name, address, and birthdate are functionally dependent on the Social Security Number. A candidate key is an attribute that is unique and nonredundant (Hoffer et al., 2009). The final normalization step discussed in this paper is the 4NF. This phase ensures that there are no multivalued dependencies in a table (Wyllys, 2010). To comply with this step, the attributes with multivalued dependencies should be stored in separate tables; otherwise, the table will contain redundant information that can cause anomalies and confusion. Some authors consider tables in 3NF to be satisfactory for databases used in most practical applications (Hoffer et al., 2009, p. 651) while Wyllys (2010) consider 4NF sufficient in practice. The last two normalization steps, 5NF and DKNF, are not discussed, mainly because the 5NF is difficult to define and has little practical value (Hoffer et al., 2009; Wyllys, 2010) while DKNF has a simple definition but minimal practical significance (Hoffer et al., 2009). In summary, when creating tables "strive for single-theme" to achieve normalization and avoid anomalies (Wyllys, 2010).

25

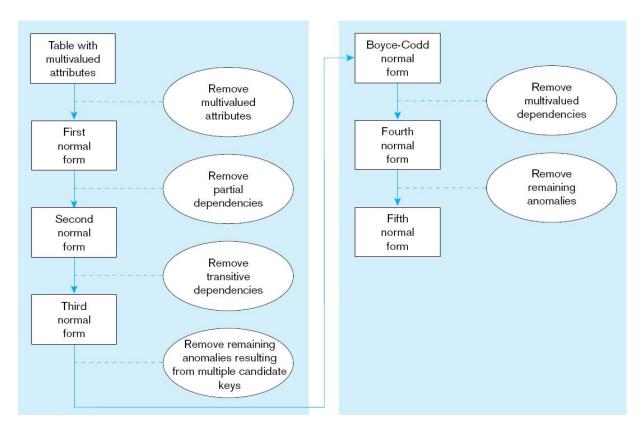



Figure 4. Six Steps in Normalization (Hoffer et al., 2009, p. 227)

#### 2.9.2 Linking Normalized Tables

Normalized tables may need to be linked together to identify applicable associations and reduce the complexity of queries. One way of doing this is to create an additional table or an associative entity. This entity is also known as an associative relation (Hoffer et al., 2009). Often times, an associative entity is used when the relationship between two entities are many-to-many (M:N) (see Figure 5a). After the associative table is created, the database designer needs to decide if an identifier needs to be assigned. The identifier has to uniquely identify the each instance in the table. If an identifier is not assigned, then the foreign keys, which are the primary keys from the two tables, become the identifier (see Figure 5b) (Hoffer et al., 2009).

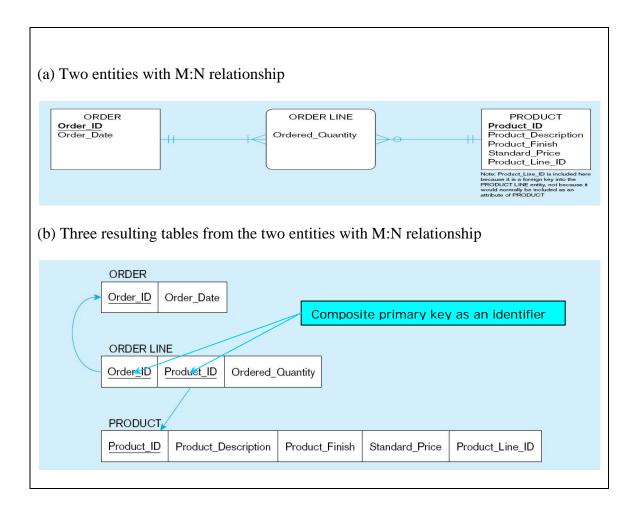



Figure 5. Example of Mapping Tables with an Associative Entity (Hoffer et al., 2009).

#### 2.10 Data Warehousing

Normalization and denormalization strategies are normally found in data warehousing depending on the design chosen. Data warehouse is a subject-oriented, integrated, time-variant, non-updatable collection of data used in support of management decision-making processes (Hoffer et al., 2009). It contains informational data, derived from operational data, which can then support planning and forecasting (Dunham, 2003). The main driver for data warehousing development was the discovery of the difference between operational systems and informational systems (Hoffer et al., 2009). Organizations extract meaning and information to enhance

decision-making and performance from informational assets (Hoffer et al., 2009). Since the early 1990s, data warehousing techniques have been used to find and learn new information from a collection of data. Data warehouse has become significant because it is a vital tool in integrated management of decision support data in organizations (Shin, 2003). Organizations use it in planning, target marketing, decision-making, data analysis, and customer services (Shin, 2003). Organizations that use this tool appropriately will have a critical knowledge-based competitive advantage over competitors (Shin, 2003). One of the challenges in data warehousing is its complexity because it pulls data from different sources like transactional and operational databases, external data, and others. Improving system throughput and response are major challenges developers should address (Shin, 2003). Databases designed for data warehousing should be less concerned with update consistency compared to operational realtime databases (Inmon, 2000).

Data mining tools and techniques have been used in data warehousing to improve decision-making and develop solutions for specific problems. Analysts have constructed predictive models using warehouse data to forecast the outcomes of different decision alternatives (Apte, Pednault, & Smyth, 2002). Data mining is knowledge discovery using a sophisticated blend of techniques from traditional statistics, artificial intelligence, and computer graphics (Westland, 1992). Data mining is the process of finding hidden information in a database; it is an exploratory data analysis, data driven discovery, and deductive learning (Dunham, 2003). The three goals of data mining are explanatory, to explain some observed event or condition; confirmatory, to confirm a hypothesis; and exploratory, to analyze data for new or unexpected relationships (Hoffer et al., 2009).

28

#### 2.11 Summary

The two prevailing event log standards today are, MITRE's CEE and the Syslog protocol (RFC 5424). Regulatory compliance and network security issues have increased the importance of event logs to many organizations. Log analysis still remain complex due to lack of industry standards, lack of simple and efficient analysis methods to process numerous amount of logs generated daily. Event logs can provide cyber situational awareness to management and other network users in the organization. Proper event log utilization through information systems monitoring and threat detection enhances mission assurance and information assurance. Database analysis of event logs is only one of the tools in the information system security toolbox that is still limited and dependent on the human operator's understanding and knowledge of the entire situation. One way to increase understanding of a situation is to correlate different events wherein logs contribute critical data for analysis. A relational database can be used as a tool for log analysis; a proper methodology for this process will be discussed in the next chapter.

#### **III.** Methodology

#### 3.1 Overview

This research utilized an experimental methodology, which consists of two major parts. The first part involves loading the router event logs into the database and normalizing the database into single-themed tables. The database was normalized based on functional themes or relevance of the data such as the Basename, ReportIP, DestinationPort, and others. Once normalized, the second part consists of measuring the query runtimes on both normalized and non-normalized configuration. Two sets of similar queries were developed one for normalized and the other for non-normalized. The differences in runtimes were recorded and statistically measured. The main goal is to measure if there are any differences in query runtimes between normalized and non-normalized router log data. The differences between the performances were calculated using a t-test of independent samples. The chosen methodology was designed to specifically fulfill the research goals and answer the research question described in Chapter 1, which are briefly revisited in the next section. Additionally, the database used for this experiment is not for operational real-time transactions that need to be consistently updated although it can be for data mining and warehousing purposes. The experiment's focus is on the structuring of data for efficient query processing. Therefore, ensuring well-structured relations and complete normalization were not the main concerns.

#### **3.2 Hardware and Database Configuration**

The computer setup consists of database server running on a Hewlett-Packard Compaq 8710w with Intel Pentium III Xenon 2.6 gigahertz processor, 150 gigabytes of hard drive space, and 4 gigabytes of random access memory. The operating system is Windows XP Professional Service Pack 3. The database platform is Oracle Database 10g Enterprise Edition Release 10.2.0.1 using only the default settings with no additional performance tuning involved.

#### 3.3 Overview of Steps in Normalization and Query Performance Analysis

This research used approximately 30 million records of actual unprocessed USAFnetwork router event logs. In order to load the logs into a database and query their contents several steps were taken. This process was not based on any known standard approach for event log normalization; rather, the steps were developed using systematic experimental process as well as trial and error. The steps are briefly described here.

- Parse the unprocessed network event logs in text format into comma-separated values (CSV) format.
- 2. Parsed event logs were exported into a flat non-normalized table.
- 3. Eight normalized tables were created based on the log data context ensuring that each table only has a single theme.
- 4. The eight normalized tables were populated using the data from the non-normalized table.
- 5. Eight associative tables that link the normalized tables together as well as to the flat non-normalized table were created.
- 6. The associative link tables were populated using the primary keys of the flat nonnormalized table and the respective normalized table creating a composite primary key.
- A set of 15 queries were developed based on Information Assurance principles, network security best practices, and general statistical information about the event logs.

31

- The queries' runtime performance on both normalized and non-normalized sets of tables were recorded.
- 9. The differences in runtime performance where analyzed using a t-test of independent samples.

#### 3.4 Loading Event Logs and Table Normalization

The original text format of event logs can be unreadable to most network analyst; therefore, the logs must be partitioned into separate logical classifications according to their purpose. As described in the previous steps, the logs must be parsed, loaded into the database, and then finally normalized. The first attempt to normalize the flat table took much longer than expected and was ultimately unsuccessful. The database table of event logs was consequently normalized based on functional theme or relevance of the data into eight tables. There are several reasons for normalizing the table, namely, to remove unnecessary duplication of data, maintain consistency, and to create well-structured relations (Hoffer et al., 2009).

#### **3.4.1 Parsing Event Logs**

The Cisco router event logs have two separate portions, structured and unstructured, as shown in Figure 6; RFC 5424, which is the most recent version of the syslog protocol, refers to a similar format (Gerhards, R., 2009). The structured portion has a format that remains constant through all the event logs regardless of the Cisco router device. In contrast, the unstructured segment contains the free text form of the message. In the structured portion, the first set of date and time records when the event took place in the log server. The subsequent IP address belongs to the reporting router. Following this IP address is a router message sequence number. This is a globally unique number for each router terminal and can range from 000,000,001 to 999,999,999 (Cisco, 2011). Then, the second set of date, time, and time zone are recorded from the reporting

32

router. The words preceded by a % sign is the event message type, which in this example, has a format of "%<facility>-<severity>-<mnemonic>:" (Cisco System Log). Facility codes as well as mnemonic codes could vary in meaning depending on the device. The severity codes are described in a table in Appendix A. Finally, the parser also appended the Basename for every event where the logs came from.

| Structured<br>Jan 1 01:03:44 132.35.194.5 233361: Jan 1 01:03:43.815 GMT: %SEC-6-IPACCESSLOGP: |  |
|------------------------------------------------------------------------------------------------|--|
| <b>Unstructured</b><br>list ingress denied tcp 192.168.1.3(1024) -> 192.168.2.1(22), 9 packets |  |

Figure 6. Structured and Unstructured Segments of a Cisco Router Log

The unstructured part of the event log contains free text message. The format can vary because of the different designs of hardware and software as well as the various types of network traffic (Cisco IPhelp, Understanding, 2011). In Figure 6, it starts with the type of Access Control List (ACL) followed by the ACL name or list name, which on this example is ingress. In some cases, the ACL name can be a number instead. Next, it states that this specific event was denied. This value can be either permitted or denied based on the ACL policy outcome. TCP identifies that the ACL is applied to Transmission Control Protocol (TCP) ports; in this example, the TCP port number is 22. The first IP address, 192.168.1.3(1024), identifies the source with the ephemeral port number inside the parenthesis. This IP address is extracted by the parser and placed in the SourceIP attribute of the LogMessage table along with its decimal or long IP notation. The purpose of having the decimal equivalent of the IP address is to readily calculate, compare, and query the IP addresses and ranges if necessary. The second IP address after the

right-arrow represents the destination of the network packet with the port number inside the parenthesis. Lastly, the number indicates the number of packets that was recorded for the event.

This categorization allowed the logs to be exported into a database and given some context. The first step in normalizing the router event logs was to parse them into CSV files that can be entered in Microsoft Excel. The attributes assigned to the logs are listed and described in Appendix B. The program used to parse the logs is a Perl script named, Parselog.pl, shown in Appendix C. Oracle's Structured Query Language (SQL) files and Microsoft Disk Operating System (MS-DOS) batch files are used to create the tables, parsed the log files into CSV files, and loaded the CSV files into the Oracle database tables. The CreateLogMessage.SQL shown in Appendix D creates the Oracle database tables named LogMessage and IPToCountry. The LogMessage table structure is shown in Appendix E. The IPToCountry table contains a range of IP addresses and the known countries they belong. The IPToCountry table structure is shown in Appendix F. The MS-DOS batch file called Doit.bat in Appendix G, invokes the PERL parser for the log files from a particular USAF base, and invokes the CTL file that loads the resultant CSV file into the LogMessage table. An overall control batch file called Redoit.BAT (see Appendix H) invokes CreateLogMessage.SQL, LoadIPCountry.CTL and Doit.BAT. This file displays the start time and end time. It also logs-in to Oracle using sqlplus with username and password and calls the CreateLogMessage.SQL file. Then the LoadIPCountry.CTL (see Appendix I) is invoked using sqlldr with the same username and password. A loadipcountry.log is generated. After all the doit batch files for each base are executed the finished time is displayed and a redoit.log file is generated. The LoadBasename.CTL (see Appendix J) loads the tokens in the CSV file into the "LogMessage" table. Each base has its own load<basename>.CTL file, specific to the path name for each base. A brief description of each

34

of the files is in Table 3. Figure 7 describes the diagram of the sequence in which the files were executed.

| Filename                       | Description                                  |
|--------------------------------|----------------------------------------------|
| Parselog.PL                    | Parser that accepts Cisco log files for      |
|                                | each base, tokenizes each log file record,   |
|                                | and outputs the tokens into a CSV file       |
| CreateLogMessage.SQL           | Creates the Oracle tables named              |
|                                | "LogMessage" and "IPToCountry"               |
| Doit.BAT                       | Batch file that invokes the PERL parser      |
|                                | for the log files at a particular base, and  |
|                                | invokes the CTL file that loads the          |
|                                | resultant CSV file into the                  |
|                                | "LogMessage" table. Each base has its        |
|                                | own Doit.BAT file, specific to the path      |
|                                | name for each base, and base name for        |
|                                | parser input                                 |
| Redoit.BAT                     | Overall control batch file. It invokes       |
|                                | CreateLogMessage.SQL,                        |
|                                | LoadIPCountry.CTL and Doit.BAT               |
| Load <basename>.CTL</basename> | Loads the tokens in the CSV file into        |
|                                | the "LogMessage" table. Each base has        |
|                                | its own Load <basename>.CTL file,</basename> |
|                                | specific to the path name for each base      |
| LoadIPCountry.CTL              | Loads the IP ranges of each country          |
|                                | into the "IPToCountry" table                 |

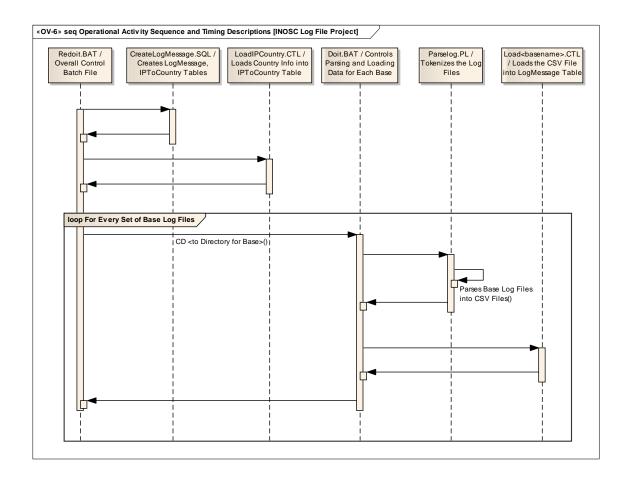
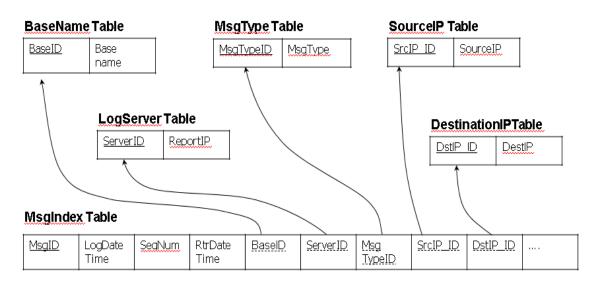




Figure 7. Sequence of File Executions

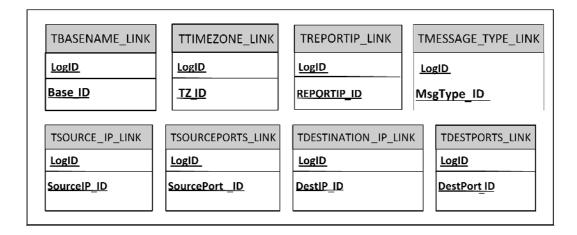
#### **3.4.2** Table Normalization with Index Table

After the log data is parsed and loaded into the database, it is all contained in one flat non-normalized table. This table as it stands can be queried. The query performance, however, may not be efficient in some cases which normalization can improve. The first attempt to normalize the database was unsuccessful due to the complexity of the algorithm and number of attributes and records involved. The process is described briefly for informational purposes. To summarize, Figure 8 visually depicts the tables, their attributes, primary keys, and the foreign keys after normalization; for readability purposes, it is not in a standard entity-relationship diagram and not all the tables are displayed. A message ID was appended to each record to uniquely identify it because the sequence number produced by the reporting device is not distinctive enough when combined with logs from other devices. SQL scripts were created to normalized the tables and their attributes. This pre-processing method of linking the primary keys using a MsgIndex Table (see Figure 8) took longer than expected which would not have been practical for this experiment or in real-world implementation. The methodology therefore had to be revised which is described in the next section.



#### **Table Mapping**

Figure 8. Visual Depiction of Normalized the Tables


#### **3.4.3** Table Normalization with Associative Tables

For this experiment, eight normalized tables were created for performance comparison (see Figure 9). The normalized tables were created based on the purpose of the log data; the SQL script to create the tables is in Appendix K. The normalized tables created are singlethemed and at least in 4NF. Then, the tables are populated using eight individual SQL scripts shown combined in Appendix L.

| TTIMEZONE TZ_ID TZ                     | TBASENAME<br>Base ID<br>BaseName     | TREPORTIP<br><u>REPORTIP_ID</u><br>ReportIP<br>ReportIPNum | TMESSAGE_TYPE<br><u>MsgType_ID</u><br>MsgType |
|----------------------------------------|--------------------------------------|------------------------------------------------------------|-----------------------------------------------|
| TSOURCE_IP                             | TSOURCEPORTS                         |                                                            | TDESTPORTS                                    |
| SourceIP_ID<br>SourceIP<br>SourceIPNum | SourcePort_ID<br>PortNum<br>PortDesc | DestIP<br>DestIP<br>DestIPNum                              | DestPort_ID<br>PortNum<br>PortDesc            |

Figure 9. Table Structure of the Normalized Tables

In order to link the normalized tables to the non-normalized table, an associative entity is created for each table (see Figure 10). These associative entities also allow the network analyst to write less complex normalized queries. Each of the associative entity contains foreign keys from the non-normalized table and the normalized that are combined to form a composite primary key (see Figure 11). There are eight associative tables created using a SQL script detailed in Appendix M. After the associative entities are created, they are populated using a SQL script described in Appendix N. At this point, all the tables necessary are created and populated; queries can now be run on both non-normalized and normalized configuration.



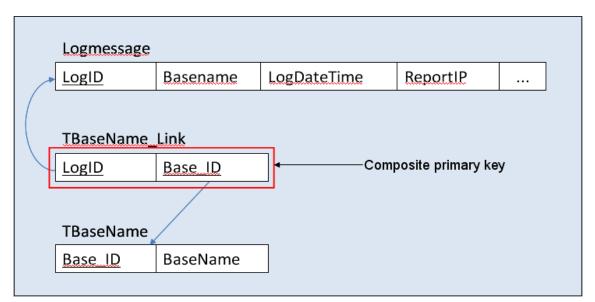



Figure 10. Table Structure of the Associative Tables

Figure 11. Example of Mapping the TBaseName\_Link Associative Entity

#### **3.5 Event Log Database Queries**

Once the log data had been normalized, SQL queries can be created to search for statistical data, network security analysis, and other related information a network defender may request. Examples include the number of distinct types of messages that are found in the logs, the number of routers reporting from each location, the IP addresses associated to certain well-known protocols. These simple queries can be built upon for more complex and informative queries. To build the queries, SQL joins were used to efficiently combine tables into a single view or table. Examples of the joins used include natural joins where duplicate columns are excluded; inner join, a join where rows must have matching values in order to appear in the result table; and outer joins where rows that do not have matching values in common columns are included in the result (Hoffer et al., 2009, pg. 360-361). The results were analyzed for any trends or commonality. Based on the results of the analysis, more advanced queries, sub-queries, and joins were developed.

Two sets of 15 queries were developed for both non-normalized (see Appendix O) and normalized (see Appendix P) tables that are representative of simple and complex queries that would typically be conducted by network security personnel. These queries were customized according to the specific situation and purpose. Queries were also developed based on industry best practices and event log analysis. The queries answer specific questions described in Table 4. The actual outputs of the queries were inspected to make sure the results matched and if there are any discrepancies that they could be explained. The set of queries were specifically developed to have a combination of both simple and complex queries to measure any performance differences. In general, the complexity of the non-normalized queries does not vary significantly in terms of number of joins as seen in Table 5a. The lengths of the queries are also generally longer for normalized (see Table 5b), for more details on the queries see Appendix O and P.

| Query                                                          | Description/Purpose                                                          |  |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Number                                                         | Description/1 urpose                                                         |  |  |  |
|                                                                |                                                                              |  |  |  |
| Q1 What are the different message types?                       |                                                                              |  |  |  |
| Q2 What are the different base names?                          |                                                                              |  |  |  |
| Q3                                                             | What are the report IP addresses from each base?                             |  |  |  |
| Q4                                                             | What are the destination ports and how many events?                          |  |  |  |
| Q5                                                             | What are the Top 10 destination ports for January?                           |  |  |  |
| Q6                                                             | What bases have port 445 as a destination port and how many events?          |  |  |  |
|                                                                | What bases have port 445 as destination port and how many events occurred in |  |  |  |
| Q7 January?                                                    |                                                                              |  |  |  |
| Q8 How many events used port 23 (Telnet) as destination port?  |                                                                              |  |  |  |
| Q9                                                             | What bases have port 23 as destination port and how many events?             |  |  |  |
|                                                                | What are the bases and message types with message severity of 2 (see         |  |  |  |
| Q10                                                            | Appendix A) and the number of events?                                        |  |  |  |
|                                                                | What are the bases, ReportIPs, message types, with message severity of 2 and |  |  |  |
| Q11                                                            | the number of events during the month of January?                            |  |  |  |
|                                                                | What bases have sourceIP from a user defined table in January and what       |  |  |  |
| Q12                                                            | country?                                                                     |  |  |  |
|                                                                | What LogID, Basename, ReportIP, SourceIP, Country, Token3, and Token4        |  |  |  |
|                                                                | have sourceIP from Enemy table that is on the egress list and permitted and  |  |  |  |
| Q13                                                            | what country?                                                                |  |  |  |
| What Basename, ReportIP, SourceIP, Country_Name, DestinationII |                                                                              |  |  |  |
|                                                                | Egress/Ingress, Permitted/Denied did a source IP address from a user defined |  |  |  |
| Q14 table show up in the log?                                  |                                                                              |  |  |  |
| Q15                                                            | What are the Top 10 message types in the log?                                |  |  |  |

# Table 4. Query Numbers and Purpose

## (a) Non-normalized Queries

| Query<br>Number | Non-normalized Syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1              | SELECT DISTINCT (Messagetype) FROM Logmessage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q2              | SELECT DISTINCT (Basename) FROM Logmessage ORDER BY Basename;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Q3              | SELECT DISTINCT BASENAME, ReportIP FROM LOGMESSAGE ORDER BY BASENAME;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q4              | SELECT Destinationport, Count(*) AS "Number of Events" FROM Logmessage<br>WHERE Destinationport LIKE '%'<br>GROUP BY Destinationport ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q5              | SELECT * FROM (SELECT Destinationport, "Number of Events", RANK () OVER (ORDER BY "Number of Events"<br>DESC) Rank FROM (SELECT Destinationport, Count(*) AS "Number of Events" FROM Logmessage<br>WHERE Destinationport LIKE '%'<br>AND (logdatetime >= '01-jan-11' and logdatetime<= '31-jan-11')<br>GROUP BY Destinationport ORDER BY "Number of Events")) WHERE Rank <=10;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q6              | SELECT BaseName, Destinationport, Count(*) AS "Number of Events" FROM Logmessage<br>WHERE Destinationport = '445'<br>GROUP BY BaseName, Destinationport ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q7              | SELECT BaseName, Destinationport of Data and Provide a |
| Q8              | SELECT Destinationport, Count(*) AS "Number of Events"<br>FROM Logmessage<br>WHERE Destinationport = '23'<br>GROUP BY Destinationport ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q9              | SELECT BaseName, Destinationport, Count(*) AS "Number of Events"<br>FROM Logmessage<br>WHERE Destinationport = '23'<br>GROUP BY BaseName, Destinationport ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q10             | SELECT DISTINCT Basename, Messagetype, Count(*) AS "Number of Events"<br>FROM Logmessage<br>WHERE messagetype LIKE '%-2-%'<br>GROUP BY Basename, Messagetype ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q11             | SELECT Basename, ReportIP, Messagetype, Count(*) AS "Number of Events"<br>FROM Logmessage<br>WHERE Messagetype LIKE '%-2-%'<br>AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')<br>GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Q12             | SELECT BASENAME, ReportIP, SourceIP, COUNTRY_NAME<br>FROM LOGMESSAGE L, ENEMY E<br>WHERE L.SourceIPNum <= E.IP_TO AND L.SourceIPNum >= E.IP_FROM<br>AND (L.logdatetime >= '01-jan-11' and L.logdatetime <= '31-jan-11');                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q13             | SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY_NAME, Token3, Token4<br>FROM LOGMESSAGE L, ENEMY E<br>WHERE L.SourceIPNum <= E.IP_TO AND L.SourceIPNum >= E.IP_FROM<br>AND TOKEN3 LIKE '%egress%'<br>AND TOKEN4 = 'permitted';                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q14             | SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP COUNTRY_NAME, Token3, Token4<br>FROM Logmessage, Enemy<br>WHERE SourceIP = '203.171.234.174'<br>AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q15             | SELECT * FROM (SELECT MessageType, "Number of Events", RANK () OVER (ORDER BY "Number of Events"         DESC) Rank       FROM (SELECT MessageType, Count(*) AS "Number of Events" FROM Logmessage         WHERE MessageType LIKE '%' GROUP BY MessageType ORDER BY "Number of Events")         ) WHERE Rank <=10;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# (b) Normalized Queries

| Query<br>Number | Normalized Syntax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1              | SELECT MsgType FROM TMESSAGE_TYPE ORDER BY MsgType;                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q2              | SELECT BaseName FROM TBASENAME ORDER BY BaseName;                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q3              | SELECT DISTINCT BaseName, ReportIP<br>FROM TBASENAME, TBASENAME_LINK, TREPORTIP, TREPORTIP_LINK<br>WHERE TBASENAME.Base_ID = TBASENAME_LINK.Base_ID<br>AND TBASENAME_LINK.LOGID = TREPORTIP_LINK.LOGID<br>AND TREPORTIP_LINK.REPORTIP_ID = TREPORTIP.REPORTIP_ID<br>ORDER BY BaseName;                                                                                                                                                                                                                                      |
| Q4              | SELECT DISTINCT PortNum, Count(*) AS "Number of Events"<br>FROM TDESTPORTS, TDESTPORT_LINK<br>WHERE TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID<br>GROUP BY PortNum ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                       |
| Q5              | SELECT * FROM (SELECT Destinationport, "Number of Events", RANK () OVER (ORDER BY "Number of Events"<br>DESC) RANK FROM (SELECT Destinationport, Count(*) AS "Number of Events"<br>FROM Logmessage WHERE Logmessage.LOGID IN (SELECT TDESTPORT_LINK.LOGID<br>FROM TDESTPORTS, TDESTPORT_LINK<br>WHERE TDESTPORTS.DestPort_ID = TDESTPORT_LINK.DPort_ID)<br>AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')<br>GROUP BY Destinationport ORDER BY "Number of Events")) WHERE RANK <=10; |
| Q6              | SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(*) AS "Number of Events" FROM<br>TBASENAME, BASENAME_LINK, TDESTPORTS, TDESTPORT_LINK WHERE TBASENAME.Base_ID =<br>TBASENAME_LINK.Base_ID AND TBASENAME_LINK.LOGID = TDESTPORT_LINK.LOGID<br>AND TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID<br>AND TDESTPORTS.PortNum = '445'<br>GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of Events";                                                                                           |
| Q7              | SELECT BASENAME, DestinationPort, Count(*) AS "Number of Events" FROM Logmessage<br>WHERE Logmessage.LogID IN (SELECT TDESTPORT_LINK.LOGID FROM TDESTPORTS, TDESTPORT_LINK<br>WHERE DESTPORTS.DestPort_ID = TDESTPORT_LINK.DPort_ID AND TDESTPORTS.PortNum = '445')<br>AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')<br>GROUP BY BASENAME, DestinationPort ORDER BY "Number of Events";                                                                                             |
| Q8              | SELECT DISTINCT PortNum, Count(*) AS "Number of Events"<br>FROM TDESTPORTS, TDESTPORT_LINK<br>WHERE TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID<br>AND TDESTPORTS.PortNum = '23'<br>GROUP BY PortNum ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                      |
| Q9              | SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(*) AS "Number of Events"<br>FROM TBASENAME, TBASENAME_LINK, TDESTPORTS, TDESTPORT_LINK<br>WHERE TBASENAME.Base_ID = TBASENAME_LINK.Base_ID<br>AND TBASENAME_LINK.LOGID = TDESTPORT_LINK.LOGID<br>AND TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID<br>AND TDESTPORTS.PortNum = '23'<br>GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of Events";                                                                                        |
| Q10             | SELECT DISTINCT Basename, Msgtype, Count(*) AS "Number of Events"<br>FROM TBASENAME, TBASENAME_LINK, TMESSAGE_TYPE, TMESSAGE_TYPE_LINK<br>WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID<br>AND TMESSAGE_TYPE_LINK.MSGTYPE_ID = TMESSAGE_TYPE.MSGTYPE_ID<br>AND TBASENAME_LINK.LOGID = TMESSAGE_TYPE_LINK.LOGID<br>AND TMESSAGE_TYPE.MSGTYPE LIKE '%-2-%'<br>GROUP BY Basename, Msgtype ORDER BY "Number of Events";                                                                                                      |
| Q11             | SELECT Basename, ReportIP, Messagetype, Count(*) AS "Number of Events"<br>FROM Logmessage<br>WHERE Logmessage.LOGID IN (<br>SELECT TMESSAGE_TYPE_LINK.LOGID<br>FROM TMESSAGE_TYPE, TMESSAGE_TYPE_LINK<br>WHERE TMESSAGE_TYPE_LINK.MSGTYPE_ID = TMESSAGE_TYPE.MSGTYPE_ID<br>AND TMESSAGE_TYPE_LINK.MSGTYPE_ID = TMESSAGE_TYPE.MSGTYPE_ID<br>AND TMESSAGE_TYPE.MSGTYPE LIKE '%-2-%')<br>AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')                                                 |
| Q11             | GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|     | SELECT Basename, ReportIP, SourceIP, COUNTRY_NAME                                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | FROM Logmessage, Enemy                                                                                                                                                              |
|     | WHERE Logmessage.LOGID IN (                                                                                                                                                         |
|     | SELECT TBASENAME LINK LOGID                                                                                                                                                         |
|     | FROM TBASENAME, TBASENAME, LINK, TSOURCE_IP, TSOURCE_IP_LINK                                                                                                                        |
|     | WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID                                                                                                                                    |
|     | AND TSOURCE IP.SOURCEIP_ID = TSOURCE_IP_LINK.SOURCEIP_ID                                                                                                                            |
|     | AND TBASENAME_LINK.LOGID = TSOURCE_IP_LINK.LOGID)                                                                                                                                   |
| Q12 | AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')                                                                                               |
|     | AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM);                                                                                            |
|     | SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY_NAME, Token3, Token4                                                                                                            |
|     | FROM Logmessage JOIN Enemy                                                                                                                                                          |
|     | ON Logmessage.LOGID IN (                                                                                                                                                            |
|     | SELECT TBASENAME_LINK.LOGID                                                                                                                                                         |
|     | FROM TBASENAME, TBASENAME_LINK, TSOURCE_IP, TSOURCE_IP_LINK                                                                                                                         |
|     | WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID                                                                                                                                    |
|     | AND TSOURCE_IP.SOURCEIP_ID = TSOURCE_IP_LINK.SOURCEIP_ID                                                                                                                            |
|     | AND TBASENAME_LINK.LOGID = TSOURCE_IP_LINK.LOGID)                                                                                                                                   |
|     | AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM)                                                                                             |
| Q13 | AND TOKEN3 LIKE '% egress%'                                                                                                                                                         |
|     | AND TOKEN4 = 'permitted';                                                                                                                                                           |
|     | SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP, COUNTRY_NAME, Token3, Token4                                                                                       |
|     | FROM Logmessage, Enemy                                                                                                                                                              |
|     | WHERE Logmessage.LogID IN (SELECT TSOURCE_IP_LINK.LogID                                                                                                                             |
|     | FROM TSOURCE_IP, TSOURCE_IP_LINK                                                                                                                                                    |
| 014 | WHERE TSOURCE_IP.SourceIP_ID = TSOURCE_IP_LINK.SourceIP_ID                                                                                                                          |
| Q14 | AND TSOURCE_IP.SourceIP = '203.171.234.174')                                                                                                                                        |
|     | AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM);                                                                                            |
|     | SELECT * FROM (SELECT MsgType, "Number of Events", RANK () OVER (ORDER BY "Number of Events" DESC)<br>RANK FROM (SELECT MsgType, Count(*) AS "Number of Events" FROM TMESSAGE_TYPE, |
|     | TMESSAGE TYPE LINK                                                                                                                                                                  |
| Q15 | WHERE TMESSAGE_TYPE.MsgType_ID = TMESSAGE_TYPE_LINK.MsgType_ID GROUP BY MsgType ORDER                                                                                               |
| QIJ | BY "Number of Events"))WHERE RANK <=10;                                                                                                                                             |
| L   | <b>D1</b> Aumori of Events <i>from</i> HERE RAINE \=10,                                                                                                                             |

#### 3.6 Runtime Comparison of Normalized and Non-normalized Event Logs

A series of 32 query runs, both non-normalized and normalized, are performed and the runtime for each of the 15 queries was recorded using Oracle's timing command. According to the *central limit theorem* as the sample size grows larger (more than 30) the sampling distribution becomes normal and has a mean equal to the population mean (Fields, 2009, pg. 42). In order to collect the necessary timing and statistical data without accumulating the large output and still be able to fetch the queries, the script executes Oracle's "autotrace traceonly" command. For more details, see Appendix O and P. Two more SQL scripts where created to invoke the non-normalized and normalized queries automatically (see Appendix Q and R). Oracle's timing format is hh:mm:ss.ss. In order to have a simple numerical format for statistical analysis, the runtime unit of measurement was converted to seconds.

#### **3.6.1 Statistical Analysis**

To analyze if there are differences between the means of non-normalized and normalized queries, a Student's t-test of independent samples was employed. The null and alternative hypotheses are:

 $H_0$  = There are no statistical differences between the means of non-normalized and normalized queries.

 $H_A$  = There are statistical differences between the means of non-normalized and normalized queries.

The program used for statistical analysis is SPSS release 16.0. Fifteen variables were created in SPSS to represent the 15 queries and a grouping variable with values of 1 and 2 for non-normalized and normalized groups respectively. Sixty-four timing data points were entered in SPSS and assigned into two groups of 32. The groupings identify whether a query is non-normalized or normalized. The complete dataset can be found in Appendix S. The results of the queries, timing, and statistical analysis are discussed in the next chapter.

#### 3.6.2 Preprocessing and Disk Space Requirements

When comparing the runtimes between non-normalized and normalized it is necessary to consider the preprocessing time incurred to create and populate the normalized tables. This processing time overhead can be found in the SQL logs when the tables were created and populated (see Table 21). The break-even point can be determined by calculating the preprocessing time divided by the difference of the average mean time of the non-normalized (NN) and normalized (N) queries.

NN average mean time = 
$$\sum_{i=1}^{15} i$$
 (1)

N average mean time = 
$$\sum_{i=1}^{15} i$$
 (2)

Difference = NN average mean time - N average mean time(3)

Break - even point = Preprocessing time / Difference(4)

To be specific, the break-even point is the number of times the queries need to be ran to pay off for the normalization preprocessing overhead. The tables are only created once but can be updated whenever necessary. For this experiment, however, the normalized tables were populated one time using a fixed amount of 30 million event logs. In some real-world situations, the preprocessing would only occur if a new value or data does not already exist in the normalized tables.

Creating the normalized tables will obviously incur additional disk space to accommodate the extra tables. There are several ways to determine the table sizes. One is using Oracle's Database Control Interface. Using Oracle's web-based graphical user interface, the table sizes are located in the Administration tab, Schema, Database Objects, Tables, search for the table name, and the table size is under Statistics called Sample Size. However, there is a lack of documentation on what this parameter actually measures. The second and preferred option uses the average row length multiplied by the number of rows. According to Oracle's documentation, AVG\_ROW\_LEN is the "average row length, including the row overhead, in

bytes" (2005). The SQL syntax is:

SELECT TABLE\_NAME, ROUND ((AVG\_ROW\_LEN \* NUM\_ROWS / 1024), 2) SIZE\_KB FROM USER\_TABLES ORDER BY TABLE\_NAME;

#### 3.7 Summary

This chapter explained, in detail, each step taken to perform the experiment and be able to reproduce it as accurately as possible. The main steps explained include parsing and loading the event logs, normalizing the database, running and comparing the queries, and calculating the preprocessing time and disk space. The next chapter shows and analyzes the results of the methods described in this chapter.

#### **IV. Results**

#### 4.1 Overview

The results of the statistical analysis and query performance will be analyzed in this chapter. First, the results of the t-test from SPSS are discussed as it relates to the experiment, specifically the test statistic (t), degrees of freedom (df), and the probability value (p-value) of the test statistic. Information from the group or summary statistics will also be briefly discussed. The main findings of the statistical analysis are in the independent samples test. Second, the runtimes and statistical output from the actual queries will be discussed explaining the difference in performance between non-normalized and normalized configuration.

#### **4.2 Test Statistics Results**

Table 6 shows the summary statistics of the t-test. Each row represents one of the 15 queries (Q1-15). The first column indicates the results for non-normalized or normalized queries. As mentioned in Chapter 3, according to the *central limit theorem* as the sample size grows larger (more than 30) the sampling distribution becomes normal and has a mean equal to the population mean (Fields, 2009, pg. 42). Each query ran 32 times (N) and the mean runtime in seconds including the standard deviation and standard error mean are also included in the table.

|      | ls this query<br>Normalized or Non-<br>Normalized | Ν  | Mean      | Std. Deviation | Std. Error Mean |
|------|---------------------------------------------------|----|-----------|----------------|-----------------|
| Q1   | Non-Normalized                                    | 32 | 179.1747  | 3.37547        | .59671          |
| SC I | Normalized                                        | 32 | .0088     | .02136         | .00378          |
| Q2   | Non-Normalized                                    | 32 | 178.7297  | 3.62914        | .64155          |
| 92   | Normalized                                        | 32 | .0150     | .03844         | .00679          |
| Q3   | Non-Normalized                                    | 32 | 179.8128  | 4.47180        | .79051          |
| QU   | Normalized                                        | 32 | 147.5572  | 14.22413       | 2.51449         |
| Q4   | Non-Normalized                                    | 32 | 178.9691  | 3.51893        | .62206          |
| ч    | Normalized                                        | 32 | 7.1028    | .60959         | .10776          |
| Q5   | Non-Normalized                                    | 32 | 180.7591  | 6.94209        | 1.22720         |
| QU   | Normalized                                        | 32 | 227.1262  | 5.83329        | 1.03119         |
| Q6   | Non-Normalized                                    | 32 | 178.5216  | 4.16421        | .73613          |
| G O  | Normalized                                        | 32 | 22.7825   | 5.17363        | .91458          |
| Q7   | Non-Normalized                                    | 32 | 179.5547  | 6.31525        | 1.11639         |
| 31   | Normalized                                        | 32 | 428.8850  | 21.87962       | 3.86781         |
| Q8   | Non-Normalized                                    | 32 | 179.0097  | 3.29555        | .58258          |
| QU   | Normalized                                        | 32 | 5.9631    | 1.43762        | .25414          |
| Q9   | Non-Normalized                                    | 32 | 178.4925  | 3.67427        | .64953          |
| QU   | Normalized                                        | 32 | 22.9162   | 2.04290        | .36114          |
| Q10  | Non-Normalized                                    | 32 | 179.7838  | 5.02242        | .88785          |
| GIU  | Normalized                                        | 32 | 32.7353   | 3.60482        | .63725          |
| Q11  | Non-Normalized                                    | 32 | 178.4147  | 3.71542        | .65680          |
| GII  | Normalized                                        | 32 | 336.3216  | 13.58484       | 2.40148         |
| Q12  | Non-Normalized                                    | 32 | 3835.8384 | 233.20236      | 41.22474        |
| 912  | Normalized                                        | 32 | 769.9984  | 15.10613       | 2.67041         |
| Q13  | Non-Normalized                                    | 32 | 179.8703  | 3.49814        | .61839          |
| GIO  | Normalized                                        | 32 | 259.1588  | 7.28158        | 1.28721         |
| Q14  | Non-Normalized                                    | 32 | 178.7362  | 3.99942        | .70700          |
| דיצ  | Normalized                                        | 32 | 7.7987    | 1.37545        | .24315          |
| Q15  | Non-Normalized                                    | 32 | 179.8806  | 4.23768        | .74912          |
| 3.10 | Normalized                                        | 32 | 21.0847   | .72725         | .12856          |

Table 6. Group Statistics

The main results of the t-test are in Table 7. Again, each row represents one of the 15 queries, additionally, the first column indicates if the null hypothesis (H<sub>0</sub>) of "*There are no statistical differences between the means of non-normalized and normalized queries*" is either Rejected or Failed to reject. SPSS also includes the Levene's test for equality of variances that is

similar to a t-test, wherein, it tests if the variances are assumed equal or are assumed different. If the *p*-value (Sig) of the Levene's test is less than 0.05 then there is a significant chance that the variances are assumed to be different. If p > 0.05, then the variances are assumed equal. For example, Q1 in the table has a Levene's test of p < 0.05, therefore, the variances are assumed to be different; however, Q3 has p = 0.149 that is larger than 0.05, therefore, variances are assumed equal. Other queries with p > 0.05 are Q5, Q6, Q10, and Q13.

The remaining columns in Table 7 show the results of the t-test for equality of means. The test statistic column shows the *t*-value used by SPSS in conjunction with the *df* to calculate probability that H<sub>0</sub> is true. Furthermore, the negative *t*-value denotes that non-normalized condition has smaller mean and performed faster than the normalized condition. The non-normalized queries that performed faster are Q5, Q7, Q11, and Q13. The p-values (Sig. 2-tailed) of the t-test are all exceedingly less than 0.05 (p = 0.000) which signify that there is enough evidence to reject the H<sub>0</sub>. The first column shows that H<sub>0</sub> is rejected in all of the queries. The full SPSS table output is in Appendix T; the last column of the table shows additional information about the confidence interval for the mean difference at 95%. These boundaries suggest where the true values of the mean difference can be found. The findings, in general, suggest that most of the normalized queries performed faster than the non-normalized queries except for Q5, Q7, Q11, and Q13 and they were all significant at p < 0.05.

|                          |                                                                                         | Levene's Test for<br>Equality of Variances |       | t-test for Equality of Means  |                            |                         |
|--------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|-------|-------------------------------|----------------------------|-------------------------|
| Reject or<br>Accept null |                                                                                         | F                                          | Sig.  | t                             | df                         | Sig. (2-<br>tailed)     |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>O1 assumed                         | 91.353                                     | 0.000 | 300.253<br>300.253            | 62.000<br>31.002           | 0.000<br>0.000          |
| Reject                   | Q1 assumed<br>Equal variances<br>assumed<br>Equal variances not                         | 101.004                                    | 0.000 | 278.553                       | 62.000                     | 0.000                   |
| Reject                   | Q2 assumed<br>Equal variances                                                           |                                            |       | 278.553                       | 31.007                     | 0.000                   |
| Reject                   | assumed<br>Equal variances not<br>Q3 assumed                                            | 2.134                                      | 0.149 | 12.237<br>12.237              | 62.000<br>37.069           | 0.000<br>0.000          |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q4 assumed                         | 61.590                                     | 0.000 | 272.229<br>272.229            | 62.000<br>32.859           | 0.000<br>0.000          |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q5 assumed                         | 0.581                                      | 0.449 | -28.927<br>-28.927            | 62.000<br>60.213           | 0.000<br>0.000          |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q6 assumed                         | 0.379                                      | 0.540 | 132.653<br>132.653            | 62.000<br>59.292           | 0.000<br>0.000          |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q7 assumed                         | 17.805                                     | 0.000 | -61.935<br>-61.935            | 62.000<br>36.130           | 0.000<br>0.000          |
|                          | Equal variances<br>assumed<br>Equal variances not                                       | 25.719                                     | 0.000 | 272.259                       | 62.000                     | 0.000                   |
| Reject<br>Reject         | Q8 assumed<br>Equal variances<br>assumed<br>Equal variances not<br>Q9 assumed           | 28.285                                     | 0.000 | 272.259<br>209.341<br>209.341 | 42.386<br>62.000<br>48.495 | 0.000<br>0.000<br>0.000 |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q10 assumed                        | 0.847                                      | 0.361 | 134.553<br>134.553            | 62.000<br>56.241           | 0.000                   |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q11 assumed                        | 20.825                                     | 0.000 | -63.425<br>-63.425            | 62.000<br>35.612           | 0.000<br>0.000          |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q12 assumed                        | 34.776                                     | 0.000 | 74.213<br>74.213              | 62.000<br>31.260           | 0.000<br>0.000          |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q13 assumed                        | 2.546                                      | 0.116 | -55.522<br>-55.522            | 62.000<br>44.586           | 0.000<br>0.000          |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Q14 assumed                        | 38.343                                     | 0.000 | 228.634<br>228.634            | 62.000<br>38.232           | 0.000                   |
| Reject                   | Equal variances<br>assumed<br>Equal variances not<br>Equal variances not<br>Q15 assumed | 10.650                                     | 0.002 | 208.922<br>208.922            | 62.000<br>32.824           | 0.000                   |

| Table 7. Independent Samples Test |
|-----------------------------------|
|-----------------------------------|

#### **4.3 Query Performance Statistics**

As mentioned in the previous section, all of the normalized queries outperformed nonnormalized queries except Q5, Q7, Q11, and Q13. Several factors could affect performance depending on each specific query. The most common issues are the maximum number of records involved, the number of joins, the number of physical hard drive reads, or a combination of any of these factors. According to Oracle's documentation, physical reads is defined as the "total number of data blocks read from disk"; it is a combination of direct, cache, and private buffer reads (2009). Each of the 15 queries both non-normalized (NN) and normalized (N) will be compared side by side using one of the query logs and discussed why one may have outperformed the other. The number of physical hard drive reads varies from run to run; however, the maximum number of records involved and the number of joins stays the same. Refer to Table 4 for the query description, Table 5a and 5b for non-normalized and normalized query syntax.

#### 4.3.1 Q1: What are the different message types?

| Q1 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 179.1747 | 30M                | 0               | 925255         |
| N  | .0088    | 169                | 0               | 0              |

Table 6. Q1 Statistics

Q1 results in Table 6 shows that N (M = .0088) exceedingly outperforms NN (M = 179.1747). The big difference is in number of records and physical hard drive reads. The N query only had to sort through 169 rows compared to 30 million for NN. In addition the number of physical reads for N query is virtually zero.

#### 4.3.2 Q2: What are the different base names?

| Q2 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 178.7297 | 30M                | 0               | 925434         |
| Ν  | .0150    | 44                 | 0               | 0              |

Table 7. Q2 Statistics

Q2 results in Table 7 shows that N (M = .0150) exceedingly outperforms NN (M =

178.7297). Q2 is very similar to Q1 in terms of structure. The only difference is the type of attribute involved as seen in the syntax. Similarly, the big difference is in number of records and physical hard drive reads. The N query only had to sort through 44 rows compared to 30 million for NN. In addition, the number of physical reads for N query is virtually zero.

#### 4.3.3 Q3: What are the report IPs from each base?

| Q3 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 179.8128 | 30M                | 0               | 925436         |
| Ν  | 147.5572 | 30M                | 3               | 249874         |

Q3 results in Table 8 shows that N (M = 147.5572) outperforms NN (M = 147.5572).

The difference in this query is the number of joins and physical hard drive reads, while the maximum number of rows is the same. The N query involves four tables and even if it has three times the number joins. The number of physical reads is less than one-third.

#### 4.3.4 Q4: What are the destination ports and how many events?

| Q4 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 178.9691 | 1.536M             | 0               | 925536         |
| Ν  | 7.1028   | 9.294M             | 0               | 18509          |

Table 9. Q4 Statistics

Q4 results in Table 9 shows that N (M = 178.9691) outperforms NN (M = 7.1028). The difference in this query is the maximum number of rows and physical hard drive reads, while the number of joins is the same. The N query only involves two tables.

#### 4.3.5 Q5: What are the Top 10 destination ports for January?

| Q5 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 180.7591 | 3841               | 0               | 925324         |
| Ν  | 227.1262 | 9.294M             | 1               | 977595         |

Table 10. Q5 Statistics

Q5 results in Table 10 shows that NN (M = 180.7591) outperforms N (M = 227.1262).

The difference in this query is the maximum number of rows, number of joins, and physical hard drive reads all in favor of NN. The N query had to sort through over 9 million records while the NN query only involved 3,841 rows and a difference of 52,271 physical reads. Additionally, the N query had to go to the Logmessage table to fetch for the LogDateTime timestamp after processing a subquery. In all, the N query had to process three tables versus one for the NN query.

4.3.6 Q6: What are the bases with port 445 as destination port and how many events?

| Q6 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 178.5216 | 364K               | 0               | 925989         |
| N  | 22.7825  | 30M                | 3               | 77602          |

Table 11. Q6 Statistics

Q6 results in Table 11 shows that N (M = 22.7825) outperforms NN (M = 178.5216).

The difference in this query is the maximum number of rows, number of joins, and physical hard drive reads. The N query had to sort through 30 million rows in table TBASENAME\_LINK how ever it is a smaller table with only two columns. There are three times the number of joins in query N however, the physical reads is 848,387 less than NN.

4.3.7 Q7: What are the bases with port 445 as destination port and how many events in January?

| Table 12. | Q7 | Statistics |
|-----------|----|------------|
|-----------|----|------------|

| Q7 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 179.5547 | 910                | 0               | 925632         |
| Ν  | 428.8850 | 9.294M             | 1               | 149889         |

Q7 results in Table 12 shows that NN (M = 179.5547) outperforms N (M = 428.8850). The difference in this query is the maximum number of rows and number of joins both in favor of NN. However, the physical reads, although it is lower for the N query by 775,743 reads the performance remained slow. Q7 is similar to Q5 in that it has to go to the Logmessage table to fetch for the LogDateTime timestamp after processing a subquery in a nested loop. In all, the N query had to process three tables versus one for the NN query.

#### 4.3.8 Q8: How many events have port 23 (Telnet) as destination port?

| Q8 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 179.0097 | 8293               | 0               | 925627         |
| N  | 5.9631   | 9.294M             | 1               | 18680          |

Table 13. Q8 Statistics

Q8 results in Table 13 shows that N (M = 5.9631) outperforms NN (M = 179.0097). The difference in this query is the maximum number of rows and number of joins both in favor of NN. The physical reads is lower for the N query by 906,947. These statistics are very similar to Q7 except N outperformed NN on this case. The major difference is that the N query in this case did not have to go to the Logmessage table to fetch for the LogDateTime timestamp. The N query also had to process only two tables.

#### 4.3.9 Q9: What bases use port 23 (Telnet) and how many?

| Table 14. | Q9 | Statistics |
|-----------|----|------------|
|-----------|----|------------|

| Q9 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|----|----------|--------------------|-----------------|----------------|
| NN | 178.4925 | 8293               | 0               | 925627         |
| N  | 22.9162  | 30M                | 3               | 77615          |

Q9 results in Table 14 shows that N (M = 22.9162) outperforms NN (M = 178.4925). The difference in this query is the maximum number of rows and number of joins both in favor of NN. However, the physical reads is lower for the N query by 848,012. This query is similar to Q8 in terms of the question but with additional data such as the base names. It also took longer by a few seconds.

4.3.10 Q10: What are the bases and message types with message severity of 2 and the number of events?

| Q10 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|-----|----------|--------------------|-----------------|----------------|
| NN  | 179.7838 | 1.536M             | 0               | 925638         |
| Ν   | 32.7353  | 30M                | 3               | 119950         |

Table 15. Q10 Statistics

Q10 results in Table 15 shows that N (M = 32.7353) outperforms NN (M = 179.7838).

The difference in this query is the maximum number of rows and number of joins both in favor of NN. However, the number of physical reads is lower for N by 805,688 reads. Further, the N query does not have to go to the Logmessage to get additional data.

## 4.3.11 Q11: What are the bases, ReportIP, message type, with message severity of 2

#### and the number of events during the month of January 2011?

| Table 16. | Q11 | Statistics |
|-----------|-----|------------|
|-----------|-----|------------|

| Q11 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|-----|----------|--------------------|-----------------|----------------|
| NN  | 178.4147 | 3841               | 0               | 925653         |
| N   | 336.3216 | 30M                | 2               | 1093787        |

Q11 results in Table 16 shows that NN (M = 178.4147) outperforms N (M = 336.3216). The difference in this query is the maximum number of rows, number of joins, and number of physical reads all in favor of NN. This is similar to Q5 and Q7 in that it has to go to the Logmessage table to fetch for the LogDateTime timestamp after processing a subquery in a nested loop. In all, the N query had to process three tables versus one for the NN query.

# 4.3.12 Q12: What bases have sourceIP from Enemy table in January 2011 and what country and reportIP?

| Q12 | Mean      | Max Number of Rows | Number of Joins | Physical Reads |
|-----|-----------|--------------------|-----------------|----------------|
| NN  | 3835.8384 | 196K               | 3               | 13734324       |
| N   | 769.9984  | 30 M               | 5               | 1189702        |

Q12 results in Table 17 shows that N (M = 769.9984) outperforms NN (M = 3835.8384). The difference in this query is the maximum number of rows and number of joins both in favor of NN. However, the number of physical reads is lower for N by 685,738 reads. This query has the highest difference in means (3,065 seconds). This is also one of the two queries with the highest number of joins and tables for both N and NN. There are two tables involved in the NN query and six tables in the N query. The N query still outperformed NN even though the N query had to go to the Logmessage table to fetch for the LogDateTime timestamp. However, the NN query also had to use three joins and filter results using the timestamp, which could have caused the slow performance.

4.3.13 Q13: What LogID, Basename, ReportIP, SourceIP, Country, Token3, and Token4 have sourceIP from Enemy table that is on the egress list and permitted and what country?

| Q13 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|-----|----------|--------------------|-----------------|----------------|
| NN  | 179.8703 | 1023               | 3               | 926290         |
| Ν   | 259.1588 | 30M                | 5               | 1066356        |

| Table 18. | Q13 Statistics |
|-----------|----------------|
|-----------|----------------|

Q13 results in Table 18 shows that NN (M = 179.8703) outperforms N (M = 259.1588). The difference in this query is the maximum number of rows, number of joins, and number of physical reads all in favor of NN. This query is similar to Q12 but with additional data such Token 3 and 4 minus the timestamp. The physical reads in this query is lower for NN by 140,066 reads. The NN query was faster because the N query needed to fetch more data (Token 3 and 4) from the non-normalized Logmessage table.

### 4.3.14 Q14: What Basename, LogDateTime, ReportIP, SourceIP,

COUNTRY\_NAME, DestinationIP Egress/Ingress (Token3), Permitted/Denied (Token4) did a source IP address from Enemy table show up in the log?

| Q14 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|-----|----------|--------------------|-----------------|----------------|
| NN  | 178.7362 | 36493              | 3               | 925580         |
| Ν   | 7.7987   | 11M                | 4               | 26592          |

Q14 results in Table 19 shows that N (M = 7.7987) outperforms NN (M = 178.7362).

The difference in this query is the maximum number of rows and number of joins both in favor of NN. However, the number of physical reads is lower for N by 898,988 reads. This query is similar to Q13 but with additional information and it searches for a specific IP address from the Enemy table. Oracle also automatically implemented an index unique scan for the N query for this instance.

## 4.3.15 Q15: What are the Top 10 message types in the log?

| Q15 | Mean     | Max Number of Rows | Number of Joins | Physical Reads |
|-----|----------|--------------------|-----------------|----------------|
| NN  | 179.8806 | 30M                | 0               | 925581         |
| N   | 21.0847  | 30M                | 1               | 60841          |

Table 20. Q15 Statistics

Q15 results in Table 20 shows that N (M = 21.0847) outperforms NN (M = 179.8806). The difference in this query is the number of joins and physical hard drive reads. The NN query did not use any joins and the N query used one join. The number of physical reads is lower for N by 864,740 reads. The maximum number of rows is the same. This query is similar to Q5; however, the N query does not have to go to the Logmessage table for additional data, hence, the query was faster.

In general, the query with higher physical hard drive reads performs slower except in cases where the normalized queries have to access the non-normalized Logmessage for additional data. The mean and physical hard drive reads for NN queries remained relatively constant throughout the experiment while the N queries have values that vary from query to query. This experiment showed that query performance is faster on normalized table if all the

necessary data are contained in the normalized tables. If however, the query needs to fetch additional data from the non-normalized table, then query performance decreases.

## 4.4 Preprocessing of Normalized Tables

## **4.4.1 Preprocessing Time**

The query performance results showed that in some cases, it is possible to normalized the tables based on consequential queries if the queries are known ahead of time. Nevertheless, completely normalizing a large table incurs pre-processing time that can negate any query performance advantage. The pre-processing in real-world network log analysis would be to update the normalized tables only if new log data does not exist already. In other words, the normalized tables will only be updated if new data is introduced from the logs. Therefore, majority of the pre-processing time will only be incurred during the initial setup of the normalized tables. Generally, static tables such as the Basename, Timezones, and MessageTypes should not change often. The actual pre-processing time will also depend on the overall size of the log. The preprocessing times can be found in the Table 21. As discussed in section 3.6.1, below are the preprocessing parameters.

NN average mean time = 423.04 seconds

N average mean time = 152.63 seconds

Difference 423.04 - 152.63 = 270.41 seconds

Total preprocessing time = 8,655.63 seconds

Break-even point

8,655.63/270.41 = 32 times

These results show that the normalized queries need to be ran at least 32 times to pay back the preprocessing overhead for this experiment. In real-world scenario, if the queries are performed daily then the normalization will pay off in approximately one month.

| Log Filename              | Total Preprocessing Time                                |
|---------------------------|---------------------------------------------------------|
|                           | (hh:mm:ss.00)                                           |
| 1. BuildLinkTables.log    | 00:00:00.83                                             |
| 2. BuildSummaryTables.log | 00:00:00.43                                             |
| 3. PopLinkTables.log      | 01:57:38.64                                             |
| 4. PopTBasename.log       | 00:03:08.84                                             |
| 5. PopTDestIP.log         | 00:03:57.23                                             |
| 6. PopTDestPorts.log      | 00:03:10.17                                             |
| 7. PopTMessage_Type.log   | 00:03:05.28                                             |
| 8. PopTReportIP.log       | 00:03:09.07                                             |
| 9. PopTSourceIP.log       | 00:03:33.08                                             |
| 10. PopTSourcePorts.log   | 00:03:16.68                                             |
| 11. PopTTZ.log            | 00:03:15.38                                             |
|                           | <b>Grand Total</b> = 02:24:15.63<br>or 8,655.63 seconds |

Table 21. Preprocessing Time

# 4.4.2 Disk Space Requirement

The process for determining the disk space requirement was discussed in section 3.6.1. Table 22 shows the table sizes for each of the normalized tables and the corresponding associative tables. The sizes are measured in kilobytes (KB) and the total in gigabytes (GB).

The additional disk space of 1.36GB is not a substantial increase.

| Table Name           | Size KB   |
|----------------------|-----------|
| TBASENAME            | .47       |
| TBASENAME_LINK       | 240194.84 |
| TDESTINATION_IP      | 15693.54  |
| TDESTINATION_IP_LINK | 110054.61 |
| TDESTPORTS           | 544.05    |
| TDESTPORT_LINK       | 81689.03  |
| TMESSAGE_TYPE        | 3.47      |
| TMESSAGE_TYPE_LINK   | 270435.92 |
| TREPORTIP            | 4.16      |
| TREPORTIP_LINK       | 269978.55 |
| TSOURCEPORTS         | 568.93    |
| TSOURCEPORT_LINK     | 81665.1   |
| TSOURCE_IP           | 7016.52   |
| TSOURCE_IP_LINK      | 113502.11 |
| TTIMEZONE            | .05       |
| TTIMEZONE_LINK       | 231300.3  |

Table 22. Table Sizes

| Total | 1,422,651.65 KB   |
|-------|-------------------|
|       | or <b>1.36 GB</b> |

#### **4.5 Statistical Query Results**

Actual statistical information from the event logs and some of the actual results from the queries are found in Appendix U and V.

#### 4.6 Summary

Database normalization improved 11 of the 15 normalized queries performed using 30 million router log events; however, performance is also dependent on the type of query executed. Query performance is faster on normalized table if all the necessary data are contained in the normalized tables. If however, the query needs to fetch additional data from the non-normalized table, then query performance decreases. The tradeoff between using a non-normalized versus normalized database is additional preprocessing time that depends on data and purpose of the queries. Additionally, normalized database adds extra storage requirements although minimal in this experiment. Finally, a normalized database has better table organization and maintains better data consistency than non-normalized. The next chapter reiterates and explains the main findings of the research, recommendation for actions, and recommendation for future research.

#### V. Conclusion and Recommendations

#### **Chapter Overview**

This chapter discusses the conclusions of the research, its significance, recommendation for actions and future research.

#### **Conclusions of Research**

The two prevailing event log standards today are, MITRE's CEE and the Syslog protocol (RFC 5424). Regulatory compliance and network security issues have increased the importance of event logs to many organizations. Log analysis still remain complex due to lack of industry standards, lack of simple and efficient analysis methods to process numerous amount of logs generated daily.

Event logs can provide cyber situational awareness to management and other network users in the organization. Proper event log utilization through information systems monitoring and threat detection enhances mission assurance and information assurance. Database analysis of event logs is only one of the tools in the information system security toolbox that is still limited and dependent on the human operator's understanding and knowledge of the entire situation. One way to increase understanding of a situation is to correlate different events wherein logs contribute critical data for analysis.

Event log analysis can be performed using relational databases. To enhance database query performance, databases are usually denormalized. However, database normalization can also increase query performance. Database normalization improved majority of the queries performed using 30 million router log events; however, performance is also dependent on the type of query executed. Query performance is faster on normalized table if all the necessary data are contained in the normalized tables. If however, the query needs to fetch additional data from

65

the non-normalized table, then query performance decreases. The tradeoff between using a nonnormalized versus normalized database is additional preprocessing time that depends on data and purpose of the queries. Additionally, normalized database adds extra storage requirements although minimal in this experiment. Finally, a normalized database has better table organization and maintains better data consistency than non-normalized.

#### Significance of Research

This research explored the different standards for event log generation, transport, storage, and analysis. It showed that database normalization does not always decrease query performance on databases. Database normalization enhanced performance for majority of the queries and will improve event log analysis for network defenders. Eleven of the 15 of the normalized queries, on average performed 2.77 times faster than non-normalized queries. There is a total of 270 seconds advantage in average mean query time for normalized queries. This experiment also established an early model for log analysis that is simple, customizable, and cost effective option to commercial log analyzers.

#### **Recommendations for Action**

One of the main findings of this research is that database query performance on event logs can be faster using normalized tables if all the data required is in the normalized tables. In most cases where the data required are not contained in the normalized tables, query performance degrades. If the queries that need to be performed on the event logs are known ahead of time, then the tables can be normalized to fit the queries in order to capture all the required data and avoid fetching them from the non-normalized table. Queries must be written to exclusively utilize the normalized tables and avoid referring back to the non-normalized table as much as possible to take advantage of faster performance. However, there are cases when the

66

queries and questions that an organization needs to ask are not pre-determined. If a new type of query is needed, the normalized tables can be updated and renormalized. The analyst, therefore, should consider the pre-processing time required and the frequency of the queries. For example, if a query is only required once, it may not be practical to normalize the tables for this purpose as the analyst can just directly query the non-normalized table. The decision to normalize the tables should be a balance between the pre-processing time required and the desired purpose of the query. Organizations can also implement a weighted-query approach where certain queries are assigned levels of importance and normalization can be tailored to the most important ones. Since performances vary from the type of queries, organizations may prefer a slower performance on some and faster on queries that are more important.

There is no fail-safe solution for normalizing event logs. Just like any other information systems solutions, the decision should be made based on the mission. Not every organization or base has similar missions and therefore the purpose for analyzing event logs could vary significantly. For instance, an organization that still uses Telnet to perform its mission may not be very interested in Telnet permitted connections; however, an organization that does not use Telnet should be very interested in Telnet type logs. IT personnel who understand the local mission can make better judgments of the results and take timely and decisive actions. Finally, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis tool. Network defenders can use this relational database to collect and analyze event log data to provide the ability to validate results generated by commercial tools.

67

#### **Recommendations for Future Research**

Despite the important and significant findings of this research, there are still several follow-up studies that can expand the results. This research was only conducted on one set of 30M records. A future study can perform further performance analysis using lower incremental amount of event logs (300K and 30K) and compare the performances. What is the query performance difference between non-normalized and normalize databases if the total size of the logs is 30M, 300K, and 30K? Does the total size of event logs affect the query performance of non-normalized and normalize databases? Moreover, can further normalization of the logs by creating additional normalized tables increase or decrease query performance? Creating additional normalized tables will minimize the need to fetch for additional data from the nonnormalized logs, which can improve query performance, however it can complicate the queries and add additional joins. Another future research is to create a model to determine what variables are predictive of slowing down query performance. Does the maximum number of rows processed, number of joins, physical reads and others correlate to slow query performance? Finally, this experiment only used Cisco router and switch event logs but should be applicable to other cyber logs; a future study using other event logs can validate the results.

# APPENDIX A

| Severity Level                                           | Description                      |  |
|----------------------------------------------------------|----------------------------------|--|
| 0 - emergency                                            | System is unusable               |  |
| 1 - alert                                                | Immediate action required        |  |
| 2 - critical                                             | Critical condition               |  |
| 3 - error                                                | Error condition                  |  |
| 4 - warning                                              | Warning condition                |  |
| 5 - notification                                         | Normal but significant condition |  |
| 6 - informational                                        | Informational message only       |  |
| 7 - debugging Message that appears during debugging only |                                  |  |

Event Logs Severity Code (Lonvick, 2001) p. 9

# **APPENDIX B**

| Attribute              | Туре          | Description                                       |
|------------------------|---------------|---------------------------------------------------|
| LogID                  | INTEGER,      | Primary key and unique identifier for each record |
| BaseName VARCHAR2(20), |               | The name of the base/location where the log came  |
|                        |               | from                                              |
| LogDateTime            | TIMESTAMP,    | The timestamp from the log server                 |
| ReportIP               | VARCHAR2(20), | The IP address of the reporting router            |
| ReportIPNum            | INTEGER,      | The decimal equivalent of the report IP address   |
| RouterNum              | INTEGER,      | The router sequence number assigned to each       |
|                        |               | event                                             |
| RouterNum2             | INTEGER,      | A second router sequence number assigned to each  |
|                        |               | event                                             |
| RouterDateTime         | TIMESTAMP,    | The timestamp from the router                     |
| RouterMsecs            | INTEGER,      | Millisecond from the timestamp from the router    |
| TimeZone               | VARCHAR2(6),  | Time zones in the logs                            |
| MessageType            | VARCHAR2(35), | Identifies the type of message or event           |
| SourceIP               | VARCHAR2(20), | Source IP address of the event recorded           |
| SourceIPNum            | INTEGER,      | The decimal equivalent of the Source IP address   |
| SourcePort             | INTEGER,      | Source port numbers in the logs                   |
| DestinationIP          | VARCHAR2(20), | Destination IP address of the event recorded      |
| DestinationIPNum       | INTEGER,      | The decimal equivalent of the destination IP      |
|                        |               | address                                           |
| DestinationPort        | INTEGER,      | Destination port numbers in the logs              |

# **APPENDIX C**

# Parselog.PL

## Description

This a script to extract relevant elements from a Cisco syslog file and write it into a CSV file that can be easily imported into Oracle. This file must be present in each of the base folders.

#!/usr/bin/perl use warnings; # use strict; # # parselog.pl -- a script to extract relevant elements from a cisco syslog file and write it into a CSV file that can be easily imported into oracle # # # Version 1.0 - Initial version - 02/28/11# Version 1.2 - Fixed error in line count - 03/01/11 # Version 1.2 - Fixed variable router message numbers - 03/02/11 # Version 1.3 - Fixed millisecond to zero when not present - 03/03/11# Version 1.4 - Fixed status message - 03/03/11 # Version 1.5 - Fixed bug in identifying dotted decimal - 03/04/11 # Version 1.6 - Fixed bug in router time trailing colon - 03/04/11 # Version 1.7 - Rewrite - 03/06/11 # Version 1.8 - Debug - 03/07/11 # Version 1.9 - Debug - 03/09/11 # Version 2.0 - Debug - 03/10/11 # Version 2.1 - Debug - 03/16/11 # Version 2.2 - Debug - 03/17/11 # # Oracle create table contents: # BaseName VARCHAR2(10), # LogDateTime TIMESTAMP, # ReportIP VARCHAR2(20), # ReportIP\_Long INTEGER, # RouterNum INTEGER, # RouterNum2 INTEGER, # RouterDateTime TIMESTAMP, # RouterMsecs INTEGER, # TimeZone VARCHAR2(5), # MessageType VARCHAR2(35), # SourceIP VARCHAR2(20), # SourceIPNum INTEGER, **#** SourcePort INTEGER. # DestinationIP VARCHAR2(20), # DestinationIPNum INTEGER,

```
# DestinationPort INTEGER,
# Token1 VARCHAR2(40),
# Token2 VARCHAR2(40),
# Token3 VARCHAR2(40),
# Token4 VARCHAR2(40),
# Token5 VARCHAR2(40),
# Token6 VARCHAR2(40),
# Token7 VARCHAR2(40),
# Token8 VARCHAR2(40),
# Token9 VARCHAR2(40),
# Token10 VARCHAR2(40),
# Token11 VARCHAR2(40),
# Token12 VARCHAR2(40),
# Token13 VARCHAR2(40),
# Token14 VARCHAR2(40),
# Token15 VARCHAR2(40),
# Token16 VARCHAR2(40),
# Token17 VARCHAR2(40),
# Token18 VARCHAR2(40),
# Token19 VARCHAR2(40),
# Token20 VARCHAR2(40),
# Token21 VARCHAR2(40),
# Token22 VARCHAR2(40),
# Token23 VARCHAR2(40),
# Token24 VARCHAR2(40),
# Token25 VARCHAR2(40),
# Token26 VARCHAR2(40),
# Token27 VARCHAR2(40),
# Token28 VARCHAR2(40),
# Token29 VARCHAR2(40),
# Token30 VARCHAR2(40));
# subroutine to convert IP dotted decimal to LONG integer
sub ip2long
{
 my address = [0];
 (my $a, my $b, my $c, my $d) = split '\.', $address;
 my decimal = d + (c * 256) + (b * 256 + 2) + (a * 256 + 3);
 return $decimal;
}
# Subroutine to convert LONG integer to IP dotted decimal
sub dec2dot
ł
 my address = [0];
 my $d = $address % 256; $address -= $d; $address /= 256;
```

```
my $c = $address % 256; $address -= $c; $address /= 256;
  my $b = $address % 256; $address -= $b; $address /= 256;
  my $a = $address;
 my $dotted="$a.$b.$c.$d";
 return $dotted;
}
# Subroutine to check if month is legal
sub checkmonth
 my $month = $_[0];
  my sresult = 0;
 if( ($month eq "Jan") || ($month eq "Feb") || ($month eq "Mar") ||
    (\text{month eq "Apr"}) \| (\text{month eq "May"}) \| (\text{month eq "Jun"}) \|
    ($month eq "Jul") || ($month eq "Aug") || ($month eq "Sep") ||
    ($month eq "Oct") || ($month eq "Nov") || ($month eq "Dec") )
  {
    # its a valid month
    sresult = 1;
   return $result;
  }
  else
  ł
    # it is not a valid month
    sresult = 0:
    return $result;
  }
 return $result;
}
# Subroutine to check if string is a valid day
sub checkday
 my $day = $_[0];
  my sresult = 0;
 # check to assure day is in range
 if ((day \ge 1) \& \& (day \le 31))
  ł
   # it is a valid day
   sresult = 1;
   return $result;
  }
 else
  ł
   # it is not a valid day
```

```
sresult = 0;
   return $result;
  }
 return $result;
}
# Subroutine to check if string is a time
sub checktime
ł
 my time = [0];
 my sresult = 0;
 # print "checktime: " . $time . "\n";
 (my $hour, my $minute, my $second) = split '\:', $time;
 # print "H: " . $hour . " M: " . $minute . " S: " . $second . "\n";
 # check to assure time is in range
 if( ($hour >= 0) && ($hour <= 23) &&
    ($minute >= 0) && ($minute <= 59) &&
    (\$second \ge 0) \&\& (\$second \le 59))
  {
   # it is a valid time
   sresult = 1;
   return $result;
  }
 else
  {
   # it is not a valid time
   sresult = 0:
   return $result;
  }
 return $result;
}
# Subroutine to check if string is a time with milliseconds
sub checkmtime
{
 my time = [0];
 my sresult = 0;
 my $isaperiod = ".";
 # print "checkmtime: " . $time . "\n";
 (my $hour, my $minute, my $second) = split '\:', $time;
```

```
my $msecond = "";
 my $hasfraction = rindex $second,$isaperiod;
 if ($hasfraction eq -1)
  {
   # does not have a period, so no fraction
   sresult = 0;
   return $result;
  }
 else
  {
   # does have a period, so we need to extract it
   $msecond = substr($second,-3);
   $second = substr($second,0,-4);
  }
 # print "H: " . $hour . " M: " . $minute . " S: " . $second . " Milli: " . $msecond . "\n";
 # check to assure time is in range
 if( ($hour >= 0) && ($hour <= 23) &&
    ($minute >= 0) && ($minute <= 59) &&
    (\$second \ge 0) \&\& (\$second \le 59) \&\&
    (\$msecond \ge 0) \&\& (\$msecond \le 999))
  {
   # it is a valid time
   sresult = 1;
   return $result;
  }
 else
  {
   # it is not a valid time
   sresult = 0:
   return $result;
  }
 return $result;
}
# Subroutine to check if string has a trailing colon
sub checktrailingcolon
{
 my set{message} = [0];
 my sresult = 0;
 my $colon = ":";
 # get string length
```

```
my $length = length $message;
```

```
# valid message should have trailing colon
 my $found = index $message,$colon;
 # adjust for zero position string
 found = found + 1;
 # print "String Length: " . $length . " Colon Found at: " . $found . "\n";
 if($found ne $length)
  {
   sresult = 0;
   return $result;
  }
 else
  {
   sresult = 1;
   return $result;
  }
 return $result;
ł
# Subroutine to check if string is a valid time zone
sub checktimezone
{
 my timezone = [0];
 my sresult = 0;
 # check for trailing colon
 my $hastrailingcolon = checktrailingcolon($timezone);
 if($hastrailingcolon eq 1)
  {
   # verify time zone is valid eventually
   sresult = 1;
   return $result;
  }
 else
  ł
   # invalid time zone
   sresult = 0;
   return $result;
  }
 return $result;
ł
```

```
# Subroutine to check if string is a message type
```

```
sub checkmessagetype
{
 my set{message} = [0];
 my sresult = 0;
 my $colon = ":";
 my $percent = "%";
 # print "checkmessagetype: " . $message . "\n";
 # get string length
 my $length = length $message;
 # valid message should have leading percent
 my $foundpercent = index $message,$percent;
 # valid message should have trailing colon
 my $foundcolon = index $message,$colon;
 # print "String Length: " . $length . " Colon Found at: " . $foundcolon . " Percent Found at: " .
$foundpercent."\n";
 if($foundcolon ne ($length-1))
```

```
ł
   set = 0;
   return $result;
  }
 else
  {
   if($foundpercent eq 0)
   {
     sresult = 1;
     return $result;
   }
   else
     sresult = 0;
     return $result;
   }
  }
 return $result;
}
sub checkmessagenumber
ł
 my message = [0];
 my sresult = 0;
```

```
# make sure this ends with a colon
 my $trailingcolon = checktrailingcolon($message);
 if($trailingcolon eq 1)
  ł
   # it has a trailing colon
  }
 else
  ł
   # no trailing colon
   sresult = 0;
   return $result;
  }
 # now verify that it has only numbers
 # strip trailing colon
 $message = substr($message,0,-1);
 if(sessage = /[+-]?(d+))
  {
   # it is a number
   sresult = 1;
   return $result;
  ł
 else
  {
   # it is not a number, but had a colon
   set{result} = 2;
   return $result;
  }
 return $result;
}
# Subroutine to check if there are three dots in string
sub checkthreedots
{
 my address = [0];
 my sresult = 0;
 my i = 0;
 my found = 0;
 my look = 1;
 my $dot = ".";
 # get string length
 my $length = length $address;
```

# check to see if there are three dots in the string

```
for((i = 1; i <= 3; i++)
  {
   $found = index $address,$dot,$found+1;
   if($found eq -1)
   {
     sresult = 0;
     # print "checkthreedots: NO three dots! " . $address . "\n";
     return $result;
   }
  }
 sresult = 1;
 # print "checkthreedots: YES three dots! " . $address . "\n";
 return $result;
}
# Subroutine to check if string is a valid IP address
# we are checking for 129.12.34.22 or (129.23.34.55)
sub checkIPAddress
{
 my address = [0];
 my sresult = 0;
 my i = 0;
 my found = 0;
 my foundopen = 0;
 my found close = 0;
 my foundcomma = 0;
 my look = 1;
 my $dot = ".";
 my $openparen = "(";
 my $closeparen = ")";
 my $comma = ",";
 # set result to OK
 sresult = 1;
 # get string length
 my $length = length $address;
 # printf "checkIPaddress checking: " . $address . "\n";
 # check to see if there are three dots in the string
 for($i = 1; $i <= 3; $i++)
  {
   $found = index $address,$dot,$found+1;
   if($found eq -1)
   {
```

```
sresult = 0;
                return $result;
           }
      }
     # printf "checkIPaddress saw three dots! " . $address . "\n";
     # check to see if there is an open parenthesis
     $foundopen = index $address,$openparen;
     # check to see if there is an close parenthesis
     $foundclose = index $address,$closeparen;
     # see if there is a comma
     $foundcomma = index $address,$comma;
     # print "Open: " . $foundopen . " Close: " . $foundclose . " Comma: " . $foundcomma . "
Length: ". slength. "\n";
     # check for (IP address)
     my $endofstring = $length - 1;
     if( ($foundopen eq 0) && ($foundclose eq $endofstring) )
      ł
           # print "Removing parenthesis\n";
          # yes, so remove leading and trailing parenthesis
           sresult = 2;
           # strip out leading paren from IP address
           $address = substr($address,1);
          # strip out trailing paren
           chop $address;
      }
     else
      {
          if($foundcomma eq $endofstring)
           {
                 sresult = 3:
                # strip out trailing comma
                chop $address;
           }
      }
     (my $a, my $b, my $c, my $d) = split '\.', $address;
    if( (a = //[+-]?d+) \& (b = //[+-]?d+) \& (s = //[+]?d+) \& (s = //[+-]?d+) \& (s = //[+]?d+) \& (s = //[+/[+]?d+) \& (s = //[+]?d+) \& (s = //[+]?d+
```

```
/^[+-]?\d+$/ ) ) {
```

```
# it is a number
  }
 else
  {
   # it is not a number
   sresult = 0;
   return $result;
  }
 # print "IP elements: " . $a . "." . $b . "." . $c . "." . $d . "\n";
 # check to assure each element is in range
 if( ($a >= 0) && ($a <= 255) && ($b >= 0) && ($b <= 255) &&
    (c \ge 0) \&\& (c \le 255) \&\& (d \ge 0) \&\& (d \le 255))
  {
   # it is a valid IP address
   # printf "checkIPaddress reports valid: " . $address . "\n";
   return $result;
  }
 else
  {
   # it is not a valid IP address
   sresult = 0;
   return $result;
  }
 return $result;
}
# Subroutine to check if string is a valid IP and port address combined
# we are check for this type of string 207.133.169.118(57785)
# can also be 201.22.33.44:23
sub checkIPPortAddress
{
 my address = [0];
 my sresult = 0;
 my i = 0;
 my found = 0;
 my foundopen = 0;
 my found close = 0;
 my foundcolon = 0;
 my look = 1;
 my $dot = ".";
 my $comma = ",";
 my $colon = ":";
 my $openparen = "(";
```

```
my $closeparen = ")";
 my $ip;
 my $port;
 # get string length
 my $length = length $address;
 # printf "checkIPPortAddress checking: " . $address . "\n";
 # check to see if there are three dots in the string
 for((i = 1; i <= 3; i++)
  ł
   $found = index $address,$dot,$found+1;
   if($found eq -1)
   {
     sresult = 0;
     return $result;
   }
  }
 # printf "checkIPPortaddress saw three dots! " . $address . "\n";
 # check to see if there is an open parenthesis
 $foundopen = index $address,$openparen;
 # check to see if there is an close parenthesis
 $foundclose = index $address,$closeparen;
 # check to see if there is a colon
 $foundcolon = index $address,$colon;
 # print "Open: " . $foundopen . " Close: " . $foundclose . "Colon: " . $foundcolon . " Length: " .
length . "\n";
 # check for (IP address)
 if( ($foundopen eq 0) && ($foundclose eq ($length-1)) )
  {
   # not in IP/port format
   sresult = 0;
   return $result;
  }
 if( ($foundopen ne -1) && ($foundclose ne -1) )
  ł
```

```
# we have a valid IP/port in IP(Port) format
```

```
# separate IP and port number
             $port = substr($address,$foundopen+1);
            # get rid of last character, if its a, we must chop again
            my $res = chop $port;
            if($res eq $comma)
             {
                  chop $port;
            $ip = substr($address, 0, $foundopen);
       }
     else
      {
            if( $foundcolon ne -1)
             {
                  # we have a valid IP/port in IP:port format
                  # separate IP and port number
                  $port = substr($address,$foundcolon+1);
                  $ip = substr($address, 0, $foundcolon);
             }
            else
             {
                  # no a valid IP/port
                  sresult = 0;
                  return $result;
            }
      }
     # print "IP: " . $ip . " Port: " . $port . "\n";
      (my \$a, my \$b, my \$c, my \$d) = split '\.', $ip;
     # print "IP elements: " . $a . "." . $b . "." . $c . "." . $d . "\n";
     if( (a = //[+-]?d+/) && (b = //[+-]?d+/) && (c = //[+-]?d+/) && (d = //[+-]?d+/) && (d = //[+-]?d+/) && (d = //[+-]?d+/) && (d = //[+-]?d+//) && (d = //[+-]?d+//]) && (d = //[+-]?//[+-]?d+//]) && (d = //[+-]?d+//]) && (d = //[+]?d+//]) && (d = //[+]?d+/
/^[+-]?\d+$/))
       ł
            # it is a number
      }
      else
       {
            # it is not a number
            sresult = 0;
            return $result;
       }
```

# check to assure each element is in range

```
if (\$a \ge 0) && (\$a \le 255) && (\$b \ge 0) && (\$b \le 255) &&
    (c \ge 0) \&\& (c \le 255) \&\& (d \ge 0) \&\& (d \le 255))
  ł
   # it is a valid IP address
   sresult = 1;
   # printf "checkIPPortaddress reports valid: " . $address . " IP: " . $ip . " Port: " . $port . "\n";
   return $result;
  }
 else
  {
   # it is not a valid IP address
   sresult = 0;
   return $result;
  }
 return $result;
}
# main programs starts here!
# get the number of command line arguments
my $numArgs = $#ARGV + 1;
# assure there are three arguments: infile base year
if($numArgs ne 3)
{
 # foreach $argnum (0 .. $#ARGV)
 # {
 # print "$ARGV[$argnum]\n";
 # }
 print "USAGE: parselog logfilename base year\n";
 # beep
 print "\a";
 exit(1);
}
# extract infile, base, year
my $logfilename = $ARGV[0];
my $basename = $ARGV[1];
my $logyear = $ARGV[2];
# create output file name
my $outfilename = $logfilename . ".csv";
# print status message
print "Logname: " . $logfilename . " Base: " . $basename . " Year: " . $logyear . " Out File: " .
$outfilename . "\n";
```

```
# open input file for read
```

open(INLOG, "<\$logfilename") or die "Can't open input log file: \$logfilename : \$!";

```
# open output file for write
open(OUTFILE, ">$outfilename") or die "Can't open output csv file: $outfilename : $!";
```

# number of lines processed my scount = 0;# maximum number of elements my maxelements = 0;# set up some string constants for comparison my \$isacolon = ":"; my \$isaperiod = "."; my \$isanasterix = "\*"; my \$isapercent = "%"; my \$isaopenparen = "("; my \$isacloseparen = ")"; my \$isacomma = ","; # element counter my i = 0;# variables to identify is given character is in a substring my shascolon = 0;my shaperiod = 0;my hasdots = 0;# variable to identity elements as bad my \$goodbase = 1; my goodlogdatetime = 1;my \$goodreportIP = 1; my \$goodmsgnum1 = 1; my goodmsgnum2 = 1;my goodrepdatetime = 1;my \$goodrepmilli = 1; my \$goodtimezone = 1; my goodmessagetype = 1;my \$goodsourceip = 1; my goodsourcedate = 1;my \$gooddestip = 1; my \$gooddestport = 1; while (<INLOG>)

my \$line = \$\_;

```
# variable used to identify the current line type
my $linetype = 0;
```

```
my $formatted = "";
my $isvalidIP = 0;
my sisualidlogmonth = 0;
my sisvalidlogday = 0;
my sisualidlogtime = 0;
my sisualidgenmonth = 0;
my sisvalidgenday = 0;
my sisualidgentime = 0;
my logIPnum = 0;
my hastwomessagenumbers = 0;
my $scrub = "";
my sourceip = 0;
my sourceport = 0;
my destip = 0;
my destport = 0;
my foundopen = 0;
my found close = 0;
my foundcolon = 0;
my gentimelength = 0;
my missingtimezone = 0;
my \ k = 0;
# added 09 JAN 2012
my @IPs = ();
my @IPNums = ();
my @Port = ();
count = count + 1;
# print "Processing line " . $count . "\n";
$i = 1;
# make sure signame array is clear for each line before filling
for($k=1; $k<35; $k++)
{
 $signame[$k] = "";
}
# split the line into tokens - I have seen as many as 33!
foreach my $name (split(' ', $line))
ł
 $signame[$i] = $name;
```

```
# printf("Element: " . $i . " Name: " . $name . " Value: " . $signame[$i] . "\n");
   $i++;
  }
 if($i > $maxelements)
  ł
   maxelements = ;
  }
 # this chunk of code is used to determine line type
 linetype = 0;
 # set logyear based upon current month
 if( ($signame[1] eq "Jan") || ($signame[1] eq "Feb") || ($signame[1] eq "Mar") )
 {
   $logyear = "2011";
  }
 else
 {
   $logyear = "2010";
  }
 # check fourth element to assure its a valid IP address
 $isvalidIP = checkIPAddress($signame[4]);
 if($isvalidIP eq 1)
  ł
   # it is a valid IP address
   $logIPnum = ip2long($signame[4]);
   # now check each of the basic elements of the line
   # Jan 1 00:00:25 132.35.194.5 233343: Jan 1 00:00:24.502 GMT: %LINK-4-ERROR:
FastEthernet0/21 is experiencing errors
   # Month Day Time IP MessageNum Month Day Time TimeZOne Message Type
Message_Elements
   $isvalidlogmonth = checkmonth($signame[1]);
   if($isvalidlogmonth eq 1)
   {
     # it is a valid log month
   }
   else
   {
     # invalid log month
```

```
printf("Invalid log month: " . $signame[1] . "\n");
```

```
}
```

```
$isvalidlogday = checkday($signame[2]);
if($isvalidlogday eq 1)
ł
 # it is a valid log day
}
else
{
 # invalid log day
 printf("Invalid log day: " . $signame[2] . "\n");
$isvalidlogtime = checktime($signame[3]);
if($isvalidlogtime eq 1)
{
 # it is a valid log time
}
else
{
 # invalid log time
 printf("Invalid log time: " . $signame[3] . "\n");
}
# check first message number
$isvalidmsgnum1 = checkmessagenumber($signame[5]);
if($isvalidmsgnum1 eq 1)
{
 # it is a valid message number
 # strip trailing colon
 # $signame[5] = substr($signame[5],0,-1);
 chop $signame[5];
}
else
{
 # Dec 21 16:14:47 138.13.215.203 last message repeated 3 times
 # this is a status line that starts at element 5
 linetype = 5;
 # skip additional processing
 goto CHECKTOIPCHECKER;
 # invalid message number
 printf("Invalid message number: " . $signame[5] . "\n");
}
# check for a second message number
$isvalidmsgnum2 = checkmessagenumber($signame[6]);
if($isvalidmsgnum2 eq 1)
{
```

```
# it is a number - has two message numbers
     $hastwomessagenumbers = 1;
     linetype = 3;
     # it is a valid message number
     # strip trailing colon
     # $signame[6] = substr($signame[6],0,-1);
     chop $signame[6];
     $isvalidgenmonth = checkmonth($signame[7]);
     if($isvalidgenmonth eq 1)
     {
       # it is a valid gen month
     }
     else
     ł
       # invalid gen month
       # try again after striping first character as we have seen
       # Jan 4 21:17:32 131.47.101.2 1867: *Jan 4 21:36:43 UTC: %LINK-3-UPDOWN:
Interface FastEthernet0/16 changed state to down
       $tryagain = substr($signame[7],1);
       $isvalidgenmonth = checkmonth($tryagain);
       if($isvalidgenmonth eq 1)
         # it is a valid gen month
         $signame[7] = substr($signame[7],1);
       }
       else
       ł
         printf("Invalid gen month: " . $signame[7] . "\n");
       }
     }
     $isvalidgenday = checkday($signame[8]);
     if($isvalidgenday eq 1)
     {
       # it is a valid gen day
     ł
     else
     ł
       # invalid gen day
       printf("Invalid gen day: " . $signame[8] . "\n");
     }
     $isvalidgenmtime = checkmtime($signame[9]);
     if($isvalidgenmtime eq 1)
     {
```

```
89
```

```
# it is a valid gen mtime
}
else
{
  # invalid gen mtime
  $isvalidgentime = checktime($signame[9]);
 if($isvalidgentime eq 1)
  {
   # it is a valid gen time
  }
  else
  {
   printf("Invalid gen time: " . $signame[9] . " Line: " . $count . "\n");
}
$gentimelength = length $signame[9];
if(($gentimelength eq 9)||($gentimelength eq 13))
   {
  # missing timezone because times HH:MM:SS: or HH:MM:SS:mm: results in no TZ
  # print "Missing TZ\n";
  missingtimezone = 1;
   }
# print "signame[9]: " . $signame[9] . "gentimelength: " . $gentimelength . "\n";
if($missingtimezone eq 0)
{
  # validate time zone
  $goodtimezone = checktimezone($signame[10]);
  if($goodtimezone eq 1)
  {
    # it is a valid timezone
    # strip out trailing : from time zone
    $signame[10] = substr($signame[10],0,-1);
  }
  else
  {
    # invalid timezone
    printf("Invalid time zone: " . $signame[10] . "\n");
  # validate message type
  $goodmessagetype = checkmessagetype($signame[11]);
  if($goodmessagetype eq 1)
  {
    # it is a valid message type
```

```
# strip out leading % from message type
```

```
$signame[11] = substr($signame[11],1);
         # strip out trailing : from message type
         # $signame[11] = substr($signame[11],0,-1);
         chop $signame[11];
        }
       else
       {
         # invalid message type
         printf("Invalid message type: " . $signame[11] . " Line: " . $count . " Linetype: " .
$linetype . "\n");
       }
     else
       {
       # validate message type
       $goodmessagetype = checkmessagetype($signame[10]);
       if($goodmessagetype eq 1)
         # it is a valid message type
         # strip out leading % from message type
         $signame[10] = substr($signame[10],1);
         # strip out trailing : from message type
         # $signame[10] = substr($signame[10],0,-1);
         chop $signame[10];
       }
       else
       {
         # invalid message type
         printf("Invalid message type: ". $signame[10]. "Line: ". $count. "Linetype: ".
$linetype . "\n");
        }
   }
   else
   {
     if($isvalidmsgnum2 eq 2)
     {
       # odd ball
       # example: Jan 4 00:35:53 131.47.103.1 35299: 1y8w: %SEC-6-IPACCESSLOGS: list
25 denied 131.47.102.47 3 packets
       linetype = 2;
     }
     else
       {
       # no second message number, so default line type 0 is OK
       hastwomessagenumbers = 0;
```

```
$isvalidgenmonth = checkmonth($signame[6]);
       if($isvalidgenmonth eq 1)
       {
         # it is a valid gen month
       }
       else
         # invalid gen month
         # try again after striping first character as we have seen
         # Jan 4 21:17:32 131.47.101.2 1867: *Jan 4 21:36:43 UTC: %LINK-3-UPDOWN:
Interface FastEthernet0/16 changed state to down
         $tryagain = substr($signame[6],1);
         $isvalidgenmonth = checkmonth($tryagain);
         if($isvalidgenmonth eq 1)
          # it is a valid gen month
           $signame[6] = substr($signame[6],1);
         }
         else
           # this is a status line that starts at element 6
           linetype = 4;
          # skip additional processing
           goto CHECKTOIPCHECKER;
          # this is a status message
          # printf("Invalid gen month: " . $signame[6] . "\n");
           }
       }
       $isvalidgenday = checkday($signame[7]);
       if($isvalidgenday eq 1)
       {
         # it is a valid gen day
       }
       else
         # invalid gen day
         printf("Invalid gen day: " . $signame[7] . "\n");
       $isvalidgenmtime = checkmtime($signame[8]);
       if($isvalidgenmtime eq 1)
         # it is a valid gen mtime
```

```
}
```

```
else
{
 # invalid gen mtime
 $isvalidgentime = checktime($signame[8]);
 if($isvalidgentime eq 1)
  ł
   # it is a valid gen time
  ł
 else
   printf("Invalid gen time: " . $signame[8] . " Line: " . $count . "\n");
    }
}
$gentimelength = length $signame[8];
if(($gentimelength eq 9)||($gentimelength eq 13))
  {
 # missing timezone because times HH:MM:SS: results in no TZ
 # print "Missing TZ\n";
 missingtimezone = 1;
# print "signame[8]: " . $signame[8] . "gentimelength: " . $gentimelength . "\n";
if($missingtimezone eq 0)
{
 # validate time zone
 $goodtimezone = checktimezone($signame[9]);
 if($goodtimezone eq 1)
  ł
   # it is a valid timezone
   # strip out trailing : from time zone
   $signame[9] = substr($signame[9],0,-1);
  }
 else
  ł
   # invalid timezone
   printf("Invalid time zone: " . $signame[9] . "\n");
  }
 # validate message type
 $goodmessagetype = checkmessagetype($signame[10]);
 if($goodmessagetype eq 1)
   # it is a valid message type
   # strip out leading % from message type
   $signame[10] = substr($signame[10],1);
   # strip out trailing : from message type
```

```
# $signame[10] = substr($signame[10],0,-1);
           chop $signame[10];
         }
         else
         {
           # invalid message type
           printf("Invalid message type: ". $signame[10]. "Line: ". $count. "Linetype: ".
$linetype . "\n");
         }
          }
       else
          {
         # validate message type
         $goodmessagetype = checkmessagetype($signame[9]);
         if($goodmessagetype eq 1)
           # it is a valid message type
           # strip out leading % from message type
           $signame[9] = substr($signame[9],1);
           # strip out trailing : from message type
           # $signame[9] = substr($signame[9],0,-1);
           chop $signame[9];
         }
         else
         {
           # invalid message type
           printf("Invalid message type: " . $signame[9] . " Line: " . $count . " Linetype: " .
$linetype . "\n");
         }
          }
        }
   }
  }
 else
  ł
   # invalid IP address
   linetype = 1;
   # printf("Invalid IP address: " . $signame[4] . " Line: " . $count . "\n");
  }
 # print "Linetype: ". $linetype . " HasTwoMessageNumbers: ". $hastwomessagenumbers .
"\n";
 my $routertime = "";
 my $routerfraction = "";
 my routertimehastrailingcolon = 0;
```

```
my hasperiod = 0;
my haspercent = 0;
my $hasfraction = "";
my hasanasterix = 0;
my timelength = 0;
# extract router time and router fraction
# remove : from time zone
# remove % and : from message type
if($hastwomessagenumbers eq 1)
{
  # this has two message numbers so
 # month = signame[7]
  # day = signame[8]
  \# time = signame[9]
  # print "Two message numbers Time: " . $signame[9] . "\n";
  $hasfraction = rindex $signame[9],$isaperiod;
  if ($hasfraction eq -1)
  {
   # does not have a period, so no fraction
   $routertime = $signame[9];
   # the time should be HH:MM:SS so length = 8
   $timelength = length $routertime;
   # print "Time Length: " . $timelength . "\n";
   # if there is a trailing colon, nuke it
   if($timelength eq 9)
      {
     # $routertime = substr($routertime,0,-1);
     chop $routertime;
     # flag this
     $routertimehastrailingcolon = 1;
    }
   routerfraction = 0;
  }
  else
  {
   # does have a period, so we need to extract the time and the fraction
   #$routertime = substr($signame[9],0,-4);
   $routertime = substr($signame[9],0,$hasfraction);
   # print "Router Time: " . $routertime . "\n";
```

```
95
```

# the time should be HH:MM:SS so length = 8

```
$timelength = length $routertime;
   # print "Time Length: " . $timelength . "\n";
   # if there is a trailing colon, nuke it
   if($timelength eq 9)
      {
     # $routertime = substr($routertime,0,-1);
     chop $routertime;
     $routertimehastrailingcolon = 1;
    }
   #$routerfraction = substr($signame[9],-3);
   $routerfraction = substr($signame[9],$hasfraction+1);
   # print "Router Fraction: " . $routerfraction . "\n";
   # check for trailing colon
   $hascolon = rindex $routerfraction,$isacolon;
   if ($hascolon eq -1)
    {
     # no colon
    ł
   else
    {
     # has a colon
     $routertimehastrailingcolon = 1;
     chop $routerfraction;
   # print "Router Fraction: " . $routerfraction . "\n";
  }
  # make sure month does not have a leading *
  $hasanasterix = rindex $signame[7],$isanasterix;
  if ($hasanasterix eq -1)
  {
   # does not have an asterix, so do nothing
  }
  else
  ł
   # does have an asterix, so we need to delete it
   $signame[7] = substr($signame[7],1);
  }
else
 # this has one message number so
 # month = signame[6]
 # day = signame[7]
 # time = signame[8]
```

}

ł

```
$hasfraction = rindex $signame[8],$isaperiod;
if ($hasfraction eq -1)
{
 # does not have a period, so no fraction
 $routertime = $signame[8];
 # the time should be HH:MM:SS so length = 8
 $timelength = length $routertime;
 # print "Time Length: " . $timelength . "\n";
 # if there is a trailing colon, nuke it
 if($timelength eq 9)
    {
   # $routertime = substr($routertime,0,-1);
   chop $routertime;
   $routertimehastrailingcolon = 1;
  }
 routerfraction = 0;
}
else
{
 # does have a period, so we need to extract it
 # take first eight characters of time
 # $routertime = substr($signame[8],0,8);
 $routertime = substr($signame[8],0,$hasfraction);
 # the time should be HH:MM:SS so length = 8
 $timelength = length $routertime;
 # print "Time Length: " . $timelength . "\n";
 # if there is a trailing colon, nuke it
 if($timelength eq 9)
    {
   # $routertime = substr($routertime,0,-1);
   chop $routertime;
   $routertimehastrailingcolon = 1;
  }
 # $routerfraction = substr($signame[8],-3);
 $routerfraction = substr($signame[8],$hasfraction+1);
 # $fractionlength = length $routerfraction;
 # check for trailing colon
 $hascolon = rindex $routerfraction,$isacolon;
 if ($hascolon eq -1)
  ł
   # no colon
  ł
```

```
else
     {
       # has a colon
       $routertimehastrailingcolon = 1;
       chop $routerfraction;
     ł
     # print "Router Fraction: " . $routerfraction . "\n";
   }
   # make sure month does not have a leading *
   $hasanasterix = rindex $signame[6],$isanasterix;
   if ($hasanasterix eq -1)
   {
     # does not have an asterix, so do nothing
   }
   else
   {
     # does have an asterix, so we need to delete it
     $signame[6] = substr($signame[6],1);
   }
 }
 #for($j=1; $j<$i; $j++)
 #{
 # print "Element \$signame [" . $j . "]: " . $signame[$j] . " Length: " . (length $signame[$j]) .
"\n";
 #}
```

### CHECKTOIPCHECKER:

```
# try to extract IP and port addresses from regular (non status) messages
my shasplainip = 0;
my shapport = 0;
my hasthreedots = 0;
my sipsfound = 0;
my startlookingat = 0;
if($hastwomessagenumbers eq 1)
{
  # start looking at $signame[12] if TZ is there, otherwise at $signame[11]
  if($missingtimezone eq 0)
  {
   $startlookingat = 12;
  }
  else
  {
   $startlookingat = 11;
```

}

```
# \text{ for}(\{j=12; \{j<\}i; \{j++\}\})
    for($j=$startlookingat; $j<$i; $j++)</pre>
    {
     # print "Checking \$signame [" . $j . "]: " . $signame[$j] . "\n";
     # check for three dots
     $hasthreedots = checkthreedots($signame[$j]);
     if($hasthreedots eq 1)
        {
       # print "Checking IP/Port for \$signame [" . $j . "]: " . $signame[$j] . "\n";
       # check for IP/Port address
       $hasipport = checkIPPortAddress($signame[$j]);
       if($hasipport eq 1)
       {
         # separate IP and Port
         # get IP Port string length
         my $IPPortlength = length $signame[$j];
         # check to see if there is an open parenthesis
         $foundopen = index $signame[$j],$isaopenparen;
         # check to see if there is an close parenthesis
         $foundclose = index $signame[$j],$isacloseparen;
         # check to see if there is a colon
         $foundcolon = index $signame[$j],$isacolon;
         # print "Open: " . $foundopen . " Close: " . $foundclose . " Colon: " . $foundcolon . "
Length: ". $IPPortlength . "\n";
         # check for (IP address)
         if( ($foundopen eq 0) && ($foundclose eq ($IPPortlength-1)) )
         {
           # not in IP/port format
           sresult = 0;
           return $result;
          }
         if( ($foundopen ne -1) && ($foundclose ne -1) )
         {
           # we have a valid IP/port in IP(Port) format
           # separate IP and port number
           $port = substr($signame[$j],$foundopen+1);
           # get rid of last character, if its a, we must chop again
```

```
my $res = chop $port;
   if($res eq $isacomma)
    ł
     chop $port;
    }
   $ip = substr($signame[$j], 0, $foundopen);
  }
  else
  ł
   if( $foundcolon ne -1)
    {
     # we have a valid IP/port in IP:port format
     # separate IP and port number
     $port = substr($signame[$j],$foundcolon+1);
     $ip = substr($signame[$j], 0, $foundcolon);
    }
   else
    {
     # no a valid IP/port
          print "Error: Cannot find IP/Port: " . $signame[$j] ."\n";
    }
  }
  # print "IP: " . $ip . " Port: " . $port . "\n";
  # found ip/port address
  push(@IPs,"$ip");
  push(@IPNums,ip2long($ip));
  push(@Port,$port);
  $ipsfound = $ipsfound+1;
  }
else
  {
  #print "Checking IP for \$signame [" . $j . "]: " . $signame[$j] . "\n";
    # not a IP/Port, so check for plain IP
  $hasplainip = checkIPAddress($signame[$j]);
  if($hasplainip eq 1)
  {
   # found ip address
   push(@IPs,$signame[$j]);
   push(@IPNums,ip2long($signame[$j]));
   # push a null instead of 0
   push(@Port,"");
   $ipsfound = $ipsfound+1;
    }
  else
```

```
{
if($hasplainip eq 2)
```

} } else {

ł

}

{

```
{
         # yes, but surround by parenthesis so remove leading and trailing parenthesis
         # strip out leading ( from IP address
         $signame[$j] = substr($signame[$j],1);
         # strip out trailing )
         chop $signame[$j];
         push(@IPs,$signame[$j]);
         push(@IPNums,ip2long($signame[$j]));
         # push a null instead of 0
         push(@Port,"");
         $ipsfound = $ipsfound+1;
       }
       else
       {
         if($hasplainip eq 3)
              {
         # yes, but ends in a comma so remove it
         # strip out trailing,
         chop $signame[$j];
         push(@IPs,$signame[$j]);
         push(@IPNums,ip2long($signame[$j]));
         # push a null instead of 0
         push(@Port,"");
         $ipsfound = $ipsfound+1;
         }
         else
              {
           # not an IP or IP/Port
         }
       }
     }
      ł
    }
# start looking at $signame[11] if TZ is there, otherwise at $signame[10]
if($missingtimezone eq 0)
 $startlookingat = 11;
else
```

```
$startlookingat = 10;
   }
   # for($j=11; $j<$i; $j++)
   for($j=$startlookingat; $j<$i; $j++)</pre>
   {
               print "Inside for loop STARTLOOKING:" . $startlookingat . " J:" . $j . " I:" . $i .
     #
"\n";
               print "Checking \$signame [" . $j . "]: " . $signame[$j] . "\n";
     # check for three dots
     $hasthreedots = checkthreedots($signame[$j]);
     if($hasthreedots eq 1)
       #
                 print "Checking IP/Port for \$signame [". $j. "]: ". $signame[$j]. "\n";
       # check for IP/Port address
       $hasipport = checkIPPortAddress($signame[$j]);
                 print "Before test hasipport: " . $hasipport . "\n";
       #
       if($hasipport eq 1)
         # get IP Port string length
         my $IPPortlength = length $signame[$j];
         # check to see if there is an open parenthesis
         $foundopen = index $signame[$j],$isaopenparen;
         # check to see if there is an close parenthesis
         $foundclose = index $signame[$j],$isacloseparen;
         # check to see if there is a colon
         $foundcolon = index $signame[$j],$isacolon;
                   print "Open: " . $foundopen . " Close: " . $foundclose . " Colon: " .
$foundcolon . " Length: " . $IPPortlength . "\n";
         # check for (IP address)
         if( ($foundopen eq 0) && ($foundclose eq ($IPPortlength-1)) )
         {
           # not in IP/port format
           sresult = 0;
           return $result;
          }
         if( ($foundopen ne -1) && ($foundclose ne -1) )
           # we have a valid IP/port in IP(Port) format
```

```
102
```

```
# separate IP and port number
   $port = substr($signame[$j],$foundopen+1);
   # get rid of last character, if its a, we must chop again
   my $res = chop $port;
   if($res eq $isacomma)
    {
     chop $port;
    ł
    $ip = substr($signame[$j], 0, $foundopen);
  }
  else
  ł
   if( $foundcolon ne -1)
    {
     # we have a valid IP/port in IP:port format
     # separate IP and port number
     $port = substr($signame[$j],$foundcolon+1);
     $ip = substr($signame[$j], 0, $foundcolon);
    }
   else
    {
     # no a valid IP/port
          print "Error: Cannot find IP/Port: " . $signame[$j] ."\n";
    }
  }
 # print "Found IPPort IP: " . $ip . " Port: " . $port . "\n";
  # found ip/port address
  push(@IPs,"$ip");
  push(@IPNums,ip2long($ip));
  push(@Port,$port);
  $ipsfound = $ipsfound+1;
  }
else
  {
  #
            print "Checking Plain IP for \$signame [" . $j . "]: " . $signame[$j] . "\n";
    # not a IP/Port, so check for plain IP
  $hasplainip = checkIPAddress($signame[$j]);
    # print "J: " . $j . " signame[" . $j . "]: " . $signame[$j] . "hasPlainIP: " . $hasplainip .
  if($hasplainip eq 1)
  {
   # found ip address
   push(@IPs,$signame[$j]);
   push(@IPNums,ip2long($signame[$j]));
```

"\n";

```
# push a null instead of 0
     push(@Port,"");
     $ipsfound = $ipsfound+1;
   else
     if($hasplainip eq 2)
          {
       # yes, but surround by parenthesis so remove leading and trailing parenthesis
       # strip out leading ( from IP address
       $signame[$j] = substr($signame[$j],1);
       # strip out trailing)
       chop $signame[$j];
       push(@IPs,$signame[$j]);
       push(@IPNums,ip2long($signame[$j]));
       # push a null instead of 0
       push(@Port,"");
       $ipsfound = $ipsfound+1;
     }
     else
     {
       if($hasplainip eq 3)
            {
         # yes, but ends in a comma so remove it
         # strip out trailing,
         chop $signame[$j];
         push(@IPs,$signame[$j]);
         push(@IPNums,ip2long($signame[$j]));
         # push a null instead of 0
         push(@Port,"");
         $ipsfound = $ipsfound+1;
       }
       else
            {
         # not an IP or IP/Port
       }
     }
    }
    }
}
else
  {
  # not a candidate IP
  }
```

} }

```
# print "I found " . $ipsfound . " IP addresses\n";
 # for($j=0; $j<$ipsfound; $j++)
 # {
 # print "Element [". $j. "] IP String: ". $IPs[$j]. " IP Num: ". $IPNums[$j]. " Port: ".
$Port[$j] . "\n";
 # }
 # print "Linetype: " . $linetype . "\n";
 # this chunk of code is used to create the outline based upon the identified line type
 if($linetype eq 1)
  {
  # linetype 1 - missing IP address, so it is a status message
  # example: Jan 4 00:35:53 ..
  # build the output string
   # base,
   $formatted = $basename . ",";
  # log server day-month-year HH:MM:SS
  $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " . $signame[3] .
   # NULL IP in dotted decimal, NULL IP unsigned long,
  $formatted = $formatted . ",,";
  # NULL router message, NULL router message 2
   $formatted = $formatted . ",,";
   # NULL date/time, NULL Fraction
   $formatted = $formatted . ",,";
   # NULL Time Zone
   $formatted = $formatted . ",";
   # Message Type
   $formatted = $formatted . "Status,";
   # NULL Source IP in dotted decimal, NULL Source IP in long
   $formatted = $formatted . ",,";
   # NULL Source port
   $formatted = $formatted . ",";
  # NULL Destination IP in dotted decimal, NULL Destination IP in long
   $formatted = $formatted . ",,";
  # NULL Destination port
   $formatted = $formatted . ",";
   # rest of message seperated by commas until we figure out all message formats
   for($j=4; $j<$i; $j++)
   ł
    $formatted = $formatted . "," . $signame[$j];
```

```
105
```

```
$formatted = $formatted . "\n";
  }
 else
  {
  if($linetype eq 2)
   {
    # linetype 2 - bad second message number
    # example: Jan 4 00:35:53 131.47.103.1 35299: 1y8w: %SEC-6-IPACCESSLOGS: list 25
denied 131.47.102.47 3 packets
    # build the output string
    # base,
    $formatted = $basename . ",";
    # log server day-month-year HH:MM:SS
    $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " . $signame[3]
 ",",
    # NULL IP in dotted decimal, NULL IP unsigned long,
    $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
    # NULL router message, NULL router message 2
    $formatted = $formatted . $signame[5] . ",,";
    # NULL date/time, NULL Fraction
    $formatted = $formatted . ",,";
    # NULL Time Zone
    $formatted = $formatted . ",";
    # Message Type
    # strip out any %
    $haspercent = rindex $signame[7],$isapercent;
    if($haspercent eq -1)
    {
      # no percent sign
    }
    else
    ł
      # get rid of leading % sign
      $signame[7] = substr($signame[7],1);
    ł
    # strip out trailing colon
    \#signame[7] = substr(signame[7], 0, -1);
    chop $signame[7];
    $formatted = $formatted . $signame[7] . ",";
    if(\text{sipsfound} > 0)
      # Source IP in dotted decimal, Source IP in long
      $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
      # Source port
      $formatted = $formatted . $Port[0] . ",";
```

```
106
```

```
}
    else
      # NULL Source IP in dotted decimal, NULL Source IP in long
      $formatted = $formatted . ",,";
      # NULL Source port
      $formatted = $formatted . ",";
    }
    if(\text{sipsfound} > 1)
    ł
      # Dest IP in dotted decimal, Dest IP in long
      $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
      # Dest port
      $formatted = $formatted . $Port[1] . ",";
    }
    else
    ł
      # NULL Dest IP in dotted decimal, NULL Dest IP in long
      $formatted = $formatted . ",,";
      # NULL Dest port
      $formatted = $formatted . ",";
    }
    # rest of message seperated by commas until we figure out all message formats
    for($j=4; $j<$i; $j++)
    ł
     $formatted = $formatted . "," . $signame[$j];
    $formatted = $formatted . "\n";
   }
  else
   ł
    if($linetype eq 3)
     # linetype 3 - two message numbers
     # example: Dec 30 12:00:02 131.47.120.11 966247: 966244: Dec 30 12:00:01.894 GMT:
%SEC-6-IPACCESSLOGS: list 13 permitted 131.15.50.254 1 packet
     # build the output string
     # base.
     $formatted = $basename . ",";
     # log server day-month-year HH:MM:SS
     $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " ".
$signame[3]. ",";
     # IP in dotted decimal, IP unsigned long,
     $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
     # router message, NULL router message 2
     $formatted = $formatted . $signame[5] . "," . $signame[6] . ",";
```

```
# reporting router day-month-year HH:MM:SS,millisecond
     $formatted = $formatted . $signame[8] . "-" . $signame[7] . "-" . $logyear . " " . $routertime
. "," . $routerfraction . ",";
     # Time Zone
     if($routertimehastrailingcolon eq 1)
     {
       # print null time zone and adjust all subsequent indexes by -1
       $formatted = $formatted . ",";
     }
     else
     {
       # print time zone
       $formatted = $formatted . $signame[10] . ",";
     }
     if($routertimehastrailingcolon eq 1)
     {
       # adjust index by -1
       # Message Type
       # strip out any %
       # ALREADY STRIPPED
       #$haspercent = rindex $signame[11],$isapercent;
       #if($haspercent eq -1)
       #{
       # # no percent sign
       #}
       #else
       #{
       # # get rid of leading % sign
       # $signame[11] = substr($signame[11],1);
       #}
       # strip out trailing colon
       \#signame[11] = substr(signame[11], 0, -1);
       $formatted = $formatted . $signame[11] . ",";
       if(sipsfound > 0)
       {
         # Source IP in dotted decimal, Source IP in long
         $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
         # Source port
         $formatted = $formatted . $Port[0] . ",";
       }
       else
         # NULL Source IP in dotted decimal, NULL Source IP in long
```

```
$formatted = $formatted . ",,";
```

```
# NULL Source port
   $formatted = $formatted . ",";
  if($ipsfound > 1)
  {
   # Dest IP in dotted decimal, Dest IP in long
   $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
   # Dest port
   $formatted = $formatted . $Port[1] . ",";
  }
  else
  {
   # NULL Dest IP in dotted decimal, NULL Dest IP in long
   $formatted = $formatted . ",,";
   # NULL Dest port
   $formatted = $formatted . ",";
  }
  # rest of message seperated by commas until we figure out all message formats
  # for($j=10; $j<$i; $j++)
  for($j=4; $j<$i; $j++)
  {
   $formatted = $formatted . "," . $signame[$j];
  formatted = formatted . "\n";
}
else
 # do not adjust index
  # Message Type
  # strip out any %
  # ALREADY STRIPPED
  #$haspercent = rindex $signame[11],$isapercent;
  #if($haspercent eq -1)
  #{
  # # no percent sign
  #}
  #else
  #{
  # # get rid of leading % sign
  # $signame[11] = substr($signame[11],1);
  #}
  # strip out trailing colon
  # $signame[11] = substr($signame[11],0,-1);
  $formatted = $formatted . $signame[11] . ",";
  if(\$ipsfound > 0)
```

```
{
         # Source IP in dotted decimal, Source IP in long
         $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
         # Source port
         $formatted = $formatted . $Port[0] . ",";
       }
       else
       {
         # NULL Source IP in dotted decimal, NULL Source IP in long
         $formatted = $formatted . ",,";
         # NULL Source port
         $formatted = $formatted . ",";
       ł
       if(\text{sipsfound} > 1)
       {
         # Dest IP in dotted decimal, Dest IP in long
         $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
         # Dest port
         $formatted = $formatted . $Port[1] . ",";
       }
       else
         # NULL Dest IP in dotted decimal, NULL Dest IP in long
         $formatted = $formatted . ",,";
         # NULL Dest port
         $formatted = $formatted . ",";
       }
       # rest of message seperated by commas until we figure out all message formats
       # for($j=12; $j<$i; $j++)
       for($j=4; $j<$i; $j++)
       {
         $formatted = $formatted . "," . $signame[$j];
       formatted = formatted . "\n";
     }
   }
   else
   {
     if($linetype eq 4)
     {
       # linetype 4
       # example: Jan 21 12:27:25 132.47.136.249 19: Cisco IOS Software, C3750 Software
(C3750-IPBASEK9-M), Version 12.2(50)SE3, RELEASE SOFTWARE (fc1)
       # build the output string
       # base,
       $formatted = $basename . ",";
```

```
# log server day-month-year HH:MM:SS
       $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " ".
$signame[3]. ",";
       # IP in dotted decimal, IP unsigned long,
       $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
       # router message num, NULL router message 2
       $formatted = $formatted . $signame[5] . ",,";
       # NULL date/time, NULL Fraction
       $formatted = $formatted . ",,";
       # NULL Time Zone
       $formatted = $formatted . ",";
       # Message Type
       $formatted = $formatted . "Status,";
       if(\text{sipsfound} > 0)
         # Source IP in dotted decimal, Source IP in long
         $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
         # Source port
         $formatted = $formatted . $Port[0] . ",";
       }
       else
       {
         # NULL Source IP in dotted decimal, NULL Source IP in long
         $formatted = $formatted . ",,";
         # NULL Source port
         $formatted = $formatted . ",";
       }
       if(sipsfound > 1)
         # Dest IP in dotted decimal, Dest IP in long
         $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
         # Dest port
         $formatted = $formatted . $Port[1] . ",";
       }
       else
       {
         # NULL Dest IP in dotted decimal, NULL Dest IP in long
         $formatted = $formatted . ",,";
         # NULL Dest port
         $formatted = $formatted . ",";
       }
        # NULL Source IP in dotted decimal, NULL Source IP in long
        # $formatted = $formatted . ",,";
        # NULL Source port
```

```
# $formatted = $formatted . ",";
        # NULL Destination IP in dotted decimal, NULL Destination IP in long
        # $formatted = $formatted . ",,";
        # NULL Destination port
        # $formatted = $formatted . ",":
        # rest of message seperated by commas until we figure out all message formats
        for($j=4; $j<$i; $j++)
        ł
         $formatted = $formatted . "," . $signame[$j];
        formatted = formatted . "\n";
     }
     else
     {
       if($linetype eq 5)
       {
         # linetype 5
         # build the output string
         # base,
         $formatted = $basename . ",";
         # log server day-month-year HH:MM:SS
         $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " ".
$signame[3]. ",";
         # IP in dotted decimal, IP unsigned long,
         $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
         # NULL router message num, NULL router message 2
         $formatted = $formatted . ".,":
         # NULL date/time, NULL Fraction
         $formatted = $formatted . ".,":
         # NULL Time Zone
         $formatted = $formatted . ",";
         # Message Type
         $formatted = $formatted . "Status,";
         if(sipsfound > 0)
         {
          # Source IP in dotted decimal, Source IP in long
          $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
          # Source port
           $formatted = $formatted . $Port[0] . ",";
         }
         else
          # NULL Source IP in dotted decimal, NULL Source IP in long
          $formatted = $formatted . ",,";
```

```
# NULL Source port
          $formatted = $formatted . ",";
         }
         if(sipsfound > 1)
         ł
          # Dest IP in dotted decimal, Dest IP in long
          $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
          # Dest port
           $formatted = $formatted . $Port[1] . ",";
         }
         else
         {
          # NULL Dest IP in dotted decimal, NULL Dest IP in long
          $formatted = $formatted . ",,";
          # NULL Dest port
          $formatted = $formatted . ",";
         }
         # NULL Source IP in dotted decimal, NULL Source IP in long
         # $formatted = $formatted . ",,";
         # NULL Source port
         # $formatted = $formatted . ",";
         # NULL Destination IP in dotted decimal, NULL Destination IP in long
         # $formatted = $formatted . ",,";
         # NULL Destination port
         # $formatted = $formatted . ",";
         # rest of message seperated by commas until we figure out all message formats
         # for($j=5; $j<$i; $j++)
         for($j=4; $j<$i; $j++)
         {
           $formatted = $formatted . "," . $signame[$j];
         formatted = formatted . "\n";
       }
       else
       {
         # default linetype = 0
         # example: Dec 30 12:00:30 131.47.102.1 34106: Dec 30 12:00:29 GMT: %SEC-6-
IPACCESSLOGS: list 13 permitted 131.15.50.254 14 packets
         # build the output string
```

```
# base ,
# base ,
$formatted = $basename . ",";
# log server day-month-year HH:MM:SS
```

```
$formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " ".
$signame[3] . ",";
         # IP in dotted decimal, IP unsigned long,
         $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
         # router message, NULL router message 2
         $formatted = $formatted . $signame[5] . ",,";
         # reporting router day-month-year HH:MM:SS,millisecond
         $formatted = $formatted . $signame[7] . "-" . $signame[6] . "-" . $logyear . " ".
$routertime . "," . $routerfraction . ",";
         # Time Zone
         if($routertimehastrailingcolon eq 1)
           # print null time zone and adjust all subsequent indexes by -1
           $formatted = $formatted . ",":
         ł
         else
           # print time zone
           $formatted = $formatted . $signame[9] . ",";
         if($routertimehastrailingcolon eq 1)
           # adjust index by -1
           # Message Type
           # strip out any %
           # ALREADY STRIPPED
           #$haspercent = rindex $signame[10],$isapercent;
           #if($haspercent eq -1)
           #{
           # # no percent sign
           #}
           #else
           #{
           # # get rid of leading % sign
           # $signame[10] = substr($signame[10],1);
           #}
           # strip out trailing colon
           #$signame[10] = substr($signame[10],0,-1);
           $formatted = $formatted . $signame[10] . ",";
           if(\$ipsfound > 0)
             # Source IP in dotted decimal, Source IP in long
             $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
```

```
# Source port
   $formatted = $formatted . $Port[0] . ",";
  }
 else
  {
   # NULL Source IP in dotted decimal, NULL Source IP in long
   $formatted = $formatted . ",,";
   # NULL Source port
   $formatted = $formatted . ",";
  }
 if(\text{sipsfound} > 1)
  ł
   # Dest IP in dotted decimal, Dest IP in long
   $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
   # Dest port
   $formatted = $formatted . $Port[1] . ",";
  }
 else
  {
  # NULL Dest IP in dotted decimal, NULL Dest IP in long
  $formatted = $formatted . ",,";
  # NULL Dest port
   $formatted = $formatted . ",";
  }
 # rest of message seperated by commas until we figure out all message formats
 for($j=10; $j<$i; $j++)
  {
   $formatted = $formatted . "," . $signame[$j];
  ł
 $formatted = $formatted . "\n";
ł
else
{
 # do not adjust index
 # Message Type
 # strip out any %
 # ALREADY STRIPPED
 #$haspercent = rindex $signame[10],$isapercent;
 #if($haspercent eq -1)
 #{
 # # no percent sign
 #}
 #else
 #{
 # # get rid of leading % sign
```

```
# $signame[10] = substr($signame[10],1);
         #}
         # strip out trailing colon
         #$signame[10] = substr($signame[10],0,-1);
         $formatted = $formatted . $signame[10] . ",";
         if(sipsfound > 0)
         {
           # Source IP in dotted decimal, Source IP in long
           $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
           # Source port
           $formatted = $formatted . $Port[0] . ",";
         }
         else
         {
           # NULL Source IP in dotted decimal, NULL Source IP in long
           $formatted = $formatted . ",,";
           # NULL Source port
           $formatted = $formatted . ",";
         }
         if($ipsfound > 1)
         {
           # Dest IP in dotted decimal, Dest IP in long
           $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
           # Dest port
           $formatted = $formatted . $Port[1] . ",";
         }
         else
         {
          # NULL Dest IP in dotted decimal, NULL Dest IP in long
          $formatted = $formatted . ",,";
          # NULL Dest port
          $formatted = $formatted . ",";
         }
         # rest of message seperated by commas until we figure out all message formats
         for($j=11; $j<$i; $j++)
           $formatted = $formatted . "," . $signame[$j];
         $formatted = $formatted . "\n";
       }
     }
print OUTFILE $formatted
```

} } }

}

# example conversion from dotted decimal
# dotted decimal 132.35.194.5
# binary 10000100001000111100001000000101
# decimal 2216935941
# hexidecimal 8423C205

printf ("Processed: " . \$count . " lines. Maximum Elements: " . \$maxelements . ".\n");

close (OUTFILE);

close(INLOG);

exit(0);

### **APPENDIX D**

#### CreateLogMessage.SQL

#### Description

This file creates the Oracle database tables named LogMessage and IPToCountry.

spool CreateNewLogMessage.log

REM Set environmental variables SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 300 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Nuke tables if they exist DROP SEQUENCE Log\_seq; DROP TRIGGER Log\_trigger; ALTER TABLE LOGMESSAGE DROP CONSTRAINT log\_message\_nn; ALTER TABLE NEWLOGMESSAGE DROP CONSTRAINT log\_message\_nn; DROP TABLE LOGMESSAGE CASCADE CONSTRAINTS; DROP TABLE IPTOCOUNTRY CASCADE CONSTRAINTS;

**REM Create LOGMESSAGE table** CREATE TABLE LOGMESSAGE ( LogID INTEGER NOT NULL. BaseName VARCHAR2(20), LogDateTime TIMESTAMP, ReportIP VARCHAR2(20), ReportIPNum INTEGER, RouterNum INTEGER, RouterNum2 INTEGER, RouterDateTime TIMESTAMP, RouterMsecs INTEGER, TimeZone VARCHAR2(6), MessageType VARCHAR2(35), SourceIP VARCHAR2(20), SourceIPNum INTEGER, SourcePort INTEGER, DestinationIP VARCHAR2(20), DestinationIPNum INTEGER, DestinationPort INTEGER,

Token1 VARCHAR2(80), Token2 VARCHAR2(80), Token3 VARCHAR2(80), Token4 VARCHAR2(80), Token5 VARCHAR2(80), Token6 VARCHAR2(80), Token7 VARCHAR2(80), Token8 VARCHAR2(80), Token9 VARCHAR2(80), Token10 VARCHAR2(80), Token11 VARCHAR2(80), Token12 VARCHAR2(80), Token13 VARCHAR2(80), Token14 VARCHAR2(80), Token15 VARCHAR2(80), Token16 VARCHAR2(80), Token17 VARCHAR2(80), Token18 VARCHAR2(80), Token19 VARCHAR2(80), Token20 VARCHAR2(80), Token21 VARCHAR2(80), Token22 VARCHAR2(80), Token23 VARCHAR2(80), Token24 VARCHAR2(80), Token25 VARCHAR2(80), Token26 VARCHAR2(80), Token27 VARCHAR2(80), Token28 VARCHAR2(80), Token29 VARCHAR2(80), Token30 VARCHAR2(80), CONSTRAINT log\_message\_nn PRIMARY KEY (LogID));

REM Create the sequence CREATE SEQUENCE Log\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER Log\_trigger BEFORE INSERT ON LOGMESSAGE FOR EACH ROW WHEN (new.LogID IS NULL) BEGIN SELECT Log\_seq.NEXTVAL INTO :new.LogID

```
FROM dual;
END;
/
REM Create IPTOCOUNTRY Table
CREATE TABLE IPTOCOUNTRY
(ip_from NUMBER(32,0)
, ip_to NUMBER(32,0)
, country_code2 VARCHAR2(2)
, country_code3 VARCHAR2(3)
, country_name VARCHAR2(50)
);
```

spool off;

exit;

# **APPENDIX E**

LogMessage Table Structure

| LogMessage                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------|
| LogID                                                                                                                      |
| BaseName<br>LogDateTime<br>ReportIP<br>ReportIPNum<br>RouterNum<br>RouterNum2<br>RouterDateTime<br>RouterMsecs<br>TimeZone |
| Message Type<br>Source IP<br>Source IP Num                                                                                 |
| SourcePort<br>SourcePort<br>DestinationIP                                                                                  |
| DestinationIPNum<br>DestinationPort<br>Token1                                                                              |
| Token2<br>Token3                                                                                                           |
| Token4<br>Token5<br>Token6                                                                                                 |
| Token7<br>Token8<br>Token9                                                                                                 |
| Token10<br>Token11                                                                                                         |
| Token12<br>Token13<br>Token14                                                                                              |
| Token15<br>Token16                                                                                                         |
| Token17<br>Token18<br>Token19                                                                                              |
| Token20<br>Token21                                                                                                         |
| Token22<br>Token23<br>Token24                                                                                              |
| Token25<br>Token26                                                                                                         |
| Token27<br>Token28<br>Token29                                                                                              |
| Token30                                                                                                                    |

# **APPENDIX F**

# IPToCountry Table Structure

| IPToCountry                                                        |
|--------------------------------------------------------------------|
| <u>Rownum</u>                                                      |
| IP_From<br>IP_To<br>Country_Code2<br>Country_Code3<br>Country_Name |

### **APPENDIX G**

### Doit.BAT

### **Description**

This file invokes the PERL parser for the log files from a particular USAF base, and invokes the CTL file that loads the resultant CSV file into the LogMessage table.

REM Edit "*pathname*\basename\parselog.pl" basename

del \*.csv for %%A in (cisco\*.log) do perl "D:\INOSCWest561st\*basename*\parselog.pl" %%A *basename* 2011 copy \*.csv all-*basename*.log.csv sqlldr user1/pass1 load*basename*.ctl type load*basename*.log

#### **APPENDIX H**

#### Redoit.BAT

#### Description

This file is the overall control batch file. It invokes CreateLogMessage.SQL, LoadIPCountry.CTL and Doit.BAT. This file displays the start time and end time. It also logsin to Oracle using sqlplus with username and password and calls the CreateLogMessage.SQL file. Then the LoadIPCountry.CTL is invoked using sqlldr with the same username and password. A loadipcountry.log is generated. After all the doit batch files for each base are executed the finished time is displayed and a redoit.log file is generated. When executing redoit.bat, there maybe messages stating "Commit point reached - logical record count...", this is normal and not to be concerned about. This batch process can take up to several hours depending on the system. Below is the actual batch file:

echo Starting at %time% sqlplus username/password @CREATELOGMESSAGE sqlldr username/password loadipcountry.ctl type loadipcountry.log

REM Change directory to *pathname*\Basename

cd C:\INOSCWest561st\Altus call doit cd C:\INOSCWest561st\Andersen call doit cd C:\INOSCWest561st\CapeCod call doit cd C:\INOSCWest561st\Cavalier call doit cd C:\INOSCWest561st\Charleston call doit cd C:\INOSCWest561st\Clear call doit cd C:\INOSCWest561st\Columbus call doit cd C:\INOSCWest561st\DiegoGarcia call doit cd C:\INOSCWest561st\Dover call doit cd C:\INOSCWest561st\Elmendorf call doit cd C:\INOSCWest561st\Fairchild call doit cd C:\INOSCWest561st\FEWarren

call doit cd C:\INOSCWest561st\Guam call doit cd C:\INOSCWest561st\Hickam call doit cd C:\INOSCWest561st\Kadena call doit cd C:\INOSCWest561st\KaenaPoint call doit cd C:\INOSCWest561st\Keesler call doit cd C:\INOSCWest561st\Kunsan call doit cd C:\INOSCWest561st\Lackland call doit cd C:\INOSCWest561st\Laughlin call doit cd C:\INOSCWest561st\LosAngeles call doit cd C:\INOSCWest561st\Luke call doit cd C:\INOSCWest561st\MacDill call doit cd C:\INOSCWest561st\Malmstrom call doit cd C:\INOSCWest561st\McChord call doit cd C:\INOSCWest561st\McConnell call doit cd C:\INOSCWest561st\McGuire call doit cd C:\INOSCWest561st\NewBoston call doit cd C:\INOSCWest561st\Oakhanger call doit cd C:\INOSCWest561st\Onizuka call doit cd C:\INOSCWest561st\Osan call doit cd C:\INOSCWest561st\Patrick call doit cd C:\INOSCWest561st\Pope call doit cd C:\INOSCWest561st\Randolph call doit cd C:\INOSCWest561st\Randolph-NOSC call doit cd C:\INOSCWest561st\Scott-NOSC call doit cd C:\INOSCWest561st\Sheppard call doit cd C:\INOSCWest561st\Thule call doit cd C:\INOSCWest561st\Travis call doit cd C:\INOSCWest561st\Tyndall call doit cd C:\INOSCWest561st\USAFA call doit cd C:\INOSCWest561st\Vandenberg call doit cd C:\INOSCWest561st\Yokota call doit echo Finished at %time% type redoit.log

### **APPENDIX I**

### LoadIPCountry.CTL

### Description

Loads the IP ranges of each country into the "IPToCountry" table.

REM cd to *pathname*\ip-to-country.csv'

load data infile 'D:Country IPs\ip-to-country.csv' into table IPTOCOUNTRY fields terminated by "," optionally enclosed by ""' TRAILING NULLCOLS (IP\_FROM, IP\_TO, COUNTRY\_CODE2, COUNTRY\_CODE3, COUNTRY\_NAME)

### **APPENDIX J**

### LoadBasename.CTL

#### Description

Loads the tokens in the CSV file into the "LogMessage" table. Each base has its own load<br/>basename>.CTL file, specific to the path name for each base.

REM Edit "pathname\all-basenamelog.csv"

load data

infile 'D:\INOSCWest561st\ *basename* \all-*basename*.log.csv' into table LOGMESSAGE append fields terminated by "," optionally enclosed by ""' TRAILING NULLCOLS (BaseName, LogDateTime DATE 'DD-MON-YYYY HH24.MI.SS', ReportIP, ReportIPNum, RouterNum, RouterNum2, RouterDateTime DATE 'DD-MON-YYYY HH24.MI.SS', RouterMsecs, TimeZone, MessageType, SourceIP, SOurceIPNum, SourcePort, DestinationIP, DestinationIPNum, DestinationPort, Token1, Token2, Token3, Token4, Token5, Token6, Token7, Token8, Token9, Token10, Token11, Token12, Token13, Token14, Token15, Token16, Token17, Token18, Token19, Token20, Token21, Token22, Token23, Token24, Token25, Token26, Token27, Token28, Token29, Token30)

#### **APPENDIX K**

#### BuildSummaryTables.SQL

Description

This script builds the normalized tables.

spool BuildSummaryTables.log

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 300 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Nuke tables in case they exist DROP TABLE TTIMEZONE CASCADE CONSTRAINTS; DROP TABLE TBASENAME CASCADE CONSTRAINTS; DROP TABLE TREPORTIP CASCADE CONSTRAINTS; DROP TABLE TMESSAGE\_TYPE CASCADE CONSTRAINTS; DROP TABLE TSOURCE\_IP CASCADE CONSTRAINTS; DROP TABLE TDESTINATION\_IP CASCADE CONSTRAINTS; DROP TABLE TSOURCEPORTS CASCADE CONSTRAINTS; DROP TABLE TDESTPORTS CASCADE CONSTRAINTS;

REM Create TTIMEZONE table CREATE TABLE TTIMEZONE ( TZ\_ID INTEGER NOT NULL PRIMARY KEY, TZ VARCHAR(6));

REM Create TBASENAME table CREATE TABLE TBASENAME ( Base\_ID INTEGER NOT NULL PRIMARY KEY, BaseName VARCHAR(30));

REM Create TREPORTIP table CREATE TABLE TREPORTIP ( REPORTIP\_ID INTEGER NOT NULL PRIMARY KEY, ReportIP VARCHAR2(20), ReportIPNum INTEGER);

REM Create TMESSAGE\_TYPE table CREATE TABLE TMESSAGE\_TYPE ( MsgType\_ID INTEGER NOT NULL PRIMARY KEY, MsgType VARCHAR2(35));

REM Create TSOURCE\_IP table CREATE TABLE TSOURCE\_IP ( SourceIP\_ID INTEGER NOT NULL PRIMARY KEY, SourceIP VARCHAR2(20), SourceIPNum INTEGER);

REM Create TSOURCEPORTS table CREATE TABLE TSOURCEPORTS ( SourcePort\_ID INTEGER NOT NULL PRIMARY KEY, PortNum INTEGER, PortDesc VARCHAR(30));

REM Create TDESTINATION\_IP table CREATE TABLE TDESTINATION\_IP ( DestIP\_ID INTEGER NOT NULL PRIMARY KEY, DestIP VARCHAR2(20), DestIPNum INTEGER);

REM Create TDESTPORTS table CREATE TABLE TDESTPORTS ( DestPort\_ID INTEGER NOT NULL PRIMARY KEY, PortNum INTEGER, PortDesc VARCHAR(30));

spool off;

## **APPENDIX L**

PopTZ.sql

Description

This populates TTIMEZONE table

spool PopTTZ.log

REM Populate TTIMEZONE table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTTIMEZONE CASCADE CONSTRAINTS; DROP SEQUENCE TIMEZONE\_seq; DROP TRIGGER TIMEZONE\_trigger;

REM Now we want to populate the TTIMEZONE table

REM First create a VIEW of daily logs to get a list of distinct TIMEZONE from LOGMESSAGE table CREATE VIEW VTTIMEZONE AS SELECT DISTINCT TIMEZONE FROM LOGMESSAGE WHERE TIMEZONE IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE TIMEZONE\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER TIMEZONE\_trigger BEFORE INSERT ON TTIMEZONE FOR EACH ROW WHEN (new.TZ\_ID IS NULL) BEGIN SELECT TIMEZONE\_seq.NEXTVAL INTO :new.TZ\_ID FROM dual; END; /

REM Now, lets populate the TTIMEZONE table using the VTTIMEZONE view INSERT INTO TTIMEZONE (TZ) SELECT TIMEZONE FROM VTTIMEZONE;

SELECT \* FROM TTIMEZONE;

SELECT COUNT(\*) FROM TTIMEZONE;

popTBasename.sql

**Description** 

This populates the TBASENAME table.

spool popTBasename.log

REM Populate TBASENAME table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTBASENAME CASCADE CONSTRAINTS; DROP SEQUENCE Basename\_seq; DROP TRIGGER Basename\_trigger;

REM Now we want to populate the TBASENAME table

REM First create a VIEW to get a list of distinct BASENAME from LOGMESSAGE table CREATE VIEW VTBASENAME AS SELECT DISTINCT BaseName FROM LOGMESSAGE WHERE Basename IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE Basename\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER Basename\_trigger BEFORE INSERT ON TBASENAME FOR EACH ROW WHEN (new.Base\_ID IS NULL) BEGIN SELECT Basename\_seq.NEXTVAL INTO :new.Base\_ID FROM dual; END; /

REM Now, lets populate the TBASENAME table using the VTBASENAME view INSERT INTO TBASENAME (BaseName) SELECT Basename FROM VTBASENAME;

SELECT \* FROM TBASENAME;

SELECT COUNT(\*) FROM TBASENAME;

PopTMessage\_Type.sql

**Description** 

This populates the TMESSAGE\_TYPE table

spool PopTMessage\_Type.log

REM Populate TMESSAGE\_TYPE table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTMESSAGE\_TYPE CASCADE CONSTRAINTS; DROP SEQUENCE MessageType\_seq; DROP TRIGGER MessageType\_trigger;

REM Now we want to populate the TMESSAGE\_TYPE table

REM First create a VIEW of daily logs to get a list of distinct MessageType from LOGMESSAGE table CREATE VIEW VTMESSAGE\_TYPE AS SELECT DISTINCT MessageType FROM LOGMESSAGE WHERE MessageType IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE MessageType\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER MessageType\_trigger BEFORE INSERT ON TMESSAGE\_TYPE FOR EACH ROW WHEN (new.MsgType\_ID IS NULL) BEGIN SELECT MessageType\_seq.NEXTVAL INTO :new.MsgType\_ID FROM dual; END; /

REM Now, lets populate the TMESSAGE\_TYPE table using the VTMESSAGE\_TYPE view INSERT INTO TMESSAGE\_TYPE (MsgType) SELECT MessageType FROM VTMESSAGE\_TYPE;

### PopTReportIP.sql

Description

This populates the TReportIP table

spool PopTReportIP.log

REM Populate TREPORTIP table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTREPORTIP CASCADE CONSTRAINTS; DROP SEQUENCE REPORTIP\_seq; DROP TRIGGER REPORTIP\_trigger;

REM Now we want to populate the TREPORTIP table

REM First create a VIEW of daily logs to get a list of distinct REPORTIP from LOGMESSAGE table CREATE VIEW VTREPORTIP AS SELECT DISTINCT REPORTIP, REPORTIPNUM FROM LOGMESSAGE WHERE REPORTIP IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE REPORTIP\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER REPORTIP\_trigger BEFORE INSERT ON TREPORTIP FOR EACH ROW WHEN (new.REPORTIP\_ID IS NULL) BEGIN SELECT REPORTIP\_seq.NEXTVAL INTO :new.REPORTIP\_ID FROM dual; END; /

REM Now, lets populate the TREPORTIP table using the VTREPORTIP view INSERT INTO TREPORTIP (REPORTIP, REPORTIPNUM) SELECT REPORTIP, REPORTIPNUM FROM VTREPORTIP;

PopTSourceIP.sql

**Description** 

This populates the TSOURCE\_IP table

spool PopTSourceIP.log

REM Populate TSOURCE\_IP table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTSOURCE\_IP CASCADE CONSTRAINTS; DROP SEQUENCE SOURCEIP\_seq; DROP TRIGGER SOURCEIP\_trigger;

REM Now we want to populate the TSOURCE\_IP table

REM First create a VIEW of daily logs to get a list of distinct SOURCEIP from LOGMESSAGE table CREATE VIEW VTSOURCE\_IP AS SELECT DISTINCT SOURCEIP, SOURCEIPNUM FROM LOGMESSAGE WHERE

SOURCEIP IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE SOURCEIP\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER SOURCEIP\_trigger BEFORE INSERT ON TSOURCE\_IP FOR EACH ROW WHEN (new.SOURCEIP\_ID IS NULL) BEGIN SELECT SOURCEIP\_seq.NEXTVAL INTO :new.SOURCEIP\_ID FROM dual; END; /

REM Now, lets populate the TSOURCE\_IP table using the VTSOURCE\_IP view with REM the SOURCEIPs not in the TSOURCE\_IP table already INSERT INTO TSOURCE\_IP (SOURCEIP, SOURCEIPNUM) SELECT SOURCEIP, SOURCEIPNUM FROM VTSOURCE\_IP;

popTSourcePorts.log

**Description** 

This populates the TSOURCEPORTS table

spool popTSourcePorts.log

REM Populate TSOURCEPORTS table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTSOURCEPORTS CASCADE CONSTRAINTS; DROP SEQUENCE SOURCEPORT\_seq; DROP TRIGGER SOURCEPORT\_trigger;

REM Now we want to populate the TSOURCEPORTS table

REM First get a list of distinct SOURCEPORTS from LOGMESSAGE table CREATE VIEW VTSOURCEPORTS AS SELECT DISTINCT SourcePort FROM LOGMESSAGE WHERE SourcePort IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE SOURCEPORT\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER SOURCEPORT\_trigger BEFORE INSERT ON TSOURCEPORTS FOR EACH ROW WHEN (new.SOURCEPORT\_ID IS NULL) BEGIN SELECT SOURCEPORT\_seq.NEXTVAL

```
INTO :new.SOURCEPORT_ID
FROM dual;
END;
/
```

REM Now, lets populate the TSOURCEPORTS table using the VTSOURCEPORTS view INSERT INTO TSOURCEPORTS (PortNum) SELECT SourcePort FROM VTSOURCEPORTS;

popTDestIP.sql

**Description** 

This populates the TDESTINATION\_IP table

spool PopTDestIP.log

REM Populate TDESTINATION\_IP table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTDESTINATION\_IP CASCADE CONSTRAINTS; DROP SEQUENCE DestIP\_seq; DROP TRIGGER DestIP\_trigger;

REM Now we want to populate the TDESTINATION\_IP table

REM First create a VIEW of daily logs to get a list of distinct DestIP from LOGMESSAGE table CREATE VIEW VTDESTINATION\_IP AS SELECT DISTINCT DestinationIP, DestinationIPNUM FROM LOGMESSAGE WHERE DestinationIP IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE DestIP\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER DestIP\_trigger BEFORE INSERT ON TDESTINATION\_IP FOR EACH ROW WHEN (new.DestIP\_ID IS NULL) BEGIN

```
SELECT DestIP_seq.NEXTVAL
INTO :new.DestIP_ID
FROM dual;
END;
/
```

REM Now, lets populate the TDESTINATION\_IP table using the VTDESTINATION\_IP view INSERT INTO TDESTINATION\_IP (DestIP, DestIPNUM) SELECT DestinationIP, DestinationIPNUM FROM VTDESTINATION\_IP;

#### PopTDestPorts.log

**Description** 

This populates the TDESTPORTS table

spool PopTDestPorts.log

REM Populate TDESTPORTS table

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Remove tables and views if exist DROP VIEW VTDESTPORTS CASCADE CONSTRAINTS; DROP SEQUENCE DESTPORT\_seq; DROP TRIGGER DESTPORT\_trigger;

REM Now we want to populate the TDESTPORTS table

REM First get a list of distinct DESTPORTS from LOGMESSAGE table CREATE VIEW VTDESTPORTS AS SELECT DISTINCT DestinationPort FROM LOGMESSAGE WHERE DestinationPort IS NOT NULL;

REM Since Oracle does not have an autonumber function, REM we have to create it using a sequence and a trigger

REM Create the sequence CREATE SEQUENCE DESTPORT\_seq start with 1 increment by 1 nomaxvalue;

REM Create the trigger CREATE OR REPLACE TRIGGER DESTPORT\_trigger BEFORE INSERT ON TDESTPORTS FOR EACH ROW WHEN (new.DESTPORT\_ID IS NULL) BEGIN

## SELECT DESTPORT\_seq.NEXTVAL INTO :new.DESTPORT\_ID FROM dual; END; /

REM Now, lets populate the TDESTPORTS table using the VTDESTPORTS view INSERT INTO TDESTPORTS (PortNum) SELECT DestinationPort FROM VTDESTPORTS;

#### **APPENDIX M**

#### Description

This script builds the eight associative link tables.

SPOOL BuildLinkTables.LOG

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Nuke tables in case they exist

DROP TABLE TTIMEZONE\_LINK CASCADE CONSTRAINTS; DROP TABLE TBASENAME\_LINK CASCADE CONSTRAINTS; DROP TABLE TREPORTIP\_LINK CASCADE CONSTRAINTS; DROP TABLE TMESSAGE\_TYPE\_LINK CASCADE CONSTRAINTS; DROP TABLE TSOURCE\_IP\_LINK CASCADE CONSTRAINTS; DROP TABLE TDESTINATION\_IP\_LINK CASCADE CONSTRAINTS; DROP TABLE TSOURCEPORT\_LINK CASCADE CONSTRAINTS; DROP TABLE TSOURCEPORT\_LINK CASCADE CONSTRAINTS;

REM Create the Link Tables that will link the normalized tables to the big table

REM Create TTIMEZONE\_LINK table CREATE TABLE TTIMEZONE\_LINK ( LogID INTEGER NOT NULL, TZ\_ID INTEGER NOT NULL, CONSTRAINT TZLINK\_PK PRIMARY KEY (LogID,TZ\_ID), CONSTRAINT TZLINK\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT TZLINK\_FK2 FOREIGN KEY (TZ\_ID) REFERENCES TTIMEZONE(TZ\_ID));

REM Create TBASENAME\_LINK table CREATE TABLE TBASENAME\_LINK ( LogID INTEGER NOT NULL, Base\_ID INTEGER NOT NULL, CONSTRAINT BASELINK\_PK PRIMARY KEY (LogID,Base\_ID), CONSTRAINT BASELINK\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT BASELINK\_FK2 FOREIGN KEY (Base\_ID) REFERENCES TBASENAME(Base\_ID));

REM Create TREPORTIP\_LINK table CREATE TABLE TREPORTIP\_LINK ( LogID INTEGER NOT NULL, REPORTIP\_ID INTEGER NOT NULL, CONSTRAINT REPORTIP\_PK PRIMARY KEY (LogID,REPORTIP\_ID), CONSTRAINT REPORTIP\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT REPORTIP\_FK2 FOREIGN KEY (REPORTIP\_ID) REFERENCES TREPORTIP(REPORTIP\_ID));

REM Create TMESSAGE\_TYPE\_LINK table CREATE TABLE TMESSAGE\_TYPE\_LINK ( LogID INTEGER NOT NULL, MsgType\_ID INTEGER NOT NULL, CONSTRAINT MESSAGETYPELINK\_PK PRIMARY KEY (LogID,MsgType\_ID), CONSTRAINT MESSAGETYPELINK\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT MESSAGETYPELINK\_FK2 FOREIGN KEY (MsgType\_ID) REFERENCES TMESSAGE TYPE(MsgType ID));

REM Create TSOURCE\_IP\_LINK table CREATE TABLE TSOURCE\_IP\_LINK ( LogID INTEGER NOT NULL, SourceIP\_ID INTEGER NOT NULL, CONSTRAINT SOURCE\_IP\_LINK\_PK PRIMARY KEY (LogID,SourceIP\_ID), CONSTRAINT SOURCE\_IP\_LINK\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT SOURCE\_IP\_LINK\_FK2 FOREIGN KEY (SourceIP\_ID) REFERENCES TSOURCE\_IP(SourceIP\_ID));

REM Create TDESTINATION\_IP\_LINK table CREATE TABLE TDESTINATION\_IP\_LINK ( LogID INTEGER NOT NULL, DestIP\_ID INTEGER NOT NULL, CONSTRAINT DESTINATION\_IP\_LINK\_PK PRIMARY KEY (LogID,DestIP\_ID), CONSTRAINT DESTINATION\_IP\_LINK\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT DESTINATION\_IP\_LINK\_FK2 FOREIGN KEY (DestIP\_ID) REFERENCES TDESTINATION IP(DestIP ID));

REM Create TSOURCEPORT\_LINK table CREATE TABLE TSOURCEPORT\_LINK ( LogID INTEGER NOT NULL, SPort\_ID INTEGER NOT NULL, CONSTRAINT SOURCEPORT\_LINK\_PK PRIMARY KEY (LogID,SPort\_ID), CONSTRAINT SOURCEPORT\_LINK\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT SOURCEPORT\_LINK\_EK2 EOREICN KEY (SPort\_ID) REFERENCES

CONSTRAINT SOURCEPORT\_LINK\_FK2 FOREIGN KEY (SPort\_ID) REFERENCES TSOURCEPORTS(SourcePort\_ID));

REM Create TDESTPORT\_LINK table CREATE TABLE TDESTPORT\_LINK ( LogID INTEGER NOT NULL, DPort\_ID INTEGER NOT NULL, CONSTRAINT DESTPORT\_LINK\_PK PRIMARY KEY (LogID,DPort\_ID), CONSTRAINT DESTPORT\_LINK\_FK1 FOREIGN KEY (LogID) REFERENCES LOGMESSAGE(LogID), CONSTRAINT DESTPORT\_LINK\_FK2 FOREIGN KEY (DPort\_ID) REFERENCES TDESTPORTS(DestPort\_ID));

SPOOL OFF;

#### **APPENDIX N**

#### PopLinkTables.sql

Description

This populates the associative link tables.

spool PopLinkTables.log

REM Populate link tables

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

REM Now we want to populate the TTIMEZONE\_LINK table INSERT INTO TTIMEZONE\_LINK (LogID, TZ\_ID) SELECT 1.LogID, t.TZ\_ID FROM Logmessage 1 JOIN TTimeZone t ON 1.TimeZone = t.TZ;

SELECT \* FROM TTIMEZONE\_LINK WHERE ROWNUM <21;

REM Now we want to populate the TBASENAME\_LINK table INSERT INTO TBASENAME\_LINK (LogID, Base\_ID) SELECT 1.LogID, b.Base\_ID FROM Logmessage 1 JOIN TBASENAME b ON 1.BaseName = b.BaseName;

SELECT \* FROM TBASENAME\_LINK WHERE ROWNUM <21;

REM Now we want to populate the TREPORTIP\_LINK table INSERT INTO TREPORTIP\_LINK (LogID, REPORTIP\_ID) SELECT 1.LogID, r.REPORTIP\_ID FROM Logmessage 1 JOIN TREPORTIP r ON 1.ReportIP = r.ReportIP;

SELECT \* FROM TREPORTIP\_LINK WHERE ROWNUM <21;

REM Now we want to populate the TMESSAGE\_TYPE\_LINK table INSERT INTO TMESSAGE\_TYPE\_LINK (LogID, MsgType\_ID)

SELECT l.LogID, m.MsgType\_ID FROM Logmessage l JOIN TMESSAGE\_TYPE m ON l.MessageType = m.MsgType;

## SELECT \* FROM TMESSAGE\_TYPE\_LINK WHERE ROWNUM <21;

REM Now we want to populate the TSOURCE\_IP\_LINK table INSERT INTO TSOURCE\_IP\_LINK (LogID, SourceIP\_ID) SELECT 1.LogID, sip.SourceIP\_ID FROM Logmessage 1 JOIN TSOURCE\_IP sip ON 1.SourceIP = sip.SourceIP;

SELECT \* FROM TSOURCE\_IP\_LINK WHERE ROWNUM <21;

REM Now we want to populate the TDESTINATION\_IP\_LINK table INSERT INTO TDESTINATION\_IP\_LINK (LogID, DestIP\_ID) SELECT 1.LogID, dip.DestIP\_ID FROM Logmessage 1 JOIN TDESTINATION\_IP dip ON 1.DestinationIP = dip.DestIP;

SELECT \* FROM TDESTINATION\_IP\_LINK WHERE ROWNUM <21;

REM Now we want to populate the TSOURCEPORT\_LINK table INSERT INTO TSOURCEPORT\_LINK (LogID, SPort\_ID) SELECT 1.LogID, s.SourcePort\_ID FROM Logmessage 1 JOIN TSourcePorts s ON 1.SourcePort = s.PortNum;

SELECT \* FROM TSOURCEPORT\_LINK WHERE ROWNUM <21;

REM Now we want to populate the TDESTPORT\_LINK table INSERT INTO TDESTPORT\_LINK (LogID, DPort\_ID) SELECT 1.LogID, d.DestPort\_ID FROM Logmessage 1 JOIN TDestPorts d ON 1.DestinationPort = d.PortNum;

SELECT \* FROM TDESTPORT\_LINK WHERE ROWNUM <21;

#### **APPENDIX O**

#### Description

This is an example of the non-normalized script of 15 queries.

SPOOL NonNormalized.LOG

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON SET AUTOTRACE TRACEONLY

REM These are the queries using the UNnormalized flat table

REM Query 1: What are the different message types? select distinct (messagetype) from logmessage;

REM Query 2: What are the different base names? select distinct (basename) from logmessage order by basename;

REM Query 3: What are the report IPs from each base? SELECT DISTINCT BASENAME, ReportIP FROM LOGMESSAGE ORDER BY BASENAME;

REM Query 4: What are the destination ports and how many events? SELECT Destinationport, Count(\*) AS "Number of Events" FROM Logmessage WHERE Destinationport LIKE '%' GROUP BY Destinationport ORDER BY "Number of Events";

REM Query 5: What are the Top 10 destination ports for January?

SELECT \* FROM (SELECT Destinationport, "Number of Events", RANK () OVER (ORDER BY "Number of Events" DESC) Rank FROM (SELECT Destinationport, Count(\*) AS "Number of Events" FROM Logmessage WHERE Destinationport LIKE '%' AND (logdatetime >= '01-jan-11' and logdatetime<= '31-jan-11') GROUP BY Destinationport ORDER BY "Number of Events")

) WHERE Rank <=10;

REM Query 6: What bases have port 445 as destination port and how many events? SELECT BaseName, Destinationport, Count(\*) AS "Number of Events" FROM Logmessage WHERE Destinationport = '445' GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

REM Query 7: What bases have port 445 as destination port and how many events in REM January? SELECT BaseName, Destinationport, Count(\*) AS "Number of Events" FROM Logmessage WHERE Destinationport = '445' AND (logdatetime >= '01-Jan-11' AND logdatetime<= '31-Jan-11') GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

REM Query 8: How many events use port 23 (TELNET) as destination port? SELECT Destinationport, Count(\*) AS "Number of Events" FROM Logmessage WHERE Destinationport = '23' GROUP BY Destinationport ORDER BY "Number of Events";

REM Query 9: What bases have port 23 as destination port and how many events? SELECT BaseName, Destinationport, Count(\*) AS "Number of Events" FROM Logmessage WHERE Destinationport = '23' GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

REM Query 10: What are the bases and message types with message severity of 2 and the number REM of events?

SELECT DISTINCT Basename, Messagetype, Count(\*) AS "Number of Events" FROM Logmessage WHERE messagetype LIKE '%-2-%' GROUP BY Basename, Messagetype ORDER BY "Number of Events";

REM Query 11: What are the bases, ReportIP, message type, with message severity of 2 and the number REM of events during the month of January 2011? SELECT Basename, ReportIP, Messagetype, Count(\*) AS "Number of Events" FROM Logmessage WHERE Messagetype LIKE '%-2-%' AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11') GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";

REM Query 12: What bases have sourceIP from Enemy table in January 2011 REM and what country?

REM First create the Enemy Table DROP TABLE ENEMY CASCADE CONSTRAINTS; CREATE TABLE ENEMY AS SELECT \* FROM IPTOCOUNTRY WHERE (COUNTRY\_NAME LIKE 'ISLAMIC REPUBLIC OF IRAN') OR (COUNTRY\_NAME LIKE 'CHINA');

SELECT BASENAME, ReportIP, SourceIP, COUNTRY\_NAME FROM LOGMESSAGE L, ENEMY E WHERE L.SourceIPNum <= E.IP\_TO AND L.SourceIPNum >= E.IP\_FROM AND (L.logdatetime >= '01-jan-11' and L.logdatetime <= '31-jan-11');

REM Query 13: What LogID, Basename, ReportIP, SourceIP, Country, Token3, REM and Token4 have sourceIP from Enemy table that is on the egress REM list and permitted and what country?

SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY\_NAME, Token3, Token4 FROM LOGMESSAGE L, ENEMY E WHERE L.SourceIPNum <= E.IP\_TO AND L.SourceIPNum >= E.IP\_FROM AND TOKEN3 LIKE '%egress%' AND TOKEN4 = 'permitted'; REM Query 14: What Basename, ReportIP, SourceIP, COUNTRY\_NAME, DestinationIP REM Egress/Ingress (Token3), Permitted/Denied (Token4) did a source IP address from Enemy table REM show up in the log?

REM show up in the log?

SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP COUNTRY\_NAME, Token3, Token4 FROM Logmessage, Enemy WHERE SourceIP = '203.171.234.174' AND (Logmessage.SourceIPNum <= Enemy.IP\_TO and Logmessage.SourceIPNum >= Enemy.IP\_FROM);

REM Query 15: What are the Top 10 message types in the log? SELECT \* FROM (SELECT MessageType, "Number of Events", RANK () OVER (ORDER BY "Number of Events" DESC) Rank FROM (SELECT MessageType, Count(\*) AS "Number of Events" FROM Logmessage WHERE MessageType LIKE '%' GROUP BY MessageType ORDER BY "Number of Events")

)

WHERE Rank <=10;

SPOOL OFF;

### **APPENDIX P**

#### **Description**

This is an example of the normalized script of 15 queries.

SPOOL Normalized.LOG

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON SET AUTOTRACE ON STATISTICS SET AUTOTRACE TRACEONLY

REM These are the queries using ONLY the normalized/summary tables

REM Query 1: What are the different message types? SELECT MsgType FROM TMESSAGE\_TYPE ORDER BY MsgType;

REM Query 2: What are the different base names? SELECT BaseName FROM TBASENAME ORDER BY BaseName;

REM Query 3: What are the report IPs from each base? SELECT DISTINCT BaseName, ReportIP FROM TBASENAME, TBASENAME\_LINK, TREPORTIP, TREPORTIP\_LINK WHERE TBASENAME.Base\_ID = TBASENAME\_LINK.Base\_ID AND TBASENAME\_LINK.LOGID = TREPORTIP\_LINK.LOGID AND TREPORTIP\_LINK.REPORTIP\_ID = TREPORTIP.REPORTIP\_ID ORDER BY BaseName;

REM Query 4: What are the destination ports and how many events?

SELECT DISTINCT PortNum, Count(\*) AS "Number of Events" FROM TDESTPORTS, TDESTPORT\_LINK WHERE TDESTPORT\_LINK.DPort\_ID = TDESTPORTS.DestPort\_ID GROUP BY PortNum ORDER BY "Number of Events"; REM Query 5: What are the Top 10 destination ports for January?

REM Query 6: What are the bases with port 445 as destination port and how many events?

SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(\*) AS "Number of Events" FROM TBASENAME, TBASENAME\_LINK, TDESTPORTS, TDESTPORT\_LINK WHERE TBASENAME.Base\_ID = TBASENAME\_LINK.Base\_ID AND TBASENAME\_LINK.LOGID = TDESTPORT\_LINK.LOGID AND TDESTPORT\_LINK.DPort\_ID = TDESTPORTS.DestPort\_ID AND TDESTPORTS.PortNum = '445' GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of Events";

REM Query 7: What are the bases with port 445 as destination port and how many events in REM January?

SELECT BASENAME, DestinationPort, Count(\*) AS "Number of Events" FROM Logmessage WHERE Logmessage.LogID IN (SELECT TDESTPORT\_LINK.LOGID FROM TDESTPORTS, TDESTPORT\_LINK WHERE TDESTPORTS.DestPort\_ID = TDESTPORT\_LINK.DPort\_ID AND TDESTPORTS.PortNum = '445') AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11') GROUP BY BASENAME, DestinationPort ORDER BY "Number of Events";

REM Query 8: How many events have port 23 (TELNET) as destination port?

SELECT DISTINCT PortNum, Count(\*) AS "Number of Events" FROM TDESTPORTS, TDESTPORT\_LINK

WHERE TDESTPORT\_LINK.DPort\_ID = TDESTPORTS.DestPort\_ID AND TDESTPORTS.PortNum = '23' GROUP BY PortNum ORDER BY "Number of Events";

REM Query 9: What baseS use port 23 (TELNET) and how many?

SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(\*) AS "Number of Events" FROM TBASENAME, TBASENAME\_LINK, TDESTPORTS, TDESTPORT\_LINK WHERE TBASENAME.Base\_ID = TBASENAME\_LINK.Base\_ID AND TBASENAME\_LINK.LOGID = TDESTPORT\_LINK.LOGID AND TDESTPORT\_LINK.DPort\_ID = TDESTPORTS.DestPort\_ID AND TDESTPORTS.PortNum = '23' GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of Events";

REM Query 10: What are the bases and message types with message severity of 2 and the number REM of events?

SELECT DISTINCT Basename, Msgtype, Count(\*) AS "Number of Events" FROM TBASENAME, TBASENAME\_LINK, TMESSAGE\_TYPE, TMESSAGE\_TYPE\_LINK WHERE TBASENAME.BASE\_ID = TBASENAME\_LINK.BASE\_ID AND TMESSAGE\_TYPE\_LINK.MSGTYPE\_ID = TMESSAGE\_TYPE.MSGTYPE\_ID AND TBASENAME\_LINK.LOGID = TMESSAGE\_TYPE\_LINK.LOGID AND TMESSAGE\_TYPE.MSGTYPE LIKE '%-2-%' GROUP BY Basename, Msgtype ORDER BY "Number of Events";

REM Query 11: What are the bases, ReportIP, message type, with message severity of 2 and the number REM of events during the month of January 2011?

SELECT Basename, ReportIP, Messagetype, Count(\*) AS "Number of Events" FROM Logmessage WHERE Logmessage.LOGID IN ( SELECT TMESSAGE\_TYPE\_LINK.LOGID FROM TMESSAGE\_TYPE, TMESSAGE\_TYPE\_LINK WHERE TMESSAGE\_TYPE, TMESSAGE\_TYPE\_ID = TMESSAGE\_TYPE.MSGTYPE\_ID AND TMESSAGE\_TYPE.MSGTYPE LIKE '%-2-%') AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11') GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";

REM Query 12: What bases have sourceIP from Enemy table in January 2011 REM and what country and reportIP?

REM First create the Enemy Table DROP TABLE ENEMY CASCADE CONSTRAINTS; CREATE TABLE ENEMY AS SELECT \* FROM IPTOCOUNTRY WHERE (COUNTRY\_NAME LIKE 'ISLAMIC REPUBLIC OF IRAN') OR (COUNTRY\_NAME LIKE 'CHINA');

SELECT Basename, ReportIP, SourceIP, COUNTRY\_NAME FROM Logmessage, Enemy WHERE Logmessage.LOGID IN ( SELECT TBASENAME\_LINK.LOGID FROM TBASENAME, TBASENAME\_LINK, TSOURCE\_IP, TSOURCE\_IP\_LINK WHERE TBASENAME.BASE\_ID = TBASENAME\_LINK.BASE\_ID AND TSOURCE\_IP.SOURCEIP\_ID = TSOURCE\_IP\_LINK.SOURCEIP\_ID AND TBASENAME\_LINK.LOGID = TSOURCE\_IP\_LINK.LOGID) AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11') AND (Logmessage.SourceIPNum <= Enemy.IP\_TO and Logmessage.SourceIPNum >= Enemy.IP\_FROM);

REM Query 13: What LogID, Basename, ReportIP, SourceIP, Country, Token3, REM and Token4 have sourceIP from Enemy table that is on the egress REM list and permitted and what country?

SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY\_NAME, Token3, Token4 FROM Logmessage JOIN Enemy ON Logmessage.LOGID IN ( SELECT TBASENAME\_LINK.LOGID FROM TBASENAME, TBASENAME\_LINK, TSOURCE\_IP, TSOURCE\_IP\_LINK WHERE TBASENAME.BASE\_ID = TBASENAME\_LINK.BASE\_ID AND TSOURCE\_IP.SOURCEIP\_ID = TSOURCE\_IP\_LINK.SOURCEIP\_ID AND TBASENAME\_LINK.LOGID = TSOURCE\_IP\_LINK.LOGID) AND (Logmessage.SourceIPNum <= Enemy.IP\_TO and Logmessage.SourceIPNum >= Enemy.IP\_FROM) AND TOKEN3 LIKE '% egress%' AND TOKEN4 = 'permitted'; REM Query 14: What Basename, ReportIP, SourceIP, COUNTRY\_NAME, DestinationIP REM Egress/Ingress (Token3), Permitted/Denied (Token4) did a source IP address from Enemy table REM show up in the log?

SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP, COUNTRY\_NAME, Token3, Token4 FROM Logmessage, Enemy WHERE Logmessage.LogID IN (SELECT TSOURCE\_IP\_LINK.LogID FROM TSOURCE\_IP, TSOURCE\_IP\_LINK WHERE TSOURCE\_IP.SourceIP\_ID = TSOURCE\_IP\_LINK.SourceIP\_ID AND TSOURCE\_IP.SourceIP = '203.171.234.174') AND (Logmessage.SourceIPNum <= Enemy.IP\_TO and Logmessage.SourceIPNum >= Enemy.IP\_FROM);

REM Query 15: What are the Top 10 message types in the log?

SELECT \* FROM (SELECT MsgType, "Number of Events", RANK () OVER (ORDER BY "Number of Events" DESC) RANK FROM (SELECT MsgType, Count(\*) AS "Number of Events" FROM TMESSAGE\_TYPE, TMESSAGE\_TYPE\_LINK WHERE TMESSAGE\_TYPE.MsgType\_ID = TMESSAGE\_TYPE\_LINK.MsgType\_ID GROUP BY MsgType ORDER BY "Number of Events") ) WHERE RANK <=10;

SPOOL OFF;

## **APPENDIX Q**

## RunNNQueries.sql

## Description

This script invokes the 32 individual non-normalized queries.

spool RunNNQueries.log

REM Run non-Normalized Queries 20x

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

@15NN1 @15NN2 @15NN3 @15NN4 @15NN5 @15NN6 @15NN7 @15NN8 @15NN9 @15NN10 @15NN11 @15NN12 @15NN13 @15NN14 @15NN15 @15NN16 @15NN17 @15NN18 @15NN19 @15NN20 @15NN21 @15NN22 @15NN23 @15NN24 @15NN25

@15NN26 @15NN27 @15NN28 @15NN29 @15NN30 @15NN31 @15NN32

# **APPENDIX R**

## RunNQueries.sql

### Description

This script invokes the 32 individual normalized queries.

spool RunNQueries.log

**REM Run Normalized Queries** 

SET ECHO ON SET HEADING ON SET NEWPAGE NONE SET LINESIZE 500 SET FEEDBACK ON SET COLSEP '|' SET TIMING ON

@15N1 @15N2 @15N3 @15N4 @15N5 @15N6 @15N7 @15N8 @15N9 @15N10 @15N11 @15N12 @15N13 @15N14 @15N15 @15N16 @15N17 @15N18 @15N19 @15N20 @15N21 @15N22 @15N23 @15N24 @15N25 @15N26 @15N27 @15N28 @15N29 @15N30 @15N31 @15N32

## **APPENDIX S**

## Dataset

## Description

This is the dataset collected and entered into SPSS. The unit of measurement is in seconds.

| RunQueryType | Group | Q1     | Q2     | Q3     | Q4     | Q5     | Q6     | Q7     | Q8     | Q9     | Q10    | Q11    | Q12     | Q13    | Q14    | Q15    |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|
| NNRun1       | 1     | 179.81 | 185.4  | 191.71 | 180.7  | 183.31 | 179.06 | 183.62 | 183.4  | 179.87 | 180.78 | 180.32 | 3764.04 | 182.84 | 179.93 | 180.75 |
| NNRun2       | 1     | 178.86 | 183.1  | 182.59 | 179.78 | 181.84 | 181.14 | 184.68 | 185.79 | 183.46 | 180.82 | 180.59 | 4176.65 | 180.92 | 181.12 | 181.59 |
| NNRun3       | 1     | 182.06 | 179.96 | 181.17 | 181.68 | 182.56 | 192.29 | 208.51 | 178.95 | 184.07 | 185.42 | 180.81 | 3764.95 | 178.9  | 182.09 | 182.03 |
| NNRun4       | 1     | 182.28 | 181.81 | 178.96 | 182.89 | 183.62 | 180.76 | 185    | 179.96 | 182.78 | 183.39 | 183.14 | 4007.18 | 183.79 | 185.76 | 181.07 |
| NNRun5       | 1     | 182.68 | 184.23 | 182.39 | 182.64 | 179.53 | 182.64 | 181.57 | 182.28 | 182.37 | 179.82 | 180.25 | 3761.68 | 183.6  | 183.51 | 178.9  |
| NNRun6       | 1     | 182.81 | 181.2  | 179.78 | 182.68 | 183.67 | 179.71 | 181.98 | 179.57 | 181.61 | 201.98 | 185.32 | 4273.17 | 181.29 | 183.75 | 179.12 |
| NNRun7       | 1     | 181.82 | 182.54 | 182.1  | 181.39 | 182.98 | 182.75 | 182.4  | 178.96 | 181.25 | 180.18 | 182.39 | 3881.81 | 190.71 | 178.71 | 183.92 |
| NNRun8       | 1     | 185.7  | 181.5  | 182.1  | 179.04 | 214.4  | 182.45 | 180.7  | 180.82 | 179.79 | 183.15 | 182.65 | 4214.01 | 183.11 | 186.92 | 180.62 |
| NNRun9       | 1     | 179.54 | 183.6  | 194.82 | 184.04 | 185.46 | 178.84 | 182.54 | 183.59 | 181.71 | 181.1  | 178.84 | 3898.81 | 186.17 | 181.04 | 180.62 |
| NNRun10      | 1     | 180.4  | 181.73 | 183.26 | 182.14 | 180.18 | 182.03 | 183.15 | 186.31 | 182.17 | 179.14 | 180.85 | 4205.53 | 179.12 | 184.82 | 182.29 |
| NNRun11      | 1     | 180.03 | 181.48 | 178.92 | 182.78 | 182.87 | 179.73 | 181.17 | 181.93 | 182.51 | 184.76 | 179.57 | 3885.4  | 181.7  | 183.31 | 180.89 |
| NNRun12      | 1     | 181.65 | 178.39 | 182.26 | 183.29 | 182.43 | 181.75 | 178.7  | 180.64 | 182.65 | 180.87 | 181.81 | 4226.67 | 180.11 | 182.42 | 180.73 |
| NNRun13      | 1     | 181.65 | 182.86 | 179.82 | 180.75 | 183.32 | 180.89 | 182.01 | 180.76 | 179.75 | 180.59 | 181.01 | 3890.14 | 181.75 | 178.64 | 184.2  |

| NNRun14 | 1 | 185.4  | 180.68 | 183.23 | 180.29 | 184.5  | 181.96 | 178.76 | 180.81 | 180.36 | 184.15 | 182.15 | 4207.17 | 183.32 | 182.64 | 180.43 |
|---------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|
| NNRun15 | 1 | 179.96 | 182.21 | 183.62 | 186.42 | 184.62 | 180.34 | 180.15 | 183.79 | 182.18 | 181.42 | 178.93 | 3903.81 | 182.73 | 180.56 | 179.57 |
| NNRun16 | 1 | 182.7  | 172.5  | 174.45 | 179.9  | 177.82 | 173.15 | 173.1  | 175.03 | 175.03 | 176.15 | 174.04 | 3823.14 | 177.09 | 176.93 | 175.95 |
| NNRun17 | 1 | 175.09 | 173.04 | 175.98 | 175.9  | 175.92 | 174.03 | 173.21 | 174.23 | 174.96 | 175.25 | 172.81 | 3530.39 | 174.48 | 173.04 | 180.35 |
| NNRun18 | 1 | 176.21 | 174.18 | 178.59 | 172.78 | 175.45 | 178.34 | 174.25 | 175.56 | 173.15 | 175.7  | 176.17 | 3821.92 | 176.18 | 173.04 | 175.14 |
| NNRun19 | 1 | 176.34 | 175.28 | 174.89 | 173.51 | 176.92 | 174.09 | 176.09 | 177.31 | 173.51 | 174.75 | 178.26 | 3525.53 | 179.95 | 173.48 | 175.57 |
| NNRun20 | 1 | 173.17 | 178    | 175.06 | 175.5  | 175.39 | 172.92 | 175.37 | 176.57 | 173.75 | 175.86 | 187    | 3856.09 | 176.9  | 174.46 | 175.76 |
| NNRun21 | 1 | 173.96 | 178.7  | 179.28 | 175.87 | 175.32 | 172.85 | 178.84 | 176.28 | 174.14 | 175.15 | 175.26 | 3556.14 | 176.84 | 176.37 | 177.37 |
| NNRun22 | 1 | 174.87 | 174.15 | 175.48 | 178.23 | 177.18 | 174.57 | 174.4  | 176.17 | 181.64 | 177.51 | 175.61 | 3826.89 | 176.59 | 176.71 | 178.53 |
| NNRun23 | 1 | 174.68 | 174.17 | 175.26 | 178.48 | 176.98 | 176    | 174.71 | 175.53 | 177.31 | 175.95 | 174.57 | 3524.82 | 176.48 | 173.87 | 178.98 |
| NNRun24 | 1 | 181.48 | 177.37 | 177.71 | 174.68 | 177.71 | 176.59 | 175.89 | 177.61 | 173.64 | 176.53 | 174.6  | 3820.64 | 176.92 | 173.92 | 178.01 |
| NNRun25 | 1 | 177.45 | 176.37 | 176.4  | 174.32 | 177.32 | 177.32 | 177.62 | 176.21 | 174.12 | 178.21 | 175.54 | 3521.92 | 177.28 | 174.84 | 176.57 |
| NNRun26 | 1 | 174.87 | 176.92 | 177.78 | 175.21 | 176.4  | 174.75 | 178.54 | 176.67 | 176.37 | 177.96 | 173.4  | 3822.48 | 180.18 | 176.21 | 177.93 |
| NNRun27 | 1 | 177.57 | 177.85 | 178.34 | 175.42 | 176.4  | 173.89 | 177.6  | 177.9  | 174.87 | 176.1  | 174    | 3526.59 | 177.11 | 178.21 | 178.79 |
| NNRun28 | 1 | 175.75 | 175.78 | 176.73 | 179.59 | 178.73 | 176    | 175.07 | 177.93 | 179.07 | 178.17 | 174.68 | 3823.48 | 176.17 | 177.31 | 177.25 |
| NNRun29 | 1 | 175.96 | 175.1  | 176.89 | 179.18 | 177.04 | 176.12 | 175.48 | 174.54 | 178.89 | 179.36 | 175.03 | 3534.01 | 178.68 | 177.15 | 199.37 |
| NNRun30 | 1 | 180.81 | 175.26 | 177.62 | 175.68 | 176.79 | 183.03 | 176.21 | 176.43 | 174.32 | 177.9  | 177.51 | 3821.75 | 176.65 | 175.25 | 178.26 |
| NNRun31 | 1 | 180.35 | 175.53 | 178.73 | 176.18 | 179.87 | 177.39 | 176    | 176.21 | 174.14 | 178.21 | 176.46 | 3526.96 | 178.25 | 176.07 | 176.98 |
| NNRun32 | 1 | 177.68 | 178.46 | 178.09 | 176.07 | 177.76 | 175.31 | 178.43 | 180.57 | 176.32 | 176.75 | 175.7  | 3823.06 | 180.04 | 177.48 | 178.64 |
| NRun1   | 2 | 0.03   | 0      | 144.42 | 6.25   | 226.7  | 23.32  | 490.65 | 5.04   | 24.71  | 38.29  | 342.84 | 790.71  | 261.1  | 8.35   | 23.21  |
| NRun2   | 2 | 0      | 0      | 165.76 | 6.96   | 227.98 | 22.6   | 419.14 | 5.86   | 23.04  | 32.35  | 345.42 | 764.85  | 256.35 | 8.71   | 20.15  |

| NRun3  | 2 | 0    | 0    | 141.95 | 7.06 | 228.2  | 18.48 | 416.48 | 6.48  | 22    | 32.03 | 352.92 | 804.93 | 258.37 | 8.87  | 21.18 |
|--------|---|------|------|--------|------|--------|-------|--------|-------|-------|-------|--------|--------|--------|-------|-------|
| NRun4  | 2 | 0    | 0    | 143.06 | 6.78 | 227.34 | 21.5  | 415.26 | 10.76 | 26.84 | 32.7  | 321.53 | 761.71 | 255.65 | 7.14  | 20.51 |
| NRun5  | 2 | 0.09 | 0    | 148.67 | 9.23 | 255.57 | 22.92 | 419.43 | 5.56  | 21.96 | 34.93 | 341.42 | 773.48 | 263.12 | 8.43  | 20.75 |
| NRun6  | 2 | 0.06 | 0.01 | 146.64 | 7.36 | 231.04 | 22.92 | 450.29 | 5.59  | 23.21 | 33.48 | 337.43 | 758.54 | 259.36 | 11.18 | 20.93 |
| NRun7  | 2 | 0    | 0    | 144.61 | 8.17 | 221.04 | 16.68 | 417.92 | 5.42  | 26.18 | 44.14 | 330.54 | 760.1  | 253.04 | 7.6   | 21.76 |
| NRun8  | 2 | 0    | 0    | 141.32 | 6.75 | 225.26 | 18.14 | 412.34 | 4.9   | 21.31 | 27.01 | 338.76 | 775.68 | 259.46 | 7.85  | 20.06 |
| NRun9  | 2 | 0    | 0    | 144.15 | 6.84 | 225.39 | 20.42 | 461.84 | 6     | 24.54 | 31.78 | 329.48 | 764.39 | 255.79 | 5.93  | 20.93 |
| NRun10 | 2 | 0.01 | 0    | 146.78 | 7.09 | 229.03 | 23.12 | 412.23 | 6.78  | 22.51 | 34.45 | 333.1  | 752.87 | 281.51 | 7.59  | 21.5  |
| NRun11 | 2 | 0.01 | 0    | 146.64 | 6.53 | 225.04 | 21.04 | 425.46 | 5.87  | 23.65 | 35.36 | 321.89 | 768.81 | 255.21 | 10.2  | 21.35 |
| NRun12 | 2 | 0    | 0    | 140.54 | 6.53 | 224.71 | 19.79 | 419.04 | 5.68  | 23.25 | 35.56 | 370.15 | 755.62 | 254.96 | 7.59  | 21.32 |
| NRun13 | 2 | 0    | 0    | 144.18 | 6.75 | 223.39 | 19.86 | 416.26 | 4.92  | 22.29 | 29.21 | 326.6  | 763.29 | 259.18 | 7.31  | 21.75 |
| NRun14 | 2 | 0    | 0    | 153.15 | 7.07 | 224.25 | 22.9  | 412.03 | 4.56  | 18.36 | 29.48 | 329.15 | 758.34 | 256.37 | 7.4   | 22.4  |
| NRun15 | 2 | 0    | 0    | 144.75 | 6.75 | 223.14 | 22.51 | 425.68 | 6.01  | 20.87 | 33.18 | 325.04 | 792.32 | 260.84 | 7.56  | 21.64 |
| NRun16 | 2 | 0.06 | 0.03 | 142.46 | 7.42 | 233.26 | 24.32 | 494.17 | 7.89  | 25.03 | 31.07 | 338.92 | 789.4  | 280.81 | 5.32  | 21.62 |
| NRun17 | 2 | 0.01 | 0.07 | 142.75 | 7.23 | 228.2  | 24.14 | 429.81 | 6.79  | 25.87 | 25.29 | 332.54 | 764.76 | 255.09 | 7.78  | 21.67 |
| NRun18 | 2 | 0    | 0.17 | 142.57 | 6.9  | 224.29 | 22.73 | 402.95 | 4.95  | 23.6  | 33.68 | 372.5  | 756.18 | 254.65 | 7.87  | 20.51 |
| NRun19 | 2 | 0    | 0    | 142.67 | 7.45 | 224.53 | 27.06 | 431.65 | 5.56  | 23.21 | 33.45 | 336    | 767.07 | 253.31 | 8.03  | 21.73 |
| NRun20 | 2 | 0    | 0.01 | 220.85 | 6.87 | 232.25 | 25.79 | 439.85 | 5.68  | 22.73 | 31.79 | 325.45 | 756.48 | 255.78 | 8.04  | 21.14 |
| NRun21 | 2 | 0    | 0    | 141.56 | 7.5  | 226.43 | 21.31 | 424.26 | 5.25  | 24.15 | 31.17 | 320.2  | 793.95 | 258.81 | 6.73  | 20.56 |
| NRun22 | 2 | 0    | 0    | 142.6  | 6.78 | 224    | 20.65 | 419.31 | 6.84  | 19.65 | 31.5  | 346.18 | 760.65 | 252.4  | 5.32  | 21.06 |
| NRun23 | 2 | 0    | 0    | 141.31 | 6.39 | 227.12 | 30.29 | 434.26 | 4.78  | 22.98 | 33.51 | 346    | 756.42 | 256.98 | 8.51  | 20.31 |

| NRun24 | 2 | 0    | 0    | 143.07 | 7.12 | 224.14 | 18.9  | 409.56 | 5.25  | 22.43 | 35.14 | 338.36 | 758.71 | 256.68 | 6.76  | 21.25 |
|--------|---|------|------|--------|------|--------|-------|--------|-------|-------|-------|--------|--------|--------|-------|-------|
| NRun25 | 2 | 0.01 | 0    | 143.28 | 8.29 | 227.62 | 46.64 | 421.32 | 5.37  | 22.67 | 32.39 | 335.48 | 777.65 | 257.15 | 7.9   | 20.45 |
| NRun26 | 2 | 0    | 0.09 | 141.23 | 6.76 | 226.45 | 22.71 | 462.12 | 10.68 | 22.75 | 33.25 | 319.92 | 765.29 | 256.68 | 7.37  | 20.67 |
| NRun27 | 2 | 0    | 0    | 144.85 | 6.65 | 227.64 | 22.79 | 411.43 | 5.51  | 24.39 | 32.89 | 331.98 | 763.64 | 278.18 | 8.12  | 20.85 |
| NRun28 | 2 | 0    | 0    | 144.28 | 7.76 | 223.5  | 17.84 | 433.45 | 5.84  | 22.06 | 36.23 | 320.31 | 760.29 | 255.15 | 11.25 | 20.95 |
| NRun29 | 2 | 0    | 0.1  | 144.9  | 6.62 | 226.46 | 22.12 | 407.89 | 5.68  | 23.43 | 35.4  | 359.82 | 767.53 | 257.07 | 5.2   | 19.92 |
| NRun30 | 2 | 0    | 0    | 147.98 | 6.82 | 224.89 | 18.46 | 440.86 | 5.57  | 23.31 | 33.01 | 320.15 | 781.5  | 256.03 | 8.11  | 20.31 |
| NRun31 | 2 | 0    | 0    | 153.71 | 7.01 | 225.45 | 23.03 | 420.6  | 5.11  | 23.5  | 25.78 | 342.81 | 763.67 | 259.64 | 7.95  | 20.32 |
| NRun32 | 2 | 0    | 0    | 145.14 | 7.6  | 223.73 | 24.06 | 426.78 | 4.64  | 16.84 | 28.03 | 329.4  | 811.12 | 258.36 | 7.59  | 21.95 |

# **APPENDIX T**

# SPSS Output: Independent Samples Test

|    | -                           | Levene'  | s Test   |         |                              |                 |            |            |             |               |  |  |  |
|----|-----------------------------|----------|----------|---------|------------------------------|-----------------|------------|------------|-------------|---------------|--|--|--|
|    |                             | for Equa | ality of |         |                              |                 |            |            |             |               |  |  |  |
|    |                             | Variar   | nces     |         | t-test for Equality of Means |                 |            |            |             |               |  |  |  |
|    |                             |          |          |         |                              |                 |            |            | 95% Confide | ence Interval |  |  |  |
|    |                             |          |          |         |                              |                 | Mean       | Std. Error | of the Di   | ifference     |  |  |  |
|    |                             | F        | Sig.     | t       | df                           | Sig. (2-tailed) | Difference | Difference | Lower       | Upper         |  |  |  |
|    | Equal variances assumed     | 91.353   | .000     | 300.253 | 62                           | .000            | 179.16594  | .59672     | 177.97312   | 180.35876     |  |  |  |
| Q1 | Equal variances not assumed |          |          | 300.253 | 31.002                       | .000            | 179.16594  | .59672     | 177.94893   | 180.38295     |  |  |  |
|    | Equal variances assumed     | 101.004  | .000     | 278.553 | 62                           | .000            | 178.71469  | .64158     | 177.43218   | 179.99719     |  |  |  |
| Q2 | Equal variances not assumed |          |          | 278.553 | 31.007                       | .000            | 178.71469  | .64158     | 177.40618   | 180.02319     |  |  |  |
|    | Equal variances assumed     | 2.134    | .149     | 12.237  | 62                           | .000            | 32.25562   | 2.63583    | 26.98668    | 37.52457      |  |  |  |
| Q3 | Equal variances not assumed |          |          | 12.237  | 37.069                       | .000            | 32.25562   | 2.63583    | 26.91526    | 37.59599      |  |  |  |
| Q4 | Equal variances assumed     | 61.590   | .000     | 272.229 | 62                           | .000            | 171.86625  | .63133     | 170.60424   | 173.12826     |  |  |  |

|     | -                           |        |      |         | <b>i</b> 1 |      | 1          | 1       |            | . 1        |
|-----|-----------------------------|--------|------|---------|------------|------|------------|---------|------------|------------|
|     | Equal variances not assumed |        |      | 272.229 | 32.859     | .000 | 171.86625  | .63133  | 170.58159  | 173.15091  |
|     | Equal variances assumed     | .581   | .449 | -28.927 | 62         | .000 | -46.36719  | 1.60293 | -49.57139  | -43.16299  |
| Q5  | Equal variances not assumed |        |      | -28.927 | 60.213     | .000 | -46.36719  | 1.60293 | -49.57328  | -43.16109  |
|     | Equal variances assumed     | .379   | .540 | 132.653 | 62         | .000 | 155.73906  | 1.17403 | 153.39221  | 158.08591  |
| Q6  | Equal variances not assumed |        |      | 132.653 | 59.292     | .000 | 155.73906  | 1.17403 | 153.39008  | 158.08805  |
|     | Equal variances assumed     | 17.805 | .000 | -61.935 | 62         | .000 | -249.33031 | 4.02570 | -257.37757 | -241.28305 |
| Q7  | Equal variances not assumed |        |      | -61.935 | 36.130     | .000 | -249.33031 | 4.02570 | -257.49379 | -241.16683 |
|     | Equal variances assumed     | 25.719 | .000 | 272.259 | 62         | .000 | 173.04656  | .63560  | 171.77602  | 174.31710  |
| Q8  | Equal variances not assumed |        |      | 272.259 | 42.386     | .000 | 173.04656  | .63560  | 171.76422  | 174.32890  |
|     | Equal variances assumed     | 28.285 | .000 | 209.341 | 62         | .000 | 155.57625  | .74317  | 154.09067  | 157.06183  |
| Q9  | Equal variances not assumed |        |      | 209.341 | 48.495     | .000 | 155.57625  | .74317  | 154.08240  | 157.07010  |
| -   | Equal variances assumed     | .847   | .361 | 134.553 | 62         | .000 | 147.04844  | 1.09287 | 144.86383  | 149.23305  |
| Q10 | Equal variances not assumed |        |      | 134.553 | 56.241     | .000 | 147.04844  | 1.09287 | 144.85937  | 149.23751  |
|     | Equal variances assumed     | 20.825 | .000 | -63.425 | 62         | .000 | -157.90687 | 2.48968 | -162.88368 | -152.93007 |
| Q11 | Equal variances not assumed |        |      | -63.425 | 35.612     | .000 | -157.90687 | 2.48968 | -162.95809 | -152.85566 |

|     | Equal variances assumed     | 34.776 | .000 | 74.213  | 62     | .000 | 3065.84000 | 41.31114 | 2983.26020 | 3148.41980 |
|-----|-----------------------------|--------|------|---------|--------|------|------------|----------|------------|------------|
| Q12 | Equal variances not assumed |        |      | 74.213  | 31.260 | .000 | 3065.84000 | 41.31114 | 2981.61378 | 3150.06622 |
|     | Equal variances assumed     | 2.546  | .116 | -55.522 | 62     | .000 | -79.28844  | 1.42805  | -82.14307  | -76.43381  |
| Q13 | Equal variances not assumed |        |      | -55.522 | 44.586 | .000 | -79.28844  | 1.42805  | -82.16541  | -76.41146  |
|     | Equal variances assumed     | 38.343 | .000 | 228.634 | 62     | .000 | 170.93750  | .74765   | 169.44298  | 172.43202  |
| Q14 | Equal variances not assumed |        |      | 228.634 | 38.232 | .000 | 170.93750  | .74765   | 169.42427  | 172.45073  |
|     | Equal variances assumed     | 10.650 | .002 | 208.922 | 62     | .000 | 158.79594  | .76007   | 157.27657  | 160.31530  |
| Q15 | Equal variances not assumed |        |      | 208.922 | 32.824 | .000 | 158.79594  | .76007   | 157.24924  | 160.34263  |

### **APPENDIX U**

Statistical information about the actual event logs.

1. Number of records in the event logs:

30,721,104

2. Number of bases in the event logs:

43

3. Date range of the logs:

19-OCT-10 06.00.26.00000 AM to 04-Mar-11 11.59.55.000000 AM

4. Number of message types:

169

5. Number of events for each month:

October \_\_\_\_\_\_6642 November \_\_\_\_\_\_36237 December \_\_\_\_\_\_4828245 January \_\_\_\_\_\_13934721

## Febuary

10347568

March

427357

6. Number of rows from each base:

'Altus': 66783 'Andersen': 99464 'CapeCod': 19986 'Cavalier': 1701 'Charleston': 189990 'Clear': 121976 'Columbus': 81173 'DiegoGarcia': 16957 'Dover': 10277 'Elmendorf': 34661 'Fairchild': 887871 'FEWarren': 398925 'Guam: 21251 'Hickam': 343545 'Kadena': 35842 'KaenaPoint': 15985539 'Keesler': 180701 'Kunsan': 124285 'Lackland': 1366585 'Laughlin': 29870 'LosAngeles': 1087035 'Luke': 432406 'MacDill': 24 'Malmstrom': 738313 'McChord': 299468 'McConnell': 60 'McGuire': 234 'NewBoston': 128303 'Oakhanger': 610043 'Onizuka': 814354 'Osan': 46321 'Patrick': 24838 'Pope': 55136 'Randolph': 266027 'Randolph-NOSC': 182062 'Scott-NOSC': 194029 'Sheppard': 68633 'Thule': 450173 'Travis': 19482 'Tyndall': 336178 'USAFA': 1153317 'Vandenberg': 3279791 'Yokota': 17452

7. Number of events with message types:

```
'SEC-6-IPACCESSLOGP';
   COUNT(*)
   _____
    8908417
   'SEC-6-IPACCESSLOGDP';
   COUNT(*)
   _____
    1554588
   'SEC-6-IPACCESSLOGNP';
   COUNT(*)
   _____
     20309
   'SEC-6-IPACCESSLOGRL';
   COUNT(*)
   _____
    667451
   'SEC-6-IPACCESSLOGRP';
   COUNT(*)
   _____
     15029
   'SEC-6-IPACCESSLOGS';
   COUNT(*)
   _____
    289062
8. Bases that use a second Router Sequence Number
   Andersen
  Guam
  Hickam
  Kadena
  KaenaPoint
  Kunsan
  Malmstrom
  McConnell
  NewBoston
  Pope
  Sheppard
```

9. The different message types found in the logs:

#### MESSAGETYPE

\_\_\_\_\_ AMDP2 FE-5-LATECOLL **AUTHMGR-5-FAIL** AUTHMGR-5-START **AUTHMGR-5-SUCCESS** Attempte Attempted Attempting Authentication **BGP-3-NOTIFICATION BGP-5-ADJCHANGE** Blocking C6KPWR-SP-2-PSFAIL C6KPWR-SP-4-INPUTCHANGE C6KPWR-SP-4-PSNOREDUNDANCY C6KPWR-SP-4-PSOK C6KPWR-SP-4-PSOUTPUTDROP C6KPWR-SP-4-PSREDUNDANTBOTHSUPPLY C6KPWR-SP-4-PSREDUNDANTMISMATCH C6KPWR-SP-4-PSREDUNDANTONESUPPLY CDP-4-DUPLEX\_MISMATCH CDP-4-NATIVE VLAN MISMATCH **CI-3-PSFAIL CLEAR-5-COUNTERS CONTROLLER-5-UPDOWN** CRYPTO-4-IKMP\_NO\_SA CRYPTO-4-PKT REPLAY ERR CRYPTO-4-RECVD PKT INV SPI CRYPTO-4-RECVD\_PKT\_MAC\_ERR Card Clear Configure Configured DIAG-SP-6-DIAG OK DIAG-SP-6-RUN\_MINIMUM DOT1X-5-FAIL DOT1X-5-SUCCESS DTP-SP-5-DOMAINMISMATCH DUAL-5-NBRCHANGE **DVMRP-5-NBRDOWN DVMRP-5-NBRUP EC-5-CANNOT BUNDLE2 EC-5-COMPATIBLE** EC-5-L3DONTBNDL2

EC-SP-5-CANNOT\_BUNDLE2 EIGRP-IPv4:(511) EIGRP-IPv4:(513) ENTITY ALARM-6-INFO ENVIRONMENT-2-FAN\_FAULT Extended FABRIC-SP-5-CLEAR BLOCK FABRIC-SP-5-FABRIC\_MODULE\_BACKUP FastEthernet0/1 FastEthernet0/12 FastEthernet0/15 FastEthernet0/17 FastEthernet0/18 FastEthernet0/2 FastEthernet0/20 FastEthernet0/22 FastEthernet0/23 FastEthernet0/24 FastEthernet0/7 Firewalled Group HARDWARE-2-FAN ERROR HARDWARE-5-FAN\_OK Host **IP-3-LOOPPAK** IP-EIGRP(0) **ISSU PROCESS-SP-3-SYSTEM** Interfac Interface LINEPROTO-5-UPDOWN LINK-3-UPDOWN LINK-4-ERROR LINK-5-CHANGED Lin Line MAB-5-FAIL MLS\_RATE-4-DISABLING MV64340\_ETHERNET-5-LATECOLLISION Module NHRP-4-OUOTA NTP-4-PEERUNREACH NTP-6-PEERREACH Native Netflow **OIR-3-LONGSTALL OIR-6-INSCARD** 

**OIR-6-REMCARD OIR-SP-6-INSCARD OSPF-5-ADJCHG** PFINIT-SP-5-CONFIG SYNC PFREDUN-SP-4-BOOTSTRING INVALID PFREDUN-SP-4-VERSION\_MISMATCH PIM-5-DRCHG PIM-5-NBRCHG PLATFORM ENV-1-FAN PM-4-ERR\_DISABLE PM-4-ERR\_RECOVER PM-4-SVI\_ADD\_CORRESPONDING\_L2\_VLAN PORT SECURITY-2-PSECURE VIOLATION PORT SECURITY-2-SECURITYREJECT PORT\_SECURITY-6-VLAN\_REMOVED Port **RADIUS-3-NOSERVERS** RADIUS-4-RADIUS\_ALIVE RADIUS-4-RADIUS DEAD **RCMD-4-RSHPORTATTEMPT** RF-SP-5-RF\_TERMINAL\_STATE **RTD-1-LINK FLAP** Received SEC-6-IPACCESSLOGDP SEC-6-IPACCESSLOGNP SEC-6-IPACCESSLOGP SEC-6-IPACCESSLOGRL SEC-6-IPACCESSLOGRP SEC-6-IPACCESSLOGS **SNMP SNMP-3-AUTHFAIL** SNMP-5-CHASSISALARM **SNMP-5-COLDSTART SNMP-5-MODULETRAP** SPANTREE-2-BLOCK\_BPDUGUARD SPANTREE-SP-2-BLOCK PVID LOCAL SPANTREE-SP-2-BLOCK PVID PEER SPANTREE-SP-2-LOOPGUARD BLOCK SPANTREE-SP-2-LOOPGUARD UNBLOCK SPANTREE-SP-2-RECV PVID ERR SPANTREE-SP-2-UNBLOCK\_CONSIST\_PORT SSH SSH-4-SSH2\_UNEXPECTED\_MSG SSH-5-DISABLED SSH-5-ENABLED STACKMGR-4-STACK\_LINK\_CHANGE

STACKMGR-5-MASTER\_READY STACKMGR-5-SWITCH\_READY SW\_VLAN-6-VTP\_DOMAIN\_NAME\_CHG SW\_VLAN-SP-4-VTP\_USER\_NOTIFICATION SYS-3-CPUHOG SYS-5-CONFIG SYS-5-CONFIG I SYS-5-RELOAD SYS-5-RESTART SYS-5-SCHEDULED\_RELOAD SYS-5-SCHEDULED\_RELOAD\_CANCELLED SYS-6-BOOTTIME SYS-6-CLOCKUPDATE SYS-6-LOGGINGHOST\_STARTSTOP SYS-SP-3-LOGGER\_FLUSHED SYSTEM\_CONTROLLER-3-ERROR Security Status Sync'ing System **TAC-3-SECRETDEFINEFAILED** TCP-6-BADAUTH The Unblocking VPN\_HW-1-PACKET\_ERROR Vlan239 Vlan24 Vlan747 access-list list neighbor power psecure-violation sent

10. Message types with message severity of 1 and the number of events

| MSGTYPE               | Number of Events |
|-----------------------|------------------|
| RTD-1-LINK_FLAP       | 5                |
| PLATFORM_ENV-1-FAN    | 20               |
| VPN_HW-1-PACKET_ERROR | 48               |

# **APPENDIX V**

Excerpts of the actual results from the queries (Q5-Q10):

| DESTINATIONPORT | Number of Events | RANK |
|-----------------|------------------|------|
| 53              | 1117081          | 1    |
| 0               | 1002738          | 2    |
| 445             | 119130           | 3    |
| 137             | 96312            | 4    |
| 139             | 64883            | 5    |
| 161             | 60630            | 6    |
| 80              | 34504            | 7    |
| 5060            | 27736            | 8    |
| 22              | 19256            | 9    |
| 51715           | 18014            | 10   |

Query 5: What are the Top 10 destination ports for January?

| BASENAME   | PORTNUM | Number of Events |
|------------|---------|------------------|
| Andersen   | 445     | 2                |
| Randolph   | 445     | 5                |
| -          | 445     | 11               |
| CapeCod    |         |                  |
| Scott-NOSC | 445     | 35               |
| Malmstrom  | 445     | 143              |
| LosAngeles | 445     | 192              |
| Thule      | 445     | 237              |
| Onizuka    | 445     | 610              |
| USAFA      | 445     | 679              |
| FEWarren   | 445     | 777              |
| Tyndall    | 445     | 1971             |
| NewBoston  | 445     | 3125             |
| Patrick    | 445     | 3310             |
| Lackland   | 445     | 3344             |
| Clear      | 445     | 9900             |
| McChord    | 445     | 40939            |
| Vandenberg | 445     | 311819           |

Query 6: What are the bases with port 445 as destination port and how many events?

| BASENAME   | DESTINATIONPORT | Number of Events |
|------------|-----------------|------------------|
| CapeCod    | 445             | 2                |
| Randolph   | 445             | 4                |
| Scott-NOSC | 445             | 10               |
| Tyndall    | 445             | 13               |
| Malmstrom  | 445             | 36               |
| Thule      | 445             | 37               |
| LosAngeles | 445             | 84               |
| USAFA      | 445             | 99               |
| Onizuka    | 445             | 158              |
| FEWarren   | 445             | 702              |
| Patrick    | 445             | 1039             |
| NewBoston  | 445             | 1059             |
| Lackland   | 445             | 1291             |
| Clear      | 445             | 3277             |
| McChord    | 445             | 10076            |
| Vandenberg | 445             | 101243           |

Query 7: What are the bases with port 445 as destination port and how many events in January?

Query 8: How many events have port 23 (TELNET) as destination port?

| PORTNUM | Number of Events |
|---------|------------------|
| 23      | 21307            |

| BASENAME   | PORTNUM | Number of Events |
|------------|---------|------------------|
| Scott-NOSC | 23      | 4                |
| LosAngeles | 23      | 6                |
| McChord    | 23      | 106              |
| Columbus   | 23      | 109              |
| Dover      | 23      | 151              |
| Sheppard   | 23      | 152              |
| McGuire    | 23      | 159              |
| Randolph   | 23      | 162              |
| Travis     | 23      | 187              |
| Laughlin   | 23      | 208              |
| Onizuka    | 23      | 340              |
| Andersen   | 23      | 426              |
| CapeCod    | 23      | 490              |
| Luke       | 23      | 510              |
| NewBoston  | 23      | 623              |
| Patrick    | 23      | 669              |
| Malmstrom  | 23      | 2891             |
| Thule      | 23      | 4327             |
| FEWarren   | 23      | 4484             |
| Clear      | 23      | 5303             |

Query 9: What bases use port 23 (TELNET) and how many?

| Query 10: What are the bases and message types with message severity of 2 and the |  |
|-----------------------------------------------------------------------------------|--|
| number of events?                                                                 |  |

| BASENAME   | MSGTYPE                           | Number of |
|------------|-----------------------------------|-----------|
| Andersen   | PORT_SECURITY-2-PSECURE_VIOLATION | 1         |
| Elmendorf  | PORT_SECURITY-2-PSECURE_VIOLATION | 1         |
| Luke       | SPANTREE-SP-2-LOOPGUARD_UNBLOCK   | 2         |
| Luke       | SPANTREE-SP-2-                    | 2         |
| Pope       | PORT_SECURITY-2-SECURITYREJECT    | 2         |
| Vandenberg | SPANTREE-2-BLOCK_BPDUGUARD        | 2         |
| Columbus   | PORT_SECURITY-2-PSECURE_VIOLATION | 2         |
| Vandenberg | PORT_SECURITY-2-PSECURE_VIOLATION | 2         |
| Luke       | SPANTREE-SP-2-LOOPGUARD_BLOCK     | 2         |
| Tyndall    | PORT_SECURITY-2-SECURITYREJECT    | 4         |
| Luke       | SPANTREE-SP-2-BLOCK_PVID_LOCAL    | 5         |
| Luke       | SPANTREE-SP-2-BLOCK_PVID_PEER     | 5         |
| Luke       | SPANTREE-SP-2-RECV_PVID_ERR       | 5         |
| Tyndall    | PORT_SECURITY-2-PSECURE_VIOLATION | 6         |
| FEWarren   | ENVIRONMENT-2-FAN_FAULT           | 7         |
| FEWarren   | HARDWARE-2-FAN_ERROR              | 10        |
| Hickam     | PORT_SECURITY-2-PSECURE_VIOLATION | 12        |
| Lackland   | C6KPWR-SP-2-PSFAIL                | 14        |
| Randolph   | PORT_SECURITY-2-PSECURE_VIOLATION | 16        |
| Altus      | PORT_SECURITY-2-SECURITYREJECT    | 128       |
| Clear      | PORT_SECURITY-2-PSECURE_VIOLATION | 753       |
| Fairchild  | PORT_SECURITY-2-PSECURE_VIOLATION | 118362    |
| Randolph-  | PORT_SECURITY-2-SECURITYREJECT    | 178964    |

#### **Bibliography**

- Air Intelligence Agency Public Affairs. (2006, 7/5/2006). Air force stands up first network warfare wing. 2011(May 15), Available: http://www.af.mil/news/story\_print.asp?id=123022799
- Alavi, M. & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly 25(1), 107-136.
- Anderson, J. P. (1980). Computer security threat monitoring and surveillance. No. 98.Technical report. James P. Anderson Company: Fort Washington, Pennsylvania.
- Apte, C., Liu, B., Pednault, E. P. D., & Smyth, P. (2002). Business applications of data mining. Communications of the ACM, 45(8), 49-53.
- Babbin, J., Kleiman, D., Carter, E. F., Faircloth, J., Burnett, M., & Gutierrez, E. (2006).Security log management. Identifying patterns in the chaos. SyngressPublishing: Rockland, MA.
- Baker, W., Hutton, A., Hylender, C. D., Pamula, J., Porter, C., & Spitler, M. (2011).
  2011 Data breach investigations report: Verizon RISK Team with cooperation from the U.S. Secret Service and the Dutch High Tech Crime Unit. Retrieved from http://www.secretservice.gov/Verizon\_Data\_Breach\_2011.pdf

Blue Coat (2011) Retrieved from

https://kb.bluecoat.com/index?page=content&id=FAQ1246&actp=search&viewlo cale=en\_US&searchid=1306532896872

Brenton, C., Bird, T., & Ranum, M. (2006). Top 5 essential log reports. Retrieved from http://www.sans.org/security-resources/top5\_logreports.pdf Cisco (2011). Understanding access control list logging. Retrieved from http://www.cisco.com/web/about/security/intelligence/acl-logging.html

- Committee on National Security Systems (CNSS). (2010). National Information Assurance (IA) Glossary. (CNSS Instruction No. 4009).
- Davenport, T. H., & Prusak, L. (2000). Working knowledge: How organizations manage what they know. Boston, Massachusetts: Harvard Business School Press.
- Department of Defense. (1973). ADP Security Manual: Techniques and Procedures for Implementing, Deactivating, Testing and Evaluating Secure Resource-Sharing ADP Systems. (DOD 5200.28-M). Washington, DC.
- Donley, M. B., & Schwartz, N. A. (2009). Memorandum for all airmen: Air force cyberspace mission alignment. Unpublished manuscript.
- Dunham, M. (2003). Data mining introductory and advanced topics. New Jersey: Pearson.
- Endsley, M. R. (1995). Measurement of situation awareness in dynamic systems. Human Factors, 37(1), 65-84.
- Feld, C. S. & Stoddard, D. B. (2004). Getting IT right. Harvard Bussiness Review 82(2), 72-79.

Field, A. (2009) Discovering statistics using SPSS. London: SAGE Publications.

- Gerhards, R. (2009). The syslog protocol RFC 5424. Retrieved from http://tools.ietf.org/html/rfc5424
- Grimaila, M. R., Myers, J., Mills, R. F., & Peterson, G. (2011). Design and analysis of a dynamically configured log-based distributed security event detection

methodology. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 1-23. doi: 10/1177/1548512911399303

- Grimes, R. A., (2010, August 4). InfoWorld review: Better network security, compliance with log management. Retrived from http://www.infoworld.com/d/dataexplosion/infoworld-review-meeting-the-network-security-and-compliancechallenge-658?page=0,0.
- Hasan, M., Sugla, B., & Viswanathan, R. (1999). A conceptual framework for network management event correlation and filtering systems. Paper presented at the Integrated Network Management, 1999. Distributed Management for the Networked Millennium. Proceedings of the Sixth IFIP/IEEE International Symposium, 233-246.
- Heinbockel, W. (2011, July 8). CEE Event Record and CLS Encoding Specification draft-cee-cls-06-8. Retrieved from http://cee.mitre.org/repository/downloads/CEE\_Common\_Log\_Syntax-

v0.6.html#core-fields

- Heinbockel, W., & Graves, T. (2011). Introduction to CEE v0.6. Retrieved from http://scap.nist.gov/events/2011/itsac/presentations/day3/Heinbockel%20-%20CEE.pdf
- Hoffer, J. A., Prescott, M. B., & Toppi, H. (2009) Modern database management. Upper Saddle River, NJ: Pearson Prentice Hall.
- Hucaby, D. (2005, Nov 4). Cisco ASA and PIX firewall logging. Retrieved from http://www.ciscopress.com/articles/article.asp?p=424447

Inmon, W. H. (2000). What is a data warehouse? Retrieved from https://www.business.auc.dk/oekostyr/file/What\_is\_a\_Data\_Warehouse.pdf

- Jabbour, K. & Muccio, S. (2011). The science of mission assurance. Journal of Strategic Security, 6(2), 61-74.
- Jakobson, G., Weissman, M., Brenner, L., Lafond, C., & Matheus, C. (2000). GRACE: Building next generation event correlation services. Paper presented at the Network Operations and Management Symposium, 2000. NOMS 2000. 2000 IEEE/IFIP, 701-714.
- Kent, K., & Souppaya, M. (2006) Guide to computer security log management. (NIST Special Publication 800-92).
- Lee, H. (1995). Justifying database normalization: A cost/benefit model. Information Processing & Management, 31(1), 59-67.
- Lonvick, C. (2001). The BSD syslog protocol RFC 3164. Retrieved from http://tools.ietf.org/html/rfc3164
- Martin-Flatin, J. P., Jakobson, G., & Lewis, L. (2007). Event correlation in integrated management: Lessons learned and outlook. Journal of Network and Systems Management, 15(4), 481-502.
- Microsoft (2011a). Interpreting the windows firewall log. 2011(May 15), Available: http://technet.microsoft.com/en-us/library/cc758040(WS.10).aspx
- Microsoft (2011b). Types of event log entries. Retrieved from http://msdn.microsoft.com/en-us/library/zyysk5d0.aspx
- MITRE (2010a, May 27). CEE Terminology. Retrieved from http://cee.mitre.org/terminology.html

- MITRE (2010b, May 27). Frequently Asked Questions. Retrieved from http://cee.mitre.org/faqs.html#a2
- MITRE (2010c). Common Event Expression, Architecture Overview. Retrieved from http://cee.mitre.org/docs/CEE\_Architecture\_Overview-v0.5.pdf
- Myers, J. (2010). A dynamically configurable log-based distributed security event detection methodology. (Unpublished masteral thesis). Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
- Ogasawara, E., Martinez, L. C., de Oliveira, D., Zimbrão, G., Pappa, G. L., & Mattoso,
  M. (2010). Adaptive normalization: A novel data normalization approach for nonstationary time series. Paper presented at the Neural Networks (IJCNN), the 2010 International Joint Conference, 1-8.
- Okolica, J., McDonald, J. T., Peterson, G. L., Mills, R. F., & Hass, M. (2009).Developing systems for cyber situational awareness. Proceedings of the 2ndCyberspace Research Workshop. Shreveport, LA.
- Oracle database reference 10g release 2 (10.2) (2005). Analyze. Retrieved from http://docs.oracle.com/cd/B19306\_01/server.102/b14200/statements\_4005.htm
- Oracle database reference 10g release 2 (10.2) (2009). Statistics Description. Retrieved from

http://docs.oracle.com/cd/B19306\_01/server.102/b14237/stats002.htm

- Pipkin, D. L. (2000). Information security: protecting the global enterprise. Upper Saddle River, NJ: Prentice Hall PTR.
- Plivna, G. (2008, July 28). SQL join types. Retrieved from http://www.gplivna.eu/papers/sql\_join\_types.htm

Rist, O. (2005). Attack of the auditors. InfoWorld 27(12), 34-40.

Sah, A. (2002). A new architecture for managing enterprise log data. LISA, 121-132.

- Sanders, G., & Shin, S. (2001). Denormalization effects on performance of RDBMS. Paper presented at the HICSS, 3013.
- Shenk, J. (2009). SANS annual 2009 log management survey. A SANS Whitepaper. Retrieved from

http://www.sans.org/reading\_room/analysts\_program/logMgtSurvey\_Apr09.pdf

- Shenk, J. (2010). SANS sixth annual log management survey report. SANS Sixth Annual Log Management Survey Report. SANS Whitepaper. Retrieved from http://www.sans.org/reading\_room/analysts\_program/logmgtsurvey-2010.pdf
- Shin, B. (2003). An exploratory investigation of system success factors in data warehousing. Journal of the Association for Information Systems, 4, 141-168.
- Tripwire. (2010). All Logs Archived. Every log available. Retrieve from http://www.tripwire.com/it-security-software/log-event-management/logmanagement/
- Tuomi, I. (2000). Data is more than knowledge: Implications of the reversed knowledge hierarchy for knowledge management and organizational memory. Journal of Management Information Systems 16(3), 103-117.
- Vaarandi, R. (2002). Platform independent event correlation tool for network management. IEEE. Department of Computer Engineering, Tallinn Technical University, Estonia. 907-909.
- Van den Hoven, J. (2001) Information resource management: Foundation for knowledge management. Information Systems Management 18(2), 80-87.

Weldon, J. L. (1996). Data mining and visualization. Database Programming & Design, 9(6), 21-24.

Wyllys, R. E. (2010, October 25). Steps in normalization. Retrieved from http://www.gslis.utexas.edu/~wyllys/DMPAMaterials/normstep.html#Section%20 10.%20The%204th%20Normal%20Form

| The path reporting barden for this calendari of hitomated to average 1 has per response. Indering the match of the control of average of the control of the control of the control of average of the control | REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     |                                                                  | Form Approved<br>OMB No. 074-0188                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. REPORT DATE (20:MAYNY)       2. REPORT TYPE       3. DATES COVERED (From - 70)         22:03-2012       Master's Thesis       Mar 2012         4. TITLE AND SUBTITLE       S. CONTRACT NUMBER         Analysis Of The Inpact Of Data Normalization On Cyber Event Correlation       S. CONTRACT NUMBER         S. AUTHOR(S)       S. PROGRAM ELEMENT NUMBER         Ludovice, Smile T., MSgt, USAF       S. PROGRAM ELEMENT NUMBER         7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)       S. PROGRAM ELEMENT NUMBER         Air Force Institute of Technology       S. PROGRAM CARAIXTION RESCIONER         Graduat School of Engineering and Management (AFIT/EN)       S. PERFORMING ORGANIZATION         2950 Hobson Way, Building 640       AFIT/GIR/ENV/12-M03         WPAFE OH 45433-7705       ACRONY NAME(S) AND ADDRESS(ES)         Intentionally left blank.       10. SPONSOR/MONITOR'S ACRONYM(S)         11. SPONSOR/MONITOR AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSOR/MONITOR'S ACRONYM(S)         12. DISTRIBUTIONAVAILABILITY STATEMENT       AFIT/GIR/ENV/12-M03         13. SUPPLEMENTARY NOTES       10. SPONSOR/MONITOR'S ACRONYM(S)         14. ABSTRACT       A entical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure align diminicant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure, addition, prop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gathering and maintaining the<br>information, including suggest<br>1215 Jefferson Davis Highwa<br>penalty for failing to comply wi                                                                                                                                              | data needed, a<br>ions for reduci<br>y, Suite 1204,<br>th a collection of                                                                    | and completing a<br>ng this burden to<br>Arlington, VA 2<br>of information if it                                                                      | nd reviewing the collection<br>Department of Defense<br>2202-4302. Respondent<br>does not display a current                                                                                | n of information. S<br>, Washington Hea<br>ts should be awar                                                                                                   | Send commen<br>dquarters Ser<br>e that notwith                                                                                      | ts rega<br>vices,                                                | arding this burden estimate or any other aspect of the collection of<br>Directorate for Information Operations and Reports (0704-0188)                                                                                                                                                                                                                                                                                          |  |  |
| Analysis Of The Impact Of Data Normalization On Cyber Event Correlation<br>Query Performance       5. GRANT NUMBER         6. AUTHOR(S)       5. GRANT NUMBER         Ludovice, Smile T., MSgt, USAF       5. FROGRAM ELEMENT NUMBER         7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)<br>Air Force Institute of Technology<br>Graduate School of Engineering and Management (AFIT/EN)<br>2950 Hobson Way, Building 640       8. FURFORMING ORGANIZATION<br>REPORT NUMBER         5. SPROSORMONITORING AGENCY NAMES(S) AND ADDRESS(S)<br>Intentionally left blank.       9. SPROSORMONITOR AGENCY NAMES(S) AND ADDRESS(ES)<br>Intentionally left blank.       10. SPONSORMONITOR'S ACCONVIN(S)         13. SUPPLEMENTARY NOTES       10. SPONSORMONITOR'S ACCONVIN(S)       11. SPONSORMONITOR'S ACCONVIN(S)         13. SUPPLEMENTARY NOTES       11. SPONSORMONITOR'S COMMERCIAN ADDRESS(ES)<br>Information Assurace requires the validation and verification of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher<br>properly utilized capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the<br>infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher<br>properly utilized capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the<br>infrastructure. In addition and verification of the integrity of results generated by a commercial log<br>analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance.<br>Database normalization improved maiority of the queries performed using very large data sets of outer everts: h                                                                                                                                                                                                                                  | 1. REPORT DATE (DD-MI                                                                                                                                                                                                                                                           |                                                                                                                                              | 2.                                                                                                                                                    | REPORT TYPE                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Query Performance       50. GRANT NUMBER         6. AUTHOR(S)       50. PROGRAM ELEMENT NUMBER         Ludovice, Smile T., MSgt, USAF       56. PROJECT NUMBER         7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)       56. TASK NUMBER         Air Force Institute of Technology       57. WORK UNIT NUMBER         Graduate School of Engineering and Management (AFIT/EN)       2950 Hobson Way, Building 640         VPAFB OH 45433-7765       9. SPONSORINGMONITORING AGENCY NAME(B) AND ADDRESS(ES)         Intentionally left blank.       10. SPONSOR/MONITOR'S ACRONYM(S)         11. SPONSOR/MONITOR'S ACRONYM(S)       11. SPONSOR/MONITOR'S ACRONYM(S)         13. SUPPLEMENTARY NOTES       10. SPONSOR/MONITOR'S REPORT NUMBER         74. ABSTRACT       A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness shout the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commarce. Database normalized to a more ductor on the type of query executed. Queries performed using veri large data sets of numerical log analysis tool. Event log analysis can be performed tables. Furthermore, database normalization improved majority of the queries performed using veri large data sets of numerical log analysis tool. Event log analysis can be performed using veri large data sets of nuet revents. h                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                            | F ( 0                                                                                                                                                          | 1.4                                                                                                                                 | 5a. (                                                            | CONTRACT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 5. PROGRAM ELEMENT NUMBER         6. AUTHOR(5)         Ludovice, Smile T., MSgt, USAF         5. PERFORMING ORGANIZATION NAMES(5) AND ADDRESS(5)         Air Force Institute of Technology         Graduate School of Engineering and Management (AFIT/EN)         2950 Hobson Way, Building 640         WPALPB OH 45433-7765         5. SPROSGRAMONITORING AGENECY NAME(5) AND ADDRESS(5)         Intentionally left blank.         11. SPONSOR/MONITORING AGENECY NAME(5) AND ADDRESS(5)         Intentionally left blank.         12. DISTRIBUTION/AVAILABILITY STATEMENT         APROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED         13. SUPPLEMENTARY NOTES         14. ABSTRACT         A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure. lm addition, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, and wher properly utilized can provide timely situational awareness performed using very darease normalization also increase query performance. Database normalization improves table organization and verification of the integrity of results generated by a commercial log analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance. Database normalization improves table organization and maintain shetter data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing addition and verification of the integrity of results generated by a commercial lo                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                       | lization On Cyber Event Correlation                                                                                                                                                        |                                                                                                                                                                | relation                                                                                                                            |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Ludovice, Smile T., MSgt, USAF       5e. TASK NUMBER         St. WORK UNIT NUMBER       5f. WORK UNIT NUMBER         Air Force Institute of Technology       6f. WORK UNIT NUMBER         Air Force Institute of Technology       8. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)       8. PERFORMING ORGANIZATION RAMES(S) AND ADDRESS(ES)         Jost Part Diversity       10. SPONSORMONTORING AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSORMONTOR'S ACRONVM(S)         Intentionally left blank.       11. SPONSORMONTOR'S ACRONVM(S)         11. SPONSORMONTOR'S REPORT NUMBER(S)       11. SPONSORMONTOR'S REPORT NUMBER(S)         13. SUPPLEMENTARY NOTES       11. SPONSORMONTOR'S CPUSPAGE. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper         Infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper         Information Assurance requires the validation and verification of the integr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Query remomanes                                                                                                                                                                                                                                                                 | 5c. PROGRAM ELEMENT NUMBER                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)       S. WORK UNIT NUMBER         Air Force Institute of Technology       REPORT NUMBER         Graduate School of Engineering and Management (AFIT/EN)       PERFORMING ORGANIZATION         2950 Hobson Way, Building 640       WVPAFB OH 45433-77.65         9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSOR/MONITOR'S ACRONYM(S)         Intentionally left blank.       11. SPONSOR/MONITOR'S REPORT NUMBER(S)         12. DISTRIBUTION/AVAILABILITY STATEMENT       APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED         13. SUPPLEMENTARY NOTES       14. ABSTRACT         A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of for results generated by a commercial log analysis con. Event log analysis con be performed using relational databases. To enhance database query performance, previous literatures affirm denormalized to of databases; yet, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall, normalization improved query performance and must be considered as an option when analyzing event logs using relational databases. </td <td colspan="3">6. AUTHOR(S)</td> <td></td> <td></td> <td></td> <td>5d.</td> <td>PROJECT NUMBER</td>                                                                                                                                                                                                               | 6. AUTHOR(S)                                                                                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     | 5d.                                                              | PROJECT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 7.       PERFORMING ORGANIZATION NAMES(8) AND ADDRESS(5) <ul> <li>Air Force Institute of Technology</li> <li>Graduate School of Engineering and Management (AFIT/EN)</li> <li>2950 Hobson Way, Building 640</li> <li>WPAFB OH 45433-7765</li> <li>S. PONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES)</li> <li>Intentionally left blank.</li> </ul> 10. SPONSOR/MONITOR'S ACRONYM(S) <ul> <li>Intentionally left blank.</li> <li>I. SPONSOR/MONITOR'S ACRONYM(S)</li> </ul> 12. DISTRIBUTION/AVAILABILITY STATEMENT         APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED           13. SUPPLEMENTARY NOTES <ul> <li>A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation of databases; yet, database normalization can also increase query performance, previous literatures affirm denormalized to databases; yet, database normalization improved majority of the queries performed using very large data sets of router events; however, performance, is also dependent on the type of query executed. Queries performed faster on normalized table if all the necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage</li></ul>                                                                                                                                                                                                                                                                                                                                        | Ludovice, Smile T., MSgt, USAF                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     | 5e. <sup>-</sup>                                                 | TASK NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Air Force Institute of Technology       REPORT NUMBER         Graduate School of Engineering and Management (AFIT/EN)       AFIT/GIR/ENV/12-M03         2950 Hobson Way, Building 640       AFIT/GIR/ENV/12-M03         WPAFB OH 45433-7765       I. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES)       II. SPONSOR/MONITOR'S ACRONYM(S)         Intentionally left blank.       II. SPONSOR/MONITOR'S ACRONYM(S)       II. SPONSOR/MONITOR'S ACRONYM(S)         12. DISTRIBUTION/AVAILABILITY STATEMENT       APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED       II. SPONSOR/MONITOR'S REPORT NUMBER(S)         13. SUPPLEMENTARY NOTES       II. SUPPLEMENTARY NOTES       II. SPONSOR/MONITOR'S accomparison of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis can be performed using relational databases. To enhance database query performance, previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance.         Database normalization improved majority of the queries performed taster on normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements thou                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     | 5f. WORK UNIT NUMBER                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Air Force Institute of Technology       REPORT NUMBER         Graduate School of Engineering and Management (AFIT/EN)       AFIT/GIR/ENV/12-M03         2950 Hobson Way, Building 640       AFIT/GIR/ENV/12-M03         WPAFB OH 45433-7765       I. SPONSORIMGMONITORING AGENCY NAME(S) AND ADDRESS(ES)       II. SPONSOR/MONITOR'S ACRONYM(S)         Intentionally left blank.       II. SPONSOR/MONITOR'S ACRONYM(S)       II. SPONSOR/MONITOR'S ACRONYM(S)         12. DISTRIBUTION/AVAILABILITY STATEMENT       APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED       II. SPONSOR/MONITOR'S ACRONYM(S)         13. SUPPLEMENTARY NOTES       II. SPONSOR/MONITOR'S across of the status of the infrastructure clements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis can be performed using relational databases. To enhance database query performance, previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance. Database normalization improved majority of the queries performed taster on normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall, normalization improved query performance and must be considered as an option when analyzing event logs usi                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Graduate School of Engineering and Management (AFIT/EN)<br>2950 Hobson Way, Building 640       AFIT/GIR/ENV/12-M03         WPAFB 0H 45433-7765       10. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>Intentionally left blank.       10. SPONSOR/MONITOR'S ACRONYM(S)         11. Impose 12. DISTRIBUTION/AVAILABILITY STATEMENT<br>APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED       11. SPONSOR/MONITOR'S REPORT NUMBER(S)         13. SUPPLEMENTARY NOTES       13. SUPPLEMENTARY NOTES         14. ABSTRACT<br>A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the<br>infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher<br>properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper<br>Information Assurance requires the validation and verification of the integrity of results generated by a commercial log<br>analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance,<br>previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance.<br>Database normalization improved majority of the queries performed taster on normalized table if all the<br>necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and<br>maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database<br>such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall,<br>normalization improved query performance and must be considered as an option when analyzing event logs using relational<br>databases.                                                                                                                                                                    |                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                       | ADDRESS(S)                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSOR/MONITOR'S ACRONYM(S)         Intentionally left blank.       11. SPONSOR/MONITOR'S ACRONYM(S)         12. DISTRIBUTION/AVAILABILITY STATEMENT       APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED         13. SUPPLEMENTARY NOTES       14. ABSTRACT         14. ABSTRACT       A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance, previous literatures affirm denormalization of databases; yet, database normalization increase query performance. Database normalization improved majority of the queries performed using very large data sets of router events; however, performance is also dependent on the type of query executed. Queries performed faster on normalized table if all the necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall, normalization improved query performance and must be considered as an option when analyzing event logs using relational databases.         15. SEGURITY CLASSIFIC                                                                                                                                                                                                              | Graduate School of Engineering and Mana<br>2950 Hobson Way, Building 640                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                       | nagement (AFIT/EN)                                                                                                                                                                         |                                                                                                                                                                |                                                                                                                                     |                                                                  | AFIT/GIR/ENV/12-M03                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 11. SPONSOR/MONITOR'S REPORT NUMBER(S)         12. DISTRIBUTION/AVAILABILITY STATEMENT<br>APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED         13. SUPPLEMENTARY NOTES         14. ABSTRACT<br>A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance, previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance. Database normalization improved majority of the queries performed using very large data sets of router events; however, performance is also dependent on the type of query executed. Queries performed faster on normalized table if all the necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall, normalization improved query performance and must be considered as an option when analyzing event logs using relational databases.         15. SUBJECT TERMS       11. LIMITATION OF 18. NUMBER       19a. NAME OF RESPONSIBLE PERSON         16. SECURITY CLASSIFICATION OF:       17. LIMITATION OF 6F PAGEE       19a.                                                                                                                                                                                                       | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRE                                                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                       | ) AND ADDRESS(ES                                                                                                                                                                           | 5)                                                                                                                                                             |                                                                                                                                     |                                                                  | 10. SPONSOR/MONITOR'S ACRONYM(S)                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED         13. SUPPLEMENTARY NOTES         14. ABSTRACT         A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance. Database normalization improved majority of the queries performed using very large data sets of router events; however, performance is also dependent on the type of query executed. Queries performed faster on normalized table if all the necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall, normalization improved query performance and must be considered as an option when analyzing event logs using relational databases.         15. SUBJECT TERMS         Query Performance, Database, Normalization, Event Logs         16. SECURITY CLASSIFICATION OF:         U       U         U <td< td=""><td>Intentionally left of</td><td>diik.</td><td></td><td></td><td></td><td></td><td></td><td>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</td></td<>                                                                                                                                                                                                                                                                                       | Intentionally left of                                                                                                                                                                                                                                                           | diik.                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     |                                                                  | 11. SPONSOR/MONITOR'S REPORT NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper Information Assurance requires the validation and verification of the integrity of results generated by a commercial log analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance, previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance. Database normalization improved majority of the queries performed using very large data sets of router events; however, performance is also dependent on the type of query executed. Queries performed faster on normalized table if all the necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall, normalization improved query performance and must be considered as an option when analyzing event logs using relational databases.  16. SECURITY CLASSIFICATION OF: U U U U U U U U U U U U U U U U U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APPROVED FOR PUB                                                                                                                                                                                                                                                                | LIC RELEA                                                                                                                                    |                                                                                                                                                       | BUTION UNLIMITE                                                                                                                                                                            | ED                                                                                                                                                             |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and wher<br>properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper<br>Information Assurance requires the validation and verification of the integrity of results generated by a commercial log<br>analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance,<br>previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance.<br>Database normalization improved majority of the queries performed using very large data sets of router events; however,<br>performance is also dependent on the type of query executed. Queries performed faster on normalized table organization and<br>maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database<br>such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall,<br>normalization improved query performance and must be considered as an option when analyzing event logs using relational<br>databases.<br><b>15. SUBJECT TERMS</b><br>Query Performance, Database, Normalization, Event Logs<br><b>16. SECURITY CLASSIFICATION OF:</b><br><b>17. LIMITATION OF 18. NUMBER</b><br><b>19a. NAME OF RESPONSIBLE PERSON</b><br><b>16. SECURITY CLASSIFICATION OF:</b><br><b>17. LIMITATION OF 18. NUMBER</b><br><b>19a. NAME OF RESPONSIBLE PERSON</b><br><b>16. SECURITY CLASSIFICATION OF:</b><br><b>17. LIMITATION OF 18. NUMBER</b><br><b>19a. NAME OF RESPONSIBLE PERSON</b><br><b>16. SECURITY CLASSIFICATION OF:</b><br><b>17. LIMITATION OF 18. NUMBER</b><br><b>19a. NAME OF RESPONSIBLE PERSON</b><br><b>18. TELEPHONE NUMBER</b> ( <i>Include area code</i> )<br>(937) 255-3636 X4800, michael.grimaila@afit.edu                                                                                                              |                                                                                                                                                                                                                                                                                 | required i                                                                                                                                   | n the opera                                                                                                                                           | tion of cyberspa                                                                                                                                                                           | ce is the abil                                                                                                                                                 | ity to ma                                                                                                                           | intai                                                            | n situational awareness of the status of the                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Query Performance, Database, Normalization, Event Logs         16. SECURITY CLASSIFICATION OF:         a. REPORT         b. ABSTRACT         c. THIS PAGE         U       U         U       U         U       U         U       U         U       U         a. REPORT         b. ABSTRACT         c. THIS PAGE         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | infrastructure eleme<br>properly utilized can<br>Information Assuran<br>analysis tool. Event<br>previous literatures<br>Database normaliza<br>performance is also<br>necessary data are c<br>maintains better dat<br>such as additional p<br>normalization impro-<br>databases. | nts that con<br>n provide the<br>ce require<br>log analy<br>affirm der<br>tion impro-<br>dependen<br>ontained i<br>a consister<br>reprocessi | omprise cyb<br>timely situa<br>es the valid<br>visis can be p<br>normalizatio<br>oved majori<br>t on the typ<br>n the normancy than no<br>ng time and | berspace. Event la<br>ation and verifica-<br>performed using<br>on of databases;<br>ty of the queries<br>e of query execu-<br>alized tables. Fu-<br>on-normalized. N<br>d extra storage re | logs from cy<br>about the st<br>ation of the i<br>relational da<br>yet, database<br>performed u<br>ted. Queries<br>rthermore, d<br>Vonetheless,<br>equirements | ber devic<br>tate of the<br>integrity of<br>tabases.<br>e normaliz<br>sing very<br>s perform<br>latabase n<br>there are<br>though m | es ca<br>of re<br>To e<br>zatio<br>y larg<br>ed fa<br>orm<br>som | an yield significant information, and when<br>ber infrastructure. In addition, proper<br>sults generated by a commercial log<br>enhance database query performance,<br>on can also increase query performance.<br>ge data sets of router events; however,<br>aster on normalized table if all the<br>alization improves table organization and<br>the tradeoffs when normalizing a database<br>hal in this experiment. Overall, |  |  |
| ABSTRACT     OF PAGES     Michael R. Grimaila, PhD, CISSP, CISM       a. REPORT     b. ABSTRACT     c. THIS PAGE       U     U     UU       U     U       U     U       U     U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 | , Database                                                                                                                                   | , Normaliza                                                                                                                                           | ation, Event Log                                                                                                                                                                           | s                                                                                                                                                              |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| a. REPORT     b. ABSTRACT     c. THIS PAGE       U     U     UU     193       (937) 255-3636 X4800, michael.grimaila@afit.edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16. SECURITY CLASSIFICATION OF:                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                       | UU                                                                                                                                                                                         | 193                                                                                                                                                            | 19b. TELE                                                                                                                           | 19b. TELEPHONE NUMBER (Include area code)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Standard Form 298 (Rev. 8-98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                               | U                                                                                                                                            | U                                                                                                                                                     |                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |