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Abstract

Social network analysis (SNA) is used by the DoD to describe and analyze social
networks, leading to recommendations for operational decisions. However, social
network models are constructed from various information sources of indeterminate
reliability. Inclusion of unreliable information can lead to incorrect models resulting in
flawed analysis and decisions. This research develops a methodology to assist the analyst
by quantitatively identifying and categorizing information sources so that determinations
on including or excluding provided data can be made.

This research pursued three main thrusts. It consolidated binary similarity
measures to determine social network information sources’ concordance and developed a
methodology to select suitable measures dependent upon application considerations. A
methodology was developed to assess the validity of individual sources of social network
data. This methodology utilized source pairwise comparisons to measure information
sources’ concordance and a weighting schema to account for sources’ unique
perspectives of the underlying social network. Finally, the developed methodology was
tested over a variety of generated networks with varying parameters in a design of
experiments paradigm (DOE). Various factors relevant to conditions faced by SNA
analysts potentially employing this methodology were examined. The DOE was
comprised of a 2* full factorial design augmented with a nearly orthogonal Latin
hypercube. A linear model was constructed using quantile regression to mitigate the non-

normality of the error terms.
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A QUANTITATIVE METHODOLOGY FOR VETTING “DARK NETWORK?”

INTELLIGENCE SOURCES FOR SOCIAL NETWORK ANALYSIS

1. Introduction

The initial decade of the 21% century has been characterized by the United States
in direct conflict with terrorist organizations and insurgent groups, while attempting to
mitigate the effects of organized criminal enterprises, drug cartels, human trafficking,
piracy, and cyber crime. These entities utilize support networks composed of money
laundering, weapons smuggling, illegal technology proliferation and other illicit
activities. Dealing with this myriad of interconnected organizations and activities has led
to the development of nontraditional analytic techniques in support of strategies
addressing these threats to national security. One such analytic technique brought to bear
on this problem set is Social Network Analysis (SNA), not necessarily a new technique,
but novel in its relatively recent application to the national security arena. As such, the
Department of Defense’s (DoD) initial unfamiliarity with Social Network Analysis has
now transitioned to various instantiations in levels of application and expertise in
numerous DoD organizations. The DoD’s use of SNA as a military tool against an array
of organizations has delivered successes and failures in providing useful analysis on the
target subject’s inner workings and identifying strategies to inhibit these targets.

Social Network Analysis is a quantitative methodology to model networked
actors’ behavior. SNA focuses on the relationships among actors and the implications on

both collective and individual behavior resulting from the structure of the network and
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the patterns in the relationships. The network structure portrays the pattern of
relationships among the actors and models organized collective behavior. This structure
can affect, promote, and constrain individual actor behavior (Wasserman & Faust, 1994,
pp- 3-4). The quantitative nature of SNA methodology enables the characterization of the
network structure and its implications upon collective and individual behavior,
identification of actors significantly involved in organized behavior, and the
determination of groups of actors contained within the structure. Additionally, the
quantitative basis enables detection of changes over time in network structure, actor
prominence, and group formulation or dissolution (Wasserman & Faust, 1994, pp. 9-10).

The network models used in this type of analysis are dependent upon the veracity
of the information sources providing social network data. Social network information
sources may provide unreliable information leading to inaccurate conclusions from the
model. The information sources may confirm or discredit reports from other sources,
leaving the SNA analysts to arbitrate what data is used in the social network model. This
research addresses the lack of suitable quantitative methodological approaches to aid
SNA analysts facing this complex problem.

SNA methodologies have predominantly evolved from research conducted on
open networks such as businesses, governmental organizations, social groups, and
activities where data is voluntary provided or permissibly collected. In contrast,
adversarial organizations considered threats to U.S. national security are structured and
have mechanisms emplaced minimizing the effectiveness of traditional social science
SNA data collection techniques. These organizational mechanisms present additional

challenges in applying SNA to these problem sets. To address the associated
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implications on modeling, a conceptual understanding of these organizations and

associated mechanisms is required.

1.1 Dark Networks

The inherent complexity of dealing with the wide range of organizations subject
to interest by the DoD is beginning to be deciphered by several characterization and
generalization efforts initialized in the academic realm which show promising utility in
addressing the problem set. One such notion, coined “dark networks,” serves as a basis
for a conceptual framework suitable to categorize and address the range of potential
organizational adversaries faced by the DoD.

Raab and Milward (2003) introduced and defined “dark networks™ as actors and
organizations that cooperate in activities that are both covert and illegal, in contrast to
“bright networks”, formally defined as “a legal and overt governance form that is
supposed to create benefits for the participating actors and to advance the common good
and does not—at least intentionally—harm people”; dark networks’ illegal activities are
not meant to be visible (Raab & Milward, 2003, p. 419; Milward & Raab, 2006, p. 334).
The preponderance of related academic literature examining group and organizational
behaviors is derived from research centered in characterized social interactions and
improving organizational efficiency and effectiveness of bright networks. Efforts
extending research findings derived from this academic literature for application against
dark networks has grown dramatically since September 11, 2001.

Dark networks as a framework appear to describe and address the litany of

adversaries faced by the United States. Applying organizational theory to identify and
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model vulnerabilities in dark network organizations may enable more efficient utilization
of limited military and other agencies’ resources used in reducing or eliminating various
dark networks’ capabilities. The difficulty lies in accurately distilling generalizations, the
conditions for which they are applicable, and their implications from the spectrum of
organizations characterized as dark networks.

Dark networks differ from overt “bright” networks in several dimensions.
Stemming from dark network members’ desires for their operations to generally remain
undetected, their structures contain specific aspects and characteristics ensuring a
sustainable amount of security and organizational resilience. Some of these structural
characteristics are intentional designs, while others are a function of how the networks
form and evolve over their lifespan. The security needs of dark networks manifest
themselves intra-organizationally, in the relationships among members; inter-
organizationally, between various organizations involved with dark network activities;
and externally, as dark networks interface with the general population.

Intra-organizationally, members’ relations are defined by trust due to the risks
they incur for participation in illegal activities, or the mere association of being members
of the illicit organization (Erickson, 1981, p. 195). Binding the organization together,
“integration is primarily based on trust relations between individual persons and their
complementary interest (Raab & Milward, 2003, p. 432).” These trust relations can be
established and reinforced within the organization via ideological commitments,
indoctrination, joint participation in activities, common fate sentiment, and other
socialization processes. Due to the high need for security and its resultant demand for

trust among an organization’s members, “risk enforces recruitment along lines of trust
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and, thus, through preexisting networks of relationships, which set the limits of the secret
society’s structure (Erickson, 1981, p. 188).” Dark network organizations’ growth and
ability to reconstitute its personnel is dependent upon its members’ other social networks,
which are not necessarily based in illegal behavior, but may stem from familial,
educational, geographical, and other social contexts.

Members of dark network organizations, who are generally included due to
preexisting social connections, create an environment which reinforces continued
affiliation and activity with the organization. “Because risk is such a big factor,
professional and personal lives are intermeshed and almost indistinguishable (Raab &
Milward, 2003, p. 431).” Despite these personal connections potentially existing among
members, the overall “structure of covert networks will tend to be as sparse as possible to
achieve the goals of the participating actors (Raab & Milward, 2003, p. 433).” Dark
network organizations structure themselves in a manner to insulate and limit possible
damage due to individual defections, arrest, capture, or compromise. For these
organizations, security is paramount and crucial for them to continue to conduct
operations in pursuit of their goals, and their organizational structure reflects that
concern.

Dark networks possess loose connections that drive interactions, mutually
beneficial behavior and cooperation among organizations engaged in illegal activity.
Organizations conducting illicit activities require resources; organizational specialization
and market segmentation has occurred similar to overt networks. Illegal narcotic
production, smuggling and distribution organizations may rely upon weapons smuggling

organizations to supply arms. Organizations engaged in kidnapping may utilize
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organizations specializing in money laundering to handle that aspect of the operation.
Enabling these transactions are “actors who function as brokers between these different
networks (Raab & Milward, 2003, p. 431).” However, these interactions among dark
networks and their composite organizations do not obviate the need for security.
Similarly to specific organizations structuring themselves to promote security, the
transactions, interconnectivity, alliances and cooperation, occurring within dark networks
are structured under a security conscious paradigm. “Dark networks try to function with
as few ties as possible (Milward & Raab, 2006, p. 353).” Minimizing inter-
organizational connections insulates individual organizations from potential compromise
or exposure from necessary transactions and interactions.

Dark networks’ preoccupation with security and the nature of their activities
present a unique challenge to inter-organizational transactions. “Dark networks cannot
rely on formal institutions or the legal systems for dispute resolution (Raab & Milward,
2003, p. 430).” As such, “persuasion, exchange, and negotiation are the central
mechanisms for management and conflict resolution in overt networks, coercion and
physical force are the distinctive characteristic of covert networks (Raab & Milward,
2003, p. 432).” Due to this, “transaction costs in covert networks are higher than those in
overt networks (Raab & Milward, 2003, p. 432).” Despite these deterrents to inter-
organizational interaction within dark networks, it occurs due to organizations’ necessity
of acquiring resources, sometimes unique resources, in order to achieve their aims.

The United States’ National Security establishment has in some instances dealt
with dark networks over a substantial amount of time. Milward and Raab (2006, p. 336,

351) note this “resilience of these [dark] networks in the face of massive efforts to control
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them,” defining resilience as “the ability to recover from or to resist being affected by
some shock, insult, or disturbance.” In the dark networks’ organizational paradigm,
resilience is the ability of the organization “to avoid disintegration when coming under
stress (Milward & Raab, 2006, p. 351).” Despite numerous governmental programs and

efforts to inhibit dark networks, it appears to be an interminable problem.

1.2 SNA’s Utility in Analyzing Dark Networks

The desire to understand dark network organizations via identifying roles and
their associated individuals brings forth the need for a methodological approach. One
methodology displaying high promise for fulfilling this analytic gap is Social Network
Analysis (SNA). Several studies have examined and proposed utilizing SNA to study
dark networks, covering the gamut from organized criminal networks to insurgencies and
terrorist groups (Sparrow, 1991; Coles, 2001; Reed, 2006; Ressler, 2006; van der Hulst,
2009) with several introducing new methodologies and algorithms specifically adapted to
these problem sets (Renfro, 2001; Sterling, 2004; Clark, 2005; Hamill, 2006; Farley,
2007; Geffre, 2007; Herbranson, 2007; Seder, 2007; Leinart, 2008; Kennedy, 2009).
Acquired knowledge of dark networks’ and their organizations’ structures, operations’
processes and mechanisms, coupled with discerning roles and associated individuals has
the potential to grant understanding into inherent vulnerabilities that are susceptible to
exploitation.

Social Network Analysis is an analytic methodology encompassing social
network data collection methodologies through mathematical analysis and visualization.

Social network data is collected, compiled and filtered to create a social network model
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representing underlying social dimensions of interactions among actors scoped to answer
specific questions. A variety of mathematical techniques are then applied to analyze the
social network model to generate insights into phenomena of operational significance.
Generally, Social Network Analysis is employed to: model actors and their relationships
to depict the structure of the network, analyze the impact of this structure on the function
of the network, analyze the impact of this structure on individuals within the network,
and assess changes over time (Wasserman & Faust, 1994, pp. 3, 9-10).

Of significance, the social network model is constructed under a specific context.
The data is collected and the model is generally constructed for a specific analytic
purpose, a set of “real world” questions on which the subsequent analysis is attempting to
shed light.  This context and the associated questions drive the analyst’s selection of
SNA analytic techniques to apply to the social network model. As these analytic
techniques are mathematically based, they each have associated assumptions. These
assumptions precipitate the social network data requirements in order to satisfy the
mathematical requirements of the chosen SNA analytic techniques. The conclusions and
interpretations derived from the SNA analytic techniques are dependent upon the
contextual considerations of the social network model as well as the collected social

network data.

1.3 Problem Context

In order to fully and accurately characterize a dark network organization,
investigations must expand beyond purely “professional” relationships within an

organizational context and explore other relation types, such as familial and social, to
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ensure acquiring all relevant and pertinent information. This requires a host of sources to
provide the necessary data, of which several may be nontraditional or on the forefront of
technical collection capabilities, burdened with additional encumbrances due to issues of
data availability and/or legal authority to collect. Expanding to personal social contexts
introduces the problem of determining when the boundary of the network has been
reached.

Data collection is further confounded as dark network organizations are purposely
attempting to remain opaque. Data collection is conducted possibly in the face of
adversarial active denial and deception measures. Social Network Analysis of dark
networks will surely be applied in an imperfect data situation, with certain data elements
missing and others being corrupted or inaccurate.

Social Network Analysis suffers from a lack of standardized adequacy criteria for
data collection. It is indeterminate whether enough data is present and appropriate to
conduct a SNA or rely on its results in decision making. This lack of criteria has left
SNA analysts to self-determine when sufficient data has been collected to perform a SNA
with limited intuition or guidelines of the corollary impact upon analytic results.
Analytical conclusions are drawn and presented on data sets that may provide erroneous
results due to an indeterminate significant amount of missing data or data corruption.
These errors may be significant as they could produce analytic results that are counter to
the true situation, leading to misappropriation of resources, improper strategy adoption,
and erroneous targeting.

Methods exist within academic literature for imputing missing data (Leinart,

2008) and for attempting to probabilistically classify collected data as valid or invalid
I-9



(Butts, 2003). However, there is no benchmark of when these methods should be applied
in SNA. A method currently does not exist to determine if a sufficient amount of data
has been collected to perform SNA appropriately, inevitably resulting in incorrect
conclusions being drawn from misapplication. While undesirable, this may be acceptable
if one is conducting a sociological study; however, it can be disastrous if applied to the
national security arena and influence operations (law enforcement, military or civil.)

In the arena of national security, erroneous results stemming from Social Network
Analysis may produce substantial unintended consequences. Decisions derived from the
analysis may expend critical resources without generating any associated progress
towards achieving national security objectives. More damaging than inefficient
utilization of resources, erroneous results precipitating unacceptable collateral damage,
such as actions against innocent individuals and organizations, could hinder and restrain
current and future operations. Such mishaps may drive previously neutral individuals
into dark network organizations or at least increase their support of the groups’ goals.

Particularly when dealing with dark networks, improper strategy or poor targeting
could potentially provide a strategic advantage to targeted organizations; conducting
“organizational Darwinism” by removing non-effective actors from an organization may
strengthen the organization while improving its overall effectiveness and ability to
accomplish its objectives. A possible example is large-scale arrests of low-level
incompetent criminals in organized crime, leading to an organization comprised
predominantly of very effective and efficient actors. Dark network organizations are
comprised of human beings, and as such, successful ones respond, adapt, and exhibit

creativity when presented with adversity. Government forces applying improper
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strategies or targeting solutions could lead to adversary organizational alterations
generating significant unintended consequences. Hypothetically, removing adversary
leadership personnel may lead to their replacement with individuals who are
characterized as even less desirable, i.e. more violent, intelligent, dedicated, inspirational,

and so forth.

1.4 Problem Statement

Social network analysis is used by the DoD and other government agencies to
describe and analyze social networks, leading to recommendations for operational
decisions. However, social network models are constructed from various information
sources of indeterminate reliability. Inclusion of unreliable information can lead to
incorrect models resulting in flawed analysis and decisions.

It is critical for continued use of SNA by the DoD that methods are developed to
determine if information sources reporting social network data are of sufficient reliability
to allow the use of SNA techniques generating solutions within acceptable operational
risk. Formalized SNA includes various methodologies for social network data collection.
The collected data must be contextually relevant and of sufficient quality and quantity.
The contextual relevancy is a function of the specific problem set and the instantiated
social network model. Absent in Social Network Analysis are methods to determine if
information sources are reporting data of sufficient quality and quantity to conduct SNA
appropriately. This gap is currently addressed via the Social Network analyst’s intuition
on whether sufficient reliable data exists and is available to conduct the analysis or

further data collection is warranted, or data imputation techniques need to be employed.
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Analogous to confidence intervals in statistics, presenting SNA conclusions without an
associated degree of confidence does not fully answer and address the questions
precipitating the analysis.

Current practice assumes that all social network analytic techniques are applicable
under all data conditions despite growing evidence in the academic literature to the
contrary. Additionally, traditional application of SNA treats all obtained information on
the social network equally, regardless of the acquisition means or source, depicted in
Error! Reference source not found.. Adopting a term from the computer science
discipline, data provenance refers to the origins of a piece of data and the process by
which it was obtained (Buneman, Khanna, & Tan, 2000, p. 88). It is presumed that some
information sources providing social network data are more reliable in that their data is
generally a more accurate representation of the social network under observation.
Information sources established as being reliable should be considered differently than
unreliable or untested sources in the construction of the social network model, portrayed
in Figure I-2, particularly in the case of conflicting reporting. The DoD utilizes SNA on
problem sets, such as dark networks, with social network data acquired through various
collection means. Due to the nature of the problem set, SNA applied in this context has

additional concerns of reliable, unreliable, and deceptive sources of information.
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Figure I-2 Constructing SNA Models Considering Source Reliability

1.5 Research Objectives

This dissertation conducts a line of research investigating the construction of a

social network model in the face of reliable and unreliable information sources. Along
those lines, this research developed a methodology to quantitatively identify and

categorize information sources so that determinations on including or excluding their

provided data can be made. This research proceeded with the following goals:

Consolidate similarity measures to determine social network information

sources’ concordance and develop a methodology to select suitable measures

dependent upon application considerations. Many of these similarity measures
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have been introduced across various disciplines and no complete consolidated
listing is available. Despite numerous similarity measures existing in the
literature, no guidelines exist for selecting suitable measures for a given
application. Developing a methodology to select similarity measures for social
network information source comparisons will enable quantitative means to
evaluate confirmations and dissentions among sources.

Develop a methodology to assess validity of individual sources of social network
data. One method of constructing a social network data set is compiling
information from various sources. When examining dark networks, it is
imperative to consider that due to the nature of organizations involved some
sources will be delivering only limited network perspectives, i.e. imperfect data,
as well as professing corrupt data, either intentionally or unintentionally.
Evaluating and verifying various sources will provide a means to construct a
social network data set, hopefully, minimizing the impact of imperfect data by
appropriately weighting sources that provide verified information.

Test the methodology over a variety of generated networks with varying
parameters in a design of experiments paradigm. Dark networks may appear in
various regimes of network parameter space. Identifying network parameter
subspaces and examining SNA applicability for networks contained within those
subspaces will enable assessment of the appropriateness of specific SNA

techniques on dark network organizations.
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1.6 Dissertation Overview

This dissertation is organized as follows: Chapter II provides a literature review of
Social Network Analysis with a focus on the impact of imperfect data, which includes
missing and corrupt data elements. Chapter III discusses the methodological approach to
address the social network information source assessment problem introduced in this
introduction. Additionally, Chapter III provides the experimental design to be employed
to assess the methodology’s performance. Chapters IV and V discuss in detail
components of the methodology and present analytical results of the experimentation.
Chapter VI employs the developed methodology in a case study format for demonstration
purposes. Chapter VII reviews the contributions of this research, discusses assumptions

and limitations, and indicates future research threads to explore.
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II. Literature Review

This chapter begins with an introduction to the modeling aspects of social
network analysis applicable to dark networks, followed by a brief overview of several
SNA measures referenced in imperfect data literature. Next, a discussion of the social
science underpinnings and the relation to social network modeling is presented. A
detailed review of the academic literature describes current efforts to date on the impact
of imperfect data on social network analysis is then provided. Methodologies in the
literature to address the issues associated with imperfect data in SNA, namely consensus
structure aggregation and a Bayesian approach, are presented with discussions of their
limitations. Following the social science underpinnings and the impact of imperfect data,
a discussion of methods and techniques necessary for the methodology presented in
Chapter III is discussed. Social network data sources are explored, followed by statistical
methods to measure source agreement in reporting. Next, classifier performance metrics

are described. Finally, statistical analysis techniques employed in Chapter IV are

described.

2.1 Social Network Analysis

Social network analysis focuses on relationships among entities. This allows
inferences to be drawn from patterns of relationships or the implications of certain
structures upon actor behavior as well as the impact of actors upon other entities in a
social network structure (Wasserman & Faust, 1994, p. 3). Social network analysis
models social interactions among entities as a network with mathematical formulization,

enabling algorithms, procedures and computations based in social science theory.
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Presented here is a brief overview of social network analysis, some of its components,
and commonly used algorithms and pertinent calculations in understanding the impact of

imperfect data on SNA results.

2.1.1 Actors.

Various social entities can be envisioned as actors within a social network.
Countries, organizations, groups, social units, or individuals can be modeled as actors in
social network analysis. If the social network analysis is constrained to one type of actor,
for example only deals with individuals, it is defined as a one-mode network. If the
analysis contains two actor types, such as individuals and their affiliations with
organizations, the model is defined as a two-mode network (Wasserman & Faust, 1994,
p. 17). Predominantly, social network analysis is applied to one-mode networks. They

are modeled as nodes, or vertices, in a network graph representation.

2.1.2 Relationships.

Actors are connected via relationships, also referred to as relational ties. A
relationship defines the linkage between actors. There are many different kinds of
relationships reflected in social network analysis, which are categorized by relation type
summarized in Table II-1. A relationship between two actors creates a structure termed a
dyad. The relationships among three actors are referred to as a triad. Of note, there are
several combinations of relationship pairings that could constitute a triad, i.e. only a
subset of the potential relationships exist between all pairing within the triad (Wasserman
& Faust, 1994, p. 18). Relationships are modeled as arcs or edges in a network graph
representation.
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Table 1I-1 Relation Types

Relation Type

Description (Examples)

Individual evaluations

Measurements of positive or negative affect for
another actor; sometimes referenced as sentiment.
(Ex: friendship, respect)

Transfer of material resources

Transfer of goods, specific forms of social
support. (Ex: exchanges of gifts)

Transfer of non-material resources

Communication, sending/receiving information.
(Ex: sending a message)

Physical interaction of actors; presence at the
same place at the same time.

Interaction (Ex: sitting next to another actor, two actors
attending the same meeting)
Physical movement; social movement.
Movement

(Ex: changing location, change in social status)

Formal roles

Power and authority between actors.
(Ex: boss/employee relationship)

Kinship

Familial and marriage relationships.
(Ex: parent, spouse)

2.1.3 Relations.

(Wasserman & Faust, 1994, pp. 37-38)

Social relations among actors may be based upon a perception of a relationship;

referred to in the literature as the cognitive network (Wasserman & Faust, 1994, p. 51).

Relations that are determined by perception have significant implications upon the

relationships among actors that are ascertained for an analysis. Perceived ties may be

more appropriate for analysis conducted on phenomenon such as influence, attitude or

opinion development and propagation through a network’s actors.

On the contrary,

Marsden suggests that relations defined by interactions or transfers of goods or

information may be more appropriate for analysis on diffusion of material through a

network (Marsden, 1990, p. 437).
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A temporal aspect to relations may exist within a social network. Relationships
may be episodic, transient, or a single-occurrence between actors, or be based upon
recurrent interactions or exchanges (Marsden, 1990, p. 437). This temporal nature of
relationships may necessitate a scoping of the analysis to consider only a specified time
frame of activity. Additionally, thresholds, based upon transaction or interaction
frequency or intensity, may need to be established to confirm the presence of a

relationship at a significant level between two actors for inclusion into the analysis.

2.1.3.1 Directed Relations.

Some relation types may imply directionality. As many of the relation types
involve a transfer of a resource or information, a direction of the relationship is defined
by the sender and the receiver of the resource. Additionally, non-transfer relations can
involve a direction. For example, a boss giving orders to a subordinate implies a
direction of the relationship, in this case the boss exerting authority over the subordinate

(Wasserman & Faust, 1994, pp. 121-122).

2.1.3.2 Asymmetric Relations.

As a result of directed relations, it is conceivable that a relationship between one
actor and another is not reciprocated. An example is a relation type that involves choice.
If actors choose the relationship with another actor, the other actor may choose to not
respond with the same relationship back to the sender. For relation types that are based
upon transfer, a sender could pass resources to a recipient and the recipient may not

transfer resources back to the original sender. For non-transfer relations, such as
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affection, it is possible for an actor to express a sentiment, such as love or respect, for

another actor that is not returned (Wasserman & Faust, 1994, p. 122).

2.1.3.3 Valued Relations.

A relationship between actors in some instances can be valued to describe the
strength of the relationship. The measurement generally attempts to reflect the intensity
of the relationship, as detected by proxies such as amount or frequencies of interactions

(Wasserman & Faust, 1994, p. 140).

2.1.3.4 Multiple Relations.

If multiple relations are used to model a social network, multiple relationships
among two actors could be present (Wasserman & Faust, 1994, p. 146). An example
could be co-workers, denoting a formal role, who are also friends, representing an

individual evaluation.

2.1.4 Data Representation.

The predominant data structure used to represent social network data is the
sociomatrix, more typically referred to as an adjacency matrix in operations research. It
is a square matrix where each row or column represents an actor within the network. The
common convention maintains that the actors are in identical order for the rows and
columns. If a relationship is present between actors i and j, the matrix element of the /™
row and jth column, x;;, of matrix X is set to one, as exemplified in Table II-2 and its
associated social network graph displayed in Figure II-1. Additionally, if the relation is
undirected, the matrix element of the jth row and i column, x;;, of matrix X is set to one,

ensuring the resultant matrix is symmetric. If a relationship is not present, x; is set to
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Table I1-2 Notional Adjacency Matrix (Directed Graph)

Actor
A B C D E
A - 1 0 1 1
- B 1 - 1 0 1
3 C 0 0 - 0 1
D 1 1 0 - 0
E 0 0 1 1 -

zero and xj; is set to zero for symmetric relations. Thus, for undirected graphs the
adjacency matrix will be symmetric, and for directed graphs may be asymmetric
(Wasserman & Faust, 1994, pp. 150-151). For valued relations, matrix element x;,
describing the relationship between node i and node j, is set to the value of the
relationship, commonly referred to as a weight reflecting the strength or intensity of the
relationship, as opposed to being set to one. Multiple relations may involve multiple

adjacency matrices, each one representing a single relation.

2.2 SNA Measures

Marsden (1990) highlights the importance of the purpose of utilizing measures to
characterize the relationship between the measure and its foundational sociological or
psychological underpinnings. Utilizing measures to provide a precise description of the
social ties that compose a network requires a different level of accuracy than from using
measures as indicators of differences between individuals within a network or between

networks’ structural properties.
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Figure II-1 Social Network Graph Based upon Table I1-2

2.2.1 SNA Nodal Measures.

Many questions, in particular when examining dark networks, focus upon the
relative importance of individual actors within the network. A host of measures derived
from calculations based upon the network structure are available to characterize
individual actor relative importance. Presented here is a subset of available SNA nodal
measures, selected due to their common usage within SNA, specifically in literature

addressing imperfect social network data.

2.2.1.1 Degree.

Nodal degree is the number of direct relationships with other actors possessed by
an actor. It is simply the total number of edges incident to a node. For a network with
undirected dichotomous edges, the degree of node v, Cp(v), is the number of immediate

neighbors node v possesses and can be computed by summing the corresponding row or
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column of the adjacency matrix, 4, as either will produce the same result as shown in
Equation 1) (Wasserman & Faust, 1994, pp. 100, 163). The degree can be normalized,
Cj(v), by dividing the degree of each node by the maximum possible value of n — 1, with
n denoting the number of nodes in the network, as displayed in Equation (2.2)

(Wasserman & Faust, 1994, pp. 178-179).

Cp(v) = ZAiv = ZAW- (2.1)
L ]

Cp(v) 2.2)
n—1

Cp(v) =

Degree centrality is a reflection of an actor’s potential involvement in
communication. Actors with high degree centrality are considered to be “in the thick of
things” and ‘“focal point[s] for communication” (Freeman, 1978/1979, pp. 219-220).
However, when applied to dark networks, actors with high degree centrality may more
accurately reflect “who you know most about, rather than who is central or pivotal in any

structural sense (Sparrow, 1991, p. 256).”

2.2.1.2 In-Degree.

Nodal in-degree is the number of relationships that are directed from other actors
into an actor. It is the total number in incoming edges incident to a node. For a network
with directed dichotomous edges, the in-degree of node v, Cip(v), is the number of
neighbors with directed arcs to node v. It can be computed by summing the
corresponding column of the adjacency matrix 4 (Wasserman & Faust, 1994, pp. 126-

127).
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Cp(v) = Z Ayj (2.3)
J

2.2.1.3 Qut-degree.

Nodal out-degree is the number of relationships that are directed from an actor to
other actors. It is the total number in outgoing edges incident to a node. For a network
with directed dichotomous edges, the out-degree of node v, Cop(v), is the number of
directed arcs emanating from node v. It can be computed by summing the corresponding

row of the adjacency matrix 4 (Wasserman & Faust, 1994, pp. 126-127).

Cop(v) = Z Ay 2.4)

In-degree and out-degree centralities reflect prestige among actors, measured by
being the object of a number of ties, in a sense the amount of times other actors choose a
particular actor. Dependent upon the specific relationship being modeled, being selected
by other nodes may be an indication of power or influence over other actors. For
example, if the relationship under consideration is a form of popularity, actors who are
chosen more often theoretically have more influence over others, which would reflect
mathematically in a high in-degree centrality. A hypothetical example reflecting this
could be requests for co-authorship for academic publications, distinguished individuals
may be sought out by others attempting to improve their status. If the relationship is a
form of power, for example gives orders, actors exhibiting high out-degree centrality are

considered influential (Wasserman & Faust, 1994, pp. 174-175).
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2.2.1.4 Betweenness Centrality.

Betweenness centrality is a measure intended to identify actors who can control
information flow in a network. It is based upon actors being located upon the shortest
paths (geodesic) connecting other actors and this position allows them to exert
interpersonal influence. As the actor is on the path between others in the network, they
exhibit the potential to control occurring communication. They have the opportunity to
prevent, delay, withhold, or alter information or materials passing through them.
Betweenness centrality, Cp(v), does implicitly assume flow occurs along the shortest
paths between actors in the networks. It is computed by calculating the number of
shortest paths existing between actors j and k that include distinct actor v, denoted as

gjk(v), divided by the number of shortest paths existing between actors j and &, denoted
as gji. The measure is sometimes standardized, Cyz(v), by dividing Cz(v) by the

maximum achievable value possible for the center of a star graph (Freeman, 1977, pp.

35-38; Freeman, 1978/1979, p. 221; Wasserman & Faust, 1994, pp. 189-190).

Cg(v) = Z 9ix()/ 9jk (2.5)
j<k
, _ 2Cp(v)
Cg(v) = m—Dn-2) (2.6)

Betweenness centrality identifies individual actors who lie on communication
paths between other actors. As such, an actor acting as an intermediary on a
communication path between two actors “exhibits a potential for control of their
communication.” Betweenness centrality reflects actors who coordinate group processes

as a function of their role in maintaining communication between others. An actor with
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high betweenness centrality could “influence the group by withholding or distorting

information in transmission (Freeman, 1978/1979, p. 221).”

2.2.1.5 Closeness Centrality.

Closeness centrality measures an actor’s centrality by examining their shortest
path distance from all other actors in the network, resulting in a measure more associated
with the center of a network from a graph theoretic perspective. Due to the requirement
of a path existing between nodes, reachability, the measure is only appropriate for
strongly connected graphs, which in practice precludes directed graphs. Similarly to
betweenness centrality, closeness centrality assumes flow occurs along shortest paths.
For an actor v, the length of the shortest path, d(v,i), between actor v and all other actors i
is summed and the inverse is computed. An actor’s closeness centrality, C(v), can be
standardized, C/(v), so the maximum value is one, by multiplying by the number of
nodes in the network, n, minus one (Wasserman & Faust, 1994, pp. 184-185; Sabidussi,
1966, pp. 597, 602). Closeness centrality has also been extended to incorporate
disconnected and/or directed graphs, by considering only reachable nodes from a given
actor. Adjusted closeness centrality, Cca(v), for actor v, incorporates the number of
actors reachable from v, R,, and for nodes unreachable from v sets d(v,i) to zero

(Wasserman & Faust, 1994, pp. 200-201).

-1
C.(v) = lz d(v, i)] 2.7)

Ct) = (n— 1)) 2.8)
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Rv/(n - 1)
Zi d(vr I')/RU

Closeness centrality is interpreted as the extent that an actor can avoid the

Ceaw) = 29

potential control of other actors. Actors with high closeness centrality can seek
information from throughout the network, and thus are not as dependent upon
intermediaries for maintaining communication. Their central position is also an
indication of their capability to propagate a message through the network with minimum

cost or time (Freeman, 1978/1979, pp. 224-225).

2.2.1.6 Eigenvector Centrality.

Eigenvector centrality is based upon an actor’s status as a function of the status of
the actors with whom they possess direct or indirect relationships. Computationally, it is
a weighted sum of direct and indirect associations across all paths, though it is sensitive
to differences in degree among the actors (Bonacich, 2007, pp. 555, 564). An individual
actor’s status is computed as the results of a weighted linear combination of all actors’
status’ scores. For n actors in a network, this leads to a set of n equations and »
unknowns, one equation and one unknown status score for each actor, though these
equations are not guaranteed to possess a non-zero solution. Various methods have been
constructed to reflect this social phenomenon and provide slight modifications to enable
computations for actors’ statuses evaluation, though generally not widely used due to the
requirement of input parameters without appropriate establishing guidelines (Wasserman
& Faust, 1994, pp. 205-210; Katz, 1953; Hubbell, 1965; Mizruchi, Mariolis, Schwartz, &
Mintz, 1986; Bonacich, 1987; Bonacich & Lloyd, 2001). The predominant measure in

practice, proposed by Bonacich (1972), establishes the actors’ status scores by the
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eigenvector, x, associated with the largest eigenvalue, 4, of a symmetric adjacency
matrix, 4, with values restricted between zero and one inclusive. These conditions ensure
the largest eigenvalue will be positive and its associated eigenvector will be composed of

nonnegative elements (Bonacich, 1972, pp. 113, 119).

1
X :IAx (210)

2.2.1.7 Integration.

Integration is a measure of how well connected an actor is within a network. It is
conceptually similar to closeness centrality, though adapted for directed networks.
Integration is a nodal measure based upon existing shortest paths between all other actors
and the actor of interest. Since it is applicable to directed networks, a path may not exist.
Computing integration, /(v), for actor v, involves the reverse distance. The reverse
distance, RD(7,v), involves calculating the length of the shortest path, d(i,v) beginning
with actor 7 and terminating at actor v. If a shortest path between actors i and v does not
exist, d(i,v) is set to zero. For directed networks it must be noted that the length of the
geodesic starting at actor i and terminating at actor j may differ from the geodesic
beginning at actor j and ending at actor i. To compute RD(7,v) as shown in Equation
(2.11), the shortest path length is subtracted from the diameter of the network, d, plus
one, with diameter defined as the longest existing shortest path in the graph between any
two nodes. The reverse distances are summed and divided by the total number of nodes
in the network, (7), minus one, (n — 1) as displayed in Equation (2.12). The measure can

be normalized, Equation (2.13), to produce a relative score by dividing each actor v’s
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score by the longest shortest path terminating at actor v (Valente & Foreman, 1998, pp.

90-93).
RD(i,v) = d — d(i,v) + 1 (2.11)
() = 22 R R_Dii' 2 2.12)
) =9 (2.13)

maXi,v [d (l, U)]

2.2.1.8 Radiality.

Radiality is the obverse of integration. While integration is based upon incoming
arcs to a node, radiality is dependent upon edges emanating from a node. In contrast to
integration, radiality measures an actor’s reachability into a network. Computing
radiality, R(v), for actor v, again involves the reverse distance, though focuses on the
paths emanating from node v. The reverse distance, RD(v,i), involves calculating the
length of the shortest path, d(v,i) beginning with actor v and terminating at actor i.
Similar to integration, if a shortest path between actors v and i does not exist, d(v,i) is set
to zero. To compute RD(v,i), the shortest path length is subtracted from the diameter of
the network, d, plus one, and is shown in Equation (2.14). The reverse distances are
summed and divided by the total number of nodes in the network, »n, minus one, as
computed by Equation (2.15). The measure can be normalized, Equation (2.16), to
produce a relative score by dividing each actor v’s score by the longest shortest path

beginning at actor v (Valente & Foreman, 1998, pp. 90-93).

RD(v,i) = d — d(v,i) + 1 (2.14)
R(y) = 2z ROWD R_Div’ ) (2.15)
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’ _ C;(v)
R'(v) = max,,; [d(v,i)]

(2.16)

Care must be taken when interpreting integration or radiality. Dependent upon
the relationship being modeled the meanings to these two measures may reverse. For
example, if the directed relationship in a social network is giving orders, possessing a
high radiality score indicates power, perhaps representing a general in a military
hierarchy, while a high integration score is not indicative of status. If the hypothetical
directed relationship is gives information, a high integration score would indicate an
individual with abilities to collect information from throughout the network, possibly

increasing status if knowledge is power applies. In contrast, a high radiality score reflects

an individual’s capacity to rapidly disseminate information across the social network.

2.2.1.9 Clustering Coefficient.

The clustering coefficient for a given actor measures the number of connections
among its neighbors, and is related to the transitivity concept in the social network
literature. Transitivity is based upon the observance that “a friend of a friend is a friend
(Wasserman & Faust, 1994, p. 150).” The clustering coefficient is a measurement of this
social phenomenon of a person’s friends also being friends of each other. It is a local
measure as for a given actor it only needs its immediate neighbors and their
interrelationships for calculation. It is defined as the proportion of interrelationships
among neighbors compared against the potential links that could exist, which differ for
undirected versus directed graphs. Given an undirected graph and a node v with &

neighbors with m edges connecting neighbors of v, the clustering coefficient C(v) of node
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v is defined as in Equation (2.17). For directed graphs, the equation is multiplied by one-

half, Equation (2.18) (Watts & Strogatz, 1998, p. 441).

C = 2m 2.17

undirected(v) - k(k _ 1) ( . )
m

Cairectea(V) = k=1 (2.18)

2.2.2 SNA Network Measures.

One objective of SNA is to characterize a network, in terms of efficiency and
effectiveness, or conduct a comparison to other networks. A host of measures derived
from calculations based upon the network structure are available to characterize a
network. Presented here is a subset of available SNA network measures, selected due to
their usage within SNA, specifically in literature addressing imperfect social network
data. Difficulties arise in the interpretation of these measures due to a lack of knowledge
of what is an appropriate or optimal value in the context of the specific social network
under investigation. Comparisons among various social networks with network measures

are also suspect due to the impact of network size upon several of the calculations.

2.2.2.1 Density.

The density of a graph is the number of edges in the network, m, divided by the
maximum possible number of edges (Wasserman & Faust, 1994, p. 101). If the graph is
a directed network, the maximum number of possible edges is doubled (Wasserman &

Faust, 1994, p. 129).

D _ m _2m
undirected — n(n _ 1)/2 - n(n — 1)

(2.19)
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m
Ddirected = n(n _ 1) (220)

2.2.2.2 Average Degree and Degree Distribution.

A commonly presented network measure is the average degree of a graph, simply
defined the average of all the individual nodes’ degrees (Watts, 1999, pp. 26-27). More
descriptive than a simple mean, the degree distribution characterizes the variation among
individual nodes’ degrees. Significant to social networks, a power law degree
distribution, or a closely related distribution such as a power law with cutoff, appears to
be prevalent in empirical studies of social networks (Barabasi & Bonabeau, 2003, pp. 63-
64). A degree distribution follows a power law distribution if the probability of a given
nodal degree, p(x), is drawn from Equation (2.21), which is characterized by its exponent
or scaling parameter a:

p(x) oc x~¢ (2.21)

Due to the tail behavior of a power law, empirically accurately estimating the
distribution’s parameters, the scaling parameter and the normalization constant, is
difficult. Clauset et al (2009) introduced a statistical procedure to compute the
parameters, calculate the goodness-of-fit, and compare against other potential
distributions, though only their method to compute the parameters is discussed here.
Their power law degree distribution, p(x), is a function of the scaling parameter, a, and
the minimum degree for which the power law is appropriate, xmin. Effectively, nodes
with degrees below xpin are ignored in the computations estimating a. Xpmi, is determined
by iteratively investigating every potential xn,, estimating o, and comparing the

corresponding model’s degree distribution against the node degrees found in the
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complete network of # nodes via the Kolmogorov-Smirnov statistic, a common statistical
method of comparing distributions. The a and xmi, are selected from the respective
model that fits the data set best. Equations (2.22) and (2.23) summarize the
approximations for the power law parameters (Clauset, Shalizi, & Newman, 2009).

(a — Dx& 1

= 222
p(X) ?o=0(i + xmin)_a ( )
n -1
x.
g=1+n Zm—‘sl (2.23)
=1 Xmin — -

2.2.2.3 Degree Correlation (Assortativity).

Degree correlation, also referred to as assortativity, is the Pearson correlation
coefficient of nodal degrees (Newman, 2002). A network displaying assortative mixing,
or positive correlation among nodal degrees, will have high-degree nodes connected
directly to other high-degree nodes. The converse, a network with disassortative mixing,
or negative correlation among nodal degrees, will possess high-degree nodes directly
connected to low-degree nodes. Many social networks appear to possess assortative
mixing, positive degree correlation (Newman & Park, 2003, pp. 036122-2), with high-
degree nodes interconnected within a network core. Assortativity, 7, is calculated via the
following equation, where M is the total number of edges in the network, and j;, k; are the

respective degrees of the vertices at the endpoints of the i arc (Newman, 2002):

1 2
M~ ¥ jiki — [M_l i Ui+ ki)]
r= (2.24)

) M‘lZi%(i? + k7)) — [M_lzl'%(ii +ki)]2
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2.2.2.4 Average Clustering Coefficient.

The average clustering coefficient, C, “measures the cliquishness” of a network,
simply calculated by computing the average over all nodes’ clustering coefficients given
n nodes in the graph and ranges (Watts & Strogatz, 1998, p. 441). An average clustering
coefficient for a network equal to zero implies that for all nodes in the graph, no

neighbors of any node v is adjacent to any other neighbor of node v (Watts, 1999, p. 33).

_3,CW)

n

C (2.25)

Alternative clustering network measures exist, though they all maintain the same
range of [0,1]. One alternative averages the clustering coefficient of only nodes with

degree greater than one (Soffer & Véazquez, 2005).

_ Zv|d(v)>1 C(v)

C
¢ Zv|d(v)>1 1

(2.26)

Newman, Strogatz and Watts (2001) introduced an alternative definition of a
network measure of clustering involving the number of triangles present on the graph
compared against the number of connected triples of nodes. “‘Triangles’ are trios of
vertices each of which is connected to both of the others, and ‘connected triples’ are trios
in which at least one is connected to both the others (Newman, Strogatz, & Watts, 2001,
pp. 026118-12).” The numerator is multiplied by three to account for triangles are
composed of three connected triples of nodes.

_ 3(number of triangles on the graph)

(2.27)

© ™ number of connected triples of nodes

This definition of the clustering coefficient enables the comparison of a social

network against a random model.  Utilizing the average degree, d, the average of the
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squared nodal degrees, d2, and the size of the network, n, the clustering coefficient value
for a network with no structure assumptions, C,, can be computed. Real world social
network data sets display higher clustering coefficients than their corresponding null

structure configuration random model would suggest (Newman & Park, 2003, pp.

036122-3: 036122-4).

(4> —a?)

_ (2.28)
nd3

C, =

An additional network measure based upon clustering coefficient involves a ratio
of the number of neighbor interrelationships for each node compared against the sum of
the possible edges for each set of neighbors in the graph. This can be interpreted as the
three times the number of triangles present in the graph divided by the number of pairs of
adjacent edges. Given an undirected graph, for each node v with d(v) neighbors with m,
edges connecting neighbors of v, the ratio clustering coefficient is defined as follows (for
directed graphs the equation is multiplied by %) (Bollobas & Riordan, 2003, p. 18; Soffer
& Vazquez, 2005):

_ ZvMy

CT - Zv(d(zv))

(2.29)

2.2.2.5 Fractional Size of Largest Component.

When modeled, social networks can form disconnected graphs, and often do in
the case of dark networks. This phenomenon causes numerous difficulties in applying
various SNA measures due to their assumptions of connected graphs. In practice, SNA
measures are applied against each component, i.e. connected sub-graph, individually, or

in some cases calculated for the largest component only. One network measure that
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investigates this phenomenon is the fractional size of the largest component, simply
defined as the number of nodes in the largest component divided by the total number of

vertices in the graph.

2.2.2.6 Mean Path Length and Characteristic Path Length.

The mean path length is the average length of the shortest paths between all nodes
contained within the largest component (Kossinets, 2006, p. 254). Existing within the
literature is also the characteristic path length defined as the median of the means of the
shortest path lengths between all nodes. Originally defined for undirected single
component graphs, computing the characteristic path length involves calculating the
average of the shortest paths for a given node to all other vertices. The characteristic path
length is the median of this set of averages, i.e. one average per node (Watts, 1999, p.

29).

2.2.3 Bipartite Affiliation Networks in SNA.

Affiliation networks are two-mode networks describing the relationships existing
between actors and events. Actors are connected only to the second mode, the events,
and events are only connected to actors. This results in a bipartite graph with the subsets
of actors and events with all arcs spanning between the two subsets and not within a
subset. This bipartite graph can be projected into a one mode actor network by assuming
actors connected to the same event possess, or are more likely to possess, a direct tie
between them and other actors linked to the same event. Similarly, the bipartite graph
can be projected into a one mode event network with the events interconnected through
actor linkages (Wasserman & Faust, 1994, pp. 291-312). The projection of an affiliation
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network, represented as a two mode bipartite network, into a single mode network

appears in the literature as unipartite projection (Kossinets, 2006, pp. 250-251).

Actors Affiliations

Bipartite Affiliation
Network

Unipartite Projection

Figure II-2 Bipartite Affiliation Network and Associated Unipartite Projection
(Adapted from Kossinets, 2006, p. 253)

2.2.4 SNA Bipartite Affiliation Network Measures.

2.2.4.1 Redundancy.

Kossinets (2006) introduced a measure to gauge the average importance of an
affiliation within a bipartite graph, referred to as redundancy, f. Redundancy is
calculated via the following equation where u is defined as the average number of
affiliations per actor, v is the average size of an affiliation, and z is the mean actor degree

in the unipartite projection of the actors (Kossinets, 2006, p. 257).

V—2Z Z
SR AR (2.30)

A uv uv
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2.2.5 SNA Measures Overview.

Social network analysts utilize SNA measures discussed in Section 2.2, along
with others, to detect changes in the social network’s behaviors, changes in individual
actors’ behaviors, and to make decisions on how to affect dark network organizations.
The SNA nodal measures can be used to determine which individuals or sets of actors to
target for cooption, prosecution, message insemination, monitoring to gain more
information on the organization and potential removal from the network. Some of these
decisions constitute single opportunity events for execution or involve extensive resource
commitments. As a result, fully understanding the impact of conducting these decisions
using SNA measures that are conducting calculations on underlying imperfect social
network data is paramount to adequately and appropriately assess risks and opportunities

to the decision-maker.

2.3 Causes of Imperfect Social Network Data

Imperfect social network data stems from various sources. One source, boundary
specification, is ever present as a social network is a model, an abstraction. As such, the
modeler makes decisions regarding the inclusion and exclusion of specific data elements.
In the particular case of social network analysis, a boundary specification problem arises.
The modeler must decide which actors and which relations are to be included in the data
set, in effect, determining the network’s context. The challenge is further compounded
when selecting the associated variables to collect on each actor and each relation.

Difficulty in acquiring specific nodal or edge information, such as actors’ demographic
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data or the ability to measure relationships’ intensities may drive boundary specification
decisions.

Additional challenges and sources of imperfect data arise in the data collection
portion of the analysis. An improper data collection design, inherent inaccuracies
generated by the specific data providers, or a lack of information—which may be the
intention of the subject network as in the case of dark networks—may introduce
extraneous, spurious, or inaccurate data. These factors also potentially prevent the
comprehensive collection of essential elements which can significantly impact the
subsequent analysis and results. Inaccuracies in the collected data coupled with missing
observations potentially lead to social network analysis being conducted in an

environment of imperfect data.

2.3.1 Boundary Specification Problem.

The boundary specification problem involves the inclusion and exclusion of
actors and the inclusion and exclusion of relations. The actors and corresponding
relations that are included in the analysis—that define the network—are a subset of all
existing actors and relations—from many potential networks. Rules are established to
define an actor’s inclusion into the network of study. Actors may be included or
excluded from the social network based upon actor characteristics, their affiliations, or
other specifications. Additionally, specific relation types are identified for inclusion in
the network from the set of all relations. The appropriateness of the resultant reduction in
actors or relations is dependent upon the analysis being conducted (Wasserman & Faust,

1994, pp. 30-39). Dark network actors often intermesh their professional and personal
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lives, infusing difficulty in clearly delineating where illicit organizations and operations
end and legitimate transactions and activities begin, in effect creating a fuzzy boundary
which the social network analyst must arbitrate (Sparrow, 1991, p. 262).

Two different approaches are presented in Laumann, Marsden, and Prensky
(1983) to address the boundary specification problem: realist and nominalist, though in
application, a combination of the approaches may be employed for a particular study.
Each boundary specification approach couples inclusion and exclusion rules that can be
applied to collect data for modeling the target subject of interest (Laumann, Marsden, &
Prensky, 1983, pp. 20-21).

The realist approach defines the boundary by assuming “that a social entity exists
as a collectively shared subjective awareness of all, or at least most, of the actors who are
members (Laumann, Marsden, & Prensky, 1983, p. 21).” This approach is somewhat
circular argumentation in effect as the social network is defined by those who compose
the social network. For formal organizations with clear membership this assumption is
benign; however, when dealing with informal groups, such as collections of friends or
criminal networks, this assumption creates a fluidity of the boundary of the social
network. It has the potential to create a paradox where an individual actor may not
consider themselves part of the social network, while members of the social network
consider the actor as part of the collective. The obverse of the paradox could just as
easily occur. From a modeling perspective, this inconsistency of the appropriateness of
including the individual actor in the social network makes delineating the boundary

difficult.
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In the nominalist approach, the “analyst self-consciously imposes a conceptual
framework constructed to serve his own analytic purposes (Laumann, Marsden, &
Prensky, 1983, p. 21).” The social network is defined by arbitrary criteria that serve the
analyst’s lines of inquiry. In opposition to the realist approach, the social network’s self-
defined boundary is no longer an assumption, but an empirical question of how it
compares against the analyst’s defined boundary (Laumann, Marsden, & Prensky, 1983,
p. 22). The arbitrary boundary selection by the analyst if applied inappropriately could
significantly alter the social network analysis results.  Conversely, if properly
accomplished, this could distill the data requirements to essential elements required to
satisfactorily analyze the question at hand, while concurrently eliminating extraneous
data that could distort the results.

The data collected for a SNA study is generally either actors, relations, events,
affiliations or a combination of the four. The inclusion and exclusion rules determine
which elements of the four data types are incorporated into the social network model.
Various inclusion and exclusion rules can be applied exclusively or in combination to
determine which social data elements, specifically which actors, relations, events or
affiliations, are incorporated into the social network model and subsequent analysis

(Laumann, Marsden, & Prensky, 1983, p. 22).

2.3.1.1 Boundary Specification of Actors.

A network is partially defined by the actors to be represented as nodes. Laumann
et al (1983) identify two types of actor boundary specification inclusion and exclusion

rules, with the potential of generating rules combining the types. Positional rules test
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actors’ attributes for inclusion into the social network. The actor attribute could be
fulfilling a specific position or role within an organization, hence the category name. The
other type, a reputational rule, “utilizes the judgments of knowledgeable informants in
delimiting participant actors (Laumann, Marsden, & Prensky, 1983, p. 23).” Hybrid
inclusion and exclusion rules generated from elements of both types are sometimes found
in practice (Laumann, Marsden, & Prensky, 1983, p. 23).

Applying these rule categories to real world problems generates a wide range of
options to discriminate actors for potential incorporation into the social network model
under investigation. Stemming from the three rule categories defined by Laumann et a/
(1983), an actor’s inclusion and exclusion may be based upon membership with
particular organizations, positional specification, demographic data or other actor
attributes, involvement with specific relation types, event attendance, identification of
inclusion by other actors, or a combination of these factors (Kossinets, 2008, p. 5).
Though not a comprehensive categorization of actor inclusion and exclusion rules, a brief
discussion of several rules follows.

The network of interest could be a formal organization in which actors are
identified as members. If the organization’s internal transactions are of interest, limiting
the network to include only those who are members of the organization may be
appropriate and enhance the accuracy, in terms of representation and interpretation, of
computed social network analysis measures. = Examples may include business
corporations in which there may be a number of relations with suppliers and customers,
but to accurately describe internal processes the social network may need to be limited to

only employees of the organization (Marsden, 1990, p. 439).
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Dependent upon the network of interest, positional specification may be used to
define the actors within the network. Positional specification limits the actors in the
network to those who occupy positions of rank in a formally constituted group. A
military social network example may only include actors who are in command of a unit
(Kossinets, 2008, p. 5).

Attributes of an actor could determine their appropriateness for inclusion into the
network model. These attributes can include demographic data on the individual, such as
gender, age, or rank. Utilizing actor attributes enables a reduction in extraneous nodes
which may alter the analytic results by limiting the network to actors of significant value.
A notional example may include investigating familial relationships and their impact on
an organization. It may be prudent to remove children under a set age to minimize the
impact of the relations on the social network analysis measures. A possible real world
network where this is applicable may be beneficial is familial based organized crime,
such as the mafia, or certain terrorist or insurgent organizations based primarily on
familial connections.

Dependent upon the analytic goals of the social network study, the actors may be
limited to those who only possess specific types of relations (Marsden, 1990, p. 439). If
particular relation types are of specific interest, perhaps due to their impact upon the
network, only actors who possess those types of relations may be included within the
network. An epidemiological example could involve the tracking of a disease. Only
actors with sexual relations may be pertinent in determining the social network in the

case of a sexually transmitted disease.
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In some real world networks there is not a clear delineation of actors belonging to
specific organizations or groups. In these cases, it is possible that actor inclusion in the
network is defined by those actors within the network. As this is based upon the
individual perspectives of actors within the network, it is subject to biases. Kossinets
(2008, p. 5) notes that, “Actors may disagree in their perception of social structure; they
may be attributing different weights to certain other actors, relationship or types of
relationships.” Others’ perceptions of an actor’s activities determine whether the actor is
considered as part of the network. A paradox can exist in which an actor believes he is
part of a network, while the other actors do not include him as part of the network.
Examples include collective movements on issues without political party affiliation or
several party affiliations represented. Each individual within the network may construe a
differing threshold of activity for inclusion with the network. Some may view voting in a
specific manner, or donating funds and resources as justification for inclusion, while
others may set the threshold higher as in actively protesting, and so forth. A real world
example of this phenomenon is the environmental movement. There is no definition for
someone being green, which could be interpreted as someone recycling to being a
member of Greenpeace. Each potential member of the network can define the network

inclusion criteria differently.

2.3.1.2 Boundary Specification of Relations.

Relational rules only allow actors possessing specific, defined relationship types
into the social network model (Laumann, Marsden, & Prensky, 1983, p. 23). Relations

for a given social network are chosen to encompass and represent specific types of actor
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interaction. The exclusion of extraneous relationship types focuses the social network to
represent a phenomenon of interest of the actors’ interactions. The inclusion of
relationships types that have no bearing on the analytical question at hand may negatively
affect the accuracy of the resultant SNA measures. Likewise, ignoring relationships
among actors of certain types that significantly describe and impact actors’ behavior may
negatively affect the accuracy of the SNA measures as well. Incorrectly bounding the
relationships that are included in a social network generates extraneous links or, in effect,

removes links that are present in the “true network™ under investigation.

2.3.1.3 Boundary Specification of Events and Affiliations.

Actors and their associated relationships derived from participation in specific
events or defined affiliations can provide a basis for inclusion and exclusion rules. An
event or activity is specified by the analyst as being relevant to the social network. Only
actors and the inter-relationships derived from participating in the event or activity are
included in the social network model (Laumann, Marsden, & Prensky, 1983, p. 24).

A similar boundary specification can be extended to affiliations. In some
instances, affiliation data between actors is generated by event attendance, but can also be
derived through membership to multiple organizations and groups. All actors who attend
a particular set of events are included as part of the network (Marsden, 1990, p. 439).
Kossinets (2008, p. 5) warns that event attendance “is particular error-prone and is best
described as convenience sampling.” His reasoning is based upon the self selection of
event attendance by the actors. Self selection could result from actors who attend a

meeting, though numerous circumstances could affect those who did not attend and thus

I1-30



preclude them as members of the network. Examples such as subordinates directed to
meetings in place of their superiors, virtual participation via telecommuting, meeting
conflicts inadvertently altering the membership, can substantially impact which actors are

included in the social network model.

2.3.2 Data Collection Effects on Imperfect Data.

The technique used to acquire social network data may introduce sources of error
and biases. The type of social network of interest may contribute or even compound
these errors or biases. For example, data collection on bright networks is commonly
accomplished through surveys and data freely provided by actors within the network. In
contrast, with dark networks, the actors within the network may purposely inhibit data
collection or encourage the collection of spurious data through a variety of methods and

mecans.

2.3.2.1 Disambiguation of Actor Aliases.

One issue inhibiting the collection of accurate social network data on dark
networks is disambiguation of actor aliases. Some actors within a dark network operate
by using a series of aliases, which could take the form of alternate names, noms de
guerre, redundant email accounts, multiple IP addresses, or several cell phones. Actors
use their various identities when interacting with other actors to conceal the scope of their
activities and provide a level of protection if a portion of the network is compromised.
This effect can also be present in social network data not by actors’ design or intentions,

but as a failure to disambiguate actor information properly. Causes include trivial
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mistakes such as typological errors, misspellings, poor transliteration, failure to reconcile
nicknames, and so forth.

This phenomenon presents a challenge in the collection of social network data.
Aliases generate false actors in the network analysis while masking the full spectrum of
relationships of a single individual. With most SNA nodal measures, the removal of
relationships to an actor diminishes the actor’s computed importance. An actor spreading
their relationships over several aliases can significantly diminish their appeared
importance within the network. The challenge in SNA data collection when confronted
with this issue is successful disambiguation and correct aggregation of aliased actors and

their collective relationships into a proper single actor.

2.3.2.2 Respondent Inaccuracies.

As social network data can be reported by actors within or outside of the network,
there is an inherent human error mechanism in accurately reporting network information.
Research has shown that “people are incapable of reporting accurately on transactions
that take place within highly specific time frames (Marsden, 1990, p. 447).” Respondents
are biased towards reporting the routine, typical network structure. This is exemplified
by event attendance, where actors have a tendency to attribute an actor’s attendance to a
specific event occurrence based upon the actor’s attendance in general (Marsden, 1990, p.
447).

Several studies (Killworth & Bernard, 1976, 1979; Bernard & Killworth, 1977;
Bernard, Killworth, & Sailer, 1979/1980, 1982; Romney & Faust, 1982; Bernard,

Killworth, Kronenfeld, & Sailer, 1984; Romney & Weller, 1984) have investigated the
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accuracy of informants providing information on social networks. Generally, the studies
involve voluntary participants reporting their own social contacts within given time
periods. The results from these investigations paint a foreboding picture in terms of the
amount of potential error stemming from respondent inaccuracies for any given social
network study.

The initial investigation into this phenomenon tersely summarized informants as
“extremely inaccurate (Killworth & Bernard, 1976, p. 269)” and “people simply do not
know, with any degree of accuracy, with whom they communicate (p. 283).” In this
particular study, respondents were reporting those with whom they communicated and
the relative rankings of their direct communication partners. This is the most simplistic
case in terms of social network data collection, as an individual is only reporting their
own direct communication. However, the results showed that individuals display
relatively poor performance in accurately reporting their own communication patterns.
Individuals did not even characterize more than one-third of their most frequent contacts
(Killworth & Bernard, 1976, p. 280). In their initial study, Killworth and Bernard (1976,
p. 281) stated “people only seem capable of ranking their most frequent communicator
with any accuracy—and then only half the time!” Responding to critiques about their
methodology, additional studies were conducted utilizing more expansive data sets and
improved data collection means designed to improve the rigor. These refined studies
(Bernard & Killworth, 1977) further solidified their initial assertions; “at best, people can
recall or predict (on average) less than half their communication (either amount or

frequency (p. 10).” Individuals’ inability to accurately report their own communication
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patterns casts aspersion upon an informant’s ability to correctly disclose the inner
workings of a real world social network, particularly dark networks.

The only bright spots in terms of informant accuracy identified in Bernard’s,
Killworth’s, and Sailer’s extensive work are the general trend of “errors of omission are
more severe than those of commission (Bernard, Killworth, & Sailer, 1982, p. 53)” and
“although individual people did know with whom they communicated, people en masse
seemed to know certain broad facts about the communication pattern (Bernard,
Killworth, & Sailer, 1982, p. 62).” The first quote indicates that social network data sets,
in this case they were examining cooperative bright or open society networks, suffer
more from missing data as opposed to spurious data. The second observation provides
optimism that although actors may not identify their local structure accurately, they may
possess insights into the global structure of the social network. As several social network
measures are intended to quantify social interactions based upon prestige, influence,
social status, and communication activity, informants’ characterizations of relationships
existing within the en