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Abstract 

This thesis presents the development and evaluation of a distributed agent based 

system using reputation based trust and game theoretic techniques to improve the defense 

of the future smart grid enabled power grid from cyber-attack and equipment 

malfunctions.  Future smart grid capabilities promise to leverage modern network 

technologies to revolutionize the production, transmission, distribution and consumption 

of electrical power.  However, the internet like communication technologies also increase 

the power grid’s vulnerability to cyber-attack.  This thesis uses computer simulation 

linking dynamic power systems with realistic communication networks to demonstrate 

the benefits of a Distributed Decision Making Communication Enable Special Protection 

System (SPS) using reputation based trust and game theory to protect the power grid 

from malicious and non-malicious malfunctions.  The simulations show that a distributed 

approach to SPS load shedding successfully maintains power grid stability after a 

significant electrical disturbance while using reputation based trust to defend the load 

shedding action from cyber-attack and equipment malfunction.  Additional simulations 

demonstrate the successful application of game theory to strategically defend the SPS 

load shedding process when available resources prevent the monitoring and defense of 

every part of the power grid.  The added capability demonstrated increases the resiliency 

of the power grid by preventing uncontrolled blackouts through detection and mitigation 

of network based attacks, therefore improving the system’s reliability.   

 



 

vi 

AFIT/GCO/ENG/12-10 

Dedication 

 

 

 

 

For my wife and children who continue to sacrifice so that I can continue to serve. 

 



 

vii 

Acknowledgments 

 

I would like to express my sincere appreciation to my research advisor, Dr. 

Kenneth M. Hopkinson and my committee members, Dr. Meir Pachter and Dr. Timothy 

H. Lacey, for their guidance, feedback and support throughout the course of this thesis 

effort.  I would also like to thank the Air Force Office of Scientific Research for 

sponsorship and support of this research effort.  

Additionally, I am thankful for the many professors and fellow students who gave 

their time and effort to develop the knowledge and experience required for this type of 

research.  Special recognition and thanks goes to Major Jose Fadul and Mr. Patrick 

Copeland for establishing the foundation required to go forward in this area of research.  

Finally, special thanks go to Lt Col Brett Borghetti, Lt Col Jeffrey Humphries, Major 

Hemmes, Major Ryan Thomas, Major Jonathan Butts, Dr. Rusty Baldwin, Dr. Barry 

Mullins, Mr. Charles Powers, Mr. Bruce Carter and Ms. Janice Jones.   

 

 

       Keith J. Ross 

 

 

 

 

 



 

viii 

Table of Contents 

Page 

Abstract ................................................................................................................................v 

Dedication .......................................................................................................................... vi 

Acknowledgments............................................................................................................. vii 

Table of Contents ............................................................................................................. viii 

List of Figures .................................................................................................................... xi 

List of Tables ................................................................................................................... xiv 

Introduction ..........................................................................................................................1 

1.1 Background .........................................................................................................1 

1.2 Motivation for Research ......................................................................................2 

1.3 Research Focus ....................................................................................................3 

1.4 Organization ........................................................................................................4 

II. Literature Review .........................................................................................................6 

2.1 Cyber Threats ......................................................................................................6 

2.2 SCADA System Overview ..................................................................................9 

2.2.1 SCADA vs. Traditional IT ........................................................................11 

2.3 Smart Grid Concepts .........................................................................................14 

2.3.1 Special Protection Systems .......................................................................16 

2.4 Concepts of Trust Systems ................................................................................21 

2.4.1 Trust in Computer Systems and Networks ...............................................22 

2.4.2 Trust Models .............................................................................................24 

2.4.3 Trust Applied to an SPS............................................................................25 

2.5 Game Theory Fundamentals .............................................................................26 

2.5.1 Game Theory Foundation .........................................................................26 

2.6 Previous Research .............................................................................................31 

2.7 Summary ...........................................................................................................32 

III. Methodology Stage One-Three ..................................................................................34 

3.1 Chapter Overview .............................................................................................34 

3.2 Problem Definition ............................................................................................35 

3.2.1 Goals and Hypothesis ...............................................................................35 



 

ix 

 

Page 

 

3.2.2 Approach ...................................................................................................39 

3.3 Testing Environment .........................................................................................41 

3.4 Special Protection System Test Details .............................................................43 

3.4.1 Power Transmission Configuration ..........................................................43 

3.4.2 Communication Network Configuration ..................................................45 

3.4.3 SPS, Generator and Load Agent Configuration........................................47 

3.4.4 SPS Schemes.............................................................................................48 

3.4.5 Adversarial Scheme ..................................................................................51 

3.5 Performance Metrics .........................................................................................52 

3.6 Experimental Design .........................................................................................53 

3.6.1 Stage One Design......................................................................................54 

3.6.2 Stage Two Design .....................................................................................57 

3.6.3 Stage Three Design ...................................................................................59 

3.7 Methodology Summary .....................................................................................62 

IV. Methodology Stage Four ............................................................................................63 

4.1 Chapter Overview .............................................................................................63 

4.2 Problem Definition ............................................................................................64 

4.2.1 Goals and Hypothesis ...............................................................................64 

4.2.2 Approach ...................................................................................................67 

4.3 Testing Environment .........................................................................................69 

4.4 Special Protection Test Details .........................................................................71 

4.4.1 Power Transmission Configuration ..........................................................71 

4.4.2 Communication Network Configuration ..................................................74 

4.4.3 SPS, Generator and Load Agent Configuration........................................76 

4.4.4 SPS Schemes.............................................................................................77 

4.4.5 Adversarial Scheme ..................................................................................80 

4.5 Performance Metrics .........................................................................................83 

4.6 Experimental Design .........................................................................................84 

4.7 Methodology Summary .....................................................................................89 

V. Analysis and Results for Stages One-Three ...............................................................91 

5.1 Chapter Overview .............................................................................................91 

5.2 Stage One:  Distributed SPS with Simple Trust Management ..........................91 

5.2.1 Results and Analysis .................................................................................93 

5.2.2 Investigative Questions Answered............................................................95 

5.3 Stage Two:  Distribute SPS with Background Traffic and Communication Loss 

Mechanism .................................................................................................................95 

5.3.1 Results and Analysis .................................................................................96 



 

x 

Page 

 

5.3.2 Investigative Questions Answered............................................................97 

5.4 Stage Three:  Distributed SPS with Background Traffic, Communication Loss 

and Revised Trust Management Mechanism .............................................................98 

5.4.1 Results and Analysis .................................................................................98 

5.4.2 Investigative Questions Answered..........................................................103 

5.5 Summary of Stages One-Three .......................................................................104 

VI. Analysis and Results for Stage Four ........................................................................105 

6.1 Chapter Overview ...........................................................................................105 

6.2 Results and Analysis .......................................................................................105 

6.3 Investigative Question Answered....................................................................115 

6.4 Summary of Stage Four...................................................................................116 

VII. Conclusions and Recommendations .........................................................................117 

7.1 Chapter Overview ...........................................................................................117 

7.2 Conclusions of Research .................................................................................117 

7.3 Significance of Research .................................................................................117 

7.4 Recommendations for Action..........................................................................118 

7.5 Recommendations for Future Research ..........................................................118 

7.6 Summary .........................................................................................................120 

Appendix A. SPS Game Theory Formulation .................................................................121 

Bibliography ....................................................................................................................127 

 



 

xi 

List of Figures 

Page 

Figure 1.  Steam Turbine Partial or Full Load Operating Limitations During Abnormal 

Frequency, Representing Composite Worst-Case Limitations of Five Manufacturers 

[40] ............................................................................................................................. 20 

 

Figure 2.  Graphical Representation of EPOCHS Simulation Environments [59] ........... 42 

Figure 3.  Logical Layout of the Power Grid [51] ............................................................ 44 

Figure 4.  Logical Layout of the Communications Network ............................................ 48 

Figure 5.  Pilot Simulation Histogram for Stage One (15 Untrusted Agents) .................. 55 

Figure 6.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage One (15 

Untrusted Agents) ...................................................................................................... 56 

 

Figure 7.  Pilot Simulation Histogram for Stage Two (15% Communication Loss) ........ 58 

Figure 8.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage Two (15% 

Communication Loss) ................................................................................................ 58 

 

Figure 9.  Pilot Simulation Histogram for Stage Three (15% Communication Loss and 0 

Untrusted Agents) ...................................................................................................... 60 

 

Figure 10.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage Three (15% 

Communication Loss and 0 Untrusted Agents) ......................................................... 61 

 

Figure 11.  Graphical Representation of EPOCHS Simulation Environments [59] ......... 70 

Figure 12.  Logical Layout of the Power Grid [51] .......................................................... 73 

Figure 13.  Logical Layout of the Communications Network .......................................... 77 

Figure 14.  Pilot Simulation Histogram for Stage Four (15% Communication Loss and 0 

Untrusted Agents) ...................................................................................................... 86 

 

Figure 15.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage Four (15% 

Communication Loss and 0 Untrusted Agents) ......................................................... 87 

 

Figure 16.  Revised Pilot Simulation Histogram for Stage Four (15% Communication 

Loss and 0 Untrusted Agents) .................................................................................... 88 



 

xii 

Page 

 

Figure 17.  Revised Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage 

Four (15% Communication Loss and 0 Untrusted Agents) ....................................... 88 

 

Figure 18.  Stage One Results ........................................................................................... 94 

Figure 19.  Previous Research Results [52] ...................................................................... 94 

Figure 20.  Stage Two Results (Communication Disruption)........................................... 97 

Figure 21.  Stage Three Results (Bad Nodes and Communication Losses) ..................... 99 

Figure 22.  Individual Initial Instantaneous Trust Values............................................... 100 

Figure 23.  Average Initial Instantaneous Trust Values ................................................. 101 

Figure 24.  Individual Intermediate Instantaneous Trust Values .................................... 101 

Figure 25.  Average Intermediate Instantaneous Trust Values ....................................... 102 

Figure 26.  Individual Final Trust Values ....................................................................... 102 

Figure 27.  Average Final Trust Values .......................................................................... 103 

Figure 28.  Stage Four Initial Pilot Study to Reinforce the Analytical Determination of 

the Minimum Number of Agents Required to Defend the SPS Load Shedding 

Process ...................................................................................................................... 106 

 

Figure 29.  Stage Four Revised Pilot Study to Reinforce the Analytical Determination of 

the Minimum Number of Agents Required to Defend the SPS Load Shedding 

Process ...................................................................................................................... 107 

 

Figure 30.  Primary Results for Stage Four of the Research .......................................... 108 

Figure 31.  Stage Four Bad Defensive Strategy vs. Optimal Adversarial Strategy Results

 .................................................................................................................................. 111 

 

Figure 32.  Stage Four Bad Adversarial Strategy vs. Optimal Defensive Strategy ........ 111 

Figure 33.  Stage Four Optimal Adversarial Strategy vs. Random Defensive Strategy . 112 

Figure 34.  Stage Four Optimal Adversary vs. Random Defensive Strategy ................. 112 



 

xiii 

Page 

Figure 35.  Stage Four Random Adversarial Strategy vs. Random Defensive Strategy 113 

Figure 36.  Stage Four’s Optimal Adversarial Strategy vs. Stage Three’s Defensive 

Strategy .................................................................................................................... 114 

 

Figure 37.  Stage Four Test to Determine Effects of Additional Resource Constraints on 

the SPS strategy vs. a Random Adversary ............................................................... 115 



 

xiv 

List of Tables 

Page 

Table 1.  US Homeland Security, HSPD-7 Defined Critical Infrastructures [6] [7] .......... 2 

Table 2.  Comparison of IT and SCADA Design Considerations [4] .............................. 13 

Table 3.  Example of Typical SCADA and Power Transmission System Communication 

Requirements [28] ...................................................................................................... 13 

 

Table 4.  Percentages of Most Common SPS Types [36] ................................................. 17 

Table 5.  Background Traffic Rates [66] .......................................................................... 47 

Table 6.  System Loads in MW Highlighting Adversaries Critical Values ...................... 52 

Table 7.  Background Traffic Rates [66] .......................................................................... 76 

Table 8.  System Loads in MW Highlighting Adversaries Critical Values ...................... 83 

 

 



 

1 

APPLICATION OF GAME THEORY TO IMPROVE THE DEFENSE OF THE 

SMART GRID 

 

Introduction 

1.1 Background 

Imagine the United States without reliable power, clean water, natural gas, 

automobiles, electronics or any of the manufactured goods most Americans take for 

granted.  These and many other aspects of the American society are made possible and 

affordable by the development and use of Supervisory Control and Data Acquisition 

(SCADA) Systems.  SCADA systems vary from small systems encompassing a simple 

manufacturing process to utility systems spanning a continent.  SCADA systems have 

improved the reliability and cost of nearly every product or utility people rely on today. 

[1] [2] [3] [4] 

The migration of SCADA systems to the internet or internet-like networks, 

systems and processes realized additional increases in efficiency and cost savings.  

However, the further increases in efficiency and cost savings also result in a rise in the 

number of threats and vulnerabilities to the systems Americans take for granted. [2] [4] 

[5] Realizing the increased threats and vulnerabilities, President Clinton issued the 

Presidential Policy Directive 63 identifying the need to protect our nation’s critical 

infrastructures. [6] The Department of Homeland Security further defined critical 

infrastructures with the Homeland Security Policy Directive 7, setting up a framework for 
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better identifying vulnerabilities, threats and solutions for securing the nation’s 

infrastructures. [7] Table 1 identifies the 17 areas identified as critical infrastructures.   

Table 1.  US Homeland Security, HSPD-7 Defined Critical Infrastructures [6] [7] 

Critical Infrastructure / Key Resources Sectors Federal Sector-Specific Agency Lead (SSA) 

Agriculture and Food Department of Agriculture and Department of Health and Human Services 

Banking and Finance Department of the Treasury 

Chemical Department of Homeland Security 

Commercial Facilities Department of Homeland Security 

Commercial Nuclear Reactors, Materials and Waste Department of Homeland Security 

Dams Department of Homeland Security 

Defense Industrial Base Department of Defense 

Drinking Water and Water Treatment Systems Environmental Protection Agency 

Emergency Services Department of Homeland Security 

Energy Department of Energy 

Government Facilities Department of Homeland Security 

Information Technology Department of Homeland Security 

National Monuments and Icons Department of the Interior 

Postal and Shipping Department of Homeland Security 

Public Health and Healthcare Department of Health and Human Services 

Telecommunications Department of Homeland Security 

Transportation Systems Department of Homeland Security 

 

1.2 Motivation for Research 

Recent events highlight the vulnerabilities of the SCADA systems and critical 

infrastructures that rely on the SCADA systems.  Media reports revealed examples of 

currently operating SCADA system using hardcoded passwords that circulated on-line for 

years. [8] In one of the first documented attacks on a SCADA system, the Stuxnet attack 

on the systems controlling aspects of Iran’s nuclear development reveal significant 

vulnerabilities. [9] Although the full effects of the Stuxnet attack have not been revealed, 

many believe the attacks set Iran’s nuclear program back by years. [10]  

As one of the identified critical infrastructures, the power grid’s development into 

the smart grid provides an opportunity to revolutionize the production, transmission, 

distribution and consumption of power.  This evolution involves significant expansion of 
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the SCADA systems currently used to control the power grid.  Even as smart grid 

technologies promise to increase the capabilities of the power grid, the network centric 

development of the smart grid increases the vulnerability of the power grid to attack.  

Reports of smart grid technologies failing to employ prudent security practices raises 

additional concerns. [11] News of increasing cyber-attacks on the developing smart grid 

along with successful demonstrations of cyber-attacks against power generators provides 

significant incentive to increase the security and protection of the developing smart grid. 

[12] [13] The threats and the examples of successful attacks on the smart grid motivate 

this research. 

1.3 Research Focus 

This research focuses on increasing the security and the protection of the evolving 

smart grid.  Specifically, this research continues the investigation of a communication 

enabled agent based approach for a Special Protection Systems (SPS).  A traditional SPS 

is a system that seeks to prevent undesirable power outages produced by power 

disturbances.  The research begins by investigating a communication enabled agent based 

SPS using reputation based trust with a decentralizing SPS decision making process 

rather than a centralized strategy decision process while dealing with possible cyber-

attacks against the SPS agents.  Next, the research investigates a process for overcoming 

communication losses potentially created by malfunctions or cyber-attacks along with 

attacks on the SPS agents.  Finally, this research continues by investigating the 

application of game theory to strengthen the SPS security and protection strategy when 

the SPS and the cyber-attacker are faced with limited resources. 
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The inspiration to apply game theory to the defense of the smart grid SPS comes 

from recent examples of game theory applications to improve the performance and 

reliability of Cognitive Radios and network defense.  In the development of Cognitive 

Radios, game theory allows radios operating as part of a network to maximize the 

performance characteristics of the network through strategic power and frequency 

spectrum selections. [14] In the development of network defense, game theory principles 

help determine the optimal sampling locations, sampling rates and routing to maximize 

the minimum probability of detecting malicious traffic given an attacker attempting to 

minimize the maximum probability of detection. [15] 

1.4 Organization 

The remaining chapters of this thesis present the development and testing of a 

communication enabled SPS utilizing game theory and reputation based trust to 

determine a distributed strategy that mitigates the effects of a significant disturbance in a 

power grid while operating through a malfunction or cyber-attack.  Chapter II reviews the 

basic concepts and current research in the areas of cyber threats and SCADA system 

development.  The chapter then focuses on the foundation and development of the future 

smart grid and reviews the importance of developing reliable SPSs.  Finally, Chapter II 

introduces trust and game theory fundamentals used to develop an agent based 

communication enabled distributed decision making SPS that operates reliably when 

experiencing malfunctions or cyber-attack. 

Chapter III and Chapter IV describe the methodology used to test the agent based 

SPSs.  Chapter III focuses on the methodology for assessing new approaches for 
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developing an agent based distributed decision making process using reputation based 

trust while operating with background traffic, communication disruptions and disrupted 

agents.  Chapter IV focuses on the methodology for assessing the application of game 

theory principles to an agent based distributed decision process using reputation based 

trust while operating with uncertainty in the reputation based trust mechanism, 

background traffic, communication disruptions and disrupted agents.   

Chapters V and VI present and analyze the experimental results as each of the 

SPSs operate in simulation.  The goal is to determine the success or failure of each of the 

revised SPSs to properly react to system disturbances while experiencing malfunctions or 

cyber-attack.  Finally, Chapter VII summarizes this research, the contributions of the 

research to the development of future smart grid SPSs and suggests future research 

opportunities to improve SPSs. 
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II. Literature Review 

 The purpose of this chapter is to provide a brief overview of cyber threats, 

Supervisory Control and Data Acquisition (SCADA) systems, smart grid concepts, trust 

management principles, game theory fundamentals and previous centralized decision 

making communication enabled based Special Protection System (SPS) research.  This 

chapter reviews basic cyber threats and areas of concern.  This chapter introduces basic 

SCADA terminology and discusses some of the vulnerabilities and limitations when 

integrating SCADA systems into traditional Information Technology (IT) networks.  

Next, the chapter provides an overview of smart grid concepts and briefly describes new 

capabilities and vulnerabilities created by the transition of the nation’s power grid to 

smart grid systems.  The chapter then introduces trust management concepts.  Next, the 

chapter briefly describes several game theory principles and illustrates possible 

applications of game theory principles to protect smart grid systems from malfunctions or 

malicious actions.  The chapter concludes by describing previous research that provides 

the foundation for building a distributed decision making communication enabled SPS 

and for applying game theory to improve the defense of the smart grid.  

2.1 Cyber Threats 

 The first step in understanding cyber related threats is to developing a common 

definition for cyber.  Dictionary.com defines  cyber as: 

A combining form meaning “computer,” “computer network,” or virtual reality,” 

used in the formation of compound words (cybertalk, cyberart, cyberspace) and 

by extension meaning “very modern” [16] 
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To increase the precision of cyber, cyber in this research refers more specifically to 

cyberspace.  The National Military Strategy for Cyberspace Operations defines 

cyberspace as: 

A domain characterized by the use of electronics and electromagnetic spectrum to 

store, modify, and exchange data via networked system and associated physical 

infrastructures. [17] 

 

From these two definitions, the use of the word cyberspace covers a very broad range of 

systems and technologies.  The rest of this research will concentrate on a narrower 

portion of cyberspace concerned with networks and some of the systems that rely on 

networks to operate. 

A cursory review of cyber related news reveals several threats facing system 

operating in cyberspace.  Recent history is full of examples of attacks against networks 

and networked computer systems. Very little time passes before another example of a 

successful attack appear in the news.  In just one week, recent protests over proposed 

anti-piracy legislation in the United States resulted in several denial of service attacks 

against the websites and networks of organizations supporting the proposed legislation.  

In addition, continuing conflict between Israel and its adversaries reveals the penetration 

of networks and the release of sensitive private data. [18] [19] Less common, but 

potentially more, serious are reports of attacks against SCADA systems.  Recent reports 

of attacks against Iranian systems used to develop nuclear technologies and to enrich 

uranium reveal that even isolated SCADA systems are vulnerable to attack and 

disruption. [9]  A survey of threats reveals constant attack against the world’s critical 

infrastructure. [12]   
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 Although the reports of constant attacks against networks and critical 

infrastructure create significant concerns in regards to operating in cyberspace, the 

benefits of operating in cyberspace has revolutionized the world.  Whether thinking about 

the internet, cell phone systems, medical diagnostic equipment or the increased 

efficiencies gained through the use of SCADA systems society takes the benefits of 

cyberspace for granted.  Fortunately, the benefits of operating in cyberspace also drive 

significant efforts to secure cyberspace and to prevent the disruption of networks and 

system operating in cyberspace. [20]  

The efforts to secure cyberspace and to mitigate known vulnerabilities motivates 

the implementation of new technologies that prevent, detect, mitigate, and repair the 

damage from attacks in cyberspace.  Even as malicious actors move to infiltrate and 

disrupt systems in cyberspace, several factors work to prevent attacks and to mitigate 

effects. [21] The factors that prevent unconstrained attacks in cyberspace include the 

belief that the actors with the resources to perform highly destructive attacks are rational.  

As rational actors, the cost versus benefit analysis of unconstrained cyber-attacks prevent 

rational actors from performing unconstrained attacks except when committing an act of 

war.  Non-rational actors may not consider the cost versus benefit, but the non-rational 

actors are believed to lack the resources and discipline to coordinate and execute the most 

damaging levels of attack. [20] 

Just as many analysts believe the most damaging cyber-attacks are constrained by 

rationality or lack of resources, cyber-defense also prevents and mitigates cyber-attacks.  

Careful risk analysis identifies specific threats and vulnerabilities and cyber-defense 
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actions match mechanisms or policies required to mitigate vulnerabilities.  By applying 

cyber-defense actions and practices, the adversary must expend greater resources and 

increase risk detection in order to penetrate or disrupt networks and computer systems. 

[20] [21] [22] 

This research evaluates a system attempting to mitigate the effects of a cyber-

attack while responding to a relatively rare power disturbance.  The research relies on the 

assumption of appropriate cyber-defenses as well as the assumption of a rational actor not 

elevating the cyber-attack to resemble an act of war, or a non-rational actor with resource 

constraints.  Given these assumptions, introducing limitations to the adversary’s 

capabilities supports the development of distributed decision making communication 

enabled SPS that utilizes trust mechanisms and enables the application of game theory 

principles to successfully operate in a hostile, compromised network environment.  

2.2 SCADA System Overview 

 At the most basic level, SCADA systems are simply process control systems and 

SCADA is often used generically to refer to a wide range of process systems. [23]  

SCADA systems control a variety of commercial and industrial processes ranging from 

processes contained in a single facility to distributed interconnected systems spanning a 

large geographic area. [1] When focusing in a more detailed manner, SCADA systems 

share several design attributes, or basic building blocks.  First, almost every SCADA 

system has a Human Machine Interface (HMI).  From this HMI, a human controller can 

view many aspects of the system’s parameters and influence the operation of the system 

through the Master Control Unit (MCU).  The MCU is the focal point for SCADA 
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system.  The MCU collects the data from end points in the system, and uses system logic 

to issue commands to control the process being monitored.  Distributed throughout the 

system, Remote Terminal Units (RTUs) represent the end points of the system.  A variety 

of capabilities exist in RTUs.  The most basic RTUs acquire and forward sensor data to 

the MCU and receive commands from the MCU to control devices with little to no local 

logic or autonomous decision making.  More advanced RTUs or Intelligent Electronic 

Devices (IEDs) include additional logic and processing capability.  The more advanced 

IEDs perform monitoring tasks and local process control autonomously while reporting 

telemetry to the MCU and executing commands from the MCU [24] [4] [25].  In addition 

to the basic building blocks, SCADA systems often have other subsystems that include 

history servers, field control units, remote operator workstations and several other types 

of system and process management or middleware devices. [4] [25] 

 Understanding the development of SCADA systems helps illustrate many of the 

strengths and limitations found in traditional SCADA systems.  Additionally, this 

understanding helps demonstrate challenges to merging SCADA system into modern IT 

communication systems.  Some of the earliest examples of a system resembling a modern 

SCADA system developed as part of the power industry in the 1930s.  In these earliest 

systems, the system controlled end devices, such as switches and breakers, used analog 

signals over voice circuits.  Industries developed the first digital SCADA systems in the 

1960s.  The realities in the state of technology during the 1960s influenced many of the 

design decisions that continue to influence SCADA systems today.  As utilities 

developed SCADA systems, the utilities focused on reliability as a primary design 
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consideration.  This design consideration resulted in expensive, highly reliable 

components with long life spans. [4] This long life span resulted in SCADA system 

components reliably operating 15-25 years. [4] [26]   

Additionally, the initial development of SCADA system in the 1960s occurred 

when very few of the current IT systems existed.  The resulting design of early SCADA 

systems relied on independent, self-contained, special purpose communications systems.  

In this environment, developers assumed deterministic communications mediums rather 

than the “best effort” models provided in most modern IT systems. [4] [3] Early 

designers focused almost exclusively on physical security, with little concept of network 

security. [23]  As IT systems developed, IT systems offered reduced cost and increased 

capabilities over the expensive dedicated communication networks found in early 

SCADA systems.  SCADA designs began to take advantage of the new IT technologies 

without adequate collaboration between IT and SCADA system designers and 

implementers. [4] 

2.2.1 SCADA vs. Traditional IT 

 The lack of adequate collaboration between SCADA system designers and 

implementers resulted in an increase in risks and vulnerabilities for the processes 

supervised by the SCADA systems.  The design consideration did not adequately 

consider communication performance requirements, network security risks and 

vulnerabilities of each technology, nor the many implications of the melding of the two 

capabilities. [4] At the center of the problem, IT communication mediums failed to 

provide the assumed level of security or guarantee the required level of performance 
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required for the SCADA systems.  Even SCADA systems relying primarily on dedicated 

communication mediums experience significant increase in vulnerabilities from 

connections of IT systems for business or management functions. [27]. The lack of 

adequate compatibility between IT and SCADA system designs creates a need for 

considerable improvements in the merging of SCADA and IT communication systems.  

Additionally, federal regulations, policies and executive orders create the requirement for 

improvement in SCADA systems involved in controlling critical infrastructure. [25] 

Table 2 compares and contrasts many of the design considerations that complicate the 

melding of traditional SCADA and IT systems together. [4] Table 3 illustrates several 

SCADA and Power Grid communication response time requirements.  The delays 

specified in Table 3 include the time required to observe and make a decision whether to 

take an action, as well as the time to communicate the decision to the appropriate device 

to take the action. [28] 
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Table 2.  Comparison of IT and SCADA Design Considerations [4] 

Attribute IT SCADA 

Confidentiality 

Requirements 

High Low 

Integrity Requirements Low to Moderate Very High 

Availability Requirements Low to Moderate Very High 

Authentication 

Requirements 

Moderate High 

Time Criticality Delay Tolerant Critical 

Patching/Update Frequent Slow or Impossible 

System Life Cycle 3-5 Years 15-125 Years 

Software Changes Frequent, Formal and 

Documented 

Rare, Informal, Not Always Documented 

Interoperability Not Critical Critical, Often With No Security 

Considerations 

Computing Resources “Unlimited” with Upgrades Limited to Older Microprocessors 

Bandwidth Available High Limited 

Security Testing Full Penetration Testing Limited Penetration Testing of Human 

Interface.  No Penetration Test of Field 

Devices 

Operating Systems Cots Cots and Custom Embedded 

Impacts of Security 

Compromise 

Business Impacts Business and Physical Impacts 

Table 3.  Example of Typical SCADA and Power Transmission System Communication 

Requirements [28] 

System Situation Response Time 

Substation IEDs, 
Primary short circuit 
protection and control 

Routine power equipment signal 
measurement 

Every 2-4 ms 

Local-area disturbance [5] <4ms from event detection to sending 
notification [29] 

4-40 ms automatic response time 

Backup protection 
and control; Wide 
area protection and 
control (WaPaC) (i.e. 
SPS) 

Transient voltage instability Often ≤ 180ms to convey 14+ trip signals to 
disconnect generators at the top generating 
station [30] 

Frequency instability, must 
respond faster than generator 
governors to trip generators 
instantaneously 

Could require < 300ms response time (by 
load shedding) for high rates of frequency 
decay; requires detection within 100ms to 
allow operator response in 150 to 300ms 
[30] 

Dynamic instability A few seconds 

Poorly damped or un-damped 
oscillations 

Several seconds 

Voltage instability Up to a few minutes 

Thermal overload Several minutes for severe overloads, rarely 
less than a few seconds for minor 
occurrences [30] 

SCADA Emergency event notification <6 ms 

Routine transactions < 540 ms [31] 

Routine HMI status polling from 
substation field devices 

Every 2 seconds 
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2.3 Smart Grid Concepts 

 The smart grid is the future evolution of traditional SCADA systems controlling 

the national power grid using network enabled SCADA systems and protocols.  While a 

number of smart grid initiatives have begun, the realization of the smart grid remains in 

the future and defining all of the specifics of the smart grid remains elusive.  However, 

one of the foci of smart grid evolution is a move from a centralized, producer controlled 

network to a less centralized and more consumer friendly, interactive network for 

producing, transmitting and distributing power. [32] Some of the goals for the smart grid 

include: consumer participation, accommodation of all power generation and storage 

options, enabling new products, markets and services, providing power quality for a 

range of needs, optimizing asset utilization and operational efficiency, improving 

operational resiliency to disturbances, attacks and disasters, relieving transmission 

bottlenecks, enabling self-healing and increasing system capacity. [32] [33]  

Several factors complicate the evolution of the smart-grid.  First, transmission 

systems were not originally master planned.  The power grid began as a patchwork of 

independent utilities established to meet local requirements. [34] Much of the effort to 

carefully plan and engineer interconnections between power grids primarily facilitates 

power sales, and does not necessarily focus on preventing or improving stability or 

reliability through disturbances. [34] Second, the ratio of publically owned and privately 

owned transmission systems varies from region to region, with 60-80% of transmission 

systems being privately owned. [34] Third, the nation’s regulatory framework provides 

multiple layers of rules with sometimes divergent goals.  The regulations attempt to 
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achieve a balance between reliability, availability and other often incompatible interests. 

[34]  

Although several different visions for the development of the smart grid exist, 

there are many common functions.  The first common function is transmission 

monitoring and reliability.  Improvements to transmission monitoring and reliability 

include systems to provide real-time monitoring of grid conditions, improved automation 

and diagnosis of grid disturbances, and better feedback for the operators who must 

respond to disturbances.  Additionally, automated responses to grid failures are an 

integral part of improving transmission monitoring and reliability.  The automated 

systems isolate disturbed zones and prevent or limit cascading blackouts that can spread 

over a wide area.  Many of the transmission monitoring and reliability initiatives develop 

the idea of “self-healing”. [35] Finally, improvements to transmission monitoring and 

reliability also include the idea of “plug and play” capability.  The “plug and play” 

capability would allow for the connection of new generation plants and sources without 

lengthy, time consuming interconnection studies or physical upgrades to the transmission 

system. [34] 

A second common function of the smart grid focuses on consumer energy 

management.  The development of consumer energy management should include several 

capabilities.  Consumers of power should have the ability to shift energy usage patterns to 

avoid periods of expensive peak demand resulting in lower energy costs.  Additionally, 

utilities should have the ability to reduce a customer’s consumption when systems 

conditions require reduced power usage. [35] Consumer energy management systems 
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should also include the capability to detect transmission line and equipment failures and 

isolate failures to prevent blackouts from spreading.  Early examples of consumer energy 

management successfully demonstrated the reduction of significant portions of peak 

demand through consumer actions rather than increasing power output. [34]  

2.3.1 Special Protection Systems 

 Among the many objectives and goals for the smart grid, this research focuses on 

a system that automates responses to grid failures, isolates disturbed zones and prevents 

or limits cascading blackouts that can spread over a wide area.  This is a Special 

Protection System (SPS).  A traditional Special Protection System monitors key 

generation assets, transmission lines and their associated flows in near real-time. [36] 

[37] When a change of status is detected, a pre-programmed set of actions takes place.  

These actions include opening one or more power lines, High Voltage Direct Current 

power Transfers, (HVDC), wide area load shedding, generator re-dispatch and generator 

rejection. [36] Table 4 lists the most commonly used SPS types with generator rejection, 

load rejection and underfrequency load shedding being the most common.  Future 

versions of these systems may also allow for power transfers beyond normal limits and 

allow transmission lines to operate closer to thermal limits and beyond normal system 

voltage or stability limits. [38]. 
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Table 4.  Percentages of Most Common SPS Types [36] 

Type of SPS Percentage 

Generator Rejection 21.6 

Load Rejection 10.8 

Underfrequency Load Shedding 8.2 

System Separation 6.3 

Turbine Valve Control 6.3 

Load & Generator Rejection 4.5 

Stabilizers 4.5 

HVDC Controls 3.6 

Out-of-Step Relaying 2.7 

Discrete Excitation Control 1.8 

Dynamic Braking 1.8 

Generator Runback 1.8 

VAR Compensation 1.8 

Combination Schemes 11.7 

Others 12.6 

  

 

 

A review of the power industries’ experiences with Special Protection Schemes 

reveals increased deployment and use of SPSs.  The review also reveals significant 

expenses related to the failure of SPSs to perform their functions and the unnecessary 

operation of SPSs.  Additionally, approximately 35% of responding power operators 

reported no reliability models or computational models to validate the SPSs design.  

Finally, the study reveals concerns about the performance of load rejection schemes 

compared to other SPS schemes. [36] 

 One possible approach to implementing many aspects of the smart grid is to 

utilize Distributed Intelligent Agent based systems. [38] In this vision for the smart grid, 

Distributed Intelligent Agents provide decentralized monitoring and control of smart grid 

functions.  A distributed agent based SPS is one of the foci of this research. 
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 Better understanding of the role of SPSs requires a brief introduction to Power 

System Stability Control and the definition of terms.  In Power System Stability and 

Control, Prabha Kundar broadly defines power system stability as  

…that property of a power system that enables it to remain in a state of operating 

equilibrium under normal operating conditions and to regain an acceptable state 

of equilibrium after being subjected to a disturbance. [39]  

 

In normal operations, power systems experience many sizes and types of disturbances.  

Load changes, equipment malfunction, weather, natural disasters, and potentially cyber-

attacks can cause power system disturbances.  The properties of the system and the 

functionality of special protective devices influence a systems ability to maintain or 

regain stability after a disturbance. [39] Normal system stability disruptions include rotor 

angle and voltage stability.  These are generally short-term stability events. [39] 

Typically, regular system regulation and control functions automatically maintain system 

stability during these types of disturbances. 

 In addition to dealing with disturbances within system design specification, severe 

upsets also effect power systems.  The larger upsets produce effects beyond the ability of 

systems to automatically correct and require a higher level approach to maintain or 

regaining stability.  This higher level response can result in “islanding” or isolating parts 

of the power system.  “Stability in this case is a question of whether or not each island 

will reach an acceptable state of operating equilibrium with minimal loss of load” [39] 

These severe disturbances are the types of disturbances that require SPSs.  The severe 

disturbances and the SPS responses are analyzed with mid to long-term simulations.  
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 The simulation analyzed in this research involves a severe system disturbance that 

requires a higher level response, or an SPS response, in order to maintain system 

stability.  Specifically, a transmission line failure creates a power flow disturbance that 

requires the rejection of a group of generators.  The rejection of the generators creates 

two islands in the power grid and results in an imbalance between the generator capacity 

and the load requirements of the power grid.  The imbalance between generator capacity 

and the load produces a dangerous frequency drop.  The SPS must analyze its observation 

of the power grid and determine the appropriate actions required to regain system 

stability.  The SPS action prevents the conditions that could otherwise result in large 

scale cascading blackouts in the power grid. 

 Understanding why the SPS must respond in this scenario requires additional 

background knowledge of power system design.  Turbines used for power production are 

designed to operate at a specific frequency and are damaged when operating at higher or 

lower frequencies.  The increase in stress related damage from a deviation in frequency 

significantly reduces the operational life span of the turbines.  Additionally, periods of 

high stress are cumulative; a few minutes of underfrequency can reduce the turbines’ 

operational life span by years. [39] Periods of underfrequency operation pose a critical 

problem since power output cannot be increased to more than the generator’s design 

capacity. [39] Additionally, limits to how quickly a turbine can increase its output exist.  

Typically, generators can increase output quickly by about 10%.  After the initial increase 

in generator output the generator can only increase output by about 2% per minute, and 

then, only up to the maximum design output. [39] To protect the turbines from damage, 
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underfrequency relays typically trip if a generator falls below 57.5 Hz for more than 10 

seconds or trip instantly if the frequency drops below 56.0 Hz.  In order to prevent a 

generator from tripping off on underfrequency relays or from operating at lower than 

normal frequencies for extended periods, SPSs employ load shedding schemes to reduce 

the loads on the generators.  Figure 1 illustrates the typical operating frequency 

limitations for steam turbines. 

 

 

Figure 1.  Steam Turbine Partial or Full Load Operating Limitations During Abnormal 

Frequency, Representing Composite Worst-Case Limitations of Five Manufacturers [40] 
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Traditional load shedding schemes consist of dropping predetermined amounts of 

load.  A typical load shedding strategy consists of dropping 10% load at 59.2 Hz, 15% 

load at 58.5 Hz, and 20 % load at 58 Hz.  Strategies for shedding larger amounts of load 

consider the rate of frequency drop in addition to the frequency. [41] Typically, load 

shedding relays requires approximately 0.1-0.2 seconds to operate. [42] Often, the 

predetermined SPS load shedding may not result in an optimal solution for the current 

conditions.  As the smart grid continues to develop, communication enabled SPSs make 

more intelligent shedding strategies possible.  This research evaluates a system that 

dynamically selects an optimized load shedding strategy. 

2.4 Concepts of Trust Systems 

 SCADA systems and concepts, like the smart grid, provide the mechanism for 

cost effective process control and opportunities for more efficient operation of industrial 

processes and utility systems.  As discussed previously, SCADA systems evolved 

without network security as a priority.  This lack of network security resulted in the 

creation and exposure of significant vulnerabilities and opened critical processes and 

systems to serious external threats.  As awareness of the seriousness of the threat and the 

degree of the risk increased, cyber professionals and government regulators began 

pushing for increased security in SCADA systems. [4] This push for improved security 

for SCADA systems, specifically those systems controlling the nation’s critical 

infrastructure, resulted in the establishment of regulations and a focus on SCADA 

security related research. [25] [3] Many of the regulations and much of the research 

focused on applying and adapting traditional network security mechanisms and policies 
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for network enabled SCADA systems.  The traditional network security mechanisms 

include firewalls, Intrusion Detection Systems (IDS), encryption techniques, logical 

network provisioning and enforcement of policies and protocols. [3] While the adaptation 

of existing network security mechanisms provides a starting point for securing SCADA 

system, these approaches have limitations.  The existing security mechanisms fail to 

address many of the unique operational requirements or security vulnerabilities present in 

SCADA systems. [4] [3] [43] This failure of traditional security mechanisms drives 

alternative research efforts that include the development of specialized trust systems.   

2.4.1 Trust in Computer Systems and Networks 

The concept of the smart grid utilizing agent based processes introduces the 

possibility of peer-to-peer networks between intelligent agents.  Dr. Stephen Marsh 

worked to formalize concepts of trust to deal with multi-agent systems.  In [44] Dr. 

Stephen Marsh presents several concepts of trust.  The effort to define trust revealed 

common concepts in the formulation of trust.  The central defining concept was that trust 

deals with levels of confidence in the face of uncertainty.  This level of confidence 

describes how strongly an agent believes another agent will perform a desired function.   

In traditional computer and networking systems, trust is often granted by design 

between dependent processes or through simple policy or protocol enforcement 

mechanisms.  Typically, the systems make trust decisions using unchanging criteria 

without consideration of behavioral changes over time or assessment of what is done with 

the trust granted.  Traditional network and computer systems rely on policy or protocol 

trust mechanisms which enforce rules, but not necessarily behaviors.  In networks, 
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messages conforming to the protocol standards are generally trusted.  In computer 

systems, the proper credentials grant access to all the privileges granted to the holder of 

the credentials.  Traditional network and computer systems have no mechanisms for 

assessing or adapting to past performance, to detect changes in the trustworthiness of 

sources and destinations or to determine the trustworthiness of the data being sent. [45] 

[46] 

Compared to traditional network and computer trust mechanisms, trust is a more 

critical aspect of nearly every interaction in distributed systems.  Distributed agent based 

systems typically make decisions based on the inputs received from other independent 

agents, rather than dependent processes.  This high reliance on the inputs from other 

independent agents makes trust in distributed systems a more fundamental aspect of 

system design. [47]  

In [47], the authors define trust in multi-agent systems as, “Trust is a belief an 

agent has that the other party will do what it says it will…”  The authors continue by 

breaking multi-agent trust into two complimentary levels: individual level trust and 

system level trust.  System level trust is the trust gained by the enforcement of rules (i.e 

protocols and mechanisms).  The individual level of trust is based on the beliefs held 

about the other individual agents in the system based on direct and indirect observations 

of the other agent’s actions.  A goal of individual trust and system level trust is to balance 

efficiency with the need for manageable levels of uncertainty.  This research focuses on 

the individual level of trust rather than trust based on enforcement of policy or protocol. 
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Systems generally establish trust through a variety of mechanisms including 

policy, location, bio-metrics, reputation or a combination of these factors. [48] Each 

factor can provide information required to establish trust at both the system and 

individual levels.  Often trust systems evaluate the factors subjectively with the 

expectation of changing levels of trust.  The subjective nature of the evaluations result in 

the assumption that past actions do not necessarily represent future performance; other 

factors may also contribute to establishing trust.  The amount of historic data required 

varies for different systems and applications. [45]  

2.4.2 Trust Models 

At the individual trust level, several basic trust models exist.  The basic trust 

models include learning and evolution based models, reputation based models and socio-

cognitive based models.  Learning and evolutionary models assume multiple interactions 

between agents.  The learning models also assume that some benefit arises for an agent 

defecting, or not performing as expected, but the defecting agent experiences a loss in 

possible future benefit from the defection.  The loss of possible future benefit defines the 

concept of regret in a learning trust model. [47]  

Reputation trust models focuses on beliefs about an agent created by both direct 

and indirect observations.  Reputation based trust systems often aggregate the direct and 

indirect observations.  Reputation models evaluate an agent’s past behavior to predict 

likely future behavior in order to establish trust. [45] [47] [49] Socio-cognitive models of 

trust produce determination of trust based on more subjective assessments of other 
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agents.  The assessment includes belief about another agent’s competence, willingness, 

persistence and motivation. [47] [45]  

2.4.3 Trust Applied to an SPS 

In addition to the general concepts of trust, this research builds from previous 

research efforts found in [50] [51] [52].  In Jose Fadul’s PhD dissertation, he 

demonstrated an SPS utilizing simple reputation based trust between communication 

enabled agents could successfully perform SPS functions.  Specifically, the system could 

operate in an environment with detectable malfunctions or malicious nodes.  Using 

concepts of reputation based trust Fadul’s SPS decision making agent detected 

malfunctioning or malicious nodes and devised an SPS strategy that avoided using 

untrusted nodes.  This research refines Fadul’s simple reputation based trust to operate in 

environments with packet loss and delay by assessing trust based on trends observed in 

past and present interactions between nodes.  In addition to the reputation based trust 

mechanisms, the agents in this research also utilize aspects of cognitive based trust.   

Past research assumed malfunctions or malicious actions were detectable.  This 

research assumes malfunction and malicious actions are only detectable with a 90% 

probability.  The cognitive aspect of the trust deals with an assessment of the competence 

and the persistence of the agents in the SPS.  The assessment of competence and 

persistence results in an SPS strategy that spreads the risk of undetected malfunctions 

across enough agents that successful SPS actions become highly probable (98% or 

greater).  



 

26 

2.5 Game Theory Fundamentals 

 When evaluating the study of cyber security concerned with IT and SCADA 

systems, significant research continues to focus on policy formulation and enforcement, 

management practices and with improving the security of the lower levels of the TCP/IP 

network model.  Much of this research evaluates existing IT and SCADA technologies 

with the understanding that the longevity of SCADA system components requires 

adaptation, protection and securing of older systems and protocols designed with few if 

any security considerations and with limited hardware capability. [4] [25] However, the 

concepts guiding the deployment of the smart grid enables research into systems built 

around projected network and SCADA capabilities. [53] These future capabilities 

envision Intelligent Electronic Devises (IEDs) capable of increased functionality as 

independent agents.  Additionally, this increase in future capability utilizing independent 

agents enables alternative approaches to formulate optimization, security and protection 

problems into a strategic game, and then for the application of game theory principles. 

2.5.1 Game Theory Foundation 

 Although participants probably had no concept of game theory, a brief 

investigation into the history of game theory suggests that game theoretic principles were 

applied as long ago as 0-500AD.  The Babylonian Talmud appears to utilize a 

cooperative game theoretic approach for the division of wealth to widows upon the death 

of their husband. [14] In the Early 18
th

 century, James Waldergrave developed the first 

known example of the min-max mixed strategy for a two-person game. [54] In large part, 

game theory continued to develop as research in economic and social sciences applied 
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mathematical rigor to describe and model observed behaviors.  The primary formulations 

for modern game theory developed in the early to mid-1900’s.  During this period John 

von Neumann published a proof for the min-max theorem and John Nash established the 

existence of the “Nash Equilibrium” concept.  John Nash and John von Neumann, along 

with several others, formally developed the current ideas that define game theory. [54] 

While game theory developed to address economics, refinement of game theory outside 

of economics continues to grow. 

 The first step in introducing the present state of game theory is to establish a 

working definition.  Game theory is a set of theories, principles and tools that provide a 

systematic method for modeling strategic situations (games), in which an individual’s 

success in making choices depends on the choices of others. [14] [54] [48] Game theory 

can model a variety of strategic relationships from 2 players to n-players.  The players 

can be human or can be other agents.  A fundamental premise of game theory is the idea 

of utility or cost functions that define the benefits received or the amount of cost 

associated with each strategy. [14] 

 One of the first principles of game theory is the idea of cooperative vs. non-

cooperative vs. hybrid game.  In a cooperative game, players achieve the highest levels of 

utility or lowest cost when cooperative. [55]  A cooperative game also implies 

mechanisms to enforce cooperation in coalition members and communication between 

coalition members. [56] Non-Cooperative games do not include external mechanisms to 

enforce strategy and assume each player makes decisions independent from other players.  

Non-cooperative games must be self-enforcing. [57] Hybrid games include some 
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communication capability, but have no mechanisms to enforce a strategy.  The approach 

used in this research most resembles a hybrid game.  Each SPS agent is a member of a 

coalition.  Communication is assumed between members of the coalition; however, no 

external mechanism enforces a strategy.  The design of the game views the adversary as a 

single agent.  However, the adversary could be designed as a multi-agent coalition as 

well. 

 A second principle for defining the characteristics of a game is whether a game is 

simultaneous or dynamic.  In a simultaneous game, all players determine their course of 

action and perform their actions at the same time, or without any knowledge of actions 

selected by the other players. [56] [48] A dynamic game occurs over time.  In a dynamic 

game, players have multiple turns to take actions.  In a dynamic game, players typically 

select actions with knowledge of the past actions selected by other players. [48] The 

approach used in this research results in a simultaneous game where the SPS players 

determine a strategy for defending the system and the adversary determines a strategy for 

attacking the system.  

 A third principle of defining the characteristic of a game is the idea of symmetric 

vs. asymmetric game.  In a symmetric game, each player has the same strategies available 

and the cost or payoff depends only on the strategy selected, not on the player selecting 

the strategy.  An asymmetric game consists of players who have different possible 

strategies, or players who receive different benefits or costs for the same strategies.  

Therefore, the benefit received depends on player not just the strategy. [56] The approach 

used in this research forms an asymmetric game. 
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 Another characteristic of a game is the degree of knowledge each player has about 

the other players and about the game state.  The amount of knowledge can vary from 

complete, perfect, imperfect and incomplete knowledge.  Complete information implies 

each player knows the strategies and the utilities available for all players in the game. 

[57] However, this does not imply knowledge of actions selected by players in the past.  

Perfect knowledge implies that all of the actions taken by other players in the past is 

known, but does not imply knowledge of all strategies or utilities available to other 

players.  A perfect game implies a sequential or dynamic game. [14] Imperfect game 

implies at least some of the other player’s actions are not observable.  An incomplete 

game implies that players are not fully aware of the strategies or utilities available to all 

of the players.  Bayesian games are incomplete games. Players use probabilities formed 

from limited observations and beliefs to select the action in an incomplete game. [56] The 

game formulation in this research is an incomplete game. 

 The concept of zero-sum games vs. non-zero sum games is another characteristic 

of game theory.  In a zero-sum game, the total benefit achieved by all players in game 

sums to zero or some other constant.  The constant sum property of zero-sum games 

results in definite winners, losers or ties among players.  A non-zero-sum game does not 

require total utility to sum to zero.  In a non-zero sum game, all players can achieve 

positive or negative utility.  As a result, a non-zero-sum game can model a greater range 

of strategic relationships. [57] [58] This research uses a non-zero-sum game. 

 Similar to dynamic vs. simultaneous games is the concept of single vs. repeated 

games.  A single game is a game played only one time.  The players have only one 
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opportunity to select a strategy.  A repeated game is similar to a dynamic game except the 

same game is repeated multiple times rather than taking turns in a single game with 

different states determined by past player actions. [14] In a repeated game, players can 

choose a different strategy after each round of play.  Depending on the formulation of the 

utility function, the best strategy for a repeated game can vary significantly from the best 

strategy for a one-time simultaneous game. [56]  This research utilizes a single game. 

 Dominant strategies are another important characteristic of games.  Dominate 

strategy concepts are important when analyzing a game model.  A strictly dominate 

strategy is a strategy that always provides a player with better results regardless of the 

other player’s strategy.  The opposite is a strictly dominated strategy which is never the 

best strategy. [48] A weakly dominate strategy provides equal or better results, where a 

weakly dominated strategy provides equal or worse results.  The game formulation in this 

research provides for both strictly and weakly dominate/dominated strategies depending 

the goals that determine the utility function. 

 Related to dominate/dominated strategies are the ideas of Nash Equilibriums and 

Pareto Optimal strategy.  The Nash Equilibrium concept provides an important game 

theory principle.  The Nash Equilibrium point is a best strategy given the other players 

possible strategies.  In a Nash Equilibrium, no player has an incentive to unilaterally 

change strategies.  A Pareto Optimal strategy is the point where the players have the 

maximum utility.  Failure to guarantee a Pareto Optimal strategy is a significant 

limitation of the Nash Equilibrium.  A non Pareto Optimal Nash Equilibrium results 

when all players could benefit more if the all players changed strategy, but not by 
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unilateral strategy changes.  Within the Nash Equilibrium there is also the concept of 

pure and mixed strategy equilibriums.  Pure Nash Equilibrium results when a strategy is 

always the best given the adversary’s strategies.  Mixed Nash Equilibriums result from a 

probability distribution over possible strategies that produces the best results given the 

adversary’s possible strategies. [14] Technically, a pure Nash Equilibrium is a type of 

mixed strategy Nash Equilibrium. [54] Nash also demonstrated that at least one mixed 

strategy equilibrium exists for any game with a finite set of actions. [14]  

2.6 Previous Research 

 Several approaches to improving the agent based SPS contributed to the 

development of the SPS agents utilized in this research.  Initial development of the 

federated power system and network simulator utilized a simple SPS agent that 

demonstrated the viability of the simulation environment and of the scenario to test SPS 

actions.  In this initial research effort, the SPS relied on a single SPS control agent to 

monitor all of the system parameters observed from the inputs received by the generator 

and load agents and to determine the SPS strategy.  The initial research demonstrated the 

SPS’s ability to perform SPS actions and to maintain system stability when faced with up 

to 5% communication loss.  [51] [50] 

  Additional research using the simulation environment and SPS scenario added a 

more realistic model of typical network traffic observed in a SCADA network shared 

with a limited amount of IT network traffic.  The research evaluated strategies to 

maintain reliable SPS actions while experiencing delay and communication loss due to 

network congestion.  The research evaluated the use of bandwidth reservation 
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mechanisms and the use of Exponential Weighted Moving Average to prevent or to 

compensate for communication loss due to network congestion. [59] This research also 

relied on a single SPS control agent to monitor the power grid and determine the SPS 

strategy. 

 The next related research continued using this SPS scenario with the introduction 

of malicious/malfunctioning nodes and simple reputation based trust mechanisms.  This 

research demonstrated that an SPS exposed to detectable malicious/malfunctioning nodes 

could use a majority rules reputation based trust mechanism to detect bad nodes and 

develop successful SPS strategies.  This research removed the background traffic and 

focused on the ability of the system to detect bad nodes and then to exclude the bad nodes 

from the SPS strategy.  This research also relied on a single SPS control agent to monitor 

the power grid and determine the appropriate SPS strategy. [52] 

In previous research, generator and load agents reported system observations to a 

centralized SPS control agent to determine levels of trust based on an analysis of the 

system observations.  That centralized SPS agent utilized the system observations to 

develop system knowledge and then to determine an appropriate strategy for maintaining 

system stability following a disturbance.  Finally, the centralized SPS agent issued 

commands to trusted generator and load agents to implement the strategy.   

2.7 Summary 

The SCADA systems that make up the nation’s electric power generation and 

transmission systems are in the process of evolving into the smart grid.  This evolution is 

transforming systems that experienced little significant change for decades from a 
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centralized, producer-controlled network to one less centralized and more consumer 

interactive.  While these changes bring new challenges and vulnerabilities, the 

communication enabled smart grid also brings the opportunity to strengthen the power 

grid’s ability to respond to significant disturbances and to improve reliability.  

Additionally, the agent based paradigm enabled by the smart grid permits new 

approaches to improve security and protection of smart grid function.  These new 

approaches include the development of trust mechanisms and use of game theory to 

improve the smart grid’s ability to perform SPS functions when faced with malicious 

actions and malfunctions.  Finally, previous research to develop an appropriate 

simulation environment and SPS scenario enables the evaluation of a several variables 

and mechanisms.  The ability to evaluate a several variables and mechanisms allows for 

research to test new solutions for the challenge of securing and protecting an SPS 

specifically, and the smart grid, in general. 
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III. Methodology Stage One-Three 

3.1 Chapter Overview 

This research methodology explores and analyzes a proposed Special Protection 

System (SPS) that addresses system modernization and transmission system reliability 

directly and other areas of the smart grid development indirectly.  Specifically, the 

research continues the study of applying simple trust based mechanisms to 

communication enabled SPSs.  Previous research focused on utilizing smart grid concepts 

in conjunction with simple trust based mechanisms to improve the reliability, security 

and effectiveness of a distributed SPS with a centralized decision-making process.  

However, this research begins by focusing on testing and analyzing a distributed agent 

based SPS with a distributed decision-making process utilizing smart grid concepts and 

simple reputation based trust mechanisms to improve the reliability, security and 

effectiveness of a communication enabled SPS.  Next, the research continues by 

evaluating the distributed SPS’s decision-making process performance when coping with 

communication delays and loss caused by background traffic and communication 

malfunctions and/or malicious actions.  The research continues testing the distributed 

SPS’s performance against a fully detectable adversary attempting to disrupt the SPS’s 

actions while experiencing delays and loss caused by background traffic and 

communication malfunctions or malicious actions.  In the first three stages of this 

research, the SPS had no limitations on the monitoring of system agents as part of the 

security strategy. 
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The decentralized decision making communication enabled SPS is a significant 

departure from traditional SPSs and recently explored centralized decision making 

communication enabled SPSs.  By reducing the vulnerability inherent in the single point 

of failure found in centralized SPSs, this decentralized system provides the potential for 

increased reliability and security.   

3.2 Problem Definition 

3.2.1 Goals and Hypothesis 

There are several stages in the performance of this research methodology.  In each 

stage specific goals exist to answer a hypothesis.  Hypothesis for Stage One: 

A distributed decision making communication enabled SPS using simple 

reputation based trust can successfully determine and execute an appropriate SPS 

load shedding strategy while experiencing various levels of disrupted agents. 

During the first stage of the research, the primary goal is to test a distributed 

decision making communication enabled SPS to determine a level of success and to 

compare the performance to centralized decision making communication enabled SPSs 

used in past research.  In the first stage of the research the distributed SPS agents use a 

trust mechanism and an SPS load shedding strategy similar to mechanisms and strategies 

used in past research. [52] The first stage tests the SPS with background traffic but not 

with network delays and losses caused by malicious actions.  This stage of the research 

seeks to determine whether this model of a distributed decision making SPS successfully 

determines and executes a successful load shedding strategy with detectable disrupted or 

malfunctioning generator and load agents. 
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Hypothesis Stage Two: 

A distributed decision making communication enabled SPS using simple 

reputation based trust can successfully determine and execute an appropriate SPS 

load shedding strategy while experiencing various levels of network traffic and 

losses. 

During the second stage of the research, the primary goal is to evaluate the 

performance of a modified distributed decision making SPS when operating on a network 

with background traffic and communication delays and losses caused by malfunctions 

and adversarial disruptions without attacks against the system nodes.  The SPS agents in 

this stage of the research are modified to include a retransmission mechanism to 

overcome the low to moderate amounts of communication loss.  This stage of the 

research seeks to determine whether the mechanism to overcome communication loss 

allows the distributed decision making SPS to successfully determine and execute a 

successful SPS load shedding strategy while dealing with low to moderate 

communication delays and losses. 

Hypothesis Stage Three: 

A distributed decision making communication enabled SPS using simple 

reputation based trust can successfully determine and execute an appropriate SPS 

load shedding strategy while experiencing various levels of network traffic and 

losses and various levels of disrupted agents. 

The primary goal for the third stage of the research is to test the performance of a 

modified distributed decision making communication enabled SPS when operating on a 
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communication network with background traffic, communication delays and losses 

caused by malfunctions or adversarial disruptions and with disruption or malfunction of 

generator and load agents.  The SPS agents in this stage of the research include a 

mechanism to overcome communication loss as well as a mechanism to determine levels 

of trust for other agents in the system.  In this stage, the research seeks to determine 

whether the mechanism to overcome communication loss as well as the mechanism to 

determine trust work together to allow the modified distributed decision making to 

determine and execute a successful load shedding strategy while operating with 

communication delays and losses, and with detectable disrupted or malfunctioning 

generator and load agents.   

A minimum level of success for the SPS is defined by the SPS detecting the 

system disturbance and then maintaining system stability by shedding load quickly and 

accurately enough to prevent the system frequency from dropping below the critical 

level.  Increased success results from minimizing the cost of the SPS strategy.  The cost is 

minimized by shedding the minimum amount of load required to maintain the system 

frequency above the critical level.  Additionally, the degree of success is measured by 

comparing the distributed SPS agent’s performance to traditional SPSs and the expected 

performance of network enabled SPSs from previous research.  

Testing these research hypotheses drives significant changes from the basic 

operation of traditional SPSs.  A traditional SPS does not utilize an adaptive approach to 

maintain system stability.  Traditional SPSs protect system components from damage and 

can prevent large scale blackouts under predetermined scenarios.  The pre-coordinated 
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strategy does not result in any optimization of the protective actions.  The traditional 

SPS’s lack of dynamic strategy often results in sub-optimal capacity shedding. [37] This 

sub-optimal shedding results in the rejection of more load than required, increasing cost 

or results in the rejection of less load than required, increasing the probability of 

widespread uncontrolled blackouts.  A traditional SPS also fails to consider other factors 

such as trustworthiness of system components.  Rather than a script to deal with predicted 

disturbances, a communication enabled SPS reacts dynamically to the system state while 

considering many factors not considered by a traditional SPS.   

In addition to changes from traditional SPSs, the research hypothesis also drives 

changes from the operation of recently researched centralized communication enabled 

SPSs.  Past research evaluated the performance of a centralized communication enabled 

SPS with background traffic related delays or with trust mechanisms to detect 

untrustworthy load and generator agents.  The past research efforts did not combine both 

challenges at the same time. [59] [51] [52] Past research into a communication enabled 

SPS with background traffic did not evaluate minimization of costs related to excess load 

shedding. [59] Additionally, the previous research using an SPS with background traffic 

used bandwidth reservations and estimation schemes to prevent data loss and delay or to 

mitigate the effects of missing data to overcome communication delays and losses.  The 

past research with a centralized decision making SPS using a trust mechanism to detect 

untrustworthy agents assumed all untrustworthy agents could be detected and that the 

trust mechanism could be used to monitor all of the generator and load nodes. [52] 

Compared to the previously researched centralized SPSs, the distributed SPS requires 
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additional network capacity for new mechanisms to overcome communication related 

delays and losses and should require revised trust mechanisms to deal with the 

communication delays and losses.   

Although there are some advantages to the traditional SPS in terms of network 

capacity and communication equipment costs, the distributed SPS should have the 

advantage over both traditional and the centralized SPS in terms of reliability and 

security.  As discussed above, a traditional SPS does not rely on any active 

coordination/adaptation to operate.  This lack of coordinated adaptation results in almost 

no network or communication security vulnerabilities in determination of an SPS 

strategy.  However, the lack of coordination also reduces the reliability of the traditional 

SPS by reducing the number of scenarios from which an SPS can successfully recover.  

Additionally, the lack of coordination prevents the detection of untrustworthy nodes, 

resulting in the possibility that nodes fail to execute SPS commands and the SPS fails to 

maintain system stability.  The reliance on predetermined actions to match possible 

disturbances increases the probability of cascading failures compared to coordinated 

communication enabled SPSs. [39] When comparing the distributed SPS to the 

centralized system, removing the centralized SPS from being a single point of failure will 

likely increase the reliability and security of the power transmission grid.  

3.2.2 Approach 

For practical reasons, power transmission systems require SPSs.  System 

malfunctions can create unstable conditions or disturbances.  When disturbances cannot 

be corrected with normal system processes, the system either successfully employs 
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protection systems, including SPSs, or risks catastrophic failure.  A catastrophic failure in 

a power transmission grid results in widespread islanding, blackouts and possible 

equipment damage.  The 1965 and 2003 blackouts illustrate extreme examples of what 

happens when multiple protection systems, including SPSs, fail to successfully react to 

disturbances and keep the power grid stable. [60] [61] 

This research utilizes a scenario that creates a realistic special protection 

condition and evaluates the distributed SPS’s ability to return the system to stable 

operation.  The creation of a realistic special protection condition requires extensive 

electric transmission grid knowledge.  In this research scenario, a disturbance requiring 

special protection actions is created by introducing system failures and other faults.  The 

failures and faults create a disturbance resulting in an imbalance requiring generators to 

be removed from service.  The sudden removal of generation capacity from the power 

grid creates the disturbance that requires SPS load shedding actions.  Based on data 

gleaned from past large scale blackouts, the conditions created produce a realistic SPS 

disturbance. [4]  

To demonstrate acceptable response to system disturbances, the research seeks to 

test the system operating through a data network with a variety of operating conditions, 

workloads and SPS Schemes.  In order to test an SPS scheme, scenarios requiring an SPS 

intervention must be created in the simulation.  However, this research is limited to 

evaluating a single scenario and does not address the SPS’s ability to respond to alternate 

special protection conditions.  The danger of developing a system that performs correctly 

for only this one scenario is a significant limitation on this research.  The research 
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attempts to keep the distributed SPS’s action general enough to respond to any SPS 

action that requires load shedding.  

3.3 Testing Environment 

 The primary tasks in the first three stages of this research is the development and 

testing of an agent based communication enabled SPS using distributed decision making 

agents with reputation based trust mechanisms.  The testing determines the SPS’s ability 

to successfully maintain stability of the power grid when experiencing a significant 

disturbance that could result in an uncontrolled cascading blackout and while 

experiencing malfunctions and malicious activities.   

A federation of network and power simulation provides the primary evaluation 

method for the testing of the distributed special protection system.  In this circumstance, 

the selection of the simulation environment stems from rational determination and 

circumstance.  First, much of the infrastructure to enable smart grid technologies is not in 

place.  Even the few areas where a limited smart grid capacity exists, experimenting with 

operational power transmission systems introduces excessive risk and cost.  When 

modeling a regional power transmission grid, no reliable analytic models exist for 

measuring the interactions between power transmission systems and the coordination 

enabled by smart grid technologies and data networks.  The tool that enables the 

development and the study of this SPS is a realistic simulation environment for both the 

power system and the communications network.  The simulation environment selected 

for this research is the combination of the PSS/E power simulator and the NS2 network 

simulator federated together by the Electric Power and Communication Synchronizing 
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Simulator (EPOCHS). [50] [62] Figure 2 illustrates the basic configuration EPOCHS 

simulation environments. [51] Inside these simulation programs, specific power 

transmission and network models provide a realistic and validated test environment.  

Using this environment also provides the opportunity to compare the results of new 

research with existing research efforts. [52] [51] [59]  

 

Figure 2.  Graphical Representation of EPOCHS Simulation Environments [59] 

 

Each simulation run utilizes the same basic scenario.  Power transmission lines 

are tripped due to malfunction and overloading to create a system imbalance that requires 

the removal of a specific generator from the system.  This results in an imbalance and 

creates an unstable system condition with a dropping system frequency.  The distributed 

SPS uses the data network to determine and execute an SPS strategy to reestablish system 

stability by intelligently shedding load.  The simulation runs for 50 seconds in the 

simulation environment.  The factors utilized in the simulation include levels of 
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communication loss and the location of the untrusted nodes.  The research utilizes the 

same randomization seeds as utilized in previous research to better correlate results.  An 

analysis of variance and a comparison of confidence intervals are used to determine the 

statistical significance of the simulation results. [63] 

3.4 Special Protection System Test Details 

The SPS test case scenario operates within system boundaries and includes the 

system services, the system under test, the workload the system operates under and the 

factors that are controlled to test and evaluate the component under test.  The component 

under test is the SPS scheme, and each stage of the research evaluates a specific scheme’s 

response to the testing factors.  The system under test includes power transmission grid, 

the communications network, the load and generator nodes, the special protection nodes 

and the distributed special protection scheme.   

3.4.1 Power Transmission Configuration 

The power transmission grid provides the physical connections between 

generator, load nodes and other transmission system components.  This research only 

uses one power transmission configuration.  The configuration used is a modified IEEE 

145-bus 50 generator test case to represent the power transmission system. [64] 

Modification to the original test case changes the behavior of a few generators, adds an 

additional power transmission line, reduces the overall generation capacity and 

rebalances power flows in order to increase the importance of the power flowing over key 

transmission lines. [51] The degree of interconnection between the nodes in the system 

influences the system’s ability to maintain stability during disturbances.  A well 
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connected electrical grid provides more flexibility for transferring power and maintaining 

stability, but often contains interconnections that are not capable of transporting enough 

power to maintain stability during special protection situations. [39] This research models 

a well-connected electric transmission grid. Additional changes to the electrical 

transmission grid are outside the scope of this research.  The IEEE test case is used in 

PSS/E to model transient stability during the simulated SPS actions.  Figure 3  shows the 

logical layout of the Power Grid used in this simulation 

 

Figure 3.  Logical Layout of the Power Grid [51] 
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The power transmission system operates at a specific workload described by the 

amount of power generated, the amount of power required by the loads and the amount of 

transmission capacity on each power transmission line.  As a power transmission grid is 

operated closer to maximum efficiency and minimum safety levels, less reserve capacity 

remains. [39] In addition, larger systems have more flexibility in dealing with 

disturbances than a smaller system where there may be very few strategies for 

maintaining system stability.  In a stable system, the power generated and the power 

required for the loads are in balance and the transmission lines are within normal 

operational limits.  When the power generation capacity and the system load 

requirements do not balance, or transmission lines operate outside of normal operational 

limits, the system becomes unstable.  Power generation and transmission systems have 

methods to adjust for fluctuations in power generation capacity and load requirements.  A 

system disturbance in this research is a condition that creates an imbalance between the 

generation capacity, the system load and transmission line capacity too large for normal 

system processes to maintain stability.  This simulation utilizes a power generation and 

load imbalance along with overloaded transmission lines to create a disturbance that 

requires an SPS to maintain system stability. 

3.4.2 Communication Network Configuration 

The communications network provides the logical connections between system 

nodes.  The load and generator nodes utilize the communications network to share local 

system observations and to receive commands.  The number and location of the generator 

and load nodes and data link capacity influences the performance of the system.  This 
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research only observes one logical communication network configuration.  Additionally, 

the data link capacity used in this research is 100 Mbps representing the lower boundary 

of expected capability for future smart grid networks and is the minimum capacity 

required for this SPS to operate. [65] The agent based communication enabled SPS’s 

communication network infrastructure closely mirrors the power transmission grid based 

on an assumption that future smart grid networks will likely run along the same routes as 

the power transmission systems. [37] [53] In a smart grid, the physical and logical design 

of the data network influences the performance and reliability of a data network. [32]  

The operation of the communication network provides a workload used to test the 

SPS schemes.  The network workload for this system includes the background network 

traffic, the amount of packet loss due to malicious actions or malfunctions and the 

number, location and detection probability of untrusted nodes in the system.  The 

background traffic models traffic that may occur at different times in a communication 

network used for SCADA type traffic.  The background network traffic for this research 

is modeled from an analysis of LAN and SCADA network traces and assumption about 

the utilization of future smart grid networks. [59] However, the traffic differs 

significantly from the traffic used in previous research with a higher probability of 

background traffic occurring during the critical first 300-350 ms of the simulation.  

Additionally, non-power related traffic is not used.  Background traffic and 

communication losses influence the performance of the distributed SPS.  Table 5 shows 

the background traffic utilized by this research.  As background traffic and losses 

increase, delays in the network increase and reliability of the network decreases. [66] 
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Without appropriate mechanisms to overcome delays and losses, the distributed SPS can 

fail to meet the minimum timing requirements or fail to obtain enough data to develop an 

SPS.  The background traffic in this simulation uses the same background traffic 

mechanisms used in previous research with higher occurrence rates and modified packet 

sizes.  The traffic falls between the medium and high levels from [59]. 

 

Table 5.  Background Traffic Rates [66] 

Background Traffic Type Distribution Packet Size Rate 

SCADA Constant 44  Bytes One every 4ms 

per bus 

Power Quality Data Poisson 76-196 Bytes One every 10ms 

per bus 

Routine Internal Traffic Poisson 1000 Bytes One every 20ms 

per bus 

Office-Substation Traffic Poisson 20 Bytes One every 4ms 

per bus 

 

 

3.4.3 SPS, Generator and Load Agent Configuration 

The SPS uses three types of agents: SPS decision agents, generator agents and 

load agents.  Load and generator agents perform three basic tasks.  The load and 

generator agents monitor the attached bus, push observations to the SPS decision agents 

and execute commands received from SPS decision agents.  SPS decision agents perform 

two basic tasks.  They monitor the power gird for large disturbances requiring SPS 

actions and issue SPS commands to the load and generator agents.  The special protection 

nodes utilize the communications network to receive system observations from load and 

generator nodes, to establish and maintain reputation based trust with load and generator 

nodes, as well as the other special protection nodes, to detect special protection 
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disturbances, to coordinate special protection actions and to execute special protection 

strategies.  The research only evaluates one possible configuration of load, generator and 

special protection nodes.  The NS2 network simulator provides the simulated 

communications network for the transmission and routing of SPS observations and 

commands.  Figure 4 shows the logical layout of the communications network used in 

this simulation.   

 

Figure 4.  Logical Layout of the Communications Network 

 

3.4.4 SPS Schemes 

The special protection scheme provides the coordination and adaptation of the 

systems special protection strategy to match the actual special protection conditions and 
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is the Component Under Test (CUT).  The SPS scheme is the service provided by this 

system.  The ideal special protection service exactly matches system response to a 

disturbance utilizing the lowest cost strategy.  The SPS scheme in this stage of the 

research monitors all 30 load nodes for trust and all agents malfunctioning or disrupted 

by the adversary are detectable.  The scenario uses a pedagogical abuse case focused on 

detecting improper reporting of system frequency during updates.  However, the behavior 

of the trust mechanism is not dependent on this specific abuse case, only that the effects 

of the abuse case can be observed or reported.  The SPS scheme requires system updates 

from the load and generator nodes every 2 ms.  Every 6 ms the SPS scheme requires a 

digest update from system components with the data from the last 60 ms.  The digest 

updates allow the SPS scheme to reconstruct past system states caused by data lost due to 

background traffic or malicious disruption of the communication network.  Finally, the 

SPS scheme in the first three stages of the research issues load shedding commands to the 

12 trusted load agents with the highest loads to fairly distribute the load shed 

requirements throughout the power grid.    

The minimum level of success for an SPS scheme is the ability to maintain system 

stability without system parameters reaching critical levels.  If the system stability 

reaches critical levels, the probability of the power grid becoming unstable increases.  An 

unstable power grid can cause loss of synchronization resulting in uncontrolled islanding 

and widespread blackouts.  System frequency is the critical system characteristic 

measured in this research.  The critical frequency in this system is 58.8 Hz.  Probability 
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of special protection failure increases to unacceptable levels when the system frequency 

falls below 58.8 Hz. [39] 

The SPS decision agents utilize Equation 1 to estimate the steady state frequency 

resulting from a disturbance, and then to determine the amount of load shedding required 

to maintain a predetermined frequency while taking into account the normal operation of 

the generators control systems. [51] 

Equation 1.  Formula to Compute Difference in System Power [51](1) 

                           

 Formula (1) shows that the size of the disturbance,   , is equal to the 

system accelerating power,    , which is proportionate to the change in the 

system’s frequency, plus the change in electrical power demand     due to the 

variation in frequency and voltage.    is the key to determining the amount of 

generation that has been lost.  It is important to note that 0- and 0+, respectively, 

denote the time immediately before and after the disturbance.   and     can both 

be obtained based on wide area measurements using the generators’ operating 

status and samples of the system’s frequency before and after the disturbance, but 

measurements must be simultaneously taken at points throughout the region. [51] 

 

 Special protection failures stem from several causes.  First, a special protection 

system can fail to determine an appropriate strategy.  An inappropriate strategy does not 

shed the required load and the frequency drops below 58.8 Hz.  This failure can stem 

from multiple root causes.  The system may have a poor special protection scheme or 

algorithm.  The system may also rely on bad or missing data to determine the special 

protection strategy.  Second, a failure can result from an appropriate strategy executed by 

a system that fails to react to the system disturbance quickly enough.  This failure can be 

caused by a poor special protection scheme or network delays and losses.  Third, a 

special protection failure can result from an appropriate strategy if the load nodes fail to 
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execute commands.  Primarily, this failure can result from network delays and losses or 

from poorly performing trust mechanisms.  In this system, communication delays and 

losses model normal network behaviors, malicious attacks and equipment malfunctions.  

3.4.5 Adversarial Scheme 

This stage of the research continues previous communication enabled SPS trust 

research by limiting the adversary to disrupting a maximum of 15 agent, or 50% of the 

agents in the system.  This allows for an easier comparison to the previous research. [52] 

In this scenario, the SPS must shed approximately 700 MW of power in order to maintain 

the critical frequency.  Table 6 illustrates and highlights that an adversary that 

strategically disrupts 18 or more agents can prevent the SPS from shedding the minimum 

700 MW of power, always disrupting the SPS strategy.   

The adversary in the first stage of the research randomly disrupts zero, five, ten or 

15 of the load agents.  In the second stage the adversary disrupts zero, five, ten or 15 

percent of the communication.  In the third stage of the research the adversary disrupts a 

proportional combination of zero, five, ten or 15 agents and zero, five, ten or 15 percent 

of the communication.  The amounts of communication disruption were selected to 

challenge the data retransmission mechanisms, but to not require a mechanism for 

estimating missing information. 

The adversary in this scenario disrupts the agents by reporting the wrong 

frequency and by failing to perform SPS commands.  The abuse case used by untrusted 

agents represents a pedagogical abstraction of possible actions taken by a malicious agent 
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attempting to disrupt a communication enabled SPS.  Developing additional abuse cases 

is not a focus of this research.   

 

Table 6.  System Loads in MW Highlighting Adversaries Critical Values 

Node 123 84 85 133 34 35 51 88 81 

Load (MW) 15.28 24.30 27.40 30.85 45.05 49.19 58.45 69.00 82.20 

Load Available 

to Shed 0.00 15.28 39.58 66.98 97.83 142.88 192.07 250.52 319.52 

# Disrupted 30 29 28 27 26 25 24 23 22 

                    

Node 78 70 71 64 65 83 138 58 86 

Load (MW) 89.00 97.42 103.06 113.96 113.96 118.76 140.19 193.63 206.45 

Load Available 

to Shed 401.72 490.72 588.14 691.20 805.16 919.12 

1037.8

8 

1178.0

7 

1371.7

0 

# Disrupted 21 20 19 18 17 16 15 14 13 

                    

Node 75 66 14 59 63 69 74 27 72 

Load (MW) 320.00 333.20 500.00 607.53 914.04 976.64 

1025.9

0 

1050.2

2 

1098.0

0 

Load Available 

to Shed 

1578.1

5 

1898.1

5 2231.35 2731.35 

3338.8

8 

4252.9

2 

5229.5

6 

6255.4

6 

7305.6

8 

# Disrupted 12 11 10 9 8 7 6 5 4 

                    

Node 73 120 25             

Load (MW) 

1318.0

0 

1607.2

0 1698.74             

Load Available 

to Shed 

8403.6

8 

9721.6

8 

11328.8

8 

13027.6

2           

# Disrupted 3 2 1 0.00           

 

 

3.5 Performance Metrics 

 This research determines whether the distributed decision making SPS’s strategy 

successfully maintains system stability when faced with an adversary’s disruption 

strategy.  The primary metric for determining success or failure is the system frequency.  

The critical frequency for this system is 58.8 Hz.  A system that maintains a frequency 
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greater than 58.8 Hz successfully maintains stability with a high enough level of 

probability.  If the frequency drops below 58.8 Hz, the special protection scheme failed to 

maintain system stability with a high enough probability. 

In addition to frequency, another important metric is cost.  Any load shed greater 

than required to maintain the frequency above 58.8 Hz results in increased cost.  While 

an agent must maintain the minimum frequency to demonstrate overall success, an SPS 

that minimizes cost achieves a higher level of success compared to SPS that maintains the 

minimum frequency at a higher cost.  The amount of excess load shed is directly related 

to the amount the final frequency is greater than 58.8 Hz.  Additionally, the failure to 

maintain 58.8 Hz can be quantified as the cost of load shedding every load in the system 

with additional penalty costs related to the economic impact of a large scale power 

blackout. 

Additional metrics related to the performance of sub-processes also contribute to 

the analysis of the distributed SPS.  Response time is an important sub metric.  This SPS 

requires time to observe the system state and develop trust determinations for the 

generator and load agents.  The SPS must determine and execute the SPS strategy within 

about 300-400 milliseconds or the frequency drops below 58.8 Hz before the execution of 

the SPS strategy.  

3.6 Experimental Design 

 The first two stages of the research use a full-factorial design.  Stage one and two 

of the research has one factor with four levels and one factor with two levels.  Stage one 

has four levels of disrupted agents and operates with and without an SPS trust 
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mechanism.  Stage two has four levels of network traffic loss and operates with and 

without an SPS trust mechanism.  Therefore, the first two stages of the research require 

eight experiments each.  The third stage of the research uses a fractional-factorial design.  

There are two factors with four levels that are proportional to each other and one factor 

with two levels.  Stage three has four levels of disrupted agents and four levels of 

network loss operating with and without an SPS mechanism.  Therefore, the third stage of 

the research requires eight experiments.  Results from each stage are analyzed using 

Tukey’s Honest Significant Difference test to provide an ANOVA analysis between each 

experimental configuration and with standard ANOVA tests between each experimental 

configuration. [67] 

NS2 has predefined 64 good random seed values in the rng.cc file for computer 

simulation experiments. These random seed values are equally spaced around a 2
31

 cycle 

of random numbers, where each seed value is approximately 33,000,000 elements apart 

from each other. [62]  The seeds are selected from the rng.cc file to match past research 

to aid a more direct comparison of simulation results with each replication of the 

experiment utilizing a unique seed.  

3.6.1 Stage One Design 

The pilot study for stage one used 36 observations to provide the data required for 

determining the minimum sample size required to meet accuracy requirements.  

Additionally the data from the pilot studies provides the data to demonstrate statistical 

significance in the performance of different SPS scheme compared to no SPS protection 

schemes and differences in the SPS’s response to different experimental factors.  Figure 5 
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and Figure 6 provide a histogram and a Q-Q Plot of the pilot study.  The histogram and 

the Q-Q Plot reveal some minor deviation from normal with a few higher frequency 

outliers.  A Shapiro-Wilk normality test confirms the deviation from normal with a p-

value of 0.05573 and a W value of 0.9413. [68] The null hypothesis for the Shapiro Wilk 

test is that the sample was drawn from a normally distributed population.  The W value of 

0.9413 is close to one and supports the null hypothesis.  At the 95% confidence interval, 

the sample’s p-value just above 0.05 results in the overall acceptance of the null 

hypothesis.  However, the low p-value level make acceptance questionable. The 

population distribution appears to have a stronger central tendency than normal and skew 

toward higher frequencies.  

 

 

Figure 5.  Pilot Simulation Histogram for Stage One (15 Untrusted Agents) 
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Figure 6.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage One (15 

Untrusted Agents) 

 

Because the goal of the SPS strategy is primarily to determine if the minimum 

frequency remains above 58.8 Hz, the weak result from the normality test should not 

negatively impact the statistical significance of the results.  Therefore, Equation 2 is used 

to determine the minimum number of replications required to reach a 99% confidence 

interval for determining the mean of the simulation results.  To compensate for deviation 

from normal the number of replications is significantly greater than the results from 

Equation 2.  The maximum error is determined from the pilot simulations.  The mean 

frequency from the pilot simulation is 58.82737 Hz with a minimum frequency of 

58.81512 Hz.  The maximum error (E) = 0.0075 is selected by using approximately one 

half the difference between the minimum frequency and the critical frequency (58.8 Hz).  

Additionally, the standard deviation for the pilot simulation is 0.006467015.  The Z value 
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used for 99% confidence interval is 2.58.  Equation 6 determines the minimum number of 

replications is five, and this research uses 36 replications.  This results in 288 simulation 

trials for the main research.   

Equation 2.  Determine the Required Number of Experimental Replications Required 

[69](2) 

         
    

  
         

                  

       
 

3.6.2 Stage Two Design 

The pilot study for stage two used 36 observations to provide the data for 

determining the minimum sample size needed to meet accuracy requirements.  

Additionally, the pilot studies provide the data to demonstrate statistical significance in 

the performance of different SPS schemes compared to no SPS protection schemes and 

differences in the SPS’s response to experimental factors. Figure 7 and Figure 8 provide a 

histogram and a Q-Q Plot of the pilot study.  The histogram and the Q-Q Plot reveal some 

minor deviations from normal with a flatter response.  However, the Shapiro-Wilk 

normality test indicates the sample is taken from a normal distribution with a p-value of 

0.4752 and a W value of 0.9717. [68] The null hypothesis for the Shapiro Wilk test is that 

the sample was drawn from a normally distributed population.  The W value of 0.9717 is 

close to one and supports the null hypothesis.  At the 95% confidence interval, the 

sample’s p-value above 0.05 results in the acceptance of the null hypothesis.   
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Figure 7.  Pilot Simulation Histogram for Stage Two (15% Communication Loss) 

 

Figure 8.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage Two (15% 

Communication Loss) 
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Because the pilot study indicates the population is normally distributed, Equation 

3 is used to determine the minimum number of replications required to reach a 99% 

confidence interval for determining the mean of the simulation results.  The maximum 

error is determined from the pilot simulations.  The mean frequency from the pilot 

simulation is 58.93276 Hz with a minimum frequency of 58.85262 Hz.  The maximum 

error (E) = 0.025 is selected by using approximately one-half the difference between the 

minimum frequency and the critical frequency (58.8 Hz).  Additionally, the standard 

deviation for the pilot simulation is 0.04813493.  The Z value used for 99% confidence 

interval is 2.58.  Equation 3 determines the minimum number of replications is 25, and 

this research uses 36 replications to improve the statistical analysis of the experiment.  

This results in 288 simulation trials for the main research.   

Equation 3.  Determine the Required Number of Experimental Replications Required 

[69] (3) 

         
    

  
         

                 

      
 

3.6.3 Stage Three Design 

The pilot study for stage three used 36 observations to provide the data required 

for determining the minimum sample size required to meet accuracy requirements.  

Additionally, the pilot studies provide the data to demonstrate statistical significance in 

the performance of different SPS schemes compared to no SPS protection schemes and 

differences in the SPS’s response to different experimental factors.  Figure 9 and Figure 

10 provide a histogram and a Q-Q Plot of the pilot study.  The histogram and the Q-Q 

Plot reveal some minor deviations from normal with a flatter response.  However, the 
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Shapiro-Wilk normality test indicates the sample is taken from a normal distribution with 

a p-value of 0.4752 and a W value of 0.9717. [68] The null hypothesis for the Shapiro 

Wilk test is that the sample was drawn from a normally distributed population.  The W 

value of 0.9717 is close to one and supports the null hypothesis.  At the 95% confidence 

interval, the sample’s p-value above 0.475 results in the overall acceptance of the null 

hypothesis.   

 

Figure 9.  Pilot Simulation Histogram for Stage Three (15% Communication Loss and 0 

Untrusted Agents) 
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Figure 10.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage Three (15% 

Communication Loss and 0 Untrusted Agents) 

 

Because the goal of the SPS strategy is primarily to determine if the minimum 

frequency remains above 58.8 Hz, any deviation from normality should not negatively 

impact the statistical significance of the results.  Therefore, Equation 4 is used to 

determine the minimum number of replications required to reach a 99% confidence 

interval for determining the mean of the simulation results.  To compensate for deviation 

from normal, the number of replications is significantly greater than the results from 

Equation 4.  The maximum error is determined from the pilot simulations.  The mean 

frequency from the pilot simulation is 58.93276 Hz with a minimum frequency of 

58.85262 Hz.  The maximum error (E) = 0.025 is selected by using approximately one-

half the difference between the minimum frequency and the critical frequency (58.8 Hz).  

Additionally, the standard deviation for the pilot simulation is 0.004813493.  The Z value 
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used for 99% confidence interval is 2.58.  Equation 4 determines the minimum number of 

replications is 24, and this research uses 36 replications.  This results in 288 simulation 

trials for the main research.  In addition to the main results, the behavior of the trust 

mechanism is analyzed to show how the trust values vary as the system operates. 

Equation 4.  Determine the Required Number of Experimental Replications Required 

[69] (4) 

         
    

  
         

                 

      
 

3.7 Methodology Summary 

  This paper describes the research methodology used to evaluate three 

distributed decision making communication enabled SPSs.  The methodology defines and 

discusses the power transmission system and the distributed SPSs as the system and 

component under test.  Additionally, the characteristics of the system are analyzed to 

determine the workloads, metrics, parameters and factors that affect the performance of 

the system.  Simulation is selected as the appropriate evaluation technique and the 

experimental design required to achieve a 99% confidence interval is identified.  This 

research methodology identifies a method to collect valid data required to evaluate and 

analyze the performance of the three distributed decision making communication enabled 

SPSs. 
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IV. Methodology Stage Four 

4.1 Chapter Overview 

This research methodology describes the processes used to explore and analyze a 

proposed Special Protection System (SPS) that addresses system modernization and 

transmission system reliability directly and other areas of smart grid development 

indirectly.  Specifically, this stage of the research continues the study of applying simple 

trust based mechanisms to communication enabled SPSs.  The previous stages of the 

research tested the performance of a distributed decision making communication enabled 

SPS when operating through the disruption of communications and system agents.  In the 

previous stages of the research, the SPS operated with no limitation on the resources 

available to monitor and protect the system from disruptions caused by malicious actions 

or malfunctions.  The SPSs in the previous stages of the research monitored every node 

and could detect every disruption.   

This stage of research continues by building on the foundation established in the 

previous stages of the research by adding constraints to the SPS and applying game 

theory principles.  In this final stage of the research, the SPS determines a defensive 

protection strategy when both the SPS and the adversary have limited resources and must 

consider costs and utility.  The introduction of costs limits the amount and the 

effectiveness of security monitoring available to the SPS.  Because of this, the SPS must 

strategically select a limited number of agents to monitor.   

This stage of the research also includes pilot simulations and analytical analysis of 

key design decisions including the processes to determine the minimum number of 
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monitored agents required to defend the SPS and the number of loads to shed.  The 

application of realistic limitations on the SPS’s monitoring and the adversary’s attack is a 

significant departure from previously explored communication enabled SPSs.  By 

providing a distributed processes relying on game theory, the system provides the 

potential for increased effectiveness compared to traditional and recently explored SPSs 

when faced with partially detectable malicious/malfunctioning agents and communication 

losses.   

4.2 Problem Definition 

4.2.1 Goals and Hypothesis 

This research methodology addresses the last stage of the research and builds 

upon the foundation established during the previous three stages of the research.  This 

methodology focuses on one specific hypothesis, but seeks to achieve several goals in the 

process of investigating the hypothesis.  

Hypothesis Stage Four: 

A distributed decision making communication enabled SPS using resource 

constrained simple reputation based trust mechanisms can use game theory 

principles to successfully determine and execute an appropriate SPS load 

shedding strategy while experiencing various levels of network traffic and losses 

and various levels of disrupted agents introduced by a resource constrained 

adversary also using strategy determined from game theory principles. 

During this stage of the research, the primary goal is to test the performance of a 

distributed SPS when faced with cost limitations in terms of how many generator and 



 

65 

load agents can be monitored by a trust mechanism and with limitations in the ability of 

the trust mechanism to detect untrustworthy agents.  A supporting goal is the assessment 

of a game theoretic approach to determine a generator and load monitoring strategy that 

reduces uncertainty of the system state to a level required to produce a reliable load 

shedding strategy.  A second supporting goal is to test a stochastic decision process that 

can determine a load shedding strategy from the beliefs about the system state with the 

uncertainty left by the monitoring strategy.   

A minimum level of success for the SPS is defined by the SPS detecting the 

system disturbance and then maintaining system stability by shedding load quickly 

enough and accurately enough to preventing the system frequency from dropping below 

the critical level.  Increased success results from minimizing the cost of the SPS strategy.  

The cost is minimized by shedding the minimum amount of load required to maintain the 

system frequency above the critical level.  Additionally, the degree of success is 

measured by comparing the distributed SPS agent’s performance to an undefended SPS.  

Finally, the results from the experiments are compared to the results from the previous 

three stages of the research.   

Testing these research hypotheses drives significant changes from the basic 

operation of traditional SPSs.  A traditional SPS does not utilize an adaptive approach to 

maintain system stability.  Traditional SPSs protect system components from damage and 

can prevent large scale blackouts under predetermined scenarios.  The pre-coordinated 

strategy does not result in optimization of the protective actions.  The traditional SPS’s 

lack of dynamic strategy often results in suboptimal capacity shedding. [37] Suboptimal 
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shedding results in the rejection of more load than required increasing cost, or less load 

than required increasing the probability of widespread uncontrolled blackouts.  A 

traditional SPS also fails to consider other factors such as trustworthiness of system 

components.  Rather than a script to deal with predicted disturbances, a communication 

enabled SPS reacts dynamically to the system state while considering many factors not 

considered by a traditional SPS.   

In addition to changes from traditional SPSs, the research hypothesis also drives 

changes from the operation of recently researched centralized decision making 

communication enabled SPSs and the operation of the SPSs in the last three stages of this 

research.  Past research and the previous three stages of this research assumed all 

untrustworthy agents could be detected and that the trust mechanism could be used to 

monitor all of the generator and load nodes. [52] [59] [51] Compared to the previously 

researched distributed SPSs, the revised SPS relying on game theory requires an agent 

monitoring strategy and a revised load shedding strategy to deal with the lack certainty in 

the untrusted agent detection.  Finally, the introduction of uncertainty changes the SPS 

load shedding strategy from a deterministic to a probabilistic process.  

Although there are some advantages to the centralized SPS in terms of network 

capacity and equipment costs, the distributed decision making SPS should have the 

advantage over both traditional and the centralized SPS in terms of reliability and 

security.  As discussed above, a traditional SPS does not rely on any active 

coordination/adaptation to operate.  This lack of coordinated adaptation results in fewer 

network or communication security vulnerabilities in the determination of an SPS 
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strategy.  However, the lack of coordination also reduces the reliability of the traditional 

SPS by reducing the number of scenarios an SPS can successfully recover from.  

Additionally, the lack of coordination prevents the detection of untrustworthy nodes, 

resulting in the possibility that nodes fail to execute SPS commands and the SPS fails to 

maintain system stability.  The reliance on predetermined actions to match possible 

disturbances increases the probability of cascading failures compared to coordinated 

communication enabled SPSs. [39] When comparing the distributed decision making 

communication enabled SPS to the centralized decision making communication enabled 

SPS, removing the centralized decision agent from being a single point of failure will 

likely further increase the reliability and security of the power grid.  Additionally, when 

compared to traditional SPSs and previous examples of centralized decision making 

communication enabled SPSs, the distributed decision making SPS agent using game 

theory should be successful when operating in a wider range of realistic conditions 

including levels of uncertainty.   

4.2.2 Approach 

For practical reasons, power transmission systems require SPS.  System 

malfunctions can create unstable conditions or disturbances.  When disturbances cannot 

be corrected with normal system processes, the system either successfully employs 

protection systems, including SPSs, or risks catastrophic failure.  A catastrophic failure in 

a power transmission grid results in widespread islanding, blackouts and possible 

equipment damage.  The 1965 and 2003 blackouts illustrate extreme examples of what 
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happens when multiple protection systems, including SPSs, fail to successfully react to 

disturbance and keep the power grid stable. [60] [61] 

This research utilizes a scenario that creates a realistic special protection 

condition and evaluates the distributed SPS’s ability to return the system to a stable 

operation.  The creation of a realistic special protection condition requires extensive 

electric transmission grid knowledge.  In this research scenario, a disturbance requiring 

special protection actions is created by introducing system failures and other faults.  The 

failures and faults create a disturbance resulting in an imbalance requiring generators to 

be removed from service.  The sudden removal of generation capacity from the power 

grid creates the disturbance that requires SPS load shedding actions.  Based on data 

gleaned from past large scale blackouts, the conditions created produce a realistic SPS 

disturbance. [4]  

To demonstrate acceptable response to system disturbances, the research seeks to 

test the system operating over a data network with a variety of operating conditions and 

workloads.  The research methodology evaluates the distributed SPS’s ability to operate 

in an unsecure and imperfect environment by introducing system malfunctions that could 

be caused by malicious actions or malfunctioning components.  The SPS relies on simple 

reputation-based trust mechanisms and game theory to determine and execute the actions 

required to maintain system stability. 

In order to test a special protection scheme, scenarios requiring a special 

protection intervention must be created in the simulation.  However, this research is 

limited to evaluating a single scenario and does not address the SPS’s ability to respond 
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to alternate special protection conditions.  The danger of developing a system that 

performs correctly for only one scenario is a significant limitation on this research.  The 

research attempts to keep the distributed SPS’s action general enough to respond to any 

SPS action that requires load shedding.  

4.3 Testing Environment 

 The primary task in the fourth stage of this research is the development and 

testing of an agent based communication enabled SPS with distributed decision making 

agents using game theory and reputation based trust mechanisms.  The testing determines 

the SPS’s ability to successfully maintain stability of the power grid when experiencing a 

significant disturbance that could result in an uncontrolled cascading blackout and while 

experiencing malfunctions and malicious activities.   

A federation of network and power simulation provides the primary evaluation 

method for the testing of the distributed special protection system.  In this circumstance, 

the selection of the simulation environment stems from rational determination and 

circumstance.  First, much of the infrastructure to enable smart grid technologies is not in 

place.  Even the few areas where a limited smart grid capacity exists, experimenting with 

operational power transmission systems introduces excessive risk and cost.  When 

modeling a regional power transmission grid, no reliable analytic models exist for 

measuring the interactions between power transmission systems and the coordination 

enabled by smart grid technologies and data networks.  The tool that enables the 

development and the study of this SPS is a realistic simulation environment for both the 

power system and the communications network.  The simulation environment selected 
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for this research is the combination of the PSS/E power simulator and the NS2 network 

simulator federated together by the Electric Power and Communication Synchronizing 

Simulator (EPOCHS). [50] [62] Figure 2 illustrates the basic configuration EPOCHS 

simulation environments. [51] Inside these simulation programs, specific power 

transmission and network models provide a realistic and validated test environment.  

Using this environment also provides the opportunity to compare the results of new 

research with existing research efforts. [52] [51] [59]  

 

 

Figure 11.  Graphical Representation of EPOCHS Simulation Environments [59] 

 

Each simulation run utilizes the same basic scenario.  Power transmission lines 

are tripped due to malfunction and overloading to create a system imbalance that requires 

the removal of a specific generator from the system.  This results in an imbalance and 

creates an unstable system condition with a dropping system frequency.  The distributed 

PSCAD/EMTD

PSS/E

PSLF

NS2

Unified 

View

Agent

Agent

Agent

RTI

Custom Module

Federated Communication

Combined System

Simulators

Legend



 

71 

SPS uses the data network to determine and execute an SPS strategy to reestablish system 

stability by intelligently shedding load.  The simulation runs for 50 seconds in the 

simulation environment.  The factors utilized in the simulation include levels of 

communication loss and the location of the untrusted nodes.  The research utilizes the 

same randomization seeds as in previous research to better correlate results.  An analysis 

of variance and a comparison of confidence intervals are used to determine the statistical 

significance of the simulation results. [63] 

4.4 Special Protection Test Details 

The SPS test case scenario operates within system boundaries and includes the 

system services, the system under test, the workload the system operates under and the 

factors that are controlled to test and evaluate the component under test.  The component 

under test is the SPS scheme, and each stage of the research evaluates a specific scheme’s 

response to the testing factors.  The system under test includes power transmission grid, 

the communications network, the load and generator nodes, the special protection nodes 

and the distributed special protection scheme.   

4.4.1 Power Transmission Configuration 

The power transmission grid provides the physical connections between 

generator, load nodes and other transmission system components.  This research only 

uses one power transmission configuration.  The configuration used is a modified IEEE 

145-bus 50 generator test case to represent the power transmission system. [64] 

Modification to the original test case changes the behavior of a few generators, adds an 

additional power transmission line, reduces the overall generation capacity and 
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rebalances power flows in order to increase the importance of the power flowing over key 

transmission lines. [51] The degree of interconnection between the nodes in the system 

influences the system’s ability to maintain stability during disturbances.  A well 

connected electrical grid provides more flexibility for transferring power and maintaining 

stability, but often contains interconnections that are not capable of transporting enough 

power to maintain stability during special protection situations. [39] This research models 

a well-connected electric transmission grid. Additional changes to the electrical 

transmission grid are outside the scope of this research.  The IEEE test case is used in 

PSS/E to model transient stability during the simulated SPS actions.  Figure 12 shows the 

logical layout of the Power Grid used in this simulation 
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Figure 12.  Logical Layout of the Power Grid [51] 

 

The power transmission system operates at a specific workload described by the 

amount of power generated, the amount of power required by the loads and the amount of 

transmission capacity on each power transmission line.  As a power transmission grid is 

operated closer to maximum efficiency and minimum safety levels, less reserve capacity 

remains. [39] In addition, larger systems have more flexibility in dealing with disturbance 

than a smaller system where there may be very few strategies for maintaining system 

stability.  In a stable system, the power generated and the power required for the loads are 
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in balance and the transmission lines are within normal operational limits.  When the 

power generation capacity and the system load requirements do not balance, or 

transmission lines operate outside of normal operational limits, the system becomes 

unstable.  Power generation and transmission systems have methods to adjust for 

fluctuations in power generation capacity and load requirements.  A system disturbance 

in this research is a condition that creates an imbalance between the generation capacity, 

the system load and transmission line capacity too large for normal system processes to 

maintain stability.  This simulation utilizes a power generation and load imbalance along 

with overloaded transmission lines to create a disturbance that requires an SPS to 

maintain system stability. 

4.4.2 Communication Network Configuration 

The communication network provides the logical connections between system 

nodes.  The load and generator nodes utilize the communications network to share local 

system observations and to receive commands.  The number and location of the generator 

and load nodes and data link capacity influences the performance of the system.  This 

research only observes one logical communication network configuration.  Additionally, 

the data link capacity used in this research is 100 Mbps, representing the lower boundary 

of expected capability for future smart grid networks and is the minimum capacity 

required for this SPS to operate. [65] The agent based communication enabled SPS’s 

communication network infrastructure closely mirrors the power transmission grid based 

on an assumption that future smart grid networks will likely run along the same routes as 
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the power transmission systems. [37] [53] In a smart grid, the physical and logical design 

of the data network influences the performance and reliability of a data network. [32]  

The operation of the communication network provides a workload used to test the 

SPS schemes.  The network workload for this system includes the background network 

traffic, the amount of packet loss due to malicious actions or malfunctions and the 

number, location and detection probability of untrusted nodes in the system.  The 

background traffic models traffic that may occur at different times in a communication 

network used for SCADA type traffic.  The background network traffic for this research 

is modeled from an analysis of LAN and SCADA network traces and assumption about 

the utilization of future smart grid networks. [59] However, the traffic differs 

significantly from the traffic used in previous research with a higher probability of 

background traffic occurring during the critical first 300-350 ms of the simulation.  

Additionally, non-power related traffic is not used.  Background traffic and 

communication losses influence the performance of the distributed SPS.  Table 7 shows 

the background traffic utilized by this research.  As background traffic and losses 

increase, delays in the network increase and reliability of the network decreases. [66] 

Without appropriate mechanisms to overcome delays and loss, the distributed SPS can 

fail to meet the minimum timing requirements or fail to obtain enough data to develop an 

SPS.  The background traffic in this simulation uses the same background traffic 

mechanisms used in previous research with higher occurrence rates and modified packet 

sizes.  The traffic falls between the medium and high levels from. [59] 
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Table 7.  Background Traffic Rates [66] 

Background Traffic Type Distribution Packet Size Rate 

SCADA Constant 44  Bytes One every 4ms 

per bus 

Power Quality Data Poisson 76-196 Bytes One every 10ms 

per bus 

Routine Internal Traffic Poisson 1000 Bytes One every 20ms 

per bus 

Office-Substation Traffic Poisson 20 Bytes One every 4ms 

per bus 

 

 

4.4.3 SPS, Generator and Load Agent Configuration 

The SPS uses three types of agents: SPS decision agents, generator agents and 

load agents.  Load and generator agents perform three basic tasks.  The load and 

generator agents monitor the attached bus, push observations to the SPS decision agents 

and execute commands received from SPS decision agents.  SPS decision agents perform 

two basic tasks.  They monitor the power gird for large disturbance requiring SPS actions 

and issue SPS commands to the load and generator agents.  The special protection nodes 

utilize the communications network to receive system observations from load and 

generator nodes, to establish and maintain reputation based trust with load and generator 

nodes as well as the other special protection nodes, to detect special protection 

disturbances, to coordinate special protection actions and to execute special protection 

strategies.  The research only evaluates one possible configuration of load, generator and 

special protection nodes.  The NS2 network simulator provides the simulated 

communications network for the transmission and routing of SPS observations and 
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commands.  Figure 13 shows the logical layout of the communication network used in 

this simulation.   

 

Figure 13.  Logical Layout of the Communications Network 

 

4.4.4 SPS Schemes 

The special protection scheme provides the coordination and adaptation of the 

systems special protection strategy to match the actual special protection conditions and 

is the Component Under Test (CUT).  The SPS scheme is the service provided by this 

system.  The ideal special protection service exactly matches system response to a 

disturbance utilizing the lowest cost strategy.  The research relied on pilot simulations to 

reinforce analytical results to determine the number of agents the SPS must monitor to 
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assure a high probability of success when dealing with the maximum level of expected 

disruption from the adversary.  The SPS scheme in this stage of the research uses game 

theory to strategically monitor 22 load nodes with a 90% probability of detecting 

malfunctioning or disrupted agents.  This limitation results in 86,493,225 possible 

strategies to monitor 30 nodes.
1
   

The game formulation for the fourth stage of this research uses several attributes 

to determine the utility and cost for each of the players’ strategies.  The SPS player’s 

primary objective is shedding enough power to maintain stability, with the minimization 

of excess power shed as a secondary objective.  The largest influence on the utility and 

cost for the SPS player is the benefit achieved maintaining system stability.  The benefit 

can be substantial with up to $4-10 Billion saved compared to the estimated losses caused 

by the August 14, 2003 outage. [60] Even the prevention of more routine SPS failures 

potentially saves hundreds of thousands of dollars. [36]  

Additionally, the game theoretic formulation uses the adversary’s limitation of 

disrupting 15 nodes to determine the minimum number of nodes that must be monitored 

and to determine the optimal protection strategy.  The scenario uses a pedagogical abuse 

case focused on detecting improper reporting of system frequency during updates.  

However, the behavior of the trust mechanism is not dependent on this specific abuse 

case, only that the effects of the abuse case can be observed or reported.  The SPS 

scheme requires system updates from the load and generator nodes every 2 ms.  Every 6 

ms the SPS scheme requires a digest update from system components with the data from 

                                                 
1
 See Appendix A for detailed explanation of game theory formulation for the SPS’s strategy 
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the last 60 ms.  The digest updates allow the SPS scheme to reconstruct past system states 

caused by data lost due to background traffic or malicious disruption of the 

communications network.  After application of the protection and disruption strategies 

the SPS uses a stochastic decision process to determine a load shedding strategy taking 

into account the uncertainty of detecting all of the untrustworthy agents by the SPS’s trust 

monitoring mechanisms.  The SPS adjusts the amount of load to be shed and the number 

of agents to receive the load shed commands.  The SPS makes the adjustments based 

upon the assumption that a predictable number of untrusted agents were not detected and 

the desire to maintain a minimum of 98.95% probability for successful load shedding.   

The minimum level of success for an SPS scheme is the ability to maintain system 

stability without system parameters reaching critical levels.  If the system stability 

reaches critical levels, the probability of the power grid becoming unstable increases.  An 

unstable power grid can cause loss of synchronization resulting in uncontrolled islanding 

and widespread blackouts.  System frequency is the critical system characteristic 

measured in this research.  The critical frequency in this system is 58.8 Hz.  Probability 

of special protection failure increases to unacceptable levels when the system frequency 

falls below 58.8 Hz. [39] 

The SPS decision agents use Equation 5 to estimate the steady state frequency 

resulting from a disturbance, and then to determine the amount of load shedding required 

to maintain a predetermined frequency while taking into account the normal operation of 

the generators control systems. [51] 
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Equation 5.  Formula to Compute Difference in System Power [51] (5) 

                           

 Formula (1) shows that the size of the disturbance,   , is equal to the 

system accelerating power,    , which is proportionate to the change in the 

system’s frequency, plus the change in electrical power demand     due to the 

variation in frequency and voltage.    is the key to determining the amount of 

generation that has been lost.  It is important to note that 0- and 0+, respectively, 

denote the time immediately before and after the disturbance.   and     can both 

be obtained based on wide area measurements using the generators’ operating 

status and samples of the system’s frequency before and after the disturbance, but 

measurements must be simultaneously taken at points throughout the region. [51] 

 

 Special protection failures stem from several causes.  First, a special protection 

system can fail to determine an appropriate strategy.  An inappropriate strategy does not 

shed the required load and the frequency drops below 58.8 Hz.  This failure can stem 

from multiple root causes.  The system may have a poor special protection scheme or 

algorithm.  The system may also rely on bad or missing data to determine the special 

protection strategy.  Second, a failure can result from an appropriate strategy executed by 

a system that fails to react to the system disturbance quickly enough.  This failure can be 

caused by a poor special protection scheme or network delays and losses.  Third, a 

special protection failure can result from an appropriate strategy if the load nodes fail to 

execute commands.  Primarily, this failure can result from network delays and losses or 

from poorly performing trust mechanisms.  In this system, communication delays and 

losses model normal network behaviors, malicious attacks and equipment malfunctions.  

4.4.5 Adversarial Scheme 

This stage of the research continues previous communication enabled SPS trust 

research by limiting the adversary to disrupting a maximum of 15 agents, or 50% of the 
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agents in the system and up to 15% of the communications on each link.  This allows for 

an easier comparison to the previous research. [52] For purposes of the developing a 

realistic game model, the level of communication loss from malicious or malfunctioning 

nodes and the number of disrupted nodes is restricted by the assumption that an adversary 

has limited resources, and the costs related to disrupting communication prevent higher 

levels of network disruption.  The maximum cost for the adversary is limited by 

assumptions about the rationality and capability of an adversary discussed in the literature 

review.  These concepts of utility and cost allow the system to be analyzed using game 

theory.  In this scenario, the SPS must shed approximately 700 MW of power in order to 

maintain the critical frequency.  An adversary with limited resources must use the 

resources strategically to maximize the potential of disrupting the SPS load shedding 

strategy.  Table 8 illustrates and highlights that an adversary that strategically disrupts 18 

or more agents can prevent the SPS from shedding the minimum 700 MW of power, 

always disrupting the SPS strategy.   

The adversary in this stage of the research disrupts a proportional combination of 

zero, five, ten or 15 agents and zero, five, ten or 15 percent of the communication.  The 

adversary selects the agents to disrupt strategically, rather than randomly.  This results in 

one strategy when disrupting zero agents, 142,506 possible strategies when disrupting 

five agents, 30,045,015 possible strategies when 10 agents are attacked and 155,117,520 

possible strategies when 15 nodes are attacked.
2
  The amounts of communication 

disruption were selected to challenge the data retransmission mechanisms, but to not 

                                                 
2
 See Appendix A for detailed explanation of the game theory formulation for the adversary’s strategy. 
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require a mechanism for estimating missing information.  The adversary builds its agent 

disruption strategy knowing that the SPS does not monitor every agent, but the adversary 

does not know exactly how many agents are monitored.  The adversary builds the 

strategy achieve maximum utility by causing the system frequency to drop below the 

critical level of 58.8 Hz.  Any utility gained by increasing the amount of load shed by the 

SPS is coincidental. 

The adversary in this scenario disrupts the agents by reporting the wrong 

frequency and by failing to perform SPS commands.  The abuse case used by untrusted 

agents represents a pedagogical abstraction of possible actions taken by a malicious agent 

attempting to disrupt a communication enabled SPS.  Developing additional abuse cases 

is not a focus of this research.   
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Table 8.  System Loads in MW Highlighting Adversaries Critical Values 

Node 123 84 85 133 34 35 51 88 81 

Load (MW) 15.28 24.30 27.40 30.85 45.05 49.19 58.45 69.00 82.20 

Load Available 

to Shed 0.00 15.28 39.58 66.98 97.83 142.88 192.07 250.52 319.52 

# Disrupted 30 29 28 27 26 25 24 23 22 

                    

Node 78 70 71 64 65 83 138 58 86 

Load (MW) 89.00 97.42 103.06 113.96 113.96 118.76 140.19 193.63 206.45 

Load Available 

to Shed 401.72 490.72 588.14 691.20 805.16 919.12 

1037.8

8 

1178.0

7 

1371.7

0 

# Disrupted 21 20 19 18 17 16 15 14 13 

                    

Node 75 66 14 59 63 69 74 27 72 

Load (MW) 320.00 333.20 500.00 607.53 914.04 976.64 

1025.9

0 

1050.2

2 

1098.0

0 

Load Available 

to Shed 

1578.1

5 

1898.1

5 2231.35 2731.35 

3338.8

8 

4252.9

2 

5229.5

6 

6255.4

6 

7305.6

8 

# Disrupted 12 11 10 9 8 7 6 5 4 

                    

Node 73 120 25             

Load (MW) 

1318.0

0 

1607.2

0 1698.74             

Load Available 

to Shed 

8403.6

8 

9721.6

8 

11328.8

8 

13027.6

2           

# Disrupted 3 2 1 0.00           

4.5 Performance Metrics 

 This research determines whether the distributed decision making SPS’s strategy 

successfully maintains system stability when faced with an adversary’s disruption 

strategy.  The primary metric for determining success or failure is the system frequency.  

The critical frequency for this system is 58.8 Hz.  A system that maintains a frequency 

greater than 58.8 Hz successfully maintains stability with a high enough level of 

probability.  If the frequency drops below 58.8 Hz, the special protection scheme failed to 

maintain system stability with a high enough probability. 

In addition to frequency, another important metric is cost.  Any load shed greater 

than required to maintain the frequency above 58.8 Hz results in increased cost.  While 
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an agent must maintain the minimum frequency to demonstrate overall success, an SPS 

that minimizes cost achieves a higher level of success compared to an SPS that maintains 

the minimum frequency at a higher cost.  The amount of excess load shed is directly 

related to the amount the final frequency is greater than 58.8 Hz.  Additionally, the failure 

to maintain 58.8 Hz can be quantified as the cost of load shedding every load in the 

system with additional penalty costs related to the economic impact of a large scale 

power blackout. 

Additional metrics related to the performance of sub-processes also contribute to 

the analysis of the distributed SPS.  Response time is an important sub metric.  This SPS 

requires time to observe the system state and develop trust determinations for the 

generator and load agents.  The SPS must determine and execute the SPS strategy within 

about 300-400 milliseconds or the frequency drops below 58.8 Hz before the execution of 

the SPS strategy.  

4.6 Experimental Design 

 This final stage of the research utilizes a fractional-factorial design.  There are 

four factors in the fourth stage of the research.  Two factors have four levels that are 

proportional to each other as constrained by the adversary’s strategy, one factor with 

155,117,520 possible levels and one factor with 5852925 possible levels.  However, 

separate analyses of the game formulation reveals dominate strategies for both the SPS 

and the adversary given the stated assumption concerning cost and utility.  Using game 

theory concepts the third factor can be reduced to one dominate strategy.  Additionally, 

game theory concepts can reduce the fourth factor to four dominate strategies with each 
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of the strategy dependent on the level selected in the second factor (number of nodes 

attacked).  This results in the need for 8 experiments, 4 without the SPS strategy 

monitoring load agents and 4 with the SPS strategy monitoring the selected load agents.  

Results from this stage of the research are analyzed using Tukey’s Honest Significant 

Difference test to provide an ANOVA analysis between each experimental configuration 

and with standard ANOVA tests between each experimental configuration. [67] 

 NS2 has predefined 64 good random seed values in the rng.cc file for computer 

simulation experiments. These random seed values are equally spaced around a 2
31

 cycle 

of random numbers, where each seed value is approximately 33,000,000 elements apart 

from each other. [62]  The seeds are selected from the rng.cc file to match past research 

to aid a more direct comparison of simulation results with each replication of the 

experiment utilizing a unique seed.  

The pilot study used 64 observations to provide the data required for determining 

the minimum sample size required to meet accuracy requirements.  Additionally the data 

from the pilot studies provides the data to demonstrate statistical significance in the 

performance of different SPS schemes and differences in the SPS’s response to different 

experimental factors.  Figure 14 and Figure 15 provide a histogram and a Q-Q Plot of the 

pilot study.  The histogram and the Q-Q Plot reveal some minor deviation from normal 

with a few higher frequency outliers.  A Shapiro-Wilk normality test confirms the 

deviation from normal with a p-value of 0.002076 and a W value of 0.9107. [68] The null 

hypothesis for the Shapiro Wilk test is that the sample was drawn from a normally 

distributed population.  The W value of 0.9107 is close to one and supports the null 
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hypothesis.  At the 95% confidence interval, the sample’s p-value less than 0.05 results in 

the overall rejection of the null hypothesis.  The population distribution appears to have a 

stronger central tendency than normal with a higher frequency outlier.  

 

 

Figure 14.  Pilot Simulation Histogram for Stage Four (15% Communication Loss and 0 

Untrusted Agents) 
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Figure 15.  Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage Four (15% 

Communication Loss and 0 Untrusted Agents) 

 

Because the goal of the SPS strategy is primarily to determine if the minimum 

frequency remains above 58.8 Hz, the outlier at a higher frequency does not negatively 

affect the stability of the power grid.  A SPS control node quickly receiving enough 

updates to make a load shedding decision despite the communication delays and losses 

causes the outlier.  Figure 16 and Figure 17 illustrate that when removing the outlier the 

data conforms to normal distribution.  A Shapiro-Wilk normality test confirms the normal 

distribution with a p-value of 0.298 and a W value of 0.9774. [68]  The null hypothesis 

for the Shapiro Wilk test is that the sample was drawn from a normally distributed 

population.  The W value of 0.9774 is close to one and supports the null hypothesis.  At 

the 95% confidence interval, the sample’s p-value greater than 0.05 results in the overall 

acceptance of the null hypothesis. 
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Figure 16.  Revised Pilot Simulation Histogram for Stage Four (15% Communication 

Loss and 0 Untrusted Agents) 

 

Figure 17.  Revised Pilot Simulation Q-Q Plot w/ 95% Confidence Interval for Stage 

Four (15% Communication Loss and 0 Untrusted Agents) 
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Equation 6 is used to determine the minimum number of replications required to 

reach a 99% confidence interval for determining the mean of the simulation results.  To 

compensate for deviation from normal and outliers the number of replications is tripled.  

The maximum error is determined from the pilot simulations.  The mean frequency form 

the pilot simulation is 58.90854 Hz with a minimum frequency of 58.8622 Hz.  The 

maximum error (E) = 0.02 is selected by using approximately one third the difference 

between the minimum frequency and the critical frequency (58.8 Hz).  Additionally, the 

standard deviation for the pilot simulation is 0.02605121.  The Z value used for 99% 

confidence interval is 2.58.  Equation 6 determines the minimum number of replication is 

12, and this research uses 36 replication.  This results in 288 simulation trials for the main 

research.  The research also includes several additional pilot simulations to provide the 

data utilized to make key design decisions such as the number of nodes to defend and to 

compare the strategic strategies to random strategies. 

Equation 6.  Determine the Required Number of Experimental Replications Required 

[69] (6) 

         
    

  
          

               

     
 

4.7 Methodology Summary 

 This paper describes the research methodology used to evaluate a distributed 

decision making communication enabled SPS.  The methodology defines and discusses 

the power transmission system and the distributed decision making SPS as the system 

and component under test.  Additionally, the characteristics of the system are analyzed to 

determine the workloads, metrics, parameters and factors that affect the performance of 
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the system.  Simulation is selected as the appropriate evaluation technique and the 

experimental design required to achieve a 99% confidence interval is identified.  This 

research methodology identifies a method to collect valid data required to evaluate and 

analyze the performance of the distributed decision making communication enabled 

special protection system. 
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V. Analysis and Results for Stages One-Three 

5.1 Chapter Overview 

This chapter presents results and analyses of experimental simulations from the 

evaluation of a distributed Special Protection Systems (SPSs) during the first three stages 

of the research.  The results and analysis from the first stage of the research is presented 

and the results are compared to results from previous research concerned with applying 

trust to a centralized SPS.  Next, results and analyses from the second stage of the 

research is presented and results are compared to results from previous research efforts 

concerned with overcoming communication delay and loss.  This chapter will then 

present the results and analyses of the third stage of the research.  Finally, the chapter will 

conclude with an overall analysis of the first three stages of the research. 

5.2 Stage One:  Distributed SPS with Simple Trust Management  

 This first set of experiments was conducted to assess the viability of an SPS using 

a distributed decision making approach.  The experiments were based on Fadul’s SPS 

research with modification to the behavior of the trust mechanism and a delay in the 

selection of an SPS load shedding strategy.  Pilot simulations using Fadul’s original trust 

mechanism occasionally produced false positives by indicating a trustworthy node was 

not trusted.  These false positives typically occurred during a transient period such as 

immediately after generator 93 was removed from service.   

Fadul’s trust mechanisms operated without considering any historical data.  The 

original trust mechanism evaluated trust using an instantaneous snapshot of the system 
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taken every 2 milliseconds.  The trust levels used to determine the SPS shed strategy 

were based upon the trust levels at the time the SPS determined the system needed load 

shedding for at least 8 milliseconds.  The 8 milliseconds of detecting the requirement for 

load shedding prevented the system from shedding load due to the capture of a secondary 

transient event such as the opening or closing of a breaker for a transmission line.   

The revised trust mechanism delays the trust decision 40 milliseconds to allow for 

the receipt of communication delayed updates and considers the trust updates received 

over the previous 42 ms (21 updates).  Pilot simulations demonstrated that this 

approach’s consideration of past trust values prevents false positive detection of 

trustworthy nodes.  Additionally, pilot studies helped select 36 milliseconds of load 

shedding detection before determination of an SPS load shedding strategy for the 

distributed decision making SPS.  This ensured missing data from communication delays 

and losses and secondary transient events do not trigger the determination and execution 

of an SPS load shedding strategy.   

Fadul’s SPS from previous research also utilized a different method for selecting 

nodes for load shedding.  The process used in Fadul’s SPS determined the minimum 

number of trusted nodes that could meet the load shedding requirements when shedding 

up to 20% of each individual trusted node.  This typically resulted in 3-5 agents being 

selected to shed load.  The load shedding process used by the revised distributed decision 

making SPS in the first stage of this research selects the largest 12 trusted nodes and 

divides the load shedding evenly between the 12 nodes.   
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5.2.1 Results and Analysis 

 The results of the first stage of the experiment demonstrated that the distributed 

decision making SPS maintained the system above the critical frequency of 58.8 Hz at all 

levels of adversarial disruptions.  When compared to previous research, the revised 

distributed decision based SPS achieved similar performance in terms of successful 

operation of the SPSs when defending the system.  When not defended, the revised 

distributed decision based SPS achieved a similar mean steady state frequency.  

However, the revised distributed load shedding process resulted in a significant increase 

in the standard deviation observed when the system was not defended.  Figure 18 and 

Figure 19 show the results from the first stage of the research and the results from 

previous research.  These figures illustrate that other than the difference in the standard 

deviation caused by the different load shedding processes, the distributed decision 

making SPS and the centralized decision making SPS from previous research produce 

similar results both when defending the SPS and when not defending the SPS.  The 

distributed decision making SPS also sheds very little excess load indicated by the final 

frequency that is close to 58.8 Hz. 

 A visual analysis of Figure 18 indicates there is not a difference between the 

different levels of untrusted agents when the SPS defends the system.  However, there 

appears to be a difference between the undefended and the defended results and there 

appears to be a difference between the undefended results at each level of untrusted 

agents.  An ANOVA analysis between several means reinforces the visual analysis. The 

ANOVA test indicates indicating there is a significant difference in means with p < 0.05. 
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Figure 18.  Stage One Results 

 

Figure 19.  Previous Research Results [52] 
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5.2.2 Investigative Questions Answered 

The analysis of the first stage of this research indicates that a distributed decision making 

communication enabled SPS using simple reputation based trust can successfully 

determine and execute an appropriate SPS load shedding strategy while experiencing 

various levels of disrupted agents.  Additionally, the distributed decision making SPS 

performs similarly to the centralized decision making SPS from previous research.  

5.3 Stage Two:  Distribute SPS with Background Traffic and Communication 

Loss Mechanism 

 The second set of experiments was conducted to test the data retransmission 

scheme developed to mitigate data loss due to background traffic and cyber-attacks that 

disrupt communications.  In this scheme, load and generator agents push one update 

every 2 ms and push the last 30 updates every 6 ms.  This allows the SPS decision agents 

to reconstruct past system states that were not updated due to communication losses.  

This stage of the research focused on just the communication loss and does not include 

attacks to disrupt individual agents.  Additionally, as the amount of time between the 

rejection of generator 93 and the determination of a load shedding strategy increases, the 

system generators continue to slow down, losing intertia.  The loss of inertia requires 

more capacity to be shed in order to maintain system stability.  For this reason, the 

formula to determine the amount of load that must be shed is adjusted to compensate for 

the delays caused by communication losses. 
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5.3.1 Results and Analysis 

 The results of the second set of experiments indicates the distributed decision 

making SPS using a retranmission scheme to overcome communication disruptions 

successfully maintains the system above the critical frequency at all levels of 

communication disruption.  Additionaly, the results indicate that the standard deviation 

grows as the amount of disruption increases.  The growing standard deviation is a result 

of the variation in the amount of time required for the SPS to reconstruct the system state 

due to communication losses.  ANOVA analysis indicates there is a statistical difference 

between the system operating with no communcation disruption and the system operating 

with all three levels of disruptions (p < 0.05).  ANOVA analysis also indicates there is no 

statistical difference between 5% and 10% communication disruption or between 5% and 

15% communication disruption (p > 0.05), however the difference between 10% and 15% 

communication disruption is statistically significant (p < 0.05).  This anomoulous 

conclusion results from the difference in the standard deviation observed at each level of 

disruption.  The difference in the system response indicates the communication disruption 

changes the response of the system.  However, the levels of communication loss 

evaluated by the experiments in this stage of the research do not prevent the successful 

operation of the SPS. 
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Figure 20.  Stage Two Results (Communication Disruption) 

 

5.3.2 Investigative Questions Answered 

 A distributed decision making communication enabled SPS using simple 

reputation based trust can successfully determine and execute an appropriate SPS load 

shedding strategy while experiencing various levels of network traffic and losses.  The 

analysis of the second stage of this research indicates that the retransmission scheme used 

in this distributed decision making SPS successfully overcomes the delays and losses 

caused by background traffic and up to 15% communication loss due to disruptions 

caused by malfunctions or cyber-attacks.  
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5.4 Stage Three:  Distributed SPS with Background Traffic, Communication 

Loss and Revised Trust Management Mechanism 

 The third stage of this research tests the distributed decision making SPS while 

operating with both disruptions to individual agents and disruptions in communication.  

In this stage, the SPS uses the reputation based trust mechanisms to detect malfunctioning 

or disrupted load agents and overcomes communication delays in order to determine and 

execute the load shedding strategy. 

5.4.1 Results and Analysis 

 The results from the third stage of this research indicate the distributed decision 

making SPS successfully maintains the system above the critical frequency at all 

evaluated combinations of communication disruption and disruption of nodes.  ANOVA 

analysis indicates there is a significant difference between the system response when 

utilizing the trust based mechanisms to protect the system and when not using the trust 

based protection mechanisms (p < 0.05).  ANOVA analysis indicates there is no 

significant difference in the system response when using both the trust mechanisms and 

the retransmission scheme when faced with the combination of communication and agent 

disruptions evaluated in this stage of the research (p > 0.05). 
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Figure 21.  Stage Three Results (Bad Nodes and Communication Losses) 

  

 In addition to the final experimental results, the operation of the trust mechanism 

is illustrated and analyzed.  Figure 22 shows the initial instantaneous trust values 

determined by the SPS trust mechanism and Figure 23 shows the average initial trust 

values for the trusted and untrusted nodes.  These trust determination are based upon the 

most recent observations used to determine the overall trust for each node.  The initial 

trust determinations are delay 40 ms to allow the control agents to reconstruct the system 

state from data received by the retransmission mechanism.  This figure shows that the 

trusted nodes, nodes 25, 34, 35, 59, 64, 65, 67, 70, 71, 72, 73, 78, 85, 88, 133 and 138, 

maintained trust above 85 while the untrusted nodes, nodes 14, 27, 51, 58, 63, 66, 69, 74, 

75, 81, 83, 84, 86 and 120, maintained trust below 85.  Similar to the initial values, 

Figure 24 shows an intermediate instantaneous trust value determined by the trust 
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mechanism and Figure 25 shows the average trusted and untrusted nodes.  Theses 

intermediate trust value determinations are delayed 60 ms.  This delay results in 

additional reconstruction of past system states increasing the number of nodes strongly 

trusted or untrusted.   Finally, Figure 26 shows the final trust values used by the system.  

The final trust values are determined using instantaneous trust values averaged over a 40 

ms period.  The 40 ms period used to determine the final trust values begins at 40 ms in 

the past and ends to 80 ms in the past.  Figure 27 shows the average of the final trust 

values for the trusted and untrusted nodes.  By using trust values determined using 40 ms 

of history, the trust mechanism prevents false positive and false negative trust 

determinations due to shorter term transient responses.   

 

Figure 22.  Individual Initial Instantaneous Trust Values 
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Figure 23.  Average Initial Instantaneous Trust Values 

 

Figure 24.  Individual Intermediate Instantaneous Trust Values 
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Figure 25.  Average Intermediate Instantaneous Trust Values 

 

Figure 26.  Individual Final Trust Values 
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Figure 27.  Average Final Trust Values 

 

5.4.2 Investigative Questions Answered 

 A distributed decision making communication enabled SPS using simple 

reputation based trust can successfully determine and execute an appropriate SPS load 

shedding strategy while experiencing various levels of network traffic and losses and 

various levels of disrupted agents.  The analysis of the second stage of this research 

indicates that the reputation based trust mechanism and communication retransmission 

scheme used in this distributed decision making SPS successfully maintains the system 

above the critical frequency when operating with a combination of up to 15 disrupted 

nodes and up to 15% communication losses with background traffic.   
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5.5 Summary of Stages One-Three 

 The first three stages of this research provided the testing and evaluation to 

validate the development of a communication enabled distributed decision making SPS 

using reputation based trust to protect an SPS load shedding process from malfunctions 

and cyber-attacks.  The first two stages of the research evaluated revised mechanisms for 

overcoming malfunctioning or disrupted nodes and communication disruptions due to 

background traffic and cyber-attacks.  The third stage evaluated the combination of the 

new mechanisms from the first two stages of the research and validated the SPS’s 

response when reacting to malfunctioning or disrupted nodes and to communication 

losses at the same time.  Additionally, the first three stages of the research demonstrated 

that an SPS load shedding scheme can determine and execute a load shedding strategy 

using a distributed process rather than a centralized process removing a possible single 

point of failure.  Finally, the first three stages of the research validated the development 

of a communication enabled distributed decision making SPS using reputation based trust 

that could be adapted to use a game theoretic approach to reduce the cost of defending the 

SPS from malfunctions and cyber-attacks.  
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VI. Analysis and Results for Stage Four 

6.1 Chapter Overview 

This chapter presents results and analyses of experimental simulations from the 

evaluation of a distributed Special Protection Systems (SPS) utilizing a game theoretic 

approach to strategically defend the SPS’s load shedding process.  In this stage of the 

research, the SPS is cost constrained preventing the monitoring and defense of every 

node.  Additionally, the cost constrained adversary also utilizes strategy to maximize the 

probability of disrupting the SPS load shedding process.  In addition to the primary 

results from the optimized SPS and adversarial strategies, pilot studies that guided design 

decisions and the results from alternative SPS and adversarial strategies are presented to 

demonstrate the development of the game theoretic approach and properties of the game 

theoretic approach.  Additionally, the performance of the SPS when facing the random 

adversarial strategy from the third stage of the research is compared to the performance 

of the optimized adversarial strategy from this stage of the research.  Finally, the chapter 

will conclude with an overall analysis of this stage of the research. 

6.2 Results and Analysis 

 After analytically developing an optimal monitoring and protection strategy and 

the optimal adversarial node disruption strategy, the first stage of this research involved 

running pilot studies to validate the strategy.  The initial pilot studies evaluated the SPS 

load shedding strategy when defending different numbers of nodes.  Initial pilot studies 

reinforced the conclusion that the SPS must defend 22 nodes to ensure a greater than 98% 



 

106 

probability of successful load shedding actions given the 90% probability of detecting the 

nodes disrupted by the adversary’s attack strategy.  Figure 28 shows the results from the 

first round of pilot studies and demonstrates that the SPS successfully protected the load 

shedding process when defending 22 nodes by keeping the system frequency above 58.8 

Hz.  However, additional refinements in the process of selecting the trusted load nodes 

reduced the number of nodes required to provide a 98% probability of success to 21.  

Figure 29 shows the results from the second round of pilot studies where the SPS 

successfully protected the load shedding process when defending 21 nodes by keeping 

the system frequency above 58.8 Hz.  The remainder of the research continued with an 

SPS monitoring and protection strategy defending 22 Nodes. 

 

 

Figure 28.  Stage Four Initial Pilot Study to Reinforce the Analytical Determination of 

the Minimum Number of Agents Required to Defend the SPS Load Shedding Process 
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Figure 29.  Stage Four Revised Pilot Study to Reinforce the Analytical Determination of 

the Minimum Number of Agents Required to Defend the SPS Load Shedding Process 

 

 After validating the number of nodes that the SPS must defend, the examination 

of the SPS continued with the primary experiment for this stage of the research.  The 

primary research evaluated the communication enabled distributed decision making SPS 

using reputation based trust and game theory to defend the SPS load shedding strategy 

while an adversary attacks the system by disrupting a proportional combination of up to 

15 nodes and up to 15% of the communication.  Figure 30 shows the results from this 

stage of the research’s primary experiment.  The SPS in this stage of the research 

successfully defended the SPS load shedding process by keeping the frequency above 

58.8 Hz when operating against each level of the adversary’s disruption.  Additionally, 

there appears to be a statistically significant difference in the results when defending the 

SPS load shedding process and when not defending the SPS load shedding process from 
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malfunctioning or disrupted nodes.  An ANOVA analysis of the experimental results 

reinforces the conclusion that there is a statistically significant difference between the 

defend and undefended SPS load-shedding process (p < 0.05). 

 

Figure 30.  Primary Results for Stage Four of the Research 

 

 In addition to the experiments to determine the success or failure of the SPS, 

further experiments highlight the game theoretic properties of the SPS and adversary.  A 

premise of the strategy used for the defense of the load shedding process is that the 

strategy is an optimal strategy.  More specifically, the strategy is a dominate strategy and 

also produces a Nash Equilibrium when the adversary employs an optimal strategy.  To 

be a weakly dominate strategy; the strategy must result in a equal or better utility 

compared to other possible strategies.  To be a Nash Equilibrium neither strategy benefits 

from changing unilaterally. 
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Figure 31 and Figure 33 demonstrate the SPS’s strategy as a weakly dominate 

strategy.  Figure 31 shows that the optimal strategy produces a higher utility by 

maintaining the critical frequency above 58.8 Hz for all combinations of the adversary’s 

optimal attack and the bad defensive strategy results in the failure to maintain the critical 

frequency above 58.8 Hz during attacks on ten or 15 nodes with no statistical difference 

in the final frequency when five nodes are attacked.  Figure 33 illustrates that compared 

to the optimal defensive strategy, a random SPS defense maintains the critical frequency 

above 58.8 Hz when the adversary attacks five or ten nodes with no statistical difference, 

however the random strategy results in a statistically significant excess amount of load 

shedding during attacks on 15 nodes.  The analysis of the figures is reinforced by 

ANOVA analysis with (p < 0.05) for results that are statistically different and (p > 0.05) 

for results that are statistically the same. 

The game formulation used to model this system is not a zero sum game.  The 

utility for the adversary is not directly related to the utility for the SPS.  In this game 

formulation the adversary is not fully aware of how many nodes are protected by the SPS 

monitoring strategy.  The optimal offensive strategy is also a weakly dominate strategy.  

The adversary achieves the greatest utility by maximizing the probability that the 

frequency will drop below 58.8 Hz.  Figure 32 illustrates how the adversary achieves the 

greatest probability of causing the frequency to drop below 58.8 Hz when using an 

optimal strategy when attacking 10 or 15 nodes.  The results when optimally attacking 5 

nodes is statistically different than when attacking with a bad offense, however the results 

do not indicate a higher probability of dropping the frequency below 58.8 Hz.  The 
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analysis of the figures is reinforced by ANOVA analysis with (p < 0.05) for results that 

are statistically different and (p > 0.05) for results that are statistically the same. 

Analysis of Figure 31, Figure 32, Figure 33 and Figure 26 supports the premise 

that the optimal defensive and adversarial strategies are at a Nash Equilibrium.  When the 

adversary’s strategy changes from optimal and the SPSs defensive strategy remains 

optimal, the adversary achieves less utility.  Additionally, when the SPS changes the 

defensive strategy from optimal and the adversary’s strategy remains optimal the SPS 

achieves less utility.  Figure 31 and Figure 33 demonstrate that the optimal defense 

strategy performs better than, or equal to, both the bad and random defensive strategies 

and there is no incentive for the SPS to unilaterally change from the optimal strategy to 

another strategy.  ANOVA analysis provides support for this observation by indicating a 

(p < 0.05) statistically significant difference in between the performance of the optimal 

and bad defense when 10 and 15 nodes are attacked and between the performance of the 

optimal and random defense when 15 nodes are attacked.  All of the other levels of attack 

produce statistically similar results with (p > 0.05).  Figure 32 and Figure 34 demonstrate 

that the optimal offensive strategy performs better than, or equal to, both the bad and the 

random offensive strategies and there is no incentive for the adversary to unilaterally 

change from the optimal strategy to another strategy.  ANOVA analysis provides support 

for this observation by indicating a (p < 0.05) statistically significant difference between 

the performance of the optimal and bad offense when 10 and 15 nodes are attacked and 

between the performance of the optimal and random defense when 15 nodes are attacked. 

All of the other levels of attack produce statistically similar results with (p > 0.05).  
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Figure 31.  Stage Four Bad Defensive Strategy vs. Optimal Adversarial Strategy Results 

 

 

Figure 32.  Stage Four Bad Adversarial Strategy vs. Optimal Defensive Strategy 
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Figure 33.  Stage Four Optimal Adversarial Strategy vs. Random Defensive Strategy 

 

Figure 34.  Stage Four Optimal Adversary vs. Random Defensive Strategy 
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Figure 35.  Stage Four Random Adversarial Strategy vs. Random Defensive Strategy 

 

 Additional experiments tested the performance of the optimal game theoretic 

attack strategy against the defense strategy used in the third stage of the research while 

constraining the SPS monitoring to a 90% probability of detecting the disrupted SPS 

node.  Differences in the performance illustrate the contributions of the game theoretic 

approach used to defend the SPS load shedding process.  Figure 36 demonstrates that 

there is a statistically significant difference in the results when comparing the defensive 

strategy from stage four to the defensive strategy used in stage three of this research.  The 

defensive strategy used in stage three fails to maintain the minimum observed frequency 

above 58.8 Hz at all levels of attack with a significantly poorer performance when 15 

nodes are attacked.  Observations are reinforced by ANOVA analysis with a (p < 0.05) 

for all statistically different observations. 
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Figure 36.  Stage Four’s Optimal Adversarial Strategy vs. Stage Three’s Defensive 

Strategy 

 

 A final set of experiments tested the performance of further resource constrained 

SPSs against an adversary with a random attack against 15 nodes.  Figure 37 

demonstrates that when monitoring only 16 nodes, the SPS load shedding strategy 

remains successful against a random adversary with a 90% probability of detection.  

When the SPS defended nine nodes, the SPS successful shed the required load 47.2% of 

the time.  Additionally, the strategic approach for defending 10 nodes performed 

equivalently to the non-strategic approach defending all 30 nodes against a random 

adversary with a 90% probability of detection.  ANOVA analysis confirms that the 

resource constrained SPS using an optimal strategy performs statistically the same (p > 

0.05) as the non-strategic strategy defending all 30 nodes.  This result shows the strength 
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of the stochastic decision process that is part of the game theoretic approach for 

defending the SPS. 

 

Figure 37.  Stage Four Test to Determine Effects of Additional Resource Constraints on 

the SPS strategy vs. a Random Adversary 

 

6.3 Investigative Question Answered 

This research demonstrates that a distributed decision making communication 

enabled SPS using a resource constrained simple reputation based trust mechanisms can 

use game theory principles to successfully determine and execute an appropriate SPS 

load shedding strategy while experiencing various levels of network traffic and losses and 

various levels of disrupted agents introduced by a resource constrained adversary also 

using a strategy determined from game theory principles.  Additionally, this stage of the 

research demonstrates that a strategic relationship between a communication enabled 
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distributed decision making SPS and an adversary attempting to disrupt the execution of 

the SPS can be modeled and analyzed using game theoretic principles. 

6.4 Summary of Stage Four 

The final stage of this research provided results from the testing and evaluation 

used to validate the development of a communication enabled distributed decision 

making SPS using reputation based trust and game theory to protect an SPS load 

shedding process from malfunctions and cyber-attacks.  This stage of the research 

analyzed the use of game theoretic principles to determine an optimal SPS protection 

strategy and an optimal attack strategy given resource constraints.  The research 

continued by examining the test results from various alternative strategies to demonstrate 

the optimality of the primary SPS protection and attack strategies and to demonstrate the 

game theoretic properties of the strategy.  The results from this stage of the research 

demonstrate the success of the game theoretic approach for defending the SPS load 

shedding process against adversarial actions.  
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VII. Conclusions and Recommendations 

7.1 Chapter Overview 

This chapter reviews the high level goals and results from this research effort to 

develop and test a new approach to performing SPS load shedding actions using a 

distributed decision making procedure and the application of game theory to optimize the 

protections of the SPS load shedding process.  The chapter continues by addressing the 

significance of this research and makes recommendations for action.  Finally, this chapter 

suggests areas for future research to further validate the results observed and provides 

additional areas to further improve and refine this approach to defending an SPS load 

shedding process. 

7.2 Conclusions of Research 

This research demonstrates that an SPS load shedding strategy can be done in a 

distributed manner.  Additionally, the results demonstrates that simple reputation based 

trust and retransmission mechanisms can overcome detectable and partially detectable 

attacks against a communication enabled distribute decision making SPS.  Finally, this 

research demonstrates that game theory can be used to model and analyze the strategic 

relationship between resource constrained monitoring and defense strategies and a 

resource constrained adversary. 

7.3 Significance of Research 

While the results of this research demonstrate the success of this significant 

departure from traditional SPSs, the research is an observational study.  This research 
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determined that the distributed decision making approach and use of game theory to 

performing SPS load shedding action works in this specific scenario and warrants further 

investigation to determine applicability to other scenarios.  Aspects of this experiment are 

randomized.  However, there is only one scenario evaluated, and only one solution 

evaluated.  No inference to other scenarios or other solutions can be made from this 

research. 

7.4 Recommendations for Action 

 This research suggests that further development and testing of distributed 

processes and the application of game theory to model strategic relationships can 

strengthen the defense of the smart grid and other SCADA systems.  The outcome of this 

research should motivate further development and testing to validate the results observed 

in this research.  If further development and testing reinforces the results from this 

research and demonstrates the applicability to a wider range of power disturbance 

scenarios, the use of distributed control process and game theory should be integrated 

into future smart grid designs.  

7.5 Recommendations for Future Research 

This research represents a significant departure from traditional SPSs, recently 

researched SPSs and control mechanisms in current SCADA systems.  Additionally, the 

demonstrated success of this research generates a significant number of recommendations 

for future research.  Suggested areas for further research: 
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1. Test this distributed control approach and game theoretic model with more 

realistic abuse cases requiring more sophisticated trust and or detection 

mechanisms. 

2. Evaluate additional SPS load shedding scenarios added to this power grid 

model to determine the response to multiple possible disruptions requiring 

different amounts of load shedding. 

3. Adapt and test this SPS load shedding methodology with other equally or 

more sophisticated power grid models to further examine the application of 

the distributed decision making process and game theory to improve the 

protection of SPSs and other smart grid functions. 

4. Analyze the power grid and communications network to optimize the number 

and location of the SPS control nodes and compare the results to this and 

previous research.   

5. Adapt and evaluate system state estimation mechanisms from past research to 

overcome greater amounts of communication losses and delays.   

6. Adapt this decentralized process to a more traditional agent based peer-to-peer 

network architecture with each SPS control node receiving updates from 

specific load and generator nodes and requiring the SPS control nodes to 

develop a load shedding strategy cooperatively rather than independently as is 

done in this research.  
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7.6 Summary 

In an effort to improve the security and protection of United States’ critical 

infrastructure, this research investigates a new approach to help secure and protect the 

SPS load shedding strategy that is an integral part of the modern power grid.  The 

research introduces many concepts and fundamental properties of SCADA systems, the 

future smart gird, SPSs, trust systems, game theory and previous research efforts to 

develop and protect a communication enabled SPS.  Next, this thesis details the 

methodology used to evaluate the four stages of this research.  The results from the 

research methodology demonstrates the successful development of a communication 

enabled distributed decision making SPS using simple reputation based trust and game 

theory to overcome cyber-attacks against the power grid.  Finally, this research concludes 

with recommendations for action and future research. 
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Appendix A. SPS Game Theory Formulation  

The game in this research is a hybrid, single, simultaneous, asymmetric, non-zero 

sum game with incomplete knowledge.  The SPS players are assumed to have some 

limited communication capability so that the execution of the strategy is coordinated.  

However, there is no mechanism to enforce cooperation; the strategies selected by each 

SPS are based upon beliefs about the state of the game and the assumed rational actions 

of the adversary.  The adversary in this research is modeled as a single player; no 

coalition or coordination is required.  The game is a one-time game where each player 

selects an action without knowing the actions selected by the other players.  The utility 

and cost functions for the players do not sum to zero or any other constant and are not 

symmetric.  Finally, the game is Bayesian in nature.  The SPS is not fully aware of all the 

strategies available to the adversary and the adversary is not fully aware of all the 

strategies available to the SPS.  Players make assumptions and use probabilities derived 

from limited observations and beliefs about rational behavior to select defense and attack 

strategies. 

 The game played by the SPS and the adversary is the first step in the process of 

determining an SPS load shedding strategy.  The SPS does not know how many nodes or 

how much communication the adversary can disrupt as part of an attack strategy, but can 

make predictions about the performance of possible strategies.  From the SPS’s 

perspective, the goal of the game is to reduce the level of uncertainty in the system state 

so that a load shedding decision can be made that takes uncertainty into consideration.  

Once the SPS executes its strategy, the SPS uses systems observations to form beliefs 

about the game state.  From the beliefs, the SPS makes a load shedding decision that 
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considers the stochastic nature of the system state.  The SPS optimizes the defense 

strategy for maximum effectiveness against the possible adversary attack strategies 

believing that there are constraints that prevent the attack of more than 15 nodes. 

 From the adversary’s perspective, the goal is to disrupt the SPS load shedding 

decision process so that the SPS fails to maintain system stability after a disturbance by 

strategically disrupting load nodes and/or disrupting communication.  The adversary does 

not know how many nodes are protected by the SPS, but can predict the performance of 

possible SPS protection strategies.  The adversary optimizes the attack strategy for 

maximum effectiveness against the possible SPS defensive strategies believing that there 

are resource constraints that prevent the protection of every node. 

In the execution of the SPS actions, the SPS decision agents make assumptions 

about the system state based formed from observations and beliefs about the adversary.  

Specifically, the SPS decision agents assume the adversary can disrupt a combination of 

up to 15 agents or 15% of the communication, and that the SPS detects disrupted agents 

with a 90% normally distributed probability.  SPS decision agents use predictions based 

on the number of disrupted agents detected to determine a load shedding strategy.  The 

SPS decision agents compensate for possible undetected disrupted agents and adjust the 

load shedding strategy to ensure system stability with a minimum of 98% probability of 

success.  Further, the SPS load shedding strategy also attempts to minimize the amount of 

excess load shedding after guaranteeing a 98% probability of success.  Ensuring the 

required probability of successful load shedding actions requires the selection of enough 

excess load to negate the number of bad nodes that may receive shed commands.  

Although a higher level of probability for success is desirable, analysis of the game 
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environment during pilot studies revealed that higher levels of probability significantly 

increase the number of loads and the amount of power that must be shed.   

In terms of utilities, the SPS gains maximum utility by ensuring the frequency 

remains above 58.8 Hz.  The adversary gains maximum utility by causing the frequency 

to drop below 58.8 Hz.  The adversary gains a smaller amount of utility by causing 

excess load shedding.  Costs for the SPS include the expense of defending each agent and  

the expense related to shedding excess load.  Costs for the adversary include the expense 

of attacking each agent and the costs related to attribution.  The maximum cost for the 

adversary is limited by assumptions about the rationality and capability of an adversary.  

A secondary justification for the limitations is that pilot simulations and analytical 

evaluation of the game demonstrated that an unconstrained adversary is unbeatable.  The 

maximum costs for the SPS is limited by the assumption that the power grid operator will 

desire to maximize profit by minimizing expenses.   

Equation 7.  General Game Formulation [48] [14] [70] [58] (7) 

          

Equation 8.  SPS Game Theoretic Formulation (8) 
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G – Game Components 

N – Set of Players 

A – Action Space 

U – Set of Utility Functions 

nsps – SPS Players (each operates independently, but with the same strategy) 

nadv – Adversary Player 

asps – Set of Actions Available to SPS 

aadv – Set of Actions Available to Adversary 

usps – SPS Utility Function 

uadv – Adversary Utility Function 

psuccess – Probability of Success 

pfailure – Probability of Failure 

pattribution – Probability of Failure Being Attributed to Adversary 

In this game formulation, the actions that the SPS and the adversary select 

determines the probability of success and failure as well as the probability of the attack 

being attributed to the adversary.  As revealed in Chapter 4, the SPS has 5,852,925 

possible strategies from which to select and the adversary has a different number of 

strategies from which to choose based on the number of nodes selected for attack.  When 

selecting to attack 15 nodes, the adversary has 155,117,520 possible strategies, 
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30,045,520 possible strategies when attacking 10 nodes, and 142,506 possible strategies 

when attacking 5 nodes.  At the three levels of attack evaluated in this research there are 

1.08458e+15 possible combinations of strategies.  However, analysis of the game space 

reveals dominate strategies for both the SPS and the adversary.   

At the simplest level, the goal of the SPS is to develop trust over enough nodes so 

that even with the uncertainty left by the 90% detection rate for the adversary’s attacks, a 

stochastic decision process can determine a successful load shedding strategy.  The 

stochastic decision process uses the number of untrusted nodes detected to estimate the 

number of nodes that are attacked by the adversary but not detected with 98% or greater 

probability.   

For example, if the SPS detected 10 untrusted nodes, there is 98.9% probability 

that there are four or less undetected nodes being attacked by the adversary assuming a 

normal distribution of undetected attacks on nodes.  The stochastic decision process 

would compensate for this uncertainty by issuing load shedding commands to four 

additional trusted nodes.  In the worst case, there were more than four undetected nodes 

being attacked by the adversary and the SPS strategy fails to maintain the system 

stability.  In this scenario there is less than a 1.1% probability of this event.  Typically, 

less than four nodes were undetected so a number of the additional load shedding 

commands results in excess load shedding as evidenced by final frequencies greater than 

about 58.9 Hz.  Best case, there were exactly four undetected nodes and all four 

additional load shedding commands compensated for the four undetected nodes and 

resulted in an optimal amount of load shedding.  The probability of success used in the 

SPS’s utility function is the probability that the stochastic decision process results in a 
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successful load shedding strategy.  The probability of failure in the SPS utility function is 

the one minus the probability of success. 

For the adversary’s utility function, the probability of success is determined the 

same way as the SPS’s probability of failure.  However, the adversary does not know 

with certainty how many nodes are being defended by the SPS and develops a strategy 

with the greatest probability of success given a range of possible numbers of SPS nodes 

being defended.  A goal for the adversary is to attack nodes that are not monitored along 

with nodes that are monitored.  Given the lack of certainty in the SPS detecting the 

attacks, the attacks on the monitored nodes may then result in the SPS selecting the 

unmonitored nodes being attacked for the load shedding strategy.  In this way, the 

probability of disrupting the SPS load shedding strategy increases quickly as the SPS 

monitors fewer nodes.  Figure 29 demonstrates how the probability of disrupting the SPS 

load shedding strategy increases until there is 100% probability of failure if the SPS only 

defends 17 nodes. 

The adversary’s probability of attribution provides the restraint on the adversary’s 

attack strategy required so that a defense of the SPS load shedding process is even 

possible.  The concept is also supported by the premise that an adversary possessing the 

resources to disrupt more SPS nodes will rationally chose not to for fear of repercussion 

if the attack is attributed to the adversary.  
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