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Abstract

Inertial Navigation System (INS) aiding using bearing measurements taken over time

of stationary ground features is investigated. A cross country flight, in two and three

dimensional space, is considered, as well as a vertical drop in three dimensional space.

The objective is to quantify the temporal development of the uncertainty in the navigation

states of an aircraft INS which is aided by taking bearing measurements of ground objects

which have been geolocated using ownship position. It is shown that during wings level

flight at constant speed and a fixed altitude, an aircraft that tracks ground objects and over

time sequentially transitions to tracking new ground objects which were geolocated by the

aircraft as they came into view, will have the beneficial effect of considerably reducing the

long term uncertainty in the INS-provided navigation state. It is also shown that a

munition in “free fall” tracking previously geolocated ground features will also have the

beneficial effect of reducing the uncertainty in the INS-provided navigation state.

iv



I would like to dedicate this paper to my wife and baby for your support and patience. I
know you may never read this paper, but I wrote this paper for you.

I LOVE YOU BOTH!

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Approach/Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Earth-fixed reference frame . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Navigation reference frame . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Body-fixed reference frame . . . . . . . . . . . . . . . . . . . . . 4

2.3 Inertial Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Recent Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Two-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Dynamics Error Model . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Modeling/Calibrating the Free INS . . . . . . . . . . . . . . . . . 18
3.2.3 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 Performance of Aided INS . . . . . . . . . . . . . . . . . . . . . . 23
3.2.6 Transitioning Between Measurement Epochs . . . . . . . . . . . . 24

3.3 Three-Dimensional Horizontal Case . . . . . . . . . . . . . . . . . . . . . 27

vi



3.3.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Modeling/Calibrating the Free INS . . . . . . . . . . . . . . . . . 33
3.3.3 Measurement Equation . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Performance of Aided INS . . . . . . . . . . . . . . . . . . . . . . 41
3.3.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.6 Transitioning Between Measurement Epochs . . . . . . . . . . . . 42

3.4 Three Dimensional Vertical Case . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Modeling/Calibrating the Free INS . . . . . . . . . . . . . . . . . 48
3.4.3 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.4 Performance of Aided INS . . . . . . . . . . . . . . . . . . . . . . 51
3.4.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.6 Transitioning Between Measurement Epochs . . . . . . . . . . . . 54

4 Covariance Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Two Dimensional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Horizontal Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Vertical Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Follow-On Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendix A: 2-D Standard Deviation Plots . . . . . . . . . . . . . . . . . . . . . . . 68

Appendix B: 3-D Horizontal Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix C: 3-D Vertical Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendix D: General Form Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendix E: General Form Measurement Model . . . . . . . . . . . . . . . . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vii



List of Figures

Figure Page

2.1 Earth-Fixed Reference Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Navigation Reference Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Body-Fixed Reference Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Basic SLAM problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Relationship between the body and inertial frame for the 2-D horizontal case. . 13

3.2 Showing the scenario set up. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Relationship between the body and inertial frame for the 3-D horizontal case. . 28

3.4 Relationship between the body and inertial frame for 3-D Vertical Case. . . . . 47

3.5 Geometry 1 Ground Feature Locations. . . . . . . . . . . . . . . . . . . . . . 52

3.6 Geometry 2 Ground Feature Locations. . . . . . . . . . . . . . . . . . . . . . 53

4.1 2-D Unaided INS Position Standard Deviation. . . . . . . . . . . . . . . . . . 58

4.2 2-D Aided INS Position Standard Deviation. . . . . . . . . . . . . . . . . . . . 59

4.3 3-D Unaided INS Position Standard Deviation. . . . . . . . . . . . . . . . . . 60

4.4 3-D Aided INS Position Standard Deviation. . . . . . . . . . . . . . . . . . . . 61

4.5 Vertical Drop Unaided INS Position Standard Deviation. . . . . . . . . . . . . 62

4.6 Vertical Drop Aided INS Position Navigation State Standard Deviation for

Geometry 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Vertical Drop Aided INS Position Navigation State Standard Deviation for

Geometry 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 2D Unaided INS Velocity Standard Deviations. . . . . . . . . . . . . . . . . . 68

A.2 2D Unaided INS Velocity Standard Deviations. . . . . . . . . . . . . . . . . . 69

A.3 2D Unaided INS Attitude Standard Deviation. . . . . . . . . . . . . . . . . . . 69

A.4 2D Unaided INS Attitude Standard Deviation. . . . . . . . . . . . . . . . . . . 70

A.5 2D Ground Object Position Uncertainty. . . . . . . . . . . . . . . . . . . . . . 70

viii



A.6 2D Ground Object Position Uncertainty. . . . . . . . . . . . . . . . . . . . . . 71

B.1 3D Unaided INS Velocity Standard Deviations. . . . . . . . . . . . . . . . . . 72

B.2 3D Unaided INS Velocity Standard Deviations. . . . . . . . . . . . . . . . . . 73

B.3 3D Unaided INS Attitude Standard Deviation. . . . . . . . . . . . . . . . . . . 73

B.4 3D Unaided INS Attitude Standard Deviation. . . . . . . . . . . . . . . . . . . 74

B.5 3D Ground Object Position Uncertainty. . . . . . . . . . . . . . . . . . . . . . 74

B.6 3D Ground Object Position Uncertainty. . . . . . . . . . . . . . . . . . . . . . 75

C.1 Vertical Case Unaided INS Velocity Error Standard Deviation. . . . . . . . . . 76

C.2 Vertical Case Unaided INS Angle Error Standard Deviation. . . . . . . . . . . 77

C.3 Vertical Case Aided INS Velocity Navigation State Standard Deviation For

Geometry 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.4 Vertical Case Aided INS Attitude Navigation State Standard Deviation For

Geometry 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.5 Vertical Case Ground Object 1 Position Standard Deviation For Geometry 1. . . 78

C.6 Vertical Case Ground Object 2 Position Standard Deviation For Geometry 1. . . 79

C.7 Vertical Case Aided INS Velocity Navigation State Standard Deviation For

Geometry 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.8 Vertical Case Aided INS Attitude Navigation State Standard Deviation For

Geometry 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.9 Vertical Case Ground Object 1 Position Standard Deviation For Geometry 2. . . 80

C.10 Vertical Case Ground Object 2 Position Standard Deviation For Geometry 2. . . 81

ix



List of Tables

Table Page

4.1 Navigation States Standard Deviations for 2-D Case . . . . . . . . . . . . . . . 57

4.2 Navigation States Standard Deviations for 3-D Case . . . . . . . . . . . . . . . 62

4.3 Navigation States Standard Deviations for Geometry 1 of Vertical 3-D Case . . 64

4.4 Navigation States Standard Deviations for Geometry 2 of Vertical 3-D Case . . 65

x



List of Symbols

Symbol Page

Cn
b DCM from Body to Navigation Frame . . . . . . . . . . . . . . . . . . . . . . 12

f Specific Force Measured by Accelerometer . . . . . . . . . . . . . . . . . . . 13

a Total A/C Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

g Specific Gravity Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

(n) Indicates Navigation Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

(b) Indicates Body Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

f (b)
x Specific Force Measured by Longitudinal Accelerometer . . . . . . . . . . . . 13

f (b)
z Specific Force Measured by Vertical Accelerometer . . . . . . . . . . . . . . . 13

θ A/C Pitch Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

? Any Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

V̇ A/C Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

x x Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

z z Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

V A/C Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

x x Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

z z Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A Error State Dynamics Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

δx Navigation Error State Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

δu Disturbance Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

g Constant Pull of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

a Longitudinal A/C Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 15

t Current Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

T Duration of a Measurement Epoch . . . . . . . . . . . . . . . . . . . . . . . . 16

h Height Above Surface of the Earth . . . . . . . . . . . . . . . . . . . . . . . . 16

xi



l Discrete Time Step Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

σa Standard Deviation of the Uncertainty of the Accelerometer Bias . . . . . . . . 18

σg Standard Deviation of the Uncertainty of the Gyroscope Bias . . . . . . . . . . 18

α Accelerometer Bias Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

β Gyroscope Bias Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ξ Angle from Longitudinal Body Axis to LOS Vector . . . . . . . . . . . . . . . 19

x f x Coordinate of Ground Feature on Camera Focal Plane . . . . . . . . . . . . . 19

f Focal Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xp Inertial Frame x Position of ground feature . . . . . . . . . . . . . . . . . . . . 19

zp Inertial Frame z Position of ground feature . . . . . . . . . . . . . . . . . . . . 19

Cb
n DCM from Navigation to Body Frame . . . . . . . . . . . . . . . . . . . . . . 20

c Indicates Calculated Value from INS . . . . . . . . . . . . . . . . . . . . . . . 20

m Indicates a Measured Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

H(l) Time Dependent Measurement Matrix . . . . . . . . . . . . . . . . . . . . . . 22

u Indicates Ground Feature’s Position is Unknown . . . . . . . . . . . . . . . . . 22

k Indicates Ground Feature’s Position is Known . . . . . . . . . . . . . . . . . . 23

R Measurement Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ψ A/C Yaw Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

φ A/C Roll Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

δΨ Angular Errors Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

yp Inertial Frame y Position of Ground Feature . . . . . . . . . . . . . . . . . . . 34

y f y Coordinate of Ground Feature on Camera Focal Plane . . . . . . . . . . . . . 34

tterm Time Munition Reaches Terminal Velocity . . . . . . . . . . . . . . . . . . . . 46

hterm Munition Altitude When Munition Reaches Terminal Velocity . . . . . . . . . 48

vterm Munition Terminal Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

h f inal Altitude For Last Measurement Update . . . . . . . . . . . . . . . . . . . . . 55

xii



µ Angle from Lateral Axis to Ground Feature . . . . . . . . . . . . . . . . . . . 85

z f z(b) Coordinate of Ground Feature on Camera Focal Plane for Vertical Case . . 95

yx f y(b) Coordinate of Ground Feature on Camera Focal Plane for Vertical Case . . 97

xiii



List of Abbreviations

Abbreviation Page

INS Inertial Navigation Systems . . . . . . . . . . . . . . . . . . . . . . . . 1

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . 1

SLAM Simultaneous Localization and Mapping . . . . . . . . . . . . . . . . . 1

LO Low Observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A/C Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

HVT High Value Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

FOV Field of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

DCM Direction Cosine Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 12

c? cos? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

s? sin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

LOS Line of Sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

LHS Left Hand Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RHS Right Hand Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

FOTSE First Order Taylor Series Expansion . . . . . . . . . . . . . . . . . . . . 82

xiv



Covariance Analysis of Vision Aided Navigation by Bootstrapping

1 Introduction

1.1 Background

There are many techniques to provide navigation information. They range from an

individual standing on the ground holding a map and looking at his surroundings to

modern military aircraft with high quality Inertial Navigation Systems (INS) with Global

Positioning System (GPS) providing very precise position and velocity updates. The use

of GPS is very prolific in military operations. However, General Schwartz, the Chief of

Staff for the United States Air Force, is quoted as saying [4],

“Global positioning has transformed an entire universe of war-fighting

capability. Our dependence on precision navigation in time will continue to

grow,. . . It seemed critical to me that the joint force reduce its dependence on

GPS aid. . . Our operations cannot grind to a halt for a degraded or denied

system,. . . We must . . . proceed to build more resilient systems. . . .”

This paper looks at using vision-aided navigation à la Simultaneous Localization and

Mapping (SLAM) to provide a robust navigation solution in environments where GPS

may be denied.

1.2 Motivation

Consider a Low Observable (LO) aircraft (A/C) carrying a LO munition on a mission

into enemy territory to eliminate a relocatable High Value Target (HVT). During the

mission briefing the location of the HVT was limited to a small area. The adversary

1



actively uses anti-GPS technologies, thus denying the precision and accuracy of GPS. The

aircraft has a navigation quality INS, but the length of the flight is long enough that the

errors produced by the INS are too large for a targeting solution. The pilot needs a better

navigation solution, but does not want to inform the enemy of his aircraft’s presence by

using active navigation techniques, such as radar. The pilot needs a better navigation

estimate than the INS alone can provide, but he also needs to maintain the autonomy

provided by the INS.

Enter vision aided navigation. The aircraft uses its INS estimate to geolocate ground

features, track those features to aid the INS, and using that aided estimate geolocate new

features as the original features leave the camera Field of View (FOV). This aiding

scheme constrains the error enough to obtain target solution. The munition, with its lower

quality INS, uses a similar visual scheme. It looks within the area given during the

mission briefing for the HVT. Once it geolocates the HVT, it also geolocates and tracks

multiple ground features as it falls. The munition impacts the HVT and the aircraft begins

the return trip home without emitting any signal giving away the its location.

1.3 Scope

There are several important aspects of visual navigation that will not be discussed in

this paper. They include image processing, to include autonomous, without human

assistance, feature detection and feature correspondence. It is assumed that autonomous

feature detection and tracking are possible, such as by the SIFT image processing

algorithm [5] or by the stochastic process set forth in [10].

This paper focuses exclusively on gauging the performance of an inertial navigation

system aided by a vision based SLAM during

1. A horizontal flight in two dimensional space

2. A horizontal flight in three dimensional space

2



3. A vertical drop in three dimensional space

The measure of performance will be the uncertainty, or standard deviation, of the

navigation states provided by the aided INS. These values will be compared to the

uncertainty of the navigation states in the free INS.

1.4 Approach/Methodology

To document this research, each chapter will begin with a brief overview of the topics

discussed in the chapter. Chapter 2 provides background information for the INS, the

reference frames used when working with an INS, a brief discussion of SLAM and

concludes with recent, relevant research. Chapter 3 shows the mathematical development

of the 2-D case, including the dynamics and measurement model development, the state

space representation and the use of the Kalman filter mechanization. This information was

then extended to look at the 3-D case for both a horizontal flight and a vertical fall.

Chapter 4 looks at the results of the covariance analysis. Finally, Chapter 5 summarizes

the key points of the paper, focusing on the impact the INS aiding scheme provided. A list

of potential follow-on research topics is also provided.

3



2 Literature Review

2.1 Overview

This chapter provides foundational information regarding the topics discussed in the

following chapter. Section 2.2 discusses the different coordinate frames of reference used

in this paper. Section 2.3 discusses the fundamentals of inertial navigation, including a

brief discussion of the sensors used and how they work. Section 2.4 discusses SLAM.

Finally, Section 2.5 reviews recent research that contributed to this paper.

2.2 Reference Frames

2.2.1 Earth-fixed reference frame. The Earth-fixed reference frame has its origin

fixed to an arbitrary point on the surface of the Earth. The axis XE points due North, YE

points due east and ZE points to the gravitational center of the Earth. This reference frame

is shown in Figure 2.1.

2.2.2 Navigation reference frame. The navigation frame is a modified version of

the Earth-fixed reference frame. The origin of this reference frame is also placed

arbitrarily on the surface of the Earth, where z = 0 at the surface of the earth. The only

difference between the navigation frame and the Earth-fixed frame is that the axis are

rotated 180◦ about the X axis. Therefore Yn points due west and Zn points exactly away

from the center of the Earth. This reference frame is shown in Figure 2.2.

2.2.3 Body-fixed reference frame. This reference frame has its origin located

somewhere on an A/C. Normally the origin is set at the A/C center of gravity to allow the

use of the equations of motion. However, as fuel is used during flight, the center of gravity

does not remain constant. Therefore in this research, the origin is set at the origin of the

camera. The fact that it is “body-fixed” indicates that the axis do not change with respect
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XE 

YE 

ZE 

ωE 

Figure 2.1: Earth-fixed reference frame

to the A/C body as A/C’s trajectory changes. Rather, the Xb axis is the longitudinal axis

and typically runs through the nose of the A/C, the Yb axis is the lateral axis and runs

parallel with the left wing, and the Zb axis is the vertical axis and runs out the top of the

A/C. This reference frame is shown on a F-35 Lightning II in Figure 2.3

2.3 Inertial Navigation

The INS provides the navigation state based on perceived changes in the inertia and

moment of inertia of the sensors utilized. These changes are quantified based on Newton’s

mechanical laws. INSs are used in many vehicle types, including air, sea, ground and

space, but the focus in this research will be on air based vehicles. An INS employs a suite

of sensors, typically three accelerometers and three gyroscopes, one for each of the body

axes, and an onboard computer to compile and integrate the information provided by the
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Yn 

Zn 

ωE 

Figure 2.2: Navigation reference frame

sensors. This integrated data provides the operator of the A/C with an estimate of the

current navigation state based on the initial navigation state.

An INS is initialized prior to take off using external sources, i.e., GPS for position,

pilot setting velocity to zero, and runway markers and levels for the Euler angles. This

initialization is critical because all later estimates build upon the initial values. If the

starting point for the INS is incorrect, it will only get worse as time goes on. Once

initialized, the INS can autonomously provide a navigation state estimate without any

external assistance, thus it is unaffected by adversary jamming or atmospheric

interference.

The onboard accelerometers indicate translational changes in an A/C’s position.

They sense acceleration along the A/C’s axes. The detected acceleration is integrated to

calculate the A/C’s velocity, which in turn is integrated to provide position. However,

there is no orientation data. As such, if there were no other sensors, the A/C would only
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Yb 

Zb 

Figure 2.3: Body-fixed reference frame shown on F-35 Lightning II

know how much it moved left or right, forward or backward, and up or down relative to

itself. It would be akin to being blindfolded, and placed in a car. One would feel

acceleration forward or backward by being pressed into the seat or against the seatbelt,

respectively.

Conversely, the gyroscopes indicate rotation rate. Then based on the initialized

values, the rotation rate is integrated to determine the A/C’s angles. This provides the

orientation data that the accelerometers could not provide. However, the gyroscopes

cannot detect the magnitude of the translation vector. This would be like being in a car

blindfolded. One would feel the turns, and would know the direction of the turn but not

how fast the car was traveling outside of the turn.

Both sensors, when operating independently, offer valuable, if incomplete

information. It is when the information from both are brought together that a strong

navigation state estimate is provided to the user. The translational information combined
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with the orientation information takes the data from the body-fixed reference frame and

makes it useful by putting it in the navigation, or inertial, reference frame. For example,

the sensed movements left or right would translate to calculated movement North or South

from the starting location, based on the orientation of the A/C.

The autonomy of the INS does have a major limitation: the sensors are prone to drift

and noise. These sensor errors accumulate over time as the readings from the gyroscopes,

to include the errors, are integrated into the angles. The accelerometers provide a double

dose of the errors because they are integrated twice to calculate the position estimate.

These errors cause the INS navigation state estimate to drift over time, with no upper limit

to the estimate error. The only way to constrain the error is through an external

measurement. Common examples of measurements used are barometric altimeters, GPS,

doppler, and, more recently, visual bearings-only measurements.

2.4 SLAM

SLAM is a growing topic of interest in the robotics community. It is commonly

believed that the ability for a robot to discern its environment and, at the same time,

determine its position within the environment is a crucial step to true robotic autonomy

[2]. The fundamental issue with SLAM is shown in Figure 2.4 [2].

The typical scenario is that a robot, with some sort of onboard sensor, i.e., laser range

finder, camera, sonar etc., is placed in an environment with no a priori information

regarding the environment. The robot then begins to probabilistically estimate its own

position and that of the ground features around it, typically with some flavor of a Kalman

filter. Because the features in the environment are being estimated, each feature adds some

number of states to the state vector. The number depends on the type of information being

used. For example, in a 2-d case, if the position of the ground feature is being estimated,

and the feature is stationary, two states would have been to be concatenated on the end of
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Figure 2.4: This shows fundamental problem of how the vehicle must estimate its own
position at the same time that it is estimating the position of the features used for tracking.
Neither position is ever truly known[2].

the state vector. In a 3-d case, for a moving feature, six states would have to be added to

the state vector. This has potential to create a very large state vector quickly, which,

depending on the filtering method used, can become computationally burdensome [2].

Feature recognition and tracking is crucial to SLAM. If the robot cannot track or

correlate features from one update to the next, it will not be able to build a viable map. At

best it would have a series of independent measurements with no way of connecting the

dots to see the big picture. It is this aspect of the problem that has been the truly limiting

factor for SLAM.

2.5 Recent Research

In [8], Pachter et. al explored the concept of using bearings-only visual

measurements to aid an INS in three dimensions. It was theoretical work, meaning there
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was no simulation or empirical data substantiate the theory. It did however develop the

mathematics for observing the angle to a ground feature over time and using that

information to update an INS, thus constraining the error.

In [3], Giebner used visual measurements to aid an A/C INS, via Kalman filter, while

flying a circular orbit around a single ground feature, both in simulation and in an actual

test environment. He found that using visual-measurements reduced the uncertainty of the

position of the A/C, in three dimensions after 6 minutes of flight time, from 350 meters, in

the unaided INS case, down to 50 meters when combined with barometric altimeter

readings.

In [7] observability of a vision-aided INS was explored. The measurements were time

dependent due to the fact that the position of the ground feature(s) being tracked, relative

to the A/C, changed with time. Because the measurement matrix was time dependent, the

observability Grammian was used. It was found that when the INS was only aided by

bearings-only visual measurements of a single ground feature, the observability

Grammian was rank deficient, thereby indicating incomplete INS aiding action. However,

if a second ground feature was simultaneously tracked, the observability Grammian had

full rank, thus there was complete INS aiding action; that is that all of the navigation states

received some improvement from the measurement when compared to the unaided case.

In [2] a detailed history of SLAM was provided. It also provided fundamental

information regarding implementing SLAM with various filter methods. It showed that

the uncertainty of detected features, as well as the navigation estimate, will decrease as

more measurements are taken. An example was provided where a robot was piloted

remotely through an indoor environment. The pilot did not have visual access to the robot.

Instead, the pilot navigated based on the map rendered by the robot. The robot then

autonomously returned to the starting point. Other examples were provided as well.
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In [1] an algorithm for single a camera to perform SLAM in real time, called

MonoSLAM, was developed. The authors were concerned with mapping and localizing a

small area. They found that even in a feature sparse environment they could build a map

of points and eliminate drift once the robot began tracking a previously tracked feature.

MonoSLAM was then used on a humanoid robot fitted with three cameras walking in a

circle. They found, until the robot tracked a previously tracked feature, the feature

uncertainty continued to grow. However, once features came back into view, the

uncertainty stopped growing. They concluded that a robot would be able to repeat the task

indefinitely without any drift in the localization accuracy.
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3 Methodology

3.1 Introduction

This chapter is broken up into three main sections. Section 3.2 discusses the

two-dimensional case, including the error dynamics model development, calibrating the

unaided INS, measurement model development and how the calculations were

accomplished. Section 3.3 will cover the same topics as Section 3.2, but for the

three-dimensional case where the A/C is flying wings level, constant altitude with its

longitudinal axis aligned with the Xn axis and small angle assumptions are valid for the

A/C’s Euler angles. The Section 3.4 will expand on Section 3.3 for the vertical free fall

case where all the body axes are still aligned with the navigation axes. Development of the

general form, where small angle assumptions are not used on the A/C’s Euler angles, of

the dynamics model is shown in Appendix D, and the development of the general form of

the measurement model is shown in Appendix E.

3.2 Two-Dimensional Case

The two-dimensional case is the simpler of the two cases, and, as such, is the

advantageous place to start. This research will start with the development of the dynamics

model, which is the error state equations.

3.2.1 Dynamics Error Model. The navigation frame is the “inertial” (Xn,Zn) frame

and the A/C body axes are (Xb,Zb). The A/C’s position is (x, z) and θ is the pitch angle. A

strapdown [9] INS arrangement is considered. When flying in the vertical plane of a

non-rotating flat Earth as shown in Figure 3.1, the reference frames can be related by the

Direction Cosine Matrix (DCM), Cn
b [9]:

Cn
b =

 cθ sθ

− sθ cθ

 (3.1)
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A/C = (x,z) 

P = (xp,zp) 

Xb f 
xf 

Zn 

Xn
 

Figure 3.1: The A/C in the vertical plane. Notice that the origin of the body frame is at the
camera.

The specific force, f measured by an accelerometer is

f = a − g (3.2)

where a is the A/Cs acceleration and g is the Earth’s gravitational force. The specific force

resolved in the inertial frame is  f (n)
x

f (n)
z

 = Cn
b

 f (b)
x

f (b)
z


f (n)
x = f (b)

x cθ+ f (b)
z sθ

f (n)
z = − f (b)

x sθ+ f (b)
z cθ

where the superscript indicates which frame of reference is being used, (n) for the inertial

navigation frame frame and (b) for the body frame, f (b)
x and f (b)

z are the specific forces
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measured by the longitudinal and vertical accelerometers, respectively, and θ is the pitch

angle. In an effort to conserve space, which is necessary in subsequent sections, cos (?)

and sin (?) will be abbreviated with c? and s? respectively, where ? can be any angle.

The specific forces are fed into the states by

V̇ (n)
x = f (n)

x + g(n)
x

V̇ (n)
z = f (n)

z + g(n)
z

and

V (n)
x = ẋ(n)

V (n)
z = ż(n)

ω = θ̇

where V̇ is the acceleration of the A/C with the subscripts x and z indicating which

direction. The A/C’s acceleration is integrated to determine its x and z velocity, V , which

produces the respective positions x and z by a second integration.

However, the sensors have uncertainty, so these equations must be perturbed using a

first order Taylor series expansion. This produces

δ f (n)
x = (− f (b)

x sin θ + f (b)
z cos θ)δθ + δ f (b)

x cos θ + δ f (b)
z sin θ

= f (n)
z δθ + δ f (b)

x cos θ + δ f (b)
z sin θ

(3.3)

and

δ f (n)
z = (− f (b)

x cos θ − f (b)
z sin θ)δθ − δ f (b)

x sin θ + δ f (b)
z cos θ

= − f (n)
x δθ − δ f (b)

x sin θ + δ f (b)
z cos θ

(3.4)
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where δ f (b)
x and δ f (b)

z are the errors of the accelerometers. Thus the error equations are

formed

δẋ(n) = δV (n)
x (3.5)

δż(n) = δV (n)
z (3.6)

δV̇ (n)
x = δ f (n)

x (3.7)

δV̇ (n)
z = δ f (n)

z (3.8)

δθ̇ = δω (3.9)

and substituting Eqs. (3.3)-(3.4) into Eqs. (3.7)-(3.8) yields

δV̇ (n)
x = f (n)

z δθ + δ f (b)
x cos θ + δ f (b)

z sin θ (3.10)

δV̇ (n)
z = − f (n)

x δθ − δ f (b)
x sin θ + δ f (b)

z cos θ (3.11)

Eqs. (3.5), (3.6), (3.9), (3.10) and (3.11) are the INS error equations when flying wings

level over a flat and non-rotating Earth. The error equations are shown in state space

notation as, δẋ = Aδx + Γδu, where A is the error state dynamics matrix, the navigation

state’s error vector, δx is

δx = [ δx δz δVx δVz δθ ]T (3.12)

and the disturbances, δu, are the two accelerometers’ and the rate gyroscope’s biases

δu = [ δ f (b)
x δ f (b)

z δω ]T (3.13)

For this case the trajectory is assumed to be a wings level, constant altitude flight,

therefore the nominal variables are θ = 0, f (n)
z = g and f (n)

x = a, where g is the acceleration

of gravity and a is the longitudinal acceleration of the A/C. These variables are

non-dimensionalized in order to maintain geometry and remove any issues where the units
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may not coincide. They are nondimensionalized as follows

x→
x
h

z→
z
h

Vx →
vx

v

Vz →
vz

v
t → t

v
h

T → T
v
h

δ fx →
δ fx

g
δ fz →

δ fz

g
δω→ h

δω

v

where t is the current time, T is the duration of a measurement epoch and h is the above

ground level altitude. The non-dimensional parameters are

g ,
hg
v2 and a ,

ha
v2

If, for example,

h = 1000[m], v = 100
[ m

sec

]
, g = 10

[ m
sec2

]
the non-dimensional parameter g = 1. Therefore, the INS error state equations are

δẋ =



0 0 1 0 0

0 0 0 1 0

0 0 0 0 g

0 0 0 0 −a

0 0 0 0 0


δx +



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


δu (3.14)

and with perfect INS alignment

δx(0) = 0, 0 ≤ t ≤ T

The nondimensional duration of a measurement session, or epoch, is T = 1.

It is assumed that the sensor errors are Gaussian distributed, constant biases. This

allows the state error vector to be augmented with the vector u; the augmented state is

δxa =


δx

. . .

δu


8×1

(3.15)
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and the A matrix is augmented by the Γ matrix, as shown

Aa =

 A Γ

03×5 03×3


8×8

(3.16)

When converted to discrete time Aa → Aad = eAa∆t.

Aad =



1 0 ∆t 0 g∆t2

2
∆t2
2 0 g∆t3

6

0 1 0 ∆t − a∆t2
2 0 ∆t2

2 − a∆t3
6

0 0 1 0 g∆t ∆t 0 g∆t2

2

0 0 0 1 −a∆t 0 ∆t − a∆t2
2

0 0 0 0 1 0 0 ∆t

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(3.17)

where ∆t is the sampling period. The discrete time state dynamics become

δxa(l + 1) = Aadδxa(l), l = 0, . . . ,N − 1 (3.18)

where l is is the discrete time step counter and the non-dimensional period between steps

is ∆T = T
N = ∆t v

h . Setting a to zero (assume a constant cruise speed) simplifies the

dynamics to

Aad =



1 0 ∆t 0 g∆t2

2
∆t2
2 0 g∆t3

6

0 1 0 ∆t 0 0 ∆t2
2 0

0 0 1 0 g∆t ∆t 0 g∆t2

2

0 0 0 1 0 0 ∆t 0

0 0 0 0 1 0 0 ∆t

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


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This dynamics equation applies as long as the ground features’ positions are known.

Assuming the ground features are stationary, but their position is not known, an additional

state must be added for each tracked ground feature whose position is estimated. In our

two dimensional scenario, if the number of ground features being tracked is n, then the

augmented navigation state is

δxa :=



δxa

. . .

δxp1

. . .

δxpn


(8+n)×1

(3.19)

and

Aad :=

 Aa 08×n

0n×8 In×n


(8+n)×(8+n)

(3.20)

On one hand, state augmentation reduces the degree of observability, which decreases the

strength of INS aiding action. On the other hand, however, the inclusion of additional

features to be tracked helps wash out the measurement error.

3.2.2 Modeling/Calibrating the Free INS. With the dynamics from

Subsection 3.2.1, the values for σa and σg, the uncertainty in the bias of the

accelerometers and gyroscope, respectively, are set such that the free INS is a 1 km
hr

navigation system; a non-dimensional hour is 360 non-dimensional seconds. There are

N = 100 discrete steps in a non-dimensional second. The calibration is performed by

using the solution to the Lyapunov difference equation

P(l + 1) = AadP(l)AT
ad, 0 ≤ l ≤ 360N − 1 (3.21)
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with

P(0) =



05×5 05×1 06×1 07×1

01×5 σ2
a

...
...

01×6 . . . σ2
a

...

01×7 . . . . . . σ2
g


8×8

(3.22)

There is a linear relationship between the uncertainty in the A/C’s x position and the

uncertainty in the sensors’ biases

P1,1(360N) = ασ2
a + βσ2

g (3.23)

where the coefficients α and β are constants. Therefore, Eq. (3.21) was solved for one

non-dimensional hour twice to calculate the values of the constants. The first time, σa was

set to 1 and σg was set to 0. The second time, σa was set to 0 and σg was set to 1. Then

assigning the errors in the accelerometers and the error in the gyroscope an equal role in

the uncertainty of the A/C’s position, the values for the variances of the sensors’ biases

variances are

σa =
1
√

2α
= 1.0912 × 10−5 (3.24)

σg =
1√
2β

= 9.0935 × 10−8 (3.25)

3.2.3 Measurement Model. Based on the geometry established in

Subsection 3.2.1, the foundational relationship between the visual measurements and the

ground feature’s position is created

tan ξ =
x f

f
=

(xp − x)(b)

(zp − z)(b) (3.26)

where ξ is the angle between the longitudinal body axis and the Line of Sight (LOS)

vector, which runs from the origin of the body axis to the ground feature, x f is the

projection of the ground feature’s position onto the camera’s focal plane, f is the focal

length of the camera, and xp and zp are x and z coordinates, respectively, of the ground
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feature. The relationship of the body coordinates to the navigation is shown by the DCM

Cb
n, where

Cb
n =

 cθ − sθ

sθ cθ

 (3.27)

thus  xp − x

zp − z


(b)

= Cb
n

 xp − x

zp − z


(n)

=

 cθ − sθ

sθ cθ


 xp − x

zp − z


(n)

=

 (xp − x)(n) cθ+(zp − z)(n) sθ

(xp − x)(n) sθ−(zp − z)(n) cθ



(3.28)

The projected position is nondimensionalized such that

x f →
x f

f

Assuming the ground feature is on the ground, combined with the non-dimensionalization

shown above, simplifies Eq. (3.26) to

x f =
(xp − x)(n) cθ+(zp − z)(n) sθ
(xp − x)(n) sθ−(zp − z)(n) cθ

It should be noted that for the remainder of this subsection all coordinates will be in the

navigation frame. As such, the (n) will be dropped.

Moving everything to the Left Hand Side (LHS) yields

x f [(xp − x)(n) cθ+(zp − z)(n) sθ] + (xp − x)(n) sθ−(zp − z)(n) cθ = 0 (3.29)

The INS provides the “calculated” navigation state [ xc zc vxc vzc θc ]T , where c

indicates the calculated value provided by the INS. However, the true values of the states
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and measurements are not known. The following perturbations hold

xc = x + δx zc = z + δz

θc = θ + δθ xpc = xp + δxp x f m = x f + δx f

where m indicates a measured valued. By way of the trigonometric addition formula and

small angle approximation, the sin and cos terms simplify to

sin(θc − δθ) = sθc −(sθc + cθc)δθ cos(θc − δθ) = cθc +(sθc − cθc)δθ

Substituting the perturbations into Equation 3.29, yields

(x f m−δx f )[(sθc −(sθc + cθc)δθ)((xpc−xc) + δx − δxp) − (cθc +(sθc − cθc)δθ)(zc − δz)]

− (cθc +(sθc − cθc)δθ)((xpc−xc) + δx − δxp) − (sθc −(sθc + cθc)δθ)(zc − δz) = 0 (3.30)

To simplify the algebra, the LHS will be broken up into components such that

Acomp = (sθc −(sθc + cθc)δθ)((xpc−xc) + δx − δxp) − (cθc +(sθc − cθc)δθ)(zc − δz) (3.31)

Bcomp = −(cθc +(sθc − cθc)δθ)((xpc−xc) + δx − δxp) − (sθc −(sθc + cθc)δθ)(zc − δz) (3.32)

such that

(x f m−δx f )Acomp + Bcomp = 0 (3.33)

The terms within the components need to be distributed out. When two small errors are

multiplied together, their product is considered negligible. As such, the component terms

become

Acomp = sθc(xpc−xc) − cθc zc + δx sθc +δz cθc

− δθ((sθc + cθc)(xpc−xc) + (sθc − cθc)zc) − δxp sθc

(3.34)

and

Bcomp = (− sθc zc − cθc(xpc−xc)) − δx cθc +δz sθc +δxp cθc

+ δθ((sθc + cθc)zc−) + δxp cθc

(3.35)
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Substituting Eqs. (3.34)-(3.35) into Eq. (3.33) and collecting like error terms yields

x f m(sθc(xpc−xc) − cθc zc) − sθc zc − cθc(xpc−xc) − δx f (sθc(xpc−xc) − cθc zc)

+ δx(sθc x f m − cθc) + δz(sθc + cθc x f m) + δxp(cθc − sθc x f m)

+ δθ[(sθc + cθc)zc − (sθc − cθc)(xpc−xc) − ((sθc + cθc)(xpc−xc) + (sθc − cθc)zc)x f m] = 0

(3.36)

Moving the error terms to the Right Hand Side (RHS) yields

x f m(sθc(xpc−xc) − cθc zc) − sθc zc − cθc(xpc−xc) = δx f (sθc(xpc−xc) − cθc zc)

+ δx(cθc − sθc x f m) − δz(sθc + cθc x f m) − δxp(cθc − sθc x f m)

− δθ[(sθc + cθc)zc − (sθc − cθc)(xpc−xc) − ((sθc + cθc)(xpc−xc) + (sθc − cθc)zc)x f m]

(3.37)

On the RHS, the nominal value of the states and the measurement are substituted in for the

calculated and measured values such that

x f m(cθc zc − sθc(xpc−xc)) + (sθc zc − cθc(xpc−xc)) = δx f (sθ(xp − x) − cθ z)

+ δx(cθ− sθ x f ) − δz(sθ+ cθ x f ) − δxp(cθ− sθ x f )

− δθ[(sθ+ cθ)z − (sθ− cθ)(xp − x) − ((sθ− cθ)z + (sθ+ cθ)(xp − x))x f ]

(3.38)

For the scenario laid out at the beginning of this section, z = h, which gives it a value of 1

when nondimensionalized according to Subsection 3.2.1, θ = 0 and x f = −(xp − x).

Therefore the measurement matrix, H(l) for a single unknown ground feature is

Hu(l) =

[
1 xp − x(l) 0 0 2(xp − x(l)) − (xp − x(l))2 − 1 0 0 0 −1

]
(3.39)

where u indicates that the position of the ground feature used is unknown. The

nondimensional measurement error is δx f . However, in order to achieve full aiding [7]

two ground features are always used. For the first measurement epoch both ground

features have a known position, for the second epoch there is one ground feature position

that is known and one that is not, and for the remainder of the measurement epochs both
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ground feature positions are unknown. The transition between epochs and the values for

x(l) and xp will be discussed more in Subsection 3.2.6.

For the case where both ground points are known, H simplifies to

Hkk(l) =

 1 xp1 − x(l) 0 0 2(xp1 − x(l)) − (xp1 − x(l))2 0 0 0

1 xp2 − x(l) 0 0 2(xp2 − x(l)) − (xp2 − x(l))2 0 0 0

 (3.40)

where k indicates that the position of the ground feature used is known. When there are

two subscripts, as will always be the case, the first subscript is for the ground feature

closer to the A/C and the second subscript for the feature further away. When one ground

feature position is known and the other is not, H becomes

Hku(l) =

 1 xp1 − x(l) 0 0 2(xp1 − x(l)) − (xp1 − x(l))2 0 0 0 0

1 xp2 − x(l) 0 0 2(xp2 − x(l)) − (xp2 − x(l))2 0 0 0 −1

 (3.41)

Finally for the case where both ground features are unknown, H is

Huu =

 1 xp1 − x(l) 0 0 2(xp1 − x(l)) − (xp1 − x(l))2 0 0 0 −1 0

1 xp2 − x(l) 0 0 2(xp2 − x(l)) − (xp2 − x(l))2 0 0 0 0 −1

 (3.42)

3.2.4 Initialization. It is stipulated that, initially, the INS has zero error in the

navigation states, that is, the alignment was perfect, and the states representing the biases

in the sensors are

δ f (b)
x ∼ N(0, σ2

a) δ f (b)
z ∼ N(0, σ2

a) δω ∼ N(0, σ2
g)

The x and z accelerometers are of the same quality. Thus

δx(0) ∼ N(0,P(0))

with the initial covariance matrix, P(0) given by Eq. (3.22).

3.2.5 Performance of Aided INS. The cross country flight scenario is shown in

Figure 3.2. The A/C is flying wings-level, at a constant speed. It is assumed that the
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Aircraft using measurement in epoch k 
 
Aircraft geo-locates unknown ground object in epoch k 
 
Aircraft stops using ground object 

Zi 

Xi 

Known Ground Features Unknown Ground Features 

Pos(t3) Pos(t2) Pos(t1)  Pos(t4) 

Xp3 Xp4 Xp1 Xp2 

Pos(t0) 

1 1 1 1 
2 2 2 

Epoch 1 Epoch 2 Epoch 3 

Xp1 Xp2 

Features in 
Epoch 1 Features in 

Epoch 2 

Features in 
Epoch 3 

Figure 3.2: Initially the two ground features’ position is known, but in the second epoch
there is one known and one unknown ground feature, where the unknown feature’s position
was estimated by the A/C at the end of the first epoch. From epoch 3 onward both ground
features’ locations are not exactly known.

ground features are equally spaced one kilometer apart, and that the A/C starts one

kilometer behind and above the first known ground feature. In the observation matrices

x f 1 = 1 − t

x f 2 = 2 − t

3.2.6 Transitioning Between Measurement Epochs. For the purpose of covariance

analysis, and because the features were equally spaced, and it took exactly one

measurement epoch for the A/C to fly from directly over one ground feature to directly

over the next ground feature, the relative position of the ground features to A/C was the
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same at the beginning of each measurement. Therefore the universal positions of the A/C

and the ground features are not considered. After non-dimensionalization and

discretization the position of the A/C relative to its location at the beginning of a

measurement epoch is

x(l) = l∆t, 0 ≤ l ≤ N − 1 (3.43)

where l is the discrete time counter within a measurement epoch, and that at the beginning

of each epoch l starts back over at 0. There are 360 epochs to be considered. Each epoch’s

duration is 1 non-dimensional second and in each epoch N = 100 bearing measurements

of a ground feature are taken. With the exception of the first and last ground feature, all

the ground features are used for measurements in two time blocks/measurement epochs.

Throughout the entirety of the calculations xp1 = 1 and xp2 = 2. At the transition point

between epochs, the old xp2 becomes the new xp1 and a new xp2 is acquired.

Initially, both ground features used for measurements were known. Therefore, in the

first epoch the measurement matrix Hkk(l), and the dynamics matrix Aad8×8 were used. In

the first epoch, the uncertainty of the states was propagated for one hundred steps using

the covariance propagate and update equations of the Kalman filter [6]

P(l + 1)− = AadP(l)+Ad (3.44)

K = P(l + 1)−Hkk(l)T
[
Hkk(l)P(l + 1)−Hkk(l)T + R

]−1

(3.45)

P(l + 1)+ = (I8 −KHkk(l))P(l + 1)− (3.46)

where R is the measurement uncertainty caused by ambiguity in the camera pixels

R =


1
9 0

0 1
9

 × 10−6 (3.47)

and the measurement noise  δx f 1

δx f 2

 ∼ N(0, R)
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At the conclusion of the first one hundred steps, the first ground feature was dropped from

consideration, and a new, unknown ground feature was brought in. Thus the next time

block required the use of the new dynamics matrix Aad9×9 from Eq. (3.20) and the

measurement matrix Hku(l). The challenging part is to transition the covariance matrix

from an 8 × 8 to a 9 × 9 matrix, while including the correct cross-covariance terms. This is

done as follows

P(0) =

 P(99)8×8 P(1:8,1)(99)

P(1,1:8)(99) σ2
new


9×9

(3.48)

where σ2
new is the uncertainty in position of the new ground feature, and it is the

uncertainty in the A/C’s position at the time the new ground feature is acquired plus the

uncertainty of the measurement.

σ2
new = P(1,1)(99) + σ2

ξ (3.49)

where σ2
ξ was the uncertainty caused by the error in the LOS angle measurement, and it

had a non-dimensional value of 4
9 × 10−6. It is because of the correlation of the errors in

the navigation state x and the new state xp2 that the first row and column from P8×8 must

be transplanted to their respective positions in P9×9. Since there is no correlation between

the LOS error of the camera and any of the INS navigation or bias states, it is not added to

any of the transplanted fields. The covariance matrix is then propagated in the same

manner as in the first epoch, following Eqs. (3.44)-(3.46), with the proper substitution of

the initial covariance, P(0)9×9 for P(99)8×8, dynamics, Aad9×9 for Aad8×8, and measurement

matrices, Hku for Hkk.

The transition at the beginning of the third epoch from one known/one unknown to

two unknown ground features followed the same pattern as incorporating the first

unknown ground feature. Now

P(0) =

 P(99)9×9 P(1:9,1)(99)

P(1,1:9)(99) σ2
new


10×10

(3.50)
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where

σ2
new = P(1,1)(99) + σ2

ξ (3.51)

In the previous epoch, the unknown feature was xp2, but when it transitioned to xp1 status,

all of its cross-covariances went with it. Because P(9,9) shows the uncertainty of the closest

feature to the A/C, xp1, the entirety of P(99) could be directly translated to the

upper-diagonal section of the new covariance matrix. Substituting Huu for Hku, and using

the Aad10×10 dynamics matrix, the covariance was propagated according to

Eqs. (3.44)-(3.46). These matrices were used for the remainder of the measurement

epochs. The transition becomes more complicated when the A/C completes a time block

using two unknown ground features, and begins using a new unknown ground feature.

The first step was to remove the ninth row and column of P(99). These values were

replaced with the first eight values of the tenth row and column of P(99), as shown

Ptrans =

 P(1:8,1:8) P(1:8,10)

P(10,1:8) P(10,10)


9×9

(3.52)

This transition matrix was then used to initialize the new state estimation error covariance

matrix, P10×10

P(0) =

 Ptrans Ptrans(1:9,1)

Ptrans(1,1:9) σ2
new


10×10

(3.53)

where

σ2
new = P(1,1)(99) + σ2

ξ (3.54)

Starting at epoch 4, the transitions for the remainder of the epochs followed

Eqs. (3.52)-(3.54) from epoch 3, because there are no more known ground features.

3.3 Three-Dimensional Horizontal Case

3.3.1 Dynamics. The navigation frame is the “inertial” (Xn,Yn,Zn) frame and the

A/C body axes are (Xb,Yb,Zb). The A/C’s position is (x, y, z), and ψ, the A/C yaw angle, θ,
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Figure 3.3: The A/C in 3-D space. Notice that the origin of the body frame is located at the
camera.

the A/C pitch angle, and φ and together they are the A/C’s Euler angles. A strapdown [9]

INS arrangement is considered. When flying over a non-rotating and flat Earth as shown

in Figure 3.3, the dynamics of the INS errors, also known as the error equations, are

shown in state space notation as δẋ = Aδx + Γδu, where the navigation state’s position,

velocity and angles error

δx = [ δP δV δΨ ]T

and the disturbances are the three accelerometers’ and the three rate gyroscopes’ biases

δu = [ δ fxb δ fyb δ fzb δωx δωy δωz ]T

Concerning the angular errors vector δΨ:

δΨ = −δCn
bCb

n (3.55)
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and

δΨ = δΨ× (3.56)

where δΨ is the skew symmetric matrix formed from the vector δΨ according to

Eq. (3.56).

For small Euler angles ψ, θ, and φ, the DCM

Cn
b(ψ, θ, φ) =


1 −ψ θ

ψ 1 −φ

−θ φ 1

 (3.57)

and therefore its perturbation

δCn
b =


0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0

 (3.58)

For constant altitude flight in the direction of the Xn axis, the nominal Cb
n = I3. Thus,

using Eq. (3.55) we calculate

δΨ =


0 δψ −δθ

−δψ 0 δφ

δθ −δφ 0

 (3.59)

and since δΨ = δΨ× we recover the errors in the A/C Euler angles

δΨ = [ −δφ −δθ −δψ ]T (3.60)

Hence, the navigation state’s error vector is

δx = [ δx δy δz δvx δvy δvz −δφ −δθ −δψ ]T (3.61)

The INS error state equations are

δẋ =


03×3 I3×3 03×3

03×3 03×3 F(n)
3×3

03×3 03×3 03×3

 δx +


03×3 03×3

Cb
n 03×3

03×3 −Cb
n

 δu (3.62)
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where F(n) = f (n)× is the skew symmetric matrix form of the specific force vector. The

nominal specific force components during constant altitude, wings level flight are f (n)
x = a,

f (n)
y = 0 and f (n)

z = −g, where g is the acceleration of gravity and a is the longitudinal

acceleration of the A/C. Therefore

f (n) =


f (n)
x

f (n)
y

f (n)
z

 =


a

0

g

 (3.63)

Eqs. (3.62) and (3.63) represent the dynamics of navigation state’s error, (δP, δV, δΨ),

under the assumption that the Earth is flat and non-rotating. The meaning of the angular

errors’ vector δΨ, that is, its relationship to the Euler angles’ errors, has been determined

by the A/C’s trajectory, that is, the nominal DCM Cn
b.

Having negative angle error states is unorthodox. In order for the navigation state

error to be

δx = [ δx δy δz δvx δvy δvz δφ δθ δψ ]T (3.64)

the dynamics Eq. (3.62) is modified as follows

δẋ =


03×3 I3×3 03×3

03×3 03×3 −F(n)
3×3

03×3 03×3 03×3

 δx +


03×3 03×3

Cb
n 03×3

03×3 Cb
n

 δu (3.65)

and with perfect INS alignment,

δx(0) = 0

Since this is wings level, constant altitude flight, in the direction of the Xn axis, the

nominal navigation variables are

x = x0 + vxt +
1
2

at2 y = 0 z = h

φ = 0 θ = 0 ψ = 0
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These variables are non-dimensionalized as follows

x→
x
h
, y→

y
h
, z→

z
h
,

vx →
vx

v
, vx →

vx

v
, vz →

vz

v
,

δ fx →
δ fx

g
, δ fy →

δ fy

g
, δ fz →

δ fz

g
,

δωx → h
δωx

v
, δωy → h

δωy

v
, δωz → h

δωz

v
,

t → t
v
h
, T → T

v
h
,

where t is the current time, and T is the length of a measurement epoch. The duration of a

nondimensional measurement epoch T = 1.

The non-dimensional parameters are

g ,
hg
v2 and a ,

ha
v2

If, for example,

h = 1000[m], v = 100
[ m

sec

]
, g = 10

[ m
sec2

]
,

the non-dimensional parameter g = 1.

It is assumed that the sensor errors are constant biases that are Gaussian distributed.

This allows the state error vector to be augmented with the vector δu; the augmented state

is

δxa =


δx

. . .

δu


15×1

and the dynamics matrix is augmented by the Γ matrix, as shown

Aa =

 A Γ

06×9 06×6


15×15
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One obtains a dynamic system in “free fall”. When converted to discrete time,

Aa → Aad = eAa∆t, where ∆t is the sampling interval. The augmented discrete time state

dynamics become

δxa(l + 1) = Aadδxa(l), l = 0, . . . ,N − 1 (3.66)

where l is is the discrete time step counter during a measurement epoch and the

non-dimensional time step is ∆T = T
N := ∆T v

h . The discrete-time dynamics matrix can be

analytically derived.

This dynamics equation applies as long as the ground features’ positions are known.

Assuming the ground features are stationary, but their position is not known, two

additional states, the x and y horizontal coordinates of the tracked ground features, must

be added for each tracked ground feature whose position will be estimated on the fly. If

the number of ground features being tracked is n, then the augmented navigation state is

δxa :=



δxa

. . .

δxp1

...

δypn


(15+2n)×1

(3.67)

and

Aad :=

 Aad 015×2n

02n×15 I2n×2n


(15+2n)×(15+2n)

(3.68)

If, for example, one unknown ground feature is being tracked during a measurement

epoch, then the dimension of the augmented navigation state’s error is 17 and if two

unknown ground features are being tracked during a measurement epoch then the

dimension of the navigation state’s error is 19. On one hand, state augmentation reduces

the degree of observability, which decreases the strength of INS aiding action. On the

other hand, the inclusion of additional features to be tracked increases the number of

measurement equations, which helps wash out the measurement error.
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3.3.2 Modeling/Calibrating the Free INS. With the dynamics from

Subsection 3.3.1, the values for σa and σg, the uncertainty in the bias of the

accelerometers and gyroscopes, respectively, are set such that the free INS is a 1 km
hr

navigation system; note that a non-dimensional hour is 360 units long. Since the dynamics

are not forced, that is, there is no controlled input, the calibration is performed by using

the solution to the Lyapunov difference equation, Eq. (3.21 with

P(0) =


09×9 0 0

0 diag(σ2
a, σ

2
a, σ

2
a) 0

0 0 diag(σ2
g, σ

2
g, σ

2
g)


15×15

(3.69)

The Lyapunov difference equation is linear and therefore there is a linear relationship

between the uncertainty in the sensors’ biases and the ensuing uncertainty in the A/C’s x

position:

P1,1(360N) = ασ2
a + βσ2

g (3.70)

where the coefficients α and β are constants. Therefore, Eq. (3.21) was solved for one

non-dimensional hour twice to calculate the values of the constants α and β. The first

time, σa was set to 1 and σg was set to 0. The second time, σa was set to 0 and σg was set

to 1. Then assigning the errors in the accelerometers and gyroscopes an equal role/“guilt”

in the uncertainty of the A/C’s position at time 360, the values for the variances of the

sensors’ biases are calculated as

σa =
1
√

2α
= 1.0912 × 10−5 (3.71)

σg =
1√
2β

= 9.0935 × 10−8 (3.72)
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3.3.3 Measurement Equation. From the geometry in Figure 3.3 the relationship of

the inertial position of the A/C to that of the ground feature P is
x

y

z

 =


xp

yp

zp

 −
|RLOS |√

x2
f + y2

f + f 2
Cn

b


x f

y f

− f

 (3.73)

where xp, yp, and zp are the coordinates of the ground feature in the inertial/navigation

frame, x f and y f are the projections of the ground feature’s respective x and y coordinates

onto the focal plane of the camera and f is the camera’s focal length. For the case when

the A/C flies wings level at a constant altitude in the direction of the Xn axis and the Euler

angles are small, the DCM for relating the body frame to the navigation frame is given in

Eq. (3.57). The first two equations in the relationship given by Eq. (3.73) are non-linearly

dependent on the third. Now, the third equation yields

zp − z =
|RLOS |√

x2
f + y2

f + f 2

[
0 0 1

]
Cn

b


x f

y f

− f


and thus

|RLOS |√
x2

f + y2
f + f 2

=
zp − z

[
0 0 1

]
Cn

b


x f

y f

− f


(3.74)

Substituting Eq. (3.74) into Eq. (3.73) yields the two measurement equations for the three

dimensional case:

 x

y

 =

 xp

yp

 − zp − z

[
0 0 1

]
Cn

b


x f

y f

− f



 1 0 0

0 1 0

 Cn
b


x f

y f

− f


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Multiplying out the matrices yields x

y

 =

 xp

yp

 − (zp − z)
1

− f − θx f + φy f

 x f − ψy f − f θ

y f + x fψ + fφ


and non-dimensionalizing such that

x f →
x f

f
y f →

y f

f

yields  x

y

 =

 xp

yp

 − (zp − z)
1

−1 − θx f + φy f

 x f − ψy f − θ

y f + x fψ + φ


We obtained two separate measurement equations

xp − x = −(zp − z)
x f − ψy f − θ

1 + θx f − φy f
(3.75)

yp − y = −(zp − z)
y f + x fψ + φ

1 + θx f − φy f
(3.76)

Due to the small angles assumption, the denominator in Eqs. (3.75) and (3.76) can be

moved up such that

xp − x ≈ −(zp − z)(x f − ψy f − θ)(1 − θx f + φy f ) (3.77)

yp − y ≈ −(zp − z)(y f + x fψ + φ)(1 − θx f + φy f ) (3.78)

Since the A/C is using ground features to aid its INS, it can be assumed, without loss of

generality, that zp = 0. Due to the small values of the angles, when the former fraction is

distributed out, the products of the angles are negligible, yielding

xp − x = z[x f − θ(1 + x2
f ) + φx f y f − ψy f ] (3.79)

yp − y = z[y f − θx f y f + φ(1 + y2
f ) + ψx f ] (3.80)
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Next, perturb the states and the measurements

x = xc − δx y = yc − δy z = zc − δz

θ = θc − δθ φ = φc − δφ ψ = ψc − δψ

xp = xpc − δxp yp = ypc − δyp

x f = (x f m−δx f ) y f = (y f m−δy f )

where the subscript c indicates calculated values provided by the INS and the subscript m

indicates measured quantities. Inserting the perturbation equations into

Eqs. (3.79) and (3.80) yields

(xpc−xc) + δx − δxp = (zc − δz)
(
(x f m−δx f ) − (θc − δθ)(1 + (x f m−δx f )2)

)
+ (zc − δz)

(
φc − δφ)(x f m−δx f )(y f m−δy f ) − (ψc − δψ)(y f m−δy f )

)
Again, due to the small error in the measurements, the products of these terms can be

neglected.

(xpc−xc) + δx − δxp =

(zc − δz)
(
(x f m−δx f ) − (θc − δθ)(1 + x2

f m) + (φc − δφ)x f my f m − (ψc − δψ)y f m

)
Similarly, in the second measurement equation

(ypc−yc) + δy − δyp = (zc − δz)
(
(y f m−δy f ) − (θc − δθ)(x f m−δx f )(y f m−δy f )

)
+ (zc − δz)

(
(φc − δφ)(1 + (y f m−δy f )2) + (ψc − δψ)(x f m−δx f )

)
= (zc − δz)

(
(y f m−δy f ) − (θc − δθ)x f my f m + (φc − δφ)(1 + y2

f m) + (ψc − δψ)x f m

)
Moving all the error terms to the RHS of the equation and all the non-error terms to the

LHS yields

(xpc−xc) − zc(x f m − θc(1 + x2
f m) + φcx f my f m − ψcy f m) = −δx − δz(x f m − θc(1 + x2

f m)

+ φcx f my f m − ψcy f m) + δθ(1 + x2
f m)zc − δφ(x f my f mzc) + δψ(y f mzc) + δxp − δx f zc

(3.81)
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and

(ypc−yc) − zc(y f m − θcx f my f m + φc(1 + y2
f m) + ψcx f m) =

− δy − δz(y f m − θcx f my f m + φc(1 + y2
f m) + ψcx f m)

+ δθ(x f my f mzc) − δφ(1 + y2
f m)zc − δψ(x f mzc) + δyp − δy f zc

(3.82)

Finally, non-dimensionalizing such that

xp →
xp

h
yp →

yp

h
zp →

zp

h
,

the nondimensional altitude is z = 1. In addition, for the purpose of covariance analysis,

set all of the calculated values on the RHS equal to the nominal values. This causes all of

the angles to go to zero, simplifying the measurement Eqs. (3.81) and (3.82). Also, on the

RHS set x f m := x f and y f m := y f .

(xpc−xc) − zc(x f m − θc(1 + x2
f m) + φcx f my f m − ψcy f m) =

− δx − δzx f + δθ(1 + x2
f ) − δφx f y f + δψy f + δxp − δx f

(3.83)

and

(ypc−yc) − zc(y f m − θcx f my f m + φc(1 + y2
f m) + ψcx f m) =

− δy − δzy f + δθx f y f − δφ(1 + y2
f ) − δψx f + δyp − δy f

(3.84)
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The time dependent observation matrix H(l) for one unknown ground feature is

Hu(l) =



−1 0

0 −1

−x f −y f

0 0

0 0

0 0

−x f y f −(1 + y2
f )

1 + x2
f x f y f

y f −x f

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1



T

(3.85)

where the subscript u indicates that the position of the ground feature being tracked is

unknown. The nondimensional measurement error is [δx f , δy f ]T .

For the sake of observability [7] two ground features will be tracked. Therefore, there

will be two subscripts. The first will correspond to the ground feature that is closer to the

A/C and the second to the ground feature that is further away. If both ground features are

38



known, the observation matrix is

Hkk(l) =

−1 0 −1 0

0 −1 0 −1

−x f 1 −y f 1 −x f 2 −y f 2

0 0 0 0

0 0 0 0

0 0 0 0

−x f 1y f 1 −(1 + y2
f 1) −x f 2y f 2 −(1 + y2

f 2)

1 + x2
f 1 x f 1y f 1 1 + x2

f 2 x f 2y f 2

y f 1 −x f 1 y f 2 −x f 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



T

(3.86)
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where the subscript k indicates that the position of the ground feature is known. When

there is one known and one unknown ground feature, the observation matrix is

Hku(l) =

−1 0 −1 0

0 −1 0 −1

−x f 1 −y f 1 −x f 2 −y f 2

0 0 0 0

0 0 0 0

0 0 0 0

−x f 1y f 1 −(1 + y2
f 1) −x f 2y f 2 −(1 + y2

f 2)

1 + x2
f 1 x f 1y f 1 1 + x2

f 2 x f 2y f 2

y f 1 −x f 1 y f 2 −x f 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



T

(3.87)
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Finally, when neither ground feature’s position is known, the observation matrix

Huu(l) =

−1 0 −1 0

0 −1 0 −1

−x f 1 −y f 1 −x f 2 −y f 2

0 0 0 0

0 0 0 0

0 0 0 0

−x f 1y f 1 −(1 + y2
f 1) −x f 2y f 2 −(1 + y2

f 2)

1 + x2
f 1 x f 1y f 1 1 + x2

f 2 x f 2y f 2

y f 1 −x f 1 y f 2 −x f 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



T

(3.88)

3.3.4 Performance of Aided INS. The cross country flight scenario is shown in

Figure 3.2. The A/C is flying wings-level, at a constant speed. It is assumed that the

ground features are equally spaced one kilometer apart, and that the A/C starts one

kilometer behind and above the first known ground feature. It is also assumed that the
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ground features lay on the A/C’s ground track. In the observation matrices

x f 1(t) = 1 − t

x f 2(t) = 2 − t

y f 1(t) = y f 2(t) = 0

3.3.5 Initialization. It is stipulated that, initially, the INS has zero error in the

navigation states, that is, the INS alignment was perfect, and the states representing the

biases in the sensors are

δ f (b)
x ∼ N(0, σ2

a) δ f (b)
y ∼ N(0, σ2

a) δ f (b)
z ∼ N(0, σ2

a)

δωx ∼ N(0, σ2
g) δωy ∼ N(0, σ2

g) δωz ∼ N(0, σ2
g)

The x, y and z accelerometers are of the same quality; also the x, y and z gyroscopes are of

the same quality. Thus

δx(0) ∼ N(0,P(0))

with the initial covariance matrix P(0) given by Eq. (3.69).

3.3.6 Transitioning Between Measurement Epochs. For the purpose of covariance

analysis, and because the features were equally spaced and it took exactly one time block

for the A/C to fly from directly over one ground feature to directly over the next ground

feature, the relative position of the ground features to the A/C was the same at the

beginning of each time block/measurement epoch. Therefore the absolute positions of the

A/C and the ground features are not considered. After non-dimensionalization, the

position of the A/C relative to its location at the beginning of a measurement epoch is

x(l) = l∆t, y(l) = 0, 0 ≤ l ≤ N − 1 (3.89)

Recall that l is the discrete time counter within a measurement epoch, and that at the

beginning of each epoch l starts back over at 0. There are 360 epochs to be considered.
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Each epoch’s duration, T , is 1 non-dimensional second and in each epoch N = 100

bearing measurements of a ground feature are taken. With the exception of the first and

last ground feature, all the ground features are used for measurements in two consecutive

time blocks/measurement epochs. Throughout the entirety of the calculations xp1 = 1 and

xp2 = 2. The lateral positions of the ground features are 0. At the transition point between

epochs, the old xp2 and yp2 becomes the new xp1 and yp1, respectively, and a new ground

feature is acquired.

Initially, the positions of both tracked ground features were assumed known.

Therefore, in epoch 1 the observation matrix Hkk(l), and the dynamics matrix Aad15×15

were used. In the first epoch, the uncertainty of the states was propagated for one hundred

steps using the covariance propagate and update equations, Eqs.(3.44)-(3.46), substituting

in the correct values for the dynamics, observation and identity matrices. where R is the

measurement uncertainty caused by one pixel in the camera’s focal plane

δx f 1

δy f 1

δx f 2

δy f 2


∼ N(0,R)

We assume a 9 Megapixel camera with an aspect ratio of 1 and therefore the

nondimensional

R =



1
9 0 0 0

0 1
9 0 0

0 0 1
9 0

0 0 0 1
9


× 10−6

At the conclusion of the first one hundred steps/the first measurement epoch, the first

ground feature was dropped from consideration, and a new, unknown ground feature was

brought in. Thus the next time block required the use of the augmented dynamics matrix

Aad17×17 from Eq. (3.68) and the observation matrix Hku(l).
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The challenging part is to transition the covariance matrix P from an 15 × 15 to a

17 × 17 matrix, while including the correct cross-covariance terms. This is done as

follows: when transitioning from two known ground features to one known/one unknown

ground feature, the new initial covariance matrix is

P(0) =


P(99)15×15 P(99)(1:15,1) P(99)(1:15,2)

P(99)(1,1:15) σ2
xnew P(99)1,2

P(99)(2,1:15) P(99)1,2 σ2
ynew


17×17

(3.90)

where σ2
xnew is the uncertainty in the x position of the new ground feature, and it is the

uncertainty in the A/C’s x position at the time the new ground feature is acquired plus the

uncertainty brought about by the optical measurement:

σ2
xnew = P(1,1)(99) + σ2

ξ (3.91)

Similarly, σ2
ynew is the uncertainty in the y position of the new ground feature, and it is the

uncertainty in the A/C’s y position at the time the new ground feature is acquired plus the

uncertainty brought about by the optical measurement:

σ2
ynew = P(2,2)(99) + σ2

µ (3.92)

where σ2
ξ and σ2

µ are the uncertainties caused by the error in the LOS angle measurements,

and they each have a non-dimensional value of 4
9 × 10−6. It is because of the correlation of

the errors in the A/C navigation state x and the new ground feature’s position state xp2 that

the first row and column from P15×15 must be transplanted to their respective positions in

P17×17. Since there is no correlation between the LOS error of the camera and any of the

INS navigation or bias states, it is not added to any of the transplanted fields. The same

holds true for the navigation state y and the new state yp2. The covariance matrix is then

propagated in the same manner as in the first epoch, following Eqs. (3.44)-(3.46), with the

proper substitution of the initial covariance, P(0)17×17 for P(99)15×15, dynamics, Aad17×17

(found using Eq. 3.68) for Aad15×15, and observation matrices, Hku for Hkk.
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The transition at the beginning of the third epoch from one known/one unknown to

two unknown ground features follows the same pattern as incorporating the first unknown

ground feature. Now

P(0) =


P(99)17×17 P(99)(1:17,1) P(99)(1:17,2)

P(99)(1,1:17) σ2
xnew P(99)1,2

P(99)(2,1:17) P(99)1,2 σ2
ynew


19×19

(3.93)

where σ2
xnew and σ2

ynew are calculated according to Eqs. (3.91) and (3.92).

In the previous epoch, the unknown feature’s position was (xp2, yp2), but when it

transitioned to being the closer ground feature, all of its cross-covariances went with it.

Because P(16,16) and P17,17 show the uncertainty of the closest feature to the A/C, the

entirety of P(99) could be directly translated to the upper-diagonal section of the new

covariance matrix. Substituting Huu for Hku, and using the Aad19×19 dynamics matrix, the

covariance was propagated according to Eqs. (3.44)-(3.46). These matrices were used for

the remainder of the measurement epochs.

The transition becomes more complicated when the A/C completes a time block

using two unknown ground features, and begins using a new unknown ground feature. A

transition matrix is required

P =


P(99)15×15 P(99)(1:15,18) P(99)(1:16,19)

P(99)(18,1:15) P(99)18,18
...

P(99)(19,1:16) . . . P(99)19,19


17×17

(3.94)

This transition matrix was then used to initialize the new state estimation error covariance

matrix, P19×19:

P(0) =


P P(1:17,1) P(1:17,2)

P(1,1:17) σ2
xnew P(1,2)

P(2,1:17) P(1,2) σ2
ynew


19×19

(3.95)
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where σ2
xnew and σ2

ynew are calculated according to Eqs. (3.91) and (3.92). Starting at epoch

4, the transitions for the remainder of the epochs followed Eqs. (3.94)-(3.95) from epoch

3, because there are no more known ground features.

3.4 Three Dimensional Vertical Case

The inertial and body frames are same as for horizontal case laid out in

Subsection 3.3.1. When flying towards a flat, non-rotating Earth the reference frame

relationship is shown in Figure 3.4. For this case the body axes have been rotated away

from the body fixed frame in order for them to remain aligned with the navigation axes.

This was done to maintain the established linear mathematics model. To keep the body

axes aligned such that the Xb axis is the longitudinal axis, one must use the nonlinear

dynamics model found in Appendix D and the nonlinear measurement model found in

Section E.2. For this case it is assumed that v(0) = 0.

3.4.1 Dynamics. The dynamics model is the same as the horizontal case, shown in

Eq. (3.65). The primary difference is that the nominal specific force components during a

perfect vertical drop will be time varying. Until the munition reaches terminal velocity all

of the nominal specific forces are zero. Therefore

f (n) =


f (n)
x

f (n)
y

f (n)
z

 =


0

0

0

 ∀ 0 ≤ t < tterm (3.96)

Once the munition reaches terminal velocity, at tterm, the accelerometers will detect

nominal specific forces such that f (n)
x = ax, f (n)

y = ay, and f (n)
z = g where g is the

acceleration of gravity and ax and ay are the acceleration components of the munition

along its Xb and Yb axes. Since a purely vertical drop is considered, ax = ay = 0.
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Xn 

Xb 

Yb 

Zb 
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(x, y, z) 

Ground Feature 
Position 

P = (xp, yp, zp) 

(xf, yf) 

Figure 3.4: The munition falling in 3-D space. Notice that the origin of the body frame is
located at the camera.

Therefore,

f (n) =


f (n)
x

f (n)
y

f (n)
z

 =


0

0

g

 ∀ tterm ≤ t ≤ T (3.97)

Eqs. (3.65, 3.96, 3.97) represent the time-varying dynamics of navigation state’s error.

Since this is a vertical drop and the nominal trajectory is such that the body axes are

aligned with the navigation axes, the time history of the nominal navigation variables is

x = 0, y = 0, and

z(t) =


hrel −

g
2 t2 ∀ 0 ≤ t < tterm

hterm + vtermtterm − vtermt ∀ tterm ≤ t ≤ T
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φ = θ = ψ = 0, where hterm and vterm are the altitude and velocity of the munition when the

munition reaches terminal velocity. These variables are non-dimensionalized as follows

t → t
v
h
, T → T

v
h

hterm →
hterm

h
vterm →

vterm

v
,

where h and v are a typical altitude and velocity when flying wings-level, t is the

current time, and T = 7 is the nondimensional fall duration.

The remainder of the dynamics model is identical to that of Subsection 3.3.3.

3.4.2 Modeling/Calibrating the Free INS. With the dynamics from

Subsection 3.3.1, the values for σa and σg, the uncertainty in the bias of the

accelerometers and gyroscopes, respectively, are set such that during wings level

horizontal flight the free INS is a 100 km
hr navigation system; note that a non-dimensional

hour is 360 units long. Since the dynamics are not forced, that is, there is no controlled

input, the calibration is performed by using the solution to the Lyapunov difference

equation, Eq. (3.21) with P(0) from Eq. (3.69)

The Lyapunov difference equation is linear and therefore there is a linear relationship

between the uncertainty in the sensors’ biases and the ensuing uncertainty in the

munition’s x position:

P1,1(360N) = ασ2
a + βσ2

g

where the coefficients α and β are constants. Therefore, Eq. (3.21) was solved for one

non-dimensional hour twice to calculate the values of the constants α and β. The first

time, σa was set to 1 and σg was set to 0. The second time, σa was set to 0 and σg was set

to 1. Then assigning the errors in the accelerometers and gyroscopes an equal role/“guilt”

in the uncertainty of the munition’s position at time 360, the values for the variances of the
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sensors’ biases are calculated as

σa =
1
√

2α
= 1.0912 × 10−3 (3.98)

σg =
1√
2β

= 9.0935 × 10−6 (3.99)

3.4.3 Measurement Model. Because the body reference frame is aligned with the

navigation, the measurement model developed in Eqs. (3.73)-(3.82) holds true.

Nondimensionalizing such that

xp →
xp

h
yp →

yp

h
zp →

zp

h
,

the nondimensional altitude is zc = zl. In addition, for the purpose of covariance analysis,

set all of the calculated values on the RHS equal to the nominal values. This causes all of

the angles to go to zero, simplifying the measurement Eqs. (3.81) and (3.82). Also, on the

RHS set x f m := x f and y f m := y f .

(xpc−xc) − zc(x f m − θc(1 + x2
f m) + φcx f my f m − ψcy f m) =

− δx − δzx f + δθ(1 + x2
f )zl − δφx f y f zl + δψy f zl + δxp − δx f zl

(3.100)

and

(ypc−yc) − zc(y f m − θcx f my f m + φc(1 + y2
f m) + ψcx f m) =

− δy − δzy f + δθx f y f zl − δφ(1 + y2
f )zl − δψx f zl + δyp − δy f zl

(3.101)
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The time dependent observation matrix H(l) for one unknown ground feature is

Hu(l) =



−1 0

0 −1

−x f −y f

0 0

0 0

0 0

−x f y f zl −(1 + y2
f )zl

(1 + x2
f )zl x f y f zl

y f zl −x f zl

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1



T

(3.102)

where the subscript u indicates that the position of the ground object being tracked is

unknown. The nondimensional measurement error is [δx f , δy f ]T .
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For the sake of observability [7] two ground objects will be tracked. The observation

matrix for tracking two unknown ground features

Huu(l)=

−1 0 −1 0

0 −1 0 −1

−x f 1 −y f 1 −x f 2 −y f 2

0 0 0 0

0 0 0 0

0 0 0 0

−x f 1y f 1zl −(1+y2
f 1)zl −x f 2y f 2zl −(1+y2

f 2)zl

(1+x2
f 1)zl x f 1y f 1zl (1+x2

f 2)zl x f 2y f 2zl

y f 1zl −x f 1zl y f 2zl −x f 2zl

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



T

(3.103)

3.4.4 Performance of Aided INS. The munition is in a free fall, that is, vz(0) = 0

and its acceleration is −g along the Zn axis until it reaches terminal velocity. The nominal

vertical drop is such that hrel = 7500 [m]. The terminal vterm = 100 m
s so that the free fall is

10 seconds and the duration of the vertical drop is 80 seconds. The nominal trajectory is
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Figure 3.5: The locations of the tracked ground features in the first geometry.

x(t) = 0, y(t) = 0 and

z(t) =


7500 − 5t2 ∀ 0 ≤ t < tterm

7000 − 100(t − tterm) ∀ tterm ≤ t ≤ T

Once the terminal velocity has been reached there is no further acceleration and the

vertical speed is constant. Two ground feature geometries were considered. The first is

shown in Figure 3.5. For this geometry, in the observation matrix

x f 1(l) =
xp1

zl
=
.025

zl

x f 2(l) =
xp2

zl
=
−.025

zl

y f 1(l) = y f 2(l) = 0, l = 0, . . . ,N − 1
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Figure 3.6: The locations of the tracked ground features in the second geometry.

The second geometry is shown in Figure 3.6. For this geometry, in the observation

matrix

x f 1(l) =
xp1

zl
=
.025

zl

x f 2(l) = y f 1(l) = 0

y f 2(l) =
yp2

zl
=
.025

zl
, l = 0, . . . ,N − 1

3.4.5 Initialization. It is stipulated that initially, the INS has zero error in the

navigation states, that is, the INS alignment was perfect, and the states representing the

biases in the sensors are

δ f (b)
x ∼ N(0, σ2

a) δ f (b)
y ∼ N(0, σ2

a) δ f (b)
z ∼ N(0, σ2

a)

δωx ∼ N(0, σ2
g) δωy ∼ N(0, σ2

g) δωz ∼ N(0, σ2
g)

The x, y and z accelerometers are of the same quality, and also the x, y and z gyroscopes

are of the same quality. Thus

δx(0) ∼ N(0,P(0))
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with the initial covariance matrix P(0) given by Eq. (3.69).

3.4.6 Transitioning Between Measurement Epochs. In the pure free fall case, there

are three measurement epochs. The first is while the munition is accelerating toward the

earth. The duration of the first epoch is one nondimensional second. There is N = 100

discrete steps per nondimensional second.

Therefore, in epoch 1 the observation matrix Huu(l), and the dynamics matrix

Aad15×15 based on the nominal accelerometer values from Eq. (3.96) were used. In the first

epoch, the uncertainty of the states were propagated for one hundred steps using the

covariance propagate and update equations of the Kalman filter, Eqs. (3.44)(3.46), where

R is the measurement uncertainty caused by one pixel in the camera’s focal plane

δx f 1

δy f 1

δx f 2

δy f 2


∼ N(0,R)

We assume a 9 Megapixel camera with an aspect ratio of 1. However, recall from

Eqs. (3.100) and (3.101) that the measurement error terms on the RHS are multiplied by

the time-varying altitude zl. Therefore, the nondimensional

R = z2
l



1
9 0 0 0

0 1
9 0 0

0 0 1
9 0

0 0 0 1
9


× 10−6 (3.104)

where zl is squared to match R. If R was standard deviation of the noise instead of the

variance then zl would not need to be squared.

At the conclusion of the first one hundred steps/the first measurement epoch the

munition reached terminal velocity. Thus the next time block required the use of the

dynamics matrix Aad15×15 to be based on the nominal accelerometer values from
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Eq. (3.97). The second measurement epoch was 6 nondimensional seconds long. Without

any further transitions, Eqs. (3.44)-(3.46) were repeated for 101 ≤ l ≤ 700, using the

updated dynamics matrix.

We assumed a camera Field of View (FOV) of 50 milliradians. Based on the

geometry set forth in Figure 3.5, the ground features leave the camera FOV when the

munition is 1000 meters above the ground, h f inal. Thus the third and final measurement

epoch started when the munition reached h f inal in 70 seconds. In the final 10 seconds of its

flight the INS is not aided, and one reverts to a free INS. As such the calculations using

the KF equations, (3.44)-(3.46), were terminated and the calculation for the free INS,

Eq. (3.21), was used for the last 10 seconds.

This process was completed for both geometries listed at the beginning of

Subsection 3.4.4.
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4 Covariance Analysis Results

4.1 Introduction

This chapter is broken up into the three sections: Section 4.2 covers the two

dimensional case, Section 4.3 shows the case where the A/C was flying horizontally, and

Section 4.4 discusses the case where a munition is in vertical free fall, for both of the

geometries considered. All three sections will start with baseline plots showing the

development of the standard deviations of the position estimates from the unaided INS.

This information will then be followed by plots of the aided INS. Plots showing the

remainder of the navigation states, for both the unaided and aided INS schemes are found

in Appendices A-C.

4.2 Two Dimensional Results

Initially the standard deviation of the navigation states of the unaided INS were

plotted as a baseline. As expected, the standard deviation of the x position was 1 kilometer

after one hour. The standard deviations for the x and z positions are shown in Figure 4.1.

There was a significant degree of aiding achieved with this scheme, shown in Figure 4.2.

After an hour of flight the standard deviation in the x position is only five meters, an

improvement of 99.5% off of the unaided system. If one multiplies the position standard

deviations produced by the unaided INS scheme, the area of uncertainty is calculated

σarea = σx(360N) × σz(360N) = .7071[km2] (4.1)

That means that the A/C is likely to be somewhere inside a square with that area. That

being said, if the same process is applied to the aided scheme

σarea = σx(360N) × σz(360N) = 1.8771 × 10−7[km2] (4.2)

There is an eight order of magnitude improvement in the uncertainty of the position

estimate of the aided case over the unaided case!
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But the x position was not the only navigation state that was aided. The other four

states showed an order of magnitude reduction in uncertainty as well, shown in

Figures A.1-A.4. A side-by-side comparison of the navigation state vector standard

deviations is shown in Table 4.1.

In the best tradition of SLAM, the aiding action factored into the uncertainty of the

ground objects’ position as well. Notice that in Figure A.5 the ground objects’ position

standard deviation trends similarly as the x position standard deviation. A closer

inspection of the ground objects’ position uncertainty in Figure A.6 shows how at the

beginning of each epoch there is a spike for xp2. This is due to the initialization error from

the LOS angle error of the camera. There is a jump in the position uncertainty of xp1 as

well, but it is far less drastic than for xp2, but that is because the position uncertainty of xp2

at the end of an epoch becomes the position uncertainty of xp1 at the beginning of the next

epoch.

Table 4.1: The peak/final standard deviation values for
the unaided navigation states. Also included are the peak
and final standard deviations for aided navigation states
for the two-dimensional case.

Standard Deviation Unaided Final Value Aided Peak Value Aided Final Value

σx 1 [km] 4.7 [m] 4.7 [m]

σz .7071 [km] .1 [m] .04 [m]

σV x 7 × 10−3 [m/s] 8.21 × 10−5 [m/s] 4.0 × 10−5 [m/s]

σVz 4 × 10−3 [m/s] 3.9 × 10−5 [m/s] 2.2 × 10−7 [m/s]

σθ 3.27 × 10−5 [rad] 3.31 × 10−6 [rad] 2.44 × 10−7 [rad]
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Figure 4.1: The 2-d standard deviation of the position states in the unaided, free INS

4.3 Horizontal Three Dimensions

The results for the three dimensional calculations showed strong correlation to the

two dimensional case, though more insight was offered to the attitude navigation states.

As expected the unaided INS had a standard deviation for the x and y positions of 1

kilometer each, shown in Figure 4.3 with the improvement produced by the aiding scheme

shown in Figure 4.4. Once again the horizontal position uncertainties dropped to a little

below five meters. If we multiply the position standard deviations produced by the

unaided INS scheme, we calculate a volume of uncertainty

σvol = σx(360N) × σy(360N) × σz(360N) = .7071[km3] (4.3)

That means that the A/C is very likely to be somewhere inside a box with that volume.

That being said, if the same process is applied to the aided scheme

σvol = σx(360N) × σy(360N) × σz(360N) = 7.4177 × 10−10[km3] (4.4)
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Figure 4.2: The 2-d standard deviation of the position states in the aided INS

There is an eleven order of magnitude improvement in the uncertainty of the position

estimate of the aided case over the unaided case! Five of the other six navigation states

showed an order of magnitude improvement as well, seen by comparing the peak and final

navigation states’ standard deviations shown in Table 4.2. The temporal development of

the standard deviations of the velocity and attitude states is shown in Figures B.1-B.4.

Once again, there is a relationship between the uncertainty of the A/C position

estimate and the ground features’ position uncertainty. As shown in Figures B.5 and B.6

the x and y position standard deviations of the ground features trend similarly to the x and

y position standard deviations of the A/C.
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Figure 4.3: The 3-d standard deviation of the position states in the unaided, free INS

4.4 Vertical Three Dimensions

Once again there was a considerable decrease in the uncertainty of the position

estimate from the unaided case, Figure 4.5, to the two aided schemes, Figures 4.6 and 4.7.

The final standard deviations of the unaided x, y, and z positions are about 35 meters. For

the first geometry, the horizontal position estimates had standard deviations of about 12

centimeters, with the z standard deviation ending around 4.3333 meters. The second

geometry produced x, y and z standard deviations of 12 centimeters, 17 centimeters and 1

micrometer respectively. This shows that by removing the symmetry in the ground feature

geometry the uncertainty of the altitude state drops greatly. To put this in another

perspective, the unaided volume of uncertainty is 4.1 × 104 m3 and the aided volume of

uncertainty for the second geometry is 2.05 × 10−8 m3.
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Figure 4.4: The 3-d standard deviation of the position states in the aided INS

The temporal development of the unaided standard deviation for the velocity and

attitude states is shown in Figures C.1-C.2. The temporal development of the aided

standard deviations for both geometries is shown in Figures C.3-C.10. The peak and final

standard deviations for the first geometry are listed in Table 4.3
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Table 4.2: The peak/final standard deviation values for
the unaided navigation states. Also included are the peak
and final standard deviations for aided navigation states
for the three-dimensional horizontal case.

Standard Deviation Unaided Final Value Aided Peak Value Aided Final Value

σx 1 [km] 4.7 [m] 4.7 [m]

σy 1 [km] 4.0 [m] 4.0 [m]

σz .7071 [km] 0.10 [m] 0.0389 [m]

σV x 7 × 10−3 [m/s] 8.21 × 10−5 [m/s] 3.93 × 10−5 [m/s]

σVy 7 × 10−3 [m/s] 3.06 × 10−5 [m/s] 2.29 × 10−5 [m/s]

σVz 4 × 10−3 [m/s] 3.9 × 10−5 [m/s] 2.16 × 10−7 [m/s]

σφ 3.27 × 10−5 [rad] 2.40 × 10−6 [rad] 1.07 × 10−7 [rad]

σθ 3.27 × 10−5 [rad] 3.16 × 10−6 [rad] 2.39 × 10−7 [rad]

σψ 3.27 × 10−5 [rad] 2.23 × 10−5 [rad] 2.23 × 10−5 [rad]
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Figure 4.5: The 3-d standard deviation of the position states in the unaided, free, INS for
the vertical drop
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Figure 4.6: The development of the standard deviation of the position errors in the aided
INS for geometry 1 for the vertical drop.

0 10 20 30 40 50 60 70 80
0

0.5
Aided Position Std Dev for Vertical Drop Geometry 2

σ x (
m

)

0 10 20 30 40 50 60 70 80
0

0.5

1

σ y (
m

)

0 10 20 30 40 50 60 70 80
0

1

2
x 10

−4

σ z (
m

)

Time (sec)

Figure 4.7: The development of the standard deviation of the position errors in the aided
INS for geometry 2 for the vertical drop.
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Table 4.3: The peak/final standard deviation values for
the unaided navigation states. Also included are the
peak and final standard deviations for aided navigation
states for the vertical three-dimensional case using the
first geometry shown in Section 3.4.

Standard Deviation Unaided Final Value Aided Peak Value Aided Final Value

σx 35.4 [m] 43.4 [cm] 11.97 [cm]

σy 34.9 [m] 43.0 [cm] 11.70 [cm]

σz 34.9 [m] 11.4 [m] 4.33 [m]

σV x .899 [m/s] .079 [m/s] .011 [m/s]

σVy .873 [m/s] .079 [m/s] .0029 [m/s]

σVz .873 [m/s] .458 [m/s] .11 [m/s]

σφ 7.27 × 10−5 [rad] 7.27 × 10−5 [rad] 7.27 × 10−5 [rad]

σθ 7.27 × 10−5 [rad] 2.74 × 10−5 [rad] .937 × 10−5 [rad]

σψ 7.27 × 10−5 [rad] 7.27 × 10−5 [rad] 7.27 × 10−5 [rad]
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Table 4.4: The peak/final standard deviation values for
the unaided navigation states. Also included are the peak
and final standard deviations for aided navigation states
for the vertical three-dimensional case using the second
geometry shown in Section 3.4.

Standard Deviation Unaided Final Value Aided Peak Value Aided Final Value

σx 35.4 [m] 43.2 [cm] 11.97 [cm]

σy 34.9 [m] 56.1 [cm] 16.55 [cm]

σz 34.9 [m] .14 [mm] 1.0365 [micron]

σV x .899 [m/s] .079 [m/s] .011 [m/s]

σVy .873 [m/s] .091 [m/s] .0041 [m/s]

σVz .873 [m/s] .0014 [m/s] 25.91 [nm/s]

σφ 7.27 × 10−5 [rad] 2.17 × 10−5 [rad] .929 × 10−5 [rad]

σθ 7.27 × 10−5 [rad] 2.17 × 10−5 [rad] .929 × 10−5 [rad]

σψ 7.27 × 10−5 [rad] 7.27 × 10−5 [rad] 7.27 × 10−5 [rad]
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5 Conclusion

5.1 Conclusions

Demonstrating INS aiding action using vision while loitering in the vicinity of a

ground feature is a possibility, but then one does not go places. The “bootstrapping”

method for INS aiding during cross country navigation, that is, using bearing

measurements of ground features as they come into view, shows that an aircraft can use its

own position to geolocate a ground object, then use that geolocation to strongly aid its

own INS and repeat the process as long as necessary. While the errors in the horizontal

position will continue to grow unbounded, the rate of growth was cut by 99.5%. If one

considers the volume of position uncertainty for the unaided INS is .7071 km3, from

Eq. (4.3), and contrasts that with the position uncertainty volume of the optical tracking

aided INS, 7.4177 × 10−10 km3, it is clearly shown that despite the negative connotation of

“bootstrapping”, it is a mechanism that makes INS aiding using vision practical for long

range flight.

It is also clearly shown that using visual bearings-only measurements greatly reduces

the uncertainty in the INS provided navigation state estimate during a vertical drop. This

improvement will allow for more accurate guidance of the munition, and therefore a

greater chance of the munition hitting its target. This is achieved using a passive means

and autonomous guidance.

5.2 Follow-On Topics

There are still many ways this research can be expanded upon to take it from the

realm of the academic to the operational realm. Consider the following

• Perform an error state analysis. Find out how often the estimates actually fall within

1σ of the truth information.
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• Consider a maneuvering A/C where the A/C Euler angles cannot be assumed small.

There are few instances where a military A/C will be able to fly a straight course to

the target. The A/C will need to avoid densely covered air defense areas, when

possible. This dictates a maneuver, and sometimes, multiple drastic maneuvers.

• Consider a long range munition on a ballistic terminal trajectory. This would

provide an effective means of combining the horizontal and vertical three

dimensional cases.

• Transition from a flat, non-rotating Earth to spherical rotating Earth. The higher

quality navigation systems will be able to detect the rotation of the Earth, which can

introduce further errors into the system.

• Close the guidance-control loop to maneuver the munition towards the target.
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Appendix A: 2-D Standard Deviation Plots
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Figure A.1: The 2-d standard deviation of the velocity states in the unaided, free INS
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Figure A.2: The 2-d standard deviation of the velocity states in the aided INS
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Figure A.3: The 2-d standard deviation of the attitude state in the unaided, free INS
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Figure A.4: The 2-d standard deviation of the attitude state in the aided INS
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Figure A.5: The standard deviation of the tracked ground objects’ position, over 1 hour
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Figure A.6: The standard deviation of the tracked ground objects’ position, over 250
seconds
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Appendix B: 3-D Horizontal Plots
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Figure B.1: The 3-d standard deviation of the velocity states in the unaided, free INS
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Figure B.2: The 3-d standard deviation of the velocity states in the aided INS
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Figure B.3: The 3-d standard deviation of the attitude state in the unaided, free INS
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Figure B.4: The 3-d standard deviation of the attitude state in the aided INS
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Figure B.5: The standard deviation of the closer tracked ground object’s position
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Figure B.6: The standard deviation of the further tracked ground object’s position
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Appendix C: 3-D Vertical Plots
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Figure C.1: The development of the standard deviation of the velocity errors in the unaided,
free INS for the vertical drop.
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Figure C.2: The development of the standard deviation of the angle errors in the unaided,
free INS for the vertical drop.
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Figure C.3: The development of the standard deviation of the velocity errors in the aided
INS for geometry 1 for the vertical drop.
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Figure C.4: The development of the standard deviation of the angle errors in the aided INS
for geometry 1 for the vertical drop.
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Figure C.5: The development of the standard deviation of the first ground object’s position
for geometry 1 for the vertical drop.
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Figure C.6: The development of the standard deviation of the second ground object’s
position for geometry 1 for the vertical drop.
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Figure C.7: The development of the standard deviation of the velocity errors in the aided
INS for geometry 2 for the vertical drop.
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Figure C.8: The development of the standard deviation of the angle errors in the aided INS
for geometry 2 for the vertical drop.
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Figure C.9: The development of the standard deviation of the first ground object’s position
for geometry 2 for the vertical drop.
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Figure C.10: The development of the standard deviation of the second ground object’s
position for geometry 2 for the vertical drop.
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Appendix D: General Form Dynamics

The following is the derivation of the state error equations for the case when the

Euler angles are not small. It will allow for aircraft maneuvers. The assumptions about a

flat and non-rotating Earth are still used.

The DCM relating the accelerometer measurements in the body frame to the specific

forces in the navigation frame [9] is

Cn
b =


cθ cψ sθ sφ cψ− cφ sψ cφ sθ cψ+ sφ sψ

cθ sψ sθ sφ sψ+ cφ cψ cφ sθ sψ− sφ cψ

− sθ sφ cθ cθ cφ

 (D.1)

such that 
Fxi

Fyi

Fzi

 =


cθ cψ sθ sφ cψ− cφ sψ cφ sθ cψ+ sφ sψ

cθ sψ sθ sφ sψ+ cφ cψ cφ sθ sψ− sφ cψ

− sθ sφ cθ cθ cφ




fxb

fyb

fzb

 (D.2)

Fxi = (cθ cψ) fxb + (sθ sφ cψ− cφ sψ) fyb + (cφ sθ cψ+ sφ sψ) fzb (D.3)

Fyi = (cθ sψ) fxb + (sθ sφ sψ+ cφ cψ) fyb + (cφ sθ sψ− sφ cψ) fzb (D.4)

Fzi = (− sθ) fxb + (sφ cθ) fyb + (cθ cφ) fzb (D.5)

However, the sensors have inherent uncertainty in them. As such, Eqs. (D.3)-(D.5) must

be perturbed using the First Order Taylor Series Expansion (FOTSE).

δFxi = δφ((sθ cφ cψ+ sφ sψ) fyb + (cφ sψ− sφ sθ cψ) fzb)

+ δθ(− sθ cψ fxb + cθ sφ cψ fyb + cθ cφ cψ fzb)

+ δψ(− sψ cθ fxb − (sθ sφ sψ+ cθ cψ) fyb + (sφ cψ− cφ sθ sψ) fzb)

+ δ fxb(cθ cψ) + δ fyb(sθ sφ cψ− cφ sψ) + δ fzb(cφ sθ cψ+ sφ sψ)

(D.6)
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δFyi = δφ((sθ cφ sψ− sφ cψ) fyb − (sθ sφ sψ+ cφ cψ) fzb)

+ δθ(− sθ sψ fxb + cθ sφ sψ fyb + cθ cφ sψ fzb)

+ δψ(cθ cψ fxb + (sθ sφ cψ− cφ sψ) fyb + (sθ cφ cψ+ sφ sψ) fzb)

+ δ fxb(cθ sψ) + δ fyb(sθ sφ sψ+ cφ cψ) + δ fzb(cφ sθ sψ− sφ cψ)

(D.7)

and

δFzi = δφ(cθ cφ fyb − sφ cθ fzb) + δθ(− cθ fxb − sθ sφ fyb − sθ cφ fzb)

− δ fxb(sθ) + δ fyb(sφ cθ) + δ fzb(cθ cφ)
(D.8)

are the results of the FOTSE. The errors in the specific forces are related to the error states

by

˙δvx = δFxi ˙δvy = δFyi ˙δvz = δFzi

δ̇x = δvx δ̇y = δvy δ̇z = δvz

Due to the overwhelming complexity of the dynamics, the A matrix will be assembled

piecemeal. If a component of the matrix is not listed, it has a value of zero.

A(1:3, 4:7) = I (D.9)

A(4:6, 7) =


(sθ cφ cψ+ sφ sψ) fyb + (cφ sψ− sφ sθ cθ) fzb

(sθ cφ sψ− sφ cψ) fyb − (sθ sφ sψ+ cφ cψ) fzb

cθ cφ fyb − sφ cθ fzb

 (D.10)

A(4:6, 8) =


− sθ cψ fxb + cθ sφ cψ fyb + cθ cφ cψ fzb

− sθ sψ fxb + cθ sφ sψ fyb + cθ cφ sψ fzb

− cθ fxb − sθ sφ fyb − sθ cφ fzb

 (D.11)

A(4:5, 9) =

 − sψ cθ fxb − (sθ sφ sψ+ cθ cψ) fyb + (sφ cψ− cφ sθ sψ) fzb

cθ cψ fxb + (sθ sφ cψ− cφ sφ) fyb + (sθ cφ cψ+ sφ sψ) fzb

 (D.12)

83



The disturbance matrix, Γ, while complicated, is still simple enough that it can be listed in

its entirety

Γ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

cθ cψ (sθ sφ cψ− cφ sψ) (sφ sψ+ sθ cφ cψ) 0 0 0

cθ sψ (cφ cψ+ sθ sφ sψ) (sθ sψ cφ− sφ cψ) 0 0 0

− sθ sφ cθ cθ cφ 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(D.13)
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Appendix E: General Form Measurement Model

E.1 Measurement for Primarily Horizontal Flight

For the case when the camera is located on the underside of an aircraft, where the

focal plane is orthogonal to the negative vertical axis. When the aircraft’s Euler angles

cannot be assumed small, the nonlinear DCM from the navigation frame to the body frame

is

Cb
n =


cθ cψ cθ sψ − sθ

sθ sφ cψ− cφ sψ sθ sφ sψ+ cφ cψ sφ cθ

cφ sθ cψ+ sφ sψ cφ sθ sψ− sφ cψ cθ cφ

 (E.1)

and the relationship between the navigation frame and the body frame is
xp − x

yp − y

zp − z



(b)

= Cb
n


xp − x

yp − y

zp − z



(n)

(E.2)

The angles ξ, the angle from the x(b) axis to the tracked ground feature, and µ, the angle

from the y(b) axis to the tracked ground feature, provide the relationship basis for the

measurement equations.

tan ξ =
x f

f
=

(xp − x)(b)

(zp − z)(b) (E.3)

tan µ =
y f

f
=

(yp − y)(b)

(zp − z)(b) (E.4)

The x measurement will be shown first. The nondimensionalized x f ,

x f =
cθ cψ(xp − x) + cθ sψ(yp − y) + sθ(z)

(cφ sθ cψ+ sφ sψ)(xp − x) + (cφ sθ sψ− sφ cψ)(yp − y) − cθ cφ(z)
(E.5)

Moving everything to the LHS of the equation produces

x f
(
(cφ sθ cψ+ sφ sψ)(xp − x) + (cφ sθ sψ− sφ cψ)(yp − y) − cθ cφ(z)

)
− cθ cψ(xp − x) − cθ sψ(yp − y) − sθ(z) = 0

(E.6)
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Due to the sheer complexity of the equation, it is broken up into the following components

A = cφ sθ cψ+ sφ sψ (E.7)

B = cφ sθ sψ− sφ cψ (E.8)

C = cθ cφ (E.9)

D = cθ cψ (E.10)

E = cθ sψ (E.11)

F = (xp − x) (E.12)

G = (yp − y) (E.13)

such that

(x f m−δx f )(AF + BG + Czc) − DF − EG + sθc zc = 0

The states and measurements must then be perturbed to account for uncertainty from the

INS and measurements.

θ = θc − δθ φ = φc − δφ ψ = ψc − δψ

x = xc − δx y = yc − δy z = zc − δz

xp = xpc − δxp yp = ypc − δyp x f = x f m − δx f

Based on the angle addition rule and the small angle assumption of the error terms, the

trigonometric terms have the following relationships

sin(θc − δθ) = sθc −(sθc + cθc)δθ cos(θc − δθ) = cθc +(sθc − cθc)δθ

sin(φc − δφ) = sφc −(sφc + cφc)δφ cos(φc − δφ) = cφc +(sφc − cφc)δφ

sin(ψc − δψ) = sψc −(sψc + cψc)δψ cos(ψc − δψ) = cψc +(sψc − cψc)δψ
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Substituting the perturbed trigonometric terms into the component terms from

Eqs. (E.7)-(E.11), distributing the terms, and collecting like error terms yields

A =
(

cφc +(sφc − cφc)δφ
)(

sθc −(sθc + cθc)δθ
)(

cψc +(sψc − cψc)δψ
)

+
(

sφc −(sφc + cφc)δφ
)(

sψc −(sψc + cψc)δψ
)

=
(

sθc cφc +(sφc − cφc) sθc δφ − (sθc + cθc) cφc δθ
)(

cψc +(sψc − cψc)δψ
)

+ sφc sψc − sφc(sψc + cψc)δψ − sψc(sφc + cφc)δφ

= sθc cφc cψc + sθc cψc(sφc − cφc)δφ − cφc cψc(sθc + cθc)δθ + (sψc − cψc) sθc cφc δψ

+ sφc sψc − sφc(sψc + cψc)δψ − sψc(sφc + cφc)δφ

A =
(

sθc cφc cψc + sφc sψc
)
− δθ

(
cφc cψc(sθc + cθc)

)
+ δφ

(
sθc cψc(sφc − cφc) − sψc(sφc + cφc)

)
+ δψ

(
(sψc − cψc) sθc cφc − sφc(sψc + cψc)

)
(E.14)

B =
(

cφc +(sφc − cφc)δφ
)(

sθc −(sθc + cθc)δθ
)(

sψc −(sψc + cψc)δψ
)

−
(

sφc −(sφc + cφc)δφ
)(

cψc +(sψc − cψc)δψ
)

=
(

sθc cφc − cφc(sθc + cθc)δθ + sθc(sφc − cφc)δφ
)(

sψc −(sψc + cψc)δψ
)

− sφc cψc − sφc(sψc − cψc)δψ + cψc(sφc + cφc)δφ

= sθc sψc cφc − sθc cφc(sψc + cψc)δψ − sψc cφc(sθc + cθc)δθ + sθc sψc(sφc − cφc)δφ

− sφc cψc − sφc(sψc − cψc)δψ + cψc(sφc + cφc)δφ

B =
(

sθc sψc cφc − sφc cψc
)
− δθ

(
sψc cφc(sθc + cθc)

)
+ δφ

(
sθc sψc(sφc − cφc) + cψc(sφc + cφc)

)
− δψ

(
sθc cφc(sψc + cψc) + sφc(sψc − cψc)

)
(E.15)

C =
(

cθc +(sθc − cθc)δθ
)(

cφc +(sφc − cφc)δφ
)

= cθc cφc + cθc(sφc − cφc)δφ + cφc(sθc − cθc)δθ
(E.16)

D =
(

cθc +(sθc − cθc)δθ
)(

cψc +(sψc − cψc)δψ
)

= cθc cψc + cθc(sψc − cψc)δψ + cψc(sθc − cθc)δθ
(E.17)
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and

E =
(

sψc −(sψc + cψc)δψ
)(

cθc +(sθc − cθc)δθ
)

= sψc cθc + sψc(sθc − cθc)δθ − cθc(sψc + cψc)δψ
(E.18)

Notice that the error terms that were multiplied together were neglected. The

perturbations were then substituted into Eqs. (E.12) and (E.13) producing

F = (xpc−xc) − δxp + δx (E.19)

and

G = (ypc−yc) + δy − δyp (E.20)

Next, we started to merge the components by distributing their terms, again whenever

error terms were multiplied together, they were neglected due to how small they are.

AF =
(

sθc cφc cψc + sφc sψc
)
(xpc−xc) + δx

(
sθc cφc cψc + sφc sψc

)
− δθ

(
cφc cψc(sθc + cθc)

)
(xpc−xc)

+ δψ
(
(sψc − cψc) sθc cφc − sφc(sψc + cψc)

)
(xpc−xc)

+ δφ
(

sθc cψc(sφc − cφc) − sψc(sφc + cφc)
)
(xpc−xc) − δxp

(
sθc cφc cψc + sφc sψc

)
(E.21)

BG =
(

sθc sψc cφc − sφc cψc
)
(ypc−yc) − δθ

(
sψc cφc(sθc + cθc)

)
(ypc−yc)

+ δφ
(

sθc sψc(sφc − cφc) + cψc(sφc + cφc)
)
(ypc−yc)

− δψ
(

sθc cφc(sψc + cψc) + sφc(sψc − cψc)
)
(ypc−yc)

+ δy
(

sθc sψc cφc − sφc cψc
)
− δyp

(
sθc sψc cφc − sφc cψc

)
(E.22)

Cz = −(cθc cφc zc + δφ cθc(sφc − cφc)zc + δθ cφc(sθc − cθc)zc − δz cθc cφc) (E.23)

The merged terms are collected, such that

Q = AF + BG + Cz (E.24)
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and the result Q is then multiplied by the measurement term.

x f Q = (x f m−δx f )
((

sθc cφc cψc + sφc sψc
)
(xpc−xc)

+
(

sθc sψc cφc − sφc cψc
)
(ypc−yc) − cθc cφc zc

)
+ δx

(
sθc cφc cψc + sφc sψc

)
x f + δy

(
sθc sψc cφc − sφc cψc

)
x f + δz cθc cφc x f

− δθ
((

cφc cψc(sθc + cθc)
)
(xpc−xc) + sψc cφc(sθc + cθc)(ypc−yc) + cφc(sθc − cθc)zc

)
x f

+ δφ
((

sθc cψc(sφc − cφc) − sψc(sφc + cφc)
)
(xpc−xc) − cθc(sφc − cφc)zc

+
(

sθc sψc(sφc − cφc) + cψc(sφc + cφc)
)
(ypc−yc)

)
x f

+ δψ
((

(sψc − cψc) sθc cφc − sφc(sψc + cψc)
)
(xpc−xc)

−
(

sθc cφc(sψc + cψc) + sφc(sψc − cψc)
)
(ypc−yc)

)
x f

− δxp
(

sθc cφc cψc + sφc sψc
)
x f − δyp

(
sθc sψc cφc − sφc cψc

)
x f

(E.25)

the remainder of the components were merged

−DF = − cθc cψc(xpc−xc) − δx cθc cψc −δθ cψc(sθc − cθc)(xpc−xc)

− δψ cθc(sψc − cψc)(xpc−xc) + δxp cθc cψc

(E.26)

−EG = − sψc cθc(ypc−yc) − δy sψc cθc −δθ sψc(sθc − cθc)(ypc−yc)

+ δψ cθc(sψc + cψc)(ypc−yc) + δyp sψc cθc

(E.27)

z sθ = − sθc zc + δθ(sθc + cθc)zc + δz sθc (E.28)

and collected, such that

O = −DF − EG + z sθ

= − cθc cψc(xpc−xc) − sψc cθc(ypc−yc) − sθc zc − δx cθc cψc −δy sψc cθc +δz sθc

− δθ
(
(sθc + cθc)zc + cψc(sθc − cθc)(xpc−xc) + sψc(sθc − cθc)(ypc−yc)

)
− δψ

(
cθc(sψc − cψc)(xpc−xc) − cθc(sψc + cψc)(ypc−yc)

)
+ δxp cθc cψc +δyp sψc cθc

(E.29)
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Moving all of the error terms to the RHS of the equation yields the x measurement

equation for the primarily horizontal case

x f m

((
sθc cφc cψc + sφc sψc

)
(xpc−xc) +

(
sθc sψc cφc − sφc cψc

)
(ypc−yc) − cθc cφc zc

)
− cθc cψc(xpc−xc) − sψc cθc(ypc−yc) − sθc zc = δx

(
cθc cψc −

(
sθc cφc cψc + sφc sψc

)
x f

)
− δy

((
sθc sψc cφc − sφc cψc

)
x f − sψc cθc

)
− δz

(
sθc + cθc cφc x f

)
+ δθ

[(
cψc(sθc − cθc)(xpc−xc) + sψc(sθc − cθc)(ypc−yc) − (sθc + cθc)zc

)
+((

cφc cψc(sθc + cθc)
)
(xpc−xc) + sψc cφc(sθc + cθc)(ypc−yc) + cφc(sθc − cθc)zc

)
x f

]
− δφ

((
sθc cψc(sφc − cφc) − sψc(sφc + cφc)

)
(xpc−xc) − cθc(sφc − cφc)zc

+
(

sθc sψc(sφc − cφc) + cψc(sφc + cφc)
)
(ypc−yc)

)
x f

+ δψ
[

cθc(sψc − cψc)(xpc−xc) − cθc(sψc + cψc)(ypc−yc)

−

((
(sψc − cψc) sθc cφc − sφc(sψc + cψc)

)
(xpc−xc)

−
(

sθc cφc(sψc + cψc) + sφc(sψc − cψc)
)
(ypc−yc)

)
x f

]
+ δxp

((
sθc cφc cψc + sφc sψc

)
x f − cθc cψc

)
− δyp

(
sψc cθc −

(
sθc sψc cφc − sφc cψc

)
x f

)
+ δx f

((
sθc cφc cψc + sφc sψc

)
(xpc−xc) +

(
sθc sψc cφc − sφc cψc

)
(ypc−yc) − cθc cφc zc

)
(E.30)

where x f is determined by plugging the nominal values for the A/C Euler angles into

Eq. (E.5).

The process then had to be repeated for the y measurement.

y f =
(xp − x)(sθ sφ cψ− cφ sψ) + (yp − y)(sθ sφ sψ+ cφ cψ) − z(sφ cθ)
(cφ sθ cψ+ sφ sψ)(xp − x) + (cφ sθ sψ− sφ cψ)(yp − y) − cθ cφ(z)

(E.31)

Moving everything to the LHS of the equation

y f
(
(cφ sθ cψ+ sφ sψ)(xp − x) + (cφ sθ sψ− sφ cψ)(yp − y) − cθ cφ(z)

)
− (xp − x)(sθ sφ cψ− cφ sψ) − (yp − y)(sθ sφ sψ+ cφ cψ) + z(sφ cθ) = 0

(E.32)
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Since the denominator in Eq. (E.31) is the same as in Eq. (E.5), many of the components

are the same as in the x measurement. The unique components are

I = sθ sφ cψ− cφ sψ

J = sθ sφ sψ+ cφ cψ

L = sφ cθ

Substituting in the perturbations, distributing the terms, and collecting like error terms

yields

I =
(

sθc −(sθc + cθc)δθ
)(

sφc −(sφc + cφc)δφ
)(

cψc +(sψc − cψc)δψ
)

−
(

cφc +(sφc − cφc)δφ
)(

sψc −(sψc + cψc)δψ
)

=
(

sθc sφc − sθc(sφc + cφc)δφ − sφc(sθc + cθc)δθ
)(

cψc +(sψc − cψc)δψ
)

− sψc cφc + cφc(sψc + cψc)δψ − sψc(sφc − cφc)δφ

= sθc sφc cψc + sθc sφc(sψc − cψc)δψ − sθc cψc(sφc + cφc)δφ − sφc cψc(sθc + cθc)δθ

− sψc cφc + cφc(sψc + cψc)δψ − sψc(sφc − cφc)δφ

I = (sθc sφc cψc − sψc cφc) − δθ sφc cψc(sθc + cθc)

− δφ
(

sψc(sφc − cφc) + sθc cψc(sφc + cφc)
)

+ δψ
(

cφc(sψc + cψc) + sθc sφc(sψc − cψc)
)

(E.33)
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J =
(

sθc −(sθc + cθc)δθ
)(

sφc −(sφc + cφc)δφ
)(

sψc −(sψc + cψc)δψ
)

+
(

cφc +(sφc − cφc)δφ
)(

cψc +(sψc − cψc)δψ
)

=
(

sθc sφc − sθc(sφc + cφc)δφ − sφc(sθc + cθc)δθ
)(

sψc −(sψc + cψc)δψ
)

+ cφc cψc + cφc(sψc − cψc)δψ + cψc(sφc − cφc)δφ

= sθc sφc sψc − sθc sφc(sψc + cψc)δψ − sθc sψc(sφc + cφc)δφ − sφc sψc(sθc + cθc)δθ

+ cφc cψc + cφc(sψc − cψc)δψ + cψc(sφc − cφc)δφ

J = (sθc sφc sψc + cφc cψc) − δθ
(

sφc sψc(sθc + cθc)
)

− δφ
(

sθc sψc(sφc + cφc) − cψc(sφc − cφc)
)

+ δψ
(

cφc(sψc − cψc) − sθc sφc(sψc + cψc)
)

(E.34)

and

L =
(

sφc −(sφc + cφc)δφ
)(

cθc +(sθc − cθc)δθ
)

= sφc cθc + sφc(sθc − cθc)δθ − cθc(sφc + cφc)δφ
(E.35)

Merging the noncommon components yields

−IF = −(sθc sφc cψc − sψc cφc)(xpc−xc) + δθ sφc cψc(sθc + cθc)(xpc−xc)

+ δφ
(

sψc(sφc − cφc) + sθc cψc(sφc + cφc)
)
(xpc−xc)

− δψ
(

cφc(sψc + cψc) + sθc sφc(sψc − cψc)
)
(xpc−xc)

− δx(sθc sφc cψc − sψc cφc) + δxp(sθc sφc cψc − sψc cφc)

(E.36)

−JG = −(sθc sφc sψc + cφc cψc)(ypc−yc) + δθ
(

sφc sψc(sθc + cθc)
)
(ypc−yc)

+ δφ
(

sθc sψc(sφc + cφc) − cψc(sφc − cφc)
)
(ypc−yc)

− δψ
(

cφc(sψc − cψc) − sθc sφc(sψc + cψc)
)
(ypc−yc)

− δy(sθc sφc sψc + cφc cψc) + δyp(sθc sφc sψc + cφc cψc)

(E.37)

and

− Lz = sφc cθc zc + δθ sφc(sθc − cθc)zc − δφ cθc(sφc + cφc)zc − sφc cθc δz (E.38)
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Collecting the merged components

R = −IF − JG − Lz

= −(sθc sφc cψc − sψc cφc)(xpc−xc) − (sθc sφc sψc + cφc cψc)(ypc−yc) − sφc cθc zc

− δx(sθc sφc cψc − sψc cφc) − δy(sθc sφc sψc + cφc cψc) − δz sφc cθc

+ δθ
(

sφc cψc(sθc + cθc)(xpc−xc) +
(

sφc sψc(sθc + cθc)
)
(ypc−yc) + sφc(sθc − cθc)zc

)
+ δφ

[(
sψc(sφc − cφc) + sθc cψc(sφc + cφc)

)
(xpc−xc)

+
(

sθc sψc(sφc + cφc) − cψc(sφc − cφc)
)
(ypc−yc) − cθc(sφc + cφc)zc

]
− δψ

((
cφc(sψc + cψc) + sθc sφc(sψc − cψc)

)
(xpc−xc)

+
(

cφc(sψc − cψc) − sθc sφc(sψc + cψc)
)
(ypc−yc)

)
+ δxp(sθc sφc cψc − sψc cφc) + δyp(sθc sφc sψc + cφc cψc)

(E.39)

The common terms, represented in the Q need to be multiplied by the y measurement term

y f Q = (y f m−δy f )
((

sθc cφc cψc + sφc sψc
)
(xpc−xc)

+
(

sθc sψc cφc − sφc cψc
)
(ypc−yc) − cθc cφc zc

)
+ δx

(
sθc cφc cψc + sφc sψc

)
y f + δy

(
sθc sψc cφc − sφc cψc

)
y f + δz cθc cφc y f

− δθ
((

cφc cψc(sθc + cθc)
)
(xpc−xc) + sψc cφc(sθc + cθc)(ypc−yc) + cφc(sθc − cθc)zc

)
y f

+ δφ
((

sθc cψc(sφc − cφc) − sψc(sφc + cφc)
)
(xpc−xc) − cθc(sφc − cφc)zc

+
(

sθc sψc(sφc − cφc) + cψc(sφc + cφc)
)
(ypc−yc)

)
y f

+ δψ
((

(sψc − cψc) sθc cφc − sφc(sψc + cψc)
)
(xpc−xc)

−
(

sθc cφc(sψc + cψc) + sφc(sψc − cψc)
)
(ypc−yc)

)
y f

− δxp
(

sθc cφc cψc + sφc sψc
)
y f − δyp

(
sθc sψc cφc − sφc cψc

)
y f

(E.40)
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Merging R and Q, and moving all the error terms to the RHS, produces the y measurement

equation for primarily horizontal case

y f m

((
sθc cφc cψc + sφc sψc

)
(xpc−xc) +

(
sθc sψc cφc − sφc cψc

)
(ypc−yc) − cθc cφc zc

)
− (sθc sφc cψc − sψc cφc)(xpc−xc) − (sθc sφc sψc + cφc cψc)(ypc−yc) + sφc cθc zc =

δx
(

sθc sφc cψc − sψc cφc −
(

sθc cφc cψc + sφc sψc
)
y f

)
− δy

((
sθc sψc cφc − sφc cψc

)
y f − sθc sφc sψc − cφc cψc

)
− δz

((
cθc cφc y f

)
− sφc cθc

)
+ δθ

[((
cφc cψc(sθc + cθc)

)
(xpc−xc) + sψc cφc(sθc + cθc)(ypc−yc) + cφc(sθc − cθc)zc

)
y f

−

(
sφc cψc(sθc + cθc)(xpc−xc) +

(
sφc sψc(sθc + cθc)

)
(ypc−yc) + sφc(sθc − cθc)zc

)]
− δφ

[((
sθc cψc(sφc − cφc) − sψc(sφc + cφc)

)
(xpc−xc) − cθc(sφc − cφc)zc

+
(

sθc sψc(sφc − cφc) + cψc(sφc + cφc)
)
(ypc−yc)

)
y f

+
(

sψc(sφc − cφc) + sθc cψc(sφc + cφc)
)
(xpc−xc)

+
(

sθc sψc(sφc + cφc) − cψc(sφc − cφc)
)
(ypc−yc) − cθc(sφc + cφc)zc

]
+ δψ

[((
cφc(sψc + cψc) + sθc sφc(sψc − cψc)

)
(xpc−xc)

+
(

cφc(sψc − cψc) − sθc sφc(sψc + cψc)
)
(ypc−yc)

)
−

((
(sψc − cψc) sθc cφc − sφc(sψc + cψc)

)
(xpc−xc)

−
(

sθc cφc(sψc + cψc) + sφc(sψc − cψc)
)
(ypc−yc)

)
y f

]
+ δxp

((
sθc cφc cψc + sφc sψc

)
y f − (sθc sφc cψc − sψc cφc)

)
− δyp

((
sθc sφc sψc + cφc cψc

)
−

(
sθc sψc cφc − sφc cψc

)
y f

)
+ δy f

((
sθc cφc cψc + sφc sψc

)
(xpc−xc) +

(
sθc sψc cφc − sφc cψc

)
(ypc−yc) − cθc cφc zc

)
(E.41)

where y f is found by substituting the nominal values for the A/C Euler angles into

Eq. (E.31).
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E.2 Measurement for Primarily Vertical Flight

For the munitions case where the camera is assumed in the nose of the munition with

the focal plane orthogonal to the longitudinal axis. The new measurements will be in the

z(b) and y(b) frame of reference

tan ξ =
z f

f
=

(zp − z)(b)

(xp − x)(b) (E.42)

where z f is the projection z(b) coordinate of the ground feature onto the camera focal

plane. Since z f equals the reciprocal x f from Eq. (E.5), all of the component terms are the

same. All that needs to be done for this measurement is change the values in Eq. (E.30)

that are multiplied by the measurement term. If a term was previously multiplied by x f it

will not be multiplied by z f , but if it was not, then it will be multiplied by z f . Also, the

sign previously connected with the measurement term accompanies the transfer of the
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measurement term. Therefore the z measurement equation

z f m

(
cθc cψc(xpc−xc) + sψc cθc(ypc−yc) − sθc zc

)
+(

sθc cφc cψc + sφc sψc
)
(xpc−xc) +

(
sθc sψc cφc − sφc cψc

)
(ypc−yc) + cθc cφc zc =

δx
((

sθc cφc cψc + sφc sψc
)
− cθc cψc z f

)
− δy

(
sψc cθc z f −

(
sθc sψc cφc − sφc cψc

))
+ δz

(
sθc z f + cθc cφc

)
+ δθ

[(
(sθc + cθc)zc + cψc(sθc − cθc)(xpc−xc) + sψc(sθc − cθc)(ypc−yc)

)
z f +(

cφc cψc(sθc + cθc)
)
(xpc−xc) + sψc cφc(sθc + cθc)(ypc−yc) − cφc(sθc − cθc)zc

]
− δφ

((
sθc cψc(sφc − cφc) − sψc(sφc + cφc)

)
(xpc−xc) + cθc(sφc − cφc)zc

+
(

sθc sψc(sφc − cφc) + cψc(sφc + cφc)
)
(ypc−yc)

)
+ δψ

[((
(sψc − cψc) sθc cφc − sφc(sψc + cψc)

)
(xpc−xc) −

(
sθc cφc(sψc + cψc) + sφc(sψc − cψc)

)
(ypc−yc)

)
−

(
cθc(sψc − cψc)(xpc−xc) − cθc(sψc + cψc)(ypc−yc)

)
z f

]
+ δxp

(
cθc cψc z f −

(
sθc cφc cψc + sφc sψc

))
− δyp

((
sθc sψc cφc − sφc cψc

)
− sψc cθc z f

)
+ δz f

(
cθc cψc(xpc−xc) + sψc cθc(ypc−yc) − sθc zc

)
(E.43)

where z f is found by substituting the nominal values for the A/C Euler angles into the

reciprocal of the RHS of Eq. (E.5).

The y measurement based on f being along the longitudinal axis will take more work

tan µ =
yx f

f
=

(yp − y)(b)

(xp − x)(b)

=
(sθ sφ cψ− cφ sψ)(xp − x)(n) + (sθ sφ sψ+ cφ cψ)(yp − y)(n) + sφ cθ(zp − z)(n)

cθ cψ(xp − x)(n) + cθ sψ(yp − y)(n) − sθ(zp − z)(n)

(E.44)
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where yx f is the y measurement term for the vertical case. Breaking Eq. (E.44) into

previously defined components

yx f (DF + EG − sθ z)

= (yx f − δyx f )(cθc cψc(xpc−xc) + δx cθc cψc +δθ cψc(sθc − cθc)(xpc−xc)

+ δψ cθc(sψc − cψc)(xpc−xc) − δxp cθc cψc + sψc cθc(ypc−yc)

+ δy sψc cθc +δθ sψc(sθc − cθc)(ypc−yc) − δψ cθc(sψc + cψc)(ypc−yc) − δyp sψc cθc

− sθc zc + δθ(sθc + cθc)zc + δz sθc)

= (yx f − δyx f )(cθc cψc(xpc−xc) + sψc cθc(ypc−yc) − sθc zc) + δx(cθc cψc yx f )

+ δy(sψc cθc yx f ) + δz(sθc yx f )

+ δθ(cψc(sθc − cθc)(xpc−xc) + sψc(sθc − cθc)(ypc−yc) + (sθc + cθc)zc)yx f

+ δψ(cθc(sψc − cψc)(xpc−xc) − cθc(sψc + cψc)(ypc−yc))yx f

− δxp(cθc cψc yx f ) − δyp(sψc cθc yx f )

(E.45)

and

R = −IF − JG − LZ

= −(sθc sφc cψc − sψc cφc)(xpc−xc) − (sθc sφc sψc + cφc cψc)(ypc−yc) − sφc cθc zc

− δx(sθc sφc cψc − sψc cφc) − δy(sθc sφc sψc + cφc cψc) + δz sφc cθc

+ δθ
(

sφc cψc(sθc + cθc)(xpc−xc) +
(

sφc sψc(sθc + cθc)
)
(ypc−yc) − sφc(sθc − cθc)zc

)
+ δφ

[(
sψc(sφc − cφc) + sθc cψc(sφc + cφc)

)
(xpc−xc)

+
(

sθc sψc(sφc + cφc) − cψc(sφc − cφc)
)
(ypc−yc) + cθc(sφc + cφc)zc

]
− δψ

((
cφc(sψc − cψc) − sθc sφc(sψc + cψc)

)
(ypc−yc)

+
(

cφc(sψc + cψc) + sθc sφc(sψc − cψc)
)
(xpc−xc)

)
+ δxp(sθc sφc cψc − sψc cφc) + δyp(sθc sφc sψc + cφc cψc)

(E.46)
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Finally, collecting the like terms and moving the error terms to the RHS, yields the y

measurement equation for the primarily vertical case

yx f (cθc cψc(xpc−xc) + sψc cθc(ypc−yc) − sθc zc)

− (sθc sφc cψc − sψc cφc)(xpc−xc) − (sθc sφc sψc + cφc cψc)(ypc−yc) − sφc cθc zc =

δx(sθc sφc cψc − sψc cφc − cθc cψc yx f ) + δy(sθc sφc sψc + cφc cψc − sψc cθc yx f )

− δz(sθc yx f + sφc cθc) − δφ
[(

sψc(sφc − cφc) + sθc cψc(sφc + cφc)
)
(xpc−xc)

+
(

sθc sψc(sφc + cφc) − cψc(sφc − cφc)
)
(ypc−yc)+

cθc(sφc + cφc)zc
]
− δθ

[
sφc cψc(sθc + cθc)(xpc−xc) +

(
sφc sψc(sθc + cθc)

)
(ypc−yc)

− sφc(sθc − cθc)zc + (cψc(sθc − cθc)(xpc−xc) + sψc(sθc − cθc)(ypc−yc) + (sθc + cθc)zc)yx f
]

+ δψ
[(

cφc(sψc − cψc) − sθc sφc(sψc + cψc)
)
(ypc−yc)

+
(

cφc(sψc + cψc) + sθc sφc(sψc − cψc)
)
(xpc−xc)

− (cθc(sψc − cψc)(xpc−xc) − cθc(sψc + cψc)(ypc−yc))yx f

+ δxp(cθc cψc yx f − (sθc sφc cψc − sψc cφc)) + δyp(sψc cθc yx f − (sθc sφc sψc + cφc cψc))

+ δyx f (cθc cψc(xpc−xc) + sψc cθc(ypc−yc) − sθc zc)

(E.47)

where yx f is found by substituting the nominal values for the A/C Euler angles into

Eq. (E.44).
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