
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

6-2012 

Short Message Service (SMS) Command and Control (C2) Short Message Service (SMS) Command and Control (C2) 

Awareness in Android-based Smartphones using Kernel-Level Awareness in Android-based Smartphones using Kernel-Level 

Auditing Auditing 

Robert J. Olipane 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Olipane, Robert J., "Short Message Service (SMS) Command and Control (C2) Awareness in Android-
based Smartphones using Kernel-Level Auditing" (2012). Theses and Dissertations. 1142. 
https://scholar.afit.edu/etd/1142 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1142?utm_source=scholar.afit.edu%2Fetd%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


SHORT MESSAGE SERVICE (SMS) COMMAND AND CONTROL
(C2) AWARENESS IN ANDROID-BASED SMARTPHONES USING

KERNEL-LEVEL AUDITING

THESIS

Robert J. Olipane, Captain, USAF

AFIT/GCO/ENG/12-21

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.



AFIT/GCO/ENG/12-21

SHORT MESSAGE SERVICE (SMS) COMMAND AND CONTROL
(C2) AWARENESS IN ANDROID-BASED SMARTPHONES USING

KERNEL-LEVEL AUDITING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Robert J. Olipane, B.S.C.S.

Captain, USAF

June 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT/GCO/ENG/12-21

SHORT MESSAGE SERVICE (SMS) COMMAND AND CONTROL
(C2) AWARENESS IN ANDROID-BASED SMARTPHONES USING

KERNEL-LEVEL AUDITING

Robert J. Olipane, B.S.C.S.
Captain, USAF

Approved:

// Signed // 22 May 2012

Robert F. Mills, PhD (Chairman) Date

// Signed // 22 May 2012

Michael R. Grimaila, PhD, CISM, CISSP (Committee Member) Date

// Signed // 22 May 2012

Barry E. Mullins, PhD (Committee Member) Date



AFIT/GCO/ENG/12-21

ABSTRACT

This thesis addresses the emerging threat of botnets in the smartphone domain and

focuses on the Android platform and botnets using short message service (SMS) as the

command and control (C2) channel. With any botnet, C2 is the most important component

contributing to its overall resilience, stealthiness, and effectiveness. This thesis develops a

passive host-based approach for identifying covert SMS traffic and providing awareness to

the user. Modifying the kernel and implementing this awareness mechanism is achieved

by developing and inserting a loadable kernel module that logs all inbound SMS messages

as they are sent from the baseband radio to the application processor. The design is

successfully implemented on an HTC Nexus One Android smartphone and validated with

tests using an Android SMS bot from the literature. The module successfully logs all

messages including bot messages that are hidden from user applications. Suspicious

messages are then identified by comparing the SMS application message list with the

kernel log’s list of events. This approach lays the groundwork for future host-based

countermeasures for smartphone botnets and SMS-based botnets.

iv



To my sons, because of you, I’ve already succeeded

v



ACKNOWLEDGMENTS

I would like to give my sincere thanks and appreciation to Dr. Robert Mills for

enlightening me to the research process and providing me the freedom, empowerment,

support and guidance to take this research effort to fruition.

To my friends and to my family, thank you all for your support and motivation

helping me through this effort; time away from the research was just as important as the

time spent doing the research in accomplishing the goal. Special thanks to Tim Wilson for

always willing to be a sounding board and notable mentions for Matt Sievers, Ben Pacer,

Loui Hashmi, and Eric Merrit; experiences are more memorable when shared with others.

Thanks for sharing and letting me share along the journey.

Robert J. Olipane

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 LITERATURE REVIEW AND RELATED WORKS . . . . . . . . . . . . . . . 6
2.1 Overview of the Botnet Phenomena . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 History and Terminology . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Botnet Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2.1 Injection and Spreading . . . . . . . . . . . . . . . . . . 8
2.1.2.2 Command and Control Models . . . . . . . . . . . . . . 9
2.1.2.3 Malicious Applications . . . . . . . . . . . . . . . . . . 11

2.1.3 Botnet Defense Techniques . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Smartphone Architecture and Short Message Service . . . . . . . . . . . . 12

2.2.1 Smartphone Architecture . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Short Message Service (SMS) . . . . . . . . . . . . . . . . . . . . 14

2.2.2.1 Sending and Receiving SMS . . . . . . . . . . . . . . . 14
2.2.2.2 SMS and the ATtention (AT) modem commands . . . . . 15

2.3 Introduction to Google Android . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Android Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Android Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Android Radio Interface Layer (RIL) . . . . . . . . . . . . . . . . 20

2.4 Smartphone Botnets, SMS Botnets, and Android Botnets . . . . . . . . . . 22

vii



2.4.1 Smartphone Botnets . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Android Botnets in the Wild . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 SMS Botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Transparent SMS Bot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Target Device: HTC Nexus One . . . . . . . . . . . . . . . . . . . 31
3.4.2 Development Environment . . . . . . . . . . . . . . . . . . . . . . 33
3.4.3 Deploying the Module . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3.1 Android Partition Layout . . . . . . . . . . . . . . . . . 35
3.4.3.2 Vendor-specific Security Mechanisms . . . . . . . . . . . 36

3.5 Test Environment and Experimental Design . . . . . . . . . . . . . . . . . 37
3.5.1 Experimental Design Overview . . . . . . . . . . . . . . . . . . . 38
3.5.2 Test 1: Functionality Test (Logging non-C2 Messages) . . . . . . . 39
3.5.3 Test 2: Functionality Test (Logging C2 messages) . . . . . . . . . . 40
3.5.4 Test 3: Utility Test (Scenario 1 - Well timed C2) . . . . . . . . . . 41
3.5.5 Test 4: Utility Test (Scenario 2 - Poorly timed C2) . . . . . . . . . 42

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 RESULTS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Test 1: Functionality Test (Logging non-C2 Messages) . . . . . . . . . . . 44
4.3 Test 2: Functionality Test (Logging C2 Messages) . . . . . . . . . . . . . . 45
4.4 Test 3: Utility Test (Scenario 1 - Well timed C2) . . . . . . . . . . . . . . . 47
4.5 Test 4: Utility Test (Scenario 2 - Poorly Timed C2) . . . . . . . . . . . . . 48
4.6 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.2 Implementation Analysis . . . . . . . . . . . . . . . . . . . . . . . 50
4.6.3 Test Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . 52
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Significance of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Recommendations for Future Research . . . . . . . . . . . . . . . . . . . . 53

APPENDIX A: LOADABLE KERNEL MODULE CODE . . . . . . . . . . . . . . 56

APPENDIX B: DEVELOPMENT ENVIRONMENT . . . . . . . . . . . . . . . . . 59

viii



APPENDIX C: TEST RESULTS DATA . . . . . . . . . . . . . . . . . . . . . . . . 66

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



LIST OF FIGURES

FIGURE PAGE

2.1 Centralized C2 Botnet Structures [17] . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Example of P2P C2 Botnet Structure [17] . . . . . . . . . . . . . . . . . . . . 11

2.3 Conceptual Design of Modern Smartphone Architecture adapted from [2, 22] . 13

2.4 SMS Delivery and Receipt at the Cellular Network Level based on [22, 34] . . 15

2.5 Sending and Receiving SMS at the Device Component Level adapted from

[22, 34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Android System Architecture [8] . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Overview of Android’s Telephony Stack and Radio Interface Layer [33] . . . . 21

3.1 Bot Location and Control Flow on Android’s Telephony Stack [33, 34] . . . . . 26

3.2 Security Module and Control Flow on Android’s Telephony Stack . . . . . . . 28

3.3 Security Module and Bot Locations with Control Flows on Android Telephony

Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Instrumenting ch read Using a Jprobe . . . . . . . . . . . . . . . . . . . . . . 31

3.5 HTC Nexus One with Technical Specifications . . . . . . . . . . . . . . . . . 33

3.6 Anritsu MD8470 Signal Analyzer with Wireless Network Simulator Software . 38

3.7 Component Overview of Test Environment . . . . . . . . . . . . . . . . . . . 38

4.1 Test 1: Terminal Display Showing Kernel Logging non-C2 Messages . . . . . 45

4.2 Test 2: Terminal Display Showing Kernel Logging C2 Messages . . . . . . . . 46

4.3 Test 3: Side-by-Side Comparison of SMS App and Kernel Log . . . . . . . . . 47

4.4 Test 4: Side-by-Side Comparison of SMS App and Kernel Log . . . . . . . . . 48

B.1 Linux Kernel Configuration Menu . . . . . . . . . . . . . . . . . . . . . . . . 64

x



LIST OF TABLES

TABLE PAGE

2.1 Botnet Phases and Description . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Sample SMS Commands (Extended AT Commands) . . . . . . . . . . . . . . 16

3.1 Virtual Machine Development System Specifications . . . . . . . . . . . . . . 34

3.2 Partition Layout for Most Android Smartphones . . . . . . . . . . . . . . . . . 36

3.3 Summary of Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Test 1 - Logging non-C2 Messages . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Test 2 - Logging C2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Test 3 - Well Timed C2 Sequence of Events . . . . . . . . . . . . . . . . . . . 41

3.7 Test 4 - Poorly Timed C2 Sequence of Events . . . . . . . . . . . . . . . . . . 42

xi



LIST OF ABBREVIATIONS

ABBREVIATION PAGE

C2 Command and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SMS Short Message Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LKM Loadable Kernel Module . . . . . . . . . . . . . . . . . . . . . . . . . 3

GSM Global System for Mobile Communications . . . . . . . . . . . . . . . 4

SMD Shared Memory Driver . . . . . . . . . . . . . . . . . . . . . . . . . . 4

OS Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IRC Internet Relay Chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

P2P Peer-to-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

DDoS Distributed Denial of Service . . . . . . . . . . . . . . . . . . . . . . . 11

IDS Intrusion Detection System . . . . . . . . . . . . . . . . . . . . . . . . 12

PDA Personal Digital Assistant . . . . . . . . . . . . . . . . . . . . . . . . . 12

SOC System on a Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

OTA Over-the-Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

WAP Wireless Application Protocol . . . . . . . . . . . . . . . . . . . . . . . 14

SMSC SMS Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

AT ATtention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . 18

VM Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ARM Advanced RISC Machine . . . . . . . . . . . . . . . . . . . . . . . . . 18

JNI Java Native Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

AOSP Android Open Source Project . . . . . . . . . . . . . . . . . . . . . . . 32

xii



SHORT MESSAGE SERVICE (SMS) COMMAND AND CONTROL

(C2) AWARENESS IN ANDROID-BASED SMARTPHONES USING

KERNEL-LEVEL AUDITING

1 INTRODUCTION

1.1 Research Motivation

Over the years, smartphones have become more than just a staple in our everyday

society; they are becoming the future of everyday computing. Smartphones have evolved

from a mobile phone and personal digital assistant combined device, to a mobile

computing environment hosting a local operating system, file system, full network

connectivity and the ability to run third-party applications providing feature-rich

capabilities. Now, at prices competitive with their dumb and feature-phone counterparts,

they are no longer catered solely towards the business or information-technology

professional, and have successfully crossed the threshold into the world of the average

consumer.

As ubiquitous as smartphones have become and their evolution into mobile

computing platforms, security of these devices becomes increasingly important. The

ability to protect the sensitive data these systems contain and operate on is a risk all

smartphone owners face. This research fits into the mobile security domain specifically

focusing on the Android Operating System and the botnet phenomena.

1.2 Problem Statement

One of the most alluring aspects of a smartphone is its ability to run third-party

applications which enhances the user’s experience. Applications extend the basic

functions of the device and provide capabilities including productivity for work and

1



finance to entertainment in streaming media, updating social networking sites or playing

video games. Some applications have even been developed to manage home security

systems, open garage doors, and remotely monitor and start personal vehicles.

The Android Market was developed as a central location for users to download

applications directly to their phone. This market is open to any developer (possibly

anonymous) who wants to submit an application for download with no filtering process.

In general, Android application security relies heavily on the user to make decisions and

accept security permissions upon installation with little or no granularity as to how these

permissions will be used.

This scenario is prime for any cyber attacker because it provides a vector to distribute

malicious code disguised as user-experience enhancing applications. With most average

users viewing security as a hindrance on their experience and productivity as opposed to

providing added benefit, attackers now have an ideal situation to target systems with

access to sensitive information such as GPS location, financial information, e-mail traffic,

text messaging traffic, and more. In 2011, an estimated 488 million smartphones shipped

worldwide, surpassing client-PC figures, with projected increases in subsequent years [4].

With smartphones sales on the rise, an open environment for distributing maleware, and a

device that is constantly connected, smartphone botnets represent a significant cyber

threat. This threat of botnets spreading through the smartphone environment as they have

in fixed networks and traditional desktop systems is inevitable. More research is required

to study and develop measures for detection and mitigation of botnets in the mobile

smartphone domain.

1.3 Research Objectives

The Command and Control (C2) component for any botnet in a fixed or mobile

network is critical because it directly affects the stealthiness, robustness, and overall

effectiveness of the botnet. A botmaster needs to devise crafty and stealthy ways to get

2



commands to the botnet. This translates to hiding inbound SMS messages from the user in

a Short Message Service (SMS) botnet. This author is unaware of any detection methods

specifically for smartphone botnets using SMS C2 at the time of this writing. This thesis

lays the groundwork for identifying SMS as the C2 channel on smartphones. The research

goals are the following:

• Design a security mechanism complementary to Android’s existing security

providing awareness for covert SMS messages and identifying potential C2 and bot

presence on a system.

• Implement the design as a proof of concept on a retail Android smartphone.

• Validate the proof of concept using an Android SMS bot.

1.4 Approach

The goals of this research are realized by developing a loadable kernel module

(LKM) that logs, at kernel level, all inbound SMS messages as they are received from the

modem. Comparing the kernel log with the list of received messages in the SMS

application facilitates detection of suspicious messages that may be indicative of a botnet.

The module is implemented and validated using an SMS bot running on an HTC Nexus

One Android smartphone. Details are described in Chapters 3 and 4.

1.5 Assumptions and Limitations

Several key assumptions and limitations were accepted in realizing the goals. The

assumptions are:

• Assumption 1: A hybrid implementation of an SMS botnet can use SMS in concert

with other channels for C2. This research assumes SMS is the only C2 channel for

both inbound and outbound communication.

3



• Assumption 2: Cellular network operators use SMS for more than just providing

their subscribers text messaging services. This research assumes all non-malicious

SMS messages are meant for the user to see in an application and all hidden SMS

messages are considered malicious or C2 related.

• Assumption 3: The focus is not on the actual injection and spreading phases of a

botnet. This research assumes there are successful vectors for infecting a

smartphone with a bot based on related works on Android security.

The limitations are:

• Limitation 1: The implementation is hardware specific and depends on the specific

kernel-level driver a vendor chooses to communicate with the smartphone’s modem.

The current implementation is successful on an HTC Nexus One and will work on

most HTC model phones and smartphones using a Global System for Mobile

Communications (GSM) modem with the shared memory driver (SMD) as the

kernel’s interface to the baseband radio.

• Limitation 2: The process for identifying C2 is manual in nature and requires a

comparison of the kernel logs to the list of received messages in the SMS user

application.

• Limitation 3: The events are stored in the kernel log. The size of the kernel log’s

ring buffer is limited and limits the amount of total messages that can be logged.

The current size of the buffer is 128KB.

• Limitation 4: Detecting C2 traffic on the system is an indicator of the presence of a

bot on the system. The module only provides awareness and does not take any steps

towards mitigation or eradication.

4



• Limitation 5: As a host-based system, detection is only for bot presence on the

smartphone device and not detecting the network topology of the bot network itself.

1.6 Thesis Overview

The remainder of this document is structured as follows. Chapter 2 is a literature

review summarizing the botnet phenomena on traditional computer systems including

detection techniques, a high-level overview of general smartphone architecture, SMS, and

Google’s Android mobile Operating System (OS). The chapter concludes with a review of

works related to SMS botnets on smartphones and Android-based smartphone security

vulnerabilities. Chapter 3 presents the methodology for designing the mechanism to

provide awareness for detecting SMS C2, implementing the module on an Android

smartphone as a proof of concept, and testing the proof of concept with an SMS bot.

Chapter 4 validates the proof of concept and demonstrates the utility of the security

mechanism. Finally, Chapter 5 summarizes the research, discusses the impacts to the

botnet and mobile smartphone communities, and suggests areas for extended and future

research.

5



2 LITERATURE REVIEW AND RELATED WORKS

Developing a security module to identify covert SMS messages for the purpose of

detecting potential C2 communication on Android-based smartphones requires an

understanding of the different components involved in the system. This chapter provides a

background and overview of those components. First, the botnet phenomena is discussed

to understand how botnets function on fixed networks and desktop systems. Next, an

explanation of general smartphones are discussed to understand their architecture and

their process for sending and receiving SMS messages on cellular networks. Then, an

overview of the Android operating system’s architecture, security, and SMS messaging

components is discussed. Finally, all the components are tied together and smartphone

botnets and SMS smartphone botnets are discussed.

2.1 Overview of the Botnet Phenomena

Botnets have evolved into one of the largest sources of cyber crime perpetrators on

the web at present over the last decade [17]. Several taxonomy works were developed

identifying botnet characteristics including infection mechanisms, C2 structures, and

detection and defensive techniques [7, 12, 17, 21, 36]. The following summarizes the

botnet phenomena affecting traditional desktop computers and fixed network operators.

2.1.1 History and Terminology

Bots are used for both legitimate and illegitimate activities. A bot refers to code, a

script, or set of scripts designed to perform predefined functions in an automated fashion.

Before nefarious uses, bots were used legitimately by search engines to crawl the web,

online game sites as artificial opponents, and for Internet Relay Chat (IRC) networks to

automate the Administrator functions [26]. It was originally in the IRC networks where

bots were modified and linked to other bots to create the first network of bots, or botnet.

6



These early botnets perform malicious activities including elevating IRC channel

privileges, stealing personal information, and executing denial of service attacks on IRC

servers. More detailed discussion on botnet history and evolution, including initial botnet

family names, capabilities and frameworks, are discussed in [5, 21, 26].

A bot refers to malware on a computer waiting for instructions from an attacker for

the purpose of this research. This malware is not an exploit to software or an OS; it is the

payload allowing an attacker full control of the infected system. The distinguishing

characteristic a bot has from other kinds of malware is the ability to communicate and

receive commands and malicious capabilities from the attacker [21, 36]. A botnet refers to

a collection or network of bots controlled by an attacker or group of attackers. The

attacker or group of attackers controlling the botnet is known as the botmaster and the

mechanisms allowing the botmaster to communicate with the botnet to perform the

desired affects is known as C2. The way a botmaster chooses to implement C2 is the most

important component. This decision directly affects the botnets stealthiness, ability to

survive individual bots being removed from the network, and overall effectiveness.

Related work detailing measuring performance metrics for robustness, efficiency, size, and

utility are discussed in [6, 7].

2.1.2 Botnet Phases

The existence of a botnet can be described in phases. Initially, the botmaster must

infect a system with the bot. The botmaster then continues to infect multiple systems in

the injection and spreading phase using manual or self-propagation techniques to other

systems on the network or across networks. The C2 communication phase between the bot

and botmaster is initiated once a system is compromised. The malicious application phase

can begin when the botmaster has amassed a large enough set of bots. Table 2.1 is a

summary of the previously described botnet phases.

7



Table 2.1: Botnet Phases and Description

Phase Description

Injection and Spreading

Distribution of malicious email
OS and software vulnerabilities
Instant Messaging
Other botnets

Command & Control

Model & Topology
Centralized
P2P / Distributed

Application & Protocol

IRC
Web: HTTP, HTTPS, DNS
Email: SMTP
Instant Messenger
P2P

Communication
Inbound / Bi-directional
Push or Pull

Application

DDoS Attacks
Spam & Advertising
Hosting malicious resources
Personal or Corporate espianage

2.1.2.1 Injection and Spreading. There are several methods for bots to inject

and spread throughout a network. The most common methods include malicious emails,

software vulnerabilities, instant messaging, peer-to-peer (P2P) file sharing networks, and

using other botnets [17]:

• Distributing malicious emails: Coupled with social engineering (e.g., Phishing), a

system is compromised when users execute a malicious binary in an attachment or

clicking on an embedded link to the remote binary.

• Software vulnerabilities: New systems are commandeered by exploiting

vulnerabilities in the operating system or application software. Automated tools to

scan and exploit vulnerable systems are typically used.

• Instant messaging: Similar to distributing malicious emails, users receive and

execute a malicious binary in the form of an attachment or embedded link from an

individual on their buddy list.

8



• P2P file sharing network: The malicious binary is placed on a users system in a

shared location and social engineering is used to get the user to execute the binary.

• Using other botnets: Either a botnet is used to propagate and amass new bots to

create a separate botnet or a botnet is used to take over an existing botnet using the

methods described above.

2.1.2.2 Command and Control Models. The C2 model is the most important

component of the botnet. The C2 model determines how the botmaster maintains and

employs the botnet. Communication can be either inbound or bi-directional from the bot’s

point of view. A botmaster can push commands and updates or the botnet can check-in

and pull the updates and commands. Two important decisions a botmaster considers for

resilience and effectiveness are channel protocol and C2 structure. Early botnet C2

favored the IRC protocol because of their origin in IRC networks. Currently most

professional networks now block IRC traffic. Botnet communication evolved to use email

(SMTP) and web (HTTP, HTTPS, DNS) protocols, in addition to IRC as a result of

networks blocking IRC traffic and other detection and mitigation techniques.

Centralized and Peer-to-Peer (P2P) are the two primary types of C2 structures. The

centralized C2 model is characterized by the botmaster controlling a single centralized

server hosting services such as IRC, HTTP, and SMTP. A new bot will communicate with

the botmaster through this server once infected. Three topologies within this model are:

• Single Star: The simplest topology, a single central server is the C2 master.

• Multi-server Star: This incorporates multiple servers with bots distributed amongst

them to increase redundancy and scalability. The servers coordinate and

synchronize with each other and appear as a central location to the entire botnet.

9



• Hierarchical: Employs select bots to act as proxy servers to the actual C2 server to

increase the resilience of the C2 server. This minimizes the number of bots knowing

the actual location of the C2 server.

Figure 2.1 shows the different centralized C2 structures. The principle reason for

implementing a centralized C2 model is its relative ease in design and management, its

relatively quick response to both updates and executing commands, and stealthy network

traffic which avoids detection. A major drawback with this model is the single point of

failure. Once identified, the central server along with the entire botnet can be hijacked or

terminated.

(a) Single Star (b) Multi Server (c) Hierarchical

Figure 2.1: Centralized C2 Botnet Structures [17]

In a distributed P2P model each bot acts as both client and server. The principle

reason for implementing this model is the overall resilience of the botnet from individual

bot detection. Identifying or removing a number of bots will not necessarily lead to the

destruction of the botnet. However, the drawbacks for this model include the level of

difficulty in design and management, the un-reliable response time for propagating

commands and updates, and potential anomalous traffic due to inter-communication

within the botnet [17]. Figure 2.2 illustrates a sample P2P C2 structure.

10



Figure 2.2: Example of P2P C2 Botnet Structure [17]

2.1.2.3 Malicious Applications. The lucrative aspect of botnets for cyber

criminals is the ability to monetize their application. Malicious activities include but are

not limited to:

• Distributed Denial of Service (DDoS) Attacks: A botmaster can effectively attack a

targeted server and remain anonymous.

• Spam and Advertisements: A botmaster can use infected machines to send mass

advertising emails either via proxy or relay. Valid email addresses from infected

machines can also be used to defeat spam filters.

• Hosting Malicious Resources: A botmaster can select a specific bot or bots to store

malicious binaries, fraudulent sites, or phishing sites.

• Personal and Corporate Espionage: A botmaster also has the data on an infected

system or the data that passes through an infected system at their disposal. As a

result, personal information such as passwords or credit card information can be

accessed. Also at risk are business documentation, trade secrets, and other corporate

sensitive information.

The process, roles, and description of the monetary flow resulting from a botmaster

executing these activities are described in [20].

11



2.1.3 Botnet Defense Techniques

As with any malware, there are general anti-malware countermeasures falling into

three categories: detection, prevention, and eradication [16]. Detection is the ability to

recognize and/or locate malware on a system. At the network level, Intrusion Detection

Systems (IDS), Honeypots, and active and passive monitoring are the primary

countermeasures for detecting botnets; extensive research has been accomplished using

Honeypots, Honeynets, and other network monitoring schemes for detecting botnets

[13, 36, 37]. IDSs may use a signature-based technique, anomaly-based technique, or

both. Detection requires monitors on the system that analyze the system internals as

opposed to network traffic to detect botnet activity at the host level. Prevention is keeping

malware from executing on or entering a system. A proactive approach, from the user

perspective, includes gaining awareness of all types of malware including botnets,

maintaining software and operating system updates, and investing system resources

towards some form of malware detection software (e.g., anti-virus). Eradication is

removing the detected malware and all its traces. Typically, the only way to achieve this

for a botnet is to re-install the operating system.

2.2 Smartphone Architecture and Short Message Service

Smartphones are set apart from their dumb phone and feature phone counterparts by

the presence of a full-fledged operating system and file system. A feature phone is set

apart from a dumb phone by its ability to perform more than just mobile telephony like

having personal digital assistant (PDA) features including calendar, contacts, email, or

running simple applications. However, they lack a dedicated operating system or file

system allowing more user enhancing applications. The presence of this additional

component requires additional hardware and a different internal architecture as well.

12



2.2.1 Smartphone Architecture

Dumb and feature phones’ processor is the baseband radio processor. The baseband

radio processor runs a specialized real-time operating system to handle communication

with cellular networks. This processor is also responsible for handling the additional

feature sets including the PDA capabilities or running simple Java-based applications on

feature phones. Smartphones consist of two processors: a dedicated application processor

that hosts the phone’s operating system and a baseband processor. The application

processor presents in the form of a System on a Chip (SOC) with additional integrated

functional components. These processors collectively form the design of a modern

smartphone when combined with other peripherals such as a touch screen, keyboard,

audio input/output, GPS, and a gyro. Figure 2.3 depicts a generalized system design

showing the two processors and peripherals.

Figure 2.3: Conceptual Design of Modern Smartphone Architecture adapted from [2, 22]

This conceptual design of modern smartphones is generally how iPhone, Android,

and Windows Mobile devices are implemented [2, 22, 35]. In addition to the operating

system providing the user an interface for mobile computing and running feature rich

13



applications, it is also responsible for communicating with the baseband radio to maintain

the telephony capabilities. This communication with the baseband processor is

accomplished through serial, terminal, USB connections or shared memory between the

two processors [35].

2.2.2 Short Message Service (SMS)

A feature available on nearly all mobile phones is SMS. Mobile network operators

use this service for various reasons, but it is mainly known by subscribers as the service

providing text messaging capabilities. SMS can also provide other functions such as a

control channel for voice mail notifications, remote over-the-air (OTA) phone

configurations, and a transport for the Wireless Application Protocol (WAP).

2.2.2.1 Sending and Receiving SMS. When sending or receiving an SMS

message, the important components in the cellular network are the base transceiver station

(base station) and the SMS Center (SMSC). SMS messages generated by a mobile phone

are transmitted from the modem to the base station. The base station then forwards the

message to an intermediary component, the SMSC, which provides the store and forward

service and queues messages if the receiving phone is unavailable. The SMSC also

provides an avenue to send SMS messages from other than mobile devices. This is how

internet services send SMS messages to mobile devices. Messages are forwarded directly

to the receiving base station which forwards the message to the receiving mobile device if

the recipient is on the same network and handled by the same SMSC. Otherwise it will

forward the message to the recipient’s SMSC to handle. SMS text messaging is provided

as a best effort service and delivery is not guaranteed. Figure 2.4 displays this simplified

overview of sending and receiving SMS messages at the network level; additional detail

about the cellular network components and SMS messaging can be found in [18].

14



Figure 2.4: SMS Delivery and Receipt at the Cellular Network Level based on [22, 34]

The important components are the phone’s telephony stack, device/modem driver,

and the baseband radio at the device level. The telephony stack provides all the layers of

abstraction and handles all communication between the application processor and the

modem. It consists of all the components and interfaces for developers to create

applications using the modem. Any use of the modem, data, voice or SMS, requires the

use of special modem commands. These commands are communicated between the two

processors through the device driver via the serial, terminal, USB or shared memory

connections. Figure 2.5 shows the smartphone components involved in sending and

receiving SMS messages starting at the top with the application, the radio application

programming interfaces (APIs) and Radio Interface Layer, the modem driver, and modem.

2.2.2.2 SMS and the ATtention (AT) modem commands. All modem

functions require the use of AT commands. AT is an abbreviation for ATtention and all

commands begin with “AT”. Basic AT commands include a set of modem configuration

controls and simple functional commands like dial, answer call, and hang up. SMS AT

commands are a subset of an extended AT command set that all begin with a “+” .

Table 2.2 shows a sample list of basic SMS related AT commands for both sending and

15



Figure 2.5: Sending and Receiving SMS at the Device Component Level adapted from

[22, 34]

receiving messages on the phone. Not all SMS commands are implemented on all phones.

Additional details about SMS and the SMS AT-command set can be are found in [1, 9].

Table 2.2: Sample SMS Commands (Extended AT Commands)

Sending (solicited) SMS Commands Receiving (unsolicited) SMS Commands

AT+CMGS (send message) AT+CMT (forward message to computer)

AT+CMGR (read message) AT+CMB (forward broadcast message to computer)

AT+CMGL (list message) AT+CDS (forward received status report to computer

AT+CMGC (send command)

This section discussed the general smartphone architecture and how SMS is

implemented both at a high and low level. It is easy to recognize at a high level the built-in

persistence SMS provides which is a good characteristic for any botnet C2. Understanding

the components and details of the process at a low level is import for developing ways to

both hide and detect covert SMS messages. The next section provides an overview of the

Android operating system architecture, its security, and the Android-specific components

that allow the SMS capabilities.

16



2.3 Introduction to Google Android

The Android platform was designed from the ground up by a consortium of industry

partners including mobile operators, handset manufacturers, semiconductor companies,

software companies and commercialization companies looking to provide an open

platform allowing developers to continue to improve the user’s experience in a mobile

environment with new and innovative capabilities [24]. The Android architecture has four

layers with five components: Applications, Application Framework, Libraries, Android

Runtime, and the Linux Kernel. Figure 2.6 shows a representation of the Android

architecture.

Figure 2.6: Android System Architecture [8]

17



2.3.1 Android Architecture

At the top of the stack is the Applications Layer. Applications are written in Java and

provide users the functionality and capabilities expected in smartphones including phone,

messaging, camera, productivity, web, entertainment and gaming. Below the Applications

layer is the Application Framework layer. This layer is also written completely in Java and

provides developers Google-proprietary extensions and services and access to the

application programming interfaces (API) to the native libraries. The intent is to help

developers and simplify the reuse of components from application to application. The next

layer down includes the native libraries and the Android runtime environment. The native

libraries are written in C/C++ and are used by various components of the system. The

Android runtime component contains the core libraries and the Dalvik virtual machine

(VM). The core libraries provide most of the functionality available in the core libraries of

the Java programming language [8]. The Dalvik VM is Google’s proprietary

implementation of the Java VM, optimized for running multiple instances efficiently and

with a minimal memory footprint; details on the major differences between the Java VM

and Google’s Davlik VM is discussed in [10]. An Android application runs as its own

process with its own instance of the Dalvik VM. At the foundation of the stack lies a

stripped down version of Linux kernel 2.6 which provides the core system services and

abstraction layer between hardware and the rest of the stack.

2.3.2 Android Security

This subsection provides a summary of Android security related work

[10, 11, 23, 29, 30]. The microprocessor of choice for the architecture of Android devices

are based on is the Advanced RISC Machine (ARM) family of processors which provides

variety of performance benefits suitable for mobile devices. The cons from a security

perspective include having an executable heap and stack and no memory map

18



randomization. ARM architecture also provides security mechanisms such as TrustZone

technology and no-execution page protection; however, Android currently does not use

these features. In general, Android devices are susceptible to all current ARM

vulnerabilities and exploits.

Application distribution is provided in a central location called the Android market.

Developers publish their applications for users to download. Only a developer license and

application signing is required to publish to the market. Anyone can sign up or become a

developer for just twenty-five dollars and this can even be done anonymously. There are

no Certificate Authorities; certificates are self-signed by developers. The combination of

opportunity and anonymity provide an enticing environment for attackers to widely

disseminate malicious code. Google does have the ability to push kill messages to devices

to remotely remove applications from both phones and the Android market, but this is

only after the malicious software has been identified and reported.

Android has a permissions-based security model with respect to application

installation. The Application Framework layer handles initial installation permissions and

enforcing system permissions during runtime. The application requests permissions upon

installation to access data from other applications it needs to interact with (e.g., contacts,

calendar, SMS, email, social networks logins, etc.) which the user must approve for a

successful installation. The burden lies on the users to understand the impacts of sharing

data between applications; however, users are not given the granularity of what data

elements from which applications are being accessed. Approval is all or nothing. Most

users choose to click through warnings just to install the application not knowing what

they agreed to.

As discussed earlier, when an application is installed, it is given Unix-style

user-ID/group-ID based on approved permissions implementing a separation of privileges;

however, [29] describes a scenario for installing two seemingly unrelated applications by

19



the same developer using the shared user-ID permission to collaborate and leak

information from the device.

When an application is running, it runs in its own process in its own instance of the

Dalvik VM with the intent of maintaining all code execution within the VM. A work

around is using the Java Native Interface (JNI) providing access to Android’s native

libraries allowing code execution outside of the VM and opening return-to-libc-type

attacks [23, 27]. A “return-to-libc” attack is typically a variation to the buffer overflow

attack. A buffer overflow is used to write executable code on the stack often generating a

terminal shell. Executing code on the stack is prohibited in some operating systems. A

way to circumvent this security mechanism is to use the buffer overflow to jump to the

address of existing executable code memory. Typically, the “system()” function in libc,

which is already loaded into memory, is used as an address to jump to and generate the

shell.

2.3.3 Android Radio Interface Layer (RIL)

Android’s telephony stack provides all the layers of abstraction to the radio hardware.

At the top level, Android’s application layer, the Phone and SMS applications provide

users with the phone and messaging features. The telephony services and RIL reside in

the application framework layer. Android’s telephony services (android.telephony)

provide developers with the APIs to develop their own phone and messaging applications

or applications that utilize the radio hardware. The RIL resides between the hardware and

telephony services and is the abstraction layer for the radio hardware and handles all

communication with the modem. Figure 2.7 shows Android’s telephony stack and the

components of the RIL; additional details about Android’s RIL can be found in [3, 33].

As discussed in Section 2.3, all modem communication is in the form of AT

commands; Android’s RIL supports two forms of communication:

20



Figure 2.7: Overview of Android’s Telephony Stack and Radio Interface Layer [33]

• Solicited Requests: Any commands originating from the user and originating from

the RILJ. There are over 60 solicited AT commands implemented, examples include

send SMS, dial phone number, hang up, etc.

• Unsolicited Requests: Any commands originating from the baseband radio. There

are 11 unsolicited AT commands implemented, examples include receive SMS,

hang up, inbound phone call, etc.

The RIL consists of four main components to handle all communication requests and

flow to and from the radio hardware. The four components and their roles, identified by

their system log tag names (RILJ, RILD, RILC, RIL), are:

21



• Vendor RIL (RIL): RIL acts as a driver for RILJ, it is a proprietary shared library

specific to each modem, responsible for initiating and handling all communication

with the hardware radio through the kernel.

• Event Scheduler (RILC): RILC serves as the bridge between RILJ and RIL. It

handles all solicited requests from RILJ and dispatches them to RIL. It also handles

both the unsolicited requests and the responses for solicited requests from the RIL

and dispatches them to RILJ.

• RIL Daemon (RILD): The purpose of the RILD is to initiate the event scheduler and

RIL. To initiate RIL, RILD locates the vendor library, maps the functions to the

required RILJ functions via the RIL Init function. Once both RILC and RIL are

initiated, the process sleeps forever.

• Java RIL (RILJ): Part of telephony services and provides developers the telephony

APIs. The purpose of RILJ is to dispatch solicited requests to RILC by parcel

through a local socket interface and handle the responses and unsolicited requests

dispatched to it from RILC.

This section provided an overview of Android’s architecture discussing each

component of the stack. A review of the existing security was also provided and

vulnerabilities were identified through existing research. Finally, the Android-specific

components implementing the telephone and SMS capabilities were discussed. The next

section ties the previous three sections together and discusses botnets on smartphones,

Android smartphone botnets, and SMS botnets.

2.4 Smartphone Botnets, SMS Botnets, and Android Botnets

The majority of botnet research is focused on desktop computer systems and fixed

networks. Malware in a mobile environment is not a novel idea. The shift to use botnets

22



on smartphones and mobile networks is increasing in popularity and focus. Smartphone

devices have networking capabilities via High-Speed Downlink Packet Access (HSDPA),

Evolution-Data Optimized (EV-DO), Universal Mobile Telecommunication System

(UMTS), Enhanced Data Rates for GSM Evolution (EDGE), General Packet Radio

Service (GPRS), and wireless networks (WLAN), among other cellular networking

technology and infrastructure. Coupled with the additional C2 channels including SMS

and Bluetooth, persistent connectivity, and the increased use in various business and home

communities, mobile botnets are becoming more lucrative than traditional botnets. This

section reviews related works on botnets on smartphones, SMS-based botnets, and

Android botnets.

2.4.1 Smartphone Botnets

Attack vectors introducing malware into a mobile device or smartphone via SMS,

MMS, downloaded executable, and Bluetooth have been documented [31]. Android

devices are just as susceptible to these attack vectors. In [23], the process is discussed for

using the JNI and ARM exploits in an Android application to bootstrap a rootkit to

provide a platform for building a botnet. Using Android’s Marketplace the persistent

connectivity through a combination of cellular radio, wireless LAN or Bluetooth, the

botnet injection and spreading phase is accomplished easily.

2.4.2 Android Botnets in the Wild

Smartphone botnets are a reality. In the wild, the first botnet on mobile devices was

detected in 2009 on Symbian OS based systems [15]. Also in 2009, several countries in

Europe and Australia experienced a botnet on Apple’s iOS iPhones, iKee.B; a breakdown

analysis was performed detailing the installation, propagation, C2, and approximation of

the original source [25]. On Android systems there have been two identified instances.

The first botnet, Droiddream, was detected in March of 2011, and the security group

23



Lookout Mobile Security provided an extensive analysis of how the Trojan attempted to

gain root access and communicated with its C2 server to download and update [28].

Variants, including a Droiddream lite, have been detected as well. In June of 2011,

jSMSHider, was identified. This Trojan attacked custom ROMs by exploiting the

vulnerability of custom signed ROMs from the Android Open Source Project [32].

2.4.3 SMS Botnets

Smartphones provide additional C2 channels less common to desktop systems.

Related work has been completed developing proof of concept botnets successfully

opening the possibility for botmasters to use Bluetooth and SMS as a means for C2. In

[31], a simulation was used to demonstrate the botnet. A hybrid C2 structure was used

identifying select nodes as command entry points into the botnet via SMS. In [34], the

botnet was implemented on hardware and also describes a hybrid C2 structure utilizing

select Android-based phones with GSM modems to assist in stealth and robustness.

2.5 Summary

This chapter presents overviews and background information related to botnets,

smartphones, SMS and Android. Significant research has been dedicated towards

understanding and defending against botnets on traditional computer systems but not

towards mobile botnets. Mobile botnets are now becoming a trend in the malware world.

This research leverages the proof of concept Android botnet discussed in [34] and

describes the development of a proof of concept security module to provide user

awareness for SMS-based C2. The next chapter describes in detail the design approach,

implementation on a retail Android smartphone and validates the success against the proof

of concept SMS bot. This research extends the works related to C2 detection

countermeasures for botnets specifically in the smartphone domain.

24



3 METHODOLOGY

3.1 Introduction

The most important component for any botnet is C2 because it directly affects the

botnet’s stealthiness, resilience, and overall effectiveness. If the C2 mechanism is

identified, removing a bot from the network, disrupting, dismantling, or hijacking the

botnet becomes straightforward. The cat and mouse game in the botnet world is hiding and

detecting the C2. Attackers continually look for creative ways of hiding C2 in traditional

communication channels and are branching out into new channels. When sending a C2

message, two factors botmasters consider are: latency, how quickly the botnet responds to

the message; and contact percentage, how many of the bots actually receive the message.

A botmaster wants to ensure both a high contact percentage and a quick response when

executing a DDos attack. However, contact percentage is weighted more heavily during

C2 messages intended for updating the botnet’s command set, or executing an attack like

retrieving personal or sensitive information. SMS as a C2 channel is enticing to

botmasters because of the importance of contact percentage and the built-in persistence

SMS provides. This chapter discusses the design, implementation and validation of a

security module for identifying covert SMS C2 messages on Android smartphones.

3.2 Transparent SMS Bot

It is important to understand how SMS C2 can be hidden on an Android smartphone.

A proof of concept bot described in [34] achieves this by executing a man-in-the-middle

attack between the application layer and the kernel/modem driver on the telephony stack.

Creating this proxy below the application layer is an effective way to transparently

intercept and filter inbound bot-related messages from the user.

25



Figure 3.1: Bot Location and Control Flow on Android’s Telephony Stack [33, 34]

The bot first determines whether or not information coming from the modem is SMS

related. It passes the information immediately up the stack to the user application if the

data is determined not to be SMS related. If so, it then determines if the message is

bot-related, and if not, the message is immediately passed up the stack. Otherwise, the bot

consumes the message hiding it from the user application and executes the command

contained in the message. Figure 3.1 illustrates both the bot’s control flow and location on

Android’s telephony stack.

26



3.3 Design

The proof of concept SMS bot effectively filters SMS messages by staying below the

application layer. This research proposes to defeat this type of botnet by getting below the

botnet and in-between the driver and physical modem, in kernel-space, to log inbound

messages before they can be filtered by another process. Considering a defense-in-depth

approach, the design for detecting SMS-specific C2 is host-based, reactive in nature and

uses passive monitoring.

• Network vs. Host-based: Detection and mitigation for SMS and other botnets can

be implemented at the network level. Network service providers would be required

to upgrade infrastructure with security mechanisms to protect their subscribers.

Possible solutions and financial justification to present providers are not in scope of

this research. A host-based solution is the chosen approach.

• Proactive vs. Reactive: Preventing any malware from entering a system is an

effective deterrent for cyber crime. Because of the Android security vulnerabilities

discussed in Section 2.4, the approach is to focus on detection and not the injection

or mitigation phases. Before a reactive eradication process can be executed,

identification is required. The design is reactive in nature by assuming the system is

already infected and only provides an avenue to identify potential C2

communication.

• Active vs. Passive Monitoring: With an SMS-based bot, the bot receives an SMS to

process as either bot-related or not. The bot consumes bot-related messages and

does nothing with other messages. Passive monitoring is effective if the messages

are captured early in the process of entering the system and no later than right

before the bot processes the message.

27



Figure 3.2: Security Module and Control Flow on Android’s Telephony Stack

SMS messages enter the system through the modem on smartphones. Capturing

messages as they enter through the modem is ideal; however, baseband radios are closed

proprietary systems and not a feasible approach. The earliest messages can be intercepted

is the point where the radio processor sends the data to the application processor.

Figure 3.2 illustrates the security module in this location and on Android’s telephony stack

with the control flow.

It is assumed only SMS C2 or other malicious SMS messages are hidden from users.

As a result, logging inbound messages at this location is effective in identifying whether

or not a bot is hiding inbound SMS messages. The control flow of the security module is

28



Figure 3.3: Security Module and Bot Locations with Control Flows on Android Telephony

Stack

similar to the bot. The event is logged if inbound data is SMS related. Otherwise it does

nothing. The difference between the two processes occurs after the data is determined to

be an inbound SMS, no other processing is required. The inbound data is not modified or

stored; only the event (i.e., “Message Received”) and time stamp are required for the log.

Finding discrepancies in the inbound message events log compared to the list of received

messages in a user’s application successfully identifies hidden C2 communication.

Figure 3.3 illustrates both the security module and the SMS bot on Android’s telephony

stack and their control flows.

29



3.4 Implementation

This sections discusses the details for implementing the design on an HTC Nexus

One, including the development environment, tools, and general process. Implementation

is hardware specific. There are a few approaches to achieving the goal of capturing

messages as they are received from the modem:

• New modem driver: This approach provides an avenue for a complete system and

more control; however, the level of complexity involved in developing a new driver

to handle modem communication is un-necessary to prove this design concept.

• Modify existing driver: Modifying the existing driver is less complex than

developing a driver from scratch and could provide the same level of control and

completeness; however, deployment to a production system is more involved and

requires the kernel to be recompiled and flashed to the target system.

• Loadable kernel module: Loadable kernel modules (LKM) exist for the purpose of

modifying or extending the running kernel without having to recompile and

redeploy to a system. Modules can be loaded and removed as necessary to manage

resources. This is the approach chosen for the proof of concept.

The LKM uses a kernel probe to instrument a routine that reads the buffer to which

the modem writes data. A kernel probe is a built-in Linux kernel mechanism for

seamlessly and dynamically debugging the system. Any routine in the kernel can be

instrumented with kernel probes given the address of the instruction. There are three types

of kernel probes: kprobe, jprobe and kretprobe. Jprobes and kretprobes are

implementations of the general kprobe with breakpoints placed at a routine’s entry or exit,

respectively. Benefits of a jprobe include the ability to conveniently access the routine’s

arguments. A jprobe seamlessly executes a trampoline effect by setting a break point at

the instruction address, calling a pre-handler function to make copies of the arguments on

30



the stack, executes the jprobe instructions, then returns to the original execution flow; the

original routine’s arguments remain unmodified. On the target system, the ch read()

routine in the SMD is instrumented. Figure 3.4 is a simplified illustration of instrumenting

ch read with a jprobe, for the source code see Appendix A. For more information on

kernel probes, documentation can be found in the Linux source code [19].

Figure 3.4: Instrumenting ch read Using a Jprobe

3.4.1 Target Device: HTC Nexus One

Originally, it was believed that a module to perform SMS auditing could be

developed to function on all Android phones. However, through the course of the

research, it was learned that developing software to function at the kernel level is highly

dependent upon the underlying hardware implementation. Thus, developing software for

the kernel level turned out to be much more complicated than originally conceived, and is

certainly much more difficult than developing conventional user applications.

Although the Android operating system and kernel are “open”, vendors have full

control over the development of their production devices. Vendors typically modify and

compile the OS and kernel to accommodate their specific hardware needs and apply their

own security mechanisms to prevent tampering. Modifications developed at the kernel

level for one vendor’s smartphone will generally need to be recompiled along with another

31



version of the kernel source to run directly on other hardware devices because of this tight

coupling between the hardware platform and the kernel.

A specific smartphone needed to be selected to proceed with this research due to the

strong dependency between the kernel and underlying hardware implementation. Factors

to be considered included the following:

• Vendor and model: This is probably the most important factor in successfully

developing software for Android devices when focusing on levels below the

application layer. Developing beyond the application layer requires access to the OS

and kernel source code. Also, knowledge of the vendor-specific security and

processes for disabling them are required. Working below the application layer can

permanently disable (e.g., “brick”) a device. Having knowledge of the recovery

system along with a compatible third-party backup and recovery system is

beneficial.

• Android OS version: The Android Open Source Project (AOSP) is an initiative for

developers who embrace the openness of the Android platform and want to use it to

further the mobile device experience. It is also where developers go to access both

the Android OS and kernel sources. The AOSP community and Google provide the

most focus and support on the latest OS version and the main line of the kernel.

Typically, a device is built for a specific OS version with a specific kernel. Various

versions of source code are device specific, and not all versions work on all devices.

Finally, building the source is both device and kernel specific, because the correct

kernel version and proprietary binaries for a given device are required for a

successful build on the target system.

• Linux kernel source: Although the Linux kernel is open source, vendors typically

modify the source code to accommodate their hardware and do not always make

32



Feature Value

Android OS version 2.3.6 (Gingerbread)

Baseband version 32.41.00.32H 5.08.00.04

Display 480 x 800 pixels (3.7 inches)

CPU Qualcomm QSD8250 1GHz

Memory (internal) 512MB RAM / 512 MB ROM

Kernel version 2.6.35.7-ge0fb012

Figure 3.5: HTC Nexus One with Technical Specifications

their code available. At the very least, source code for the device’s motherboard and

chipset is required.

• SMS Bot Compatibility: Developing a kernel level module to work with the SMS

bot requires a device that uses SMD as the communication interface with a GSM

modem.

Based on these considerations, the HTC Nexus One, also known as the Android

Development Phone 3 (ADP3) and shown in Figure 3.5 with its technical specifications,

was chosen as a suitable and representative smartphone for this research.

3.4.2 Development Environment

The development system is a VM running 2 dual-core processors (4 processors total),

3GB of RAM, 65GB of hard drive space, and the 64-bit Ubuntu TLS (10.04) Linux

distribution with latest updates (at the time of development). The VM specifications were

chosen based on a combination of available resources from the host system and

recommendations from the AOSP website for initializing a build environment for the

33



Android OS version 2.3.6 (Gingerbread, git branch tag android-2.3.6 r1). Table 3.1 is an

overview of the development system technical specifications.

Table 3.1: Virtual Machine Development System Specifications

Feature Value

Operating System Ubuntu LTS (10.04)

CPUs 2 dual-core (4 total)

RAM 3GB

Hard Drive 65GB

Three utilities are required for developing and testing kernel modules in the Android

environment are provided by downloading the Android source:

• Android Debugger Bridge (adb): adb is a command line utility that allows

communication with an emulator or a connected Android device. adb is used for

shell access to the device and transferring files and images to and from the VM for

implementation purposes.

• fastboot: fastboot is a command line utility that allows for flashing images to

partitions on Android devices from a system over USB.

• ARM compiler: The Android source comes with pre-built toolchains, libraries and

compilers for developing on x86 architecture and cross-compiling for the ARM

architecture.

The final piece of the development environment is the Android kernel. Kernel source

code for most Android phones is made available for download by the vendor. The source

for the HTC Nexus One was unavailable (at the time of development and writing). The

34



MSM kernel provided by the AOSP and compatible with the HTC Nexus One’s

motherboard and Qualcomm chipset, is used for this development (specifically, git branch

tag msm-2.6.35). For detailed steps in setting up the development environment including

downloading and compiling the Android source, utilities, kernel, and LKM, see

Appendix B.

3.4.3 Deploying the Module

Successfully inserting an LKM on a retail production system is more involved than

merely building the module and using the insmod command. The first hurdle to overcome

deals with the access to the kernel source. Production system kernels are configured to

check the version of the kernel the module was built from. Modules will not load if the

kernel versions do not match for security and stability reasons. The source code for the

specific kernel running on the device is required.

Replacing the existing kernel in the development smartphone is required because a

kernel compatible with the motherboard and chipset is used. An understanding of the

Android system partitions and vendor-specific security mechanisms is required to

accomplish this.

3.4.3.1 Android Partition Layout. The Android system consists of multiple

partitions, shown in Table 3.2. The boot partition contains the kernel and is packed

together with the RAMDISK, which is a set of files required to initialize the system

including the init process. The fastboot utility allows you to “test” a kernel image to see if

it will boot on a device without permanently ruining the device upon failure. Restarting

the device replaces the old kernel. For a more permanent solution, the new kernel image

needs to be packed together with the RAMDISK to form a new boot image and then the

boot image needs to be flashed to the device.

35



Table 3.2: Partition Layout for Most Android Smartphones

dev: Name Description

mtd0: “misc” Stores misc system settings

mtd1: “recovery” Alternative boot partition

mtd2: “boot” Stores boot image (kernel & RAMDISK)

mtd3: “system” Operating system (minus kernel & RAMDISK)

mtd4: “cache” Stores frequently accessed app data and components

mtd5: “userdata” Partition containing user’s data

3.4.3.2 Vendor-specific Security Mechanisms. In addition to the application

security Android implements, vendors add additional layers of security. Two widely

known security mechanisms vendors employ are denying root-level access and locking the

bootloader. Locking the bootloader prevents users from flashing new images or firmware

to the device and generally prevents the use of the fastboot utility. To flash a new image

and use the fastboot utility, the bootloader needs to be unlocked. On the HTC Nexus One,

unlocking the bootloader is as simple as using adb, opening a shell, and executing a

command. There are pros and cons to having a phone with and without root access.

Having a device without root access helps maintain a certain security level and prevents

novice users from inadvertently lowering system defenses like changing the system

partion from read-only to read/write. From a vendor perspective, it provides a way to lock

certain system features like tethering a network connection to other mobile devices for

financial gains. For the tech savvy, obtaining root-level access to a phone opens a full set

of customizations and unlocks the full potential of the mobile device. For installing an

LKM, root access is required. This can be achieved by flashing new firmware once the

bootloader is unlocked.

36



The following summarizes the general steps required to deploy an LKM on an

Android device whose kernel source is unavailable:

1. Download and build an Android kernel suitable for the target system (see

Appendix B for details on HTC devices).

2. If the bootloader is locked, unlock the boot loader.

3. Test the new kernel image with the fastboot utility.

4. Unpack the kernel from the existing boot image and re-pack it with the new kernel

to create a new boot image.

5. Flash the new boot image to the target device using fastboot.

6. If root access is not available, obtain root access on the device.

7. Use adb to push and load the module to the phone.

3.5 Test Environment and Experimental Design

SMS is a best effort delivery service. A simulated network was chosen to avoid any

potential message delivery variability and having to determine if the service provider is not

delivering messages or if the module is affecting the system. Using a simulated network

also prevents the need to purchase service and data contracts from a network provider.

The hardware used to simulate the cellular network base station and SMSC is an

Anritsu MD8470A Signal Analyzer which includes Wireless Network Simulator (WNS)

software to test voice, data, MMS and SMS. Both are shown in Figure 3.6. Only the SMS

send features are used for the experiments. The signal analyzer simulates both the cellular

base station and SMSC. Figure 3.7 illustrates a component diagram of the test

environment including the HTC Nexus One, security module, and SMS bot.

37



Figure 3.6: Anritsu MD8470 Signal Analyzer with Wireless Network Simulator Software

Figure 3.7: Component Overview of Test Environment

3.5.1 Experimental Design Overview

The tests are designed only to show functionality and utility of this proof of concept

for detecting covert SMS messages. Because the target device is a production system used

in a dedicated simulated cellular network, little variability is expected with the test results

and tests are repeated only five times. The SMS bot has been presented at several security

conferences and was shown to work and behave as expected. The bot also behaved as

38



Table 3.3: Summary of Experimental Tests

Test No. Purpose Description

1 Functionality Test logging non-C2 messages

2 Functionality Test logging C2 messages

3 Utility Scenario 1: Well timed C2 message

4 Utility Scenario 2: Poorly timed C2 message

expected when deployed to the target system prior to testing although not shown in this

work. All tests include the SMS bot on the system in an active state. The bot is a safebot

and does not execute any payload; it only provides the transparent SMS C2 capabilities. It

hides bot-related messages based on a bot-key in the received message. The bot-key

implemented is “BOT:”. Any SMS message beginning with the bot-key will be hidden

and all other messages are passed up the stack to the user application. The security

module uses a ring buffer in the kernel to log the messages. All tests are performed with

an empty kernel buffer and an empty message list in the SMS application, the stock SMS

application is used in all testing. The actual implementation of the module sends the event

string, “Message Received” with a time stamp to the kernel log. At the end of each test,

the SMS application is compared to the list of logged messages in the kernel log to

determine if the C2 messages can be identified. Table 3.3 provides a summary of the tests

identifying their purpose and description.

3.5.2 Test 1: Functionality Test (Logging non-C2 Messages)

This tests the module’s basic ability to log non-C2 messages. The average user sends

and receives approximately 110 messages daily [14]. The workload for this test is 110

messages sent at 1 second intervals from the SMSC using the WNS software. The module

39



is only concerned with inbound messages. Receiving 110 messages at 1 second intervals

represents an extreme user case and tests the module’s ability to log messages not

consumed by the bot. Table 3.4 is an overview of the test and measure of success.

Table 3.4: Test 1 - Logging non-C2 Messages

No. of Messages Message Type

110 non-C2

Success: all non-C2 messages identified in kernel log

Failure: all non-C2 messages not identified in kernel log

3.5.3 Test 2: Functionality Test (Logging C2 messages)

This tests the module’s basic ability to log C2 messages, messages hidden from the

user application by the bot. The workload is the same as in Test 1 where 110 messages are

sent in succession at 1 second intervals by the simulated SMSC. Although a poor

representation of stealthy botnet C2 communication, it is a simple and relevant method in

testing the security module’s ability to log bot-related C2 messages. Table 3.5 is an

overview of the test and measure of success.

Table 3.5: Test 2 - Logging C2 Messages

No. of Messages Message Type

110 C2

Success: all C2 message identified in kernel log

Failure: all C2 message not identified in kernel log

40



3.5.4 Test 3: Utility Test (Scenario 1 - Well timed C2)

This tests a specific scenario for a well timed C2 message, or a message that may be

difficult to identify in the kernel log using a manual comparison process. A C2 message is

sent in this scenario during a time when the user is receiving plenty of messages from

other users. Four different senders are utilized. Sender 1, identified by the phone number

12081208, will send only one message. Sender 2, identified by the phone number

26662666, will send two messages. After five minutes, sender 3, identified by the number

13371337, will send 4 messages at 45 second intervals. Sender 4, identified by phone

number 40084008, will then send only one message. The last 5 messages will be sent

within 5 minutes of each other and the C2 message will be sent within that time frame.

Table 3.6 outlines the test sequence and indicates the measure for success.

Table 3.6: Test 3 - Well Timed C2 Sequence of Events

Sender No. of Messages Time (t = minutes)

12081208 1 t0

26662666 2 t1 − t2

13371337 4 t7 − t10

bot 1 t8

40084008 1 t11

Success: C2 message identified in kernel log

Failure: C2 message not identified in kernel log

41



3.5.5 Test 4: Utility Test (Scenario 2 - Poorly timed C2)

This tests a specific scenario for a poorly timed C2 message or a message that is

easily detected in the kernel log using a manual comparison process. Here, a C2 message

is sent during a period of inactivity. Four different senders are utilized. Sender 1,

identified by phone number 13371337, will send 3 messages at 55 second intervals.

Sender 2, identified by the phone number 40084008, will send 1 message. After 10

minutes of inactivity, sender 3, identified by the number 26662666, will send 1 message.

Sender 4, identified by phone number 12081208, will also send only one message. During

the 10 minutes of activity, at minute 8, the bot will send a C2 message. Table 3.7 outlines

the test sequence and indicates the measure for success.

Table 3.7: Test 4 - Poorly Timed C2 Sequence of Events

Sender No. of Messages Time (t = minutes)

13371337 3 t0 − t2

40084008 1 t3

bot 1 t8

26662666 1 t13

12081208 3 t14 − t16

Success: C2 message identified in kernel log

Failure: C2 message not identified in kernel log

3.6 Summary

This chapter discussed in detail the design and design considerations for a security

module that detects hidden SMS C2 messages on Android-based smartphones. The design

42



is implemented on a retail HTC Nexus One smartphone. The steps for setting up the

development environment and deploying the module to the phone were examined. Finally,

the proof of concept is tested to show functionality and utility using an SMS bot in a test

environment with a simulated base station and SMSC. The results and analysis are

discussed in the following chapter.

43



4 RESULTS AND ANALYSIS

4.1 Overview

This chapter provides detailed results and analysis for the experiments outlined in

Section 3.5 and also provides additional analysis for the overall development,

implementation, and testing phases.

A terminal emulator application on the phone (downloaded from the Android

Marketplace) is used to provide the screen shots in the figures. A terminal application is

not standard on Android phones. The application is used to avoid the need to be connected

to a host machine and use the adb utility to gain access to the kernel logs. The kernel logs

are displayed to the device using the command, dmesg | grep Message, from the terminal.

The results were piped through the grep utility and filtered for the word “Message” to

filter any other kernel messages that may have been logged during a test run. The results

of the dmesg command were also sent to a text file whose logs are shown in Appendix C.

The focus of the tests and results are based on functionality and utility of the proof of

concept. Performance was not a factor in the design or results of the tests.

4.2 Test 1: Functionality Test (Logging non-C2 Messages)

Purpose: The purpose of this test is to provide a base case and show the security

module’s ability to log all inbound messages. The success criterion is 100% accuracy for

the module logging the inbound message events. A missed message results in failure.

Results & Analysis: Figure 4.1 shows the test results in the phone’s terminal

application. For this particular test, validating all 110 messages using the device’s

terminal emulator is tedious but achievable. The log data was also sent to a log file to

document the results. The log file found in Appendix C clearly shows all 110 inbound

message events logged. The stock SMS application was not under test; however, it did

44



Figure 4.1: Test 1: Terminal Display Showing Kernel Logging non-C2 Messages

receive all 110 messages and shows the module does not disrupt normal operation of the

SMS application. This successfully validates the module’s ability to log received

messages as events in the kernel log.

4.3 Test 2: Functionality Test (Logging C2 Messages)

Purpose: Similar to Test 1, the purpose of this test is to show the security module’s

ability to log bot-related inbound messages. The only difference from Test 1 is the type of

messages being received; only C2 messages are sent in this test. The success criterion for

this test is also 100% accuracy at logging C2 messages. A missed message in the log is

considered a failure.

Results & Analysis: Figure 4.2 shows the test results in the phone’s terminal

application. Like Test 1, the results were tedious to validate in the terminal application

45



Figure 4.2: Test 2: Terminal Display Showing Kernel Logging C2 Messages

alone, but achievable. The log file in Appendix C clearly shows all 110 inbound message

events logged. Zero messages were received by the SMS application successfully

validating the bot working and the module’s ability to log all inbound messages including

C2 messages.

The bot was not under test, however, zero messages were received in the SMS

application. This shows the bot working and successfully validated the module’s ability to

log all inbound messages including C2 messages.

Tests 1 and 2 were designed to strictly show the functionality of the module and

validate the ability to independently log both regular messages and C2 messages. The

following two tests mix in covert C2 messages with regular messages and shows the

utility of being able to log both types.

46



Figure 4.3: Test 3: Side-by-Side Comparison of SMS App and Kernel Log

4.4 Test 3: Utility Test (Scenario 1 - Well timed C2)

Purpose: The manual nature of the comparison process allows for user error in

detecting a C2 message even if the message is logged as an event. The purpose of this test

is to provide a scenario of a stealthy C2 message by sending the message during a period

of activity. This test differs from the previous two tests by mixing C2 messages with

regular SMS messages. The success criteria is still whether or not the message is logged;

however, this scenario is designed to show the difficulty a user may experience in

detecting a covert message if it is sent when the user is receiving a lot of messages at

about the same time.

Results & Analysis: Figure 4.4 shows a side-by-side comparison of the test results.

The side-by-side analysis shows the SMS application receiving 8 messages in a 12 minute

47



Figure 4.4: Test 4: Side-by-Side Comparison of SMS App and Kernel Log

time frame, from 11:30PM to 11:42PM. A quick look at the kernel log shows “Message

Received” events between 11:30PM and 11:42PM; at first glance nothing seems

anomalous. A more detailed inspection of the kernel log will show there are a total of 9

events where there are only 8 received messages in the SMS application. Upon further

inspection, we can narrow down the suspicious message as one of the 5 messages sent

between 11:37 - 11:41PM. Although this shows a scenario for a craftily sent C2 message,

the module still logged the event and successfully showed C2 can be detected and

distinguished from regular SMS traffic.

4.5 Test 4: Utility Test (Scenario 2 - Poorly Timed C2)

Purpose: The previous test highlights a situation where a logged C2 message can be

stealthy given the manual comparison process. The purpose of this test is to provide a

48



scenario showing a more obvious C2 message by sending the message during a time of

reduced SMS activity. As with the previous test, the success and failure is based on the

message being logged and not the difficulty or ease of identifying the message in the

kernel log.

Results & Analysis: Figure 4.4 shows the results and side-by-side comparison of the

test. It is more apparent which of the kernel log events is the C2 message in this

side-by-side analysis. The C2 message is not sent outside the time frame of received

messages as in the last test where it would be clear to see the “hidden” message. The SMS

application shows 3 messages received from user 13371337 with the last one received at

10:09PM. The kernel log shows 3 messages from 10:07 - 10:09PM. The next message is

received at 10:10PM as shown in the kernel log. The next inbound message in the SMS

application is received 11 minutes later at 10:21PM. Looking at the kernel log, we see the

message received at 10:21PM; however, there is also a message received at 10:15PM. This

message is not shown in the SMS application and is clearly a hidden message. This test

shows a scenario where a hidden message is less difficult to identify in the kernel log and

successfully shows the C2 message is still logged as a received message event.

4.6 Further Analysis

This section provides additional analysis on the overall research effort highlighting

insights for each step of the process.

4.6.1 Design Analysis

This design for detecting covert SMS messages by capturing them as they are

entering the operating system from the modem is successful and provides a starting point

for future defensive techniques. The design is specific to the Android platform, but

because of the common 2-processor architecture in most modern smartphones, this model

can be extended to be applied across multiple platforms.

49



4.6.2 Implementation Analysis

Implementation from mobile OS to mobile OS will vary and it was realized that

implementation within Android’s mobile OS platform varies depending on the vendor and

specific hardware implementations. The current Android implementation will work on

most HTC devices and other Android smartphones using a GSM modem and SMD

combination. If the source for a device’s kernel is available, and the device uses the

GSM/SMD combination, the source code provided in Appendix C can be built with the

kernel and loaded onto a system. In general, taking the LKM approach, the process is to

obtain the source of the appropriate kernel version, identify which kernel driver the vendor

is using as an interface to the modem, identifying which routine is capturing the data

before it leaves the kernel, then build and deploy the module. An understanding of the

vendor-specific security mechanisms and processes for circumventing or disabling them as

identified in Section 3.4 is also required to successfully deploy the module to the device.

4.6.3 Test Analysis

As expected, each test performed showed zero variability in the results. The complete

kernel log for only 1 out of the 5 runs for each test is provided in Appendix C. In the two

utility tests (Test 3 and 4), it is conceptually simple in such ideal conditions where both

the kernel buffer along with the SMS message list is cleared, yet tedious by manual

methods to identify C2 by comparing the SMS application’s total inbound messages to the

total count of inbound message events logged. In a realistic scenario, as time goes on it

will be harder to identify C2 messages between the kernel log and list of messages in the

application. This was taken into consideration when designing the tests and the way the

results were analyzed. The goals of the designed tests were to show basic functionality

and utility of the proof of concept and show the design can successfully be implemented

on retail hardware. The design of the tests and their results successfully achieved both.

50



Based on the methodology used in Tests 3 and 4, an automated solution would

provide added benefit over a manual comparison process. Implementing this automated

process requires an application-level solution that can compare whether a kernel-logged

message was received by the application layer. The current implementation is already

vendor, hardware, and kernel specific and implementing a user-level application was

deemed outside the scope of research. The goal of creating a security module and proving

the utility of logging inbound SMS messages at the point where application processor

receives it from the radio processor is successfully achieved. More research is required to

extend this across all Android devices, at which point, an application layer automation

process is warranted.

4.7 Summary

This chapter provides details for the results and analysis of the each of the tests

performed and discussed in Section 3.5. It follows with additional analysis for the overall

research effort specifically focusing on design, implementation, and test. The next chapter

summarizes the entire research effort.

51



5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Overview

This chapter concludes the research efforts discussed in this thesis. The following

sections discuss the significance of the work accomplished, recommendations for future

work, and a summary of the entire effort.

5.2 Significance of Research

Botnets are dangerous in the cyber world. They are known to be lucrative in the

hands of cyber criminals because of their powerful distributed nature and stealthiness. The

smartphone domain shows an increasing trend of computational power comparable to

their desktop, laptop, and tablet counterparts. Increasing computational power combined

with decreasing costs equates to consumer demand purchasing smartphones at an

exponential rate. This translates into the portable and nearly as powerful smartphones

replacing traditional laptops and desktops as the future of modern daily computing.

Cyber criminals will undoubtedly remain on the forefront of developing and

implementing botnets on smartphones for profit and other personal gain. Cyber defenders

must therefore understand the intricacies of botnets in the smartphone domain to better

protect against them. This research provides details for implementing a security design

concept on Android retail hardware, identifies the important components required for

implementation, and realizes that, although Android systems are advertised as open

devices, any development beyond the application layer is highly dependent on a vendor’s

hardware implementation and requires extensive knowledge outside of Android’s

architecture stack. This research also highlights that the point where the two processors in

a smart phone communicate is vulnerable to attack. This research showed how the inter

52



processor communication could be monitored to detect covert SMS messages; attackers

could use similar techniques for malicious intent.

This research extends the work of countermeasures for botnets in the smartphone and

mobile computing domain by successfully designing a mechanism to identify covert SMS

messages, and implementing on retail hardware.

5.3 Recommendations for Future Research

The design and proof of concept is a stepping stone for more work in the defense

against smartphone botnets. Specific ways the proposed implementation can be improved

upon are the following:

• Direct User Notification: As identified in Section 4.6.3, an automated process

would provide added benefit. Several factors are required for this to be

accomplished. First, all Android devices would have to be loaded with a modified

version of the developed LKM or modified version of the LKM functionality would

have to be incorporated into all Android kernels. If this were the case,

implementation could be achieved the following way. Rather than logging messages

in the kernel’s log buffer, the module would send a signal from the kernel to a

user-space process. An application would require a segment of C code to accept the

signal from the kernel and notify the application. This can be achieved using the

Android’s Software Development Kit in conjunction with the JNI and Android’s

Native Development Kit. Then, when notified by the kernel, the application would

check to see if a message was received by the SMS application. If a message was

not received by the SMS application, a notification would immediately be sent to

the user’s screen identifying a covert SMS message and potential malicious activity.

• Detect Hidden Sent Messages: Modifying the current module to detect hidden

outbound messages would help identify bot responses to the botmaster or help

53



identify specific botnet attacks such as sending premium rate SMS messages or

SPAM advertising messages via SMS, which are ways botmasters monetize their

smartphone botnet. This could be achieved by using the same jprobe technique as

capturing inbound SMS messages. Finding the correct routine to instrument

depending on the kernel driver being used is the limiting factor. This was not

implemented in this research because the simulated cellular network in the test

environment was not set up for user-end equipment to send SMS messages from one

device to another or from the device to the simulated SMSC.

• SMS Filtering: Inspection of the SMS data can be performed in the current design,

but was not implemented. Analyzing the messages in concert with signature-based

techniques with known bot-keys can help determine whether or not there is

malicious intent in the message. For example, using the SMS bot in this research,

the known bot key is “BOT:”. Searching the first four characters of the message data

and comparing it to “BOT:” would determine malicious intent. The challenge would

be identifying and maintaining an accurate list of bot keys.

• Whitelisting / Blacklisting: providing options for a whitelist or blacklist based on

process ID, phone number, or other identifying characteristic would begin crossing

the threshold of detection and into the realm of mitigation. Like the filtering

process, implementing a white or black list can be achieved at the same location and

would require a location to store approve or disapproved list items. Storing the list

in the kernel would be more secure, but less flexible as updates would require kernel

modifications and possibly recompiling and re-deploying to the system. Storing the

list in user space, while more flexible, allows more opportunities for tampering.

54



5.4 Summary

This research identifies a threat with botnets on smartphones and lays the

groundwork for addressing the threat by setting and achieving the following goals.

• Design a security mechanism, complementary to Android’s existing security,

providing awareness for covert SMS messages, and identifying potential C2

and bot presence on a system. At the user level, SMS messages can be hidden

from user applications. An approach is logging all inbound SMS traffic at the kernel

level allowing the user to determine whether or not their SMS application is

receiving all messages. A loadable kernel module accessing the data the modem is

sending to the kernel is used to achieve this. The implementation does not interfere

with any of the device’s other functions including the built-in Android platform

security.

• Implement the design as a proof of concept on a retail Android smartphone to

identify the steps required. The loadable kernel module approach is both hardware

and kernel specific. The target for development is for an HTC Nexus One

smartphone and works with most HTC smartphones or phones using the Shared

Memory Driver (SMD) to communicate with the modem.

• Validate design and proof of concept with an Android SMS bot. Using a manual

comparison process, tests results validate the design and proof of concept on the

HTC Nexus One. Comparing the kernel log events to the SMS application shows

the design successfully logs C2 messages.

This research succeeded in realizing the goals and sets a foundation for detecting and

mitigating SMS botnets on smartphones and extends the research for general security and

countermeasures for botnets on mobile computing systems.

55



APPENDIX A: LOADABLE KERNEL MODULE CODE

1 / ∗

2 ∗ by R obe r t Ol ipane , USAF
3 ∗ Feb 2012
4 ∗

5 ∗ O r i g i n a l code from / samples / k p r o b e s / j p r o b e e x a m p l e . c
6 ∗ For more i n f o r m a t i o n on t h e o r y o f o p e r a t i o n o f j p r o b e s , s e e
7 ∗ Documenta t ion / k p r o b e s . t x t
8 ∗

9 ∗ B u i l d and i n s e r t t h e k e r n e l module as done i n t h e kprobe example .
10 ∗ /

11
12 # i n c l u d e < l i n u x / k e r n e l . h>
13 # i n c l u d e < l i n u x / module . h>
14 # i n c l u d e < l i n u x / k p r o b e s . h>
15 # i n c l u d e < l i n u x / k a l l s y m s . h>
16 # i n c l u d e < l i n u x / s t r i n g . h>
17 # i n c l u d e < l i n u x / t ime . h>
18
19 # i n c l u d e <mach / msm smd . h>
20 # i n c l u d e <mach / msm iomap . h>
21 # i n c l u d e <mach / sys tem . h>
22
23 # i n c l u d e ” s m d p r i v a t e . h ”
24
25 / ∗

26 ∗ Proxy r o u t i n e h av in g t h e same arguments as a c t u a l c h r e a d ( ) r o u t i n e
27 ∗ i n / arch / arm / mach−msm / smd . c
28 ∗ /

29 s t a t i c i n t my ch read ( s t r u c t smd channe l ∗ch , void ∗ d a t a , i n t l e n )
30 {

31
32 void ∗ p t r ;
33 unsigned n ;
34 unsigned char ∗ d a t a = d a t a ;
35
36 unsigned long g e t t i m e ;
37 i n t sec , hr , min , tmp1 , tmp2 ;
38 s t r u c t t i m e v a l t v ;
39
40 / ∗ g e t c u r r e n t t i m e f o r o u t p u t ∗ /
41 d o g e t t i m e o f d a y (& t v ) ;

56



42 g e t t i m e = t v . t v s e c ;
43 s e c = g e t t i m e % 6 0 ;
44 tmp1 = g e t t i m e / 6 0 ;
45 min = tmp1 % 6 0 ;
46 tmp2 = tmp1 / 6 0 ;
47 hr = tmp2 % 2 4 ;
48 / ∗ end g e t c u r r e n t t ime , f o r m a t hr : min : s e c ∗ /

49
50 / ∗ p a r s e t h r o u g h da ta i f t h e r e i s any ∗ /

51 whi le ( l e n > 0) {
52
53 / ∗ ∗∗ s t a r t o f c h r e a d b u f f e r ∗∗ ∗ /
54 unsigned head = ch−>recv −>head ;
55 unsigned t a i l = ch−>recv −> t a i l ;
56 p t r = ( void ∗ ) ( ch−> r e c v d a t a + t a i l ) ;
57
58 i f ( t a i l <= head )
59 n = head − t a i l ;
60 e l s e
61 n = ch−> f i f o s i z e − t a i l ;
62 / ∗ ∗∗ end o f c h r e a d b u f f e r ∗∗ ∗ /
63
64 i f ( n == 0)
65 break ;
66
67 i f ( n > l e n )
68 n = l e n ;
69 i f ( d a t a )
70 memcpy ( da t a , p t r , n ) ;
71
72 / ∗ Look f o r u n s o l i c i t e d AT r e s u l t code ∗ /

73 i f ( s t rncmp ( ”+CMT” , da t a , 4 ) == 0)
74 {

75 p r i n t k ( KERN INFO ” Message Rece ived a t %d:%d:%d (GMT) ” , hr , min , s e c ) ;
76
77 / ∗

78 ∗ da ta = u n s o l i c i t e d r e s u l t code and da ta
79 ∗ PDU f o r m a t (7− b i t OCTETS )
80 ∗ can s e e t h a t da ta here . . .
81 ∗ /

82 / / p r i n t k ( KERN INFO ”SMS: \n %s \n ” , da ta ) ;
83 break ;
84 }

57



85
86 d a t a += n ;
87 l e n −= n ;
88 }

89
90 / / Always end w i t h a c a l l t o j p r o b e r e t u r n ( ) .
91 j p r o b e r e t u r n ( ) ;
92 re turn 0 ;
93 }

94
95 s t a t i c s t r u c t j p r o b e my jp robe = {

96 . e n t r y = ( k p r o b e o p c o d e t ∗ ) my ch read
97 } ;
98
99 s t a t i c i n t i n i t j p r o b e i n i t ( void )

100 {

101 i n t r e t ;
102
103 my jp robe . kp . add r =

104 ( k p r o b e o p c o d e t ∗ ) k a l l s y m s l o o k u p n a m e ( ” c h r e a d ” ) ;
105
106 r e t = r e g i s t e r j p r o b e (& my jprobe ) ;
107 i f ( r e t < 0) {
108 p r i n t k ( KERN INFO ” r e g i s t e r j p r o b e f a i l e d , r e t u r n e d %d\n ” , r e t ) ;
109 re turn −1;
110 }

111 p r i n t k ( KERN INFO ” P l a n t e d j p r o b e a t %p , h a n d l e r add r %p\n ” ,
112 my jp robe . kp . addr , my jp robe . e n t r y ) ;
113 re turn 0 ;
114 }

115
116 s t a t i c vo id e x i t j p r o b e e x i t ( void )
117 {

118 u n r e g i s t e r j p r o b e (& my jprobe ) ;
119 p r i n t k ( KERN INFO ” j p r o b e a t %p u n r e g i s t e r e d \n ” , my jp robe . kp . add r ) ;
120 }

121
122 m o d u l e i n i t ( j p r o b e i n i t )
123 m o d u l e e x i t ( j p r o b e e x i t )
124
125 MODULE LICENSE( ”GPL” ) ;
126 MODULE AUTHOR( ” a f i t s t u d ” ) ;

58



APPENDIX B: DEVELOPMENT ENVIRONMENT

This Appendix is setup with the following sections and instructions:

B.1. Setting up the build environment
B.2. Downloading the Android source
B.3. Downloading and building the Android linux kernel
B.4. Building and inserting LKMs

The components of the development environment include:

- VM running the Ubuntu 10.04 LTS Linux distribution
- Andoid source code (repository branch tag android-2.3.6 r1)
- Android Debugger Bridge (adb), provided as part of the Android source
- fastboot, provided as part of the Android source
- Cross compiler toolchains, provided as part of Android source
- Android Linux Kernel source (repository branch tag msm-2.6.35)

B.1 Setting up the build environment

Step-by-step instructions for initializing the build environment for the Android
source can be found at the AOSP website, http://source.android.com/. It is updated
frequently and caterd to the latest verion of the Android OS and the master branch of
development. The following are steps taken for the recommended Gingerbread branch for
the HTC Nexus One.

1. Download and install Ubuntu 10.04 LTS, 64-bit version: a unix environment is
required for development, Google tests and recommends the Ubuntu 10.04 LTS
distribution of Linux, support for Mac is provided on the website. VMware
Workstation 8.0 was used to create the VM and allows installation from an image
file, the Ubuntu 10.04 LTS image was downloaded from the Ubuntu website
(http://www.ubuntu.com/download) and the image was created. At the time of the
development, the website recommended a minimum of 10GB of HD space with
30GB required for a full build and 50GB set as a cache for speeding up the build
process for rebuilds. This development did not require a full build, only the prebuilt
toolchains for cross compiling and the adb and fastboot utilities were required.

2. Update and install required packages: Ubuntu has a package update manager that
will automatically check installed packages for updates, Google recommends all
standard updates. In general, the following packages are required:

• Python 2.5 - 2.7

• GNU Make 3.81 - 3.82

• Java Development Kit (JDK) 6 - for Gingerbread and higher

59



• Git 1.7 or newer

Additional packages include: git-core, gnupg, flex, bison, gperf, build-essential, zip,
curl, zlib1g-dev, libc6-dev, lib32ncurses5-dev, ia32-libs, x11proto-core-dev,
libx11-dev, lib32readline5-dev, lib32z-dev, libgl1-mesa-dev, g++-multilib,
mingw32, tofrodos, python-markdown, libxml2-utils, xsltproc. The following
commands will install the listed packages in Ubuntu from the command line:

Installing JDK

$ sudo add-apt-repository ”deb http://archive.canonical.com/ lucid partner”
$ sudo apt-get update
$ sudo apt-get install sun-java6-jdk

Installing other pacakges

$ sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl zlib1g-dev
libc6-dev lib32ncurses5-dev ia32-libs x11proto-core-dev libx11-dev lib32readline5-dev
lib32z-dev libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown libxml2-
utils xsltproc

3. Enable USB access: Linux systems need to be configured to access USB devices,
the recommended approach is to create a file in /etc/udev/rules.d/ with root
priviledges identifying who can access the devices. Vendor-specific codes are
required for enabling access. Details of creating this file and list of vendor codes is
found at, http://developer.android.com/guide/developing/device.html. Below is a
sample .rules file (51-android.rules), the ”idProduct” attribute is not required for
USB access (this attribute is available on the AOSP website for development certain
target systems):

Sample .rules file

# adb protocol on passion (Nexus One)
SUBSYSTEM==”usb”, ATTR{idVendor}==”18d1”, ATTR{idProduct}==”4e12”, MODE=”0666”, OWNER=”<username>”
# fastboot protocol on passion (Nexus One)
SUBSYSTEM==”usb”, ATTR{idVendor}==”0bb4”, ATTR{idProduct}==”0fff”, MODE=”0600”, OWNER=”<username>”

4. At this point, the system is ready for downloading the android source which is
required to successfully compile the kernel and develop lkms. The adb and fastboot
utilities are in the android source and are used to shell access to devices and flashing
images to system partitions, respectively.

60



B.2 Downloading the Android source

This section discusses the steps required for downloading the Android source. The
general steps are downloading and installing the repo utility, create a working directory,
check-out a copy of the source code, then synchronizing the files to be worked on locally.
Building the source code is not necessary for the purpose of this research. The tools that
required in the source are only the ARM compiler and toolchains, fastboot, and adb.

1. Downloading and installing repo: repo is a tool Google created to work with git
specifically for Android projects. First, create a local bin directory and add it to the
path environment variable, use curl to download repo to the local bin diretory, the
repo binary attributes are changed to be executable by all. The list of commands are
below.

Downloading and installing repo

$ mkdir ˜/bin
$ PATH=˜/bin:$PATH
$ curl https://dl-ssl.googl.com/dl/googlesource/git-repo/repo > ˜/bin/repo
$ chmod a+x ˜/bin/repo

2. Obtaining the source: Obtaining the source is just a matter of creating a working
directory and checking out the appropriate branch. The AOSP website lists the
branches and branch tags available for checkout. The branch checked out in this
development was version 2.3.6. r1 (Gingerbread). The repo ”init” and ”sync”
commands are used to perform these actions.

Obtaining the source

$ mkdir android-2.3.6 r1
$ cd android-2.3.6 r1
$ repo init -u https://android.googlesource.com/platform/manifest -b android-2.3.6 r1
$ repo sync

Note1: checking out a branch other than the ”master” branch requires the branch
tag preceded by ”-b”, i.e. -b <branch tag>. To check out the master branch, run
the command without it.
Note2: synching the source will take some time depending on the connection, the
master branch is approximately 6GB (at time of development).

61



3. ARM compiler, fastboot, and adb: building the source is not required to build and
compile loadable kernel modules. The arm-eabi-gcc compiler is located in the
pre-built folder of the root directory. The full path is:

/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/

The two utilities, fastboot and adb, do need to be built. Use make to compile the
source, the path to the binaries should be automatically added to the environment
path, if not, add it to the path. The full path to fastboot and adb is:

/out/host/linux-x86/bin/

Building fastboot and adb

$ make fastboot adb

To check your path use
$ echo PATH

To add the path use
$ export PATH=$PATH:<path-to-android-2.3.6 r1>/out/host/linux/bin

Note1: checking out a branch other than the ”master” branch requires the branch
tag preceded by ”-b”, i.e. -b <branch tag>
Note2: synching the source will take some time depending on the connection, the
master branch is approximately 6GB.

B.3 Downloading and building the linux kernel

Android’s linux kernel is not a standard linux kernel, it has been modified for
hardware in a mobile environment. Some differences include how it handles inter-process
communication (binder process in Android), the use of a shared memory driver for
applications, additional power management control, and a custom implementation of the
standard C library (known as Bionic). The prerequisites for successfully building the
kernel is having the prebuilt toolchains and the right kernel for the hardware. Many HTC
products use Qualcomm processors which uses the Android msm kernel, this is the
version that will be used in this section. The following are the steps to download,
configure and build the kernel.

1. Downloading the kernel: The most difficult part of downloading the kernel is
knowing which version to download and which branch. The Nexus One at the time
of development was running version 2.6.35. Knowing this, all that is required is
using git to clone the repository and check out the 2.6.35 branch.

62



Building fastboot and adb

$ git clone https://android.googlesource.com/kernel/msm.git
$ cd msm
$ git checkout -b android-msm-2.6.35 /origin/android-msm-2.6.35

2. Setting environment variables and kernel configuration: To compile successfully,
enivronment variables need to be set including adding the path of the toolchains and
setting the kernel configurations. The following commands set the environment
variables and add the path to the toolchain if not already in the path.

Setting environment variables

$ export ARCH=arm
$ export SUBARCH=arm
$ export CROSS COMPILE=arm-eabi-
$ export PATH=$PATH:<android-2.3.6 r1>/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin

There are several ways to configure the kernel options. Running the make
menuconfig command will bring up a text-based menu for setting all the options in
the kernel. For the Nexus One, there is a default kernel configuration named
’mahimahi defconfig’. Running make mahimahi defconfig will compile the kernel
with this default configuration for the Nexus One hardware. Another option is to get
the config file from the Nexus One and load it before compiling. For ease, the
default mahimahi configuration is used. First the kernel will be built with default
Nexus One configuration, then the kernel will be built with kernel probes enabled.

Building the kernel

$ make mahimahi defconfig
$ make menuconfig

Note: Depending on the system building the kernel, make menuconfig may take a
significant amount of time. Figure B.1 shows the text-based menu configuration
from running make menuconf. Enabling kprobes is under the General setup area.

3. Build the kernel: At this point, the environment and configuration is set to build the
Android kernel and begin lkm development using kprobes. From the command line
and from the root directory of the kernel, run make.

63



Figure B.1: Linux Kernel Configuration Menu

B.4 Building and inserting LKMs

The previous steps were required in creating an environment to build loadable kernel
modules. Building the modules requires the same environment variables set as building
the kernel and a make file. The lsmod, insmod, and rmmod commands will list the
existing loaded kernel models on the system, load a kernel module to the system, and
remove a kernel module from the system, respectively.

64



Sample LKM Makefile

# builds the kprobes example kernel modules
# then to use one (as root): insmod <module name.ko >

# Update COMPILER path with path to your toolchain compiler location
# Update KERNEL DIR path to your kernel’s root directory location
obj-m := smdmod.o
COMPILER := <path-to-compiler-directory >
CROSS := $(COMPILER)
ARCH := arm
KERNEL DIR := <path-to-kernel-directory >
PWD := $(shell pwd)

default:
$(MAKE) -C $(KERNEL DIR) M=$(PWD) ARCH=$(ARCH) CROSS=$(COMPILER)
clean:
$(MAKE) -C $(KDIR) M=$(PWD) clean

Running make will create the kernel module in the form of a .ko file. The adb utility
is used to push the module to the phone an insert it using the insmod command. If
successfully loaded, the lsmod command will show the module as loaded.

65



APPENDIX C: TEST RESULTS DATA

C.1 Test 1 Log Results

1 <6>[ 1909 .211914 ] Message Rece ived a t 1 9 : 4 : 3 3 (GMT)
2 <6>[ 1910 .624267 ] Message Rece ived a t 1 9 : 4 : 3 4 (GMT)
3 <6>[ 1912 .036712 ] Message Rece ived a t 1 9 : 4 : 3 5 (GMT)
4 <6>[ 1913 .449188 ] Message Rece ived a t 1 9 : 4 : 3 7 (GMT)
5 <6>[ 1914 .861206 ] Message Rece ived a t 1 9 : 4 : 3 8 (GMT)
6 <6>[ 1916 .273498 ] Message Rece ived a t 1 9 : 4 : 4 0 (GMT)
7 <6>[ 1917 .685729 ] Message Rece ived a t 1 9 : 4 : 4 1 (GMT)
8 <6>[ 1919 .098052 ] Message Rece ived a t 1 9 : 4 : 4 2 (GMT)
9 <6>[ 1920 .510650 ] Message Rece ived a t 1 9 : 4 : 4 4 (GMT)

10 <6>[ 1921 .923034 ] Message Rece ived a t 1 9 : 4 : 4 5 (GMT)
11 <6>[ 1923 .335418 ] Message Rece ived a t 1 9 : 4 : 4 7 (GMT)
12 <6>[ 1924 .747253 ] Message Rece ived a t 1 9 : 4 : 4 8 (GMT)
13 <6>[ 1926 .159851 ] Message Rece ived a t 1 9 : 4 : 4 9 (GMT)
14 <6>[ 1927 .571868 ] Message Rece ived a t 1 9 : 4 : 5 1 (GMT)
15 <6>[ 1928 .984191 ] Message Rece ived a t 1 9 : 4 : 5 2 (GMT)
16 <6>[ 1930 .396606 ] Message Rece ived a t 1 9 : 4 : 5 4 (GMT)
17 <6>[ 1931 .808959 ] Message Rece ived a t 1 9 : 4 : 5 5 (GMT)
18 <6>[ 1933 .221069 ] Message Rece ived a t 1 9 : 4 : 5 7 (GMT)
19 <6>[ 1934 .633392 ] Message Rece ived a t 1 9 : 4 : 5 8 (GMT)
20 <6>[ 1936 .045928 ] Message Rece ived a t 1 9 : 4 : 5 9 (GMT)
21 <6>[ 1937 .458282 ] Message Rece ived a t 1 9 : 5 : 1 (GMT)
22 <6>[ 1938 .870880 ] Message Rece ived a t 1 9 : 5 : 2 (GMT)
23 <6>[ 1940 .282745 ] Message Rece ived a t 1 9 : 5 : 4 (GMT)
24 <6>[ 1941 .694915 ] Message Rece ived a t 1 9 : 5 : 5 (GMT)
25 <6>[ 1943 .107238 ] Message Rece ived a t 1 9 : 5 : 6 (GMT)
26 <6>[ 1944 .519592 ] Message Rece ived a t 1 9 : 5 : 8 (GMT)
27 <6>[ 1945 .931976 ] Message Rece ived a t 1 9 : 5 : 9 (GMT)
28 <6>[ 1947 .344238 ] Message Rece ived a t 1 9 : 5 : 1 1 (GMT)
29 <6>[ 1948 .756469 ] Message Rece ived a t 1 9 : 5 : 1 2 (GMT)
30 <6>[ 1950 .169036 ] Message Rece ived a t 1 9 : 5 : 1 3 (GMT)
31 <6>[ 1951 .581237 ] Message Rece ived a t 1 9 : 5 : 1 5 (GMT)
32 <6>[ 1952 .993347 ] Message Rece ived a t 1 9 : 5 : 1 6 (GMT)
33 <6>[ 1954 .405761 ] Message Rece ived a t 1 9 : 5 : 1 8 (GMT)
34 <6>[ 1955 .817993 ] Message Rece ived a t 1 9 : 5 : 1 9 (GMT)
35 <6>[ 1957 .230407 ] Message Rece ived a t 1 9 : 5 : 2 1 (GMT)
36 <6>[ 1958 .642547 ] Message Rece ived a t 1 9 : 5 : 2 2 (GMT)
37 <6>[ 1960 .054840 ] Message Rece ived a t 1 9 : 5 : 2 3 (GMT)
38 <6>[ 1961 .467468 ] Message Rece ived a t 1 9 : 5 : 2 5 (GMT)
39 <6>[ 1962 .879638 ] Message Rece ived a t 1 9 : 5 : 2 6 (GMT)

66



40 <6>[ 1964 .291839 ] Message Rece ived a t 1 9 : 5 : 2 8 (GMT)
41 <6>[ 1965 .704071 ] Message Rece ived a t 1 9 : 5 : 2 9 (GMT)
42 <6>[ 1967 .116394 ] Message Rece ived a t 1 9 : 5 : 3 0 (GMT)
43 <6>[ 1968 .529022 ] Message Rece ived a t 1 9 : 5 : 3 2 (GMT)
44 <6>[ 1969 .941314 ] Message Rece ived a t 1 9 : 5 : 3 3 (GMT)
45 <6>[ 1971 .353240 ] Message Rece ived a t 1 9 : 5 : 3 5 (GMT)
46 <6>[ 1972 .766113 ] Message Rece ived a t 1 9 : 5 : 3 6 (GMT)
47 <6>[ 1974 .178161 ] Message Rece ived a t 1 9 : 5 : 3 7 (GMT)
48 <6>[ 1975 .590209 ] Message Rece ived a t 1 9 : 5 : 3 9 (GMT)
49 <6>[ 1977 .003082 ] Message Rece ived a t 1 9 : 5 : 4 0 (GMT)
50 <6>[ 1978 .414825 ] Message Rece ived a t 1 9 : 5 : 4 2 (GMT)
51 <6>[ 1979 .827087 ] Message Rece ived a t 1 9 : 5 : 4 3 (GMT)
52 <6>[ 1981 .239898 ] Message Rece ived a t 1 9 : 5 : 4 5 (GMT)
53 <6>[ 1982 .652191 ] Message Rece ived a t 1 9 : 5 : 4 6 (GMT)
54 <6>[ 1984 .063995 ] Message Rece ived a t 1 9 : 5 : 4 7 (GMT)
55 <6>[ 1985 .476348 ] Message Rece ived a t 1 9 : 5 : 4 9 (GMT)
56 <6>[ 1986 .889251 ] Message Rece ived a t 1 9 : 5 : 5 0 (GMT)
57 <6>[ 1988 .301330 ] Message Rece ived a t 1 9 : 5 : 5 2 (GMT)
58 <6>[ 1989 .713623 ] Message Rece ived a t 1 9 : 5 : 5 3 (GMT)
59 <6>[ 1991 .125518 ] Message Rece ived a t 1 9 : 5 : 5 4 (GMT)
60 <6>[ 1992 .538208 ] Message Rece ived a t 1 9 : 5 : 5 6 (GMT)
61 <6>[ 1993 .950469 ] Message Rece ived a t 1 9 : 5 : 5 7 (GMT)
62 <6>[ 1995 .362487 ] Message Rece ived a t 1 9 : 5 : 5 9 (GMT)
63 <6>[ 1996 .774749 ] Message Rece ived a t 1 9 : 6 : 0 (GMT)
64 <6>[ 1998 .187133 ] Message Rece ived a t 1 9 : 6 : 1 (GMT)
65 <6>[ 1999 .599334 ] Message Rece ived a t 1 9 : 6 : 3 (GMT)
66 <6>[ 2001 .011993 ] Message Rece ived a t 1 9 : 6 : 4 (GMT)
67 <6>[ 2002 .423919 ] Message Rece ived a t 1 9 : 6 : 6 (GMT)
68 <6>[ 2003 .836334 ] Message Rece ived a t 1 9 : 6 : 7 (GMT)
69 <6>[ 2005 .248535 ] Message Rece ived a t 1 9 : 6 : 9 (GMT)
70 <6>[ 2006 .660797 ] Message Rece ived a t 1 9 : 6 : 1 0 (GMT)
71 <6>[ 2008 .073120 ] Message Rece ived a t 1 9 : 6 : 1 1 (GMT)
72 <6>[ 2009 .485931 ] Message Rece ived a t 1 9 : 6 : 1 3 (GMT)
73 <6>[ 2010 .897705 ] Message Rece ived a t 1 9 : 6 : 1 4 (GMT)
74 <6>[ 2012 .310180 ] Message Rece ived a t 1 9 : 6 : 1 6 (GMT)
75 <6>[ 2013 .722320 ] Message Rece ived a t 1 9 : 6 : 1 7 (GMT)
76 <6>[ 2015 .134704 ] Message Rece ived a t 1 9 : 6 : 1 8 (GMT)
77 <6>[ 2016 .547698 ] Message Rece ived a t 1 9 : 6 : 2 0 (GMT)
78 <6>[ 2017 .959228 ] Message Rece ived a t 1 9 : 6 : 2 1 (GMT)
79 <6>[ 2019 .371734 ] Message Rece ived a t 1 9 : 6 : 2 3 (GMT)
80 <6>[ 2020 .783935 ] Message Rece ived a t 1 9 : 6 : 2 4 (GMT)
81 <6>[ 2022 .196533 ] Message Rece ived a t 1 9 : 6 : 2 5 (GMT)
82 <6>[ 2023 .608520 ] Message Rece ived a t 1 9 : 6 : 2 7 (GMT)

67



83 <6>[ 2025 .020965 ] Message Rece ived a t 1 9 : 6 : 2 8 (GMT)
84 <6>[ 2026 .433044 ] Message Rece ived a t 1 9 : 6 : 3 0 (GMT)
85 <6>[ 2027 .845489 ] Message Rece ived a t 1 9 : 6 : 3 1 (GMT)
86 <6>[ 2029 .258148 ] Message Rece ived a t 1 9 : 6 : 3 2 (GMT)
87 <6>[ 2030 .669921 ] Message Rece ived a t 1 9 : 6 : 3 4 (GMT)
88 <6>[ 2032 .082214 ] Message Rece ived a t 1 9 : 6 : 3 5 (GMT)
89 <6>[ 2033 .495086 ] Message Rece ived a t 1 9 : 6 : 3 7 (GMT)
90 <6>[ 2034 .906982 ] Message Rece ived a t 1 9 : 6 : 3 8 (GMT)
91 <6>[ 2036 .319580 ] Message Rece ived a t 1 9 : 6 : 4 0 (GMT)
92 <6>[ 2037 .731567 ] Message Rece ived a t 1 9 : 6 : 4 1 (GMT)
93 <6>[ 2039 .144134 ] Message Rece ived a t 1 9 : 6 : 4 2 (GMT)
94 <6>[ 2040 .556060 ] Message Rece ived a t 1 9 : 6 : 4 4 (GMT)
95 <6>[ 2041 .968475 ] Message Rece ived a t 1 9 : 6 : 4 5 (GMT)
96 <6>[ 2043 .380950 ] Message Rece ived a t 1 9 : 6 : 4 7 (GMT)
97 <6>[ 2044 .793212 ] Message Rece ived a t 1 9 : 6 : 4 8 (GMT)
98 <6>[ 2046 .205810 ] Message Rece ived a t 1 9 : 6 : 4 9 (GMT)
99 <6>[ 2047 .617675 ] Message Rece ived a t 1 9 : 6 : 5 1 (GMT)

100 <6>[ 2049 .029846 ] Message Rece ived a t 1 9 : 6 : 5 2 (GMT)
101 <6>[ 2050 .442291 ] Message Rece ived a t 1 9 : 6 : 5 4 (GMT)
102 <6>[ 2051 .854705 ] Message Rece ived a t 1 9 : 6 : 5 5 (GMT)
103 <6>[ 2053 .266754 ] Message Rece ived a t 1 9 : 6 : 5 6 (GMT)
104 <6>[ 2054 .679290 ] Message Rece ived a t 1 9 : 6 : 5 8 (GMT)
105 <6>[ 2056 .091888 ] Message Rece ived a t 1 9 : 6 : 5 9 (GMT)
106 <6>[ 2057 .504058 ] Message Rece ived a t 1 9 : 7 : 1 (GMT)
107 <6>[ 2058 .915954 ] Message Rece ived a t 1 9 : 7 : 2 (GMT)
108 <6>[ 2060 .328552 ] Message Rece ived a t 1 9 : 7 : 4 (GMT)
109 <6>[ 2061 .740570 ] Message Rece ived a t 1 9 : 7 : 5 (GMT)
110 <6>[ 2063 .152862 ] Message Rece ived a t 1 9 : 7 : 6 (GMT)

C.2 Test 2 Log Results

1 <6>[ 2 6 0 . 0 6 5 0 3 2 ] Message Rece ived a t 2 1 : 5 : 2 2 (GMT)
2 <6>[ 2 6 1 . 4 7 7 3 8 6 ] Message Rece ived a t 2 1 : 5 : 2 3 (GMT)
3 <6>[ 2 6 2 . 8 8 7 3 5 9 ] Message Rece ived a t 2 1 : 5 : 2 5 (GMT)
4 <6>[ 2 6 4 . 3 0 2 0 0 1 ] Message Rece ived a t 2 1 : 5 : 2 6 (GMT)
5 <6>[ 2 6 5 . 7 1 2 8 9 0 ] Message Rece ived a t 2 1 : 5 : 2 8 (GMT)
6 <6>[ 2 6 7 . 1 2 6 6 1 7 ] Message Rece ived a t 2 1 : 5 : 2 9 (GMT)
7 <6>[ 2 6 8 . 5 3 8 9 0 9 ] Message Rece ived a t 2 1 : 5 : 3 0 (GMT)
8 <6>[ 2 6 9 . 9 5 0 5 9 2 ] Message Rece ived a t 2 1 : 5 : 3 2 (GMT)
9 <6>[ 2 7 1 . 3 6 3 5 5 5 ] Message Rece ived a t 2 1 : 5 : 3 3 (GMT)

10 <6>[ 2 7 2 . 7 7 5 8 4 8 ] Message Rece ived a t 2 1 : 5 : 3 5 (GMT)
11 <6>[ 2 7 4 . 1 8 5 9 1 3 ] Message Rece ived a t 2 1 : 5 : 3 6 (GMT)
12 <6>[ 2 7 5 . 6 0 0 5 2 4 ] Message Rece ived a t 2 1 : 5 : 3 8 (GMT)
13 <6>[ 2 7 7 . 0 1 2 7 8 6 ] Message Rece ived a t 2 1 : 5 : 3 9 (GMT)

68



14 <6>[ 2 7 8 . 4 2 2 9 4 3 ] Message Rece ived a t 2 1 : 5 : 4 0 (GMT)
15 <6>[ 2 7 9 . 8 3 7 3 7 1 ] Message Rece ived a t 2 1 : 5 : 4 2 (GMT)
16 <6>[ 2 8 1 . 2 4 7 3 4 4 ] Message Rece ived a t 2 1 : 5 : 4 3 (GMT)
17 <6>[ 2 8 2 . 6 6 2 0 7 8 ] Message Rece ived a t 2 1 : 5 : 4 5 (GMT)
18 <6>[ 2 8 4 . 0 7 1 9 6 0 ] Message Rece ived a t 2 1 : 5 : 4 6 (GMT)
19 <6>[ 2 8 5 . 4 8 4 2 5 2 ] Message Rece ived a t 2 1 : 5 : 4 7 (GMT)
20 <6>[ 2 8 6 . 8 9 6 7 2 8 ] Message Rece ived a t 2 1 : 5 : 4 9 (GMT)
21 <6>[ 2 8 8 . 3 0 8 8 6 8 ] Message Rece ived a t 2 1 : 5 : 5 0 (GMT)
22 <6>[ 2 8 9 . 7 2 1 1 9 1 ] Message Rece ived a t 2 1 : 5 : 5 2 (GMT)
23 <6>[ 2 9 1 . 1 3 5 8 3 3 ] Message Rece ived a t 2 1 : 5 : 5 3 (GMT)
24 <6>[ 2 9 2 . 5 4 8 1 2 6 ] Message Rece ived a t 2 1 : 5 : 5 4 (GMT)
25 <6>[ 2 9 3 . 9 6 0 4 4 9 ] Message Rece ived a t 2 1 : 5 : 5 6 (GMT)
26 <6>[ 2 9 5 . 3 7 0 4 5 2 ] Message Rece ived a t 2 1 : 5 : 5 7 (GMT)
27 <6>[ 2 9 6 . 7 8 3 5 6 9 ] Message Rece ived a t 2 1 : 5 : 5 9 (GMT)
28 <6>[ 2 9 8 . 1 9 7 3 8 7 ] Message Rece ived a t 2 1 : 6 : 0 (GMT)
29 <6>[ 2 9 9 . 6 0 9 7 1 0 ] Message Rece ived a t 2 1 : 6 : 2 (GMT)
30 <6>[ 3 0 1 . 0 2 2 0 0 3 ] Message Rece ived a t 2 1 : 6 : 3 (GMT)
31 <6>[ 3 0 2 . 4 3 2 0 0 6 ] Message Rece ived a t 2 1 : 6 : 4 (GMT)
32 <6>[ 3 0 3 . 8 4 4 2 9 9 ] Message Rece ived a t 2 1 : 6 : 6 (GMT)
33 <6>[ 3 0 5 . 2 5 6 5 9 1 ] Message Rece ived a t 2 1 : 6 : 7 (GMT)
34 <6>[ 3 0 6 . 6 7 1 2 3 4 ] Message Rece ived a t 2 1 : 6 : 9 (GMT)
35 <6>[ 3 0 8 . 0 8 3 5 2 6 ] Message Rece ived a t 2 1 : 6 : 1 0 (GMT)
36 <6>[ 3 0 9 . 4 9 5 8 8 0 ] Message Rece ived a t 2 1 : 6 : 1 1 (GMT)
37 <6>[ 3 1 0 . 9 0 8 1 4 2 ] Message Rece ived a t 2 1 : 6 : 1 3 (GMT)
38 <6>[ 3 1 2 . 3 2 1 9 6 0 ] Message Rece ived a t 2 1 : 6 : 1 4 (GMT)
39 <6>[ 3 1 3 . 7 3 2 7 5 7 ] Message Rece ived a t 2 1 : 6 : 1 6 (GMT)
40 <6>[ 3 1 5 . 1 4 2 7 3 0 ] Message Rece ived a t 2 1 : 6 : 1 7 (GMT)
41 <6>[ 3 1 6 . 5 5 7 3 7 3 ] Message Rece ived a t 2 1 : 6 : 1 8 (GMT)
42 <6>[ 3 1 7 . 9 7 1 1 3 0 ] Message Rece ived a t 2 1 : 6 : 2 0 (GMT)
43 <6>[ 3 1 9 . 3 7 9 6 6 9 ] Message Rece ived a t 2 1 : 6 : 2 1 (GMT)
44 <6>[ 3 2 0 . 7 9 4 2 8 1 ] Message Rece ived a t 2 1 : 6 : 2 3 (GMT)
45 <6>[ 3 2 2 . 2 0 4 2 5 4 ] Message Rece ived a t 2 1 : 6 : 2 4 (GMT)
46 <6>[ 3 2 3 . 6 1 8 8 6 5 ] Message Rece ived a t 2 1 : 6 : 2 6 (GMT)
47 <6>[ 3 2 5 . 0 3 1 1 8 8 ] Message Rece ived a t 2 1 : 6 : 2 7 (GMT)
48 <6>[ 3 2 6 . 4 4 1 1 9 2 ] Message Rece ived a t 2 1 : 6 : 2 8 (GMT)
49 <6>[ 3 2 7 . 8 5 3 5 1 5 ] Message Rece ived a t 2 1 : 6 : 3 0 (GMT)
50 <6>[ 3 2 9 . 2 6 5 9 3 0 ] Message Rece ived a t 2 1 : 6 : 3 1 (GMT)
51 <6>[ 3 3 0 . 6 7 8 1 0 0 ] Message Rece ived a t 2 1 : 6 : 3 3 (GMT)
52 <6>[ 3 3 2 . 0 9 0 4 2 3 ] Message Rece ived a t 2 1 : 6 : 3 4 (GMT)
53 <6>[ 3 3 3 . 5 0 2 8 9 9 ] Message Rece ived a t 2 1 : 6 : 3 5 (GMT)
54 <6>[ 3 3 4 . 9 1 5 0 3 9 ] Message Rece ived a t 2 1 : 6 : 3 7 (GMT)
55 <6>[ 3 3 6 . 3 2 8 2 4 7 ] Message Rece ived a t 2 1 : 6 : 3 8 (GMT)
56 <6>[ 3 3 7 . 7 4 2 3 0 9 ] Message Rece ived a t 2 1 : 6 : 4 0 (GMT)

69



57 <6>[ 3 3 9 . 1 5 4 2 6 6 ] Message Rece ived a t 2 1 : 6 : 4 1 (GMT)
58 <6>[ 3 4 0 . 5 6 4 4 5 3 ] Message Rece ived a t 2 1 : 6 : 4 2 (GMT)
59 <6>[ 3 4 1 . 9 7 8 8 5 1 ] Message Rece ived a t 2 1 : 6 : 4 4 (GMT)
60 <6>[ 3 4 3 . 3 8 8 8 5 4 ] Message Rece ived a t 2 1 : 6 : 4 5 (GMT)
61 <6>[ 3 4 4 . 8 0 1 2 6 9 ] Message Rece ived a t 2 1 : 6 : 4 7 (GMT)
62 <6>[ 3 4 6 . 2 1 6 2 4 7 ] Message Rece ived a t 2 1 : 6 : 4 8 (GMT)
63 <6>[ 3 4 7 . 6 2 8 1 1 2 ] Message Rece ived a t 2 1 : 6 : 4 9 (GMT)
64 <6>[ 3 4 9 . 0 4 0 4 0 5 ] Message Rece ived a t 2 1 : 6 : 5 1 (GMT)
65 <6>[ 3 5 0 . 4 5 0 4 6 9 ] Message Rece ived a t 2 1 : 6 : 5 2 (GMT)
66 <6>[ 3 5 1 . 8 6 2 7 0 1 ] Message Rece ived a t 2 1 : 6 : 5 4 (GMT)
67 <6>[ 3 5 3 . 2 7 7 3 1 3 ] Message Rece ived a t 2 1 : 6 : 5 5 (GMT)
68 <6>[ 3 5 4 . 6 8 9 6 6 6 ] Message Rece ived a t 2 1 : 6 : 5 7 (GMT)
69 <6>[ 3 5 6 . 0 9 9 6 3 9 ] Message Rece ived a t 2 1 : 6 : 5 8 (GMT)
70 <6>[ 3 5 7 . 5 1 4 6 1 7 ] Message Rece ived a t 2 1 : 6 : 5 9 (GMT)
71 <6>[ 3 5 8 . 9 2 4 3 1 6 ] Message Rece ived a t 2 1 : 7 : 1 (GMT)
72 <6>[ 3 6 0 . 3 3 8 8 6 7 ] Message Rece ived a t 2 1 : 7 : 2 (GMT)
73 <6>[ 3 6 1 . 7 5 1 1 9 0 ] Message Rece ived a t 2 1 : 7 : 4 (GMT)
74 <6>[ 3 6 3 . 1 6 3 5 1 3 ] Message Rece ived a t 2 1 : 7 : 5 (GMT)
75 <6>[ 3 6 4 . 5 7 3 5 4 7 ] Message Rece ived a t 2 1 : 7 : 6 (GMT)
76 <6>[ 3 6 5 . 9 8 5 7 7 8 ] Message Rece ived a t 2 1 : 7 : 8 (GMT)
77 <6>[ 3 6 7 . 4 0 0 4 2 1 ] Message Rece ived a t 2 1 : 7 : 9 (GMT)
78 <6>[ 3 6 8 . 8 1 2 7 1 3 ] Message Rece ived a t 2 1 : 7 : 1 1 (GMT)
79 <6>[ 3 7 0 . 2 2 2 7 1 7 ] Message Rece ived a t 2 1 : 7 : 1 2 (GMT)
80 <6>[ 3 7 1 . 6 3 5 7 1 1 ] Message Rece ived a t 2 1 : 7 : 1 3 (GMT)
81 <6>[ 3 7 3 . 0 4 9 6 5 2 ] Message Rece ived a t 2 1 : 7 : 1 5 (GMT)
82 <6>[ 3 7 4 . 4 5 9 6 2 5 ] Message Rece ived a t 2 1 : 7 : 1 6 (GMT)
83 <6>[ 3 7 5 . 8 7 1 8 8 7 ] Message Rece ived a t 2 1 : 7 : 1 8 (GMT)
84 <6>[ 3 7 7 . 2 8 4 2 1 0 ] Message Rece ived a t 2 1 : 7 : 1 9 (GMT)
85 <6>[ 3 7 8 . 6 9 9 2 4 9 ] Message Rece ived a t 2 1 : 7 : 2 1 (GMT)
86 <6>[ 3 8 0 . 1 0 8 8 5 6 ] Message Rece ived a t 2 1 : 7 : 2 2 (GMT)
87 <6>[ 3 8 1 . 5 2 1 1 4 8 ] Message Rece ived a t 2 1 : 7 : 2 3 (GMT)
88 <6>[ 3 8 2 . 9 3 3 5 0 2 ] Message Rece ived a t 2 1 : 7 : 2 5 (GMT)
89 <6>[ 3 8 4 . 3 4 5 7 6 4 ] Message Rece ived a t 2 1 : 7 : 2 6 (GMT)
90 <6>[ 3 8 5 . 7 6 1 9 3 2 ] Message Rece ived a t 2 1 : 7 : 2 8 (GMT)
91 <6>[ 3 8 7 . 1 7 4 0 7 2 ] Message Rece ived a t 2 1 : 7 : 2 9 (GMT)
92 <6>[ 3 8 8 . 5 8 2 7 0 2 ] Message Rece ived a t 2 1 : 7 : 3 0 (GMT)
93 <6>[ 3 8 9 . 9 9 8 8 0 9 ] Message Rece ived a t 2 1 : 7 : 3 2 (GMT)
94 <6>[ 3 9 1 . 4 0 7 5 3 1 ] Message Rece ived a t 2 1 : 7 : 3 3 (GMT)
95 <6>[ 3 9 2 . 8 2 2 7 8 4 ] Message Rece ived a t 2 1 : 7 : 3 5 (GMT)
96 <6>[ 3 9 4 . 2 3 1 9 3 3 ] Message Rece ived a t 2 1 : 7 : 3 6 (GMT)
97 <6>[ 3 9 5 . 6 4 4 2 2 6 ] Message Rece ived a t 2 1 : 7 : 3 7 (GMT)
98 <6>[ 3 9 7 . 0 5 6 5 1 8 ] Message Rece ived a t 2 1 : 7 : 3 9 (GMT)
99 <6>[ 3 9 8 . 4 6 9 2 0 7 ] Message Rece ived a t 2 1 : 7 : 4 0 (GMT)

70



100 <6>[ 3 9 9 . 8 8 3 4 8 3 ] Message Rece ived a t 2 1 : 7 : 4 2 (GMT)
101 <6>[ 4 0 1 . 2 9 5 7 7 6 ] Message Rece ived a t 2 1 : 7 : 4 3 (GMT)
102 <6>[ 4 0 2 . 7 0 5 8 7 1 ] Message Rece ived a t 2 1 : 7 : 4 5 (GMT)
103 <6>[ 4 0 4 . 1 2 0 4 2 2 ] Message Rece ived a t 2 1 : 7 : 4 6 (GMT)
104 <6>[ 4 0 5 . 5 3 0 4 8 7 ] Message Rece ived a t 2 1 : 7 : 4 7 (GMT)
105 <6>[ 4 0 6 . 9 4 3 5 7 2 ] Message Rece ived a t 2 1 : 7 : 4 9 (GMT)
106 <6>[ 4 0 8 . 3 5 5 5 9 0 ] Message Rece ived a t 2 1 : 7 : 5 0 (GMT)
107 <6>[ 4 0 9 . 7 6 9 6 2 2 ] Message Rece ived a t 2 1 : 7 : 5 2 (GMT)
108 <6>[ 4 1 1 . 1 7 9 6 2 6 ] Message Rece ived a t 2 1 : 7 : 5 3 (GMT)
109 <6>[ 4 1 2 . 5 9 4 2 6 8 ] Message Rece ived a t 2 1 : 7 : 5 4 (GMT)
110 <6>[ 4 1 4 . 0 0 6 5 6 1 ] Message Rece ived a t 2 1 : 7 : 5 6 (GMT)

C.3 Test 3 Log Results

1 <6>[ 4584 .787567 ] Message Rece ived a t 2 3 : 3 0 : 2 3 (GMT)
2 <6>[ 4651 .636840 ] Message Rece ived a t 2 3 : 3 1 : 2 9 (GMT)
3 <6>[ 4735 .904602 ] Message Rece ived a t 2 3 : 3 2 : 5 3 (GMT)
4 <6>[ 4753 .558349 ] Message Rece ived a t 2 3 : 3 7 : 1 1 (GMT)
5 <6>[ 4839 .003051 ] Message Rece ived a t 2 3 : 3 8 : 3 6 (GMT)
6 <6>[ 4855 .715362 ] Message Rece ived a t 2 3 : 3 8 : 5 3 (GMT)
7 <6>[ 4913 .855407 ] Message Rece ived a t 2 3 : 3 9 : 5 1 (GMT)
8 <6>[ 4999 .300445 ] Message Rece ived a t 2 3 : 4 1 : 1 7 (GMT)
9 <6>[ 5036 .961791 ] Message Rece ived a t 2 3 : 4 2 : 5 4 (GMT)

C.4 Test 4 Log Results

1 <6>[ 5420 .874481 ] Message Rece ived a t 2 2 : 7 : 1 8 (GMT)
2 <6>[ 5475 .954559 ] Message Rece ived a t 2 2 : 8 : 1 3 (GMT)
3 <6>[ 5530 .799285 ] Message Rece ived a t 2 2 : 9 : 8 (GMT)
4 <6>[ 5554 .576873 ] Message Rece ived a t 2 2 : 1 0 : 3 1 (GMT)
5 <6>[ 5573 .875000 ] Message Rece ived a t 2 2 : 1 5 : 5 1 (GMT)
6 <6>[ 5615 .773345 ] Message Rece ived a t 2 2 : 2 1 : 3 2 (GMT)
7 <6>[ 5648 .256408 ] Message Rece ived a t 2 2 : 2 4 : 5 (GMT)
8 <6>[ 5693 .450439 ] Message Rece ived a t 2 2 : 2 4 : 5 0 (GMT)
9 <6>[ 5738 .879577 ] Message Rece ived a t 2 2 : 2 5 : 3 5 (GMT)

71



BIBLIOGRAPHY

[1] 3GPP/ETSI. “Technical realization of the Short Message Service (SMS)”, 2011.
[ONLINE]. Available: http://www.3gpp.org/ftp/Specs/html-info/23040.htm.

[2] Andrus, J., C. Dall, A. V. Hof, O. Laadan, and J. Nieh. “Cells: a virtual mobile
smartphone architecture”. Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP), 2011, 173–187. ACM, 2011.

[3] AOSP. “Radio Interface Layer”, 2011. [ONLINE]. Available:
http://www.kandroid.org/online-pdk/guide/telephony.html.

[4] Canalys. “Smartphones overtake client PCs in 2011”, 2012. [ONLINE]. Available:
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011.

[5] Canavan, J. “The evolution of malicious IRC bots”. Virus Bulletin Conference,
104–114. Citeseer, 2005.

[6] Dagon, D., G. Gu, C. P. Lee, and W. Lee. “A taxonomy of botnet structures”.
Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC), 2007, 325–339. IEEE Computer Society, 2007.

[7] Dagon, D., G. Gu, C. Zou, J. Grizzard, S. Dwivedi, W. Lee, and R. Lipton. “A
taxonomy of botnets”. Unpublished paper, c, 2005.

[8] Developers, Android. “What is Android?”, October 2011. [ONLINE]. Available:
http://developer.android.com/guide/basics/what-is-android.html.

[9] developershome.com. “Introduction to SMS Messaging”, 2011. [ONLINE].
Available: http://www.developershome.com/sms/smsIntro.asp.

[10] Enck, W., D. Octeau, P. McDaniel, and S. Chaudhuri. “A study of Android
application security”. Proceedings of the 20th USENIX Security Symposium, 2011.
2011.

[11] Enck, W., M. Ongtang, and P. McDaniel. “Understanding Android Security”.
Security and Privacy, IEEE, 7(1):50–57, 2009.

[12] Fabian, M. A. R. J. Z. and M. A. Terzis. “A Multifaceted Approach to
Understanding the Botnet Phenomenon”. Proceedings of the 2006 ACM SIGCOMM
Internet Measurement Conference (IMC), 2006. 2006.

[13] Feily, M., A. Shahrestani, and S. Ramadass. “A Survey of Botnet and Botnet
Detection”. Proceedings of the Third International Conference on Emerging Security
Information, Systems and Technologies (SECURWARE), 2009, 268–273. 2009.

72



[14] Gayomali, C. “Jaw-Dropper: 18 to 24 Year Olds Average 110 Text Messages per
Day”, 2011. [ONLINE]. Available: http://techland.time.com/2011/09/20/

jaw-dropper-18-to-24-year-olds-average-110-text-messages-per-day/.

[15] Giles, J. “Virus May Signal First ‘Zombie’ Cellphone Network”, 2009. [ONLINE].
Available:
http://abcnews.go.com/Technology/AheadoftheCurve/story?id=8112308&page=1.

[16] Goertzel, K. M. and T. Winograd. Tools Report on Anti-Malware. Technical report,
2009.

[17] Hachem, N., Y. Ben Mustapha, G. G. Granadillo, and H. Debar. “Botnets: Lifecycle
and Taxonomy”. Proceedings of the Conference on Network and Information
Systems Security (SAR-SSI), 2011, 1–8. 2011.

[18] Hartmann, J. Eberspacher; H. Vogel; C. Bettstetter; C. GSM - Architecture,
Protocols, and Services 3rd Ed. John Wiley and Sons, 2009.

[19] Keniston, Panchamukhi P. Hiramatsu M., J. “Kernel Probes (Kprobes)”, 2012.
[ONLINE]. Available: http://www.kernel.org/doc/Documentation/kprobes.txt.

[20] Kok, J. and B. Kurz. “Analysis of the BotNet Ecosystem”. CTTE 2011, 2011.

[21] Micro, T. “Taxonomy of botnet threats”. Trend Micro Enterprise Security Library,
2006.

[22] Mulliner, C. and C. Miller. “Fuzzing the phone in your phone”. Black Hat (June
2009), 2009.

[23] Oberheide, J. “Android hax”. SummerCon, July, 2010.

[24] Open Handset Alliance, (OHA). “Open Handset Alliance: Android”, 2011.
[ONLINE]. Available: http://www.openhandsetalliance.com/.

[25] Porras, P., H. Saı̈di, and V. Yegneswaran. “An Analysis of the iKee. B iPhone
Botnet”. Security and Privacy in Mobile Information and Communication Systems,
141–152, 2010.

[26] Puri, R. “Bots and botnet: An overview”. SANS Institute 2003, 2003.

[27] Schmidt, A. D., H. G. Schmidt, L. Batyuk, J. H. Clausen, S. A. Camtepe,
S. Albayrak, and C. Yildizli. “Smartphone malware evolution revisited: Android
next target?” Proceedings of the 4th International Conference on Malicious and
Unwanted Software (MALWARE), 2009, 1–7. IEEE, 2009.

[28] Security., Lookout Mobile. Lookout Mobile Security Technical Tear Down:
Droiddream, Payload One and Payload Two. Technical report, 2011.

73



[29] Shabtai, A., Y. Fledel, U. Kanonov, Y. Elovici, and S. Dolev. “Google Android: A
state-of-the-art review of security mechanisms”. CoRR abs/0912.5101, 2009.

[30] Shabtai, A., Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer. “Google
Android: A Comprehensive Security Assessment”. Security and Privacy, IEEE,
8(2):35–44, 2010.

[31] Singh, K., S. Sangal, N. Jain, P. Traynor, and W. Lee. “Evaluating bluetooth as a
medium for botnet command and control”. Detection of Intrusions and Malware,
and Vulnerability Assessment, 61–80, 2010.

[32] Strazzere, T. “Security Alert: Malware Found Targeting Custom ROMs
(jSMSHider)”, 2011. [ONLINE]. Available: http://blog.mylookout.com/2011/06/

security-alert-malware-found-targeting-custom-roms-jsmshider/.

[33] Wang, J. “Android Radio Interface Layer”, 2011. [ONLINE]. Available:
http://www.slideshare.net/ssusere3af56/android-radio-layer-interface.

[34] Weidman, G. “Transparent Botnet Command and Control for Smartphones over
SMS Shmoocon 2011”. 2011 2011.

[35] Welte, H. “Anatomy of contemporary GSM cellphone hardware”. Unpublished
paper, c, 2010.

[36] Zeidanloo, H. R., M. J. Z. Shooshtari, P. V. Amoli, M. Safari, and M. Zamani. “A
taxonomy of Botnet detection techniques”. Proceedings of the 3rd IEEE
International Conference on Computer Science and Information Technology
(ICCSIT), 2010, volume 2, 158–162. 2010.

[37] Zou, C. C. and R. Cunningham. “Honeypot-aware advanced botnet construction and
maintenance”. Proceedings of the International Conference on Dependable Systems
and Networks (DSN), 2006, 199–208. IEEE, 2006.

74



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

14–06–2012 Master’s Thesis Sep 2010 — 14 Jun 2012

Short Message Service (SMS) Command and Control (C2) Awareness in
Android-based Smartphones Using Kernel-Level Auditing

Olipane, Robert J., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCO/ENG/12-21

Intentionally left blank

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subect to copyright protection in the United States.

This thesis addresses the emerging threat of botnets in the smartphone domain and focuses on the Android platform and
botnets using short message service (SMS) as the command and control (C2) channel. With any botnet, C2 is the most important
component contributing to its overall resilience, stealthiness, and effectiveness. This thesis develops a passive host-based approach
for identifying covert SMS traffic and providing awareness to the user. Modifying the kernel and implementing this awareness
mechanism is achieved by developing and inserting a loadable kernel module that logs all inbound SMS messages as they are sent
from the baseband radio to the application processor. The design is successfully implemented on an HTC Nexus One Android
smartphone and validated with tests using an Android SMS bot from the literature. The module successfully logs all messages
including bot messages that are hidden from user applications. Suspicious messages are then identified by comparing the SMS
application message list with the kernel log’s list of events. This approach lays the groundwork for future host-based
countermeasures for smartphone botnets and SMS-based botnets.

SMS, Android, Botnet, Smartphone

U U U UU 88

Dr. Robert F. Mills (ENG)

(937) 255-3636, x4527; robert.mills@afit.edu


	Short Message Service (SMS) Command and Control (C2) Awareness in Android-based Smartphones using Kernel-Level Auditing
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Research Motivation
	Problem Statement
	Research Objectives
	Approach
	Assumptions and Limitations
	Thesis Overview

	LITERATURE REVIEW AND RELATED WORKS
	Overview of the Botnet Phenomena
	Smartphone Architecture and Short Message Service
	Introduction to Google Android
	Smartphone Botnets, SMS Botnets, and Android Botnets
	Summary

	METHODOLOGY
	Introduction
	Transparent SMS Bot
	Design
	Implementation
	Test Environment and Experimental Design
	Summary

	RESULTS AND ANALYSIS
	Overview
	Test 1: Functionality Test (Logging non-C2 Messages)
	Test 2: Functionality Test (Logging C2 Messages)
	Test 3: Utility Test (Scenario 1 - Well timed C2)
	Test 4: Utility Test (Scenario 2 - Poorly Timed C2)
	Further Analysis
	Summary

	CONCLUSIONS AND RECOMMENDATIONS
	Overview
	Significance of Research
	Recommendations for Future Research
	Summary

	APPENDIX A: LOADABLE KERNEL MODULE CODE
	APPENDIX B: DEVELOPMENT ENVIRONMENT
	Setting up the build environment
	Downloading the Android source
	Downloading and building the linux kernel
	Building and inserting LKMs

	APPENDIX C: TEST RESULTS DATA
	Test 1 Log Results
	Test 2 Log Results
	Test 3 Log Results
	Test 4 Log Results

	BIBLIOGRAPHY

