
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-14-2012

Detecting Hardware-assisted Hypervisor Rootkits
within Nested Virtualized Environments
Daniel B. Morabito

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Morabito, Daniel B., "Detecting Hardware-assisted Hypervisor Rootkits within Nested Virtualized Environments" (2012). Theses and
Dissertations. 1139.
https://scholar.afit.edu/etd/1139

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1139?utm_source=scholar.afit.edu%2Fetd%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DETECTING HARDWARE-ASSISTED HYPERVISOR ROOTKITS WITHIN 
NESTED VIRTUALIZED ENVIRONMENTS 

 
 
 

THESIS 
 
 

Daniel B. Morabito, Captain, USAF 
 

AFIT/GCO/ENG/12-20 
 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



 

 
 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government.  This material is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States. 



 

AFIT/GCO/ENG/12-20 

 

DETECTING HARDWARE-ASSISTED HYPERVISOR ROOTKITS  
WITHIN NESTED VIRTUALIZED ENVIRONMENTS 

 
 
 

THESIS 

 
Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

 

 

Daniel B. Morabito, M.S. Leadership, B.S. Computer Science 

Captain, USAF 

 

June 2012 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

  



 

AFIT/GCO/ENG/12-20 

 

DETECTING HARDWARE-ASSISTED HYPERVISOR ROOTKITS WITHIN 
NESTED VIRTUALIZED ENVIRONMENTS 

 
 

 
 

Daniel B. Morabito, M.S. Leadership, B.S. Computer Science 

Captain, USAF 

 
 

 
 
 
 
 

 
 
 



iv 

 
AFIT/GCO/ENG/12-20 
 

Abstract 

Virtual machine introspection (VMI) is intended to provide a secure and trusted 

platform from which forensic information is gathered about the true behavior of malware 

within a guest.  However, it is possible for malware to escape a guest into the host and for 

hypervisor rootkits, such as BluePill, to stealthily transition a native OS into a virtualized 

environment.  This suggests that VMI scenarios provide an environment where it is 

possible for malware to escape the guest, obtain privileged access to the processor, insert 

a thin hypervisor rootkit beneath the host, and gain near-perfect visibility into the guest 

and host by transitioning them into a nested virtualized environment.  This research 

examines the effectiveness of selected detection mechanisms against hardware-assisted 

virtualization rootkits (HAV-R) within a nested virtualized environment.  It presents the 

design, implementation, analysis, and evaluation of a hypervisor rootkit detection system 

which exploits both processor and translation lookaside buffer-based mechanisms to 

detect hypervisor rootkits within a variety of nested virtualized systems.  It evaluates the 

effects of different types of virtualization on hypervisor rootkit detection and explores the 

effectiveness of a likely countermeasure which is tested for its ability to obfuscate the 

existence of a hardware-assisted hypervisor rootkit. 

 Experiments are performed in a laboratory environment consisting of a notional 

VMI system which is implemented using four different hypervisor configurations 

representing three different virtualization types.  Detection measurements are taken on a 

non-subverted VMI system and compared to those taken after one of two notional  



v 

HAV-Rs (BluePill and ESXi) is installed on the VMI system resulting in a subverted 

VMI (SVMI) system.  A third set of readings are taken on the SVMI system after an 

obfuscation agent is installed within the guest.  When analyzed using the Wilcoxon rank 

sum test for non-parametric data, a p-value of < 2.2e-16 is obtained for all VMI to SVMI 

comparisons.  This rejects the null hypothesis that the population distributions are 

identical and provides convincing evidence that the HAV-Rs are detectable in all SVMI 

scenarios, regardless of hypervisor type.  Furthermore, it indicates that the selected 

detection techniques are effective at detection of HAV-R and that the type of 

virtualization implemented in a VMI system has minimal to no effect on HAV-R 

detection.  Finally, the results indicate that in-guest obfuscation does not significantly 

obfuscate the existence of HAV-R. 



vi 

Acknowledgments 

My sincerest thanks and appreciation go to my wife whose patience, support, and 

love were a constant source of inspiration and energy during this research.  You are an 

amazing woman, wife, and mother to our children.  Next, my advisor Dr. Barry E. 

Mullins who never unduly constrained my work and let me see just how far the 

virtualization rabbit hole really goes.  Also, Professor Cynthia C. Fry of Baylor 

University.  All students have those teachers who leave a particularly lasting impression; 

thank you for your faith and guidance.  Finally, special thanks go to Herr Hagen Fritsch 

who contributed the original driver framework which was used to develop HyperScan.  

Ich bin Ihnen sehr dankbar.  I am very grateful for your help. 

 

 

       Daniel B. Morabito 

 

 
        



vii 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments.............................................................................................................. vi 

Table of Contents .............................................................................................................. vii 

List of Figures .................................................................................................................... xi 

List of Tables .................................................................................................................... xx 

I.  Introduction .................................................................................................................... 1 

1.1. Goals ....................................................................................................................... 3 

1.2. Assumptions and Limitations .................................................................................. 3 

1.3. Research Contributions ........................................................................................... 5 

1.4. Thesis Organization ................................................................................................ 5 

II. Background .................................................................................................................... 7 

2.1. General Virtualization Concepts ............................................................................. 7 

2.1.1. The Roots of Virtualization ........................................................................... 7 

2.1.2. Virtualization Definition & Theory ............................................................. 10 

2.1.3. Types of Virtualization ................................................................................ 15 

2.1.4. Nested Virtualization ................................................................................... 24 

2.1.5. Virtual Machine Introspection ..................................................................... 25 

2.1.6. Benefits of Virtualization ............................................................................ 27 

2.2. Hypervisors (Virtual Machine Managers) ............................................................ 30 

2.2.1. QEMU 0.9.0 ................................................................................................ 30 

2.2.2. VirtualBox 4.1.10 ........................................................................................ 30 

2.2.3. VMware Workstation 8 ............................................................................... 31 

2.2.4. VMware ESXi 5.0 ....................................................................................... 31 

2.3. Subverting the Hypervisor: Detect, Evade, and Escape ........................................ 32 

2.3.1. VM Detection .............................................................................................. 33 

2.3.2. Hypervisor Evasion ..................................................................................... 43 

2.3.3. Escaping a VM ............................................................................................ 46 

2.4. Subverting the Host: Hardware-assisted Virtualization Rootkits ......................... 47 

2.4.1. BluePill ........................................................................................................ 48 



viii 

2.4.2. SubVirt ......................................................................................................... 50 

2.4.3. Characteristics of HAV-R ........................................................................... 51 

2.5. HAV-R Detection.................................................................................................. 51 

2.5.1. Execution Profiling ...................................................................................... 52 

2.5.2. Translation Lookaside Buffer Profiling ....................................................... 56 

2.6. Conclusion ............................................................................................................ 58 

III. Methodology ............................................................................................................... 60 

3.1. Problem Definition ................................................................................................ 60 

3.1.1. Goals and Hypothesis .................................................................................. 61 

3.1.2. Approach ..................................................................................................... 61 

3.2. HyperScan Software Development ....................................................................... 63 

3.3. Cloaker Software Development ............................................................................ 65 

3.4. System Boundaries ................................................................................................ 66 

3.5. System Services .................................................................................................... 66 

3.6. Workload ............................................................................................................... 67 

3.7. Performance Metrics ............................................................................................. 68 

3.8. System Parameters ................................................................................................ 68 

3.8.1. Hardware ..................................................................................................... 68 

3.8.2. Trusted (Native) OS ..................................................................................... 69 

3.8.3. Guest OS ...................................................................................................... 69 

3.8.4. CPU HAV Setting ....................................................................................... 69 

3.9. Factors ................................................................................................................... 69 

3.9.1. Hypervisor ................................................................................................... 70 

3.9.2. HAV-R ......................................................................................................... 70 

3.9.3. Guest Obfuscation Agent ............................................................................. 71 

3.10. Evaluation Technique.......................................................................................... 71 

3.11. Experimental Design ........................................................................................... 74 

3.12. Methodology Summary ....................................................................................... 75 

IV. Analysis ...................................................................................................................... 76 

4.1. Exploratory Data Analysis .................................................................................... 77 

4.2. Detection of HAV-R within Nested Virtualized Environments ........................... 84 

4.3. Effects of Obfuscation (Cloaker) .......................................................................... 87 



ix 

4.4. The Effect of Different Virtualization Types on HAV-R Detection..................... 94 

4.5. Summary ............................................................................................................... 96 

V.  Conclusions ................................................................................................................. 98 

5.1. Results ................................................................................................................... 98 

5.2. Future Work ........................................................................................................ 100 

5.3. Concluding Remarks ........................................................................................... 101 

Appendix A.  Experimentation ....................................................................................... 103 

A-1. Setup the Non-Subverted VMI Scenario and Install the HyperScan Files ........ 103 

A-2. Create Test Certificates and Sign Drivers within the Host and Guest OS ......... 104 

A-3. Non-Subverted VMI Scenario Experiments ...................................................... 106 

A-4. Subverted VMI Scenario Experiments .............................................................. 110 

A-5. Subverted VMI Scenario with Guest Obfuscation Experiments ....................... 111 

Appendix B. Windows Driver Kit Installation & Configuration .................................... 113 

B-1. Install Windows Driver Kit (WDK) ................................................................... 113 

B-2. Enable Test-signing and Disable Integrity Checks ............................................ 114 

Appendix C.  VMware Workstation 8 and Windows 7 Setup ........................................ 115 

C-1. Download and Install VMware Workstation 8 .................................................. 115 

C-2. Create and Configure the Windows 7 Installation ............................................. 115 

Appendix D.  VirtualBox Installation and Windows 7 Setup ......................................... 127 

D-1. Download and Install VirtualBox ...................................................................... 127 

D-2. Create and Configure the Virtual Machine ........................................................ 128 

Appendix E.  QEMU Setup and Windows 7 Installation ............................................... 136 

E-1. Setup QEMU ...................................................................................................... 136 

E-2. Create Blank Disk Image and Install Windows 7 .............................................. 136 

Appendix F.  BluePill Installation on Windows Vista 64 ............................................... 141 

F-1. Enable Test-Signing, Disable Integrity Checks, and Install WinDK ................. 141 

F-2. Build the BluePill Driver .................................................................................... 141 

F-3. Create a Test Certificate ..................................................................................... 142 

F-4. Install the Test Certificate in the Trusted Root Certification Store .................... 144 

F-5. Embedded Sign the BluePill newbp.sys Driver ................................................. 146 

F-6. Start the BluePill Driver ..................................................................................... 148 
 



x 

Appendix G.  ESX Installation ....................................................................................... 150 

G-1. Download VMware ESXi 5.0.0 on Host Machine ............................................ 150 

G-2. Configure the ESXi Host ................................................................................... 150 

G-3. Create the Virtual Machine ................................................................................ 155 

G-4. Append the OS.vmx File to Enable Nested Virtualization ................................ 170 

G-5. Install the Guest OS (64-bit Windows Vista Business) ..................................... 172 

Appendix H.  Statistical Analysis ................................................................................... 174 
  



xi 

List of Figures 

Figure                                                                                                                             Page 

1. IBM System/370 Model 138 [IBM11]. .................................................................. 9 

2. Virtualization Architecture ................................................................................... 12 

3. The x86 Protection Ring Architecture .................................................................. 13 

4. Multiple VMs Sharing a Single Host Machine Adapted from [Dod10] ............... 16 

5. Multiple VMs Sharing Two Host Machines ......................................................... 16 

6. OS Virtualization Adapted from [Dod10]. ........................................................... 18 

7. Emulation .............................................................................................................. 19 

8. Paravirtualization Adapted from [Dod10] ............................................................ 20 

9. Full Virtualization and Hardware-assisted Virtualization .................................... 22 

10. Intel VT-x Virtualization State Diagram .............................................................. 24 

11. ESXi  Hypervisor with vSphere Client ................................................................. 32 

12. Fingerprinting Windows XP Using msinfo32 ...................................................... 34 

13. Fingerprinting Unix Using dmidecode –t system ................................................. 35 

14. Checking the OUI of a Unix machine................................................................... 36 

15. The OUI Search Results........................................................................................ 37 

16. Machine Code for Comm Channel Detection Adapted from [Fer08] .................. 38 

17. BluePill Installation and Operation  Adapted from [RuT07] ................................ 49 

18. VMI Scenario Transitioned to Subverted VMI Scenario ..................................... 62 

19. HyperScan Data Collection Process ..................................................................... 64 

20. HyperScan Operation with Default and Manual Settings ..................................... 64 

21. Cloaker Operation ................................................................................................. 65 



xii 

22. The System Under Test (SUT) ............................................................................. 66 

23. HAV-R DS Possible Outcomes ............................................................................ 67 

24. Chart of Factor Combinations (Virtualization Scenarios) .................................... 74 

25. Untransformed SMPCOUNT Data ....................................................................... 80 

26. Log Transformed SMPCOUNT Data ................................................................... 80 

27. Untransformed TIMING Data .............................................................................. 81 

28. Log Transformed TIMING Data .......................................................................... 81 

29. Untransformed TLBHIT Data............................................................................... 82 

30. Log Transformed TLBHIT Data ........................................................................... 82 

31. Comparison of Median SMPCOUNT Data with 95% CI ..................................... 86 

32. Comparison of Median TIMING Data with 95% CI ............................................ 86 

33. Comparison of Median TLBHIT Data with 95% CI ............................................ 87 

34. Comparison of SMPCOUNT VMI vs. SVMI with GO Medians with 95% CI ... 89 

35. Comparison of TIMING VMI vs. SVMI with GO Medians with 95% CI ........... 89 

36. Comparison of TIMING VMI vs. SVMI with GO Medians with 95% CI ........... 90 

37. Comparison of BluePill Median SVMI to SVMI with GO SMPCOUNT Data ... 92 

38. Comparison of BluePill Median SVMI to SVMI with GO TIMING Data .......... 92 

39. Comparison of BluePill Median SVMI to SVMI with GO TLBHIT Data........... 92 

40. Comparison of ESXi Median SVMI to SVMI with GO SMPCOUNT Data ....... 93 

41. Comparison of ESXi Median SVMI to SVMI with GO TIMING Data ............... 93 

42. Comparison of ESXi Median SVMI to SVMI with GO TLBHIT Data ............... 94 

43. Difference Between Medians (SVMI-VMI), SMPCOUNT with 95% CI ............ 95 

44. Difference Between Medians (SVMI-VMI), TIMING with 95% CI ................... 95 



xiii 

45. Difference Between Medians (SVMI-VMI), TLBHIT with 95% CI ................... 96 

46. Configuring the Host and Guest Machine: File Placement ................................ 104 

47. Execution of create_test_cert.bat ........................................................................ 105 

48. Execution of sign_drivers.bat ............................................................................. 105 

49. Using InstDrv to Install detector.sys ................................................................... 106 

50. SVM Detectors Loaded Message........................................................................ 107 

51. HyperScan Example............................................................................................ 108 

52. Performance Manger ........................................................................................... 108 

53. Using InstDrv to Install dbgclient.sys ................................................................. 110 

54. Using InstDrv to Install newbp.sys ..................................................................... 110 

55. Cloaker Execution ............................................................................................... 111 

56. Performance Manager ......................................................................................... 112 

57. WinDK Installation Settings ............................................................................... 113 

58. Enabling Test-Signing and Disabling Integrity Checks ...................................... 114 

59. Select “Create a New Virtual Machine” ............................................................. 115 

60. Select “Custom” and Click “Next” ..................................................................... 116 

61. Select “Workstation 8.0” and Click “Next” ........................................................ 116 

62. Check Install From Location and Click “Next” .................................................. 117 

63. Fill In and Click “Next” ...................................................................................... 117 

64. Name the Virtual Machine .................................................................................. 118 

65. Processor Configuration...................................................................................... 119 

66. Memory Configuration ....................................................................................... 119 

67. Network Configuration ....................................................................................... 120 



xiv 

68. I/O Controller Configuration .............................................................................. 120 

69. Create a New Virtual Disk .................................................................................. 121 

70. Select a Disk Type .............................................................................................. 121 

71. Specify Disk Capacity......................................................................................... 122 

72. Specify the Disk File ........................................................................................... 122 

73. Select “Customize Hardware” ............................................................................ 123 

74. Full Virtualization using Binary Translation Configuration ............................... 124 

75. Hardware-assisted Full Virtualization Configuarion .......................................... 125 

76. Select “Finish” to Complete the Virtual Machine .............................................. 126 

77. Custom Setup ...................................................................................................... 127 

78. Create a New Virtual Machine ........................................................................... 128 

79. Memory Allocation ............................................................................................. 129 

80. Virtual Hard Disk ................................................................................................ 129 

81. Select File Type .................................................................................................. 130 

82. Select Drive Allocation Type .............................................................................. 130 

83. Allocate Virtual Disk Location and Size ............................................................ 131 

84. Virtual Disk Summary Window ......................................................................... 132 

85. Double Click Win7 to Start the Virtual Machine ............................................... 133 

86. Welcome to First Run Wizard ............................................................................ 133 

87. Windows Boot Manager Unexpected Error ........................................................ 134 

88. Hardware Acceleration Error Message ............................................................... 134 

89. Enable PAE/NX .................................................................................................. 135 

90. Create the Blank Disk Image .............................................................................. 137 



xv 

91. Boot the Virtual Machine for Installation of Windows 7 ................................... 137 

92. Clone Hard Disk ................................................................................................. 139 

93. Boot the Windows 7 Virtual Machine ................................................................ 140 

94. BluePill Build Example ...................................................................................... 142 

95. Test Certificate Creation, makecert Command ................................................... 143 

96. Certificate Manager ............................................................................................ 144 

97. Add Test Certificate to Trusted Root Store ........................................................ 145 

98. Certificate Manager ............................................................................................ 145 

99. Trusted Root Certification Authority Folder ...................................................... 146 

100. Sign the BluePill Driver ...................................................................................... 147 

101. Signtool Verification ........................................................................................... 147 

102. Installing the BluePill dbgclient.sys Driver ........................................................ 148 

103. Installing the BluePill newbp.sys Driver ............................................................ 148 

104. bpknock.exe Before and After Installation of BluePill ....................................... 149 

105. DebugView Showing Successful BluePill Installation ....................................... 149 

106. Log Into the vSphere Client ................................................................................ 151 

107. Enter the vSphere License Key ........................................................................... 152 

108. Enable SSH on the host machine ........................................................................ 153 

109. SSH into the Host Machine................................................................................. 153 

110. Open the /etc/vmware/config File for Editing .................................................... 154 

111. Add vhv.allow = “TRUE” to the config file ....................................................... 154 

112. Select Custom Configuration .............................................................................. 155 

113. Enter the Name of the VM .................................................................................. 156 



xvi 

114. Storage Settings .................................................................................................. 157 

115. Select Virtual Machine Version .......................................................................... 158 

116. Select Guest Operating System ........................................................................... 159 

117. CPU Settings ....................................................................................................... 160 

118. Memory Settings ................................................................................................. 161 

119. Network Settings ................................................................................................. 162 

120. SCSI Controller Settings ..................................................................................... 163 

121. Create a New Virtual Disk .................................................................................. 164 

122. Disk Configuration Settings ................................................................................ 165 

123. Advanced Options Left at Default Settings ........................................................ 166 

124. Select the Edit Virtual Machine Settings Before Completion Option ................ 167 

125. Edit the Hardware Tab ........................................................................................ 168 

126. Edit the CPU/MMU Virtualization Tab .............................................................. 169 

127. Locating the Data Store ...................................................................................... 170 

128. Download the OS.vmx Folder ............................................................................ 171 

129. Append the .vmx Folder ..................................................................................... 171 

130. Power on the Virtual Machine ............................................................................ 172 

131. Select the Console Tab to View the Installation ................................................. 173 

132. Windows Installation Screen .............................................................................. 173 

133. QQ Plot and Density Plot: QEMU_VMI_SMPCOUNT .................................... 174 

134. QQ Plot and Density Plot:  QEMU_SVMI_BP_SMPCOUNT .......................... 174 

135. QQ Plot and Density Plot: QEMU_SVMI_BP_SMPCOUNT ........................... 175 

136. QQ Plot and Density Plot: QEMU_SVMI_BP_SMPCOUNT ........................... 175 



xvii 

137. QQ Plot and Density Plot: VBOXHAV_VMI_SMPCOUNT ............................ 175 

138. QQ Plot and Density Plot: VBOXHAV_SVMI_BP_SMPCOUNT ................... 176 

139. QQ Plot and Density Plot: VBOX_SVMI_ESX_SMPCOUNT ......................... 176 

140. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_GO_SMPCOUNT ........ 176 

141. QQ Plot and Density Plot: VMWAREBT_VMI_SMPCOUNT ......................... 177 

142. QQ Plot and Density Plot: VMWARE_SVMI_BP_SMPCOUNT ..................... 177 

143. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_GO_SMPCOUNT ........ 177 

144. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_SMPCOUNT ............. 178 

145. QQ Plot and Density Plot: VMWAREHAV_VMI_SMPCOUNT ..................... 178 

146. QQ Plot and Density Plot: VMWAREHAV_SVMI_BP_SMPCOUNT ............ 178 

147. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_SMPCOUNT ......... 179 

148. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_GO_SMPCOUNT.. 179 

149. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_SMPCOUNT ..... 179 

150. QQ Plot and Density Plot: QEMU_VMI_TIMING............................................ 180 

151. QQ Plot and Density Plot: QEMU_SVMI_BP_TIMING .................................. 180 

152. QQ Plot and Density Plot: QEMU_SVMI_BP_GO_TIMING ........................... 180 

153. QQ Plot and Density Plot: QEMU_SVMI_ESX_TIMING ................................ 181 

154. QQ Plot and Density Plot: VBOX_VMI_TIMING ............................................ 181 

155. QQ Plot and Density Plot: VBOXHAV_SVMI_BP_TIMING .......................... 181 

156. QQ Plot and Density Plot: VBOX_SVMI_ESX_TIMING ................................ 182 

157. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_GO_TIMING ................ 182 

158. QQ Plot and Density Plot: VMWAREBT_VMI_TIMING ................................ 182 

 



xviii 

159. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_TIMING ....................... 183 

160. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_TIMING ....................... 183 

161. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_TIMING .................... 183 

162. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_TIMING ............ 184 

163. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_TIMING ............ 184 

164. QQ Plot and Density Plot:VMWAREBT_SVMI_ESX_GO_TIMING ............. 184 

165. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_TIMING ................. 185 

166. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_TIMING ................. 185 

167. QQ Plot and Density Plot: QEMU_VMI_TLBHIT ............................................ 185 

168. QQ Plot and Density Plot: QEMU_SVMI_BP_TLBHIT ................................... 186 

169. QQ Plot and Density Plot: QEMU_SVMI_BP_GO_TLBHIT ........................... 186 

170. QQ Plot and Density Plot:  QEMU_SVMI_ESX_TLBHIT ............................... 186 

171. QQ Plot and Density Plot: VBOXHAV_VMI_TLBHIT .................................... 187 

172. QQ Plot and Density Plot: VBOXHAV_SVMI_BP_TLBHIT .......................... 187 

173. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_TLBHIT ........................ 187 

174. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_GO_TLBHIT ................ 188 

175. QQ Plot and Density Plot: VMWAREBT_VMI_TLBHIT ................................ 188 

176. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_TLBHIT ....................... 188 

177. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_GO_TLBHIT ............... 189 

178. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_TLBHIT .................... 189 

179. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_TLBHIT ............. 189 

180. QQ Plot and Density Plot: VMWAREHAV_VMI_TLBHIT ............................. 190 

 



xix 

181. QQ Plot and Density Plot: VMWAREHAV_SVMI_BP_TLBHIT.................... 190 

182. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_TLBHIT ................. 190 

183. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_GO_TLBHIT ......... 191 



xx 

List of Tables 

Table                  Page 
 

1. Table of Factors .................................................................................................... 70 

2. Experiment Data Set Labels.................................................................................. 77 

3. Virtualization Scenario Summary Statistics ......................................................... 79 

4. Non-subverted VMI vs. BluePill SVMI ............................................................... 84 

5. Non-subverted VMI vs. ESXi SVMI .................................................................... 85 

6. Analysis of VMI vs. BluePill SVMI with GO (Cloaker) ...................................... 88 

7. Analysis of VMI vs. ESXi SVMI with GO (Cloaker)  ......................................... 88 

8. Analysis of BluePill SVMI vs. BluePill SVMI with GO (Cloaker) ..................... 90 

9. Analysis of ESXi SVMI vs. ESXi SVMI with GO (Cloaker) .............................. 91 



1 

DETECTING HARDWARE-ASSISTED HYPERVISOR ROOTKITS WITHIN 

NESTED VIRTUALIZED ENVIRONMENTS 

 

I.  Introduction 

Hardware-assisted Virtualization Rootkits (HAV-R) are a unique type of malware 

that exist at a lower level than normal native operating system (native OS) operation 

[RuT07a].  As such, detection of HAV-R is particularly unique since they are not 

vulnerable to usual kernel-based rootkit detection mechanisms.  This makes HAV-R an 

attractive option for cyber adversaries who desire an undetected presence on a target 

system.  However, HAV-Rs are not proven to be undetectable and previous work has 

successfully demonstrated several hypervisor detection techniques [Ada07] [Fer08] 

[Fri08].  These techniques are, for the most part, unique to hypervisor detection  

and are not generally implemented as part of a host-based defense such as  

anti-virus software.   

Previous research focused on detection of a single hypervisor with the assumption 

that if the user had not previously installed a hypervisor and one is detected, that this is 

evidence of a HAV-R [Fer08] [Fri08].  This thesis extends this research by applying three 

of the most promising HAV hypervisor detection techniques (SMP Counting, SVME 

Check Timing, and TLB Profiling) to determine if it is possible to detect HAV-R within a 

nested virtualized environment.  This is novel because a HAV-R detection system within 

a nested virtual environment cannot assume that simple detection of a hypervisor is 

sufficient for HAV-R detection.   



2 

The nested virtualized environment used for experimentation models a virtual 

machine introspection (VMI) scenario where a user within the native OS uses a trusted 

hypervisor to introspect a guest OS containing potential malware.  This is a common, 

real-world forensics scenario where malware is likely to exist within a virtualized 

environment.  This scenario is also easily extended to more benign scenarios such as 

those that use virtualized systems to isolate applications; for example, the use of 

virtualization to isolate banking applications from social media applications and personal 

files.  From an organizational perspective, the ability of VMI to provide cyber situational 

awareness makes it a potentially attractive enterprise security solution for detecting, 

monitoring, and recovering from cyber attack [Dod10].  Complete Air Force 

implementation of VMI would have a significant impact on how the  

organization manages its information systems as well as its overall cyber security 

posture.  VMI may also represent a cost-effective supervisory control and data 

acquisition (SCADA) security solution for monitoring and management of multiple 

diverse systems [KaC11]. 

Situational awareness based on VMI assumes that the introspection tool 

accurately represents the true state of the guest OS and that the tool remains trustworthy.  

It is therefore imperative that subversion techniques such as HAV-Rs are evaluated for 

their ability to remain undetected within nested virtualized environments.  The effect of 

different virtualization types on HAV-R detection within nested virtualization 

environments must also be considered. 



3 

1.1. Goals 

The goal of this research is to answer the following questions:   

1. Is it possible to detect a HAV-R within a nested virtualized environment using 

the hypervisor detection techniques of SMP Counting, SVME Check Timing, 

and TLB Profiling? 

2. How do different virtualization types affect HAV-R detection using selected 

techniques?   

3. What is the effectiveness of in-guest execution designed to obfuscate the 

existence of a HAV-R? 

 

Overhead is the additional workload encountered by a system as the result of 

virtualization.  It is hypothesized that the overhead caused by a pre-existing, trusted 

hypervisor is sufficient to obfuscate the overhead caused by the existence of a HAV-R 

and that, in cases where the HAV-R is detectable, deliberate execution of privileged 

instructions within the guest OS is sufficient to obscure the HAV-R. 

1.2. Assumptions and Limitations 

This research is conducted under several assumptions.  First, it is assumed that 

malware can escape from a guest OS and install a HAV-R beneath the native OS without 

detection.  All experiments of subverted systems are therefore assumed to begin after the 

HAV-R has been installed and any installation agent has been removed from the target 

machine.  Second, the HAV-R detection system is assumed to be trustworthy and to 

experience no direct interference beyond that which occurs due to normal operation of 



4 

the native OS.  Third, the detection system is assumed to provide the statistical analysis 

required for HAV-R detection.  As part of the research effort, detection software is 

developed to collect detection-oriented data however, the statistical analysis is performed 

manually. It is left to future work to integrate the statistical analysis tools into the 

detection software.   

Research evaluation is limited to 64-bit Windows Vista Business as the native OS 

and 64-bit Windows 7 Professional as the guest OS.  BluePill, one of the two HAV-Rs 

used for experimentation, is designed for exclusive use with 64-bit Windows Vista which 

constrains the native OS to this platform.  For the guest OS, 64-bit Windows 7 

Professional is selected since it represents a current and commonly used OS. 

This research is also limited in terms of the breadth of HAV-Rs examined.  Of the 

two examples used for this research, BluePill is a true but purely academic example of a 

HAV-R that was created in 2006 and therefore may not be considered a state-of-the-art 

implementation of HAV-R.  The second example, ESXi, is not a true HAV-R but is 

chosen as a simulated HAV-R - a thin hypervisor with HAV-R-like characteristics. While 

it is likely that other real-world implementations of HAV-R exist, they are difficult to 

locate, likely since this area of virtualization-based attack is relatively new and is 

seemingly not yet widely exploited.  The two HAV-Rs selected are a best-effort 

representation of likely real-world HAV-Rs. 

Finally, this research is limited to the AMD-V architecture as implemented by the 

Athlon 64 X2 7750 Black Edition Dual Core 2.70 GHz processor used during testing.  

While it is likely that the detection techniques work just as well for other architectures, 

this cannot be assumed. 



5 

1.3. Research Contributions 

 This research evaluates selected HAV-R detection techniques and compares the 

effects of different virtualization types on the detection of HAV-R within nested 

virtualized environments.  This is an unexplored area of virtualization research which is 

particularly applicable to VMI environments used for forensics research.  Additionally, 

existing hypervisor detection techniques are extended and consolidated into two software 

tools, HyperScan and Cloaker, which perform HAV-R detection and obfuscation 

respectively.  These detection techniques, applied in the novel form of HyperScan, are 

used to perform the requisite data collection and analysis for this thesis and establish a 

previously non-existent foundation for automated detection of HAV-Rs. 

1.4. Thesis Organization 

This chapter presents an introduction to the research effort including thesis goals, 

assumptions, limitations, and research contributions. 

Chapter II provides background information on general virtualization concepts, a 

description of the particular hypervisors used for this thesis, an examination of hypervisor 

and host subversion techniques as they specifically relate to virtualization, and discussion 

of the HAV-R detection techniques with special emphasis on those used for this research. 

Chapter III presents the methodology used in this research to include system 

inputs, outputs, parameters, and a description of the factors and their levels.  It also 

provides information on the software developed for this research effort. 

Chapter IV presents an analysis of the results gathered by the HAV-R detection 

system.  These are interpreted using statistical analysis and reveal the effectiveness of the 



6 

detection techniques, the effectiveness of the obfuscation tool, and the effect of different 

virtualization types on HAV-R detection. 

Chapter V presents a summary of the conclusions drawn from the analysis 

performed in Chapter IV and recommends future work. 

Various appendices are included that detail how to reproduce the virtualized 

environments and experimentation conducted as part of this research effort.  

Additionally, statistical figures which are not included in Chapter IV due to size 

constraints are included in Appendix H for reference.  



7 

II. Background 

This chapter provides a survey of virtualization concepts as well as offensive and 

defensive virtualization paradigms.  The particular hypervisors, hypervisor rootkits, and 

detection techniques used for this research are discussed as well as general techniques for 

hypervisor and host subversion. 

2.1. General Virtualization Concepts 

2.1.1. The Roots of Virtualization 

Virtualization’s resurgence over the past decade as an attractive option for 

efficient use of server and computer resources may create the impression that 

virtualization is a new technology [Gol08].  In fact, virtualization concepts and 

applications have existed for at least fifty years [Cre81] and can be traced back to a desire 

that is as old as computing itself; to do more with less and to most efficiently use the 

tools that are available.  

The initial concepts of virtualization originated in the early 1960s from the 

requirement to more efficiently use scarce and expensive computational resources 

[Cre81].  Computers during this time existed almost exclusively within the realms of 

military and academic research and were in such high demand that using them efficiently 

was a primary and constant concern [Cor63] [Cre81].  This led to intense interest in 

devices that could execute more than just a single program at a time and the 

corresponding development of machines which were capable of handling the execution of 

multiple programs simultaneously through the use of time-sharing and process 

scheduling.  Time-sharing is the rapid time-division multiplexing of a central processor 



8 

unit among the jobs of several simultaneous users [CoV65].  The result was a 

transformation from computers which could handle only a single process from beginning 

to end, to machines capable of handling multiple simultaneous processes from multiple 

simultaneous users. 

One of the earliest examples of this transformation was the result of efforts by 

Massachusetts Institute of Technology (MIT) and International Business Machines (IBM) 

in the early 1970s and was called the Virtual Machine/370 Time-Sharing System 

(VM/370), originally called the pseudo-machine time-sharing system.  This VM 

consisted of three separate systems; a Control Program, a Remote Spooling and 

Communications Subsystem, and a Conversational Monitor System.  The Control 

Program and Remote Spooling and Communications Subsystem served as what is now 

referred to as a hypervisor, or virtual machine monitor (VMM).  These systems were 

responsible for managing time-sharing and process scheduling while abstracting the 

underlying physical system in such a way that each user was presented with what 

appeared to be their own singularly dedicated system; their own VM.  The 

Conversational Monitor System served as the guest operating system (guest OS) through 

which multiple users were able to simultaneously interact with the system [Cre81].  

These basic concepts of a hypervisor and one or more guest OS’s which share a physical 

architecture form the basic model for modern virtual machines.   

The VM/370 software was provided with IBM’s System/370 Model 138  

(Figure 1) which boasted 1,048,576 characters of memory, double that of its immediate 

predecessor.  The system could be purchased in 1976 for $350,000-$435,000 [IBM11].  

The “million character memory” version could be leased for $11,415 a month, or 



9 

approximately $45,120 in year 2012 dollars (adjusted for inflation)—this is an effective 

cost of approximately $1 (adjusted for inflation) per minute or $1,440 (adjusted for 

inflation) a day to lease this device [IBM11] [USB11].  Given the high cost of such 

systems, efficient use of the system was extremely important to consumers. The 

VM/370’s design  

 

Figure 1. IBM System/370 Model 138 [IBM11] 
 
included Massachusetts Institute of Technology’s Compatible Time-Sharing System 

(CTSS).  CTSS provided a subset of the host machine for use by different programs 

through use of a time-sharing supervisor; a hypervisor component which balanced and 

allocated computational resources in a way that was completely transparent to guest 

programs.  When implemented in the VM/370, it was able to provide multiple users with 

seemingly separate and independent computing systems [Cre81].   This design, along 

with many of its designers, heavily influenced the creation of MIT’s ground-breaking 



10 

time-sharing operating system called “Multiplexed Information and Computing Service” 

or MULTICS [Cre81].  MULTICS’ use of time sharing and ring-based access control, 

built upon the ideas expressed in the VM/370 design, went on to influence UNIX and, in 

turn, much of the modern computer functionality experienced today [Bis02]. 

Throughout the 1980s, computer technology advanced rapidly and the cost of 

hardware declined, consequently reducing interest in the efficiencies offered by 

virtualization.  Then, in the 1990s, researchers at Stanford University took a renewed 

interest in virtualization as a tool to implement massively parallel processing machines 

with the goal of building increasingly powerful computers through the use of distributed 

computing [RoG05].  Ironically, the proliferation of computing machines caused by the 

lower hardware costs of the 1980s and early 1990s sparked renewed interest in finding 

ways to more efficiently use the combined resources of these disparate systems and 

instigated a resurgence of virtualization over the last decade [RoG05]. 

2.1.2. Virtualization Definition & Theory 

Virtualization can be considered an abstraction of computer resources [JML10] 

and described as “an efficient, isolated duplicate of [a] real machine” [PoG74].  A more 

precise definition, as it specifically relates to virtual machines, describes virtualization as 

a technique by which the physical resources of one or more host machines are abstracted, 

managed, and shared to one or more guest OS’s in such a way that the guest OS’s 

perform as if they are interacting directly and independently with those physical 

resources [Bis02].  In this sense, “virtual” is different from “reality” only within the 

formal world [JML10]; within the computer world, which itself exists as a mathematical 

model and an abstraction of the “real” world, a virtual environment is perceived exactly 



11 

the same as that of a real environment, regardless of any formal differences in the 

underlying mechanisms.   

One of the first attempts to formerly model the concept of virtualization identified 

the following three essential characteristics for virtualized architectures [PoG74]:  

• Equivalency – The effect of virtualization must be such that the guest OS 

is provided an environment essentially equivalent to the environment experienced 

when the guest OS is running directly on the hardware.  

• Efficiency – Virtualization must achieve the performance of the 

virtualized hardware with minimal efficiency loss. 

• Resource Control –  Access to “real” resources must be managed by an 

arbitration agent (the hypervisor) which ensures that (1) it is impossible for a 

guest OS program to access any resource that is not explicitly allocated to it, and 

(2) the hypervisor can interrupt and regain control of resources which it has 

previously allocated to the guest OS. 

Practically, these characteristics are achieved through use of an architecture consisting of 

“real” underlying hardware (the host machine), a virtual environment consisting of 

virtualized hardware (the VM), a management/arbitration agent (hypervisor) responsible 

for resource control, and a hosted guest OS (Figure 2).   



12 

 

Figure 2. Virtualization Architecture 
  Note that the hypervisor’s resource control capability is shown graphically to 

encapsulate the underlying hardware, that each virtual machine hosts its own guest OS, 

and that the host machine may support more than one virtual machine.   

2.1.2.1. Real Hardware (Host Machine) 

The underlying hardware is composed of any physical resources that  

directly support the VM.  Typically, this includes one or more processors, memory,  

hard drives, other detachable storage devices, a network interface card, and  

input/output (IO) devices such as a mouse and keyboard. 

Since each processor has its own particular instruction set architecture  

which specifies how it operates and how it handles access control, both the  

processor and its instruction set architecture must be considered when  

implementing virtualization.  The Intel x86 instruction set architecture is a  

common architecture used for virtualization which uses a two-bit protection 

ring architecture to enforce access control.  These two bits provide four possible  

modes of operation (“00”, “01”, “10”, and “11”; referred to as Rings 0, 1, 2,  

and 3).  This can be visualized as concentric circles of protection rings or operational 



13 

modes where the innermost ring, Ring 0, has the most privileges, and the  

outermost ring, Ring 3, has the least (Figure 3).   

 

Figure 3. The x86 Protection Ring Architecture 

This model enforces security by delineating modes of operation which limit operations 

performed at lower privilege levels from performing actions reserved for operations 

performing at higher privilege levels.  This serves to isolate higher privilege processes, 

such as kernel-level processes (Ring 0) from interference from lower privilege processes.  

This separation is critical since the kernel is responsible for process management, file 

access, security, and memory management within the OS [HoB05].   In practical use, 

only Ring 0 (Kernel-mode) and Ring 3 (User-mode) are used by most OS’s. 

 Since the innermost ring, Ring 0, belongs to the kernel, exceptions must be made 

for virtualization where the hypervisor must have the highest privilege level.  This results 

in a situation where the hypervisor is considered to operate at Ring -1 (minus one), the 

kernel at Ring 0, and the user at Ring 3.  The notional existence of a Ring -1 is referred to 

as Ring Compression. 



14 

Some hardware is specifically designed to support virtualization, although 

software-only virtualization is also common.  Examples of hardware designed to support 

virtualization include AMD Virtualization (AMD-V) and Intel’s Virtualization 

Technology for the IA-32 architecture (VT-x), which both provide x86 instruction 

extensions that can be used by the hypervisor for improved efficiency and security 

[AdA07].  This is further discussed in Section 2.1.3.4. 

2.1.2.2. Hypervisor 

The hypervisor, also referred to as a “virtual machine manager” (VMM),  

abstracts, manages, and shares the underlying physical architecture with one or more 

guest OSs by presenting them with a set of virtual interfaces which constitute a virtual 

machine [NSL06].  Since the resources of the underlying physical layer are abstracted by 

the hypervisor, the hypervisor has complete control over how those resources are 

allocated to the guest OSs.  It can allocate as many or as few of the resources as its 

configuration settings and the physical limitations of the system allow.  It is even possible 

to share the physical resources of different physical machines in such a way as to have 

them provided to a VM as a virtual, single, and unified physical layer [TrH09].  

The hypervisor’s functionality is similar to how an OS manages the state of each 

of its processes.  Control is maintained by trapping (pausing execution and passing 

control to the hypervisor) whenever a privileged instruction is executed by the guest OS.  

This transfer of control within the processor is called a context switch.  The hypervisor 

services the privileged instruction, providing the illusion that the instruction is executed 

directly on the hardware, and passes control back to the guest OS [Bis02]. There are 

configurations which, due to the hypervisor’s ability to intercept all interesting events 



15 

before they reach actual hardware, make the hypervisor more privileged then the host OS.  

In such configurations, the hypervisor is considered an enhanced privileged host and may 

be described as running at Ring -1 [RoG05] [Fer08].  The hypervisor uses various 

techniques to manage and present resources to the guest OS.  Several of these techniques 

are covered in Section 2.1.3. 

2.1.2.3. Virtual Machine 

The virtual machine consists of the set of interfaces which simulate hardware and 

are supplied by the hypervisor to the guest OS.  

2.1.2.4. Guest Operating Systems 

Guest OSs run independently of each other and interact only with allocated parts 

of the underlying physical layer which comprise the virtual machine.  Since the 

hypervisor provides these parts as simulated hardware interfaces, the guest OSs usually 

execute as if they are on their own stand-alone hardware, unaware that they exist as a VM 

and are sharing resources with other guest OSs. 

2.1.3. Types of Virtualization 

Two notional virtualization configurations are shown in Figures 4 and 5.  Figure 4 

depicts multiple VMs supporting a variety of OSs and running on a single host.  Figure 5 

also depicts multiple VMs supporting a variety of OSs but in this case, the hypervisor 

utilizes the resources of a distributed physical architecture consisting of multiple physical 

machines.  Note that the abstraction of the physical layer presented by the hypervisor to 

the guest OSs makes it seem as though each VM is running directly on its own dedicated 

physical hardware.   



16 

 

Figure 4. Multiple VMs Sharing a Single Host Machine 
Adapted from [Dod10] 

 

 

Figure 5. Multiple VMs Sharing Two Host Machines 
 
Also note that it is possible for the hypervisor to reside within the native OS or beneath 

the native OS and directly on top of the underlying hardware.  This is referred to as Type 

I or Type II virtualization.  Type I virtualization is characterized by a VM which runs on 

a “bare metal” or “native” hypervisor that is implemented within or directly on the 

hardware and which controls all communication between the hardware and the guest 

machines [GrG11].  Type II virtualization is characterized by a VM which exists within a 

hypervisor that runs as an application within a host operating system environment 

[GrG11]. 



17 

Virtualization methods can be differentiated based on three characteristics: the 

location of the hypervisor (Type I or Type II), the degree of modification required for the 

guest OS to operate, and the performance impact of virtualization on the system.  From 

these characteristics, five distinct categories of virtualization are commonly identified: 

OS Virtualization, Emulation, Paravirtualization, Full Virtualization using Binary 

Translation, and Hardware-assisted Full Virtualization. 

2.1.3.1. Operating System (OS) Virtualization 

OS Virtualization, also known as “Partial Virtualization”, “Single Kernel Image”, 

and “Container-based Virtualization”, is characterized by a design that does not abstract 

the underlying native OS’s kernel or its physical resources through use of a hypervisor 

(Figure 6).  Since the guest OS and the native OS share a common kernel, they must both 

be instances of the same OS – a critical characteristic of OS Virtualization.  When 

multiple guest OSs, often referred to as “containers”, run on the same physical machine, 

they do so independently, unaware of any other guest OSs.  In this configuration, when 

one OS utilizes resources, it makes those resources unavailable to any of the other  

guest OSs [Dod10].  OS Virtualization is intended to enforce a degree of isolation 

between guest OSs while maintaining efficient use of system resources by removing the 

hypervisor emulation process between the guest and host machines [RoG05].  Use of this 

virtualization technique is primarily motivated by a desire for increased performance over 

other virtualization methods and has been demonstrated to provide up to twice the 

performance of hypervisor based systems for selected server-type workloads [SPF07].  In 

this virtualization type, a hypervisor is not used (although some sort of resource 



18 

arbitration may occur within the kernel), the guest OSs do not require modification, and 

the performance impact of virtualization on the system is minimized.  

 

 

Figure 6. OS Virtualization 
Adapted from [Dod10] 

 
Examples of OS Virtualization include the Unix chroot operation, Linux-VServer, Open 

VZ, and the FreeBSD Jail mechanism (SPF07). 

2.1.3.2. Emulation 

Emulation, also called CPU simulation, is characterized by a Type II pure 

software hypervisor which runs as an application within the host OS and translates 

instructions received from the guest OS into instructions compatible with the underlying  

 



19 

 

Figure 7. Emulation 
 
Architecture (Figure 7).  When a guest OS makes system calls to the virtualized 

hardware, the hypervisor translates those calls into instructions which are compatible 

with the underlying hardware using a process called dynamic binary translation.  These 

translated instructions are passed to host OS which relays them to the underlying 

architecture.  This process completely abstracts the physical layer, making it possible for 

the hypervisor to emulate physical features that do not actually exist, to include emulation 

of a CPU that does not match the underlying CPU [Fer08].  The chief benefit of 

emulation is the flexibility to run guest OSs that require physical hardware which may or 

may not physically exist within the system [Gol08].  This flexibility comes at a 

significant performance cost due to the overhead caused by the burden of dynamic 

translation and the added constraint that the emulator cannot directly access the hardware 

[DFL11].  A limited benefit of hardware emulation is its usefulness in providing 

backwards compatibility for older, obsolete technologies.  This is helpful for retaining 



20 

access to preserved data on legacy systems [HHK09].  Emulator examples include Bochs, 

Hydra, and QEMU [Bel05] [Fer08]. 

2.1.3.3. Paravirtualization 

Paravirtualization is characterized by a hypervisor which does not fully abstract 

the underlying physical architecture of the system.  Instead, as shown in Figure 8, it 

virtualizes some features of the physical layer while allowing the guest OS direct access 

to others.  This direct access is sometimes referred to as a hypercall.  The hypervisor 

itself resides on the hardware and is considered a Type I, “bare metal” virtualization 

architecture [Gol08].  In order for an OS to run properly on such a system, the kernel 

must be modified to interface both with the hypervisor and with those parts of the 

underlying system which it must directly access.  Device interaction relies on native 

device drivers which operate within the host kernel.  The host kernel is then responsible 

for coordination of device drivers as they are utilized by both the host and guest OSs 

[Kir07].  Such modified guest OSs are sometimes referred to as “aware” or  

“enlightened” since they have been altered and therefore can more easily detect that they  

 

Figure 8. Paravirtualization 
Adapted from [Dod10] 



21 

are running as a VM.  Since the guest OS kernel must be modified in order to make direct 

calls to the physical hardware, only those OSs which can be modified can be 

implemented on a paravirtualized system.  Closed source OSs, such as Microsoft 

Windows, cannot be paravirtualized since they are proprietary and their kernel cannot be 

modified.  Hyper-V, a Microsoft-created, hypervisor-based virtualization system, has 

features that attempt to implement paravirtualization however, due to the inability to 

modify the OS kernel, Microsoft systems still cannot be paravirtualized in the strictest 

sense of the term.  Open source OSs, such as Linux, often come with paravirtualization 

APIs which support paravirtualization.  Paravirtualization provides increased system 

performance over dynamic binary translation techniques used by emulation and full 

virtualization through use of hypercalls.  Hypercalls allow direct access to underlying 

hardware while avoiding the costs associated with trapping and interpreting every 

individual instruction.  Additionally, through use of built-in paravirtualization APIs 

within the guest OS, such systems are particularly unique in their ability to share data 

between guest OSs [Kir07] [Dod10].  Examples of paravirtualization include some 

versions of VMware, ESX, and Xen. 

2.1.3.4. Full Virtualization 

Full virtualization simulates all aspects of a physical computer such that guest 

OSs are able to run unmodified directly on the simulated physical architecture of the host 

machine (Figure 9) [Dod10].  Full virtualization is similar to emulation in that it uses 

binary translation and requires no modifications to the guest OS; however, it is different 

in that full virtualization hypervisors are Type I while emulation hypervisors are  



22 

Type II.  Full virtualization uses binary translation, hardware assisted virtualization, or a 

combination of both techniques. 

 

Figure 9. Full Virtualization and Hardware-assisted Virtualization 
 

The primary method used by full virtualization to provide the effect of a 

virtualized processor is called binary translation.  Binary translation provides on-the-fly 

translation of non-virtualizable processor instructions into equivalent virtualizable 

instructions.  This allows non-virtualizable privileged instructions to execute as if they 

are privileged and does so with negligible overhead when compared to emulation and 

paravirtualization [RoG05].  

In true full virtualization, the complete physical architecture of the underlying 

machine must be virtualized, to include all access to the CPU.  A CPU’s architecture can 

be virtualized if it supports direct execution of guest OS instructions while ensuring the 

hypervisor retains full control of the CPU [RoG05].  



23 

Up until recently, this practice was impractical for x86 processors since they were 

not designed with virtualization functionality built into the processor.  Technologies such 

as Hardware-assisted Virtualization (HAV) address this constraint by extending the 

processor to support virtualization by direct execution.   

  To enable direct execution, the processor instruction set architecture is extended 

to provide extra instructions which directly support virtualization [Kir07] [Fer08].  The 

ability to support simultaneous states for both the hypervisor and the guest OS within the 

processor is critical to HAV and requires additional processor capabilities.  Two 

examples of HAV are Intel’s VT-x technology and AMD Virtualization (AMD-V).  Both 

extend hypervisor operation into the CPU, allowing faster execution of guest OS code 

directly on the processor while maintaining the equivalency, efficiency, and control 

constraints required for virtualization [HeA11] [PoG74]. 

AMD-V offers Secure Virtual Machine (SVM) extensions which create and 

manage the virtualized and non-virtualized states (contexts) within the processor.  Also 

included is a Virtual Machine Control Block (VMCB), a memory structure which stores 

both native and virtual machine context data.  This enables two mutually exclusive modes 

of CPU access and execution for the hypervisor and guest OS.  See [MyY07] for an 

excellent discussion of AMD-V functionality specifically as it relates to HAV-R. 

Intel’s VT-x also provides two mutually exclusive modes of CPU access and 

execution: VMX root operation (host mode) and VMX non-root operation (guest mode).  

An in-memory Virtual Machine Control Structure (VMCS), similar to AMD-V’s VMCB, 

controls transitions between the two modes via two instructions: VM-Entry (transition 

from VMX root mode to non-root mode) and VM-Exit (transition from VMX non-root 



24 

mode to VMX root mode).  Figure 10 provides a state diagram depicting Intel VT-x’s 

ability to context switch based on the VM-Entry and VM-Exit commands. 

 

Figure 10. Intel VT-x Virtualization State Diagram 
 
The VMCS contains host-state and guest-state areas which store processor state 

information for each mode of operation.  This includes register values, the processor’s 

interruptability state, and how it is configured to handle non-maskable interrupts.  See 

[NSL06] for additional information on Intel VT-x Technology. 

In practice, full virtualization is currently not usually implemented as pure binary 

translation or pure HAV, rather hypervisors use a blend of both techniques to achieve the 

best possible execution performance.  Examples of full virtualization include Xen, 

VMware, VirtualBox, and Virtual PC. 

2.1.4. Nested Virtualization 

Nested virtualization describes the execution of a virtual machine within a virtual 

machine.  This capability depends on the host hypervisor’s ability to adequately provide 

virtualized hardware which supports virtualization within the guest hypervisor.  It is 

observed that, for selected hypervisors, host hypervisors which use HAV are a likely 

suitable choice for nested virtualization and that paravirtualization and binary translation 

hypervisors are likely suitable as guest hypervisors; especially when the host hypervisor 

adequately virtualizes the processor’s memory management unit [Ber10].  It is theorized 



25 

that once a HAV hypervisor has been activated, no other HAV hypervisor installed later 

can gain complete control of the system.  The first hypervisor is thought to retain ultimate 

control and therefore may have a prophylactic effect against hypervisor subversion 

[Fer08].  The extent of this potential prophylactic effect is unknown.  Additionally, recent 

nested virtualization research concludes that efficient nested virtualization is feasible but 

notes that nesting hypervisors may have a multiplicative effect on the execution time of 

selected instructions.  Most recent nested hypervisor developments have extended nested 

virtualization functionality from supporting only 32-bit innermost virtual machines to 

successfully nesting 64-bit virtual machines [BDD10]. 

2.1.5. Virtual Machine Introspection 

Virtual Machine Introspection (VMI) is the practice of using the hypervisor to 

observe the internal state of a guest OS.  This is used to analyze activity within the guest 

OS through use of a priori knowledge of the system [GaR03].  The VMI agent may 

reside within the hypervisor or outside the hypervisor and within the host OS.  When the 

VMI agent exists outside the hypervisor, it uses an application programming interface 

provided by the hypervisor to gather data about the guest OS.  VMI tools are classified as 

monitoring or intervening.  Monitoring VMI reports on targeted behaviors of the guest 

OS while intervening VMI automatically intervenes in response to a targeted behavior.  

This distinction between monitoring and intervention parallels and is related to the 

security concepts of detection and response.  To appropriately intervene, the VMI tool 

must have some pre-programmed way to interpret the behavior of the guest OS.  This 

link, between behavior and meaning, is referred to as semantic awareness [NBH08]. 



26 

2.1.5.1. Semantic Awareness 

Semantic awareness is the ability to interpret an event or behavior based on 

context and knowledge [NBH08].  As discussed earlier, the computer can be considered a 

mathematical model and an abstraction of reality.  As such, meaning is imparted solely 

by the programmer.  From the hypervisor perspective, register values, memory pages, 

disk blocks and low-level events occurring within the emulated hardware are observed 

but not easily interpreted into particular OS-specific behaviors, much less categorized as 

malicious or benign activity.  This uncertainty between the raw data which is observed by 

the hypervisor and the OS-specific contextual meaning of that data is referred to as the 

semantic gap [Dod10].  Techniques for bridging the semantic gap generally rely on 

identifying pre-defined, OS-specific data structures and using them as templates to 

dynamically interpret the internal state of the guest machine [BJW10].  This ability to 

introspect the internal state of the machine provides enhanced situational awareness over 

other external-to-the-guest machine monitoring techniques because the guest OS has little 

to no control over the ability of the hypervisor to observe the guest OS’s actions.  As 

such, hypervisors are assumed to provide a trusted platform for VMI and enhanced 

situational awareness of the guest OS.   

2.1.5.3. Forensics and Malware Analysis 

Non-virtualized forensic tools suffer from incomplete and inaccurate information 

due to two common scenarios.  The first occurs when the target machine is compromised 

and taken offline for forensics examination.  The act of taking it offline disturbs the 

internal state of the machine and obscures evidence of the attack.  The second occurs 

when forensics tools are applied to a target machine while it is experiencing a malicious 



27 

attack.  In this case, placing forensics tools on the target machine disturbs the state of the 

machine, also obscuring evidence of the attack and possibly notifying the attacker or 

malicious program that it is being monitored [NHB09]. 

VMI has particular value in the field of computer forensics where it provides 

security researchers with a presumed-to-be isolated laboratory which possesses an 

intimate introspective vantage point from which to observe malicious code as it acts on a 

target machine.  As a forensic tool, VMI offers a unique opportunity to observe the 

internal state of the machine, both during and after a malicious event, without disturbing 

the malicious program or altering data [NHB09].  In this sense, it can be considered a 

covert forensics tool [Nen08].  Virtualization-based forensics provides the added benefit 

that once malware has been executed within a virtual machine, it can almost instantly be 

reverted back to a pre-infected state without the time-consuming manual reinstallation 

which would be required to restore a native OS.  This reduces the overall time and cost of 

malware analysis and makes VMI an efficient tool for forensic examination [VPM11].  

The forensic effectiveness of VM introspection has made VM-based malware analysis 

the primary research methodology for detection and infiltration of botnets and other 

malicious code [Fer08] [San09] [VuA11] [VPM11].   

2.1.6. Benefits of Virtualization 

The benefits of virtualization can be categorized in regard to efficiency and cost 

effectiveness, flexibility, disaster recovery, and security. 

2.1.6.1. Efficiency and Cost Effectiveness 

As discussed in Section 2.1, one of the earliest motivations behind the 

development of virtualization was a desire to more efficiently utilize computational 



28 

resources [Cre81].  According to one source, many data centers have servers running at 

only 10% to 15% of total processing capacity [Gol08].  The ability of virtualization to 

dynamically share system resources among multiple guest OS’s results in greater average 

usage of the overall system since idle resources, such as unused CPU cycles, can be used 

by whichever guest OS needs them [JML10].  Through virtualization techniques, 

hardware utilization rates can be raised as high as 70% to 80% [Gol08].  Virtualization is 

also cost efficient due to reduced downtime caused by the ability to migrate live 

machines from one physical system to another without interrupting service as well as the 

ability to upgrade portions of the physical system without taking the entire system offline 

[JML10].  Finally, the need for many small servers can be mitigated by installing virtual 

servers on fewer physical systems, resulting in fewer physical machines, lower overall 

purchase cost, and reductions in required manpower, floor space, utility costs, and 

cooling requirements. 

2.1.6.2. Flexibility 

The ability of the hypervisor to control the state of the guest OSs makes it 

possible to pause, restart, shutdown, and revert VMs to a previous state [JML10].  

Additionally, in implementations where the hypervisor translates messages between the 

guest OS and underlying physical architecture, the machine itself can be easily replicated 

and transferred to any number of differently configured underlying architectures all 

without losing the ability to execute the VM [CPW09].  This makes VMs likely to stay 

compatible with future architectures as well as able to use older technologies that can be 

translated for execution on modern systems [HHK09].  Finally, virtualization enables the 

use of a wide variety of operating systems and applications on a single architecture, 



29 

making it much easier and quicker to implement new OSs and applications when 

compared to non-virtualized architectures [Gol08]. 

2.1.6.3. Disaster Recovery 

The ability to restore a virtual machine to a previous state with little to no 

availability loss in many ways captures the essence of disaster recovery.  Since the 

physical architecture is fully abstracted by the hypervisor, a virtual machine can be 

dynamically saved and then rapidly restored even if the original physical architecture has 

been completely destroyed (this assumes the VM state was copied prior to the disaster).  

Virtualization monitoring software can be configured such that, if a virtual system 

catastrophically fails, it can be automatically instantiated at another geographic location 

with minimal service interruption [Gol08]. 

2.1.6.4. Security 

With full virtualization and emulation, the guest OSs run within their own kernel.  

Since they do not directly interact with the host kernel, if a guest OS becomes infected 

with malware, it will likely stay contained within that guest OS’s virtual environment  

[RoG05].  This is because the abstraction of the underlying physical architecture by the 

hypervisor effectively isolates each guest from the host machine and all other guests.  To 

further leverage this benefit beyond simply protecting a single guest, critical applications 

and process are split among guests so that if one is compromised, other systems can 

continue to function correctly and provide a needed service [JML10].  The hypervisor 

itself provides a unique security capability through its ability to completely mediate 

interactions between the host software and the underlying hardware [GaR03]. 



30 

2.2. Hypervisors (Virtual Machine Managers) 

The following describes the particular hypervisors used in this thesis.  They are 

QEMU, VirtualBox, VMware Workstation, and VMware ESXi.  BluePill, a true 

hypervisor rootkit, is discussed in Section 2.4, Subverting the Host: HAV Rootkits. 

2.2.1. QEMU 0.9.0 

QEMU 0.9.0, The Quick EMUlator is an open source, software-based processor 

emulator which uses a read-decode-execute loop to translate instructions from those 

offered by the virtual machine to the guest OS into an instruction set compatible with the 

underlying hardware.  QEMU does not support communication between the host and 

guest machine since it is designed to emulate a stand-alone system [Fer08].  It has two 

modes of operation: user-mode and full system emulation.  User-mode emulation allows 

cross-compiled executables to run while full system emulation mode emulates a full 

system to include the corresponding hard disk image and all peripherals.  Because it runs 

as an application within a host operating system environment, it is considered a Type II 

hypervisor.  An extension for QEMU called KVM (Kernel-based Virtual Machine) exists 

which uses HAV to improve QEMU performance [KVM12].  QEMU detection 

techniques are documented in [Fer08]. 

2.2.2. VirtualBox 4.1.10 

Oracle’s VirtualBox was originally designed as a pure-software full virtualization 

hypervisor however, as of release 2.0, it also provides hardware-assisted full 

virtualization.  It supports Windows, Mac OS X, Linux, and Solaris hosts.  Because it 

uses binary translation, it can run both 32-bit systems on 64-bit machines and 64-bit 

systems on 32-bit machines, though at the risk of exceptionally high overhead for 64-bit 



31 

systems on 32-bit machines.  As of the time of this writing, VirtualBox required use of 

HAV for execution of 64-bit systems [Ora12]. 

2.2.3. VMware Workstation 8 

VMware Workstation 8 is a hosted, Type II hypervisor which supports 

simultaneous execution of multiple virtual machine environments and their 

corresponding guest OSs.  It is primarily designed to virtualize desktop OSs and is 

configurable for both binary translation and HAV full virtualization.  Trivial VMware 

Workstation detection mechanisms are documented by [Fer08].  VMware Workstation 8 

is able to virtualize the functionality of the underlying HAV processor and supports 

nested virtualization of 32-bit and 64-bit systems.   

2.2.4. VMware ESXi 5.0 

Whereas VMware Workstation is intended for desktop virtualization, ESXi 5.0 is 

a bare-metal Type I hypervisor intended for server use.  In comparison with other 

hypervisors, it is relatively thin, with a code-base footprint of less than 150 MB compared 

to 1 GB for Citrix Xen Server 5.6, 2 GB for ESX and 3 GB for Microsoft’s Hyper-V 

[VMW12].  ESXi achieves its small size by implementing its graphical user interface in a 

separate application, the vSphere client, which is used to remotely manage the hypervisor 

over a network connection (see Figure 11).  It supports virtualization of the underlying 

Intel VT-x or AMD-V HAV-enabled processor which allows it to nest HAV VMs. It 

provides this functionality for both 32-bit and 64-bit guest OSs.  It is observed that, for 

purposes of this research, ESXi exhibits characteristics which are desirable in a notional 

HAV-R. 



32 

 

Figure 11. ESXi  Hypervisor with vSphere Client 

2.3. Subverting the Hypervisor: Detect, Evade, and Escape 

In most cases, hypervisors are not designed to absolutely emulate all aspects of a 

system’s underlying physical architecture, but to emulate the underlying system good 

enough so that the guest OS can reliably interact with the host machine while meeting the 

critical virtualization design requirements of equivalency, efficiency, and control [Fer08] 

[PoG74].  Unfortunately, these requirements often ignore the unique security issues that 

occur due to virtualization, capturing only those requirements that are incidental to 

equivalent, efficient, and trusted control of the system [Fer08].  The resulting disconnect 

between virtualization’s efficiency-oriented design and its popular use as a security tool 

creates opportunities for malicious exploitation of virtualized systems.  In some cases, 

this manifests itself as malware that simply terminates itself when it detects the presence 

of a virtual machine while in others the malware attempts to hide itself by attacking the 

hypervisor and causing the system to shut down.  Perhaps most threateningly, it is 

possible for malware to escape its isolated guest OS and infect the host machine [Fer08].  

This suggests the following three categories of hypervisor subversion:  detection of the 



33 

virtual environment, evasion of detection and VM introspection, and escape of malicious 

code out of the guest machine and into the host. 

2.3.1. VM Detection 

The smallest failure of a hypervisor to perfectly simulate “native” machinery in 

support of a VM creates disparities which suggest a non-native environment.  Attackers 

that detect such disparities can alter their malware to evade and attack VMI or the VM 

environment [ZhC07].  This section addresses detection techniques used by attackers to 

detect a virtualized environment prior to compromise of the guest OS.  As such, it 

focuses on those techniques that can be performed from within Ring 3 of the guest.  

Detection techniques used by a possibly compromised host to detect the presence of a 

HAV-R are addressed in Section 2.5. 

Indicators that suggest a virtual environment are referred to as virtualization 

markers.  Several are discussed in this section, organized into the following taxonomy 

suggested by [CAM08]:  Hardware, Execution Environment, Application, and Behavioral 

Virtualization Markers. 

2.3.1.1. Hardware Virtualization Markers 

Hardware virtualization markers are unique device or driver characteristics which 

can be used to differentiate virtualized from native hardware.  This information is often 

non-privileged and is usually trivially detected by gathering information directly from a 

particular system’s hardware during a process referred to as hardware fingerprinting. 

Hardware fingerprinting uses built-in, user-level components of the standard 

operating system to query hardware settings.  This data is checked for indications of the 

existence of virtualization [LeM08].  Two trivial methods of hardware fingerprinting 



34 

using built-in features of the guest OS are Microsoft’s System Information program and 

the dmidecode command in Linux. 

Microsoft’s System Information program is accessed by simply executing 

msinfo32 from the command line or from within the Windows Run dialog box.  This 

generates a system summary report which lists hardware resources, components, software 

environment, and Internet settings data.  An example, captured from within a guest 

Windows XP Professional machine running within VMware on a Compaq Presario 

Model SR1920NX computer, is shown in Figure 12.  Note that, rather than reporting the 

true underlying physical hardware characteristics, the report provides the virtualized data 

provided by VMware, identifying the virtualized system manufacturer as VMware, Inc. 

and the virtualized system model as VMware Virtual Platform. 

 

Figure 12. Fingerprinting Windows XP Using msinfo32 



35 

The Linux dmidecode command is also run from the command line and 

provides various options for gathering specific information about the system’s 

configuration.  A particularly useful example is dmidecode -t system which 

causes the OS to report the computer’s manufacturer, product name, serial number, and 

universally unique identifier (UUID).  An example of this command executed on a Unix 

Backtrack 5, Release 1 OS running within VMware on a Compaq Presario Model 

SR1920NX is depicted in Figure 13.  Once again artifacts indicating virtualization can be 

observed within the reported system information.  

 

Figure 13. Fingerprinting Unix Using dmidecode –t system 
 

In each case, information is gathered using built-in, user-level components of the 

standard OS to query hardware characteristics and settings. 



36 

Another trivial example relies on Organizationally Unique Identifiers (OUIs) used 

to identify network interfaces.  It is known that the VMware virtual network adapter self-

identifies using a default three octet OUI, also commonly referred to as a MAC address 

prefix, that is specifically assigned to VMware-virtualized Ethernet devices.  This OUI 

can be checked by any machine by simply executing the non-privileged command 

“ipconfig /all” (MS Windows) or “ifconfig –a” (Linux) to display the MAC 

address of the ethernet adapter (Figure 14).  The OUI prefix is then checked against the 

publically-available OUI database to determine if it is known to be associated with a 

virtualization platform or a non-virtualized device [IEE11] [CAM08].   

 

Figure 14. Checking the OUI of a Unix machine 
 



37 

In the example it is observed that the ifconfig -a command reports an address for 

eth0 of 00:0c:29:69:31:ab.  A simple check of the OUI database at [IEE11] reveals that 

00:0c:29 is the UID assigned to VMware (Figure 15). 

 

Figure 15. The OUI Search Results 
 

These hardware marker detection mechanisms are trivial to detect from userland 

(Ring 3) and are integrated into many virtualization detection tools including the Doo 

functionality included within the ScoopyNG VM detection suite [Kli11]. 

2.3.1.2. Execution Environment Virtualization Markers 

Execution environment virtualization markers are characterized by memory and 

execution artifacts that occur due to the simultaneous existence of two or more 

environments (the host machine and one or more guests) which share the same physical 

resources.  Hypervisors often introduce additional functionality which is not required or 

supported during native execution and which indicates the existence of virtualization.  An 

example of this is VMware’s communication channel (Comm Channel) which is used to 

pass clipboard data and files, such as those transferred using drag-and-drop features, 

between the guest and host machine.  The VMware hypervisor accomplishes this by 



38 

augmenting the “IN” assembly instruction to handle additional functionality enabling the 

Comm Channel [Ome06].  This Comm Channel can be detected simply by attempting to 

access it using the “IN” instruction with the magic number 0x564D5868 (‘VMXh’ in 

ASCII) loaded into the EAX register, (see [LiS06] for details).  The “IN” instruction is 

privileged and, when executed natively from Ring 3 (userland), it will throw an 

exception.   However, it fails to throw an exception, the channel exists and the attacker 

assumes they are in a virtualized environment.  Furthermore, if the magic number is 

returned in the EBX register, the attacker is likely within a VMware virtualized 

environment [LiS06].  This check can be performed in as little as five lines of assembly 

code (Figure 16). 

 

Figure 16. Machine Code for Comm Channel Detection 
Adapted from [Fer08] 

 
Furthermore, use of additional special commands, such as passing the Comm Channel the 

value ‘0x0A’, causes this method to leak additional information such as the specific 

VMware version in use.   

Yet more sophisticated markers can be detected by analyzing the Descriptor 

Tables in kernel memory.  An example of this is the VM detection technique called  

“Red Pill” [Rut04].   

The Red Pill VM detection technique exploits a single, non-privileged instruction 

to access data stored within a privileged register which can indicate the existence of a 

VM.  To do this, the attacker simply calls the SIDT (Store Interrupt Descriptor Table) 



39 

instruction from within the guest OS and examines the return value.  The SIDT 

instruction is designed to return the stored address of the system’s Interrupt Descriptor 

Table (IDT).  Since most x86 processors do not support true full virtualization and 

therefore do not provide a second IDT register (IDTR) for use by the guest OS, the 

hypervisor is forced to virtualize the guest OS’s IDTR somewhere other than the real 

IDTR which is reserved for the host OS.  If the SIDT instruction is invoked from within a 

virtual machine, it will receive the address of its virtualized IDT.  When this address 

matches commonly used relocation addresses, typically higher in memory than when the 

OS is run natively, it is assumed to be operating within a virtualized environment 

[Rut04].  It was observed that on VMware VMs, the IDT is typically located at 

0xffXXXXXX, and on Virtual PC VMs, it is typically located at 0xe8XXXXXX.  

Implementations of the Red Pill technique usually conclude the existence of 

virtualization if the IDTR is greater than 0xd0000000 [CLS07].  This test is effective for 

both Windows and Linux implementations and is not vendor specific.  The technique is 

considered reliable for VMs running within a host machine with a single core processor 

however, if a multi-core processor or multiple processors are used, it is less conclusive.  

This is because within a single processor environment, the IDTR value is constant 

whereas with multiple processors (or cores) each will have its own IDT [QuS05].  There 

exist other methods, such as NoPill, and ScoopyNG that implement variations of the Red 

Pill method to detect virtualization [Ome06] [ZhC07].  Notably, NoPill relies on a similar 

algorithm but also examines the Local Descriptor Table (LDT) instead of just the IDT 

[QuS05].  ScoopyNG implements both the IDT and LDT check techniques but then goes 



40 

a step further by checking the memory location of the Global Descriptor Table (GDT) 

[LiS06] [ZhC07]. 

Virtualization markers within the execution environment can also manifest 

themselves as disparities between how illegal opcodes are handled within a virtual versus 

a native machine.  A good example was already discussed using a magic value to detect 

VMware’s Comm Channel.  Another example of this is the “Illegal Opcode Exception 

Trick” which is used to detect the existence of Virtual PC.  Rather than using the “IN” 

instruction, as VMware does, Virtual PC alters how specific illegal opcodes are handled 

and uses them to pass information between the host and guest machine (another 

communication channel).  When these illegal opcodes are executed natively, they 

generate an exception because they are undefined.  However, when executed within a 

Virtual PC guest, no exception is generated since the hypervisor processes them as 

legitimate opcodes.  An attacker needs only to execute one of Virtual PC’s special 

opcodes and detect whether or not an exception is thrown to determine if the attacker is 

within a Virtual PC guest [Fer08].  

Disparities between how illegal opcodes are handled by virtual rather than native 

machines are not limited to intentional differences such as in the Virtual PC example.  

They also manifest as unintentional implementation differences or anomalies.  Virtual PC 

provides yet another example in that the hypervisor does not seem to limit the length of 

instructions that are handed to it.  Usually, instructions over 15 bytes generate a general 

protection fault when run natively however, Virtual PC accepts such instructions without 

generating the fault, indicating that the attacker is not within a native machine [Fer08].  

Whether such implementation inconsistencies are accidental or intentional,  



41 

the altered execution behavior provides sufficient evidence of a non-native execution 

environment [CAM08]. 

Tools used to detect execution environment virtualization markers include 

VMDetect, Jerry, and checkVM [BaK10].  

2.3.1.3. Application Virtualization Markers 

Application virtualization markers include programs or executables that are 

installed within the guest OS to facilitate virtualization.   

Registry entries and services that reference an underlying hypervisor, such as 

references to VMware or VMtools, are examples of application markers that can be used 

to detect virtualization [Ome06] [CAM08].  While detection of VM-related registry 

entries and services it trivial, it should be noted that it is also relatively simple to rename 

processes and registry entries in an attempt to thwart detection [CAM08]. 

2.3.1.4. Behavioral Virtualization Markers 

Behavioral virtualization markers rely on anomalies caused by the hypervisor and 

hardware which alter some behavior within the system.  Hypervisors, which abstract, 

manage, and share the underlying physical architecture, add workload (overhead) to the 

system.  This overhead is a fundamental property of hypervisors which cannot be avoided 

since it is inherent to their function as a management agent within a system.  

Simultaneously, the system’s processor(s) have a finite capacity for processing data.  

When the overhead caused by the hypervisor is added to the workload already 

experienced by the processor, it has the potential of causing a delay, a behavioral 

anomaly within the system. 



42 

Timing-based detection uses this delay to detect virtualization [Fer08].  It does 

this by noting the time that it takes to execute a certain set of instructions a specific 

number of times on a native machine and then comparing the time it takes to execute the 

same instructions on a suspect OS with the same hardware profile.  This method relies on 

foreknowledge of how long these instructions take to execute on a native machine.  The 

execution time is then compared to the execution time on a trusted system and, given a 

large enough disparity, it can be assumed to be running within a virtualized environment 

[Fer08].  The easiest way to do this is through use of a local time source such as the Time 

Stamp Counter (TSC) register.  Local time sources within the processor present their own 

challenges since the hypervisor has complete control over their access and can 

intentionally misreport execution times to counter timing-based detection.  This and other 

behavioral detection techniques are further addressed in Section 2.5, HAV-R Detection.  

They are not further addressed in this section as they require privileged access not likely 

to be available to a malicious actor in the initial detection stage of hypervisor subversion 

and are more likely to be used by the victim to detect HAV-R after subversion. 

2.3.1.5. Detection Observations  

For the attacker, software is usually more easily changed than hardware, therefore 

markers that occur due to a particular hypervisor’s software implementation are generally 

more easily eliminated or hidden then those that are a result of a particular hardware 

implementation.  Additionally, since hypervisor detection can be considered an attack on 

a virtualized system, hypervisor designers are likely to make their hypervisor software 

increasingly transparent to the guest OS as security risks to hypervisors become more 

well known.  Those that wish to consistently detect virtualization should focus on 



43 

detection of those markers which are the most difficult to eliminate from a virtualized 

system.  Based on the survey of detection techniques discussed in this section, behavioral 

virtualization markers that occur due to hardware anomalies are the least susceptible to 

change and therefore comprise the most likely successful detection techniques. 

2.3.2. Hypervisor Evasion 

As discussed earlier, virtualization-based malware analysis has emerged as the 

primary research methodology for detection and infiltration of botnets and other 

malicious code [San09] [Dod10] [VuA11].  In response, attackers have crafted malware 

to behave differently when running within a virtual machine in order to evade detection 

and analysis [CAM08].  Malware which behaves differently when executed within a 

virtual environment is referred to as “analysis aware malware”, or “split personality 

malware” [VPM11].  In a 2008 study, more than forty percent of 6,900 malware samples 

examined altered or reduced their malicious behavior when executed within a virtual 

machine versus native execution [CAM08].  

If an attacker detects the presence of a VM and reduces the malware’s malicious 

behavior, the attacker may also attempt to subvert any possible VMI.  Such techniques 

have already been identified to hide from VMI; one example is Direct Kernel Structure 

Manipulation. 

2.3.2.1. Direct Kernel Structure Manipulation 

Subversion of VMI can be accomplished through compromising the kernel of the 

guest OS and manipulating the kernel’s internal data structures through a technique called 

Direct Kernel Structure Manipulation (DKSM).  This attack was successfully 

demonstrated against an Ubuntu guest machine that was introspected by the XenAccess 



44 

hypervisor.  Most VMI tools assume that the guest OS will use its internal kernel data 

structures in well-defined, OS-specific and predictable ways.  As discussed previously, 

these OS-specific definitions are relied upon to provide contextual meaning in order to 

bridge the semantic gap.  By attacking the assumption that the guest OS adheres to these 

definitions, an attacker can successfully obscure the true state of the machine to include 

running processes, loaded modules, and active network connections [BJW10]. 

This attack is divided into three approaches: syntax-based manipulation, 

semantics-based manipulation, and a hybrid of both approaches termed “multifaceted 

combo manipulation.”  Syntax based manipulation involves adding or removing fields 

within the internal data structures to cause them to be misidentified by the VMI tool.  

This causes the VMI tool to use the wrong template when evaluating the data structure 

producing inadvertently garbled data.  Semantics based manipulation involves 

modification of the underlying semantics of the kernel data structures so that, while the 

VMI tool identifies a given data structure, in reality, the data within that structure is being 

used differently than how it was defined and therefore will not be detected as suspicious 

by the VMI tool.  Multifaceted combo manipulation mixes the two techniques to utilize 

the best approach to a given situation [BJW10].   

2.3.2.2. Detecting VM Evasion 

Evasion by malware within the guest machine is detected through use of two 

primary strategies. 

The first strategy relies on what is already known about evasive and subversive 

malware to build a list of behaviors and binary signatures which are indicative of 

avoidance behavior.  The detection mechanism then logs all sensitive instructions found 



45 

within or generated by the suspicious binary and reports when they match the behavior 

signatures previously identified.  This is performed statically or dynamically and is 

similar to commonly used signature-based malware detection methods.  Unfortunately, its 

effectiveness is limited by what is known a priori about avoidance behavior rendering 

this method ineffective at detecting unknown virtualization and VMI evasion techniques.   

The second strategy relies on the assumption that in order to change behavior 

based on detected VMI, the malware must, at some point, make a conditional jump.  To 

exploit this, the second strategy logs all return values encountered by the potential 

malware and then reports if they affect a conditional jump later in the execution.  While 

this method suffers from a higher rate of false positives, it may reveal novel VM 

detection methods [ZhC07]. 

Both strategies are implemented in Malaware, an academic proof-of-concept 

application has been shown to be effective in detection of real-world, VM-evasive 

malware [ZhC07]. 

Once evasive malware is detected, it can be analyzed on a native machine or 

analyzed through use of techniques which attempt to trick the malware into concluding 

that it is running natively when it is, in fact, running within a VM.  The tool 

VMDetectGuard uses this technique to detect evasive malware [VPM11]. 

2.3.2.3. Virtualization as a Deterrent 

It is suggested that the propensity of malware to evade virtual environments could 

be used as a malware deterrent by signaling that a native environment is virtualized even 

when it is not [CAM08].  Such signals are trivial to implement and are as simple as 

adding one or more of the detection markers discussed in Section 2.3.1 to a system.  Such 



46 

deception is intended to repel malware attacks and could also be used to funnel attacks 

towards intentionally vulnerable systems (honeypots) that are used for malware detection 

and research.  It is also observed [CAM08] that as potential targets increasingly use 

virtualization, the motivation to create malware that can subvert virtualization also 

increases thus, as virtualization-oriented malware increases, the benefits of such a 

defensive strategy are reduced. 

2.3.3. Escaping a VM 

One of the unique characteristics of VMs is their ability to isolate the guest OS 

from the host and other guests.  If that isolation is compromised, it destroys the 

assumption that many users have about the security of their virtualized environments.  

Because the physical resources of the underlying hardware are shared between the host 

and one or more guest OSs, covert channels are possible [Bis02].  The following are two 

examples. 

In December 2005, it was discovered that VMware contained a vulnerability 

within vmnat.exe whereby the hypervisor fails to handle specially crafted “EPRT” and 

“PORT” FTP requests, enabling an attacker to overwrite the heap to create a buffer 

overflow within the host environment which could allow execution of arbitrary code 

[She05].  Additionally, in 2009 it was discovered that there were implementation bugs in 

certain SVGA 3D GPU device emulation applications which allowed memory to leak 

from the host machine to the guest via a shared buffer.  Since the guest OS can also write 

to this buffer, it was demonstrated that data written to the frame buffer could be captured 

and executed within the host machine [Kor09].  



47 

There is also a possibility that virtual machines which are allowed to interact 

directly with third party devices, such as network and graphics cards, could escape their 

host environment by compromising those devices and using them to monitor the system 

[Fer08].  A notional example of this would be compromise of a system’s off-board GPU 

and then using it to execute malicious code. 

In conclusion, it is critically important to note that virtualization is a product of 

human programming and is therefore subject to imperfections which can enable 

unexpected execution and compromise by a malicious actor.  From an attacker’s 

perspective, bugs are backdoors. 

2.4. Subverting the Host: Hardware-assisted Virtualization Rootkits 

Rootkits, in their purest form, are concerned with stealth, avoiding detection by 

the target system.  They generally achieve their stealth objective by existing at the highest 

level of privilege possible or by loading their code and hiding themselves before the 

system can detect them [Blu09].  HAV-Rs take the first approach, existing at the highest 

level of privilege possible, and use their fully trusted status to hide themselves from 

detection by the virtualized system.  Such a rootkit is difficult if not impossible to find 

using traditional malware approaches since it does not exist within the user space or the 

kernel space; rather it exists beneath them, as a bare-metal hypervisor.  As a result, 

rootkit techniques which look for kernel and user rootkit artifacts (hooking the Interrupt 

Descriptor Table or System Service Dispatch Table, patching the master boot record, 

Direct Kernel Object Manipulation, among others) are ineffective against HAV-R 

detection. 



48 

HAV-Rs are constrained to HAV-enabled processors such as those which provide 

AMD-V and Intel’s VT-x virtualization technologies.  This means that each HAV-R must 

be tailored to a specific HAV implementation within particular processor class. 

Additionally, HAV-Rs effectively invert the forensics, cyber situational 

awareness, and VMI paradigm, giving the attacker the ability to introspect and modify 

execution within the target machine and making the host OS the introspected target.   

Few HAV-Rs are publically known to exist today, two of which are the academic 

HAV-Rs BluePill and SubVirt. 

2.4.1. BluePill  

BluePill implements a novel approach to on-the-fly virtualization where the native 

machine is transitioned to a virtual machine through installation of a HAV hypervisor 

without rebooting or otherwise altering the formerly native OS.  Installation is performed 

by loading BluePill using a kernel-mode driver.  This can be problematic since current 

OSs use driver signing to avoid execution of malicious kernel drivers and bypassing these 

constraints is left to the attacker.  In practice, bypassing driver signing is possible using 

techniques which include memory injection and exploitation of a kernel security flaws, 

among others [DFL11].  The kernel driver serves only to load BluePill, not as a container 

for BluePill [MyY07].  As such, it needs only exist within the native OS long enough for 

the BluePill installation to occur.  BluePill’s significance is that it demonstrates the 

potential for a malicious hypervisor to transition the native OS into a virtualized state and 

to monitor the target OS.  Figure 17 graphically represents the following steps which are 

used to install the BluePill hypervisor [Fri08] [DFL11]. 

 



49 

 

Figure 17. BluePill Installation and Operation  
Adapted from [RuT07] 

 
 

1. Load the BluePill driver 
2. Check that BluePill is running in Ring 0 and that the appropriate HAV-

enabled hardware is present  
3. Enable Secure Virtual Machine; this causes the Secure Virtual Machine 

Enabled (SVME) flag to be set in the Extended Feature Enable Register 
(EFER) 

4. Allocate and prepare the VMCB/VMCS by cloning the entire current state of 
the native environment into the VM environment VMCB/VMCS 

5. Initialize and configure the VMEXIT handler trap based on a predetermined 
set of interrupt conditions 

6. Execute VMRUN/VMLAUNCH such that the native OS begins to execute in 
the context of a VM 

7. The native OS continues to execute until an event occurs which causes it to 
trap to the hypervisor 



50 

When a trap occurs, information about the event that caused the trap is placed into the 

VCMB/VMCS so that the hypervisor has access to it.  Traps are caused by exceptions, 

interrupts, or instruction intercepts.  When the hypervisor is ready, it returns execution to 

the formerly-native OS using the VMENTRY instruction.  The formerly-native OS 

proceeds with the next instruction in its instruction stream, oblivious that its context has 

changed [MyY07] [RuT07] [DFL11]. 

 Because BluePill exists only within memory on the processor, it cannot survive a 

system reboot without being reinstalled from the kernel.  As an academic rootkit, it 

performs very few secondary functions, the most significant of which is trapping calls the 

EFER and flipping the SVME flag to indicate that a hypervisor is not present.  BluePill 

functionality is currently limited to 64-bit Windows Vista. 

2.4.2. SubVirt 

Whereas BluePill virtualizes the host machine on the fly, the academic HAV-R 

SubVirt installs itself by manipulating the boot sequence such that it loads itself prior to 

loading the target OS.  To do this, it must be installed within persistent storage on the 

target machine prior to a reboot of the system.  This is implemented by storing the 

SubVirt code in the beginning of the first active partition. The master boot record is then 

edited to initiate SubVirt before the target OS.  On boot, SubVirt is initiated prior to the 

target OS which enables it to create the VM structures necessary to place the target OS 

within a virtualized environment.  It does this in a similar manner to BluePill in that the 

result is that the target OS executes in a virtualized context on the processor.  SubVirt 

functionality is limited to Windows XP and Linux [KCW06] [Fer08].  



51 

2.4.3. Characteristics of HAV-R 

The HAV-R must be stealthy and therefore must not only flawlessly virtualize the 

underlying hardware, it must also avoid any number of potential detection mechanisms.  

At a minimum, the following functionality should be implemented to provide a minimum 

of detection avoidance: 

• Emulation of all processor feature extensions 

• Interception of access to off-CPU local timers such as timers contained in 

the GPU 

• Time Stamp Counter (TSC) manipulation 

• Shadow paging implementation to avoid Translation Lookaside Buffer 

(TLB) profiling 

 

Additionally, the HAV-R should survive reboot, include covert communication 

functionality, and use minimal system resources [MyY07]. 

2.5. HAV-R Detection 

Since HAV relies on specific, iteratively-evolving, and well-defined virtualization 

technologies embedded within processor hardware (such as AMD-V and Intel VT-x), 

detection techniques which exploit processor behavior are among the most promising 

methods for consistent HAV-R detection.  By definition, HAV-Rs intercept and arbitrate 

communication with underlying processors and memory. Detection techniques that rely 

on direct processor and memory access must account for ways that the HAV-R might 

misreport the state of the machine.  This makes side-channel techniques, which exploit 



52 

physical and logical constraints of the system and are difficult to subvert, the most 

promising method for consistent HAV-R detection. 

2.5.1. Execution Profiling 

Execution profiling relies on detecting additional processor execution (overhead) 

caused by a hypervisor’s trapping of privileged instructions.  This is measured 

temporally, usually in milliseconds or clock cycles. 

While it is possible that software exists that virtualizes the host OS but never traps 

on any instruction, such software fails to meet the basic hypervisor requirement of 

resource control and arbitration as identified by [PoG74] and cannot be considered a true 

hypervisor.  Furthermore, such software is likely useless since it would simply permit 

uninterrupted data flow between the guest machine and hardware.  Hypervisors, by 

definition and practical application, must trap some instructions and thereby add 

execution overhead to the system.   

Timing-based execution profiling using direct access to internal processor 

features such as the time stamp counter (TSC) is mentioned in Section 2.3.1.  Other 

internal processor time sources include the high precision event timer, programmable 

interrupt timer, and advanced programmable interrupt timer.  While detection using such 

timers is possible, it is also possible for the hypervisor to alter the data reported when 

attempting to read such counters.  Both AMD-V and Intel’s VT-x offer a TSC Offset 

feature designed to obscure the impact of virtualization on the TSC by subtracting an 

offset from the TSC value before reporting it to the guest OS [MyY07].  This underscores 

the importance of using side-channel detection techniques rather than direct techniques 

that rely on information that can be arbitrated by the HAV-R.  Since the HAV-R is 



53 

designed specifically for arbitration, identification of side-channel detection techniques 

that are unlikely to be compromised is a particularly challenging and important problem. 

2.5.1.1. Timing Secure Virtual Machine Enabled Flag Checks 

The Secure Virtual Machine Enabled (SVME) flag is a parameter within the 

Extended Feature Enable Register (EFER) that is set when a HAV hypervisor is installed 

on a machine.  A quick way to check if a HAV hypervisor is installed on a system is to 

read the EFER to check if the SVME flag is set or clear.    If this flag is set and the user is 

not explicitly using HAV, a HAV-R is likely present.  Unfortunately, calls to the EFER 

are privileged and are trivially intercepted and falsified by a HAV-R.  While directly 

reading the SVME value from the EFER is not a reliable way to detect HAV-R, an 

alternative technique is to detect the delay caused by a hypervisor trapping the read EFER 

instruction.   [Rut07b] and [Fri08] demonstrate that  execution of the Read from Model 

Specific Register (RDMSR) EFER instruction takes approximately 10 clock cycles on a 

particular non-virtualized system, but takes approximately 2,000 to 10,000 clock cycles 

respectively after installation of a  HAV-R - a significant discrepancy which makes side-

channel detection of EFER trapping a promising detection strategy.  Of course, if the 

timer used exists within the processor, it is possible for the hypervisor to misrepresent the 

returned value.  For example, if the TSC is used the HAV-R could simply trap all calls to 

the TSC and return a fake value, likely through use of the TSC Offset feature which 

subtracts a static value from the TSC.  This is unlikely to provide consistently successful 

results since the HAV-R would need to generate an offset that, when subtracted from the 

value returned by the TSC (which could be in the range of 2,000 to 10,000 clock cycles) 

would be non-negative and relatively close to 10.  Furthermore, it would need to do so 



54 

without inducing additional delay to the system which would provide additional evidence 

of the HAV-R.  This is unlikely and makes checking the Secure Virtual Machine Enabled 

Flag a promising detection technique [Fri08]. 

2.5.1.2. SMP Counting 

Since it is possible to successfully cheat internal clocks, external timers and side-

channel timing mechanisms are also used for detection.  SMP Counting measures relative 

time through use of dual simultaneous processes.  In this technique, proposed by [Bar07], 

two processes are created within a symmetric multiprocessing (SMP) environment as 

close to simultaneously as possible and such that each process executes on its own 

dedicated CPU or core.  The first process serves as a counter and simply increments a 

counter until the second process completes.  The second process simultaneously executes 

one or more privileged instructions in order to force any existing hypervisor to trap.  

Once the second process completes, it notifies the first process which returns the count 

value.  If the count value is above a certain threshold, it is assumed that the process 

experienced one or more traps to a hypervisor.  This technique requires previous 

measurements of a known non-virtualized system to establish the threshold and is shown 

to be effective at detection of non-nested hypervisors [Fri08].  

2.5.1.3. Other Execution Profiling Methods 

External timing-based detection uses timing sources which are not arbitrated by 

the HAV-R to detect processing delays.  A potential source for this is the GPU of a 

graphics card which could be used to indirectly time execution of privileged instructions 

within the CPU.  One way to implement such a scheme would be to take several 

benchmark readings immediately after the initial setup of the system, when it is assumed 



55 

to be non-subverted.  Further readings would be taken periodically and continually 

afterward to assess if the execution time has increased beyond a statistically significant 

range.  If at any time this range is exceeded, the detection mechanism would report the 

possibility of overhead caused by a HAV-R.  It is still possible that instructions to the 

GPU could be intercepted by the HAV-R however, it is also likely that, in an effort to 

make the HAV-R as small as possible, arbitration of extraneous devices such as the 

graphics card, might be avoided  [MyY07].  Another example of external timing entails 

accessing a PCI device register which, on physical hardware, might normally take 

hundreds of cycles to read but, when virtualized and maintained within a processor cache, 

returns a value in a fraction of the time.  Such an anomaly in performance speed, in this 

case faster than normal, can also be used for detection [GAW07].   

An additional concern is the fidelity of measurements taken outside the processor, 

such as measurements in units of whole seconds, which require significantly more 

execution of privileged instructions within the suspect processor in order for a 

statistically significant reading to be obtained.  The uncharacteristic repetition of specific 

instructions could make such detection techniques detectable by the HAV-R which could 

counter this method by temporarily suspending its trapping operations.  This strategy, of 

uninstalling or suspending hypervisor trapping when a sustained series of privileged 

instructions are executed, is suggested by [Rut07] and is referred to as “BlueChicken”.  

The BlueChicken strategy is not without its vulnerabilities since, in order to uninstall and 

then reinstall BluePill, it must move itself from Ring -1 to at least the kernel (Ring 0) 

where it would behave as a typical rootkit and could be detected using common kernel-

level rootkit detection mechanisms.  For the detector, it is less significant whether a 



56 

HAV-R is detected within the kernel or below the kernel, detection itself is what is most 

important therefore, timing-based detection remains a viable detection technique. 

2.5.2. Translation Lookaside Buffer Profiling 

Another detection mechanism relies on the behavior of hypervisor relative to the 

Translation Lookaside Buffer (TLB).  The TLB is a fixed-size cache within the CPU that 

quickly maps (translates) virtual addresses to physical addresses.  When a CPU attempts 

to access virtual memory for the first time, it will check its TLB to see if the memory 

location is already cached.  If it is not, a situation referred to as a TLB miss, it performs 

extra work to translate the virtual address to its physical address and stores a copy of the 

pairing in the TLB.  This process of translating the virtual address to a physical address 

requires a page-table walk, which costs three physical memory accesses, the memory is 

then accessed, incurring a fourth physical memory access.  In contrast, if the memory was 

previously accessed and a TLB entry for it exists, the CPU can look up the physical 

address within the processor by referencing the TLB and access the location in just a 

single physical memory access, incurring only the cost of the TLB check and a single 

physical memory access.  This is referred to as a TLB hit and makes accessing virtual 

locations stored in the TLB roughly four times faster than accessing the same memory 

without a pre-existing TLB entry.  However, the TLB size is limited and as new locations 

are accessed, older pairings are copied over with the latest access pairings according to a 

TLB replacement policy [MoE02].  Virtualization adds complexity to the process because 

the hypervisor must provide a TLB for both the host and guest OS.  Since usually only 

one TLB cache is available on the processor, the TLB is usually flushed during context 

switches between the guest and host mode.  Even if it not flushed, it is likely that one or 



57 

more TLB entries will be overwritten while the machine is operating in the alternate 

context. 

To use the TLB to detect virtualization, the detection mechanism uses the TSC to 

calculate the time it takes to fill the TLB with new entries.  Once the TLB is full, the 

detection mechanism executes a privileged instruction that is likely to be trapped but that 

minimally alters the TLB, such as the CPUID instruction.  Upon interception by a 

hypervisor using Intel VT-x HAV, the TLB is completely flushed prior to returning the 

context back to the guest OS.  The detection mechanism simply checks for this by 

accessing the same memory as it did before.  If the time it takes to re-access the same 

memory locations is significantly less than the time it took to initially populate the TLB, 

it is likely that the TLB was not flushed when the CPUID instruction was executed and 

therefore the user is within a native OS.  However, if the time is similar to the time it 

initially took to fill the TLB, the TLB was likely flushed and there is evidence of 

virtualization [Fer08]. 

Not all hypervisors flush the TLB during a context switch.  AMD-V in particular 

uses an application specific identifier (ASID) to tag TLB entries and preserve them 

during a context switch.  This leads to an alternate from of TLB detection, TLB Hit 

Counting, which also happens to be effective for Intel VT-x systems.   

To perform TLB Hit Counting, the TLB is filled by deliberately accessing 

specific areas of memory.  Once the TLB is full, the page table entries (PTEs) for each 

location likely to be cached by the TLB are redirected without altering the TLB to point 

to a page with known “magic” values.  Next, an instruction that is likely to be trapped by 

the hypervisor is executed.  In the case of Intel VT-x, the entire TLB is flushed.  In other 



58 

cases, such a with AMD-V systems, at least one entry is likely to change since any 

existing hypervisor must read the VMCB’s exit code during the context switch which 

will alter at least one TLB entry.  Next, the same memory locations that were accessed 

during the initial filling of the TLB are accessed a second time. Since the PTEs were 

modified to point to a “magic” value, if the TLB experiences a miss, the modified PTEs 

are accessed and return a “Hit” on the “magic” values, indicating that a TLB miss has 

occurred.  The relative change in TLB hits or misses indicate the existence of a 

hypervisor [Ada07]. 

These TLB detection techniques are reliable for hypervisors that flush or 

otherwise alter the TLB during context switches.  Improvements in how HAV handles the 

TLB (such as including a second TLB for virtualization within the processor, supporting 

tagged TLBs, or altering how the VMCB is accessed) could make the TLB persistent and 

would invalidate these methods [Ber10]. 

2.6. Conclusion 

While not a new concept, the resurgence of virtual machines over the last decade 

has altered how we use computers in ways that must be carefully considered.  The 

efficiency, cost effectiveness, flexibility, disaster recovery, and security benefits provided 

by virtualization will likely continue to propel virtualization techniques into mainstream 

computing.  While these benefits are certainly worth exploiting, it is important to 

consider the potential unintended consequences that arise due to their widespread use.  

Assumptions, particularly with regard to security, have already proved to be less than 

  



59 

completely valid.  It is therefore imperative that virtualization and virtual machine 

introspection are thoroughly analyzed in order to harden virtualization’s defensive 

posture before it is exploited to the detriment of the user. 

  



60 

III. Methodology 

This chapter discusses the methodology used for this research effort.  Section 3.1 

describes the problem, goals, and hypothesis of this thesis. Sections 3.2 and 3.3 discuss 

the development of the HAV-R detection tool and obfuscation agent which are created to 

assist with the experimentation.  Sections 3.4 through 3.11 explain the system boundaries, 

system services, workload, performance metrics, system parameters, factors, evaluation 

technique, and experimental design.  Finally, Section 3.12 provides a summary of the 

methodology.  

 3.1. Problem Definition 

Virtual machine introspection (VMI) is assumed to provide a trusted platform for 

forensic inspection and behavior analysis of malware within a guest OS.  However, 

previous research demonstrates that it is possible for malware to escape from the guest 

into the host and for hardware-assisted hypervisor rootkits (HAV-R) to stealthily 

transition the native OS into a virtualized environment [Kor09] [RuT07a].  This suggests 

that hypervisor-based VMI scenarios provide an environment where it is possible for 

malware to escape the guest into the host, obtain privileged access to the processor, insert 

a thin hypervisor rootkit beneath the host, and achieve near-perfect visibility into host and 

guest.  Within such a scenario, it is not sufficient for a potential victim to simply detect 

the presence of a hypervisor, since a trusted hypervisor already exists within the system.  

Rather, the potential victim must detect the presence of a second hypervisor, in addition 

to the trusted one used for VMI.  It is therefore imperative to determine if HAV-R can be 



61 

detected within a nested virtualized environment, such as that potentially encountered by 

a VMI system subverted by a HAV-R. 

3.1.1. Goals and Hypothesis 

This research effort presents the implementation, analysis, and evaluation of a 

rootkit hypervisor detection system which exploits processor and translation lookaside 

buffer-based mechanisms to detect HAV-R within nested virtualized systems.  It answers 

the questions (1) is it possible to detect HAV-R within a nested virtualized environment 

using selected detection techniques and (2) how do different virtualization types affect 

HAV-R detection using selected techniques?  Finally, based on the selected detection 

mechanisms, likely countermeasures are implemented and evaluated for effectiveness at 

obfuscating the existence of a HAV-R.   

The detection techniques used in this research rely on detecting the overhead 

(additional workload) encountered by a system as a result of virtualization.  It is 

hypothesized that the overhead caused by a pre-existing, trusted hypervisor is sufficient 

to obfuscate the existence of a HAV-R and that, in cases where the HAV-R is detectable, 

deliberate execution of privileged instructions within the guest OS is sufficient to obscure 

the HAV-R. 

3.1.2. Approach 

The experimental approach models a VMI scenario where a user within the native 

OS uses a trusted hypervisor to introspect a guest OS containing potential malware.  This 

is a common, real-world forensics scenario where malware is likely to exist within a 

virtualized environment (Section 2.1.5.3).  It is assumed that malware within the guest 

OS has the ability to install a HAV- R beneath the native OS, causing the native OS to 



62 

transition into a virtualized environment and resulting in a nested virtualized system  

(see Figure 18).  To differentiate the virtualized native OS from the original guest OS, the 

native OS is henceforth referred to as the trusted OS since, unless a HAV-R is detected, it 

is assumed to be trusted.   

 
Figure 18. VMI Scenario Transitioned to Subverted VMI Scenario 

 
All experiments are performed from the perspective of the trusted OS which 

contains the HAV-R Detection System (HAV-R DS).  The HAV-R DS implements three 

detection techniques to identify the presence of a HAV-R.  For experimentation, various 

workload combinations are submitted to the HAV-R DS.  These workloads vary the type 

of virtualization used by the VMI scenario, the particular HAV-R installed beneath the 

trusted OS, and the use of an obfuscation agent (Cloaker) within the guest OS.  The 

HAV-R DS uses HyperScan to gather pertinent experimentation data which is used to 

determine the presence of a HAV-R within each virtualization scenario.  These results are 

evaluated for accuracy and to determine how each hypervisor, HAV-R, and the 

obfuscation agent affects HAV-R detection.  Note that the scope and conclusions of this 



63 

thesis are limited to the specific hypervisors, HAV-R detection mechanisms, and HAV-

Rs examined during this research.   

3.2. HyperScan Software Development 

The HyperScan application is created as part of this research and consists of an 

application and kernel-mode driver pair which gather and save system performance data 

used for hypervisor detection.  The HyperScan driver adapts hypervisor detection 

techniques previously implemented by Rutkowska and Fritsch and extends them to 

support the Athlon 64 X2 7750 Black Edition Dual Core 2.70 GHz processor [Rut07b] 

[Fri08].  It implements the following hypervisor detection techniques (see Section 2.5 for 

details):  

• SMP Counting 

• SVME Check Timing 

• TLB Profiling 

The user-mode application uses the driver to gather detection data and save it to a 

comma-delimited file.  It takes as input the number of desired replications and a lower 

and upper bound of randomized delay between individual tests (Figure 19).  The delay 

parameters are input in milliseconds (ms) and calculated using the C srand function 

seeded with the seconds field of the system time.  Since the particular detection 

techniques utilized in this thesis rely on detection of deviations from normal 

performance, it is desirable to minimize variation between tests on trusted systems.  Pilot 

tests on the non-subverted, trusted OS revealed that delays of 750-1000 ms resulted in the 

least variation between tests while introducing randomness to the measurement and 



64 

keeping each replication delayed by no more than a single second.  The delay of  

750-1000 ms and 200 replications are chosen as the default settings for the application 

and experimentation.  When the application is initialized, it passes instructions to the 

kernel-mode driver which performs the appropriate test and returns the resulting data to 

the user-mode application.  The results are saved to a file for analysis by the HAV-R DS.  

A screenshot of HyperScan operation is shown in Figure 20. 

 

Figure 19.  HyperScan Data Collection Process 
 

 
 

Figure 20.  HyperScan Operation with Default and Manual Settings 



65 

3.3. Cloaker Software Development 

The Cloaker software is also created as part of this research and is intended to 

obfuscate the existence of the HAV-R by interfering with the detection tests implemented 

by HyperScan.  It is thought that the most direct and likely effective way to do this is to 

implement the same techniques used by the HyperScan driver such that they compete 

with HyperScan for resources and increase the variability of the detection data, thereby 

possibly obscuring the overhead induced by the HAV-R.  As a result, Cloaker’s 

implementation is similar to HyperScan in that it consists of a user-mode application and 

kernel-mode driver pair where the Cloaker driver’s functionality is nearly identical to 

HyperScan’s detection driver.  The user-mode application simply causes the driver to 

randomly execute the same techniques implemented by the HyperScan detection driver in 

a tight loop until interrupted by a stop command from the command line.  Because the 

Cloaker application rapidly loops until stopped, it typically uses approximately 100% of 

processer resources available to it during runtime.  Cloaker operation is shown in  

Figure 21. 

 

 

Figure 21. Cloaker Operation 



66 

3.4. System Boundaries 

The System Under Test (SUT), shown in Figure 22, consists of a virtualized 

system containing a trusted (native) OS, hypervisor, guest OS, and HAV-R.  The 

component under test (CUT) is a HAV-R DS within the trusted OS.  The physical 

hardware, guest OS, and CPU HAV settings are parameters that do not vary during the 

experiment.  The hypervisor, HAV-R, and guest OS Obfuscation are all factors.  

Different combinations of workloads are submitted to the SUT and are referred to as 

virtualization scenarios. 

 

Figure 22. The System Under Test (SUT) 

3.5. System Services 

The detection system consists of three HAV-R detection methods: SMP Counting, 

SVME Check Timing, and TLB Profiling.  These three particular detection methods are 



67 

used because they rely on the processor’s hardware implementation rather than anomalies 

caused by a particular hypervisor or HAV-R implementation.  It is assumed that it is 

more difficult to change hardware than software for reasons explained in Section 2.3.1.  

See Section 2.5 for details on each method.  The possible outcomes of the HAV-R DS, as 

depicted in Figure 23, are: 

• HAV-R detected and present 

• HAV-R detected and not present (false positive) 

• HAV-R not detected and present (false negative) 

• HAV-R not detected and not present 

 

 

Figure 23. HAV-R DS Possible Outcomes 

3.6. Workload 

The virtualization scenarios which make up the workload consist of different 

combinations of the HAV-R, Hypervisor, and in-guest obfuscation.  This follows the 

model of a typical VMI scenario containing a trusted OS, hypervisor, and guest OS where 

the VMI system may or may not have been compromised by an HAV-R.   



68 

3.7. Performance Metrics 

Detection of HAV-R is based on the HAV-R’s impact on the performance of the 

system.  This performance is measured using clock cycles and by counting the number of 

TLB hits and misses.  The individual experiments are evaluated based on a binary metric, 

the ability of the HAV-R DS to successfully detect the HAV-R.  False positive and false 

negative results are considered failures while accurate detection, both detected and not 

detected, is considered success. 

3.8. System Parameters 

The system parameters include the hardware, trusted OS, guest OS, CPU HAV 

Setting, hypervisor, HAV-R, and in-guest obfuscation agent (guest obfuscation - GO). 

Factors which are also parameters are discussed in Section 3.9. 

3.8.1. Hardware 

The hardware used for experimentation consists of a HP Compaq DC5850 

Microtower with the following specifications: 

• AMD Athlon 64 X2 7750 Dual Core 2.70 GHz Processor, Black Edition 

• 786F6 BIOS version 01.09 

• 4 x 1 GB PC2-6400 RAM 

• 232 GB hard drive 

The processor includes AMD Virtualization Technology which provides Hardware 

Assisted Virtualization (HAV) operation.  The overall system is designed to meet the 

minimum requirements for simultaneous support of the selected trusted OS, hypervisors, 

guest OSs, and HAV-R’s considered for this research. 



69 

3.8.2. Trusted (Native) OS 

The trusted OS is the lowest level OS within the nested virtualized system.  The 

trusted OS used in this research is 64-bit Microsoft Windows Vista Business version 

6.0.6000 Build 6000 (no service pack). Vista is chosen for its compatibility with BluePill. 

All virtualization scenarios use Vista as the trusted OS.  Note that the trusted OS could 

also be called the host OS or native OS however, since it becomes virtualized during 

many of the experiments, it is referred to as the trusted OS to avoid confusion between it 

and the original guest OS within the original virtualized system. 

3.8.3. Guest OS 

Windows 7 Professional, 64-bit, Service Pack 1 is the guest OS for all 

experiments as it represents a current, widely-used commercial OS and a likely target for 

attackers. 

3.8.4. CPU HAV Setting 

 The CPU HAV setting is enabled for all experiments, regardless of hypervisor 

requirements.  This is because HAV must be enabled for installation of the HAV-R. 

3.9. Factors 

Factors are parameters that are varied between levels and submitted to the SUT.  

The results of varying these factors are measured by the performance metrics.  A 

summary of factors and corresponding levels used in this study is provided in Table 1.  

The factors are the hypervisor, HAV-R, and in-guest obfuscation agent.  Types within the 

hypervisor and HAV-R factor categories are mutually exclusive, e.g. BluePill or ESXi 

can be on, but not both simultaneously.  



70 

Table 1. Table of Factors 

 

3.9.1. Hypervisor 

The hypervisor is used to virtualize the guest OS and is one of the following 

types: emulation, full virtualization using binary translation, and full virtualization using 

HAV.  Four hypervisors are tested using each of these techniques with full virtualization 

using HAV represented twice.  The hypervisors and their levels are: 

• QEMU 0.9.0 (emulation), On/Off. 

• VMware Workstation 8 (full virtualization using binary translation), On/Off. 

• VirtualBox 4.1.10 (full virtualization using HAV), On/Off. 

• VMware Workstation 8 (full virtualization using HAV), On/Off. 

3.9.2. HAV-R 

The HAV-Rs used for experimentation are BluePill 0.32 (Section 2.4.1) and ESXi 

5.0, a thin, bare metal hypervisor with HAV-R-like behaviors (Section 2.2.4).  While it is 

likely that other real-world implementations of HAV-R exist, they are difficult to find, 

likely since this area of virtualization-based attack is relatively new and is seemingly not 

yet widely exploited.  The HAV-R levels are on and off. 

Type Level
QEMU (Emulation) On/Off

VMware Workstation (Binary Translation) On/Off
VirtualBox (HAV) On/Off

Vmware Workstation (HAV) On/Off
BluePill On/Off

ESXi On/Off
On/Off

Hypervisors

HAV-R

Factor

In-Guest Obfuscation



71 

3.9.3. Guest Obfuscation Agent 

A guest OS that is capable of installing an HAV-R beneath the trusted OS may 

also attempt to hide the HAV-R by anticipating detection techniques and performing in-

guest execution of privileged instructions in order to counter HAV-R detection.  This is 

modeled through the inclusion of an in-guest obfuscation agent, Cloaker, which sends 

randomized privileged instructions to the processor and actively changes fields in the 

TLB.  The guest obfuscation levels are on and off. 

3.10. Evaluation Technique 

The evaluation method is empirical measurement of a real system.  Due to the 

complexity of nested virtualized systems, this is the most practical and meaningful test 

for detection of HAV-R since it provides results derived from execution within a real 

system.   

To evaluate the ability of the HAV-R DS to detect the presence of a HAV-R, 

virtualization scenarios consisting of different combinations of factors are submitted to 

the HAV-R DS and direct measurements are obtained using HyperScan.  This data is 

used to infer the existence of a HAV-R based on changes encountered during subsequent 

measurements of the system after an initial baseline measurement is performed on a 

trusted system which does not contain a HAV-R.  Experiments are performed 

sequentially with sufficient delay between replications such that the non-subverted 

trusted system is assumed to reach a steady state with minimal variance between 

experiments.  For this research, 750-1000 ms is considered sufficient delay between 

replications based on preliminary analysis accomplished during pilot testing  



72 

(see Section 3.2).  There is also a delay of 10 minutes prior to execution of HyperScan for 

each virtualization scenario.  Pilot testing using the Windows Task Manager Performance 

Monitor revealed that a delay of 5 minutes is sufficient for the system to reach a steady 

state after a reboot of the system and once all required applications are running.  This is 

doubled to a delay of 10 minutes as a precautionary measure.  Variance is expected to be 

low due to the mechanical nature of the tests and the data is expected to be normally 

distributed.  The resulting data is analyzed using statistical analysis of variance 

(ANOVA) techniques to determine if the data gathered before and after subversion are 

statistically different. 

To perform the experiments, the following steps are taken for each virtualization 

scenario: 

1. Gather performance metrics from a non-subverted VMI system 

a. Configure the host machine with the trusted OS, hypervisor, and guest OS; 

the guest OS will remain running and is not paused or stopped during 

experimentation. 

b. Install the data collection tool, HyperScan, within the trusted OS. 

c. Reboot the machine and, after a wait of 10 minutes during which the 

system is assumed to reach a steady state, execute HyperScan to gather 

non-subverted VMI baseline data for the non-subverted VMI system.  

Save the data for later analysis. 

2. Gather performance metrics from the subverted VMI (SVMI) system 

a. Configure the SVMI system by adding a HAV-R to the non-subverted 

system resulting in a nested virtualized environment. 



73 

b. After a wait of 10 minutes, during which the system is assumed to reach a 

steady state, execute the HyperScan to gather SVMI benchmark data for 

the SVMI system.  Save the data for later analysis. 

3. Gather performance metrics from SVMI system with GO 

a. Install and execute the GO program, Cloaker, within the guest OS; note 

that the guest OS will remain running and should not be paused or stopped 

during experimentation. 

b. After a wait of 10 minutes, during which the system is assumed to reach a 

steady state, execute HyperScan to gather SVMI with Guest Obfuscation 

benchmark data for the SVMI with Guest Obfuscation system.  Save the 

data for later analysis. 

4. Repeat steps 1-3 for each hypervisor configuration to be tested. 

5. Repeat steps 1-4 for each HAV-R to be tested. 

6. Upon completion, analyze the data to determine if detectable and statistically 

significant delays are caused by the existence of a HAV-R.  Analyze the 

impact of each hypervisor and GO on HAV-R detection. 

 

The results obtained from experimentation are validated through prior knowledge of 

hypervisor and x86 architecture interaction, statistical analysis of the data, and direct 

observation of the system. 



74 

3.11. Experimental Design 

A factorial design is used to evaluate the interaction between factors.  The factors 

include the HAV-R, hypervisor, and GO, with 3, 4 and 2 levels respectively.  This results 

in 3 x 4 x 2 = 24 experiment virtualization scenarios [Figure 24].  Since GO is performed 

to hide the existence of an HAV-R, GO is not evaluated for those experiments which 

represent trusted systems used for initial baseline data collection.  This reduces the  

 

 

Figure 24. Chart of Factor Combinations (Virtualization Scenarios) 
 



75 

number of scenarios by 4 resulting in 20 virtualization scenarios.  Each of the 20 

virtualization scenarios is tested using three detection techniques, and these tests are 

repeated 200 times.  This results in 20 * 3 * 200 = 12,000 total experiments.  Consecutive 

tests are performed at semi-random intervals bounded between 0.75  

and 1 second inclusive.  Based on pilot studies, low variance and normality are assumed 

and the analysis is performed using a 95% confidence interval.  Even if the data is non-

normal, the central limit theorem states that the sampling distribution is approximately 

normal for large sample sizes (where the number of samples > 30).  Since the average 

time between tests is a fraction of a second, 200 tests are performed which provide a 

relatively large number of measurements within a small amount of time. 

3.12. Methodology Summary 

This research effort is designed to accomplish the following goals: 

• Determine if it is possible to detect HAV-Rs within a nested virtualized 

environment using selected detection techniques. 

• Explore how different virtualization techniques affect HAV-R detection within a 

nested virtualized environment. 

• Determine if in-guest obfuscation affects HAV-R detection. 

To do this end, twenty virtualization scenarios are developed using three virtualization 

types, two HAV-Rs, and two levels of GO.  Each scenario is evaluated using three 

detection techniques with 200 repetitions each.  The results are statistically analyzed 

using ANOVA techniques to determine if HAV-Rs are detectable within a nested 

virtualized environment as well as how each factor affects HAV-R detection.  



76 

IV. Analysis 

Twenty virtualization scenarios are tested using the three detection techniques of 

SMP Counting, SVME Check Timing, and TLB Profiling (referred to as SMPCOUNT, 

TIMING, and TLBHIT respectively; see Section 2.5 for a description of these detection 

techniques). 

During testing, it is discovered that the guest obfuscation (GO) tool, Cloaker, 

causes deadlock and stop errors (the “blue screen of death”) within the trusted OS during 

three of the twenty virtualization scenarios.  It is observed that the failures are not 

consistent with any particular factor, occurring during scenarios using both BluePill and 

ESXi HAV-Rs as well as configurations using emulation and HAV hypervisors.  The 

failures are investigated by modifying the Cloaker software however, no solution is 

identified and the cause remains undetermined.  It is possible that each failure occurs due 

to a unique reason and it is noted that such failures could originate within the  

guest OS, trusted OS, or within the HAV-R.  While data is unavailable for these three 

failed virtualization scenarios, the challenges encountered underscore the complexity of 

developing software designed to exploit nested virtualization. 

Of sixty virtualization environment/detection technique pairs consisting of twenty 

virtualization scenarios with three detection techniques each, only fifty-one experiments 

are successfully performed since three scenarios using three tests each are not completed 

due to Cloaker problems.  The resulting data is referenced using the following naming 

convention: <Hypervisor>_<VMI or SVMI>_<HAV-R (if present)>_<GO (if 

present)>_<Detection Technique>. A complete list of data set names is shown in Table 2.  



77 

The nine data sets which correspond to the three virtualization scenarios which are 

impossible to test are shown in bold and included in the list for completeness. 

Table 2. Experiment Data Set Labels 

 

4.1. Exploratory Data Analysis 

Each virtualization scenario experiment consists of 200 repetitions for each 

detection technique.  During initial analysis it is noted that in some cases, the 

SMPCOUNT and TIMING detection mechanisms report values of zero for particular 

experiments.  It is theorized that these results are caused by interruption of the counting 

process during the delay between when the experiment starts and when the counter first 

increments.  This is possible since the detection tool is not programmed to run at a non-

interruptible level within the trusted OS.  Avoiding interruptions during execution within 

Windows systems is usually accomplished by raising the process to dispatch level.  This 

was attempted during the software development phase of this thesis and it was discovered 

that this causes intermittent deadlock which prohibits successful testing.  In response, the 

program was allowed to execute at a lower priority level which greatly improved its 

QEMU_VMI_SMPCOUNT VBOXHAV_VMI_TIMING VMWAREBT_VMI_TLBHIT
QEMU_SVMI_BP_SMPCOUNT VBOXHAV_SVMI_BP_TIMING VMWAREBT_SVMI_BP_TLBHIT
QEMU_SVMI_ESX_SMPCOUNT VBOXHAV_SVMI_ESX_TIMING VMWAREBT_SVMI_ESX_TLBHIT
QEMU_SVMI_BP_GO_SMPCOUNT VBOXHAV_SVMI_BP_GO_TIMING VMWAREBT_SVMI_BP_GO_TLBHIT
QEMU_SVMI_ESX_GO_SMPCOUNT VBOXHAV_SVMI_ESX_GO_TIMING VMWAREBT_SVMI_ESX_GO_TLBHIT
QEMU_VMI_TIMING VBOXHAV_VMI_TLBHIT VMWAREHAV_VMI_SMPCOUNT
QEMU_SVMI_BP_TIMING VBOXHAV_SVMI_BP_TLBHIT VMWAREHAV_SVMI_BP_SMPCOUNT
QEMU_SVMI_ESX_TIMING VBOXHAV_SVMI_ESX_TLBHIT VMWAREHAV_SVMI_ESX_SMPCOUNT
QEMU_SVMI_BP_GO_TIMING VBOXHAV_SVMI_BP_GO_TLBHIT VMWAREHAV_SVMI_BP_GO_SMPCOUNT
QEMU_SVMI_ESX_GO_TIMING VBOXHAV_SVMI_ESX_GO_TLBHIT VMWAREHAV_SVMI_ESX_GO_SMPCOUNT
QEMU_VMI_TLBHIT VMWAREBT_VMI_SMPCOUNT VMWAREHAV_VMI_TIMING
QEMU_SVMI_BP_TLBHIT VMWAREBT_SVMI_BP_SMPCOUNT VMWAREHAV_SVMI_BP_TIMING
QEMU_SVMI_ESX_TLBHIT VMWAREBT_SVMI_ESX_SMPCOUNT VMWAREHAV_SVMI_ESX_TIMING
QEMU_SVMI_BP_GO_TLBHIT VMWAREBT_SVMI_BP_GO_SMPCOUNT VMWAREHAV_SVMI_BP_GO_TIMING
QEMU_SVMI_ESX_GO_TLBHIT VMWAREBT_SVMI_ESX_GO_SMPCOUNT VMWAREHAV_SVMI_ESX_GO_TIMING
VBOXHAV_VMI_SMPCOUNT VMWAREBT_VMI_TIMING VMWAREHAV_VMI_TLBHIT
VBOXHAV_SVMI_BP_SMPCOUNT VMWAREBT_SVMI_BP_TIMING VMWAREHAV_SVMI_BP_TLBHIT
VBOXHAV_SVMI_ESX_SMPCOUNT VMWAREBT_SVMI_ESX_TIMING VMWAREHAV_SVMI_ESX_TLBHIT
VBOXHAV_SVMI_BP_GO_SMPCOUNT VMWAREBT_SVMI_BP_GO_TIMING VMWAREHAV_SVMI_BP_GO_TLBHIT
VBOXHAV_SVMI_ESX_GO_SMPCOUNT VMWAREBT_SVMI_ESX_GO_TIMING VMWAREHAV_SVMI_ESX_GO_TLBHIT



78 

stability.  Since the detection tool does not run at the highest level, it is possible for other 

processes to interrupt the counter process.  If the timed process finishes and returns a 

completion signal while the timing process is interrupted, once the timing process begins 

to execute again it will immediately detect completion of the timed process and return the 

counter value which may not have incremented.  Since it is impossible for the detection 

techniques to legitimately complete within zero clock cycles, these zero values are 

considered invalid and removed from the data.  All other data, including possible outliers, 

are retained for analysis.  Table 3 provides summary statistics for all experiments 

performed. 

The values indicate that most of the data possess a relatively high standard 

deviation which indicates high variability among data elements.  This is further supported 

by the box plots in Figures 25-30 which depict the data organized by detection technique.  

For each technique, two aggregate box plot graphs are presented; the first depicts raw, 

untransformed data while the second plots the data on a logarithmic scale which 

stabilizes the variance, mutes the effect of outliers, and better reveals the differences 

between data sets.  Note that in the logarithmic box plots for each detection technique, 

the vertical distance between the non-subverted data and the other data suggests that the 

distributions are not equal.  Experiment numbers correspond to the ID column in Table 3 

and non-subverted VMI data is indicated by an asterisk. 

 

  



79 

Table 3.  Virtualization Scenario Summary Statistics 

 

ID Virtualization Scenario Name n Mean Median Std Dev
1 QEMU_VMI_SMPCOUNT 197 20.848 20.000 6.574
2 QEMU_SVMI_BP_SMPCOUNT 200 1346.205 1348.500 109.456
3 QEMU_SVMI_BP_GO_SMPCOUNT 197 1072.635 1038.000 195.130
4 QEMU_SVMI_ESX_SMPCOUNT 200 1055.280 908.000 945.303
5 QEMU_VMI_TIMING 200 214.700 213.000 21.425
6 QEMU_SVMI_BP_TIMING 200 19688.720 18337.500 2473.851
7 QEMU_SVMI_BP_GO_TIMING 200 17791.310 17680.500 670.628
8 QEMU_SVMI_ESX_TIMING 200 9144.830 6915.000 11885.690
9 QEMU_VMI_TLBHIT 200 54.100 53.500 2.736

10 QEMU_SVMI_BP_TLBHIT 200 70.030 69.000 2.950
11 QEMU_SVMI_BP_GO_TLBHIT 200 69.580 69.000 3.723
12 QEMU_SVMI_ESX_TLBHIT 200 166.095 147.000 56.928
13 VMWAREBT_VMI_SMPCOUNT 185 24.292 21.000 7.800
14 VMWAREBT_SVMI_BP_SMPCOUNT 165 519.667 482.000 134.222
15 VMWAREBT_SVMI_BP_GO_SMPCOUNT 133 759.617 543.000 1022.582
16 VMWAREBT_SVMI_ESX_SMPCOUNT 191 984.021 1033.000 371.568
17 VMWAREBT_SVMI_ESX_GO_SMPCOUNT 145 1341.876 1081.000 1409.071
18 VMWAREBT_VMI_TIMING 200 216.085 213.000 17.919
19 VMWAREBT_SVMI_BP_TIMING 200 7020.840 6126.000 9133.327
20 VMWAREBT_SVMI_BP_GO_TIMING 200 3247.645 3137.000 563.020
21 VMWAREBT_SVMI_ESX_TIMING 200 10183.840 9646.500 19950.620
22 VMWAREBT_SVMI_ESX_GO_TIMING 200 14949.620 6290.000 55053.600
23 VMWAREBT_VMI_TLBHIT 200 54.250 55.000 2.044
24 VMWAREBT_SVMI_BP_TLBHIT 200 72.410 73.000 1.957
25 VMWAREBT_SVMI_BP_GO_TLBHIT 200 71.895 72.000 3.353
26 VMWAREBT_SVMI_ESX_TLBHIT 200 220.605 260.000 78.598
27 VMWAREBT_SVMI_ESX_GO_TLBHIT 200 201.655 197.500 112.806
28 VMWAREHAV_VMI_SMPCOUNT 180 33.217 25.000 19.271
29 VMWAREHAV_SVMI_BP_SMPCOUNT 189 494.249 489.000 82.991
30 VMWAREHAV_SVMI_ESX_SMPCOUNT 185 1509.973 1287.000 1864.571
31 VMWAREHAV_SVMI_ESX_GO_SMPCOUNT 139 949.288 932.000 281.142
32 VMWAREHAV_VMI_TIMING 200 218.505 213.000 27.032
33 VMWAREHAV_SVMI_BP_TIMING 200 13376.430 6282.000 60077.060
34 VMWAREHAV_SVMI_ESX_TIMING 200 11795.740 9399.000 21475.500
35 VMWAREHAV_SVMI_ESX_GO_TIMING 200 6446.365 5636.000 2510.947
36 VMWAREHAV_VMI_TLBHIT 200 54.995 54.000 15.794
37 VMWAREHAV_SVMI_BP_TLBHIT 200 70.145 70.000 2.824
38 VMWAREHAV_SVMI_ESX_TLBHIT 200 123.345 86.000 101.454
39 VMWAREHAV_SVMI_ESX_GO_TLBHIT 200 160.570 121.500 102.871
40 VBOXHAV_VMI_SMPCOUNT 197 26.472 25.000 9.861
41 VBOXHAV_SVMI_BP_SMPCOUNT 199 531.819 489.000 171.655
42 VBOXHAV_SVMI_ESX_SMPCOUNT 182 1244.418 1191.500 244.978
43 VBOXHAV_SVMI_ESX_GO_SMPCOUNT 75 1096.160 855.000 2057.879
44 VBOXHAV_VMI_TIMING 200 216.170 213.000 15.702
45 VBOXHAV_SVMI_BP_TIMING 200 6351.200 5968.500 1335.813
46 VBOXHAV_SVMI_ESX_TIMING 200 6989.935 5497.500 7580.405
47 VBOXHAV_SVMI_ESX_GO_TIMING 200 18525.520 5417.500 178528.800
48 VBOXHAV_VMI_TLBHIT 200 53.905 54.000 2.331
49 VBOXHAV_SVMI_BP_TLBHIT 200 70.935 71.000 2.635
50 VBOXHAV_SVMI_ESX_TLBHIT 200 139.335 121.500 68.457
51 VBOXHAV_SVMI_ESX_GO_TLBHIT 200 192.405 151.500 73.669



80 

 

 

Figure 25.  Untransformed SMPCOUNT Data 

 

Figure 26.  Log Transformed SMPCOUNT Data 



81 

 

Figure 27.  Untransformed TIMING Data 

 

Figure 28.  Log Transformed TIMING Data 



82 

 

Figure 29.  Untransformed TLBHIT Data 
 

 

Figure 30.  Log Transformed TLBHIT Data 
 



83 

Box plots, along with quantile quantile plots and density plots of each data set 

further indicate that much of the data is highly skewed with several outliers (See 

Appendix H for quantile quantile and density plots not included here).  Overall, the 

results appear to consist of non-normal, skewed, and occasionally long tailed data with 

outliers.  Such data is considered non-parametric since it cannot be assumed to be 

normally distributed [GiC11].  This is surprising and invalidates earlier assumptions of 

normality expressed in Chapter III.  As a result, non-parametric statistical tools are 

employed. 

To determine if two non-parametric populations are statistically different, the null 

hypothesis that they are identical is tested using the Wilcoxon rank sum test.  This test is 

equivalent to the Mann-Whitney U test, assumes independent ordinal observations, and is 

particularly powerful for non-parametric data.  It is considered by many statisticians to be 

the best non-parametric test for location.  In instances where the two populations are 

normal, the asymptotic relative efficiency (a measure of the closeness of the selected 

procedure to a notional “best possible” procedure) is 0.9550, making it robust for both 

normal and non-parametric data [GiC11] [SaS05].  This is significant since some of the 

experimental data used in this thesis may exhibit normality though most samples are non-

parametric.  Relative to the two-sample Student’s t test, a commonly used parametric tool 

mathematically equivalent to the one-way analysis of variance test for comparison of two 

populations, the Wilcoxon rank-sum test has an asymptotic relative efficiency of, at 

minimum, 0.864 and performs better than the t test for some non-normal distributions.  

Since the t test is questionable for non-parametric data (due to its reliance on normality 



84 

and susceptibility to outliers), the Wilcoxon rank sum test is an appropriate statistical tool 

for data analysis [GiC11]. 

4.2. Detection of HAV-R within Nested Virtualized Environments 

The baseline VMI scenarios are compared with each of the SVMI scenarios using 

the Wilcoxon rank sum test.  The null hypothesis for these tests is that the baseline 

sample is less than or equal to the SVMI sample.  This hypothesis is rejected for one-

sided p-values < 0.05.   

The BluePill SVMI scenarios are examined first, and it is determined that the 

calculated p-value for all tests is < 2.2e-16.  This is extremely small and provides 

convincing evidence that the BluePill SVMI scenarios are statistically different from the 

non-subverted VMI scenarios for all detection techniques (see Table 4). 

Table 4.  Non-subverted VMI vs. BluePill SVMI 

 

The ESXi SVMI scenarios are also evaluated against the non-subverted VMI 

scenarios and yield p-values of < 2.2e-16 for all tests, providing convincing evidence that 

that the ESXi SVMI scenarios are statistically different from the non-subverted VMI 

scenarios for all detection techniques (see Table 5). 

Test Type Hypervisor

VMI 
(Control) 

Mean

VMI 
(Control)
Std Dev

SVMI-BP 
Mean

SVMI-BP 
Std Dev

VMI / SVMI-BP 
p -value*

SMPCOUNT QEMU 20.848 6.574 1346.205 109.456 < 2.2e-16
VMware Binary Translation 24.292 7.800 519.667 134.222 < 2.2e-16
VMware HAV 33.217 19.271 494.249 82.991 < 2.2e-16
VirtualBox HAV 26.472 9.861 531.819 171.655 < 2.2e-16

TIMING QEMU 214.700 21.425 19688.720 2473.851 < 2.2e-16
VMware Binary Translation 216.085 17.919 7020.840 9133.327 < 2.2e-16
VMware HAV 218.505 27.032 13376.430 60077.060 < 2.2e-16
VirtualBox HAV 216.170 15.702 6351.200 1335.813 < 2.2e-16

TLBHIT QEMU 54.100 2.736 70.030 2.950 < 2.2e-16
VMware Binary Translation 54.250 2.044 72.410 1.957 < 2.2e-16
VMware HAV 54.250 15.794 70.145 2.824 < 2.2e-16
VirtualBox HAV 54.250 2.331 70.935 2.635 < 2.2e-16

*One sided p -value



85 

 
Table 5.  Non-subverted VMI vs. ESXi SVMI 

 

 

Bar charts of the data with 95% confidence intervals validate the results and show 

that the count data for SVMI are significantly and consistently higher than the count data 

for the non-subverted VMI data (Figures 31-33).  Comparison of median values is 

appropriate due to the presence of non-parametric data.  For this same reason, the 

statistical resampling method of bootstrapping is used to generate bias-corrected and 

accelerated confidence intervals which are validated using Wilcoxon rank sum test 

confidence interval calculations [LuC00].   

Test Type Hypervisor

VMI 
(Control) 

Mean

VMI 
(Control)
Std Dev

SVMI-ESX 
Mean

SVMI-ESX 
Std Dev

VMI / SVMI-ESX
p -value*

SMPCOUNT QEMU 20.848 6.574 1055.280 945.303 < 2.2e-16
VMware Binary Translation 24.292 7.800 984.021 371.568 < 2.2e-16
VMware HAV 33.217 19.271 1509.973 1864.571 < 2.2e-16
VirtualBox HAV 26.472 9.861 1244.418 244.978 < 2.2e-16

TIMING QEMU 214.700 21.425 9144.830 11885.690 < 2.2e-16
VMware Binary Translation 216.085 17.919 10183.840 19950.620 < 2.2e-16
VMware HAV 218.505 27.032 11795.740 21475.500 < 2.2e-16
VirtualBox HAV 216.170 15.702 6989.935 7580.405 < 2.2e-16

TLBHIT QEMU 54.100 2.736 166.095 56.928 < 2.2e-16
VMware Binary Translation 54.250 2.044 220.605 78.598 < 2.2e-16
VMware HAV 54.250 15.794 123.345 101.454 < 2.2e-16
VirtualBox HAV 54.250 2.331 139.335 68.457 < 2.2e-16

*One sided p -value



86 

 

Figure 31.  Comparison of Median SMPCOUNT Data with 95% CI 
 

 

 

Figure 32.  Comparison of Median TIMING Data with 95% CI 



87 

 

Figure 33.  Comparison of Median TLBHIT Data with 95% CI 
 

In all cases, regardless of hypervisor or particular HAV-R, the data shows an increase in 

execution overhead when the machine is transitioned from a pure to a subverted VMI 

environment.  The Wilcoxon rank sum test analysis indicates that this increased 

execution is detectable and statistically convincing in all cases. 

4.3. Effects of Obfuscation (Cloaker) 

The SVMI with guest obfuscation scenarios are evaluated first against the 

baseline VMI scenarios and then against the non-obfuscation SVMI scenarios.  The first 

set of tests determine if guest obfuscation successfully conceals the HAV-R by inducing 

overhead that is not statistically different from the pure VMI environment.  The second 

tests if guest obfuscation significantly changes the overhead created by SVMI.  Both are 

evaluated using a two-tailed Wilcoxon rank sum test with the hypothesis that the 

populations are the same.  Bar charts organized by detection technique and depicting the 

median of the data along with corresponding confidence intervals are included to 



88 

graphically represent the data.  Recall that three of the virtualization scenarios are not 

completed due to incompatibility constraints.  The resulting missing data is indicated by 

asterisks in the table and manifest as missing bars in the bar graphs. 

The two-sided p-values of < 2.2e-16 provide convincing evidence that the VMI 

and BluePill and ESXi SVMI scenarios with GO are statistically different (Tables 6-7).  

This is supported by bar charts which reveal that the SVMI with guest obfuscation 

medians are significantly greater than the VMI medians in all cases (Figures 34-36). 
 

Table 6.  Analysis of VMI vs. BluePill SVMI with GO (Cloaker)

 
 

Table 7.  Analysis of VMI vs. ESXi SVMI with GO (Cloaker) 

 

Test Type Hypervisor

VMI 
(Control) 

Mean

VMI 
(Control)
Std Dev

SVMI-BP 
with GO 

Mean

SVMI-BP
with GO 
Std Dev

VMI / SVMI-BP
with GO
p -value

SMPCOUNT QEMU 20.848 6.574 1072.635 195.130 < 2.2e-16
VMware Binary Translation 24.292 7.800 759.617 1022.582 < 2.2e-16
VMware HAV 33.217 19.271 * * *
VirtualBox HAV 26.472 9.861 * * *

TIMING QEMU 214.700 21.425 17791.310 670.628 < 2.2e-16
VMware Binary Translation 216.085 17.919 3247.645 563.020 < 2.2e-16
VMware HAV 218.505 27.032 * * *
VirtualBox HAV 216.170 15.702 * * *

TLBHIT QEMU 54.100 2.736 69.580 3.723 < 2.2e-16
VMware Binary Translation 54.250 2.044 71.895 3.353 < 2.2e-16
VMware HAV 54.250 15.794 * * *
VirtualBox HAV 54.250 2.331 * * *

*Denotes data from scenarios that were not completed due to incompatability constraints

Test Type Hypervisor

VMI 
(Control) 

Mean

VMI 
(Control)
Std Dev

SVMI-ESX 
with GO 

Mean

SVMI-ESX
with GO 
Std Dev

VMI / SVMI-ESX
with GO
p -value

SMPCOUNT QEMU 20.848 6.574 * * *
VMware Binary Translation 24.292 7.800 1341.876 1409.071 < 2.2e-16
VMware HAV 33.217 19.271 949.288 281.142 < 2.2e-16
VirtualBox HAV 26.472 9.861 1096.160 2057.879 < 2.2e-16

TIMING QEMU 214.700 21.425 * * *
VMware Binary Translation 216.085 17.919 14949.620 55053.600 < 2.2e-16
VMware HAV 218.505 27.032 6446.365 2510.947 < 2.2e-16
VirtualBox HAV 216.170 15.702 18525.520 178528.800 < 2.2e-16

TLBHIT QEMU 54.100 2.736 * * *
VMware Binary Translation 54.250 2.044 201.655 112.806 < 2.2e-16
VMware HAV 54.250 15.794 160.570 102.871 < 2.2e-16
VirtualBox HAV 54.250 2.331 192.405 73.669 < 2.2e-16

*Denotes data from scenarios that were not completed due to incompatability constraints



89 

 

Figure 34.  Comparison of SMPCOUNT VMI vs. SVMI with GO Medians with 95% CI 
 

 

 

Figure 35.  Comparison of TIMING VMI vs. SVMI with GO Medians with 95% CI 



90 

 

Figure 36.  Comparison of TIMING VMI vs. SVMI with GO Medians with 95% CI 
 

Next, the SVMI with guest obfuscation scenarios are evaluated against the SVMI 

scenarios to determine the effect of guest obfuscation on the SVMI data (Tables 8-9).   

 

Table 8:  Analysis of BluePill SVMI vs. BluePill SVMI with GO (Cloaker) 

 

Test Type Hypervisor
SVMI-BP 

Mean
SVMI-BP 
Std Dev

SVMI-BP 
with GO 

Mean

SVMI-BP
with GO 
Std Dev

VMI / SVMI-BP
with GO
p -value

SMPCOUNT QEMU 1346.205 109.456 1072.635 195.130 < 2.2e-16
VMware Binary Translation 519.667 134.222 759.617 1022.582 4.36E-08
VMware HAV 494.249 82.991 * * *
VirtualBox HAV 531.819 171.655 * * *

TIMING QEMU 19688.720 2473.851 17791.310 670.628 1.35E-10
VMware Binary Translation 7020.840 9133.327 3247.645 563.020 < 2.2e-16
VMware HAV 13376.430 60077.060 * * *
VirtualBox HAV 6351.200 1335.813 * * *

TLBHIT QEMU 70.030 2.950 69.580 3.723 6.37E-02
VMware Binary Translation 72.410 1.957 71.895 3.353 7.42E-01
VMware HAV 70.145 2.824 * * *
VirtualBox HAV 70.935 2.635 * * *

*Denotes data from scenarios that were not completed due to incompatability constraints



91 

Table 9.  Analysis of ESXi SVMI vs. ESXi SVMI with GO (Cloaker)

 
 

For all scenarios, with the exception of QEMU_SVMI_BP_TLBHIT and 

VMWAREBT_SVMI_BP_TLBHIT, there is a statistically significant difference between 

the SVMI and SVMI with guest obfuscation data (p-value < 0.05).  The relative 

differences between the medians of the data are shown using bar charts for all detection 

techniques with BluePill and ESXi (Figures 37-42).  Of particular interest is that, in 

instances where a comparison is made between BluePill SVMI and BluePill SVMI with 

guest obfuscation, the medians of five out of six samples decrease in the presence of 

guest obfuscation (Figures 37-39).  This is particularly interesting since three of the five 

decreasing BluePill comparisons also have p-values < 0.05, indicating that the decrease is 

statistically significant.  ESXi provides similar results with six of nine comparisons of 

VMI to SVMI with guest obfuscation exhibiting a significant decrease (p-value < 0.05) in 

encountered overhead (Figures 40-42). This indicates that the presence of guest 

obfuscation execution (Cloaker) significantly decreases the overhead encountered by the 

detection tool running within the trusted OS when compared to non-obfuscated data in 

Test Type Hypervisor
SVMI-ESX 

Mean
SVMI-ESX 

Std Dev

SVMI-ESX 
with GO 

Mean

SVMI-ESX
with GO 
Std Dev

VMI / SVMI-ESX
with GO
p -value

SMPCOUNT QEMU 1055.280 945.303 * * *
VMware Binary Translation 984.021 371.568 1341.876 1409.071 5.16E-04
VMware HAV 1509.973 1864.571 949.288 281.142 2.61E-13
VirtualBox HAV 1244.418 244.978 1096.160 2057.879 < 2.2e-16

TIMING QEMU 9144.830 11885.690 * * *
VMware Binary Translation 10183.840 19950.620 14949.620 55053.600 2.19E-09
VMware HAV 11795.740 21475.500 6446.365 2510.947 < 2.2e-16
VirtualBox HAV 6989.935 7580.405 18525.520 178528.800 1.82E-02

TLBHIT QEMU 166.095 56.928 * * *
VMware Binary Translation 220.605 78.598 201.655 112.806 5.05E-04
VMware HAV 123.345 101.454 160.570 102.871 < 2.2e-16
VirtualBox HAV 139.335 68.457 192.405 73.669 1.56E-13

*Denotes data from scenarios that were not completed due to incompatability constraints



92 

some cases.  While this decrease is statistically significant, in none of the cases does it 

reduce the overhead such that it is not distinguishable from pure VMI. 

 

 

Figure 37.  Comparison of BluePill Median SVMI to SVMI with GO SMPCOUNT Data 
 

 

 
Figure 38.  Comparison of BluePill Median SVMI to SVMI with GO TIMING Data 

 

 

 
Figure 39.  Comparison of BluePill Median SVMI to SVMI with GO TLBHIT Data 



93 

Figure 40.  Comparison of ESXi Median SVMI to SVMI with GO SMPCOUNT Data 
 

 

 

Figure 41.  Comparison of ESXi Median SVMI to SVMI with GO TIMING Data  
 



94 

 
Figure 42.  Comparison of ESXi Median SVMI to SVMI with GO TLBHIT Data 

 

4.4. The Effect of Different Virtualization Types on HAV-R Detection 

The analysis presented in Section 4.2 provides convincing evidence that each 

SVMI BluePill and ESXi scenario is different from its corresponding VMI scenario 

regardless of which virtualization type is utilized.  Detection relies on the ability of the 

HAV-R DS to record a delay or change within the system.  Therefore, the effects of 

different virtualization types are directly related to the detectable differences captured by 

the detection techniques.  Inspection of the differences between medians (taken by 

subtracting the VMI medians from their corresponding SVMI medians) reveals no 

consistent relationship between overhead caused by a HAV-R relative to a particular 

hypervisor or virtualization type (Figures 43-45).  It is noted that BluePill with emulation 

(QEMU) is particularly vulnerable to detection by the SMP Counting and SVMI Check 

Timing detection techniques and that ESXi with binary translation (VMware Workstation 

8) is particularly vulnerable to detection by TLB Profiling relative to the other testing 



95 

techniques.  Overall, HAV-Rs are statistically detectable for all virtualization types using 

each of the selected HAV-R detection techniques.  

 

Figure 43.  Difference Between Medians (SVMI-VMI), SMPCOUNT with 95% CI 
 

 

Figure 44.  Difference Between Medians (SVMI-VMI), TIMING with 95% CI 



96 

 

Figure 45.  Difference Between Medians (SVMI-VMI), TLBHIT with 95% CI 

4.5. Summary 

A total of fifty-one unique experiments are performed consisting of two hundred 

replications each.  The resulting data contains several zero count values which are 

considered invalid and removed; all other data including outliers are retained.  The data is 

determined to be non-parametric therefore the Wilcoxon rank sum test is selected as an 

appropriate statistical analysis tool for comparison of two samples.   

First, the pure VMI scenarios are compared to the SVMI scenarios, and it is 

determined that there is convincing evidence that the SVMI scenarios are statistically 

higher than the non-subverted VMI scenarios for all detection techniques.   

Second, the pure VMI scenarios are compared to the SVMI with GO scenarios, 

and it is again determined that there is convincing evidence that the SVMI scenarios are 

statistically higher than the non-subverted VMI scenarios for all detection techniques.   

Third, the SVMI GO scenarios are tested against their corresponding SVMI 

scenarios, and it is determined that, with the exception of two scenarios, each are 



97 

statistically significantly different.  It is noted that for many of the scenarios, the impact 

of SVMI with guest obfuscation is a statistically significant decrease in encountered 

overhead.  This indicates that the presence of in-guest obfuscation significantly decreases 

the overhead encountered by the detection tool running within the trusted OS when 

compared to non-obfuscated data in some cases.  In no cases does this obfuscate the 

existence of HAV-R. 

Fourth, the effect of different virtualization types on HAV-R detection is 

evaluated, and it is observed that no virtualization type significantly impacted the ability 

of the detection techniques to determine the existence of HAV-Rs.  

Finally, it is noted that BluePill within a nested virtualized environment using 

emulation is particularly susceptible to detection by the SMP Counting and SVME Check 

Timing detection techniques, and that ESXi within a nested virtualized environment 

using binary translation is particularly susceptible to detection by TLB Profiling.  



98 

V.  Conclusions 

This chapter provides a summary of key findings and recommendations for future 

work. Section 5.1 contains an executive summary of the results, Section 5.2 gives 

recommendations for future research, and Section 5.3 provides concluding remarks.  

5.1. Results 

This research examines the detection of hardware-assisted hypervisor rootkits 

(HAV-R) within nested virtual environments.  It specifically examines the effectiveness 

of the three detection techniques of SMP Counting, SVME Check Timing, and TLB 

Profiling against detection of two notional HAV-Rs within environments using three 

types of virtualization: emulation, binary translation full virtualization, and hardware-

assisted full virtualization.  The nested virtual environments use 64-bit Windows Vista 

Business as the native OS and 64-bit Windows 7 Professional as the guest OS.  The 

hypervisors are QEMU, VMware, and VirtualBox.   

It was originally hypothesized that the overhead caused by a pre-existing, trusted 

hypervisor is sufficient to obfuscate the existence of a HAV-R and that, in cases where 

the HAV-R is detectable, deliberate execution of privileged instructions within the guest 

OS is sufficient to obscure the HAV-R.  The research goals specifically addressed by this 

research and their corresponding findings are as follows: 

 

1. Is it possible to detect HAV-R within a nested virtualized environment 

using selected detection techniques?  Yes, for all nested virtualized 

environments examined, a difference in overhead is experienced during 



99 

execution of the HAV-Rs which is statistically significant and greater than the 

overhead experienced within the non-subverted virtualized environments. 

 

2. Do different virtualization types significantly affect HAV-R detection 

using the selected detection techniques? No, of the three virtualization types 

evaluated (emulation, full virtualization using binary translation, and full 

virtualization using HAV) no significant difference in detectability is 

observed.  In all cases, the difference in overhead experienced during 

execution of the HAV-R is statistically significant and provided convincing 

evidence of the presence of a HAV-R.  It is observed that within nested 

virtualized environments using emulation, the HAV-R BluePill seems 

particularly susceptible to detection by the SMP Counting and SVME Check 

Timing detection techniques.  Furthermore, within a nested virtualized 

environment using binary translation full virtualization, the HAV-R ESXi 

seems particularly susceptible to detection by TLB Profiling.  These are 

relative increases in detectability defined as the difference in overhead before 

and after execution of the HAV-R and do not change the fact that the HAV-Rs 

are detected in all cases.  

 

3. What is the effectiveness of in-guest execution designed to obfuscate the 

existence of a HAV-R?  The chosen obfuscation technique, a variant of the 

detection tool which is intended to compete for processor resources, fails to 

successfully obfuscate the overhead caused by the HAV-R in all cases.  In 



100 

nine of fifteen cases the overhead experienced during execution of a HAV-R 

is statistically lowered during obfuscation execution.  At no time is this 

significant enough to obfuscate the HAV-R for the cases examined however, 

these results indicate that obfuscation efforts within the guest can have a 

dampening effect on the overall overhead experienced when a HAV-R is 

present. 

 

The findings disprove the original hypothesis that overhead caused by a pre-existing, 

trusted hypervisor is sufficient to obfuscate the existence of a HAV-R and that, in cases 

where the HAV-R is detectable, deliberate execution of privileged instructions within the 

guest OS is sufficient to obscure the HAV-R.  To the contrary, the results indicate that in 

cases when emulation, full virtualization using binary translation, or full virtualization 

using HAV are used as the hypervisor, the presence of BluePill and ESXi are statistically 

detectable and that in-guest obfuscation does not successfully obfuscate the existence of 

the HAV-R. 

5.2. Future Work 

The following items remain unresolved and are suggested for future work: 

• Explore the effect of guest obfuscation to determine why, in some scenarios, it 

causes a statistically significant reduction in overhead encountered by the 

detection tool.  Determine if there are situations where this significant 

reduction in overhead could result in successful HAV-R obfuscation. 



101 

• Evaluate the HAV-R detection system against HAV-R detection within nested 

virtualized environments using a paravirtualization hypervisor, such as Xen.  

This was not accomplished during this research due to incompatibility 

between BluePill, which is designed for Windows systems, and open-source 

systems required for paravirtualization. 

• Explore the functionality of registers which are poorly documented but 

included as extended functionality in HAV-enabled processors.  Identify ways 

to exploit these registers in the form of new or modified hypervisor and  

HAV-R detection techniques. 

• Integrate the statistical tests used for detection directly into the HyperScan 

application such that it provides data collection, statistical analysis, and a 

probable indication of the likeliness of HAV-R presence. 

• Extend the HyperScan detection driver to support a Unix/Linux OS. 

• Improve HyperScan such that it runs all tests at dispatch level.  It is expected 

that this will remove the preponderance of zero counts thought to result from 

interruption of the counting process and will eliminate outliers thought to 

result from interruption of the timed process. 

• Perform analysis on current malware samples to determine if they possess a 

HAV-R component. 

5.3. Concluding Remarks 

Hardware-assisted hypervisor rootkits are particularly interesting precisely 

because they are not known to be in widespread use.  It is unknown if this is because they 



102 

lack utility or if it is the result of a shortfall in detection mechanisms.  It is also likely that 

less sophisticated rootkit techniques are already overwhelmingly successful for the 

majority of attacks and therefore sufficient for the requirements of most attackers.  When 

the Sony copy protection rootkit scandal occurred in 2005, security analyst Bruce 

Schneier chastised computer security companies for failing to detect and report the 

infection, noting that the malware had existed for over a year and infected more than half 

a million computers without any detection, action, or comment from major security 

companies.  Ominously he described a deafening silence from the computer security 

industry, not before, but after the malware was publically reported [Sch08].   

Similarly, when Joanna Rutkowska introduced the BluePill hypervisor rootkit in 

2006, there was incredible interest and controversy within the computer security 

community as to its effectiveness as a potentially undetectable malware [RuT07a].  It was 

soon demonstrated to be detectable and, over the past several years, academic interest in 

this and similar HAV-Rs has waned.  Today there is a deafening silence regarding  

HAV-R research.  It is unknown to what extent the HAV-R detection mechanisms 

mentioned in this research are already implemented by existing anti-malware software 

but it is clear that traditional techniques that detect rootkit malware within the OS kernel 

are not sufficient to detect malware at the HAV hypervisor level.  Word-playing off an 

American colloquialism, it is said that you miss 100% of the malware that you fail to 

look for.  It is hoped that this thesis serves as a stepping stone towards increasingly robust 

hypervisor rootkit prevention and detection techniques. 



103 

Appendix A.  Experimentation 

  The following provides step-by-step instructions which explain how to set up and 

configure the non-subverted VMI scenarios, subverted VMI scenarios, and subverted 

VMI scenarios with in-guest obfuscation used for this research effort.  

A-1. Setup the Non-Subverted VMI Scenario and Install the HyperScan Files 

1. Install the host operating system, 64-bit Microsoft Windows Vista Business 

version 6.0.6000 Build 6000 (no service pack). 

2. Install the Hypervisor; for demonstration, VMware Workstation 8 version 8.0.0 

build 471780 is used. 

3. Install the Guest OS, 64-bit Windows 7 Professional, Service Pack 1. 

4. Prepare both the host and the guest for test kernel-mode drivers by enabling test 

signing, disabling integrity checks, and installing WinDK as explained in 

Appendix B.  Complete this step for both the host and guest OS.  Reboot both 

OSs prior to proceeding to step 5. 

5. Copy the “HyperScan” and “BluePill” folders to the C:\ location of the host 

machine and “tools” folder to the host machine’s desktop. 

6. Copy the “Cloaker” folder to the C:\ location of the guest machine, and copy the 

“Tools” folder to the guest machine’s desktop (See Figure 46). 



104 

 

Figure 46. Configuring the Host and Guest Machine: File Placement 

A-2. Create Test Certificates and Sign Drivers within the Host and Guest OS 

1. On the host machine, open an elevated WinDK command window.  Click Start > 

All Programs > Windows Driver Kits > WDK[build number] > Build 

Environments > Windows Vista and Windows Server 2008 and right click x64 

Checked Build Environment and select Run as Administrator.  Windows will ask 

for your permission, click continue. 



105 

2. Create the test certificate by navigating to the HyperScan folder and execute 

create_test_cert.bat (Figure 47). 

 

Figure 47.  Execution of create_test_cert.bat 
 

3. Sign the driver with the test certificate by executing sign_drivers.bat within the 

elevated WinDK command window (Figure 48). 

 

Figure 48.  Execution of sign_drivers.bat 
 

4. Repeat steps 2-3 within the Bluepill folder on the host machine. 



106 

5. Repeat steps 1-3 within the Cloaker folder on the guest machine which was 

copied to the C:\ drive.  Be sure to use the Windows 7 x64 Checked Build 

Environment, not the Vista one used in steps 1 and 2. 

A-3. Non-Subverted VMI Scenario Experiments 

Before proceeding with this step, you must have the host OS, hypervisor, and guest OS 

installed and configured as directed in steps A-1 to A-2. 

1. <OPTIONAL> Run DebugView if you want to see debug statements during 

driver execution.  This is not necessary for experimentation but is helpful for 

troubleshooting.  To do this, within the Tools folder, locate Dbgview.exe, right 

click on it and select “Run as Administrator”.  Ensure that you are capturing 

kernel messages by selecting the capture menu and clicking next to “Capture 

Kernel” and “Enable Verbose Kernel Output”. 

2. Start the Guest OS and minimize it so that it is still running, but will not 

encounter interference from mouse movements or other possible inadvertent 

interaction. 

3. Within the Tools folder, locate INSTDRV.exe, right click on it and select “Run as 

Administrator”.  Enter the full path and name of the detector.sys driver and click 

“Install” than “Start” (Figure 49). 

 

Figure 49. Using InstDrv to Install detector.sys 



107 

If you are using debug view, you will see the below message displayed when the 

driver successfully loads (Figure 50). 

 

Figure 50. SVM Detectors Loaded Message 
If the driver does not install successfully, verify that you copied and signed the 

driver correctly in earlier steps. 

4. From a command window, navigate to the HyperScan folder and prepare to 

execute hyperscan.exe.  hyperscan.exe takes three possible arguments: 

• Number of Replications 

• Delay Lower-bound (in milliseconds) 

• Delay Upper-bound (in milliseconds) 

If no arguments are provided, it will default to 200 replications of each detection 

technique with a random delay between experiments of 750 to 1000 milliseconds 

(0.75 to 1 second).  Figure 51 shows examples of both default and user-specified 

execution.  For this research, all experiments are performed using the default 

settings. 



108 

 

Figure 51.  HyperScan Example 
5. Wait 10 minutes for the system to reach a steady state then execute 

hyperscan.exe.  Preliminary testing showed that a wait of approximately 10 

minutes was sufficient for CPU use within the Guest and OS to reach a steady 

state for all hypervisors.  During testing, resource usage can be observed using the 

Performance tab within Windows Task Manger (Figure 52).   

 

Figure 52. Performance Manger 



109 

Note that detector.sys uses asynchronous timers which are a potential source of 

race conditions and may freeze the system.  In practice this is rare however, if the 

computer freezes during testing, a full reboot is required [RuC05]. 

6. HyperScan outputs four CSV files into the directory where the HyperScan was 

executed.  Each contains the values captured during experimentation using a 

particular technique and must be archived for further analysis.  All experiment 

results are archived in a folder labeled using the following naming convention: 

HY[qu/vm/vb/xe]_ HAV[bp/es/no]_GO[on/off] 

• HY represents the Hypervisor 

o qu: QEMU 

o vm: VMware 

o vb: VirtualBox 

• HAV represents the type of HAV-R 

o bp: BluePill 

o es: ESXi 

o no: None 

• GO represents Guest Obfuscation; on or off 

Also include in each folder a readme.txt containing a short description of the 

configuration and any anomalies encountered and a screenshot of the particular 

hypervisor implementation settings used if applicable. 



110 

A-4. Subverted VMI Scenario Experiments 

Before proceeding with this step, you must have completed A-4 and saved the 

experimentation data in an appropriately named folder and location.   

1. Install the BluePill driver on the host machine by opening InstDrv, entering the 

full patch the dbgclient.sys and clicking “Install” and then “Start” (Figure 53).   

 

Figure 53. Using InstDrv to Install dbgclient.sys 
 

2. Repeat step 1 but use the full path for the BluePill driver, newbp.sys (Figure 54). 

 

Figure 54. Using InstDrv to Install newbp.sys 
 

3. BluePill is now installed.  Repeat steps A-3, 1-6 to perform the Subverted VMI 

Scenario Experiments.  Be sure to save the experimentation data in an 

appropriately named folder and location. 



111 

A-5. Subverted VMI Scenario with Guest Obfuscation Experiments 

Before proceeding with this step, you must have completed steps A-1 to A-4 which setup 

the host and guest Oss, created test certificates, signed the drivers, and started BluePill. 

1. Install the Cloaker driver on the guest machine by opening InstDrv, entering the 

full path to cloakdriver.sys and clicking “Install” and then “Start”. 

2. Open a command window and navigate to the Cloaker folder which was placed 

on the C:\ drive. 

3. Start Cloaker by typing “Cloaker” and pressing enter.  Cloaker will continue to 

execute until you enter a letter or number and press the “Enter” key (Figure 55).   

 

Figure 55. Cloaker Execution 
 

4. Note that Cloaker takes an extreme approach to obfuscation which will make 

maximum use of guest OS resources and may cause the guest OS to appear to 

freeze.  You can check that guest obfuscation is still occurring by using the 

Windows Task Manager on the Host OS and observing the level of CPU usage 

(Figure 56). 



112 

 

Figure 56. Performance Manager 
5. Repeat steps A-3, 1-6 to perform the Subverted VMI Scenario with Guest 

Obfuscation Experiments.  Be sure to save the experimentation data in an 

appropriately named folder and location. 

6. Perform statistical analysis on the resulting data. 

  



113 

Appendix B. Windows Driver Kit Installation & Configuration 

Windows Driver Kit (WinDK) is used to compile windows drivers.  To install unsigned 

drivers on systems that use require driver signing, you must also enable test-signing and 

disable integrity checks.  Both are covered in this appendix.  

B-1. Install Windows Driver Kit (WDK) 

Windows Driver Kit is similar to the compilers used for Java or C++, only this 

one is designed specifically for Windows Device Drivers.  It is used to build and test sign 

the BluePill driver. 

1. Download the WinDK iso from http://www.microsoft.com/download/ 

en/details.aspx?displaylang=en&id=11800 

2. Burn the .iso to a CD or DVD. 

3. Install WinDK from the CD/DVD using the settings shown in Figure 57. 

 

Figure 57. WinDK Installation Settings 



114 

B-2. Enable Test-signing and Disable Integrity Checks 

1. Click Start > All Programs > Accessories and right click on Command Prompt 

and select “Run as Administrator” followed by “Continue”.  Enter the following 

two commands (Figure 58): 

bcdedit /set TestSigning on 

bcdedit /set nointegritychecks on 

 

Figure 58. Enabling Test-Signing and Disabling Integrity Checks 
 

2. Reboot the computer to complete the configuration.     

  



115 

Appendix C.  VMware Workstation 8 and Windows 7 Setup 

 The following provides step-by-step instructions on how to configure VMware 

Workstation 8 for Windows 7 installation. 

C-1. Download and Install VMware Workstation 8 

1. Download VMware Workstation 8 from the following website:  http://downloads. 

vmware.com/d/info/desktop_end_user_computing/vmware_workstation/8_0.  

This site also provides instructions regarding obtaining a license key. 

2. Execute the downloaded file and install by following the onscreen instructions. 

C-2. Create and Configure the Windows 7 Installation 

1. Open VMware Workstation 8, select “Create a New Virtual Machine”  

(Figure 59). 

 

Figure 59. Select “Create a New Virtual Machine” 



116 

2. Select “Custom” and click “Next” (Figure 60). 

 

Figure 60. Select “Custom” and Click “Next” 
 

3.  Use the “Workstation 8.0” hardware compatibility settings and click “Next” 

(Figure 61). 

 

Figure 61. Select “Workstation 8.0” and Click “Next” 
 



117 

4. Check that the install from location that matches the location of the guest OS and 

click “Next” (Figure 62). 

 

Figure 62. Check Install From Location and Click “Next” 
 

5. Fill in the guest OS product key and desired computer name and click “Next”.  

Note: for Windows installations, if you do not enter the guest product key here, 

Windows will still install (Figure 63). 

 

Figure 63. Fill in and Click “Next” 
 

  



118 

 
6. Enter the desired name of the virtual machine and click “Next” (Figure 64). 

 

Figure 64. Name the Virtual Machine 
 

7. If your host machine has more than one processor, set the number of processors to 

1 and number of cores per processor to 2.  You can also use 2 processors with 1 

core per processor.  Click “Next”.  NOTE: The HyperScan and Cloaker test  

frameworks require two cores or two processors to work correctly (Figure 65). 



119 

 

Figure 65. Processor Configuration 
 

8. Set the memory for the virtual machine to at least the minimum required for the 

guest OS and click “Next”.  For 64-bit Windows 7 the minimum required is 2048 

MB (Figure 66). 

 

Figure 66. Memory Configuration 
 



120 

9. For network type, select “Do not use a network connection” and click “Next” 

(Figure 67). 

 

Figure 67. Network Configuration 
 

10. Use the recommended setting for the I/O Controller type and click “Next”  

(Figure 68). 

 

Figure 68. I/O Controller Configuration 
 



121 

11. Select “Create a new virtual disk” and click “Next” (Figure 69). 

 

Figure 69. Create a New Virtual Disk 
 

12. Select the SCSI virtual disk type and click “Next” (Figure 70). 

 

Figure 70. Select a Disk Type 
 



122 

13. Allocate 30 GB of disk space for the guest OS, select “Split virtual disk into 

multiple files” and click “Next” (Figure 71). 

 

Figure 71. Specify Disk Capacity 
 

14. Keep the default name for the disk file and click “Next” (Figure 72). 

 

Figure 72. Specify the Disk File 
 



123 

15. Review the installation settings, click “Customize Hardware” and click “Finish” 

(Figure 73).  

 

Figure 73. Select “Customize Hardware” 
 

16. Click on “Processors” and within the “Virtualization engine” field and do one of 

the following: 

• Set up a software-only Full Virtualization hypervisor by selecting “Binary 

Translation” and checking the “Disable acceleration for binary translation” 

box (Figure 74). 



124 

 

Figure 74. Full Virtualization using Binary Translation Configuration 
 

 
• Set up a Hardware-assisted Full Virtualization hypervisor by selecting “Intel 

VT-x/EPT or AMD-V/RVI” and checking the “Virtualize Intel VT-x/EPT or 

AMD-V RVI” box (Figure 75). 

 

When configured, close the window to return to the installation overview. 



125 

 

Figure 75. Hardware-assisted Full Virtualization Configuarion 
 

NOTE: Do not simply run experiments with one virtual machine configuration, 

change the configuration settings, and use the same guest OS for a second set of 

experiments.  Instead, to mitigate any possible configuration discrepancies caused by 

loading an OS that was created using one virtual machine configuration and using it 

on a changed virtual machine configuration, each guest OS must be installed within 

its own custom-configured virtual machine. 

  



126 

 

17.  Click “Finish” to start the virtual machine and begin installing the guest OS 

(Figure 76). 

 

Figure 76.  Select “Finish” to Complete the Virtual Machine 
 

 

 

  



127 

Appendix D.  VirtualBox Installation and Windows 7 Setup 

 The following provides step-by-step instructions for how to install VirtualBox on 

the host OS.  Virtual Box version 4.1.10 is used for this installation. 

D-1. Download and Install VirtualBox 

1. Download VirtualBox 4.1.10 for Windows hosts from the following website:  

https://www.virtualbox.org/wiki/Downloads.  VirtualBox provides extension 

packs for improved usability however,  none are used for experimentation beyond 

what is installed by a default VirtualBox installation.. 

2. Within the host machine, locate the downloaded installation file and double click 

it.  When prompted, click next to continue. 

3. At the custom setup screen, there is no need to change any settings; click next 

(Figure 77). 

 

Figure 77. Custom Setup 



128 

4. Continue installation, clicking next or continue as prompted, when finished, select 

“Start Virtual Box when finished” and click finish. 

D-2. Create and Configure the Virtual Machine 

18. Within VirtualBox, click “New” to create a new Virtual Machine and follow the 

on-screen prompts (Figure 78). 

 

Figure 78. Create a New Virtual Machine 



129 

19. When prompted for Memory, allocate at least the minimum required for the guest 

OS, for 64-bit Windows 7 the minimum required is 2048 MB (Figure 79). 

 

Figure 79. Memory Allocation 
 

20. When prompted to create a Start-Up Disk, select create new hard disk (Figure 80). 

 

Figure 80. Virtual Hard Disk 
 



130 

21. Within the virtual disk creation wizard, select VDI for the file type (Figure 81). 

 

Figure 81. Select File Type 
 

22. Select Dynamically Allocated for the Virtual Disk Storage Details (Figure 82) 

 

Figure 82. Select Drive Allocation Type 



131 

23. For the Virtual disk file location and size, use at least the minimum required for 

the guest OS, in this case 20 GB for 64-bit Windows 7 (Figure 83). 

 

Figure 83. Allocate Virtual Disk Location and Size 



132 

24. At the summary window, select “Create” to create your virtual machine  

(Figure 84). 

 

Figure 84. Virtual Disk Summary Window 



133 

25. Double click on your newly created VM to start the virtual machine and start the 

First Run Wizard.  Follow the onscreen instructions to install the OS  

(Figures 85-86). 

 

Figure 85. Double Click Win7 to Start the Virtual Machine 
 

 

Figure 86. Welcome to First Run Wizard 



134 

26. If you encounter the following error message (Figure 87) within the VirtualBox 

Manager, click Settings -> System and check “Enable IO APIC”.   

 

Figure 87. Windows Boot Manager Unexpected Error 
 

Additionally, if you encounter the following error (Figure 88), enter the following 

command within a command shell and press enter: 

set VBOX_HWVIRTEX_IGNORE_SVM_IN_U SE=true 

 

Figure 88. Hardware Acceleration Error Message 



135 

Finally, within the processor tab, you may also want to Enable PAE/NX to enable 

Physical Address Extension of the host CPU depending on your experimental 

configuration (Figure 89). 

 
Figure 89. Enable PAE/NX 

  



136 

Appendix E.  QEMU Setup and Windows 7 Installation 

 The following provides step-by-step instructions for how to install QEMU on a 

Windows system followed by installation of Windows 7 within the emulated 

environment.  QEMU user documentation can be accessed here: http://qemu.weilnetz.de/ 

qemu-doc.html. 

E-1. Setup QEMU 

1. Download QEMU from http://www.h7.dion.ne.jp/~qemu-win/.  For this example, 

the file named qemu-0.9.0-windows.zip is used.   

2. Unzip QEMU to your C:\ drive.  There is no requirement to install QEMU. 

3. Obtain the latest BIOS configuration file by downloading the Bochs x86 PC 

emulator v. 2.5.1 from http://sourceforge.net/projects/bochs/files/bochs/2.5.1/.  

The file is named “Bochs-2.5.1-msvc-src.zip”.  Unzip Bochs and locate the file 

named “BIOS-bochs-latest” in the bochs-2.5.1\bios folder.  This file will 

replace the bios.bin file within QEMU.  Copy the file from Bochs to C:\qemu-

0.9.0-windows\qemu-0.9.0-windows and rename it bios.bin.  This will 

overwrite the original bios.bin file and replace it with a newer version that 

supports 64bit operating systems.       

E-2. Create Blank Disk Image and Install Windows 7 

1. Open a command window and navigate to the unzipped QEMU folder. 

2. Create a blank qcow2-formatted, 20 GB disk image using the following command 

(Figure 90): 

qemu-img create –f qcow2 win7.img 20G 



137 

 

Figure 90. Create the Blank Disk Image 
3. Insert the Windows 7 installation CD 

4. Boot the virtual machine off the Windows 7 Installation Disk using the following 

command: 

qemu-system-x86_64 –m 1280 –L c:\qemu-0.9.0-

windows\qemu-0.9.0-windows –hda win7.img –cdrom D: -

boot d 

 

Figure 91.  Boot the Virtual Machine for Installation of Windows 7 
This starts an x86 64bit emulated environment and passes the following 

arguments: 

-m   Allocates memory, in this case 1280 Bytes 

-L  Sets the directory for the BIOS, VGA BIOS and keymaps. 

-hda  Specifies the image file 

-cdrom  Designates the designated drive as the guest cd drive.  

 

IMPORTANT:  The following notes may be helpful: 

• If you encounter a “STOP Error ‘0x000000A5’” message upon installation of 

64-bit Windows 7, verify B1 step 3 was completed and that the –L path points 

to the location of the replaced bios.bin file.   



138 

• If installation halts, the VM can be restarted by pressing alt-tab-2 to access the 

QEMU monitor and then entering the command system_reset.  To 

transition back to the QUI, press alt-tab-1. 

• If after being prompted during the windows installation for “Where do you 

want to install Windows?” you receive an error message of “Windows is 

unable to install to the selected location. Error: 0x80300024”, delete the 

win7.img file created earlier and restart at step B-2. 

• An alternate way to create and boot a Windows 7 image is to create the 

windows image using VirtualBox (see Appendix D).  Once you have installed 

Windows 7 in VirtualBox, install any software and make any configuration 

changes that you will need for experimentation then shut down the Windows 7 

virtual machine in VirtualBox.  Within a command shell window, navigate to 

where the VirtualBox VDI image is saved, this should be 

“C:\Users\<computer name>\VirtualBox VMs\Win7\”.  Within this folder, 

you should also note VBoxManage.exe (if not here, it will likely be found in 

“Program Files\Oracle\VirtualBox”).  You will use the VBoxManage.exe 

application to convert the Win7.VDI image to a raw .img file that can be 

booted by QEMU.  To do create the raw .img file, enter the following 

command (Figure 92): 

VBoxManage clonehd –format RAW <original image - 

win7.vdi> <destination image - win7.img> 

 



139 

 

Figure 92. Clone Hard Disk 
 

Note that both win7.vdi and VBoxManage are in the same directory in this 

example.  Once this command is complete, locate the newly-created win7.img 

file and copy it to your QEMU folder.  Now use the command in step 7 to 

boot the Windows 7 virtual machine. 

5.  After Windows 7 is successfully installed, verify that KQemu is not enabled 

using the following command from the QEMU monitor: 

info kqemu 

If it is running, use the following command to disable it, placing QEMU in pure 

emulation mode:  

-no-kqemu  

Note: the following command enables KQEMU and places QEMU in Full 

Virtualization mode: 

 -kernel-kqemu  

If attempting to replicate work contained within this thesis, only pure emulation 

mode (no kqemu) should be used. 

6. Note Following commands: 

savevm <name> Save the virtual machine tagged as <name>.  



140 

loadvm <name> Load the virtual machine tagged as <name>From the 

command line this can be done using: 

 -loadvm name 

info snapshots  Requests a list of available virtual machine images 

quit or q  Quits QEMU 

7. To start (boot) the Windows 7 virtual machine on a 64 bit system, within a 

command shell, navigate to the QEMU folder on the C:\ drive and use the 

following command (Figure 93): 

qemu-system-x86_64 –m 1380 –L . –hda win7.img –cdrom 

D: -boot c 

 
Figure 93. Boot the Windows 7 Virtual Machine 

  



141 

Appendix F.  BluePill Installation on Windows Vista 64 

 The following provides step-by-step instructions for how to install BluePill v.0.32 

as released by Invisible Things Lab.  For installation, you must be running Windows 

Vista 64 on a processor that supports either Intel VT-x or AMD-V.  Additionally, you 

must enable virtualization within the BIOS.   

To install BluePill, the driver signing constraints of Windows Vista must be 

addressed.  Windows Vista 64 requires that all drivers are digitally signed before they are 

allowed to execute.  Within a real-world HAV-R attack scenario, this is one of the 

challenges which must be overcome for installation within a targeted system.  Within an 

academic or development environment, it is possible to circumvent this requirement 

through use of test signing.  Test-signing uses a test certificate to allow developers to 

fully test their code to ensure intended operation before obtaining a real certificate 

[MSN12]. 

F-1. Enable Test-Signing, Disable Integrity Checks, and Install WinDK 

1. Enable Test-Signing, Disable Integrity Checks, and install WinDK as detailed in 

Appendix B. 

F-2. Build the BluePill Driver 

1. Copy nbp-0.32-public.zip to your computer and unzip the files.  It may be easiest 

to copy the unzipped files directly onto the c:\ drive.  Note that this release 

provides three components: 

• nbp-0.32-public which contains newbp.sys, the BluePill driver. 



142 

• dbgclient which provides a communication channel through use of  a 

driver to enable BluePill to communicate with the target system 

• bpknock which is used to verify that BluePill is installed and running. 

2. Open an elevated WinDK command window.  Click Start > All Programs > 

Windows Driver Kits > WDK[build number] > Build Environments > Windows 

Vista and Windows Server 2008 and right click x64 Checked Build Environment 

and select Run as Administrator.  Windows will ask for your permission; click 

continue. 

3. Navigate to the unzipped nbp-0.32-public folder 

4. Build newbp.sys by opening the subdirectory labeled nbp-0.32-public and 

executing the build command as shown in Figure 94.  Repeat this process for the 

dbgclient subdirectory and proceed to the next step. 

 

Figure 94. BluePill Build Example 
 

Note: Due to dependencies built into this particular release of BluePill, both dbgclient 

and nbp-0.32-public must be built and dbgclient.sys must be installed and running 

newbp.sys is started or newpb.sys will fail. 

F-3. Create a Test Certificate 

You must associate each BluePill driver with a test certificate. To do this:  



143 

1. Open an elevated WinDK command window and enter following command 

(Figure 95): 

makecert -$ individual -r -pe -ss "BLUEPILL" -n 

CN="BLUEPILL" BLUEPILL.cer 

 

Figure 95. Test Certificate Creation, makecert Command 
This passes makecert the following arguments: 

-$ The signing authority of the certificate <individual:commercial> 

-r Creates a self-signed certificate with the same issuer and subject name 

-pe Marks certificate’s private key as exportable to the signing machine 

-ss The certificate store name that stores the test certificate, “BLUEPILL” 

-n The certificate subject’s name, “BLUEPILL” 

BLUEPILL.cer The certificate’s output name 

 

2. Verify that this was successful by referencing the certificate manager.  To do this, 

type certmgr.msc in the command window.  You can then click on the 

BLUEPILL folder > Certificates to observe the BluePill certificate which was just 

created.  If you open the certificate by clicking it, you will note that the certificate 

is not yet trusted (Figure 96). 

 



144 

 

Figure 96. Certificate Manager 

F-4. Install the Test Certificate in the Trusted Root Certification Store 

Enter the following command to install the test certificate in the Trusted Root 

Certification Authorities Certificate Store (Figure 97). 

certmgr /add BLUEPILL.cer /s /r localMachine root 



145 

 

Figure 97. Add Test Cert to Trusted Root Store 
This passes certmgr the following arguments: 

/add Adds the certificate to the specified root store; note that the file name 

containing the certificate is BLUEPILL.cer 

 /s Specified that the certificate is to be added to a system store 

/r Specifies the system store location <currentUser:localMachine> as root 

Note that, if you refresh the certmgr.msc, the certificate is now trusted since you 

now have a trusted key that corresponds to this certificate (Figure 98). 

 

Figure 98. Certificate Manager 



146 

Also, if you check the Trusted Root Certification Authority folder, BLUEPILL is shown 

as one of the certificates (Figure 99). 

 

Figure 99. Trusted Root Certification Authority Folder 

F-5. Embedded Sign the BluePill newbp.sys Driver 

1. Navigate to the folder which contains the newbp.sys driver or prepend newbp.sys 

with the absolute path to the .sys file.   

2. Enter the following command to use the certificate to sign the BluePill driver 

(Figure 100): signtool sign /a /v /s “BLUEPILL” /n 

“BLUEPILL” newbp.sys 

This passes certmgr the following arguments: 

/a selects the best cert automatically (in case multiple certs were created due 

to input errors earlier in the process) 

 /v Print verbose success and status messages 

/s Specifies the store to open when searching for the certificate  



147 

 

Figure 100. Sign the BluePill Driver 
 

Finally, verify that it is correctly signed using the following command: 

signtool verify /pa /v newbp.sys 

This passes signtool the following arguments: 

/pa Use the default authenticode verification policy 

 /v Print verbose success and status messages 

 

Figure 101. Signtool Verification 
  



148 

 

3. Repeat this embedded signing process for dbgclient.sys.  Use the following 

command: 

signtool sign /a /v /s “BLUEPILL” /n “BLUEPILL” 

dbgclient.sys 

F-6. Start the BluePill Driver 

To start the drivers, use InstDrv.exe.  To run, simply download InstDrv.exe to your 

desktop.  Right click and select “Open as Administrator”. 

1. Start the dbgclient.sys driver by entering the entire path name to the driver and the 

driver name.  Click Install then Start (Figure 102). 

 

Figure 102. Installing the BluePill dbgclient.sys Driver 
 

2. Start the newbp.sys driver by entering the entire path name to the driver and the 

driver name.  Click Install then Start (Figure 104). 

 

Figure 103. Installing the BluePill newbp.sys Driver 
 



149 

BluePill is now running, and the formerly native OS is running in within a virtualized 

environment.  To verify this, use the bpknock program by simply executing the command 

bpknock 0xbabecafe (see Figure 105).   

 

Figure 104. bpknock.exe Before and After Installation of BluePill 
 

A tool such as DebugView which captures debug statements can also be used to capture 

messages sent to the debugger upon execution (see Figure 106).  Note that you must have 

DebugView running and capturing before BluePill is installed.  If you encounter errors 

during BluePill installation, DebugView provides insight into debug statements which 

may be helpful.  Note: A common error is forgetting to enable virtualization within the 

BIOS before BluePill installation. 

 

Figure 105. DebugView Showing Successful BluePill Installation 



150 

 
Appendix G.  ESX Installation 

 The following provides step-by-step instructions for how to install and configure 

ESXi 5.0.0 (VMKernel Release Build 623860) for nested virtualization.  ESXi creates a 

thin hypervisor through use of a client/server model where management tools reside 

within the client in an application called vSphere.  The vSphere Installation and Setup 

guide provided by VMware is located here:  http://pubs.vmware.com/vsphere-50/topic/ 

com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-50-installation-setup-guide.pdf.   

G-1. Download VMware ESXi 5.0.0 on Host Machine 

1. ESXi is available from https://www.vmware.com/tryvmware.  Download the 

ESXi 5.0 iso and the vSphere client and copy each to a CD. 

2. Insert the ESXi CD into the computer which will serve as the host and reboot the 

machine to install from the CD.  Note that you may need to change you BIOS 

settings 

3. On a separate machine which resides on the same network, install the vSphere 

client. 

G-2. Configure the ESXi Host 

1. Ensure that the host is running and that ESXi has been installed. 

2. Log into the host by starting the vSphere client (Figure 106). 



151 

 

Figure 106. Log Into the vSphere Client 
 

3. Enter the license key by doing the following (Figure 107): 

a. Select the 'Configuration' tab 

b. Under 'Software' select 'Licensed Features' 

c. Click on the 'Edit' link at the top right hand corner of the window 

d. Select 'Assign a new license key to this host' 

e. Press the 'Enter Key' button and enter in the license key provided when 

you downloaded the ISO file 

f. Click 'OK' then 'OK' to save the changes 



152 

 

Figure 107. Enter the vSphere License Key 
 

4. Enable 64-bit  nested virtualization by doing the following: 

a. Enable SSH on the host machine by clicking on the Configuration tab, 

Under “Software” select “Security Profile”, click “Properties” in the far 

right corner of the Services area, click on SSH, and click the “Options” 

button.  Click “Start” to start SSH and select the option to “Start and stop 

with host”, then click “Ok” (Figure 108). 



153 

 

Figure 108. Enable SSH on the host machine 
 

b. Download PUTTY.exe from http://www.chiark.greenend.org.uk/ 

~sgtatham/putty/download.html.  Install on the client machine. 

c. SSH into the host machine and add the following line to the 

/etc/vmware/config file to enable virtualized hardware-assisted virtualization 

(vhv) (Figures 109-111):  vhv.allow = “TRUE” 

 

Figure 109. SSH into the Host Machine 
 



154 

 

Figure 110. Open the /etc/vmware/config File for Editing 
 

 

Figure 111.  Add vhv.allow = “TRUE” to the config file 
 

5. Restart the ESXi host. 

  



155 

G-3. Create the Virtual Machine  

1. Within vSphere Client, click “File>New>Virtual Machine 

2. Select Custom and click “Next” (Figure 112). 

 

Figure 112. Select Custom Configuration 
  



156 

3. Enter the name of the VM and click “Next” (Figure 113). 

 

Figure 113. Enter the Name of the VM 
  



157 

4. For Storage, leave the default settings and click “Next” (Figure 114). 

 

Figure 114. Storage Settings 
 

  



158 

5. For Virtual Machine Version, select Virtual Machine Version 8 and click “Next” 

(Figure 115). 

 

Figure 115. Select Virtual Machine Version 
  



159 

6. For Guest Operating System, chose the appropriate OS and click “Next”  

(Figure 116). 

 

Figure 116. Select Guest Operating System 
  



160 

7. For CPUs, select at least 1 virtual socket with 2 cores per virtual socket and click 

“Next” (Figure 117). 

 

Figure 117. CPU Settings 
  



161 

8. For Memory, select the maximum recommended, in this case, 3816 MB, and click 

“Next” (Figure 118). 

 

Figure 118. Memory Settings 
  



162 

9. For Network, leave the default settings and click Next (Figure 119). 

 

Figure 119. Network Settings 
  



163 

10. For SCSI Controller, leave the default settings and click “Next” (Figure 120). 

 

Figure 120. SCSI Controller Settings 
  



164 

11. For Select a Disk, leave the default settings and click “Next” (Figure 121). 

 

Figure 121. Create a New Virtual Disk 



165 

12. For Create a Disk, create a Disk Size of at least 100 GB and leave the remaining 

settings at their default values.  Click Next (Figure 122). 

 

Figure 122. Disk Configuration Settings 
 

  



166 

13. For Advanced Options, leave the default settings and click Next (Figure 123). 

 

Figure 123. Advanced Options Left at Default Settings 
  



167 

14. Review the VM settings, select “Edit the virtual machine settings before 

completion”, and click Continue (Figure 124). 

 

Figure 124. Select the Edit Virtual Machine Settings Before Completion Option 
  



168 

15. Within the Hardware tab, select New CD/DVD (adding), and under “Device 

Type, select “Host Device”.  Under Device Status, select “Connect at power on” 

(Figure 125). 

 

Figure 125. Edit the Hardware Tab 
  



169 

16. Within the “Options” tab, click CPU/MMU Virtualization and select “Use Intel 

VT-x/AMD-V for instruction set virtualization and Intel EPT/AMD RVI for 

MMU virtualization” and select “Finish” (Figure 126). 

 

Figure 126. Edit the CPU/MMU Virtualization Tab 
  



170 

G-4. Append the OS.vmx File to Enable Nested Virtualization 

1. Within vSphere, click on the Summary tab and, under resources, right click on the 

hard disk icon in the “Storage” area and select “Browse Datastore” (Figure 127). 

 

Figure 127. Locating the Data Store 
  



171 

2. Download the OS.vmx folder to your client machine by right clicking on the file 

and selecting Download (Figure 128). 

 

Figure 128. Download the OS.vmx Folder 
 

3. Open the file in a text editor and append the following: 

hypervisor.cpuid.v0 = “FALSE” 

 

Figure 129. Append the .vmx Folder 
 

This indicates to the Guest OS that the CPU is not virtualized. 



172 

4. Upload the modified OS.vmx file back to the host by selecting the upload button 

 and uploading the file from the client. 

5. Close the Datastore Browser. 

G-5. Install the Guest OS (64-bit Windows Vista Business) 

1. Insert the OS install CD into the host machine CD-ROM 

2. Within vSphere, click on the VM and, with the Getting Started tab, click Power 

on the Virtual Machine (Figure 130). 

 

Figure 130. Power on the Virtual Machine 
  



173 

3. Select the Console tab to observe the installation (Figure 131). 

 

Figure 131. Select the Console Tab to View the Installation 
 

4. Follow the onscreen instructions to install the OS (Figure 132). 

 

Figure 132. Windows Installation Screen 
  



174 

Appendix H.  Statistical Analysis 

The following quantile quantile (QQ) plots and density plots characterize the data 

gathered by HyperScan.  Within the QQ plots, the closeness of the line formed by the 

data points to a theoretical diagonal line from the bottom left to the top right corner of the 

box corresponds to the relative normality of the data.  Observations of the subsequent QQ 

plots below reveal that the data is generally not normally distributed.  This is supported 

by the corresponding density plots which reveal a preponderance of skewed, long-tailed 

data with outliers.  This supports the claim that the data is relatively non-parametric. 

 

Figure 133. QQ Plot and Density Plot: QEMU_VMI_SMPCOUNT

 

Figure 134. QQ Plot and Density Plot:  QEMU_SVMI_BP_SMPCOUNT 



175 

 
Figure 135. QQ Plot and Density Plot: QEMU_SVMI_BP_SMPCOUNT 

 

Figure 136. QQ Plot and Density Plot: QEMU_SVMI_BP_SMPCOUNT 

 
Figure 137. QQ Plot and Density Plot: VBOXHAV_VMI_SMPCOUNT 



176 

 
Figure 138. QQ Plot and Density Plot: VBOXHAV_SVMI_BP_SMPCOUNT 

 
Figure 139. QQ Plot and Density Plot: VBOX_SVMI_ESX_SMPCOUNT 

 
Figure 140. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_GO_SMPCOUNT 



177 

 

Figure 141. QQ Plot and Density Plot: VMWAREBT_VMI_SMPCOUNT 

 

Figure 142. QQ Plot and Density Plot: VMWARE_SVMI_BP_SMPCOUNT 

  
Figure 143. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_GO_SMPCOUNT 



178 

 
Figure 144. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_SMPCOUNT 

 
Figure 145. QQ Plot and Density Plot: VMWAREHAV_VMI_SMPCOUNT 

  
Figure 146. QQ Plot and Density Plot: VMWAREHAV_SVMI_BP_SMPCOUNT 



179 

 
Figure 147. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_SMPCOUNT 

 
Figure 148. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_GO_SMPCOUNT 

 
Figure 149. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_SMPCOUNT 



180 

 

Figure 150. QQ Plot and Density Plot: QEMU_VMI_TIMING 

 

Figure 151. QQ Plot and Density Plot: QEMU_SVMI_BP_TIMING 

  

Figure 152. QQ Plot and Density Plot: QEMU_SVMI_BP_GO_TIMING 



181 

 

Figure 153. QQ Plot and Density Plot: QEMU_SVMI_ESX_TIMING 

 

Figure 154. QQ Plot and Density Plot: VBOX_VMI_TIMING 

  

Figure 155. QQ Plot and Density Plot: VBOXHAV_SVMI_BP_TIMING 



182 

  

Figure 156. QQ Plot and Density Plot: VBOX_SVMI_ESX_TIMING 

   

Figure 157. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_GO_TIMING 

  

Figure 158. QQ Plot and Density Plot: VMWAREBT_VMI_TIMING 



183 

   

Figure 159. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_TIMING 

   

Figure 160. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_TIMING 

   
Figure 161. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_TIMING 



184 

   
Figure 162. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_TIMING 

  
Figure 163. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_TIMING 

   
Figure 164. QQ Plot and Density Plot:VMWAREBT_SVMI_ESX_GO_TIMING 



185 

   
Figure 165. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_TIMING 

   
Figure 166. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_TIMING 

  
Figure 167. QQ Plot and Density Plot: QEMU_VMI_TLBHIT 



186 

   
Figure 168. QQ Plot and Density Plot: QEMU_SVMI_BP_TLBHIT 

  
Figure 169. QQ Plot and Density Plot: QEMU_SVMI_BP_GO_TLBHIT 

   
Figure 170. QQ Plot and Density Plot:  QEMU_SVMI_ESX_TLBHIT 



187 

  
Figure 171. QQ Plot and Density Plot: VBOXHAV_VMI_TLBHIT 

   
Figure 172. QQ Plot and Density Plot: VBOXHAV_SVMI_BP_TLBHIT 

   
Figure 173. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_TLBHIT 



188 

   
Figure 174. QQ Plot and Density Plot: VBOXHAV_SVMI_ESX_GO_TLBHIT 

  
Figure 175. QQ Plot and Density Plot: VMWAREBT_VMI_TLBHIT 

   
Figure 176. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_TLBHIT 



189 

   
Figure 177. QQ Plot and Density Plot: VMWAREBT_SVMI_BP_GO_TLBHIT 

   
Figure 178. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_TLBHIT 

   
Figure 179. QQ Plot and Density Plot: VMWAREBT_SVMI_ESX_GO_TLBHIT 

-3 -2 -1 0 1 2 3

64
68

72
76

VMWAREBT_SVMI_BP_

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s



190 

  
Figure 180. QQ Plot and Density Plot: VMWAREHAV_VMI_TLBHIT 

   
Figure 181. QQ Plot and Density Plot: VMWAREHAV_SVMI_BP_TLBHIT 

  
Figure 182. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_TLBHIT 



191 

   
Figure 183. QQ Plot and Density Plot: VMWAREHAV_SVMI_ESX_GO_TLBHIT 

 

  



192 

Bibliography 

[Ada07] K. Adams, “BluePill detection in two easy steps,” Retrieved 10 May, 2012 
from http://x86vmm.blogspot.com/2007/07/bluepill-detection-in-two-
easy-steps.html. 

[BaK10] D. Barrett and G. Kipper, “Virtualization and Forensics: A Digital 
Forensic Investigator's Guide to Virtual Environments,” Syngress, 2010. 

[Bel05] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” In Usenix 
Annual Technical Conference, 2005. 

[BDD10] M. Ben-Yehuda, M. Day, Z. Dubitzky, M. Factor, N Har’El, A. Gordon, 
A. Liguori, O. Wasserman, and B. Yassour, “The Turtles Project: Design 
and Implementation of Nested Virtualization,” 9th Symposium on 
Operating Systems Design and Implementation, Vancouver, BC, Canada, 
2010. 

[Ber10] O. Berghmans. “Nesting Virtual Machines in Virtualization Test 
Frameworks,” Thesis, University of Antwerp, May 2010. 

[Bis02] M. Bishop, “Computer Security: Art and Science,” pp. 446, Addison-
Wesley Longman Publishing Co., Inc., 2002. 

[BJW10] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and  
D. Xu, “DKSM: Subverting Virtual Machine Introspection for Fun and 
Profit,” Reliable Distributed Systems, 29th IEEE Symposium on, pp.82-
91, 31 October - 3 November 2010. 

[Blu09] B. Blunden, “The Rootkit Arsenal: Escape and Evasion in the Dark 
Corners of the System,” Wordware Publishing, pp. 669-670, 2009. 

[CAM08] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario, “Towards an 
Understanding of Anti-virtualization and Anti-debugging Behavior in 
Modern Malware,” In Dependable Systems and Networks, pp. 177–186, 
June 2008. 

[CLS07] M. Carpenter, T. Liston, and E. Skoudis, “Hiding Virtualization from 
Attackers and Malware,” IEEE Security & Privacy, 5(3): pp. 62–65, 2007. 

[CPW09] A. van Cleeff, W. Pieters, and R. Wieringa, “Security Implications of 
Virtualization: A Literature Study,” Computational Science and 
Engineering, International Conference on, vol.3, pp.353-358, August 
2009. 



193 

[Cre81] R. Creasy, “The Origin of the VM/370 Time-Sharing System,” IBM 
Journal of Research and Development, 16 (5), pp. 483-490, September 
1981. 

[Cor63] F. J. Corbató, “The Compatible Time-Sharing System, A Programmer’s 
Guide,” M.I.T. Press, Cambridge, MA, 1963. 

[CoV65] F. J. Corbató and V. Vyssotsky, “Introduction and Overview of the 
Multics System”, in Proceedings of the November 30-December 1, 1965, 
fall joint computer conference, part I, New York, NY, pp. 185-196, 1965. 

[DFL11] A. Desnos, E. Filiol, and I. Lefou. “Detecting (and Creating!) A HVM 
Rootkit (aka BluePill-like),” Journal in Computer Virology, 7 (1), pp. 23-
50, 2011. 

[Dod10] D. Dodge, “Cyber-situational awareness using live hypervisor-based 
virtual machine introspection,” Air Force Institute of Technology Thesis, 
2010.   

[Fer08] P. Ferrie, “Attacks on Virtual Machine Emulators,” Symantec Advanced 
Threat Research, Retrieved 30 May, 2012 from http://www.symantec.com 
/avcenter/reference/Virtual_Machine_Threats.pdf. 

[Fri08] H. Fritsch, “Analysis and detection of virtualization-based root kits”, 
Retrieved 10 May 2012 from http://www.mnm-team.org/pub/Fopras/ 
frit08/PDFVersion/frit08.pdf, 2008. 

[GaR03] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection-Based 
Architecture for Intrusion Detection,” Network and Distributed Systems 
Security Symposium, The Internet Society, pp. 191-206, 2003. 

[GiC11] J. Gibbons and S. Chakraborti, “Nonparametric Statistical Inference,” 5th 
ed, CRC Press: New York, 2011. 

[GAW07] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin. “Compatibility is 
Not Transparency: VMM Detection Myths and Realities,” In Proceedings 
of the 11th Workshop on Hot Topics in Operating Systems, May 2007. 

[Gol08] B. Golden, “Virtualization for Dummies,” Wiley Publishing: Indianapolis, 
2008. 

[GrG11] C. Greamo and A. Ghosh, “Sandboxing and Virtualization: Modern Tools 
for Combating Malware,” Security & Privacy, IEEE, 9 (2), pp.79-82, 
March-April 2011. 



194 

[HeA11] X. He and J. Alves-Foss, “A lightweight virtual machine monitor for 
security analysis on Intel64 architecture,” Journal of Computing Sciences 
in Colleges. 27 (1), pp. 155-162, October 2011. 

[HoB05] G. Hoglund, and J. Butler, Rootkits: Subverting the Windows Kernel. 
Addison-Wesley, 2005. 

[HHK09] L. Holmqvist, T. Halbach, and T Kristoffersen, "Virtualization as a 
strategy for maintaining future access to multimedia content," Advances in 
Multimedia, First International Conference on, pp.29-32, 20-25 July 2009. 

[IBM11] Mainframe Product Profiles: System/370 Model 138, Retrieved 10 May 
2012 from http://www-03.ibm.com/ibm/history/exhibits/mainframe/ 
mainframe_PP3138.html. 

[IEE11] OUI Public Listing, Retrieved 2 November 2011 from http://standards. 
ieee.org/develop/regauth/oui/index.html. 

[JML10] S. Jyotiprakash, S. Mohapatra and R. Lath, "Virtualization: A Survey on 
Concepts, Taxonomy and Associated Security Issues," Second 
International Conference on Computer and Network Technology, pp. 222-
226, 2010. 

[KaS11] S. Karnouskos and A. Colombo, “Architecting the next generation of 
service-based SCADA/DCS system of systems,” in 37th Annual 
Conference of the IEEE Industrial Electronics Society, Melbourne, 
Australia., 7-10 November 2011. 

[KCW06] S. King, M. Chen, Y. Wang, C. Verbowski, H.Wang, and J. Lorch, 
“SubVirt: Implementing Malware with Virtual Machines,” In Proceedings 
of the 2006 IEEE Symposium on Security and Privacy, May 2006. 

[Kir07] J. Kirch, “Virtual machine security guidelines,” Retrieved 10 May 2012 
from http://www.cisecurity.org/tools2/vm/CIS_VM_Benchmark_v1.0.pdf. 

[Kli11] T. Klein. “Scoopyng - the vmware detection tool,” Retrieved 10 May 2012 
from http://www.trapkit.de/research/vmm/scoopyng/index.html. 

[Kor09] K. Kortchinsky. “Cloudburst—a VMware Guest to host escape story,” 
Retrieved 10 May 2012 from http://www.blackhat.com/presentations/bh-
usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-
SLIDES.pdf.   

[KVM12] “Kernel-based Virtual Machine,” Retrieved 10 May 2012 from 
http://www.linux-kvm.org/page/Main_Page. 



195 

 [LeM08] M. Lessing, “Live forensic acquisition as alternative to traditional forensic 
processes,” IMF Conference, September 2008. 

[LiS06] T. Liston and E. Skoudis, “On the Cutting Edge: Thwarting Virtual 
MachineDetection,” Retrieved 10 May 2012 from http://handlers.sans.org/ 
tliston/ThwartingVMDetection_Liston Skoudis.pdf 

[LuC00] C. Lunneborg, Data analysis by resampling: concepts and applications,  
pp 261-271, Pacific Grove: Duxbury Press, 2000. 

[MoE02] D. Mosberger and S. Eranian, IA-64 Linux Kernel: Design and 
Implementation, Prentice Hall, 2002. 

[MSN12] Kernel-Mode Code Signing Walkthrough, Retrieved 1 February 2012 
from http://msdn.microsoft.com/en-us/windows/hardware/gg487328. 

[MyY07] M. Myers and S. Youndt, “An Introduction to Hardware-Assisted Virtual 
Machine (HVM) Rootkits,” Technical Report, Retrieved 10 May 2012 
from http://www.megasecurity.org/papers/hvmrootkits.pdf. 

[NBH08] K. Nance, M. Bishop, and B. Hay, “Virtual Machine Introspection: 
Observation or Interference?” Security & Privacy, IEEE, 6 (5), pp.32-37, 
Sept.-Oct. 2008.  

[NHB09] K. Nance, B. Hay, and M. Bishop, "Investigating the Implications of 
Virtual Machine Introspection for Digital Forensics," Availability, 
Reliability and Security, International Conference on , pp.1024-1029,  
16-19 March 2009. 

[NSL06] G. Neiger, A Santoni, F. Leung, D. Rodgers, and R Uhlig, “Intel 
virtualization technology: Hardware support for efficient processor 
virtualization,” Intel Technology Journal, 10 (3), 2006. 

[Ome06] A. Omella, “Methods for virtual machine detection,” Retrieved 1 June 
2011 from www.s21sec.com/descargas/vmware-eng.pdf. 

[Ora12] Oracle Corporation, “Oracle VM VirtualBox User Manual,” Retrieved 10 
May 2012 from http://www.virtualbox.org/manual/. 

[QuS05] D. Quist and V. Smith. “Detecting the presence of virtual machines using 
the local data table,” Retrieved 10 May 2012 from http://www. 
offensivecomputing.net/dc14/vm.pdf. 



196 

[PoG74] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable 
Third Generation Architectures,” Communications of the ACM, 17 (7), pp 
412 – 421, July 1974. 

[RoG05] M. Rosenblum and T. Garfinkel, "Virtual machine monitors: current 
technology and future trends," Computer, 38 (5), pp. 39 - 47, May 2005. 

[RuC05] A. Rubini and J. Corbet, “Linux Device Drivers,” third ed. O’Reilly, 2005. 

[Rut04] J. Rutkowska, “Red pill...or how to detect vmm using one cpu 
instruction,” Retrieved 10 May 2012 from  http://invisiblethings.org/ 
papers/redpill.html. 

[RuT07a] J. Rutkowska and A. Tereshkin, “IsGameOver() Anyone?” Retrieved 10 
May 2012 from http://invisiblethingslab.com/resources/bh07/IsGame 
Over.pdf, 17 February 2012. 

[Rut07b] J. Rutkowska, Resources, Retrieved 13 December 2011 from 
http://invisiblethingslab.com/resources/bh07/. 

[San09] Sandia Labs, “Sandia computer scientists successfully boot one million 
Linux kernels as virtual machines,” Retrieved 10 May 2012 from  
https://share.sandia.gov/news/resources/news_releases/sandia-computer-
scientists-successfully-boot-one-million-linux-kernels-as-virtual-
machines. 

[SaS05] S. Sawilowsky, “Misconceptions leading to choosing the t test over the 
Wilcoxon Mann-Whitney Test for Shift in Location Parameter,” Journal 
of Modern Applied Statistical Methods 4 (2), pp 598-600, 2005. 

[Sch08] B. Schneier, “Schneier on Security,” Wiley Computer Publishing, 2008.  

[She05] T. Shelton, “VMware NAT Networking Buffer Overflow Vulnerability,” 
Retrieved 19 January 2012 from http://lists.grok.org.uk/pipermail/full-
disclosure/2005-december/040442.html.  

[SPF07] S. Soltesz, H. Potzl, M. Fiuczynski, A. Bavier, and L. Peterson, 
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” In Proc. EuroSys, pp 275–287, 
2007. 

 [TrH09] R. Troy and M. Helmke, “VMware cookbook,” Sebastopol, California: 
O’Reilly Media Inc, 2009. 



197 

[USB11] U.S. Bureau of Labor Statistics, CPI Inflation Calculator, Retrieved 10 
May 2012 from http://www.bls.gov/data/inflation_calculator.html. 
 

[VuA11] S. Vuong and M. Alam, “Advanced Methods for Botnet Intrusion 
Detection Systems,” Intrusion Detection Systems, Retrieved 10 May 2012 
from http://www.intechopen.com/articles/show/title/advanced-methods-
for-botnet-intrusion-detection-systems. 

[VPM11] K. Vishnani, A. Pais, and R. Mohandas, “Detecting and Defeating Split 
Personality Malware,” The Fifth International Conference on Emerging 
Security Information, Systems and Technologies, Nice/Saint Laurent du 
Var, France, 21 August, 2011. 

[VMW12] VMware, “ESXi and ESX Architectures Compared”, Retrieved 10 May 
2012 from http://www.vmware.com/products/vsphere/esxi-and-
esx/compare.html. 

[ZhC07] D. Zhu and E. Chin, “Detection of VM-Aware Malware,” Retrieved 10 
May 2012 from http://radlab.cs.berkeley.edu/w/uploads/3/3d/Detecting_ 
VM_Aware_Malware.pdf. 



198 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

14-06-2012 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

August 2010 – June 2012 

TITLE AND SUBTITLE 
Detecting Hardware-assisted Hypervisor Rootkits within Nested 
Virtualized Environments 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
Morabito, Daniel B., Captain 
 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
 Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/ENY) 
2950 Hobson Way, Building 640 
WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GCO/ENG/12-20 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory,  Information Grid Division/ Cyber Science Branch 
Attn: Joe Carozzoni 
26 Electronic Parkway 
Rome, NY 13441-4514 
(315) 330-3459 (DSN:587-7796) 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
AFRL/RIGG 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
 
     APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
13. SUPPLEMENTARY NOTES  
 
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 
14. ABSTRACT  
Virtual machine introspection (VMI) is intended to provide a secure and trusted platform from which forensic information 
can be gathered about the true behavior of malware within a guest.  However, it is possible for malware to escape a guest 
into the host and for hypervisor rootkits, such as BluePill, to stealthily transition a native OS into a virtualized 
environment.  This research examines the effectiveness of selected detection mechanisms against hardware-assisted 
virtualization rootkits (HAV-R) within a nested virtualized environment.  It presents the design, implementation, analysis, 
and evaluation of a hypervisor rootkit detection system which exploits both processor and translation lookaside buffer-
based mechanisms to detect hypervisor rootkits within a variety of nested virtualized systems.  It evaluates the effects of 
different types of virtualization on hypervisor rootkit detection and explores the effectiveness in-guest HAV-R obfuscation 
efforts.  The results provide convincing evidence that the HAV-Rs are detectable in all SVMI scenarios examined, 
regardless of HAV-R or virtualization type. Also, that the selected detection techniques are effective at detection of HAV-
R within nested virtualized environments, and that the type of virtualization implemented in a VMI system has minimal to 
no effect on HAV-R detection.  Finally, it is determined that in-guest obfuscation does not successfully obfuscate the 
existence of HAV-R. 
15. SUBJECT TERMS 
Hypervisor, Rootkit, Nested Virtualization, Detection, Evasion, Subversion, Virtual Machine 
Introspection, BluePill  
16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 
 

UU 

18. 
NUMBER  
OF PAGES 
 

219 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. Barry E. Mullins 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 7979 
(barry.mullins@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	Air Force Institute of Technology
	AFIT Scholar
	6-14-2012

	Detecting Hardware-assisted Hypervisor Rootkits within Nested Virtualized Environments
	Daniel B. Morabito
	Recommended Citation


	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	I.  Introduction
	1.1. Goals
	1.2. Assumptions and Limitations
	1.3. Research Contributions
	1.4. Thesis Organization

	II. Background
	2.1. General Virtualization Concepts
	2.1.1. The Roots of Virtualization
	2.1.2. Virtualization Definition & Theory
	2.1.2.1. Real Hardware (Host Machine)
	2.1.2.2. Hypervisor
	2.1.2.3. Virtual Machine
	2.1.2.4. Guest Operating Systems

	2.1.3. Types of Virtualization
	2.1.3.1. Operating System (OS) Virtualization
	2.1.3.2. Emulation
	2.1.3.3. Paravirtualization
	2.1.3.4. Full Virtualization

	2.1.4. Nested Virtualization
	2.1.5. Virtual Machine Introspection
	2.1.5.1. Semantic Awareness
	2.1.5.3. Forensics and Malware Analysis

	2.1.6. Benefits of Virtualization
	2.1.6.1. Efficiency and Cost Effectiveness
	2.1.6.2. Flexibility
	2.1.6.3. Disaster Recovery
	2.1.6.4. Security


	2.2. Hypervisors (Virtual Machine Managers)
	2.2.1. QEMU 0.9.0
	2.2.2. VirtualBox 4.1.10
	2.2.3. VMware Workstation 8
	2.2.4. VMware ESXi 5.0

	2.3. Subverting the Hypervisor: Detect, Evade, and Escape
	2.3.1. VM Detection
	2.3.1.1. Hardware Virtualization Markers
	2.3.1.2. Execution Environment Virtualization Markers
	2.3.1.3. Application Virtualization Markers
	2.3.1.4. Behavioral Virtualization Markers
	2.3.1.5. Detection Observations

	2.3.2. Hypervisor Evasion
	2.3.2.1. Direct Kernel Structure Manipulation
	2.3.2.2. Detecting VM Evasion
	2.3.2.3. Virtualization as a Deterrent

	2.3.3. Escaping a VM

	2.4. Subverting the Host: Hardware-assisted Virtualization Rootkits
	2.4.1. BluePill
	2.4.2. SubVirt
	2.4.3. Characteristics of HAV-R

	2.5. HAV-R Detection
	2.5.1. Execution Profiling
	2.5.1.1. Timing Secure Virtual Machine Enabled Flag Checks
	2.5.1.2. SMP Counting
	2.5.1.3. Other Execution Profiling Methods

	2.5.2. Translation Lookaside Buffer Profiling

	2.6. Conclusion

	III. Methodology
	3.1. Problem Definition
	3.1.1. Goals and Hypothesis
	3.1.2. Approach

	3.2. HyperScan Software Development
	3.3. Cloaker Software Development
	3.4. System Boundaries
	3.5. System Services
	3.6. Workload
	3.7. Performance Metrics
	3.8. System Parameters
	3.8.1. Hardware
	3.8.2. Trusted (Native) OS
	3.8.3. Guest OS
	3.8.4. CPU HAV Setting

	3.9. Factors
	3.9.1. Hypervisor
	3.9.2. HAV-R
	3.9.3. Guest Obfuscation Agent

	3.10. Evaluation Technique
	3.11. Experimental Design
	3.12. Methodology Summary

	IV. Analysis
	4.1. Exploratory Data Analysis
	4.2. Detection of HAV-R within Nested Virtualized Environments
	4.3. Effects of Obfuscation (Cloaker)
	4.4. The Effect of Different Virtualization Types on HAV-R Detection
	4.5. Summary

	V.  Conclusions
	5.1. Results
	5.2. Future Work
	5.3. Concluding Remarks

	Appendix A.  Experimentation
	A-1. Setup the Non-Subverted VMI Scenario and Install the HyperScan Files
	A-2. Create Test Certificates and Sign Drivers within the Host and Guest OS
	A-3. Non-Subverted VMI Scenario Experiments
	A-4. Subverted VMI Scenario Experiments
	A-5. Subverted VMI Scenario with Guest Obfuscation Experiments

	Appendix B. Windows Driver Kit Installation & Configuration
	B-1. Install Windows Driver Kit (WDK)
	B-2. Enable Test-signing and Disable Integrity Checks

	Appendix C.  VMware Workstation 8 and Windows 7 Setup
	C-1. Download and Install VMware Workstation 8
	C-2. Create and Configure the Windows 7 Installation

	Appendix D.  VirtualBox Installation and Windows 7 Setup
	D-1. Download and Install VirtualBox
	D-2. Create and Configure the Virtual Machine

	Appendix E.  QEMU Setup and Windows 7 Installation
	E-1. Setup QEMU
	E-2. Create Blank Disk Image and Install Windows 7

	Appendix F.  BluePill Installation on Windows Vista 64
	F-1. Enable Test-Signing, Disable Integrity Checks, and Install WinDK
	F-2. Build the BluePill Driver
	F-3. Create a Test Certificate
	F-4. Install the Test Certificate in the Trusted Root Certification Store
	F-5. Embedded Sign the BluePill newbp.sys Driver
	F-6. Start the BluePill Driver

	Appendix G.  ESX Installation
	G-1. Download VMware ESXi 5.0.0 on Host Machine
	G-2. Configure the ESXi Host
	G-3. Create the Virtual Machine
	G-4. Append the OS.vmx File to Enable Nested Virtualization
	G-5. Install the Guest OS (64-bit Windows Vista Business)

	Appendix H.  Statistical Analysis

