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Abstract 

A new type of hyperspectral imaging sensor is proposed, simulated and tested, 

which records both spectral and 2-dimensional spatial information. Dispersive imag

ing spectrometers typically measure multiple wavelengths and a single spatial dimen

sion. Unlike dispersive imaging spectrometers, chromo-tomographic hyperspectral 

imaging sensors (CTHIS) record two spatial dimensions, as well as a spectral di

mension, using computed tomography (CT) techniques with only a finite number of 

diverse images. CTHIS require a reconstruction algorithm in order to yield a usable 

hyperspectral data cube, and assume that the point spread function (PSF) is known. 

To date, the factors affecting resolution of these sensors have not been examined. 

Lens-based CTHIS sensors use chromatic aberration of a lens and multiple 

images in varying levels of defocus to determine the chromatic scene of an object. 

This type of CTHIS sensor has many practical advantages including simplicity of its 

design and dual use as a broad band imager with no additional processing. The lens

based CTHIS concept has been largely unexplored up to this time. The results of this 

research effort serve to examine factors affecting the spectral and spatial resolution 

of a lens-based CTHIS sensor, specifically showing how many frames are needed to 

reconstruct the spectral cube of a simple object using a theoretical lower bound. In 

this research a new algorithm is derived and is used to successfully reconstruct a 

hyperspectral object in the presence of noise and background. This new algorithm is 

used to verify the number of frames predicted from the theoretical bound calculation 

using laboratory data, thereby demonstrating the validity of the bound calculation. 

Finally, a simple method is proposed and tested to use this sensor in the presence of 

atmospheric turbulence . This method is shown in simulation to successfully remove 

the effects of atmospheric turbulence and estimate the atmospheric seeing conditions 

blindly from raw lens-based CTHIS data. 
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Resolution study of a Hyperspectral Sensor

using Computed Tomography

in the presence of Noise

I. Introduction

1.1 Introduction

Imaging spectrometers have been used for multiple civilian and military appli-

cations for the last 20 years. Imagery obtained from these devices is useful since it

contains both spectral and spatial information about the scene under observation.

Imaging spectrometers measure the spectral content of a light source, utilizing either

dispersive optics (such as prism or grating spectrometers) to spread the spectrum or

Fourier transform spectra obtained by a scanning Michelson interferometer. These

methods require scanning through either one spatial dimension (dispersive spectrom-

eters - pushbroom or whiskbroom scanning), or the spectral dimension (Fourier trans-

form spectrometers) to obtain a full spatial-spectral scene often referred to as a “data

cube.”

Recently a new method for generating spectral imagery has been developed

which allows for simultaneous imaging of both spatial and spectral information using

computed tomography (CT) algorithms. Such imagers typically are called Computed-

Tomography Imaging Sensors (CTIS) or Chromo-tomographic Hyperspectral Imaging

Sensors (CTHIS), although other names have been suggested. CTHIS use a disper-

sive element to project the 3D hyperspectral data cube multiple times onto a single

2D image or a few images (typically many fewer images than required for a pushb-

room sensor). Multiple algorithms can be used to take these projection images and

reconstruct the data cube generated from other imaging hyperspectral sensors. Unfor-

tunately, the resulting resolution of the data cube can vary depending on the system

setup and the reconstruction algorithm. This research will examine the effects of some

1



different parameters on the resolution for CTHIS, determine a lower bound to predict

the number of defocus frames necessary to achieve a particular spectral resolution for

a lens-based CTHIS, propose a method of reconstructing CTHIS in the presence of

a large background, and verify this reconstruction method and lower bound using a

laboratory experiment.

This dissertation is broken down into six sections. The first chapter will first

examine previous work in the development of hyperspectral sensors, including CTHIS

and the basic overall system designs and compare these sensor variations. Chapter

I covers a description of the background material necessary to examining CTHIS

performance. Chapter II develops the theoretical lower bound on CTHIS performance

using the Cramer-Rao inequality (also called the Cramer-Rao Lower Bound or CRLB).

Chapter III discusses the simulation parameters and setup of the lens-based CTHIS

and develops a reconstruction algorithm. Chapter IV discusses the laboratory setup

of the CRLB and how these were matched to the simulation described in chapter

III. Chapter V discusses the results of the CRLB, the simulation and laboratory

results of the resolution measurement and how the CRLB can be used as a parameter

predictor for resolution performance in the presence of noise. Finally Chapter VI looks

at a simple setup of a lens-based CTHIS simulation in the presence of an unknown

atmospheric Point Spread Function (PSF) and a method for blind estimation of the

atmospheric point spread function.

1.2 Uses of Spectral Imaging

Imaging spectrometers have been used for multiple applications including agri-

culture for urban planning, crop detection, mineral analysis, chemical signature de-

tection, and environmental detection. The reflectance by various materials changes

with respect to the wavelength of light incident on the material. As light is reflected

from various materials, the waves mix additively to form a scene that may be imaged

by a sensor. Typically sensors have very broad bands for visual imagery grouped into

red (roughly 600− 700 nm), green (500− 600 nm) and blue (400− 500 nm). Hyper-

2



Figure 1.1: AVIRIS Hyperspectral data cube of Moffet Field

spectral imagery defines these bands more narrowly and in more bands than typical

visual imagery (as few as 5 to as many as 200 bands) that are typically contiguous.

Figure 1.1 shows a picture from the Airborne Visual-Infrared Imaging Spectrometer

(AVIRIS) which has approximately 200 bands from 400nm to 2.5µm [23]. Figure 1.1

includes two missing spectral bands (the image uses a pseudo-spectrum also known as

false-color imagery). These missing bands correspond to wavelengths absorbed by the

atmosphere due to water (top) and CO2 (bottom). Also, note the large red region in

the upper right as this corresponds to a high density of shrimp in the pond near Moffet

Field. Similar spectral features (such as the shrimp) can be used to determine where

other materials of interest are. For instance, Figure 1.2 shows spectral imagery col-

lected from a series of NASA satellites [24] indicating the growth of Las Vegas, Nevada

from a small city in 1975 to a much larger urban area in 2009. The light green areas

correspond to vegetation (usually golf courses or parks), the blue and dark gray areas

correspond to cement (casinos and roads), the brown and white areas correspond to

3



Figure 1.2: Spectral Image showing urban sprawl in Las Vegas, NV over 1984-2009

different types of desert soil as well as some surface mining (open-pit) operations in

the northwest of the city. This information from these pictures can be used by urban

planners to determine where resources are or to plan the next phases of expansion of

the city as the population grows. Similar data have been used in rural areas to de-

termine materials for crop growth vs weeds [29] and by law enforcement or defense to

determine the uncontrolled “farming” of illicit drugs in open areas [15,31]. Figure 1.3

is another example of spectral imagery (taken from [33]) shows the east coast of the

United States. Central Park can be seen in the upper right hand corner as a black dot

surrounded by green, which is surrounded further by dark grey corresponding to the

Manhattan city streets where the Hudson and East rivers come together between Long

Island and Manhattan. The black dot is the Jacqueline Kennedy Onassis Reservoir

on the northern edge of Central Park. These data also have been used to determine

4



Figure 1.3: False color image of Philadelphia, New York and New Jersey

5



Figure 1.4: Combined Visual/Hyperspectral image showing the Gulf of Mexico Oil
spill 2010

mineral content under the presence of other materials (such as soil [4] or water [1]).

Figure 1.4 shows an oil spill in the Gulf of Mexico in 2010. The oil spill is marked

in yellow, while the sea is shown with standard visual spectrum colors to show stark

contrast where oil is present. Figure 1.5 shows how the data was collected to make the

image. Hyperspectral data were collected in 20 runs over the Gulf of Mexico using the

AVIRIS sensor. AVIRIS can collect data at wavelengths from 370nm to 2.5µm [1].

AVIRIS is a type of sensor geometry called “pushbroom” sensing. The next section

details how conventional hyperspectral imagers have been designed.

1.3 Design of Hyperspectral imagers

Several designs for hyperspectral imagers have been proposed, which fall mainly

into two categories, dispersive imaging spectrometers and Fourier transform spectrom-

eters. Dispersive imaging spectrometers disperse light typically by using a prism or

diffraction grating, image a single spatial dimension and spread the spectrum across
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Figure 1.5: Overplot of AVIRIS flights with visual imagery
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Figure 1.6: A typical hyperspectral imaging sensor

a detector in the other dimension. Figure 1.6 shows a schematic for an imaging spec-

trometer using a prism. The slit is imaged through the prism onto the detector. The

slit represents the single spatial dimension, and the spectrum is spread perpendicular

to the slit onto the detector. Platform motion is used to develop a scene one line at

a time. In a pushbroom configuration (see figure 1.7 for a typical pushbroom sensor

configuration) as the platform moves perpendicular to the slit, the collection of lines

imaged through the slit produces a hyperspectral data cube. Figure 1.11 gives a de-

tailed sensor schematic for a pushbroom sensor. The x dimension from Figure 1.7

is the same as the x dimension in Figure 1.11. A simulated hyperspectral scene is

shown in Figure 1.9 using spectra from the Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER). ASTER data are available through a NASA

website and can be searched according to material [22]. Figure 1.8 shows spectra

for cement, glass and deciduous foliage. An output from a pushbroom sensor for the

scene in 1.9 image of line 128 (the center of the image) can be seen in figure 1.10.

These spectra were chosen because they reflect large portions materials in the image.

The glass in Figure 1.10 in the infrared range corresponding to 8−12µm wavelengths

although the deciduous foliage also mixes with the spectra in the same area. De-

ciduous foliage has a unique peak between 3.5 − 5µm which can be seen by yellow

peaks in the pushbroom scene in Figure 1.10. And, hardly detectable without some

processing (but conspicuous by its absence between the windows) is the cement with

its notch around 1.4µm. The cement between the windows can be seen in the low

intensity areas around 11µm between the glass from the windows. There are about

ten windows in the scene across the center, although the central four are obscured
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Figure 1.7: Pushbroom Sensing Geometry
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Figure 1.8: Simulated hyperspectral scene using ASTER spectra
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False Color Image of Building with Foliage

Figure 1.9: Simulated hyperspectral scene using ASTER spectra

by foliage, and all have metal window panes (seen by the small lines in between the

glass spectra. Another method of computing the spectrum of a scene involves using

interferometers.

A Michaelson interferometer can determine the spectrum of an object. Light

from a target scene is transmitted through a beam splitter which sends the light

down two equidistant paths, with mirrors in each path and then mixed resulting in an

interference pattern seen on the detector. A single mirror (called the scanning mirror)

is moved to produce constructive and destructive interference. As the interferogram

changes along with the motion of the scanning mirror, a profile of intensity is built up

at each pixel on the detector. In a Fourier Transform Imaging Spectrometer (FTIS),

the one-dimensional Fourier transform the intensity profile on each pixel is taken, and
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Figure 1.10: Simulated hyperspectral image taken by a pushbroom sensor

the spectrum is derived by correlating this to the position of the scanning mirror.

An example of the intensities seen by a pixel is given in Figure 1.13 using the same

line as given in Figure 1.10. As the mirror is moved, the intensity on each pixel

yields a spectrum correlated to the optical path length difference of the two legs. The

center peak of figure 1.13 is the maximum intensity and corresponds to an optical

path difference (∆opd) of 0. The equation for the intensity I(∆opd) seen by the FTIS

is given by:

I(∆opd) =

∫ ∞

0

I(λ)

[
1 + cos

(
2π

λ
∆opd

)]
dλ (1.1)

The intensity per wavelength spectra (λ) seen by each pixel can be reconstructed by

using the inverse Fourier Cosine Transform by:

I(λ) = 4

∫ ∞

0

[
I(∆opd)−

1

2
I(∆opd = 0) cos

(
2π

λ
∆opd

)]
d∆opd (1.2)

The dispersive imaging spectrometer has the advantage that the spectra are imaged

directly, and the result can be understood directly if there is not a lot of clutter.
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Figure 1.11: Detailed sensor schematic for pushbroom hyperspectral data cube

.

Figure 1.12: Fourier Transform Imaging Spectrometer
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Also, the imager takes advantage of the platform using the motion to form an image,

which is beneficial for both air platforms and satellites. The number of spectra is

fixed, but can be designed to have relatively high spectral resolution, however this

resolution is fixed with the sensor design parameters. The FTIS can be configured

to have an arbitrary spectral resolution depending on how finely the optical path

length difference ∆opd is controlled by the sensing mirror. This means that the sensor

can be tuned for a very high spectral resolution, or a coarse resolution depending on

the needs of the data collection. FTIS have a disadvantage of requiring a significant

amount of precision in the setup and a stable platform to keep the precise orientation

of the two paths of the interferometer.

Another main disadvantage of these spectrometers is that they both throw away

a significant amount of light. Dispersive imaging spectrometers disregard any light

outside of the slit and therefore need a significant amount of light in a scene. FTIS

lose at least 50% of the incoming light, because the light gets reflected out of the front

of the imager. The CTHIS originally were designed to take advantage of as much of

the incoming light from a scene as possible.

1.4 Previous Work

1.4.1 Early Work. The use of tomographic imaging techniques for recon-

structing images with two spatial and a third spectral dimension was postulated first

by Levin and Vishnyakov [16]. Later, Okamoto and Yamaguchi [26] experimentally

demonstrated the first chromotomographic sensor using a series of amplitude diffrac-

tion gratings yielding a diffraction efficiency constant over all wavelengths of interest.

Later that same year, Levin et al. [3] demonstrated a simple one-dimensional recon-

struction using prisms with variable dispersion believing they were the first to demon-

strate the concept. Okamoto, et al. [25] used phase diffraction grating, yielding even

more light, at the expense of a more complex reconstruction technique because, in

this case, diffraction efficiency is dependent on wavelength. Compared to techniques

developed by later work, simple algebraic reconstruction techniques were used similar
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Figure 1.13: Detailed sensor schematic for pushbroom hyperspectral data cube

to other computed tomography problems. However, both groups demonstrated the

advantages of a chromotomographic sensor’s potential for high optical throughput

and the ability to image flash events over other spectral sensors. The disadvantage

of these designs is that, while they are simple, they do not offer significant spectral

resolution when compared with dispersive imaging spectrometers or FTIS.

1.4.2 Crossed Phase Gratings. Descour and Dereniak [7] detail experimen-

tal results of a CTHIS using a series of crossed phase gratings. Their work can be seen

as extended the work of Okomoto and Yamaguchi to an even larger number of wave-

lengths by using a statistical reconstruction technique. The authors further developed

the theory of CT sensing using a discrete-to-discrete method for reconstructing the

object cube that takes into account noise sources and diffraction efficiency. In [7], a

filter was used to reduce the spectral range of the orders allowing multiple diffraction

orders to be detected, because these multiple orders correspond to differing angle pro-

jections of the hyperspectral data cube and therefore contain different information.
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In [8], the authors use a computer generated hologram as a dispersion element which

is specifically designed for diffraction efficiency and image location. The advantage of

using diffraction gratings and holograms specifically designed for CTHIS extended the

possibilities of this sensor to real-world applications rather than a simple laboratory

setup [14], and also that these sensors can image flash (one-time) events. One of the

disadvantages of using diffraction gratings is the inconsistent spectral efficiency at all

wavelengths (the sensor will be more sensitive at some wavelengths than others). This

was the first demonstration in the literature of a real-world use of a CTHIS, however

as referenced in [14] there were significant issues that needed computer processing to

recover the actual imagery, and some of this was directly due to the design of the

sensor.

1.4.3 Direct Vision Prism. In [21], Mooney details a CTHIS design differing

from earlier work using a rotated direct vision prism in order to sample the spatial-

spectral object cube. All earlier work used a diffraction grating, or a series of prisms

with different dispersions in order to change the angle sampling the object cube. The

DV prism differs from a standard prism in that the central wavelength passes through

without any angular deviation [20, 21], while a known angular dispersion is applied

to other wavelengths. Using a DV prism also opens up an interesting opportunity to

calculate vector-based images, similar to a linear dispersive imaging spectrometer [12].

This method differs from a standard CTHIS (using a DV prism) only by software and

can be useful in quickly determining scenes of interest which can then be imaged using

the standard DV prism CTHIS reconstruction. The disadvantage of these sensors is

that they require multiple snapshots of a scene to be effective whereas the diffraction-

based CTHIS sensors can image flash events.

1.4.4 Chromatic Lens Aberration. In [17] Lyons proposed the use of a

diffractive optic element specifically designed to focus wavelengths to varying distances

similar to a Fresnel lens. This research used simple images directly to determine the

spectral content correlating that with the position of the lens. This element yields
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Figure 1.14: design of a chromotomographic imaging sensor

a small change in the focus distance yielding large change in the focal length, but

has the disadvantage of having a large changes in diffractive efficiency at different

wavelengths. In [5] Cain also proposed using the chromatic aberration of a lens

as a dispersion element and moving the images in and out of focus for successive

wavelengths to capture multiple images. This has the advantage of a simple optical

setup rather than using expensive optics for the dispersion element. Also, using this

method, an existing optical system can be turned into a CTHIS using only slight

modifications, such as the addition of a telescoping lens and an aperture stop. The

disadvantage to this method is that the magnification changes with respect to each

wavelength may need to be accounted for in the reconstruction depending on the lens.

Also, this design suffers from the same disadvantage of direct vision prisms requiring

multiple frames in order to compute a spectral scene.

1.5 CTHIS sensor design

The basic motivation for CTHIS is twofold: first, to make use of all available

light and second, to reduce or eliminate the amount of scanning necessary. Typical

dispersive imaging spectrometers make use of a slit which is re-imaged onto the detec-

tor. Figure 1.6 shows the design of a standard dispersive imaging spectrometer. This

slit is typically the size of a single line of pixels. A typical CTHIS detector replaces

the slit with a wider field of view field stop (figure 1.14), and the dispersion element

with either a specially made diffraction grating or a direct vision (DV) prism.

Two methods can be used for capturing spatial-spectral frames for computed to-

mography, single-frame and multi-frame detection. Single-frame designs for a CTHIS
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(a) (b)

Figure 1.15: (a) a prism projects an object along a single prism axis, (b) a grating
projects an object along multiple axis simultaneously

differ significantly from dispersive imaging spectrometers in that the gratings are de-

signed to diffract light in two dimensions and over multiple diffraction orders. A

single-frame design also has the added advantage of being able to capture all wave-

lengths at a single time. In [7], a filter was used to reduce the spectral range of

the orders, allowing multiple diffraction orders to be detected, because these multiple

orders correspond to differing angle projections of the hyperspectral data cube and

therefore contain different information. The gratings (or other suitable diffraction el-

ement) designed for each of these configurations [7,8,34] were chosen to maximize the

amount of light in each diffracted order used and to maximize the detector area used

to capture CTHIS frames. However, since the goal is to spread multiple orders over

the entire detector, diffraction efficiency is not constant with respect to wavelength

or order.

In multi-frame detection, a DV prism is designed such that some center wave-

length λ0 (or the whole multi-color scene) passes through without deviation. Multiple

frames are collected by rotating the prism along the axis of the undeviated wavelength

(figure 1.15(a) [21]). DV prisms are generally manufactured from 2 prisms with dif-
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ferent indices of refraction which cancel out the angular dispersion at the center

wavelength. The object and viewing conditions are assumed to be constant during

the rotation of the prism. The number of frames required can be much fewer than

those required for scanning of other spectrometers. Pushbroom dispersive imaging

spectrometers require the number of frames to be the spatial pixels in the scanning

direction and Fourier transform spectrometers require the number of frames to vary

as the total bandwidth of interest. Also of note is that keeping a single prism aligned

should be much simpler than keeping two arms of an interferometer aligned, so the

scanning of a DV prism CTHIS is a reduction in complexity over a Michelson-based

Fourier transform spectrometer. CTHIS scanning is only required to adequately sam-

ple the projections of the data cube. Figure 1.16 shows an example of a DV prism

as the rotation varies. Note that in this picture λ2 represents the undeviated wave-

length. As will be seen in the algorithms discussion, there is inherently some missing

information in CTHIS data which must be reconstructed. This missing information

can be traded off with processing time and estimated vs. measured resolution. The

main disadvantage of using a DV prism is that they are difficult to manufacture, and

may be expensive depending on the wavelengths of interest.

Another method using a multi-frame design is to use the chromatic aberration

of a lens to achieve dispersion. Due to chromatic aberration, the focal length of the

lens will be dependent on wavelength. A central wavelength for the lens is chosen,

and the lens position is varied around the corresponding focal length. Note that in

figure 1.15 that the dark square represents a single undeviated wavelength for the

prism in (a), and corresponds to a sum over all wavelengths using the grating in (b).

1.6 Reconstruction Algorithms

Having discussed the basic design of a CTHIS, we now turn our examination

to the reconstruction of the data cube. The processing is an essential step to using

CTHIS imagery because without it, the spatial and spectral data are multiplexed in

the image. The reconstruction mathematics borrow heavily from the already estab-
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Figure 1.16: Example of a DV prism in a CTHIS sensor

lished world of computed tomography, using many of the mathematical formulations

applied to medical imaging, Synthetic Aperture Radar and other applications. Al-

though some of the mathematical underpinnings from may be borrowed from CT,

some parts of the reconstruction problem still require special considerations in order

to accurately reconstruct the data cube. CTHIS suffer from a fundamental limitation

in that the projection into the image plane cannot fully cover the information neces-

sary to directly reconstruct the data cube. Methods have been proposed to overcome

this limitation based on principle component analysis (PCA) and projections onto

convex sets [20,21]. We will first look at the reconstruction problem, followed by the

problem areas associated with reconstruction. Then we will discuss reconstruction al-

gorithm types, and finish this section with a discussion of comparisons and contrasts

between the different algorithms.

1.6.1 Algebraic Reconstruction. In [25], Okamoto and Yamaguchi develop

the equations for the images seen by a single frame grating-based CTHIS. Using x,y

as index variables in the imaging plane, λ as the wavelength, o(u, v, λ) as the object,

and u,v as spatial coordinates in the object plane, an image seen by the detector is
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given by:

i(x, y, λ) =

∫
u

∫
v

o(u, v, λ)h(x− u, y − v, λ)dudv (1.3)

where h(x, y, λ) is the point spread function of the imaging system. In this case, the

standard grating equation can be used, and yields:

h(x, y, λ) =
∑

j,k=−1,0,1

ηjk(λ)δ

(
x− λu

Λ
k, y − λv

Λ
k

)
(1.4)

where ηj,k are the diffraction efficiencies of the jth and kth diffraction orders, Λ is the

grating constant, and δ is a Dirac delta function. In [26], only the −1, 0, 1 diffraction

orders were considered. Finally the noise-free signal detected by the imager is given

as a simple example by:

i(x, y) =

∫
a(λ)i(x, y, λ)dλ =

∑
j,k=−1,0,1

η
′

j,k(λ)o

(
x− λu

Λ
j, y − λv

Λ
k, λ

)
(1.5)

where η
′

jk is the product of diffraction efficiency ηjk and corresponding detector spec-

tral response a(λ). The reconstruction given in [25] is a modified algebraic recon-

struction technique (MART) which is an iterative technique useful for small number

of projections. Setting an initial object estimate o0(x, y, λ) to a positive constant,

successive object estimates are then calculated by iterating over:

oq+1(x, y, λ) =

(
i(x, y)

iq(x, y)

)
oq(x, y, λ) (1.6)

where iq(x, y) is the projection of the qth estimate of the signal and is recalculated

using equation (1.5) with the qth estimate of the object. This algorithm is similar to

the maximum likelihood estimator given in section 1.6.3.

1.6.2 Projections onto Constraint Sets. If the optical setup is based on the

DV prism as in [20, 21], the formulation of the reconstruction becomes a convolution

of multiple wavelengths with respect to each rotated frame. In [21], a DV prism setup

with three separate wavelengths and four separate frames the forward model is given
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by:

i1(x, y) = h1,1(x, y) ∗ o1(x, y) + h1,2(x, y) ∗ o2(x, y) + h1,3(x, y) ∗ o3(x, y)

i2(x, y) = h2,1(x, y) ∗ o1(x, y) + h2,2(x, y) ∗ o2(x, y) + h2,3(x, y) ∗ o3(x, y)

i3(x, y) = h3,1(x, y) ∗ o1(x, y) + h3,2(x, y) ∗ o2(x, y) + h3,3(x, y) ∗ o3(x, y)

i4(x, y) = h4,1(x, y) ∗ o1(x, y) + h4,2(x, y) ∗ o2(x, y) + h4,3(x, y) ∗ o3(x, y)

(1.7)

Where om(x, y) is the spectral distribution corresponding to band m, ik(x, y) is the

data recorded for the prism orientation k, hk,m(x, y) is the point spread function for

spectral band m, with respect to prism orientation k and the convolution operator is

represented by the ∗. The summation form of (1.8) is given by:

ik(x, y) =
N∑

m=1

hk,m(x, y) ∗ om(x, y) (1.8)

A geometrical optics model for hk,m(x, y) [21] is given by:

hk,m(x, y) = δ[x− (k − k0∆cos(ϕm)), y − (k − k0∆cos(ϕm))] (1.9)

where k0 is the index of the initial prism orientation, ∆ is an offset defined by the

prism geometry, and ϕm is the angle for spectral bandm defined by the prisms relative

index of refraction. In the Fourier domain, the rotation’s spatial spectra are a product

of the original spatial spectra multiplied by the optical function. Taking the Fourier

transform representation of (1.8) using matrix notation becomes:

I(ξ, ζ) = H(ξ, ζ)O(ξ, ζ) (1.10)

where the O, I, and H are the Fourier transforms of o, i, and h respectively. The

problem then becomes a larger number of inversions of smaller matrices which is the

motivation for separating the projections over multiple prism rotations rather than a

larger matrix inversion necessary for a single-frame approach. For instance, in [21],

21



Figure 1.17: Example of 3-D object reconstruction using Fourier transforms

the authors solve “50 240×240 spectral images from 80 240×240 images using 57600

80×50 matrix inversions rather than a single 4,608,000×2,880,000 matrix inversion”

necessary for the same problem using a grating rather than a DV prism. This formu-

lation directly correlates the spectral Fourier transform with the measured data. The

Fourier transform exhibits a special property known as the projection-slice theorem,

the Fourier slice theorem or the central slice theorem, all of which state that the

Fourier transform of a projection can be used as slices through a higher-dimensional

Fourier space (see figure 1.17).

The H matrix and its pseudoinverse can be precomputed and stored. The

pseudoinverse of H can also be diagonalized using the singular value decomposition

and the forward and inverse Fourier transform can be directly applied. Inverting the

H matrix is less complex computationally than inverting the similar matrix mentioned

22



in [7] because the matrices can be diagonalized due to the layout of the DV prism

CTHIS. Diagonalizing H yields:

H = UWV † (1.11)

where W is a weighted diagonal matrix according to equation 1.12, and U and V

are the weighting matrices needed for the product to equal H. This is also the

singular value decomposition (SVD) of H, where U and V are unity when multiplied

by their transpose conjugate (also called the Hermetian adjoint). Inverting (1.11) and

substituting back in to equation (1.10) we find equation (1.13) in which the inverse

of W (elements referred to as wi,j)) is replaced by W̃−1 (elements referred to as w̃i,j)

where the small singular values elements of W−1 are replaced with:

w̃i,j(ξ, ζ) =
wi,j(ξ, ζ)

w2
i,j(ξ, ζ) + η2

(1.12)

so as not to amplify noise. In this case, η is a tuning parameter (dependent on noise,

data and sampling) generally close to unity.

Õ = V W̃−1U †I (1.13)

In practice however, the direct matrix inversion (or pseudo-inverse) is not solely

the solution to the reconstruction problem, but it is used as an estimate to determine

the input to an iterative algorithm which then calculates the reconstruction. We can

make use of the relationship between the Fourier domain and the captured images [2]

to construct a simple iterative algorithm. For the rest of this development, we assume

that we can reorganize the two-dimensional matrices as single-dimensional vectors to

simplify notation. By adding the forward and inverse Fourier transforms to H, adding

noise, and expanding the psuedoinverse, equation (1.8) becomes:

i = F−1UWV †Fo+ n (1.14)
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where n is a noise vector, and F, F−1 are the forward and inverse Fourier transforms

respectively. Our iterative estimate of o becomes:

õj = F−1F [LṼ −1U †Fi+Rv†FF õj−1] (1.15)

where L and R are diagonal with elements:

Li,j(ξ, ζ) =
w2

i,j(ξ, ζ)

w2
i,j(ξ, ζ) + β2

(1.16)

Ri,j(ξ, ζ) = 1− Li,j(ξ, ζ) (1.17)

This algorithm doesn’t directly take into account fixed pattern noise of the focal

plane array (FPA), however the authors note that typically these errors get mapped

to the undeviated (central) spectral band. In [20] Brodzick and Mooney further

generalize the model developed in [21] and note that it is of a class of algorithms

called projections onto convex sets (POCS). One POCS algorithm that is also well-

known is the Gercheberg-Papoulis algorithm, and is similar to the generalization of

the algorithm mentioned in [21]. Their derivation amounts to projecting the Fourier

domain along the principle component axes of the range space (the known portion)

of the system transfer function matrix H (called A in [20] and P in [21]) and the

projection of the unknown portion into the null space of H. This null space projection

is called the transform domain constraint. Then the algorithm uses the fact that the

object domain (the hyperspectral data cube) has a high degree of correlation between

bands. This redundancy can give an advantage by using the PCA projection of the

object domain along the principle components to fill in the unknown portion of the

frequency domain. By using PCA, the algorithm is forcing the Fourier domain data

to be consistent with the object domain principle component projection. This second

constraint is called the object domain constraint and is a generalization of [21]. Small

singular values of this constraint correspond to a loss of information. This algorithm

effectively iterates between projections in the object plane and back to the Fourier
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plane to determine the CTHIS reconstruction similar to the popular Gercheberg-

Saxton algorithm which is another type of POCS algorithm [9].

1.6.3 Maximum Likelihood Estimators. In [7] Descour and Dereniak simply

propose mapping each volumetric element (voxel) from the data cube to the pixel

projection in the image plane. They experimentally determined the system transfer

matrix H:

d(x, y) = h(x, y, λ) ∗ o(x, y, λ) + n(x, y) (1.18)

where d(x, y) is the sensed data, o(x, y, λ) is the spatial-spectral object, and n(x, y)

is a noise vector. Equation (1.18) directly maps the discrete image pixels to their

discrete object voxel counterparts. Descour et al. [7] chose to use a monochrometer

and physically translated the input at each (x,y) value determining the point spread

function (h(x, y, λ)) directly (each voxel to pixel projection forms a single PSF). This

step maximizes the probability density of the object given the data Pr(o|d) iteratively

(equation (1.19)) with a stopping criterion such that the quotients go to unity, or when

||d(x, y)− h(x, y, λ) ∗ o(x, y, λ)|| is minimized below a certain threshold.

ok+1(x, y, λ) = ok(x, y, λ)
M∑

m=1

hm(x, y, λ) ∗
dm(x, y)

dkm(x, y)
(1.19)

In this step dkm(x, y) is the estimate of the noisy data using the object calculated in

the previous iteration.

1.7 Reconstruction Problems

Even with algorithms for image reconstruction understood, there are still some

problems which make it difficult to completely restore all of the information about

the object. The fact that the sensor cannot fully control the orientation of the object

leads to a fixed angle of projection. The result is that the system transfer matrix has

a null-space and is not fully invertible. This yields two related problems, first, that

we desire more outputs than we have inputs for (the result is that the problem is
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underdetermined), and second, that because of the fixed angle of projection, we have

a cone of missing information in the spatial-spectral Fourier domain corresponding to

the null-space of the transfer matrix.

1.7.1 Underdetermined Problem. Given either CTHIS design discussed pre-

viously, both spatial and spectral information are collected simultaneously. Because

of the simultaneous collection, it is not possible to directly design the sensor to de-

couple the spatial and spectral resolutions. Because of this, changing the design to

increase resolution in one domain (say spatial) affects the resolution in the other do-

main. Also, because of the fixed angle of the object with the imager, some of spatial

frequencies of the original object are never sampled. The transfer matrix for this case

therefore cannot be directly inverted. The pseudo-inverse of this matrix (as observed

in section 1.6.2), will provide a good first step to an estimation problem, but is almost

unusable as a complete object estimate.

1.7.2 Cone of Missing Information. As mentioned earlier, a CTHIS image

in the FPA can be considered as a projection of the 3D data cube into the 2D CTHIS

image plane. Figure 1.15 (b) shows the data cube projected onto the CTHIS image

plane. The angle of the projection is determined by the angular deviation from the

dispersion element for the wavelength of interest. According to [2] “the 2D (Fourier)

transform of a 2D projection yields one plane through the 3D transform of the original

object”, in this case, the original object is the hyperspectral data cube. Each of these

planes pass through the origin and the angle of the Fourier plane slice is orthogonal to

the direction of the corresponding Fourier axis of the projection from the data cube

onto the 2D CTHIS image. This indicates that we can reconstruct the 3D Fourier

data cube simply by taking the Fourier transform of a continuum of 2D projections

(see figure 1.17). We can then recover the hyperspectral data cube simply by taking

the inverse 3D Fourier transform. According to [7] “Recovery of a 3D distribution

from 2D projections is known as the x-ray transform.” Also according to [7], the

x-ray transform has 4 assumptions: the imager is continuous, there are no diffraction
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effects or aberrations (aberration free geometric optics), the data is not corrupted by

noise (perfect detector), and that the projections can be obtained at any azimuth and

projection angles. All of these assumptions are violated by a CTHIS, especially in the

presence of atmosphere.

If a projection of the data cube could be taken at any azimuth and projection

angles, we could choose a projection angle perpendicular to the wavelength axis.

Then the Fourier plane slices are perpendicular to the spatial frequency axes and

then we can simply sweep through 180 degrees to fully reconstruct the 3D Fourier

cube. Unfortunately, we cannot do this for two reasons, first the projections are

taken at discrete azimuth angles (finite number) which yields a discrete covering set

spanning the 3D Fourier space, and second we cannot take a 90 degree projection

to the wavelength axis. The finite number of angles can be overcome by accepting

a discrete reconstruction (which we have already accepted from any hyperspectral

data cube), in other words, making the object cube discrete. The non-orthogonal

projection angle, on the other hand will yield a “cone of missing information” in the

Fourier plane.

This cone means that a truly unique reconstruction is not possible from the mea-

surements alone, however a-priori (object or transform) domain specific constraints

can be used to fill in the missing cone. The missing cone by itself shows that object

features which have higher spatial-frequency have more spectral frequency content

represented in the data [7,20]. The problem of reconstructing the cone of missing in-

formation is equivalent to the limited-angle computed-tomography problem [7]. Due

to the cone of missing information and the fact that spatial and spectral information

is correlated, there is ambiguity in determining the resolution of these sensors. To

date no study of CTHIS resolution has been performed.

1.8 Literature Study Conclusions

This section detailed the current research into imaging spectrometers based on

computed tomography. Various designs of other hyperspectral imaging sensor designs
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were discussed as well as some of the advantages and disadvantages of each. CTHIS

was discussed starting with early work in the field to current designs using diffractive

elements, prisms and chromatic aberration of a lens for providing spectral diversity.

These were examined with advantages and disadvantages from each one. From there,

various reconstruction algorithms were discussed. Finally, the problem of missing

information from the data was discussed as this problem affects every CTHIS sensor.

The main advantage of CTHIS over other sensors is that they more fully utilize the

light coming in from a scene versus diffractive imaging spectrometers or FTIS. They

also have the ability to be configured to image flash events (unlike a diffractive sensor),

and are not as sensitive to vibration due to their simple design (unlike a FTIS).

While they have some significant advantages, CTHIS sensors have an ambiguity due

to the general nature of the sensor setups with the cone of missing information, and

this leads to ambiguity of the resolution of the CTHIS information. Specifically the

spectral resolution has not been studied in the presence of noise. Also, very little has

been done to make the CTHIS sensor available outside the laboratory environment

with only one author actually referencing data taken outside. No discussion is present

in the literature of using a CTHIS in the presence of atmospheric turbulence which

would be necessary for the use of CTHIS in real-world applications. Techniques for

evaluating the limiting factors of the CTHIS spectral resolution and solutions for

determining the spectral resolution will be discussed in the following chapters.
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II. Theoretical Lower Bound on Resolution of CTHIS in the

Presence of Noise

This chapter develops the theoretical lower bound on the spatial and spectral reso-

lution of an unbiased object estimator for a lens-based CTHIS. First, the variance

obtained by the CRLB is related to the Rayleigh resolution criteria in section 2.1.

Next, a description of the Cramer-Rao Inequality is developed in 2.2. Third, an im-

age model is developed from a simple object model. Finally, the lower bound on

estimator performance for a simple object is given in section 2.4.

2.1 Relationship of Estimator Uncertainty to the Rayleigh Criteria

The Cramer Rao Lower Bound (also called the CRLB) gives us a lower bound

on the variance of an estimator. However, we wish to determine the resolution of

our system. The Airy disc is the PSF from a circular aperture. Using a standard

resolution criteria such as a Rayleigh criteria [11], two point sources are considered

resolved when they are separated so that the peak of an Airy disc from one point

source is in the null the Airy disc of another point source next to it. The Airy disc is

the PSF from a circular aperture which has a peak in the center, and concentric rings

of reduced intensity with null rings in between. In the case of a circular aperture,

Figure 2.1 shows an example of two points barely resolvable with the Rayleigh criteria.

However we seek to apply the CRLB in an attempt to capture the effects of noise on

resolution. Specifically when the actual point separation is equal to twice the standard

deviation of the estimate of the separation, we can say that we are statistically resolved

according to the Rayleigh criteria of separation because a single standard deviation

represents the uncertainty of points in either spatial or spectral dimensions. So the

resolution criteria can be stated as:

∆

2σ∆

= 1 (2.1)
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Figure 2.1: Two points resolved according to the Rayleigh criteria

where ∆ is the separation of the two points in question, and σ∆ is the lower bound

on the standard deviation of the estimate of ∆ according to the CRLB.

2.2 Cramer-Rao Lower Bound and Fisher Information of an Image

with Poisson Noise

The Cramer-Rao inequality states that the variance of an unbiased estimator

of a parameter is no smaller than the inverse of the Fisher Information of the pa-

rameter estimated [32]. This provides a lower-bound on the variance of an estimator,

commonly called CRLB. Specifically:

σ2
ϕ ≥ F−1

ϕ = −E

[
∂2L

∂ϕ2

]−1

(2.2)

where σ2
ϕ is the variance of the estimated parameter ϕ. Also, Lk is the natural

logarithm of the conditional Probability Density Function (PDF) of the data with
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respect to the estimated variable:

Lk = lnP (dk|ϕ) (2.3)

where P (dk|ϕ) is the probability mass function of the data dk given the parameter

ϕ. If more than one parameter is being estimated, then the joint probability is used,

and the Fisher Information becomes a matrix. For multiple parameters estimation,

we refer to them as ϕi and ϕj where i and j where the parameters are the same only

when i = j. The log-likelihood over all data collected is given by L. Each element

of the matrix is calculated from the second partial derivative of the log-likelihood

function with respect to the parameters being estimated.

Fij = −E

[
∂2L

∂ϕi∂ϕj

]
(2.4)

The CRLB for each parameter is the main diagonal of the inverse of the Fisher

information matrix (i = j).

σ2
ϕiϕj

≥ F−1
ij (2.5)

The Probability Mass Function (PMF) of a collection of two dimensional images with

Poisson noise is given by:

P (d|o1, o2,∆x,∆λ) =
∏
y

∏
x

∏
k

ik(x, y)
dk(x,y)e−ik(x,y)(dk(x, y)!)

−1 (2.6)

where the dk indicates a single frame in a series of images. The intensities of two

points are o1 and o2. This equation assumes that the location of the first point is

known Only two points are used because this will yield the simplest object to study

both spatial and spectral resolution. More complex objects and features could be

estimated, however the CRLB requires a specific object, therefore the simplest object

is chosen for this resolution study. The two points are separated by (∆x,∆λ). The

location of the first point is assumed known and is set at the origin for convenience.
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A simple object is given by

o(u, v, λ) = o1δ(λ−λ0)δ(u−x0, v−y0)+o2δ(λ−(λ0+∆λ))δ(u−(x0+∆x), v−y0) (2.7)

With this simple object, the resolution of imaging systems can be determined by

moving one point with respect to the other, and using the resulting image to compute

the CRLB. The image equation is given by:

ik(x, y) =
∑
λ

o1hk(x, y, λ) + o2hk(x−∆x, y −∆y, λ+∆λ) (2.8)

where hk(x, y, λ) is the point spread function of our imaging system. As mentioned

in section 2.1, these parameters are related to the resolution of two points using the

standard deviation as a measure of the ability to resolve two points. This relationship

allows a determination of resolution based on the CRLB and gives a parameter that

can be used to predict how many images will be required to achieve a particular

resolution. The log-likelihood function then becomes:

L = lnP (d|o1, o2,∆x,∆λ) =
∑
y

∑
x

∑
k

dk(x, y)ln[ik(x, y)]− ik(x, y)− ln[dk(x, y)!]

(2.9)

We wish to find the lower bound for the variance of a parameter estimated from the

data dk. The parameters of interest will be discussed in the next section, however

we can greatly simplify the CRLB for the Poisson PMF with generic parameters.

Computing the first partial derivative with respect to a generic parameter of interest:

∂L

∂ϕi

=
∑
y

∑
x

∑
d

(
dk(x, y)

1

ik(x, y)

∂ik(x, y)

∂ϕi

− ∂ik(x, y)

∂ϕi

)
(2.10)

where ϕi is the parameter of interest. Because we are interested in more than a

single parameter, the second partial derivative needs to be taken. The second partial
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derivative of a different parameter ϕj is:

∂L

∂ϕi∂ϕj

=
∑
y

∑
x

∑
d

dk(x, y)
1

ik(x, y)2

(
∂ik(x, y)

∂ϕi∂ϕj

ik(x, y)−

∂ik(x, y)

∂ϕi

∂ik(x, y)

∂ϕj

)
− ∂2ik(x, y)

∂ϕi∂ϕj

(2.11)

Then we take the expected value to get the Fisher information matrix, keeping in

mind that the expected value is:

E [dk(x, y)] = ik(x, y) (2.12)

that is, the expected value of the noisy data dk(x, y) is the image ik(x, y). Using this,

the second derivative:

−E

[
∂L

∂ϕi∂ϕj

]
=
∑
y

∑
x

∑
d

−E[dk(x, y)]
1

ik(x, y)2

(
∂2ik(x, y)

∂ϕi∂ϕj

ik(x, y)

− ∂ik(x, y)

∂ϕi

∂ik(x, y)

∂ϕj

)
− ∂2ik(x, y)

∂ϕi∂ϕj

(2.13)

becomes greatly simplified:

−E

[
∂L

∂ϕi∂ϕj

]
=
∑
y

∑
x

∑
d

− ik(x, y)

ik(x, y)2

(
∂2ik(x, y)

∂ϕi∂ϕj

ik(x, y)

− ∂ik(x, y)

∂ϕi

∂ik(x, y)

∂ϕj

)
− ∂2ik(x, y)

∂ϕi∂ϕj

(2.14)

And after cancelling all the extra terms, the final form of the Fisher information

matrix elements are given by:

Fij =
∑
y

∑
x

∑
k

1

ik(x, y)

∂ik(x, y)

∂ϕi

∂ik(x, y)

∂ϕj
(2.15)

meaning that we only need to compute the first derivatives of any parameter of interest

and use the cross products to compute the Fisher information matrix elements.
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2.3 Image model

As mentioned above, we wish to find a bound on the spatial and spectral res-

olution of our CTHIS system. One method is to compute the estimator variance

for a scene with a known spectral and spatial separation (∆λ,∆x), and compare the

standard deviation to the actual separation. The scene consists of two point sources

separated by a shift of (∆λ,∆x) in space and wavelength respectively. The separation

for spatial dimension is only a single dimension used for simplicity (figure 2.2). An
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Figure 2.2: Example Object

image of a simple object with two point sources at (x0, y0, λ0) with a shift of (∆x,∆λ)

between them, with an arbitrary point spread function (PSF) is modelled by:

ik(x, y) =
∑
λ

∑
u,v

[o1δ(λ− λ0)δ(u− x0, v − y0)

+ o2δ(λ− (λ0 +∆λ))δ(u− (x0 +∆x), v − y0)]

× hk(u− x, v − y, λ) + β

(2.16)

where k is an index to a particular image or PSF in a set. The variable β is a

background that is not affected by the PSF, and is discussed later. Assuming a

spatially shift-invariant PSF and the using sifting property of the dirac-delta function,
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the image becomes:

ik(x, y) =
∑
λ

o1δ(λ− λ0)hk(x− x0, y − y0, λ)·

+ o2δ(λ− (λ0 −∆λ))× hk(x− (x0 +∆x), y − y0, λ)dλ+ β

(2.17)

noting that the Dirac delta for the spatial dimension of the point source fixes the

PSF at its location. Finally defining the central wavelength λ0 and integrating over

all wavelengths applies the sifting property of the Dirac delta yielding:

ik(x, y) = o1hk(x− x0, y − y0, λ0) + o2hk(x− (x0 +∆x), y − y0, λ0 +∆λ) + β. (2.18)

Given the equations developed above for the CRLB (equation (2.15)), we can use our

image model developed in this section to derive a more specific form of the CRLB for

our simple test object. We are interested in our ability to estimate the intensities (o1

and o2) and the relative position (∆x,∆λ) of the two point sources in the scene. These

are the specific parameters of interest used for ϕi and ϕj in the previous section to

compute the CRLB. Notice that the background β is a constant with respect to the

parameters of interest, and drops out after taking the derivative. It will only affect

the divisor from equation (2.15).

∂ik(x, y)

∂o1
= hk(x− x0, y − y0, λ0) (2.19)

∂ik(x, y)

∂o2
= hk(x− (x0 +∆x), y − y0, λ0 +∆λ) (2.20)

Note that the intensity partial derivatives are simply the fixed point spread functions

which can be computed directly. However, for the other parameters (∆x,∆λ)

∂ik(x, y)

∂∆x

= o2
∂

∂∆x

hk(x− (x0 +∆x), y − y0, λ0 +∆λ) (2.21)

∂ik(x, y)

∂∆λ

= o2
∂

∂∆λ

hk(x− (x0 +∆x), y − y0, λ0 +∆λ) (2.22)
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more simplification will be needed.

2.4 Theoretical Lower Bound on Spectral Resolution of a Defocused

Image with Poisson Noise

We need to determine the PSF to further simplify equations (2.19)-(2.22) in

order to compute the CRLB. The intensity point spread function (hk(x, y, λ) in equa-

tions (2.21) and (2.22)) of a given optical system can be computed by the amplitude

point spread function ha
k(x, y, λ). The amplitude point spread function is the field

resulting from a plane wave propagating through the optical system, corresponding

to a point source (impulse) at infinity (equivalent to the impulse response discussed

in classical linear systems):

hk(x, y, λ) =
|ha

k(x, λ)|
2∣∣∣∫x,y ha

k(x, y, λ)
∣∣∣2 (2.23)

Because this is a shift invariant amplitude PSF, the denominator will later be shown

to be simply a scaling constant which does not vary with respect to x or λ.

In the case of a defocused lens with a square aperture of side 2w and a defocus

in meters of Wd, ignoring scaling constants and pure phase factors, the amplitude

point spread function (impulse response) is computed by [11]:

ha
k(x, y, λ) =

∞∫∫
−∞

rect(2wξ)rect(2wζ) exp

[
−2πj

λ

(
Wd(ξ

2 + ζ2)

w2
+

xξ + yζ

zd

)]
dξdζ

(2.24)

where (ξ, ζ) are the spatial coordinates corresponding to the field in the lens plane,

and zd is the distance between the lens and the focal plane for frame number k. Wd

is given by:

Wd = −w2

2

(
1

zd
− 1

zi

)
(2.25)

where zi is the distance from the lens to the image forming plane (where an image

would be in focus). The variable zi depends on focal length which is dependent on
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the index of refraction (and thereby wavelength). The actual focal length can be

calculated from material properties, however for the sake of this analysis, the change

in focal length due to a change in wavelength is assumed to be directly proportional

to a parameter α, with a possible bias term (βfl a minimal focal length) therefore:

f(λ) ≈ αλ+ βfl (2.26)

and because we are considering a point source at infinity (a plane wave field propa-

gation through the lens), zi becomes:

zi(λ) = f(λ) (2.27)

Therefore, Wd becomes:

Wd = −w2

2

(
1

za
− 1

αλ+ βfl

)
(2.28)

Substituting equation (2.28) into (2.24) we get:

ha
k(x, y, λ, d) =

∫∫ w

−w

exp

[
πj

λ

(
(ξ2 + ζ2)

zd
− (ξ2 + ζ2)

αλ+ βfl

− 2(xξ + yζ)

zd

)]
dξdζ (2.29)

Where the limits are based on the size of the aperture. Note that this can be extended

to a generic aperture function:

ha
k(x, y, λ, d) =

∫∫ ∞

−∞
A(ξ, ζ) exp

[
πj

λ

(
(ξ2 + ζ2)

zd
− (ξ2 + ζ2)

αλ+ βfl

− 2(xξ + yζ)

zd

)]
dξdζ

(2.30)

We extend this to a generic aperture function so that the limits of our equation extend

from −∞ to ∞ and correspond to a Fourier transform.

Because we are also estimating the intensities of the point source, we also com-

pute the Fisher information matrix with respect to the parameters o1 and o2, which

are measured in photons. Because the intensities in number of photons are much
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higher quantities than the pixel size and the wavelength (typically measured in mi-

crometers), the Fisher information matrix quickly becomes singular as the number of

images k increases. In order to avoid this, we make the parameters a discrete step size

and take derivatives with respect to the number of steps. We also scale our aperture

variable to keep constant sampling in the focal plane. We define Ld as the size of the

aperture, and keep the ratio zd
Ld

fixed. Keeping this ratio fixed scales the sampling

to a constant focal plane array pixel size yielding a more accurate model of the focal

plane. So:

dx =
λzd
Ld

dy =
λzd
Ld

∆ξ =
Ld

N
∆ζ =

Ld

N

x =kdx y =pdx

ξ =m∆ξ ζ =n∆ξ

(2.31)

where N is the number of points in the focal plane. We assume square pixels, and

square sampling of the aperture plane, where dx is the pixel size in the focal plane,

and ∆ξ is the sampling in the aperture plane. Now to compute the normalized Point

Spread Function, we substitute equations (2.30) and (2.31) into (2.23), and replace

the integrals with summations.

hk(k, p, λ) =

∆4
ξ

∣∣∣∣∑
m,n

A(m,n) exp
[
πj(m2+n2)

λ

(
λ2zd
N2dx2 −

λ2z2d
(αλ+βfl)N2dx2

)]
exp

[
−2πj(km+np)

N

]∣∣∣∣2
∆4

ξ

∣∣∣∣∑
m,n

A(m,n) exp
[
πj(m2+n2)

λ

(
λ2zd
N2dx2 −

λ2z2d
(αλ+βfl)N2dx2

)]∑
x,y

exp
[
−2πj(km+np)

N

]∣∣∣∣2
(2.32)

As seen in equation (2.15), the Fisher information matrix elements are computed by

the first derivatives of the image with respect to the variables under consideration.

Specifically we are interested in the ∆x and ∆λ paramaters. Using a discrete change

of variable for ∆x and ∆λ. The variables ∆
′
x and ∆

′

λ signify a step size in meters (for

simplicity, we fix ∆
′
x as the size of 1 pixel), and Px and Pλ signify the number of steps
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in discrete space:

∆x = ∆
′

xPx = dxPx

∆λ = ∆
′

λPλ

(2.33)

So the the image equation (2.34) becomes:

ik(k, p) = o1hk(k, p, λ0) + o2hk(k − Px, p, λ0 +∆
′

λPλ) (2.34)

assuming x0 = 0 and y0 = 0 for the sake of notational simplicity. The derivatives are

now taken with respect to Px and Pλ. This necessitates taking the derviatives of the

PSF with respect to these variables. Utilizing the product rule and an identity of the

absolute value function, the derivative of the PSF with respect to Px becomes:

∂

∂Px

hk(k − Px, p, λ0 +∆
′

λPλ) =
∂

∂Px

κ−1ha
k(k − Px, p, λ0 +∆

′

λPλ)

× ha∗
k (k − Px, p, λ0 +∆

′

λPλ)

=2κ−1Real

[
∂

∂Px

ha
k(k − Px, p, λ0 +∆

′

λPλ)

× ha∗
k (k − Px, p, λ0 +∆

′

λPλ)

]
(2.35)

leading to:

=2κ−1Real

[∑
m,n

A(m,n)
2πjm

N
exp

[
πj(m2 + n2)(λ0 +∆

′

λPλ)z
2
d

N2dx2

×
(

1

zd
− 1

(α(λ0 +∆
′
λPλ) + βfl)

)]
exp

[
−2πj(km+ np)

N

]
exp

[
2πjmPx

N

]
×

∑
m,n

A(m,n)

exp

[
πj(m2 + n2)(λ0 +∆

′

λPλ)z
2
d

N2dx2

(
1

zd
− 1

(α(λ0 +∆
′
λPλ) + βfl)

)]
exp

[
−2πj(km+ np)

N

]
exp

[
2πjmPx

N

]]

(2.36)
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where κ is a scaling constant normalizing the area under the PSF to unity and is the

same as the denominator in (2.23). The derivative of the PSF with respect to Pλ is

given by:

∂

∂Pλ

ha
k(k − Px, p, λ0 +∆

′

λPλ) =
∂

∂Pλ

κ−1ha
k(k − Px, p, λ0 +∆

′

λPλ)

× ha∗
k (k − Px, p, λ0 +∆

′

λPλ)

=2κ−1Real

[
∂

∂Pλ

ha
k(k − Px, p, λ0 +∆

′

λPλ)

× ha∗
k (k − Px, p, λ0 +∆

′

λPλ)

]
(2.37)

yielding:

=2κ−1Real

[∑
m,n

A(m,n)

[
πj(m2 + n2)∆

′

λz
2
d

N2dx2(
1

zd
− 1

(α(λ0 +∆
′
λPλ) + βfl)

)
+

πj(m2 + n2)(λ0 +∆
′

λPλ)z
2
d

N2dx2

α∆
′

λ

(α(λ0 +∆
′
λPλ) + βfl)2

]
exp

[
πj(m2 + n2)(λ0 +∆

′

λPλ)z
2
d

N2dx2

×
(

1

zd
− 1

(α(λ0 +∆
′
λPλ) + βfl)

)]
× exp

[
−2πj(km+ np)

N

]
exp

[
2πjmPx

N

]
×

∑
m,n

A(m,n) exp

[
πj(m2 + n2)(λ0 +∆

′

λPλ)z
2
d

N2dx2(
1

zd
− 1

(α(λ0 +∆
′
λPλ) + βfl)

)]
exp

[
−2πj(km+ np)

N

]
exp

[
2πjmPx

N

] ]

(2.38)

It should be noted that the discrete summations in equations (2.32), (2.38) and (2.36)

can all be computed by using a Discrete Fourier Transform (DFT), and as such, the

DFT is conveniently used to compute these functions.
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III. Data simulation and reconstruction

This chapter discusses the development of a projection-based Expectation Maximiza-

tion (EM) Estimator based on Poisson noise in section 3.1, followed by a discussion

of the simulation setup in section 3.2.

3.1 Projection Based Reconstructor

In this section, a reconstructor to estimate the object from a series of images

is developed. This reconstructor is the basis for the simulation and the laboratory

experiment results shown in section 5.4.2. The lens-based chromotomagraphic hyper-

spectral sensor takes a series of images each having a known defocus from the next

image in the series. Given the collected image data, the originating scene is unknown

so an estimator the must be used. A well known technique, known as maximum-

likelihood estimation (MLE) is to maximize the conditional probability over all values

of a parameter to be estimated. In this case, the unknown parameter is the scene and

the data is the image produced by our known transfer function [32].

The reconstructor is further simplified to a projection based reconstructor as

we only intend to explore the spatial separation in one dimension, as well as spectral

separation. The data is modeled as:

dk(x, y) = ik(x, y) + nk(x, y) (3.1)

and is a random variable with a Poisson probability mass function given by PD(d):

PD(d) =
∏
y

∏
x

∏
k

ik(x, y)
dk(x,y)e−ik(x,y)(dk(x, y)!)

−1 (3.2)

where ik(x, y) is the expected value of the data dk(x, y) for frame number k with the

2 dimensional location (x, y), this assumes that each pixel is statistically independent

from the others. The value ik(x, y) is also the image formed by the unknown object
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at plane k. Specifically, the image is given by:

ik(x, y) =
∑
λ

∑
u

∑
v

γλo(u, v, λ)hk(u− x, v − y, λ) (3.3)

where γλ is the spectral weighting paramater for the number of photons, o(u, v, λ)

is object at spatial coordinates (u, v) in the object plane and wavelength λ, and

hk(x, y, λ) is the point spread function at frame number k. The spectral weighting

parameter γλ is given so that initially
∑

u

∑
v o(u, v, λ) = 1 that is the object is unity

for each wavelength. The MLE is developed by maximizing the conditional probability

given an image ik(x, y) using an object estimate ô(x, y, λ) and a spectral weighting

estimate.

Because the natural logarithm is an increasing function, the computation of the

probability mass function can be greatly simplified by applying the natural logarithm

and maximizing it instead:

LD(d) = ln[PD(d)] =
∑
y

∑
x

∑
k

dk(x, y)ln[ik(x, y)]− ik(x, y)− ln[dk(x, y)!] (3.4)

the logarithm of the factorial term in this equation does not contribute to the maxi-

mization and is ignored in further development. This likelihood function is recast in

terms of the estimated parameters.

A different method of computing the object was proposed in [12] where a pro-

jection operation produced a single spatial dimension and a spectral dimension. This

method features a significantly lower computation cost. The image is related to a

one-dimensional image projection ik(x) by the equation:

ik(x) =
∑
y

∑
λ

∑
u

∑
v

γλo(u, v, λ)hk(x− u, y − v, λ) (3.5)
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Figure 3.1: Description of the EM algorithm

by using the projection of the object and PSF:

ik(x) =
∑
λ

∑
u

γλó(u, λ)h́k(x− u, λ) (3.6)

where h́k(x, λ) =
∑

y hk(x, y, λ) and ó(u, λ) =
∑

v o(u, v, λ). Using these projections

significantly reduces computation time, but still allows the study of the effect of the

number of defocus frames on spatial and spectral resolution.

The next step in estimating the scene is to maximize the log-likelihood which

we call Q(o, γλ) restated in terms of our estimated variables with respect to an object

estimate ô(u, λ) and spectral weighting estimate γ̂λ. This could be done in multiple

ways, however a well known method is the Expectation Maximization (EM) algorithm

[6]. In order to use the EM algorithm, we first surmise the existence of an a set of

unknown variables. We also surmise that there exists a mapping, in this case a many-

to-one mapping, between the set of unknown variables and the measured data. The

EM algorithm then maximizes the PMF of the unknown variables conditioned on

the measured data using the conditional expected value derived from the assumed

mapping. Figure 3.1 gives a flowchart for the EM algorithm. Stated simply, we seek
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an object ô(u, λ) and spectral energy parameter γ̂λ with Q(ôold, γ̂λ
old) such that:

Q(ônew, γ̂λ
new) ≥ Q(ôold, γ̂λ

old) (3.7)

where ônew and γ̂λ
new are iterative updates to our previous (old) object and spectral

energy estimates respectively. We begin by modelling the measured (incomplete)

data dk(x) as a sum of the unknown random variables dk(x) =
∑

u dk(x|u), where the

collection of unknown variables dk(x|u) is called the complete data. In creating the

complete data, each variable dk(x|u) is assumed to be independent for each unique

value of u and Poisson distributed. The complete data only needs to be statistically

consistent with our measurements [27] and may not have a physical meaning as is the

case in our problem statement. The mean of the complete data is given by:

E[dk(x|u)] = γλo(u, λ)hk(x− u, λ) (3.8)

The complete data is then further related to the modelled data and image by:

E[dk(x)] =
∑
u

E[dk(x|u)] =
∑
u

γλo(u, λ)hk(x− u, λ) = ik(x) (3.9)

yielding an expression from which we can develop the complete data log-likelihood.

The complete data log-likelihood is given by:

L(o, γλ) =
∑
k

∑
x

∑
u

dk(x|u)ln[γλo(u, λ)hk(x−u, λ)]−
∑
k

∑
x

∑
u

γλo(u, λ)hk(x−u, λ)

(3.10)
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The incomplete data log-likelihood is given by the expected value of the incom-

plete log-likelihood conditioned on the measured data dk(x):

Q(ônew, γ̂λ
new) =E [L(ônew, γ̂λ

new)|dk(x)]

=
∑
k

∑
x

∑
u

Eold[dk(x|u)|dk(x)]ln[γ̂λnewônew(u, λ)hk(x− u, λ)]

−
∑
k

∑
u

∑
x

γ̂λ
newônew(u, λ)hk(x− u, λ)

(3.11)

where the expected value is based on old estimates (designated by the operation

Eold[∗]) for the object (ôold) and spectral energy coefficient (γ̂λ
old). We designate

the object (ônew) and spectral energy coefficient (γ̂λ
new) as iterative updates whose

equations are derived later, the old values of which are previous estimates to the

data. This portion of the process where we develop the conditional log-likelihood

whose expected value is the log-likelihood of interest is called the expectation step

of the EM algorithm. At this point, it is necessary to develop the expression for the

expected value of a single Poisson variable conditioned on the sum of a number of

independent Poisson variables, in this case, dk(x|u) conditioned on dk(x).

E[dk(x|u)|dk(x)] (3.12)

In order to determine the expected value of a single Poisson variable conditioned on

the sum, we start with the sum of 2 independent Poisson variables:

d = d1 + d2 (3.13)

with the expected values:

E[d1] = i1

E[d2] = i2

(3.14)
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where d1 is the Poisson random variable of interest given the conditional expectation

of the poisson incomplete data dk(x). We wish to find the PMF of d1 conditioned on

the sum d. Using Bayes rule we get the following,

P(D1|D)(d1|d) =
P(D1,D2))(d1, d2)

PD(d)
(3.15)

that is, the joint density of d1 and d2 divided by the marginal density for the sum.

Because d1 and d2 are independent, the joint density is given the product of their

marginal Poisson mass functions:

P(D1,D2)(d1, d2) = PD1(d1)PD2(d2) =
id11 id22 e−(i1+i2)

d1!d2!
(3.16)

and the marginal is given by:

PD(d) =
ide−i

d!
(3.17)

Noting that the expected value of d is the sum of the expected values of d1 and d2

i = E[d] = E[d1] + E[d2] = i1 + i2 (3.18)

and also, that d2 can be re-written as a difference between the sum and d1

d2 = d− d1 (3.19)

we can find the conditional expected value. Substituting (3.19) into (3.16) and (3.18)

into equation (3.17), we can see that (3.15) becomes:

P(D1|D)(d1|d) =
d!

d1!(d− d1)!

id11 i
(d−d1)
2

(i1 + i2)d
=

d!

d1!(d− d1))!

id11 i
(d−d1)
2

(i1 + i2)d1(i1 + i2)d(i1 + i2)−d1

(3.20)

we can rearrange (3.20) into the following form.

P(D1|D)(d1|d) =
d!

d1!(d− d1))!

(
i1

(i1 + i2)

)d1 ( i2
(i1 + i2)

)(d−d1)

(3.21)
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Noting that the two fractions sum to unity:

1− i1
i1 + i2

=
i1 + i2
i1 + i2

− i1
i1 + i2

=
i2

i1 + i2
(3.22)

it becomes apparent that this conditional probability is in the form of a binomial

distribution. A binomial distribution in general form is given by:

PK(k) =
n!

k!(n− k)!
pk(1− p)(n−k) (3.23)

where k is the random variable out of n independent experiments (called Bernoulli

trials) with a probability of success p. The expected value of a binomial random

variable is given by np. Letting k = d1 as our random variable, with n = d trials and

also letting:

p =
i1

i1 + i2
(3.24)

the expected value of a single Poisson conditioned on the sum becomes the following

E[d1|d] = d
i1

i1 + i2
. (3.25)

Substituting in dk(x) and i1 = E[dk(y|x)] into 3.25 we get the following( [28]):

E[dk(x|u)|dk(x)] = dk(x)
γλo(u, λ)hk(x− u, λ)

ik(x)
. (3.26)

It is also desirable to incorporate the effect of background noise in order to

make the simulation more realistic. A flat Poisson background bk(x) with a constant

mean (E[bk(x)] = c) is incorporated by adding it to the previous data model dk(x, y)

(equation (3.9)) and the incomplete data is relabeled dbk(x) to signify the addition of a

background dbk(x, y) = dk(x, y) + bk(x, y). This background is similar to adding a flat

field to the image. The background in this case is assumed to be known or measured

separately and is not estimated in this algorithm. This model is effectively diffuse
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background light and can also be considered similar to the effect of additive Gaussian

noise if the diffuse light level is high enough.

Since we are only interested in the portion of the data dependant on the object,

bk(x) can be considered another unknown variable added together with the complete

data with a total expectation of:

E[dbk(x)] = ik(x) + bk(c) (3.27)

However, because we measure the data in our experiment, the measured or known

background is used instead of estimating the expected value and no further estimator

for the background is developed. This means that the expected value in (3.26) is

given by:

Eold[dk(x|u)|dbk(x)] = dbk(x)
γold
λ ôold(u, λ)hk(x− u, λ)

ik(x) + bk(x)
(3.28)

where ik(x) is the image formed at distance plane k by a current object estimate ôold

and bk(x) is the background measured previously.

The next step is to maximize the complete data log-likelihood which is called

the maximization step of the EM algorithm. To maximize the complete data log-

likelihood, the derivatives of equation (3.11) are taken with respect to ônew and γ̂λ
new

giving equations (3.29) and (3.30).

∂Q

∂ônew(u, λ)
=
∑
k

∑
x

Eold[dk(x|u)|dk(x)]
ônew(u, λ)

−
∑
k

∑
x

γ̂λ
newhk(x, λ)

(3.29)

Where maxima exist, the first partial derivative will equal zero.

∂Q

∂γnew
λ

=
∑
k

∑
x

∑
u

Eold[dk(x|u)|dk(x)]
γnew
λ

−
∑
k

∑
x

∑
u

ônew(u, λ)hk(x− u, λ)

(3.30)
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We then set these equations equal to zero solve for ônew and γnew
λ . We further make

the assumptions: ∑
x

hk(x, λ) = 1

∑
u

ônew(u, λ) = 1
(3.31)

which can be controlled based on our initial guess for the object and by scaling the

PSFs. The spectral energy parameter contains the energy in the series of data frames,

and is assumed equal over all wavelengths to start with:

γold
λ =

∑
k

∑
x dk(x)

ϵ
(3.32)

where ϵ is the number of wavelengths of interest. Therefore the spectral energy is

weighted equally across all wavelengths according to the total energy in the collection

of frames. Also, we assume that for each iteration

γnew
λ ≈ γold

λ (3.33)

meaning that we do not expect the estimate for γλ to vary significantly with each

iteration. Finally, we need to take the expected value of the incomplete data condi-

tioned on the complete data with background given in equation (3.28). Substituting

the expected value (3.26) into equations (3.29) and (3.30) gives:

∑
k

∑
x

dbk(x)γ
old
λ ôold(u, λ)hk(x− u, λ)

(ik(x) + bk(x))ônew(u, λ)
− γ̂λ

new
∑
k

∑
x

hk(x, λ) = 0 (3.34)

∑
k

∑
x

∑
u

dbk(x)γ
old
λ ôold(u, λ)hk(x− u, λ)

(ik(x) + bk(x))γnew
λ

−
∑
k

∑
u

ônew(u, λ)
∑
x

hk(x− u, λ) = 0

(3.35)
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with the summations rearranged. The PSFs are shift invariant and because of our

earlier assumption of
∑

x hk(x− u, λ) = 1, we get:

∑
k

∑
x

dbk(x)γ
old
λ ôold(u, λ)hk(x− u, λ)

(ik(x) + bk(x))ônew(u, λ)
− γ̂λ

newK = 0 (3.36)

∑
k

∑
x

∑
u

dbk(x)γ
old
λ ôold(u, λ)hk(x− u, λ)

(ik(x) + bk(x))γnew
λ

−K = 0 (3.37)

where the value K is the total number of frames. Solving the equations for our

estimates, we get:

ônew(u, λ) =K−1 γ̂λ
old

γ̂λ
new ô

old(u, λ)
∑
k

∑
x

dbk(x)

ik(x) + bk(x)
hk(x, λ) (3.38)

γ̂new
λ =K−1

∑
k

∑
x

dbk(x)

ik(x) + bk(x)

∑
u

γ̂old
λ ôold(u, λ)hk(x, λ) (3.39)

Finally we use the assumption in (3.33) to cancel the dependence on γλ from equation

(3.38) giving us the final form.

ônew(u, λ) =K−1ôold(u, λ)
∑
k

∑
x

dbk(x)

ik(x) + bk(x)
hk(x, λ) (3.40)

Equation (3.40) is very similar in form to the object expressed in [12], and the added

spectral energy term (3.39) allows us to constrain total energy in the object estimate

while allowing the energy in each wavelength to vary independently. This solution is

similar in form to the equations in section 1.6, it differs on two key points. First, γλ

is allowed to range and is estimated jointly with the object. This helps to separate

the spatial and the spectral dimensions of the estimate. Secondly, this algorithm also

has an independent background which could allow this algorithm to perform better

in the case of a large amount of diffuse clutter.
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3.2 Simulation Setup

A simulation was performed using the parameters listed in table 3.1. Varying

numbers of frames and spectral separations were used to accurately quantify the

relationship between spectral resolution and the number of frame positions (also called

defocus planes).

A simple experimental setup was modelled in simulation and set up in the

laboratory for a single instance of the simulation. Figure 3.2 gives a notional schematic

for the optical design of a lens-based CTHIS. The parameters for the simulation and

experiment setup are given in table 3.1. Light-emitting diodes were simulated to

approximate the object modelled in the CRLB mentioned in section 2.4.

The source object was modelled with a circular pattern at multiple wavelength

spacings (∆λ), and then convolved with the PSF (over multple wavelengths) corre-

sponding to a lens with chromatic aberration.

The dispersion element and the two lenses closest to the camera were simu-

lated as a single converging lens for this setup, and the dispersion is provided by the

chromatic aberration of the converging lens. This chromatic aberration changes the

focal length at which each wavelength gives the sharpest picture. The wavelength is

modelled as in the CRLB section as a linear change given by:

fλ = αλ+ fbias (3.41)

where α is the dispersion parameter measured from the lens and λ is the wavelength.

The fbias parameter is inherent to the lens and is dependent on both the radius of

curvature and the index of refraction. Both α and fbias were measured in the lab, and

used in simulation. Equation (3.42) gives the un-normalized PSF of the lens which is

normalized to unit magnitude for the reconstruction algorithm (see previous section).

hk(x, y, λ) =

∣∣∣∣ ∫∫ w

−w

exp

[
πj

λ

(
(u2 + v2)

zd
− (u2 + v2)

αλ+ fbias
− 2(xu+ yv)

zd

)]
dudv

∣∣∣∣2 (3.42)
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Figure 3.2: Schematic of experiment set up with two sources

The distance zd represents the physical distance between the lens and the detector

plane. Multiple distances for zd are used by moving the lens further away from to the

detector plane from an inital starting point. The initial starting point is determined

by the wavelengths of interest and the parameters of the lens. Specifically, the shortest

distance to the focal plane should be closer than the focal length fλ of the shortest

wavelength of interest. Similarly, the farthest zd from the focal plane should be farther

away than the focal length of the longest wavelength of interest.

The number of defocus frames was varied giving various reconstructions of the

object to determine the specific effect of on spectral resolution. A multiplier was used

to vary the exposure time so that higher numbers of images did not result in larger

numbers of photons thereby resulting in an automatically higher signal to noise ratio.

The exposure time was varied corresponding to the number of frames used, with a

longer exposure (more images added together) corresponding to fewer frames, and

shorter exposure (fewer images added together) corresponding to more frames used.

52



Table 3.1: Simulation and Experiment Parameters
Parameter Value Units

dx (Detector Pitch) 16 µm
N (Detector size) 512 pixels
Aperture Diameter 1 cm
Number of wavelengths 10
λ0 (center wavelength) 560 nm
∆λ (wavelength spacing simulation) 10-100 nm
Minimum-Maximum simulated wavelengths (λmin − λmax) 560-645 nm
fλ0 (Focal length @ λ0) 441.6 mm

α (
∆f

∆λ
measured from lens) 1.2406x105

fbias (minimum focal length) 373.4 mm
K (Number of defocus planes) 3-20
Minimum/Maximum Distance (zd) 420.4/469.2 mm
∆zd (Distance between each defocus plane) 0.26 mm
Number of iterations for reconstruction 2000
Number of noisy realizations 500

This normalizes the energy (number of photons) used for each set of defocus frames

so that taking more frames will not be better simply because of a longer exposure

time. A constant background was then simulated and then a noisy realization was

taken (using Poisson statistics). The simulated images and background were scaled

according to the parameters of a realistic camera to convert the units to photons

based on the photon transfer characteristics of the camera.

53



IV. Experimental Setup

This chapter discusses the experimental parameters in Section 4.1 and the reasons

for design choices for the experiment. Then in Section 4.2 the calibration of sources

using a double-slit experiment is discussed. Finally, modelling calibration of the lens

and the comparison to the CRLB are discussed in Section 4.3.

4.1 Experimental Parameters

The two sources were two light-emitting diodes (LED) with a pinhole in front

of them to approximate the object modelled by the CRLB in the previous section.

The sources were aligned using a beamsplitter (to combine the two LEDs) so that

they overlapped to give the appearance of a single source. After the beamsplitter,

the source was collimated using an achromatic collimating lens, so that the distance

between the source and dispersion element did not affect the measurement. In the

experimental setup, only two diodes with center wavelengths at at 560nm and 645nm

were used in the setup. The center wavelengths were determined by a Young’s double-

slit experiment. The double-slit experiment is discussed in more detail in section 4.2.

The fbias parameter is inherent to the lens and is dependent on both the radius of

curvature and the index of refraction. Both α and fbias were measured in the lab, and

used in simulation. Equation (3.42) gives the un-normalized PSF of the lens which is

normalized to unit magnitude for the reconstruction algorithm (see previous section).

Experimentally, multiple images were taken at each defocus plane. The images were

then added together to simulate varying exposure times. In the experimental setup,

there was a significant amount of stray light present adding to a non-wavelength

specific diffuse background. To compensate for the diffuse lighting experimentally,

a background image was taken along with each defocus plane. If a background is

otherwise unavailable, the amount of background could also be estimated after the

fact similar to the derivation given above for estimating the image from an object

estimate. However this research simply uses a measured background.
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Table 4.1: Experiment Parameters
Parameter Value Units

dx (Detector Pitch) 16 µm
N (Detector size) 512 pixels
Aperture Diameter 1 cm
Number of wavelengths 10
λ0 (center wavelength) 560 nm
∆λ (wavelength spacing simulation) 10-100 nm
Minimum-Maximum simulated wavelengths (λmin − λmax) 560-645 nm
Experimental wavelengths 560/645 nm
fλ0 (Focal length @ λ0) 441.6 mm

α (
∆f

∆λ
measured from lens) 1.2406x105

fbias (minimum focal length) 373.4 mm
K (Number of defocus planes) 3-20
Minimum/Maximum Distance (zd) 420.4/469.2 mm
∆zd (Distance between each defocus plane) 0.26 mm
Number of images per defocus plane 500
Number of iterations for reconstruction 2000
Number of noisy realizations 500
Diode 1 intensity (550nm) 3.64 x 1018 Photons/frame
Diode 2 intensity (645nm) 1.82 x 1018 Photons/frame
Background intensity (645nm) 3.56 x 1012 Photons/frame
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A digital camera only measures light intensity in digital counts. Because the

projection-based reconstructor assumes Poisson statistics, the measured data needs to

be scaled to reflect the number of photons sensed, not the number of photoelectrons

generated (whole number digital counts). Knowing that the Poisson statistics have

both an expected value that equals the variance, the data was assumed scaled so that

the variance matched the mean by dividing by the standard deviation of the data

itself, and multiplying by the square root of the mean thus scaling the variance to the

mean of the digital counts and enforcing Poisson statistics:

dphotons(x, y) = Ex,y[dcounts(x, y)]
dcounts(x, y)

std[dcounts(x, y)]
(4.1)

Both the simulated and collected images, were scaled in this way according to the data

measured from the camera, thus converting the units to photons for the reconstruction

algorithm. Any read noise or other additive white Gaussian noise is assumed to be

measured in the background. These simulated or experimental images were then

summed down each row to use the projection algorithm discussed in section 3.1.

4.2 Laboratory Calibration of Sources

An experiment was set up to mimic the schematic in figure 3.2. Two diodes

were chosen to provide 100nm separation. The diodes were found to be approximately

560nm and 645nm (red and green) using a simple Young’s double-slit experiment

setup. In Young’s double-slit experiment, two slits are used to form a diffraction

pattern similar to the one in figure 4.2. The wavelength, the slit separation and the

distances between the screen and the slits are related by:

L =
λ̄z

a
(4.2)

where a is the slit separation, L is the distance between the maxima, z is the distance

from the slits to the screen and λ̄ is the center wavelength of the source (from [10]).

This equation can be rearranged to give the wavelength as a function of the fringe
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Figure 4.1: Young’s double-slit experiment setup

separation (L) and ratio of the slit distance to lens distance ( z
a
).

λ̄ = L
a

z
(4.3)

A laser with a wavelength of 632.8nm was used to determine the distance ratio a
z

(figure 4.2). Images were taken and the fringe separation L was calculated. Figure

4.3 shows the measurement of this ratio for the calibration wavelength. The distance

ratio was then calculated to be 79.1 nm/pixel. This ratio used with other diodes to

determine the wavelength center of each diode. Figure 4.4 shows the fringe pattern

from the higher wavelength diode chosen for this experiment. Because the fringes are

saturated, it is not possible to find the center peak. However the distance between the

outermost fringe peaks can clearly be seen. The distance between the two outer peaks

was found, and the average period calculated. It can be shown from figure 4.5 that
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Figure 4.2: Fringes for calibration source at λ̄=632.8nm

the average fringe period distance L = 8.17 pixels and from equation (4.2), the diode

wavelength is found to be λ = 645nm. Only the center wavelength can be determined

from a simple double-split experiment. It is not possible to determine an accurate

line-width with this setup. Therefore, the diodes were chosen with center wavelengths

far enough apart so the bandwidth would not interfere with the verification of spectral

resolution.

4.3 Determination of Lens Dispersion

In this section, a Focus Aberration Detection (FAD) algorithm is adapted to

determine the amount of focus aberration present at each wavelength using an algo-

rithm developed for a polarimeter using phase diversity (a defocus aberration) [30].

Since the diversity element between this research and the polarimeter research is a

defocus aberration, the FAD algorithm is easily adapted to the determination of the

lens-dispersion parameter. This algorithm pre-computes the focus aberrations and

uses a step similar to the Richardson-Lucy algorithm to deconvolve the focus from

the object. Finally, the log-likelihood ratio is computed and a probability of the focus

aberration is applied computing the Maximum-a-Posteriori probability of the focus

aberration. In this implementation, because the approximate focal length is known

to within a certain range, only the Maximum-Likelihood estimation is needed.
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Figure 4.3: Calibration fringe distance was found to be L = 8 pixels

Figure 4.4: Young’s double-slit interference pattern with λ0=645nm
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Figure 4.5: Data to determine diode wavelength
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The modification to the FAD algorithm has 4 steps. First start by generating

a series of phases between minimum aberration and some upper limit of focus in

this case chosen to be between minimal and maximal focal lengths observed in the

lab for the LEDs above. Secondly, deconvolve the object from the measured image.

Third, calculate the log likelihood for each focus aberration. Finally, find the maxi-

mum likelihood which corresponds to the focus aberration for the lens at the specific

wavelength.

A PSF for defocus is given by:

hk(k, p, λ) =

∆4
ξ

∣∣∣∣∑
m,n

A(m,n) exp
[
πj(m2+n2)

λ

(
λ2zd
N2dx2 −

λ2z2d
(αλ+βfl)N2dx2

)]
exp

[
−2πj(km+np)

N

]∣∣∣∣2
∆4

ξ

∣∣∣∣∑
m,n

A(m,n) exp
[
πj(m2+n2)

λ

(
λ2zd
N2dx2 −

λ2z2d
(αλ+βfl)N2dx2

)]∑
x,y

exp
[
−2πj(km+np)

N

]∣∣∣∣2
(4.4)

(the same as equation (2.32)). From this PSF, the defocus Wd is varied over the

distances listed in table 4.1 around the focus for the center wavelength λ0. This is

done for both wavelengths determined above.

The log likelihood for a single defocus frame is given by:

LD(d) = ln[PD(d)] =
∑
y

∑
x

∑
k

dk(x, y)ln[ik(x, y)]− ik(x, y)− ln[dk(x, y)!] (4.5)

(the same as equation (3.1)).

The equation for Wd is given by:

Wd = −w2

2

(
1

zd
− 1

zi

)
(4.6)

(the same as equation (2.28)), and using the two wavelengths determined above, the

lens model parameters α and βfl can be computed. The parameters are listed in table

4.1 given above. Figures 4.6 and 4.7 show the results of the laboratory calibration.

Notice that the PSFs for the 645nm LED do not visually match as well, however the
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Figure 4.6: PSF estimated vs deconvolved for λ = 560nm

defocus of the log-likelihood function was found to match closely. This is due to the

fact that although defocus is the main aberration present in the lens, some of the

higher order aberrations may also be present. The energy away from the peak has a

much greater overlap and thus this correlation is much higher in the first (λ = 560nm)

LED.
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Figure 4.7: PSF estimated vs deconvolved for λ = 645nm
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V. Simulation and Experiment Results

The purpose of this chapter is to describe a simulation and laboratory verification of

the resolution limits of lens-based chromotomagraphic hyperspectral sensor. In order

to accomplish this, a simulation was performed using to determine the effect of num-

ber of defocus planes on spectral resolution. These simulations were performed for

multiple wavelength spacing and varying numbers of defocus planes. In the previous

chapter, comparisons of various parameters for the CRLB indicated that the largest

factor affecting lens-based CTHIS resolution is the spacing and number of defocus

planes. Each increase in the number of defocus planes in the simulation was accom-

panied by a corresponding reduction in integration time, thus the total energy in each

set of collected images is the same. In section 3.1, a projection based reconstructor

was developed similar to a previous method [12] that solves for the spectrum of the

scene in a single spatial dimension and single spectral dimension. Next, in section 3.2,

the setup for the laboratory and the experiment are described. Finally, a laboratory

experiment performed to verify a single instance of the CRLB and simulation for the

lens-based CTHIS is described in section 5.4.

5.1 Effects of Lens-Based Dispersion on Spatial and Spectral Resolution

As mentioned in section 3.1, the reconstruction is given as an iterative EM

estimator that attempts to maximuze the likelihood. The object estimator began to

converge around 200 iterations. The image photon bias β was chosen to be 10 so

that the estimator would converge to a reasonable solution. As seen in figures 5.5

and 5.6, even this small amount of bias adds a great deal of noise to the images, and

results in a longer convergence time for the estimator. Figure 5.1 gives an example

of object reconstructions without and with bias (using only 1 spatial dimension).

The results of bias on the reconstruction are easily seen. The peaks can be clearly

shown in the reconstruction with bias, although there are many false peaks and the

spectrum is blurred across many more wavelengths. Even though the of the bias

reconstructed spectrum is blurred, there are peaks at the expected locations. The

64



Wavelength − λ,nm

P
ix

e
l 

In
d

e
x
 −

 x

Estimated Object, ∆
x
=5,∆

λ
=80nm

450 500 550 600 650

10

20

30

40

50

60

Wavelength − λ,nm

P
ix

e
l 

In
d

e
x
 −

 x

Estimated Object, ∆
x
=5,∆

λ
=80nm

450 500 550 600 650

10

20

30

40

50

60

Figure 5.1: Example Reconstructions without (left) and with (right Bias after 200
iterations

spatial reconstruction converges quickly to the locations of the point sources (requiring

only a few iterations). However the spectrum takes many more iterations to show

obvious peaks.

The CRLB is used as a metric to describe the spatial and spectral resolution of a

system. Specifically, we use the standard deviation (the square root of the CRLB), and

where our standard deviation is lower, the resolution is considered higher [19]. This is

equivalent to saying that when our estimator standard deviation is greater than our

actual point source separation, it is impossible to resolve the object. The lens-based

implementation differs from other CTHIS implementations, and using the CRLB is

not as straightforward as a spatial resolution criteria. In previous work, a CRLB was

used as an estimate of the resolution of two variations of CTHIS sensors [19]. The

prism and grating CTHIS configurations correlate spatial and spectral information

across the resulting images, and therefore an ambiguity of the actual spatial resolution

results. Because a change in spatial location in a resulting image may be due to a

spatial variation of the extended object, or due to a different wavelength feature, the

variance of the spatial separation estimates were compared with the actual wavelength

separation. This showed that the spatial resolution of the CTHIS sensor for the

grating and prism configurations varied with the spatial separation of the object.
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Figure 5.2: Spatial Resolution Estimates vs. Spectral Separation

However, in the case of the lens-based CTHIS, because the spectral diversity

varies across multiple images, we do not expect the spatial resolution to be different

than a diffraction-limited optical system. Figure 5.2 shows the standard deviation and

simulation results across varying values of both spectral separation and the dispersion

parameter α. The lower bound obviously bounds the performance of the simulation,

and matches the general trend. The CRLB is relatively flat with a changing spectral

separation. Changing the object’s spatial separation also does not appear to affect the

standard deviation. Almost all of the simulated points are below the Rayleigh limit

(the minimum Rayleigh limit for this system is 2.5 pixels at λ = 410nm). The CRLB

is only a bound on the best estimator performance, and is not necessarily achievable.

When the calculated standard deviation is below the Rayleigh limit, the defocused

images must be providing more information than a typical imaging system. There

may be special object cases where, for this configuration, beyond diffraction-limited
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resolution is possible. For instance, the object under consideration with two points

spaced closely, but distant spectrally obviously benefits from the increased information

provided by the extra frames (which happens to be the object we are estimating). In

this case, it would be obvious there are two points present due to the fact that there

will be almost mutually exclusive zones where one point is in focus, and the other

point is out of focus (see figure 5.5 for an example). Simply observing that there are

two zones where points are in focus renders the conclusion that there are two points.

This problem is much more difficult when the object has many closely spaced points

at various wavelengths because there is no obvious distinction between the defocused

images. Although the trend of the simulation is not flat, there is no obvious trend

with the changing spectral or spatial separation. As a result, we conclude that for

an average object that the best spatial separation we can expect from a lens-based

CTHIS would be around the same as the diffraction-limited optical system.

The spectral resolution is of significant interest. Figure 5.3 shows the standard

deviation of spectral resolution estimates against the spectral dispersion parameter

α. There is a trend in both the simulation and the CRLB. As α varies, there is a

minima where both the CRLB and the simulation give the lowest σ∆λ
before and

after which, the standard deviation increases. This minima occurs for each spectral

separation ∆λ, as it increases this minima requires a stronger dispersion (a higher

α). When ∆λ = 100nm, the minima occurs for α = 80, 000, when ∆λ = 60nm, the

minima occurs at or near α = 200, 000, and beyond this (for ∆λ < 40nm), the minima

occurs for α beyond the simulation and CRLB parameters. This indicates that for a

desired spectral separation (object), there is a particular chromatic aberration that

will resolve the object, but beyond which the resolution will get worse. In other words,

for a particular lens with a known chromatic aberration, there is a “sweet spot” for

its spectral resolution showing the best performance we can expect for the CTHIS

system. That minima is the limit of performance for the given optical setup, given

the particular object.
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Figure 5.3: Spectral Resolution Estimates vs. Spectral Dispersion

The number of defocused planes and the distances (zd) also affects the standard

deviation of the estimator, and these results are discussed in 5.4, however for this

initial study it was fixed at 20 (planes) and varied ±1cm. Increasing the number of

defocused planes would require a precision stage with which to move the lens with

respect to the focal plane, but it was determined that it is relatively simple to move

the stage in approximately 1mm increments. We would expect the α parameter to

dictate an appropriate number of defocus planes, and in turn, the effects on spectral

resolution. These results mentioned in [18], became the basis for the results reported

in section 5.4.

The Cramer-Rao lower bound was used as a method for determining the ex-

pected resolution performance of a lens-based hyperspectral imaging sensor based on

the lens-dispersion parameter. This bound was verified to be a lower bound on the

expected spatial and spectral resolution of the CTHIS using simulation. Due to the

fact that the spectral variation is spread across multiple images, and not spatially
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Figure 5.4: Simplified Optical Setup

as in the grating and prism based CTHIS, the spatial resolution was determined to

be similar to that of a diffraction-limited imaging system. The spectral resolution is

heavily dependent on the spectral dispersion of the lens in the system. It was de-

termined that each value of α yields a particular “best” point of spectral resolution.

However it was also determined that the number of defocus planes was another pa-

rameter that affects spectral resolution and was not captured in this particular use of

the CRLB.

5.2 Numerical CRLB Computation

The CRLB given in section 2.4 was computed for the properties given in table

5.1. Then, the resulting images had a bias β added and noise was then applied

according to Poisson statistics. The bias simulates unrelated points in a scene, and

also arbitrarily increases the signal to noise ratio (SNR) of the images. The bias was

also added to the CRLB, and then calculated to make the bound more realistic. The

final image then becomes:

ik(x, y) = o1hk(x− x0, y − y0, λ0) + o2hk(x− (x0 +∆x), y − y0, λ0 +∆λ) + β (5.1)

and is used in equation (2.15). Because β is a constant, it only modifies ik(x, y) and

does not contribute to the derivatives for the Fisher information matrix elements.
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Figure 5.5: Simulated Defocused Images with Poisson Noise
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Examples of images with Poisson noise are given in figures 5.5 and 5.6 without and

with a bias respectively.

Parameter Name Value
λ 410nm− 650nm
λ0 530nm

f@λ0 200mm
βfl 158mm
zd 190-210mm

# of defocused planes 3-40
pixel size (dx) 8µm
# of pixels 64

Source Intensity (o1, o2) 300 photons
Image Bias β 10 photons

Aperture Radius 2.1mm
α 12× 104

∆x 1− 10 pixels
∆λ 10− 100nm

Table 5.1: CRLB Parameters

The wavelengths were chosen over the visible spectrum because many lenses

with severe chromatic aberration are available, and a wide variety of inexpensive

detectors are available. The parameters for pixel size (dx), defocused distances (zd),

and aperture diameter were chosen because they reflect a realistic optical system

setup. The aperture diameter specifically samples at twice the Nyquist rate for the

Rayleigh criteria of the pixel size. The spectral dispersion parameter α was chosen to

correspond to a real lens used in a laboratory setup (see chapter V). The maximum

number of defocused planes k was fixed at 40 because it corresponds to a physical

distance of approximately 0.5mm. The number of defocus planes were varied between

3 and 40 and varying starting positions were chosen so as to reduce the dependance

of the variance on the start position, and to characterize the resolution dependance

simply on the number of frames. The point source intensities were chosen for a very

low signal setup, and the image bias was chosen to be much less severe because it

was determined that any higher bias noise significantly degrades the performance of
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Figure 5.6: Simulated Defocused Images with Poisson Noise and Bias
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an estimator. The k, ∆x and ∆λ parameters were then varied in the simulation over

the specified ranges in table 5.1.

After the CRLB was computed for the individual images, the summation over k

was taken last. Recalling that equation (2.15) is an element of the Fisher information

matrix for a series of images, if o1 and o2 are held constant for each image, then the

amount of light collected will be greater the more frames are collected. To scale the

photon count for the number images collected, equation (2.15) was modified to:

Fij =
1

K

∑
y

∑
x

∑
k

1

ik(x, y)

∂ik(x, y)

∂ϕi

∂ik(x, y)

∂ϕj

(5.2)

where K is the total number of frames collected. This normalizes the number of

photons across the all the images computed to be constant regardless of the number

of frames collected. This ensures that collecting more images does not result in a lower

variance simply because more photons were collected. This is the same as scaling the

photons in each object to account for camera integration time.

5.3 CRLB Results

As mentioned in section 2.1, the CRLB is used as a metric to describe the spatial

and spectral resolution of a system. Specifically, we use the standard deviation (the

square root of the CRLB), and where our standard deviation is lower, the resolution is

considered higher [19]. This is equivalent to saying that when our estimator standard

deviation is greater than our actual point source separation, it is impossible to resolve

the object. The standard deviations from the CRLB σ∆x and σ∆λ
were then compared

with ∆x and ∆λ used to generate them, and to the number of frames for varying CRLB

calculations. Specifically using the criteria in equation (2.1), we have

∆x

2σ∆x

= 1

∆λ

2σ∆λ

= 1

(5.3)
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The number of frames required to resolve a spectral feature were calculated. For

example in figure 5.7, the line for ∆λ = 10nm never is never below 20nm and is

therefore not resolvable using up to 40 frames to estimate the scene. It may be

that it is resolvable with greater than 40 frames, however for this research, the 40

frames was the maximum number considered. Only values for ∆λ = 10 − 40nm are

shown because for ∆λ > 50nm, the lines are too closely spaced to differentiate them

significantly in a graph. For spatial resolution, figure 5.8 shows an example of the
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Figure 5.7: Spectral Standard Deviation versus the number of frames. Notice that
the ∆λ = 10nm line is not resolvable.

standard deviation σ∆λ
as a function of the number of frames. In this graph, there

is also an unresolvable line. Notice how for ∆x = 1, the standard deviation is always

greater than 2. This shows that for ∆x = 1 with 40 or fewer frames, two closely-

spaced points are unlikely to ever be resolvable. These calculations were made for

∆x = 1 − 10 pixels and ∆λ = 10 − 100nm. The point where the ratio in equation

(2.1) is closest to one, was calculated and the number of frames required for resolving
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the two points was recorded. Figure 5.9 shows this calculation for spatial resolution.

Only ∆λ = 10−40nm points are shown to illustrate the trend. This figure shows that

only a few frames more or less are needed for even a large difference in ∆λ. As one

would expect, this indicates that the spatial resolution of a CTHIS system behaves

similarly to a diffraction-limited optical system and does not vary significantly when

points are spectrally far apart. When both ∆x and ∆λ are close together, many more

frames are needed to resolve the points. When the points get spectrally farther apart

(increasing ∆λ), only a few frames difference is required. There may also be special

cases where beyond diffraction-limited resolution is possible. If two points are spaced

closely (∆x small), but distant spectrally, then there is obviously a benefit from the

increased information provided by the extra frames. It should be obvious that two

points are present in the scene if there are two mutually exclusive zones where one
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Figure 5.9: Number of frames required to resolve various spatial separations us-
ing the CRLB and standard deviation-based resolution metric. Only a few frames
difference are needed for various ∆λ values.

point is in focus, and the other point is out of focus. The spatial resolution is improved

by knowing the spectral characteristics of the lens. This simple object however is not

as common, and beyond diffraction-limited resolution should not be normal given an

average object. Because of this, we conclude that for an average spectral scene, the

spatial resolution of the CTHIS should not be significantly different from a diffraction-

limited case.

For spectral resolution, figure 5.10 shows the number of frames required to

resolve 2 points spectrally. For ∆x = 2− 4 pixels, fewer frames are needed to resolve

the points when ∆λ is small. As ∆λ increases, fewer frames are needed to see the

spectrum of the object. Notice that for ∆x = 5−7, only ∆x = 7 appears to be shown.

That is because for the CRLB, the profile for ∆x > 4 is exactly the same. In other
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words, when the points are much farther apart spatially, it is much easier to resolve

the points spectrally. For this case, beyond ∆x > 4 pixels, there is no difference in

the number of frames required to determine the spectrum of those points. When ∆x
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Figure 5.10: Number of frames required to resolve various spectral separations.

is small, many more frames are needed to determine the spectrum. Finally, the closer

the spectrum is spaced, the more frames are needed. As a result, it seems obvious

that a coarse resolution spectrometer can be made using a very simple standard

optical setup, for only a slightly higher cost of data collection and computation. The

chromatic aberration of a lens is something that is present in many optical systems,

and the possibility of collecting more information for only a slightly higher complexity

is very appealing.
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5.4 Spectral Resolution of Lens-Based CTHIS

In the previous chapter a resolution criteria based on the minimum estimator

variance was presented. The CRLB was given for a low-signal scenario. This was done

because initial measurements indicated that the signal to noise ratio was low. After

the data was measured and converted to photons, it was found that the signal to noise

ratio was very high. Also, after simulating the reconstruction method developed above

over 500 different noise realizations, it was found that reconstructions did not vary

within 10 orders of magnitude due to noise, and another resolution criteria needed

to be developed. This section discusses the new resolution criteria, and the results of

both the simulation and the experiment.

5.4.1 Resolution Criteria. After noisy images were simulated, the recon-

structor developed in section 3.1 was used to reconstruct the object for varying lens

positions. Multiple noisy simulations were used however, the Poisson noise did not

change the resulting reconstruction for varying noise samples. This is due to the

fact that there is a very large signal to noise ratio. Therefore, only 1 realization of

noise was used per frame, or simply stated, the simulation was not repeated multiple

times per frame. Because of the lack of variation, a variance across multiple random

realizations frames could not be determined.

In the experiment, positions were taken between the 420.4mm and 469.2mm

from the camera. These were taken to give equal distances between the focal lengths

for the 550nm and the 645nm and equal distances on either side of the focal length. A

total of 20 positions were taken representing 2.5mm which was the smallest distance

that could be taken with the measurement device. In simulation, the start position

was taken between 420.4mm and 422mm and subdivided 40 times, to average for any

resolution criteria no matter how many frames were used from 3-20. A minimum of

3 frames were taken so there was always 1 frame on either side of the focal point of

the two LED wavelengths. Although more wavelengths were used in simulation, the

experiment only had 2 wavelengths represented.
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Figure 5.11: Simulated reconstruction for ∆λ=30nm using 3 frames

After the images were simulated for this criteria, the objects were reconstructed.

Since we are primarily concerned with spectral resolution for this study, only the spec-

tral energy parameter γλ was actually compared with the actual spectral separation

∆λ. Multiple iterations were attempted, and it was found that 2000 iterations worked

best for both the simulated and experimental data. On average more iterations did

not help the reconstruction further and in some cases increased the amount of noise

present. When examined, reconstructions using only a few frames had multiple false

peaks. For this simulation and experiment it is known that there are only 2 points.

Figure 5.11 shows an example of multiple peaks for 3 frames. The primary peak should

be at λ = 550nm, and another peak is expected at λ = 580nm. Notice the multiple

peaks around the λ = 550nm, and that the peak at λ = 580nm is almost twice as large

as the first peak, this is because the energy for the first point is spread across multiple

wavelengths and more information is needed for an accurate reconstruction. Notice

how when more frames are added, as in figure 5.12, the reconstruction algorithm is

able to find the wavelengths of the two peaks, even down to 30nm in simulation. The

peak at λ = 550nm has almost twice the number of photons as the second peak at

580nm. So for this analysis the number of peaks is used as a resolution criteria and

when two peaks are detectable. When only two peaks are detected, then the image
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Figure 5.12: Simulated reconstruction for ∆λ=30nm using 7 frames

is considered spectrally resolved. This resolution criteria is in keeping with the FAD

algorithm discussed earlier, as well as other iterative maximum-likelihood estimators

in the literature where the values for which the algorithm converges are considered

the correct parameter for estimation. In the case of the FAD algorithm, the amount

of focus error is considered a correct estimate when the estimation converges. Fig-

ure 5.11 represents an unresolved case and figure 5.12 represents a resolved case. A

modified first derivative test was used to detect peaks. The first derivatives were taken

and the zero crossings were determined to find the critical points. The zero crossing

location were compared to determine if they were an inflection point, a minima or a

maxima. If a maxima occurs at the critical point, the peaks were kept if they were

within 2 orders of magnitude of the known intensity for the second peak (in this case

at 580nm). Specifically the threshold is at 5× 1011 for this case.

5.4.2 Simulation and Laboratory Results. Images were simulated and col-

lected as described above for each set of different frames. The total number of frames

were taken for each start position, then frames were successively added in and each set

then was reconstructed using the algorithm developed in section 3.1, and the modified

second derivative test applied to determine the peaks. The number of peaks over each
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Figure 5.13: Mean Number of peaks, simulated and experimental

start position was averaged for the simulation, and averaged using a weighted average

for the experimental data. Figure 5.13 shows how the number of frames affects the

average number of peaks for 80nm to 100nm. Although the data was simulated for

10nm to 100nm only 80nm to 100nm is displayed because this region displays the

clearest trend. As the wavelength increases, the number of peaks slightly decreases.

In other words, the farther away two points are in spectrum, the better the recon-

struction is, with fewer frames. Because the trend is so strong with only the first

few frames between 3 frames and 7 frames, improvement due to increased ∆λ is only

slight, however it does demonstrate that the farther apart two wavelengths are being

reconstructed, the easier it is to resolve them. Notice also that after 7 or 8 frames,

almost all of the wavelengths are resolvable. At this point we have demonstrated the

trend with wavelength on resolvability, we now seek to understand how closely the

measured ∆λ relates to the actual ∆λ. For the experimental data, we see the same

trend: the farther apart the points, the fewer frames that are needed to resolve the

data. Notice in figure 5.14 of the experimental data that the two points are clearly

separated unlike figure 5.11 and are therefore resolvable. However, the intensities are
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Figure 5.14: Experimental reconstruction for ∆λ=95nm using 3 frames

not the expected values. The first peak is at 550nm as expected, but the second

peak is at 620nm which is only ∆λ = 70nm when the actual value is ∆λ = 95nm

as determined by the Young’s experiment described in section 4.2. The data is re-

solvable with only 3 frames, however the intensity and the spectral accuracy are still

not what we expect. Figure 5.15 shows for an example of the experimental data

that for 7 frames, the intensities are closer to their expected values, especially their

relative values. However the spectral accuracy is still only ∆λ = 80nm rather than

∆λ = 95nm as expected. As another example using the full 20 frames reconstruction,

the intensities are exactly where they should be, and the points are clearly resolvable,

however, ∆λ = 70nm rather than ∆λ = 95nm. The discrepancy in the measured

spectral accuracy with the calibration vs. the reconstructed data may be due to the

measurement error in the Young’s calibration, or most likely due to the sensitivity

of the reconstructed wavelength bins. Point spread functions were generated every

10nm for the reconstruction, and there might be some sensitivity in the experimental

data to an optimal wavelength spacing for PSFs compared to the distance the lens

is moved in between frames. Since the data was simulated for multiple wavelengths,

the spectral accuracy can be computed from the simulated data. Figure 5.17 shows a

graph of the average spectral accuracy (computed ∆λ) as a function of the number of
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Figure 5.15: Experimental reconstruction for ∆λ=95nm using 7 frames
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Figure 5.16: Experimental reconstruction for ∆λ=95nm using 20 frames
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Figure 5.17: Mean simulated spectral accuracy for 80-100nm vs. number of frames

frames. Notice that although the data is close to the simulated ∆λ value, the values

are around 5nm away from the actual value even after the data is resolvable. Another

metric that can be calculated when examining spectral accuracy is the sum squared

error. This is calculated by squaring the difference between ∆λ and ∆̂λ the estimated

value. Figure 5.18 shows that the error drops off significantly after 6− 7 frames. At

less than 6 frames the greater the separation ∆λ, the lower the error. Figure 5.19

that the CRLB bounds the performance of the simulated and experimental results

and provides a metric for determining spectral resolution performance. It should be

noted that the CRLB has more information than the reconstructor due to the fact

that the object structure (2 points) is known for the CRLB. This is required in order

to compute the CRLB, but although a two-point reconstructor could be developed

it would not be a realistic algorithm for experimental use as it could only detect

two-point objects.
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5.5 Lens Point Spread Function Modelling Signal-to-Noise Ratio as

Compared to the CRLB

In calculating real results, it is necessary to compare the models to laboratory

data. Since the model does not match the real noise also received in the image, the

simplified point spread function does not account for everything from the real-world

scenario. This section will discuss the quantification of this modelling error and lay

the foundation for comparing the Cramer-Rao lower bound to the real experiment.

The real PSF in the presence of modelling error is given by:

h(x, y) = (g(x, y) + e(x, y)) (5.4)

where g(x, y) is the modelled PSF and the image resulting from this noisy PSF (with

an ideal object) is:

i(x, y) = h(x, y) ∗ o(x, y) (5.5)

As we can see from equation (5.4), the PSF has modelling error in it that is not

accounted for by the model. This error is then present in the received images used

for calibrating the PSF of the lens. Using the deconvolution mentioned above, the

estimated point spread function h′(x, y) is calculated which was then used to deter-

mine the parameters of the lens. To compare the model to the real PSF we start by

normalizing the power in the PSF to unity:

hd(x, y) =
h′(x, y)− E[h′(x, y)]∑

x h
′(x, y)

(5.6)

Then, the normalized PSF hd(x, y) is convolved with an ideal object to come up with

an estimate of the image with error:

id(x, y) = hd(x, y) ∗ o(x, y) (5.7)
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where o(x, y) is the same object used in the simulation of the CRLB and the simulation

and we call the image with error id(x, y). Next, the modelled PSF g(x, y) convolved

with the ideal object to calculate an estimate of the error-free image.

i(x, y) = g(x, y) ∗ o(x, y) (5.8)

Finally the estimate of the modelling signal to noise ratio is computed using the

mean of the ratio of the image divided by the error. This is done for some small

distance around the peak (a square of 10 pixels) to capture signal, and leave out the

background.

SNRmodel = Ex,y

[
i(x, y)

|i(x, y)− id(x, y)|

]
(5.9)

The SNR of the CRLB is calculated using the intensities of the sources divided by

the diffuse background intensity.

SNRCRLB = Ex,y

[
i(x, y)√

B

]
(5.10)

In this case, the SNRmodel = 8.24 and with o1 = o2 = 300 and B = 10, the

SNRCRLB = 3.59. This compares well and shows that even though the intensity

of the experiment was much higher than the signal of the CRLB, the SNR of the

modelling error for the experiment compares well with the SNR of the CRLB.

5.6 CRLB as a Metric for Lower Bound on Spectral Resolution

This chapter has examined a simulation and laboratory verification of spectral

resolution and also examined factors affecting spectral accuracy. The primary factor

in this study was determined to be the number of frames. There appears to be a

minimum number of frames required in order to resolve two closely-spaced spectral

points, beyond which more frames gives little to no additional information. The

farther apart these points, the fewer the frames necessary to resolve two points, and

the greater the spectral accuracy. A simulation was set up to determine the extent
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that these factors affect spectral resolution and spectral accuracy. An experiment was

set up and demonstrated the ability of the presented algorithm to extract meaningful

color information from a series of defocused frames using chromatic aberration. Also,

the trend for more frames to not affect spectral resolution and accuracy beyond 6

frames for this setup was determined by the simulation and verified by the experiment.

The CRLB compares well with the simulated and experimental results as shown in

section 5.1 where the CRLB was used to determine what effect lens dispersion would

have on spectral performance, as well as in section 5.4.2 where the parameter study of

the number of frames was compared with both a simulation and an experiment. While

the CRLB does not completely characterize the design of a lens-based CTHIS, it can

be useful as a method of bounding the effects of various parameters on reconstruction

and useful for finding proper parameters to design a sensor. While the analysis of this

chapter has focused on a lab-based setup for sensor testing, the next chapter gives

a simple study for the lens-based CTHIS in the presence of the atmosphere, which

has the potential to significantly degrade the sensor performance and makes it more

difficult to use these CTHIS sensors in real-world applications.
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VI. Blind Deconvolution and Hyperspectral reconstruction

in the presence of Atmosphere

6.1 Atmospheric Results

In this section, the algorithm given in section 3.1 is re-derived for a CTHIS in

the presence of the effects of atmospheric turbulence. This is a blind deconvolution

approach which attempts to determine the seeing parameter of the atmosphere from

a series images collected with a known amount of chromatic aberration produced by

a lens. The differences for the assumptions from a laboratory setup are discussed

in section 6.2. Section 6.3 discusses how the Expectation-Maximization approach

for estimating a spectral and spatial scene derived in section 3.1 can be extended to

jointly estimate the background and the spatial-spectral object in the presence of an

atmospheric Optical Transfer Function (OTF) and also used to estimate the seeing

parameter. Finally, section 6.4 discusses the simulation of two scenarios showing the

application of this algorithm.

6.2 CTHIS System Design and Modelling

The model used in (2.26) was strictly based on an assumption of the focal

length. A more accurate lens model for a lens-based CTHIS incorporates the index

of refraction change with wavelength n(λ). The wavelength dependence of the focal

length of a typical uncorrected thin lens with equal radii of curvature, R, for the front

and back surfaces is given by equation (6.1).

f(λl) =
R

2n(λl)− 2
(6.1)

In this equation λl is the wavelength of the light passing through the lens associated

with a discrete spectral component indexed by l and n is the index of refraction [11].

As previously, the focal length is assumed known as a function of wavelength, and it

is used to define the known point spread function (PSF) of the optical system, hopt,
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which is approximated by equation (6.2).

hopt(x, y, l, k) ≈
∣∣∣∣ N∑
u=1

N∑
v=1

A(u, v)e
jπ
λ

(
1
zk

− 1
f(λl)

)
(u2+v2)∆u2

e
− j2π(ux+vy)∆x∆u

λlzk

∣∣∣∣2 (6.2)

This is the same as previously assumed in (2.24) where zk is the distance between the

lens and the detector plane. The PSF model presented in equation (6.2) is a fairly

good approximation of the true function when the object being imaged is far enough

away from the system to be considered at infinity [11]. The distance zk from the

lens to the plane where the image is formed for the kth image taken by the sensor,

A is the pupil function, (x,y) are sample locations in the detector plane, (u,v) are

sample locations in the pupil plane, ∆u is the sample spacing in the pupil plane and

∆x is the sample spacing in the detector plane. A discrete approximation of the PSF

is needed to model the PSF in a computer. The OTF (Hopt) is the 2-dimensional

Fourier transform of the PSF generated using equation (6.2).

Another diffraction related effect is contributed by atmospheric turbulence and

can be modelled using an average optical transfer function model. The effective

average transfer (Hatm) in equation (6.3) is for an optical system viewing an object

through a long-exposure image viewed through turbulent atmosphere with a seeing

parameter of ro(λl) [13].

Hatm(fx, fy, l) = e
−3.44(f2

x+f2
y )

(
λlf(λl)

ro(λl)

)2

(6.3)

In this equation (fx,fy) are coordinates in frequency space [10]. The seeing parameter

is dependent on which spectral band is used in the model and is assumed to vary with

wavelength via the following function:

ro(λl) = rmin
o

(
λl

λmin

)6/5

(6.4)

where λmin is the minimum wavelength in the pass-band of the optical filter and rmin
o is

the seeing parameter corresponding to this wavelength. The atmospheric and optical
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components of the transfer function combine to form the total transfer function (Htot).

The total PSF (htot(x, y, l, k, r
min
o ) is the 2-D inverse FFT of Htot.

Htot(fx, fy, l, k, r
min
o ) = Hopt(fx, fy, l, k)Hatm(fx, fy, l) (6.5)

The images formed by the CTHIS sensor are panchromatic images featuring one

wavelength of light in focus and others across the remaining spectral components out

of focus to varying degrees. The optical system is modeled as being linear in intensity

and wavelength allowing the superposition principle to be used in modeling the signal

vectorized by the charge-coupled device (CCD) array. The equation for the sampled

projection vector in units of photons, I, is shown in equation (6.6).

I(m, k) ≈
∑
i

∑
l

∑
x

∑
y

o(x, y, l)htot(i− x,m− y, l, k, rmin
o ) (6.6)

=
∑
l

∑
y

o(y, l)htot(m− y, l, k, rmin
o ) (6.7)

In this equation, o is the intensity of light in units of photons falling on the detector at

any point (x,y) predicted by geometric optics. The variables (i,m) are also detector

coordinates in units of samples. An index l indicates which spectral component of

the scene is under consideration and k is an index referencing the discrete distance

zk between the lens and the image plane. Note that equations (6.2) and (6.6) are

approximations due to modelling both the electro-magnetic spectrum and the images

at each spectral component as discrete portions of the true intensity seen on the CCD

array. Because of the projection operation and associated dimensionality reduction

the model can be simplified in terms of the spectral scene vector, o and the vector

impulse response of the system, htot shown in equation (6.6).

The data gathered by this sensor contains random components as well as those

predicted by radiometry and diffraction theory. The noise present on the sensor is

assumed to be generated by two components, Poisson noise and read noise. The first

is due to the random arrival times of photons in the light itself which is known to have
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a Poisson probability mass function. The second is the noise generated from the dark

current flowing through the CCD detectors. The expected number of dark counts at

each detector pixel (B) is assumed to be unknown at the time of observation and is

the mean of a Poisson random variable representing the number of actual dark counts

measured at each pixel location. The total signal D measured by the system is shown

in equation (6.8). C(m) is a function that is binary in nature and represents an area

of the CCD where light passes to the detector array. The purpose of this detector

aperture function is to define an area where the signal exists in order to facilitate the

estimation of the photo-detector bias without photons from the scene. This can be

done in the laboratory with a stop or mask placed before the detector.

D(m, zk) = C(m)I(m, zk) +B + qo(m, z) + qb(m, z) (6.8)

6.3 Scene Reconstruction and Seeing Parameter Estimation

In this section, the reconstructor previously developed in section 3.1 is extended.

The lens-based chromotomagraphic hyperspectral sensor takes a series of images each

having a known defocus from the other images. Given the collected image data,

the originating scene is unknown so an estimator the must be used. In this case,

the unknown parameters are the scene intensity at each pixel location and spectral

component, o(y, l), the seeing parameter of the atmosphere ro and the dark current

generated bias signal level at each detector pixel B.

The EM algorithm discussed in section 3.1 is applicable to estimating the pa-

rameters of interest with a bit of modification. Substituting equation (6.8) into the

joint probability of all the data previously derived in section 3.1 (equation (3.16)) the

joint probability mass function is shown in equation (6.9).

P [D = d∀(m, k)] =
N∏

m=1

K∏
k=1

(C(m)I(m, zk) +B)d(m,zk)

d(m, zk)!
e−(C(m)I(m,zk)+B) (6.9)
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The products in equation (6.9) are over the number of pixels in the vertical directions

as well as the number of images gathered from the system, K. Maximizing this joint

probability as a function of the scene, o, the pixel bias, B and the seeing parameter ro,

is challenging. However, using the EM algorithm (figure 3.1), the previous derivations

can be modified to be used in this situation. Previously the background was only

computed or directly measured as a constant rather than estimated each iteration. In

this setup, the background was jointly estimated with the object. To incorporate a

background estimate B into each iteration, we assume the complete data are random

variables, D1 and D2 whose means are given by:

E[D1(m, y, l, k)] = C(m)o(y, l)htot(m− y, l, k, ro
min) (6.10)

and

E[D2(m, k)] = B (6.11)

where D1 is using the total transfer function and includes the atmospheric seeing

parameter ro. The choice to define two distinct sets of complete data is not by

any means the only one, but has been shown to be advantageous in other imaging

problems. As previously, the complete data are related to the incomplete data via

the following transformation.

D(m, k) =
N∑
y=1

L∑
l=1

D1(m, y, l, k) +D2(m, k) (6.12)

This relationship is statistically consistent if the complete data sets are chosen to be

independent Poisson random variables since the sum of Poisson random variables is

Poisson as well. Also adding together Poisson random variables produces a Poisson

whose mean is equal to the means of the random variables being added together. With

the statistical model for the complete data in hand, and using the techniques previ-

ously discussed in section 3.1, the iterative update solution for the spatial-spectral
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object o(yo, lo) is given by:

onew(yo, lo) = oold(yo, lo)
∑
k

∑
m

d(m, k)htot(m− yo, k, lo, r
min
o )

(Iold(m, k) +Bold)
∑
k

∑
m

C(m)htot(m− yo, k, lo, rmin
o )

.

(6.13)

Similar in form, the joint estimation for the background is given by the following

update equation:

Bnew = Bold

K∑
k=1

M∑
m=1

d(m, k)

K(C(m)Iold(m, k) +Bold)
(6.14)

This solution has the advantageous property that the estimated bias level is always

positive. The update equations in (6.13) and (6.14) are repeated every iteration until

a termination criteria is satisfied. In the case where photon counting noise is the

dominant source of error, the following criteria can be used to stop the iteration:

∑
m

∑
k

(d(m, k)− C(m)Inew(m, k)−Bnew)2 ≤
∑
m

∑
k

d(m, k) (6.15)

This criterion is derived from the relationship between the mean and variance of a

Poisson random variable. The left side of the equation is related to the variance of

the estimated noise and the left side is related to the sample mean in that both sides

are the non-normalized versions of the variance and mean respectively. The iterations

continue until either this criterion is met or a maximum number of iterations are

reached.

Thus far no mention has been made of how to estimate the seeing parameter, ro,

from the imagery. The strategy for estimating the seeing parameter is to execute the

EM algorithm for a number of different values of ro and choose the smallest value for

which the convergence criteria is satisfied. The hypothesis for using multiple values

of ro is that if the seeing parameter is too low, the estimated noise will be much larger

than the shot noise component. The estimator will then not be able to match the

data with a choice of spectral scene in cases where the seeing parameter is too low,
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Table 6.1: System parameters chosen for the simulation
Band-Pass Filter Transmission none 1 or 0
Band-Pass Filter Bandwidth nm 500-690 (10 nm steps)

CD array Array Size pixels 128 X 128
CCD array Pixel Pitch mm 5.0 (center to center)

Focusing Optics Diameter Meters 0.5 (across the optic)
Focusing Optics Focal Length Meters 10 (for 500 nm light)
Focusing Optics Focal Length Meters 10.01 (for 700 nm light)

due to the limited bandwidth of the impulse response. The mismatch between system

bandwidth and data bandwidth produces excess noise which prevents the algorithm

from converging. Convergence is possible for larger seeing parameter values. However

the larger the seeing parameter is, the lower the bandwidth of the reconstructed

spectral scene o. Since we desire the sharpest spectral scene reconstruction while still

obtaining algorithm convergence, the minimum seeing parameter value that achieves

the criterion in equation (6.15) is selected.

6.4 Algorithm Performance

The performance of the proposed algorithm is tested using simulated binary

source data featuring different separations of the sources in both wavelength and

space. Different signal levels are explored as well as different levels of background

radiation. In this way the signal to noise ratio of the data can be controlled as different

levels of spectral and spatial resolution are investigated. The simulated system used

to generate the data is described in subsection 6.4.1 of this chapter. The results

obtained from testing the algorithm on the simulated data are shown in subsection

6.4.2.

6.4.1 Closely Spaced Sources Separated in Wavelength by 100 nm. A specific

set of system parameters are chosen for simulating realistic CTHIS data. The partic-

ular system parameters are consistent with those of a small telescope imaging system.

Table 6.1 contains the parameters of the electro-optical system. The simulated system

is designed to take 20 vectors sampled at regular intervals as the distance between the
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Figure 6.1: 2 optical sources in position (Vertical) and wavelength (Horizontal)

lens and the CCD array changes from 10 meters to 10.01 meters. The targets viewed

by the system are mono-chromatic sources separated by varying degrees in space and

wavelength. The first experiment carried out in this study involves the two sources

placed on top of one another, (no physical separation) but separated in wavelength

by 100 nanometers. The sources each provide 10000 photo-electrons to the imaging

system for each frame taken with 100 photo-electrons of dark current being read out

at each detector pixel. The seeing parameter is chosen to be 15 centimeters. Figure

6.1 shows an image of the sources as a function of wavelength and position. Figure

6.2 shows simulated frames of spectral vectors as a function of lens position away

from the focal length of 10 m. Figure 6.3 shows the reconstructed spectral image.

The algorithm identified the seeing parameter as being equal to 15 centimeters when

searching on a range from 10 to 20 cm.

The experiment was repeated for a lower value of signal photons. In this second

case the photon level of the sources was dropped to 1000 photons. The raw projection

data is shown in Figure 6.5.
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Figure 6.2: Simulation of 2 optical sources as viewed through a lens-based chromo-
tomographic imager. The vector projection readout is shown in the columns of the
image. Each column corresponds to a frame of data taken at a position marked on
the horizontal axis that represents a deviation from the 10 meter position from the
primary focusing optic.

The reconstructed spectral projection estimates are shown in figure 6.5. Al-

though the estimated spectral projections are fairly accurate (but demonstrate some

additional spectral width), the estimated seeing parameter was 15 cm. The error in

the spectral projection estimates due to the lower signal to noise ratio did not affect

the algorithm’s ability to calculate the correct value for the seeing parameter.

6.4.2 Sources Separated Only in Wavelength by 40 nm. The sources each

provide 10000 photo-electrons to the imaging system for each frame taken with 100

photo-electrons of dark current being read out at each detector pixel. The seeing

parameter is chosen to be 15 centimeters. Figure 6.1 shows an image of the sources as

a function of wavelength and position. Figure 6.6 shows simulated frames of spectral

data at the distances where the two sources would be in focus. Figure 6.7 shows the
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Figure 6.3: Reconstructed spectral image of the two optical sources from the data
presented in Figure 6.2. The seeing parameter was estimated to be 15 cm and the
true value was 15 cm.

reconstructed spectral image. The algorithm identified the seeing parameter as being

equal to 15 centimeters when searching on a range from 10 to 20 cm.

6.5 Discussion of Blind Deconvolution of Hyperspectral Data in the

presence of Atmosphere

The proposed algorithm for reconstructing spectral projections from chromoto-

mographic vector projection data while simultaneously estimating the seeing param-

eter through which the image data is gathered is demonstrated to work at signal to

noise ratios between 30 and 100. The algorithm is presumed to work properly for

higher SNR conditions but would require more time to converge thus making that

study more time consuming. Further trials need to be conducted to determine the

range of signal to noise ratios and achievable spectral resolutions over which the algo-

rithm will perform well. Also, experiments with measured data should be conducted
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Figure 6.4: Raw projection data for the case where both sources provide 1000
photons during the measurement time and the background level is set at 100 photons.
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Figure 6.5: Reconstructed spectral projections for the low SNR case. The spectral
features are broadened but still distinguishable.
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Figure 6.6: Raw projection data of two objects 4 pixels apart and separated by 40
nanometers in wavelength.

to demonstrate the utility of the algorithm in the presence of modeling error and

other unaccounted for but unavoidable effects.
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Figure 6.7: Reconstructed spectral projections of features separated by 40 nanome-
ters.
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VII. Conclusions

This research has examined several factors affecting resolution of a lens-based chro-

motomographic hyperspectral imaging sensor in the presence of noise. A lower bound

on resolution was developed to use as an engineering design tool to determine how

changes in sensor design affected resolution. A reconstructor was derived to account

for background noise which accounted for a realistic laboratory setup. Finally, a simple

experiment was performed and used with the reconstructor to verify the lower-bound

and its usefulness as a metric. The effects of the amount of lens chromatic aberration

was studied and determined to be a factor, but the most significant factor affecting

spectral resolution of a lens-based CTHIS was found to be the number of defocus

planes. This number of defocus planes compares well with simulation and the exper-

iment. Also, a modified blind reconstructor was derived in order to account for the

presence of atmospheric turbulence. This blind reconstructor estimates jointly the

background, the spatial-spectral scene, and the atmospheric seeing parameter for the

first time. The algorithm performance was measured using a simple simulation and

was found to estimate the seeing parameter well. In the future, this blind estimator

could be used to take these sensors from a laboratory environment and make use of

existing optical telescopes with this aberration present. Future work should focus

on using this sensor in the presence of atmosphere and an experimental test of this

algorithm. Further work could also be done on designing a model that incorporates

the lower-bound as a test parameter and determining the limits of its applicability

to broad sensor system design by changing the parameters and testing them against

actual sensors.
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clutter-to-noise ratio, see CNR

IF, see frequency

independent and identically distributed data,

see i.i.d. data

jammer-to-noise ratio, see JNR

probability of false alarm, see detection prob-

ability, false alarm probability

pulse repetition frequency, see PRF

pulse repetition interval, see PRI

radar coordinate system, see coordinate sys-

tem

radar cross section, see RCS

signal-to-interference plus noise ratio, see

SINR
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