
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2012

An Analysis of Error Reconciliation Protocols for
use in Quantum Key Distribution
James S. Johnson

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Johnson, James S., "An Analysis of Error Reconciliation Protocols for use in Quantum Key Distribution" (2012). Theses and
Dissertations. 1122.
https://scholar.afit.edu/etd/1122

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1122?utm_source=scholar.afit.edu%2Fetd%2F1122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AN ANALYSIS OF ERROR RECONCILIATION PROTOCOLS FOR USE IN

QUANTUM KEY DISTRIBUTION

THESIS

James S. Johnson, 1
st
 Lieutenant, USAF

AFIT/GCE/ENG/12-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT/GCE/ENG/12-06

AN ANALYSIS OF ERROR RECONCILIATION PROTOCOLS FOR USE IN

QUANTUM KEY DISTRIBUTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

James S. Johnson, BS

1
st
 Lieutenant, USAF

February 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCE/ENG/12-06

AN ANALYSIS OF ERROR RECONCILIATION PROTOCOLS FOR USE IN

QUANTUM KEY DISTRIBUTION

James S. Johnson, BS

1
st
 Lieutenant, USAF

Approved:

__ ________

Jeffrey W. Humphries, Lt Col, USAF (Chairman) Date

__ ________

Michael R. Grimaila, PhD, CISM, CISSP (Member) Date

__ ________

Gerald Baumgartner, PhD (Member) Date

iv

AFIT/GCE/ENG/12-06

Abstract

Quantum Key Distribution (QKD) is a method for transmitting a cryptographic key

between a sender and receiver in a theoretically unconditionally secure way.

Unfortunately, the present state of technology prohibits the flawless quantum

transmission required to make QKD a reality. For this reason, error reconciliation

protocols have been developed which preserve security while allowing a sender and

receiver to reconcile the errors in their respective keys. The most famous of these is

Brassard and Salvail’s Cascade protocol, which is effective, but suffers from a high

communication complexity and therefore results in low throughput. Another popular

option is Buttler’s Winnow protocol, which reduces the communication complexity over

Cascade, but has the disadvantage of introducing errors, and has been shown to be less

effective than Cascade. Finally, Gallager’s Low Density Parity Check (LDPC) codes

have recently been shown to reconcile errors at rates higher than those of Cascade and

Winnow with a large reduction in communication, but with greater computational

complexity. This research seeks to evaluate the effectiveness of these LDPC codes in a

QKD setting, while comparing real-world parameters such as runtime, throughput and

communication complexity empirically with the well-known Cascade and Winnow

algorithms. Additionally, the effects of inaccurate error estimation, non-uniform error

distribution and varying key length on all three protocols are evaluated for identical input

key strings. Analyses are performed on the results in order to characterize the

performance of all three protocols and determine the strengths and weaknesses of each.

v

Acknowledgments

 This thesis would not have been possible without the support and mentorship of

my thesis advisor, Lt Col Jeffrey Humphries, and I am grateful that I was given the

opportunity to work on such an interesting the challenging project. I would also like to

thank Dr. Michael Grimaila for his never-ending enthusiasm, optimism and programming

expertise, and the rest of the QKD team for being a supportive sounding board for all of

my peculiar dilemmas. Finally, and most importantly of all, I would like to thank my wife

and son for their boundless love and support throughout this entire process, and in all my

endeavors.

 James S. Johnson

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments ... v

List of Figures .. ix

List of Tables ... xi

I. Introduction ... 1

II. Literature Review ... 6

2.1. Quantum Key Distribution ... 6

2.2. Error Estimation .. 11

2.3. Error Reconciliation .. 12

2.3.1. Cascade ... 12

2.3.2. Winnow .. 16

2.3.3. Low Density Parity Check Codes .. 21

2.3.3.1. Generating LDPC Codes ... 25

2.3.3.2. Decoding algorithms ... 27

2.3.3.3. Log Likelihood Ratio .. 32

2.4. Privacy Amplification.. 35

III. Methodology ... 37

3.1. Overview ... 37

3.2. Common Criteria ... 41

3.3. Experiment 1: Evaluating the Sum Product LDPC decoding algorithm 42

3.3.1. Implementing the LDPC protocol .. 42

3.3.2. Parameters and factors ... 46

3.3.3. Approach and methodology ... 46

vii

3.3.4. Expected Results ... 48

3.3.5. Assumptions and Limitations .. 50

3.4. Experiment 2: Comparing LDPC to Cascade and Winnow 51

3.4.1. Implementing Cascade .. 51

3.4.2. Parameters (Cascade) .. 53

3.4.3. Approach and Methodology (Cascade) .. 54

3.4.4. Assumptions and Limitations (Cascade) .. 56

3.4.5. Expected Results (Cascade) ... 57

3.4.6. Implementing Winnow ... 57

3.4.7. Parameters (Winnow) .. 59

3.4.8. Approach and Methodology (Winnow).. 59

3.4.9. Assumptions and Limitations (Winnow) .. 61

3.4.10. Expected Results (Winnow) .. 62

3.5. Experiment 3: Effects of inaccurate error rate estimation and Burst Errors 62

3.5.1. Parameters ... 63

3.5.2. Approach and Methodology .. 64

3.5.3. Assumptions and Limitations .. 66

3.5.4. Expected Results ... 66

3.6. Experiment 4: An analysis of key length and performance enhancements ... 67

3.6.1. Parameters ... 68

3.6.2. Approach and Methodology .. 68

3.6.3. Assumptions and Limitations .. 69

3.6.4. Expected Results ... 70

viii

IV. Analysis and Results ... 71

4.1 Experiment 1: Evaluating the Sum Product LDPC decoding algorithm 71

4.1.1. Effectiveness and Information Leakage ... 71

4.1.2. Runtime, Throughput and Iteration Count.. 73

4.2. Experiment 2: Comparing LDPC to Cascade and Winnow 76

4.2.1. Effectiveness and Information Leakage ... 76

4.2.2. Runtime and Throughput ... 80

4.3. Experiment 3: Effects of inaccurate error rate estimation and Burst Errors 85

4.3.1. Inaccurate error rate estimation.. 85

4.3.2. Non-Uniform Error Distributions .. 88

4.4. Experiment 4: An analysis of key length and performance enhancements 91

V. Conclusions and Recommendations .. 103

5.1. Conclusions ... 103

5.2. Limitations .. 108

5.3. Recommendations for Future Research .. 108

VI. Appendix A Experimental Data ... 111

VII. Appendix B Source Code ... 116

VIII. Bibliography ... 162

ix

List of Figures

Page

Figure 1. BB84 protocol summary ... 10

Figure 2. Cascade protocol summary ... 15

Figure 3. A [7, 4] Hamming code for message transmission .. 17

Figure 4. Error correction in hamming codes ... 19

Figure 5. Tanner graph for a parity check matrix ... 24

Figure 6. The Gallager A algorithm ... 28

Figure 7. Sparse matrix storage procedure ... 43

Figure 8. Shannon limit ... 49

Figure 9. Permutation arrays .. 52

Figure 10. Burst types.. 64

Figure 11. LDPC effectiveness .. 72

Figure 12. LDPC protocol runtimes and iterations ... 74

Figure 13. Throughput of the LDPC protocol .. 75

Figure 14. Protocol effectiveness - 0% Error Tolerance ... 77

Figure 15. Protocol effectiveness - 5% Error Tolerance ... 77

Figure 16. Protocol effectiveness – 10% Error Tolerance ... 78

Figure 17. Cascade initial block size .. 79

Figure 18. Runtimes for the Cascade, Winnow and LDPC protocols.............................. 81

Figure 19. Throughput for Cascade, Winnow and LDPC ... 82

Figure 20. Throughput for Cascade, Winnow and LDPC (Log10 scale) 82

x

Figure 21. Profile of LDPC algorithm .. 84

Figure 22. Effects of inaccurate error rate estimation - Cascade 86

Figure 23. Effects of inaccurate error rate estimation - Winnow..................................... 86

Figure 24. Effects of inaccurate error rate estimation - LDPC .. 87

Figure 25. Error reconciliation results for a single burst of errors 89

Figure 26. Error reconciliation results for five equal size error bursts 89

Figure 27. Error reconciliation results for one 50% burst and 50% uniform 90

Figure 28. Achieved error rates for various key lengths – Cascade................................. 92

Figure 29. Achieved error rates for various key lengths - Winnow 93

Figure 30. Achieved error rates for various key lengths - LDPC 93

Figure 31. Achieved error rates for various key lengths - 1000 bit key 94

Figure 32. Achieved error rates for various key lengths - 10 000 bit key 95

Figure 33. Achieved error rates for various key lengths 100 000 bit key 95

Figure 34. Runtime of Cascade, Winnow and LDPC - 1000 bit key 96

Figure 35. Runtime of Cascade, Winnow and LDPC - 10 000 bit key 96

Figure 36. Runtime of Cascade, Winnow and LDPC – 100 000 bit key 97

Figure 37. Throughput of Cascade, Winnow and LDPC - 1000 bit key 98

Figure 38. Throughput of Cascade, Winnow and LDPC - 10 000 bit key 98

Figure 39. Throughput of Cascade, Winnow and LDPC - 100 000 bit key 99

Figure 40. Throughput of a multi-threaded implementation of the LDPC protocol 101

xi

List of Tables

Page

Table 1. Sum product evaluation parameters.. 46

Table 2. Cascade evaluation parameters... 53

Table 3. Winnow evaluation parameters .. 59

Table 4. Experiment 3 evaluation parameters... 64

Table 5. Experiment 4 evaluation parameters... 68

1

AN ANALYSIS OF ERROR RECONCILIATION PROTOCOLS FOR USE IN

QUANTUM KEY DISTRIBUTION

I. Introduction

The field of cryptography is the art and science of securing a message by

transforming it into a new message, through an encryption algorithm or cipher, such that

interception of the cipher text reveals little useful information about the original message.

Cryptography has a long and rich history. It was used in Roman times to pass messages

between military leaders, and famously during World War II by the German government.

Current uses of cryptography vary, and include but are not limited to protection of data in

transit or in storage, proof of identity, and validation of information. Regardless of the

purpose, the goal of cryptography has nearly always been to ensure that no unauthorized

user can extract meaningful information from encrypted data.

Cryptography can, in general, be subdivided into two categories. Symmetric-key

cryptography refers to an encryption/decryption process where both the sender and

receiver share a common encryption/decryption key (or keys). Through some secure

method, a sender and receiver exchange key material, which is then later used by either

side to encrypt or decrypt messages. Asymmetric-key cryptography, on the other hand,

refers to an encryption/decryption process where it is not necessary for the sender and

receiver to share a common key. A simple example of this is public key cryptography,

where a publicly known encryption key is used to encrypt messages, while only a

privately held decryption key is capable of retrieving the original message. Since a sender

does not need to be able to decrypt the message, they would simply use the public key to

2

encrypt a message before sending it to the receiver, who is the only one capable of

decrypting it. Both symmetric and asymmetric key cryptography are in wide spread use

today.

 An important characteristic of cryptographic ciphers is theoretical security. In

information theory, the highest level of security possible is unconditional security. Here

an adversary is assumed to have unlimited resources and computing power, but even so is

unable to retrieve the original message by observation of cipher text alone. In 1946 a

researcher by the name of Claude Shannon proved that a cipher can only achieve

unconditional security if the key used is truly random and the key length is equal to or

greater than the length of the message to be encrypted (Shannon, 1949). In addition, no

key (or part of a key) should ever be used more than once. The simplest and most well-

known cipher that meets Shannon’s criteria is the one time pad (OTP), a symmetric key

algorithm. The weakness of the OTP lies in its implementation, since generating and

securely distributing truly random, unique keys tends to be difficult in practice.

The next level of security therefore is known as provable security, where the security

of the cipher is equivalent to the difficulty of another known problem, which itself is

thought to be computationally infeasible. An example of this is the well-known Rivest,

Shamir, and Adleman (RSA) asymmetric key algorithm which relies on the difficulty of

factoring the product of two large prime numbers (Rivest, Shamir, & Adleman, 1978).

RSA is built into most major operating systems, is used in online banking as well as

many internet protocols, and is currently incorporated directly into physical devices such

as smart cards. Still, the difficulty of factoring large integers has not been proven to be a

difficult problem, and a polynomial time solution may exist. In fact, if quantum

3

computers are ever fully realized, Peter Shor’s quantum algorithm already presents a

solution for factoring large numbers in polynomial time (Shor, 1994).

An ideal cipher would need to offer unconditional security of symmetric key

protocols, but without the key distribution difficulties. For this reason, many current

protocols use an asymmetric key cipher (such as RSA) to exchange a key for use in a

symmetric key cipher, which offers better efficiency in terms of throughput. Still, the

security of a system can only be as high as the security of its weakest link. Assuming the

use of a one time pad, in this case the security would rest on the asymmetric key cipher,

and therefore the problem of factoring of large numbers.

Quantum cryptography offers another alternative for exchanging a symmetric key

without compromising security. Quantum cryptography is the use of quantum mechanics

to perform cryptographic tasks (Trappe & Washington, 2005). A subset of quantum

cryptography is Quantum Key Distribution (QKD), where properties of quantum

mechanics are leveraged in order to ensure unconditional security of a transmitted key,

which can then be used in a classical symmetric key cipher such as a one time pad.

Research Objectives

Although QKD in theory offers unconditional security for key exchange, in reality,

due mostly to technical limitations, practical systems cannot achieve the flawless

quantum transmission required by an ideal QKD protocol. This, as well as potential

interference by eavesdroppers, leads to errors in a transmitted key which must be

resolved prior to applying any cryptographic cipher. Efficiently reconciling these errors is

the focus of this research. Specifically, this thesis will seek to evaluate the suitability of

Low Density Parity Check (LDPC) codes for QKD error reconciliation, as well as

4

characterize (theoretically and empirically) and scrutinize LDPC versus two of the most

well-known error reconciliation protocols for QKD, namely Cascade and Winnow.

Research Questions

The following questions highlight areas critical to this effort:

 Are LDPC codes decoded using the Sum Product algorithm viable for use in the

error reconciliation phase of QKD protocols in terms of complexity, effectiveness,

throughput, runtime, and information leakage?

 How do the metrics of the three protocols (Cascade, Winnow and LDPC)

compare to one another? Specifically, given identical sifted keys and ideal error

estimation, how do the protocols compare in terms of effectiveness, throughput,

runtime, and information leakage?

 How robust are the three protocols with respect to one another in the case of non-

ideal error estimation? And in the case of non-uniformly distributed (burst)

errors?

 Does key length affect the performance of the three error reconciliation protocols

(beyond obvious increases in processing time)? Is there an ideal key length with

regard to overall throughput?

The primary goal of this research is to evaluate the suitability of LDPC codes for

QKD error reconciliation. LDPC codes are a relative newcomer to QKD, and therefore

have not been thoroughly studied. Though LDPC codes themselves were introduced in

the 1960’s (Gallager, 1962), only recently has technology evolved to the point where

implementing LDPC codes has become computationally feasible. While the Winnow and

Cascade protocols were specifically developed for use with QKD, LDPC codes represent

5

a class of Forward Error Correcting (FEC) codes originally developed for classical

communications. Acceptable error rates in QKD systems are typically much higher than

in classical communications, and therefore it is desirable to determine whether LDPC

codes can efficiently operate in the error range of QKD. LDPC Codes also require

significant computational power due to their iterative nature and complex calculations

involved with their decoding algorithms. Since throughput is a key factor in any

communication protocol, characterizing the key rate of the LDPC code for different error

distributions is significant. This research will provide a theoretical evaluation of LDPC

with respect to all the above characteristics, as well as an empirical analysis versus the

well-known Cascade and Winnow error reconciliation protocols.

This thesis is organized as follows. Chapter 2 presents background material on QKD

as well as the three error reconciliation protocols to be studied. Chapter 3 describes the

experiments conducted to evaluate this author’s implementation of the Sum Product

algorithm as a decoder for LDPC codes, as well as an empirical analysis of this LDPC

decoder as an error reconciliation protocol versus the Cascade and Winnow protocols,

also written by the author. Chapter 4 gives the results of the experiments outlined in

Chapter 3. Finally, Chapter 5 presents a summary of conclusions and their impact on

quantum key distribution, as well as recommendations for future research.

6

II. Literature Review

In this chapter, a brief overview of quantum key distribution (QKD) is presented

as well as a review of literature and current research relevant to the topic at hand (QKD

error reconciliation).

2.1. Quantum Key Distribution

Quantum key distribution involves encoding information in qubits, or quantum

information bits, and exchanging those bits between a sender and receiver. While in

classical communications a bit can represent either a 0 or a 1, in quantum

communications a qubit can represent a 0, 1 or a superposition of both states (Trappe &

Washington, 2005). Furthermore, due to properties of quantum mechanics, performing

any kind of measurement on a qubit causes it to collapse into a deterministic state, and

the original superposition is non-recoverable. The method of measurement is correlated

with this new state, and forms a basis which can be associated with the values 0 and 1 for

encoding information. The qubit will assume one of these values (0 or 1) with a

probability based on the original state of the qubit.

The security of QKD centers on the Heisenberg uncertainty principle, which

roughly states that the act of measuring a quantum system interferes with that system, and

thus prohibits collection of information on the state of the system prior to measurement

(Brassard, A Bibliography of Quantum Cryptography, 1993). Thus an eavesdropper

would be incapable of monitoring communications without irrevocably altering the

information in transit, which would be detectable by a sender and receiver. Additionally,

the no-cloning theorem of quantum physics forbids any eavesdroppers from creating

7

replicate photons with the intent of performing multiple measurements (Wootters &

Zurek, 1982). In this way, the security of QKD is based on fundamental laws of physics,

rather than that of problems thought to be computationally infeasible.

The origin of QKD can be traced to the 1960’s with a graduate student name

Stephen Wiesner (Wiesner, 1983). As a student of Columbia University, Wiesner

authored a manuscript describing two applications for quantum coding: a method for the

creation of fraud-proof banking notes (quantum money), and, more significantly for our

purposes here, a method for the transmission of two or three messages in such a way that

reading one of the messages destroys the others (quantum multiplexing). In quantum

multiplexing, Wiesner proposed utilizing photons polarized in multiple conjugate bases

in order to pass information. In this manner, if the receiver measures the photons in the

correct polarization basis, they will receive a correct result with high probability.

Measuring the photons in the incorrect basis however, results in an ambiguous result, and

a total loss of all information about the original basis. In his original paper, Wiesner

suggests linear and circular polarization bases for two messages, but extends this method

to three messages utilizing a third, 45° offset polarization.

Unfortunately, Wiesner had some difficulty getting his work published, and it was

not until nearly a decade later, in 1983, that his manuscript was widely recognized.

Shortly thereafter the first QKD protocol was proposed by Charles H. Bennett and Gilles

Brassard, and is today known as BB84 for Bennett and Brassard 1984 (Bennett &

Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, 1984).

This polarization-based protocol is arguably the most well-known and is a direct

extension of Wiesner’s quantum multiplexing theorem. Bennett and Brassard realized

8

that quantum coding could be used to ensure secure distribution of random key

information between two parties who share no secret information initially.

In the BB84 protocol, Bennett and Brassard propose the use of photons to realize

qubits, similar to Wiesner. However, Bennett and Brassard propose the use of two bases

(eliminating the circular basis included in Wiesner’s manuscript), corresponding to four

polarizations states. The rectilinear basis is comprised of 0° and 90° polarizations, and

the diagonal basis of 45° and 135° polarizations. Therefore, a qubit polarized in one basis

yields a random measurement in its conjugate basis. For example, a qubit with a

polarization of 90°, when measured in the diagonal basis would yield a 50% probability

of producing either 45° or 135° result, but when measured in the rectilinear basis, the

result would produce a 90° result with high probability. By associating these two bases

with classical bit values, Bennett and Brassard were able to develop a method for passing

a message between two parties in such a way that any eavesdroppers would always be

detected.

 The physical setup of the BB84 protocol consists of a sender (subsequently

referred to as Alice) and receiver (subsequently referred to as Bob), as well as two

channels. A quantum channel is used to communicate qubits (photons), and it is assumed

that only active eavesdropping may take place on this channel, since passive

eavesdropping is not possible due to the no-cloning theorem. Additionally, a classical

channel is used for authentication and to pass setup and message verification information.

It is assumed that only passive eavesdropping may take place on the classical channel as

long as some initial key material is shared for authentication. In their paper, Bennett and

Brassard propose using a Wegman-Carter authentication scheme in order to secure the

9

classical channel. Alice and Bob are asymmetric; Alice must maintain the appropriate

equipment to generate and transmit qubits, and Bob must maintain matching equipment

capable of receiving and measuring the single photon qubits polarized by Alice.

 After initialization, the first step in the protocol is for Alice to generate an

appropriate length, random bit string for use as a key in an encryption cipher such as a

one time pad. Alice then randomly chooses a polarization basis (rectilinear or diagonal),

and transmits one polarized photon to Bob for each bit of the key string. Bob receives

these qubits and randomly chooses a basis in which to measure them. If Bob chooses

correctly, he will receive the same bit value that Alice transmitted (assuming perfect

transmission and no interference). If he chooses incorrectly, then Bob has a 50%

probability of obtaining the correct value.

 After Bob receives all of the qubits, he and Alice move onto the next phase of the

protocol, known as sifting. In sifting, Bob communicates, on the classical channel, his

choice of basis for each qubit, and Alice communicates those bit positions for which Bob

chose correctly. Then Alice and Bob both discard any bits for which their measurement

basis differed. At this point, Alice and Bob should have identical copies of a message,

which is a subset of the original message transmitted by Alice. To confirm this, they

systematically select a random subset of bits from the sifted key and compare them over

the open channel. If all the bits agree, then it is likely that Alice and Bob have the same

version of the key. They definitively confirm this with a randomly chosen (public) hash

function before using the key in a symmetric cipher. Naturally, the bits exposed during

the public comparison are discarded from the final key before the hash is applied. Once

this key is used up, Alice and Bob simply repeat the process to generate a new one. The

10

BB84 protocol is summarized in Figure 1 (Bennett & Brassard, Quantum Cryptography:

Public Key Distribution and Coin Tossing, 1984).

Quantum Transmission

Alice’s random bits 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1

Random sending bases D R D R R R R R D D R D D D R

Photons Alice sends

Random Receiving bases R D D R R D D R D R D D D D R

Bits as received by Bob 1 1 1 0 0 0 1 1 1 0 1

Public Discussion

Bob reports bases of received bits R D R D D R R D D D R
Alice says which bases were correct

Presumably shared information 1 1 0 1 0 1

Bob reveals some key bits at

random

 1 0

Alice confirms them

Outcome

Remaining shared secret bits 1 0 1 1

Figure 1. BB84 protocol summary

 If there were an Eve present, even with infinite computational power, the best she

could do in an ideal system would be to intercept transmissions from Alice, randomly

select a basis for measurement, and retransmit those qubits in the basis that she selected.

Since Eve does not know the basis Alice transmitted in, she would be correct, on average,

only 50% of the time. When she retransmits the qubits to Bob he will also select a

random basis for measurement, and will be correct, on average, 50% of the time. The

combination of these steps will introduce 0.5 * 0.5 = 25% error into the transmitted raw

key. Therefore, if Alice and Bob detect an error rate of 25% or higher in their sifted key,

they conclude that there is an Eve present and they abandon that key.

 A BB84 QKD protocol implemented in this fashion does in fact present

unconditional security, since Alice and Bob can always detect the presence of an Eve.

Unfortunately, in practice many of the assumptions required to implement BB84 are not

achievable. Reliable single photon generation and detection technology is still mostly

11

theoretical. Though significant progress has been made in recent years, in most cases

superfluous photons are generated, and not all are detected. In addition, even excluding

the presence of an Eve, physical characteristics of the quantum channel can introduce

errors which affect the polarization of the photons while in transit. The result of these

real world technical limitations is that errors are introduced into the sifted key, even

though no malicious Eve is present. These errors must be resolved before any cipher is

applied, since any cipher would require Alice and Bob to have identical copies of the key.

 In order to reconcile the errors in their sifted key, Alice and Bob must perform

several additional steps. These steps are commonly known as Error Estimation, Error

Reconciliation, and Privacy Amplification.

2.2. Error Estimation

 The purpose of error estimation is to determine the percentage of errors in the key

after quantum transmission and sifting have occurred. The percentage of errors is known

as the Quantum Bit Error Rate, and is hereafter referred to simply as the error rate.

Traditionally, this has been accomplished by Alice and Bob publicly disclosing a random

selection of bits from the sifted key. For a truly random sampling, the error rate should be

representative of the overall sifted key. Unfortunately, this now requires Alice and Bob to

discard the publicly disclosed bits from their sifted key, which reduces the size even

further. An improvement to this method was proposed in 1999 (Ardehali, Chau, & Lo,

2005) that aims to double the efficiency of the method described in the BB84 protocol. In

their paper, Ardehali, Chau, & Lo propose that Alice and Bob do not choose their

polarization bases with equal probability, but instead favor one basis over the other. This

12

presents an advantage to any Eve’s involved, since they could gain more than 50% of

qubits in the correct basis, so the authors suggest compensating for this advantage by

calculating two error rates, one for each basis used. The errors introduced by Eve would

then be detectable in the basis she was measuring in. In this way bits would still have to

be sacrificed in order to accomplish error estimation post-sifting, but the overall key rate

could be increased by decreasing the number of bits where Alice and Bob’s measurement

basis differed.

Error estimation has been studied in depth elsewhere and therefore for the

purposes of this research it will be assumed that error estimation can be accomplished to

within a reasonable bound. However, the tolerability of different error reconciliation

algorithms to imprecise error estimation will be examined.

2.3. Error Reconciliation

Error reconciliation is the process of resolving all errors in the key over the

classical channel, after quantum transmission and sifting have occurred, without

revealing an unreasonable amount of information about the key to a potential Eve. The

three protocols that will be presented here are Cascade, Winnow and a method based on

Low Density Parity Check (LDPC) codes, hereafter simply referred to as the LDPC

protocol.

2.3.1. Cascade

 The Cascade error reconciliation protocol was first suggested in a paper published

in 1994 by Gilles Brassard and Louis Salvail (Brassard & Salvail, 1994). Cascade

represents a refinement of an earlier protocol known as BBBSS (for its authors Bennett,

13

Bessette, Brassard, Salvail and Smolin), developed in 1991 as part of the first QKD

channel experiment (Bennett, Bessette, Brassard, Salvail, & Smolin, 1991). It was in fact

two of the authors of BBBSS who developed the refined Cascade protocol.

 BBBSS takes place after quantum transmission, sifting and error estimation have

occurred. The first step in the protocol is for Alice and Bob to agree on a random

permutation, in public, over the classical channel. They perform this permutation on their

respective sifted keys in order to attempt to evenly distribute any errors. Alice and Bob

then divide their sifted key into blocks of size k, where k is defined such that each block

is likely to have no more than one error, based on the error rate obtained during error

estimation. The authors of Cascade empirically determined the ideal block size to be

approximately

, where p represents the estimated error rate (Brassard & Salvail, 1994).

After this step, the single bit parity of each block is calculated and shared publicly. If

Alice and Bob’s parities agree, then they assume that there are no errors in that block, and

they move on. On the other hand, if the parity of a block disagrees between Alice and

Bob, then they perform a binary search on that block in order to identify the single bit

error, which they then correct. In this way, a maximum of 1 + ceil(parity bits are

exchanged for each block in error, and 1 parity bit is exchanged for those blocks not in

error. In order to account for these leaked bits over the public channel and minimize the

information gained by any eavesdroppers present, the authors suggest discarding the last

bit of each block and sub-block for which a parity bit was exchanged. This is referred to

in the literature as privacy maintenance.

 After this process is completed and Alice and Bob are in agreement for all of their

block parities, they can be confident that all blocks contain either zero or an even amount

14

of errors. This is due to the fact that a parity check alone cannot identify an even amount

of errors in a block. Therefore Alice and Bob must again permute their new key before

the next pass. Additionally, after each pass the block size is increased to account for the

fact that fewer errors remain.

 When Alice and Bob are reasonably certain that all but a few errors have been

corrected, they adopt a new approach for error reconciliation. The reason for this is that

the information leaked for the parity check-binary approach is too great when the

percentage of errors is small, since most blocks would not contain any errors and the

parity of those blocks would match. The new strategy consists of randomly choosing a

subset of bits from the corrected key string to form a block for parity comparison, and

performing the same binary search routine if the parity bits do not agree. In this way,

Alice and Bob do not have to discard as many parity bits as if they were to perform a full

pass of the protocol as described earlier, though they still discard the last bit from each

block and sub-block for which a parity bit was exchanged.

 At some point Alice and Bob will find that all their parity comparisons are in

agreement. When this occurs for a number of passes (the authors suggest 20), Alice and

Bob conclude that their reconciled keys are identical, and they move on to privacy

amplification.

 The differences between BBBSS and Cascade are minimal, but significant. Like

BBBSS, in Cascade the first pass is accomplished by dividing the sifted key into block

sizes of length k based on the estimated error rate, and parity bits for each block are

exchanged. And like BBBSS, a binary search is performed in order to identify single bit

errors on blocks that have mismatched parities. Unlike BBBSS however, no bits are

15

discarded during this first pass. Instead, the block errors are corrected, a permutation is

applied, the block size is increased to , and another pass is performed identical to the

first. It is at this point Cascade deviates most from BBBSS. For any errors corrected in

the second pass, there must be at least one matching error that resided in the same block

in the previous pass, since neither error was found or corrected in that pass. For this

reason, for each correction made in any pass after the first pass, a binary search is rerun

on the block containing that corrected bit in all previous passes, in order to identify any

potential matching errors. Any time a new error is identified, it reveals the potential to

have masked another error in a previous pass, so the process is repeated, and the error

detection and correction cascades through all previous passes. This process is illustrated

in Figure 2.

Figure 2. Cascade protocol summary

In every pass after the first pass, on average two errors will be corrected for every

bit detected, therefore the amount of errors present in the reconciled key decreases

exponentially for each pass of Cascade. Empirically, for realistic error rates, four passes

is generally considered sufficient to correct all errors, as alluded to in the original paper.

16

 Cascade has been thoroughly studied since it was published, and several

enhancements of note have been suggested (Calver, 2011). The biggest concern with

Cascade is typically the amount of interaction required. To minimize the information

exchanged, Sugimoto and Yamazaki suggest switching to the alternative block strategy of

BBBSS after two passes; since after two passes the majority of errors have most likely

been corrected (Sugimoto & Yamazaki, 2000). The authors showed how by using this

method they could leak fewer bits and perform even closer to the theoretical limit

proposed by Shannon (Shannon, 1949). Additionally, a dynamic block size selection

technique has been studied (Rass & Kollmitzer, 2009) as well as a method of enhancing

the permutation function used between passes (Bellot & Dang, 2009).

2.3.2. Winnow

 Though Cascade has been proven to be a very effective protocol that is capable of

resolving all errors and will never introduce errors if implemented correctly, it does suffer

from a high rate of interactivity due to the necessary parity exchanges. Additionally, the

amount of information leaked by Cascade is dependent on the distribution of the errors,

and therefore the throughput of Cascade can be unpredictable in practice. In 2003 a new

error reconciliation protocol for QKD was proposed that offers better throughput and

lower interactivity, with a similar efficiency as Cascade (Buttler, Torgerson, Nickel,

Donahue, & Peterson, 2003). In order to adequately understand the protocol, known as

Winnow, a short background on Hamming codes is necessary (Trappe & Washington,

2005).

 Hamming codes are a set of linear error correcting codes, and can be represented

by two related matrices; a Generator matrix, G and a parity check Matrix H, such that

17

 . If G is an matrix, then the rate of the code, r is defined as

. In

standard form, the first m columns of G form the identity matrix. Hamming codes are

named after their creator, Richard Hamming and are capable of detecting up to two errors

and correcting one error.

 In order to transmit a message M using a Hamming code, a sender Alice

calculates the dot product of the generator matrix and the message, called a code word.

Since the first m rows of the generator matrix consist of the identity matrix, the first m

bits of the code word constitute the message. This code word is then transmitted to a

receiver Bob over a noisy channel. When Bob receives the message, he computes the dot

product of the code word and the parity check matrix, called a syndrome. If the resulting

syndrome is a zero vector, Bob concludes that the message was received intact and did

not contain any errors. On the other hand, if the syndrome is not zero, the message is

likely to contain at least one error, and the syndrome can potentially be used to correct it.

This process is shown in Figure 3.

Sender Receiver

 Transmit codeword (C)

1 0 1 0

1 0 0 0 0 1 1

1

 1

0 1 1 1 1 0 0

0 0 0

Message (M)

0 1 0 0 1 0 1

0

0

1 0 1 1 0 1 0

Syndrome
(S)

0 0 1 0 1 1 0

1

 1

1 1 0 1 0 0 1

0 0 0 1 1 1 1

0

 0

Parity Check Matrix (H)

Generator Matrix (G)

1

 1

0

 0

1

 1

Figure 3. A [7, 4] Hamming code for message transmission

18

If his calculated syndrome is not zero, Bob will attempt to correct the received

code word in such a way that the syndrome is equal to zero with the fewest amounts of

changes to C. This is known as maximum likelihood decoding, and is based on the

assumption that minimal errors occurred; therefore the nearest code word is likely the

correct one. The distance (or Hamming distance) between two code words is the number

of positions in which they differ. The minimum distance, dmin, therefore is the lowest

distance between two valid code words. If the number of errors in a given code word is

less than dmin, they will always be detectable, since the code word will not contain enough

errors to convert the code word into another valid code word. This faulty code word may

not be decodable (correctly) however, since, if the number of errors is greater than

, it

may more closely resemble another code word than the correct one. Hence, if the number

of errors is less than this bound (

) the code word will always be decodable, since the

closest code word will be the correct one.

For a linear code, the minimum distance of a code is equal to the minimum weight

of all the non-zero code words in that code. For the example in Figure 3, it can be seen

that there are 2
3
 = 8 possible code words and therefore the minimum distance is 3 since

the weight of the message is 2, and the minimum weight of all the code words is 1.

Therefore this code is capable of detecting 2 errors and correcting 1.

Using Hamming codes in this way is known as Forward Error Correction (FEC),

where redundant bits are sent along with the message in order to facilitate the resolution

of any errors without an interactive communication process. For use with error

reconciliation in QKD however, it is necessary to make one small modification. In QKD,

19

much effort is put into transmitting the key string in a secure method; therefore

transmitting it publicly along with error correction data would make Eve’s job trivial. For

this reason, Alice computes the syndrome for her key string (, where H is the

parity check matrix, M is the key string and S is the syndrome), and sends it to Bob. If

Bob has an identical key string, then when he computes his syndrome (,

where represents Bob’s received key string), he should find that , in other

words that the syndrome he received from Alice exactly matches the one he calculated on

his own. If Bob’s syndrome does not match Alice’s, then Bob can use his syndrome to

identify the location of the error. This process is illustrated in Figure 4.

 Parity Check Matrix (H)

0 1 1 1 1 0 0

MA = 1 0 1 0 1 0 1

SA = 0

SB = 1 SA SB = 1 0

1 0 1 1 0 1 0

0

1

1 1

1 1 0 1 0 0 1

MB = 1 0 0 0 1 0 1

 0

0

0 2

Bob sees discrepancies in his calculated syndrome at positions 0 and 1, so he corrects the key bit at

position

Figure 4. Error correction in Hamming codes

By definition, multiplication by the parity check matrix H results in a vector

consisting of parity checks on the message M. Therefore, transmitting this information

publicly is similar to sending the parity of blocks as suggested in the Cascade algorithm,

and makes recovering the original message from this information prohibitively difficult.

It is this syndrome exchange process that Buttler suggests in his protocol which

he calls Winnow (Buttler, Torgerson, Nickel, Donahue, & Peterson, 2003). In Winnow,

much like Cascade, Alice and Bob first divide their key strings into blocks of length k

(Buttler suggests starting with k = 8). Alice and Bob then compare parities and note any

20

discrepancies, just as in Cascade. The difference is in what happens next. Instead of

performing a binary search, Alice and Bob construct a parity check matrix for a

Hamming code, given by (

) , and calculate syndromes S for each block

B not in agreement, where . Alice then sends her syndromes to Bob, and Bob,

by comparing these syndromes to his own, can correct any single bit errors.

In order to account for the information exposed by parity and syndrome

exchanges, Buttler suggests performing privacy maintenance throughout the

reconciliation phase. Buttler argues that this method is superior to the method used in

Cascade, since some of the bits discarded along the way may actually be bits in error.

Therefore, one bit is removed for every parity/syndrome bit exchanged, though the

selection of the syndrome bits is not random. Buttler suggests removing the bits in each

block at position 2
j
 for j {0, …, m – 1}, since these bits are independent in syndrome

calculations and therefore are most exposed.

Since parity checks used in this fashion can only detect an odd amount of errors,

after one pass it is likely that some blocks still contain an even amount of errors. For this

reason, Alice and Bob then permute their reconciled key strings and repeat the process,

although the block size is increased and the parity check matrix is regenerated to account

for the new block size. The optimal number of passes and schedule of block sizes for

each pass is subject to some debate and has been studied elsewhere (Lustic, 2011).

The downfall of Winnow lies with its reliance on Hamming codes. Where

Cascade will not detect an even amount of errors and will only correct one error in blocks

containing more than two errors (with odd parity), Winnow may actually introduce errors

21

if the error count per block is too high. The reason for this is that as the number of errors

grows past dmin, the probability of decoding the code word into an incorrect code word

also increases, as mentioned earlier. For this reason, accurate error estimation and error

distribution are critical parts of the Winnow protocol, and Winnow does not traditionally

fare well in the face of burst errors. Fortunately, the latter problem is easily avoided by

performing an initial permutation, as suggested by the original author.

2.3.3. Low Density Parity Check Codes

Cascade and Winnow are both well-established protocols that have been studied

extensively for use in QKD systems. However, they are not without their respective

weaknesses. Consider, for example, the communication complexity of Cascade. For each

pass, Alice and Bob must exchange one parity bit for each block of the message, and an

additional bits for each k-bit block containing an odd amount of errors. For a 1000

bit key string with a 5% error rate, or 50 errors, and assuming a block size of 15 bits with

half the errors detected in the first pass and the rest corrected in the second pass, Alice

and Bob would exchange approximately 350 parity bits. Assuming the 95 block parity

bits were contained in 4 single messages (one message for each pass), Alice and Bob

would still need to exchange 255 additional messages during the binary search routine.

Even with conservative estimates on packet size and network latency, this

communication adds up. The Winnow protocol greatly reduces this overhead, but does

not eliminate it completely, and has the disadvantage of possibly introducing errors.

Perhaps the greatest restriction of Cascade and Winnow is that in both protocols

only one error per block is corrected. This fact necessitates complicated shuffling

22

routines that must be done in the same way on both sides between passes, which only

adds to the communication overhead.

Another alternative is presented with the recently rediscovered Low Density

Parity Check (LDPC) codes. Originally introduced by a researcher named Robert

Gallager in his doctoral dissertation at MIT in 1960 (Gallager, 1962), LDPC codes

(alternatively known as Gallager codes) went mostly ignored for nearly 40 years. It was

not until 1999, when Turbo Codes were gaining in popularity that LDPC codes were

rediscovered by McKay (MacKay D. J., Good Error-Correcting Codes Based on Very

Sparse Matrices, 1999) and shown to have similar performance near the theoretical

Shannon limit.

LDPC codes are named for the sparseness (and therefore low density) of their

parity check matrices. This feature is desirable, since, as we will see later on, the low

density of the parity check matrix contributes to a near linear increase in the complexity

of the decoding algorithm as the length of the message grows. In utilizing LDPC codes,

the efficiency of the iterative decoding algorithm is an essential parameter.

Like Hamming Codes, LDPC codes are a FEC code defined by a parity check

matrix H and a generator matrix G. In LDPC codes, as in Hamming codes, the minimum

distance of the code is an important parameter, since it determines the decoding limit of

the code. Unfortunately, for large codes finding this limit is not straightforward, and

recent research has indicated that it may not be solvable in polynomial time (Otmani,

Tillich, & Andriyanova, 2007). Therefore, a simpler approach for individual codes is to

determine the decodable error range empirically.

23

In their original form, Gallager describes LDPC codes as having a fixed number j

of 1’s in each row, and a fixed number k of 1’s in each column. Along with the block

length, n, such a code is known as an (n, j, k) low density code. The number of 1’s can be

dispersed randomly, subject to the constraint:

 (2.1)

However, a random distribution does not always prove to be optimal, as it may

contain a short cycle.

The rate of the code r (is typically decided beforehand, and will have

a significant impact on the correcting power and efficiency of the code. The dimensions

of the generator and parity check matrices are given by , where m is defined as:

 (2.2)

Therefore, the size of the parity check matrix, H, shrinks as r grows, and H grows

quadratically with increases in n, since . However, the

number of 1’s and hence, the number of parity checks, only grows linearly with increases

in n. This is evident from (2.2) above. The importance of these characteristics of LDPC

codes will become evident when discussing the implementation of decoding algorithms

in section 2.3.3.2.

Codes defined in this way would later become known as regular LDPC codes,

since the definition of LDPC codes was later expanded to include irregular codes. An

irregular code is defined such that the number of 1’s in each column and row is not fixed,

but rather governed by a degree distribution, as introduced by Luby (Luby,

Mitzenmacher, Shokrollahi, Spielman, & Stemann, Practical Loss-Resilient Codes,

24

1997). Irregular codes are generally thought to have slightly better performance

characteristics than regular codes (Luby, Mitzenmacher, Shokrollahi, & Spielman, 1998).

A convenient way of visualizing a LDPC code is by viewing the parity check

matrix as a Tanner graph, which is a bipartite graph made up of nodes and edges as first

described by Tanner (Tanner, 1981). Each row of the parity check matrix represents a

check node, and each column a variable node. Each check node represents the parity

check performed during the syndrome calculation, and each variable node represents a

single bit of the incoming message. Therefore, a parity check matrix would have m

check nodes and n variable nodes. For each non-zero entry at position [i, j] in the parity

check matrix, an edge is placed connecting check node i and variable node j. The number

of these edges connected to a given node is called the degree of that node. An example of

a Tanner graph is shown in Figure 5.

Figure 5. Tanner graph for a parity check matrix

In a graph, a cycle is a path that begins at a node n and traverses one or more

different edges before arriving back at n. In the graph in Figure 5, a cycle of length 4 can

be seen (V0 → C1 → V3 → C2 → V0), and there may be others. Furthermore, the girth

25

of a LDPC code is defined as the shortest cycle present in the graph of the parity check

matrix. Is it important to generate codes with a large girth, for reasons that will become

evident in section 2.3.3.2.

2.3.3.1. Generating LDPC Codes

 In his original dissertation, Gallager presented an algorithm for generating the

LDPC matrices using a pseudo random number generator, taking care to ensure that no

two parity check sets contain more than one digit in common. This procedure results in

codes with a sufficiently wide girth, however it is computationally inefficient for large

key lengths and only works for regular codes. Other attempts have also used similar

random approaches (Kasai, Matsumoto, & Sakaniwa, 2010; Elkouss, Leverrier,

Alleaume, & Boutros, 2009). McKay in his 1999 paper proposed a method based on

pseudo random number generation, and he offered several variations aimed at improving

the girth of the graph.

 More recently, a less random approach to code construction has been suggested.

In (Hu, Eleftheriou, & Arnold, 2001), the authors propose an algorithm which they call

Progressive Edge Growth (PEG) construction. The algorithm is named for the fact that it

progressively establishes edges between variable and check nodes. Edges are evaluated

such that placement of the new edge has the least impact on the overall girth. Next, the

edge with the least impact is selected, the graph is updated, and the procedure is iterated.

Exhaustively searching through the list of possible edges is computationally infeasible for

most realistic key lengths, so the PEG algorithm takes a best-guess approach described

by:

26

 If the edge to be added is the first such edge for variable node V,

randomly choose a check node C from the list of check nodes currently

containing the smallest degree. Add an edge from V to C.

 Else define
 as the set of check nodes reached by a tree spreading from

variable node V to a depth l, and define
 as the complement set of

 ,

such that

 the set of all check nodes. Expand a tree from V up

to depth l such that
 but

 or the cardinality of
 stops

increasing, but is less than m. Then, randomly select a check node from

the subset of check nodes in
 having the smallest degree.

Since it was published in 2001, the PEG algorithm has been studied and improved

in numerous papers. In (Richter, 2005) the author was able to lower the error floor and

improve performance of the resulting code in the waterfall regions and here (Lin, Chen,

& Chang, 2008) in order to improve the structure of the resulting codes to reduce the

Very Large Scale Integration (VLSI) implementation complexity. Even without these

relatively minor enhancements, the original algorithm is capable of generating very good

codes with wide girth and low error floors.

Finally, a method for determining the decoding limit for ensembles of LDPC

codes is presented in (Richardson & Urbanke, 2001). Known as Density Evolution, the

technique tracks the probability distribution of the messages through individual iterations

of the decoding algorithm, in order to determine the expected density and generate an

overall picture of the best-case performance. Density evolution can be used to find the

degree distribution that maximizes the threshold of an LDPC code such that the

27

probability of error tends to zero as the number of iterations tends to infinity (Chung,

Forney, Richardson, & Urbanke, 2001).

2.3.3.2. Decoding algorithms

 Encoding messages using LDPC codes works in much the same way that

encoding using Hamming codes does. A sender Alice would multiply the message and

the Generator matrix together to form a code word, which would be sent to a receiver

Bob. Bob would then take the received code word, multiply it by the parity check matrix,

and if the resulting syndrome was a zero vector, he would be confident that he had

received Alice’s transmission intact. The difference with LDPC codes lie in how Bob

decodes the code word into the original message, particularly in the presence of errors.

 In his original paper, Gallager proposed two decoding algorithms. The first

algorithm is relatively straightforward, but is only effective for small parity-check sets,

where each set contains one or zero errors. This algorithm, which Gallager calls the

Gallager A algorithm, involves computing all the parity checks for a given message, and

then flipping any bits contained in more than a fixed number of unsatisfied parity checks.

This algorithm is illustrated in Figure 6.

28

Figure 6. The Gallager A algorithm

 In fact, the Gallager A algorithm can be successfully used to decode Hamming

codes, since it is effective when there are only one or zero errors present in each parity

check set. Gallager offered a second decoding algorithm based on probabilistic decoding

however, that is far more powerful and would later become known as Belief Propagation.

29

 Belief propagation (also known as the Sum Product algorithm) is a message

passing, iterative protocol. In a message passing protocol, messages are passed between

nodes, along the edges of the graph. The messages contain information that influences the

nodes; however, outgoing messages cannot be influenced by other messages coming in

along the same edge. Therefore, each node in the graph calculates separate messages for

each edge, based on the information received along all other edges. By exchanging

information in this fashion, Gallager showed how it was possible to efficiently correct all

of the errors in a transmitted message, up to a certain bound.

 In the Gallager A algorithm, hard messages are passed between nodes. This

means that the information contained in the message is not probabilistic, and the updates

are definitive. In Belief Propagation, rather than hard messages, soft messages are passed;

probabilities that the transmitted digit is a 0 or 1 conditional on the received value along

with the channel error probability. The Belief Propagation algorithm was originally

proposed by Gallager, famously applied to Bayesian belief networks by Pearl (Pearl,

1982) and was reinvented by McKay (MacKay D. J., Good Error-Correcting Codes

Based on Very Sparse Matrices, 1999). The version presented here will follow McKay in

his 1999 paper.

 Belief propagation starts with a received vector and a corresponding LDPC parity

check matrix. For each variable node Vi corresponding to one bit of the received vector, a

series of messages is initialized, two for every check node, Cj, that Vi is connected to.

Message
 corresponds to the message sent to C-node j from V-node i, and represents

the belief that the received bit value at position i is a 0. Similarly, message

represents the belief that the received bit value at position i is a 1. For the first iteration of

30

the protocol, these values are initialized to the probability P that a sent bit is a 0 or 1

given that the received bit is a 0 or 1, respectively.

 | (2.3)

 |

 (2.4)

 The value p here represents the channel error probability, or the probability of a

bit flip in transit.

 Following this initialization step is the Horizontal Step, where the parity checks

defined by the parity check matrix are evaluated and for each variable node that a check

node is connected to, two messages are prepared. Message
 represents the message

sent from check node Cj to variable node Vi, containing the probability that the bit value

at position i is a 0. This probability is calculated based on the messages received by check

node Cj in the initialization step (not including the message received from variable node

Vi). Similarly message
 contains the corresponding probability that the bit value at

position i is a 1. Mathematically, these two messages are given by:

 ∑ ∏

 (2.5)

 (2.6)

 Where is the set of all variable nodes connected to check node Cj,

excluding variable node Vi for which the message is being prepared. In this way, each

check node Cj compiles messages to all the variable nodes, Vi to which it is connected,

consolidating all of the information it received from all the nodes except Vi. A useful

extension on equations (2.5) and (2.6) is presented by McKay (MacKay D. J., Good

Error-Correcting Codes Based on Very Sparse Matrices, 1999):

31

 ∏

 (2.7)

 Where mi represents the observed value of the received bit at position i.

Following this step, after the messages are composed and sent out from the check nodes,

is the Vertical Step. In this step, each variable node updates its respective Q messages

based on the input from the check nodes. This update is given by:

 ∏

 (2.8)

 ∏

 (2.9)

 Where denotes the set of check nodes C that variable node Vi is

connected to, excluding check node Cj for which the message is being prepared. The

variable α is a correction factor meant to ensure

 . In this way, the Q

messages are updated at each pass to include all information from all of the check nodes

with the exception of the check node which is receiving the information, in order to

prevent nodes from influencing themselves.

 It is at this point that the importance of a wide girth becomes evident. For a graph

with a minimum cycle, C, there will be precisely C – 1 iterations before the information

exchanged between nodes will begin to cycle back and influence those same nodes. Once

this happens, the quality of the information passed degrades, and the effectiveness of the

protocol suffers.

 Additionally in the Vertical step, the pseudo-posterior probabilities are computed.

Similar to the Q message updates, but including all check nodes, these probabilities are

defined by:

 ∏

 (2.10)

32

 ∏

 (2.11)

 These probabilities represent the most recent likelihood that the received bit value

xi = x at any given pass. It is from these probabilities that a hard decision will be made. If

 , then the probability that xi is equal to 0 is greater than the probability that xi is

equal to 1, therefore xi is set to 0, otherwise, xi is set to 1. The strength of the belief that

the new value of xi is correct is correlated with the difference between
 and

 , where

larger differences represent stronger beliefs. After updating all of the bits in the received

message this way, the syndrome is recalculated. If the parity checks are all 0, the message

is assumed to contain no errors and the error reconciliation is complete. Otherwise, the

algorithm iterates with another horizontal step, vertical step and hard decision. The

algorithm only terminates when the corrected message passes all parity checks or a set

number of iterations is reached, indicating failure.

2.3.3.3. Log Likelihood Ratio

 A simplification to the Sum Product algorithm based on Log Likelihood Ratios

(LLRs) is possible which significantly reduces the computational complexity. In

statistics, a LLR is a method of combining test statistics by computing a ratio. This

method, combined with the fact that in the log domain products become sums, allows the

following simplifications:

 (

) (

) (2.12)

 (

) (

) (2.13)

Subsequently, the q message update and hard decision equations can be similarly

simplified:

33

 (

) (

 ∏

 ∏

) ∑ (2.14)

 (

) (

 ∏

 ∏

) ∑ (2.15)

Note that the normalization factor, α is no longer needed. The R message update

equation can be simplified as well, however it requires a bit more effort. First, observe

the following identity applied to the LLR equation for R messages:

 (

)

 (2.16)

And hence equation (2.7) becomes:

 (

) ((

)) (2.17)

Applying a similar procedure to
 yields the following expression:

 ((

)) ∏ (

)
 (2.18)

And solving for yields the LLR, R message update rule:

 (∏ (

)
) (2.19)

The benefits of converting to the LLR domain are obvious, since in the horizontal

step, a sum of products is reduced to simply a product, and in the vertical step, a product

becomes a simple sum. A hyperbolic tangent and inverse hyperbolic tangent function

have been introduced, which does adversely affect computational complexity, but the

need for calculating separate messages for 0 and 1 bit value likelihoods has been

eliminated, which significantly reduces complexity.

An important aspect of (2.19) is that the inverse hyperbolic tangent function is

asymptotic at ±1. Therefore, it is important to bound the input to this function at a

34

reasonable value close to 1, such as ±(1 – 10
-12

), otherwise the result may tend to infinity

as the number of iterations increases.

The main complexity of the algorithm does in fact now lie with the large amount

of hyperbolic tangent functions. One way to cut down on this overhead is through the use

of the Max-Product (otherwise known as the Min-Sum) algorithm, which seeks to

approximate the hyperbolic tangent evaluations in equation (2.19). However, this

approximation comes at the cost of decreased efficiency, and may require extra iterations

in order to recover the message. Additionally, utilizing previously calculated values for

the hyperbolic tangent function through the use of a lookup table has been suggested,

since the range required here is relative small (Gudmundsen, 2010).

Finally, as with Winnow and Hamming codes, one small modification is required

in order to apply the Sum Product algorithm to QKD. In QKD, the quantum transmission

is responsible for securely transmitting the key. Therefore, after the quantum

transmission takes place, Alice computes a syndrome for her version of the message

using a parity check matrix that she has previously shared with Bob. Bob then uses this

syndrome in order to correct the errors in his version of the key string. Only one small

adjustment is necessary to the Sum Product algorithm, to account for the fact that the

correct syndrome may contain non-zero values. In the event that the correct syndrome

contains a 1, the sign of the equation in 2.12 would need to be flipped, in order to

become:

 (

) (2.20)

35

Even with suggested enhancements taken into account, decoding LDPC a code

through Belief Propagation requires larger computational and memory requirements than

either the Cascade or Winnow algorithms. However, it has the potential benefit of being

able to correct all the errors in a key with only one information exchange. This tradeoff

offers potentially large gains in secrecy, as well as overall runtime when network latency

is taken into effect.

2.4. Privacy Amplification

 The final step in correcting the errors in a transmitted key is known as Privacy

Amplification. The purpose of this step is to account for any information exposed during

the error reconciliation phase and ensure that any eavesdroppers present do not gain

sufficient information to the point where they are able to reconstitute a significant part of

the key.

 As mentioned earlier, the Winnow protocol discards bits during error

reconciliation, a method known as privacy maintenance. The Cascade and LDPC

protocols do not. The reason for this is that in Cascade, the algorithm must maintain the

ability to go back to earlier passes and rerun a binary search on those blocks. Discarding

bits along the way would change the message length and make this process difficult,

though doing so has been examined (Boughattas, Iyed, & Rezig, 2010). In LDPC, only

one pass is necessary, so there is no need to discard bits before the error reconciliation is

complete.

 Therefore, for Cascade (typically) and LDPC (always), the number of bits

exposed is tracked and then subtracted from the final reconciled key at random. In

36

Cascade the maximum number of bits exposed is ⌈ ⌉ per pass, where B is

the number of blocks, n is the number of errors identified by mismatched parities, and k is

the block size of that pass. In actuality either ⌈ ⌉ ⌊ ⌋ bits are leaked for each

binary search, depending on the location of the error in a block. In LDPC the number of

bits exposed is the size of the syndrome exchanged, or m in the case of a matrix.

 After error reconciliation and privacy maintenance, Alice and Bob can be sure

that they have the same version of the key, and that the bits gained by Eve have been

reduced to a minimum. As one final security measure, Alice and Bob discuss over the

classical channel the selection of a random hash function. This hash function, which

reduces the size of the final key even further, is then applied to the reconciled key. In this

way, even if Eve was a very efficient eavesdropper and had a reasonable copy of the key,

performing this hash would amplify any errors in Eve’s version, since small changes in

the input of a good hash function result in large changes in the output. Therefore, even if

Eve only had a few errors in her version of the key, after privacy amplification her errors

would be amplified to the point where even a brute force search would be infeasible.

 Assuming Cascade, Winnow and LDPC expose a similar number of bits for

similar error rates and therefore produce similar key lengths after privacy maintenance,

the privacy amplification phase of the BB84 protocol is similar for all three protocols.

Therefore, the implementation of privacy amplification will not be examined in detail

here.

37

III. Methodology

3.1. Overview

 This chapter presents an overview of experiments and research conducted for this

thesis. Quantum key distribution is a powerful idea capable of exchanging a key between

two parties in a theoretically unconditionally secure way. However, real world limitations

on technology for the present and foreseeable future prohibit the perfect quantum

transmission necessary to achieve the unconditional security offered by QKD. It is

precisely this reason why error reconciliation is such a critical factor in QKD. Error

reconciliation allows a sender Alice and a receiver Bob to correct implementation errors

up to a certain bound with high certainty. However, performing this error reconciliation

efficiently in order to produce useful key rates is paramount if QKD is ever to gain

success commercially. These motivations warrant a deeper look and a comparison of

existing error reconciliation algorithms.

 The Cascade algorithm has been the standard for QKD error reconciliation in the

past, though its high communication requirements make Cascade highly dependent on

network performance and highly susceptible to denial of service attacks. The Winnow

algorithm significantly reduces the communication complexity in comparison with

Cascade, with comparable computational complexity; however, Winnow has the

significant detriment of introducing errors and is traditionally not as effective as Cascade

for error rate ranges under 10%. The LDPC algorithm requires the least amount of

communication with theoretical error correcting capability at least as good as Winnow

38

and Cascade, but LDPC is the most computationally complex and therefore suffers the

most in terms of processing time.

 While existing literature abounds with research studying Cascade and Winnow

and variations to both algorithms, there are very few examples of research comparing the

two directly. Even more infrequent is an empirical comparison to determine metrics such

as error correction, runtimes and efficiency for identical input strings. With regard to

LDPC codes, a large amount of research has been performed since McKay’s foundational

paper revived interest in them. The majority of this research has dealt with classical

communications; however there have been a limited number of publications that dealt

specifically with LDPC with respect to QKD (Elkouss, Leverrier, Alleaume, & Boutros,

2009; Mesiti, Delgado, Mondin, & Daneshgaran, 2010; Elkouss, Martinex, Lancho, &

Martin, 2010). McKay himself addressed the issue in 2004 (MacKay, Mitchison, &

McFadden, 2004), and Matsumoto more recently published several problems that LDPC

codes will have to overcome in order to gain widespread acceptance (Matsumoto R. ,

2009).

 This QKD LDPC research has shown promise. One problem, Matsumoto feels, is

the nonexistence of adequate parity check matrices. Consequently, a large amount of

research has been devoted to developing ideal LDPC codes which perform ever closer to

the theoretical bound, and indeed LDPC codes have been shown to resolve errors at rates

comparable to Cascade (Gudmundsen, 2010; Elkouss, Leverrier, Alleaume, & Boutros,

2009). In addition, some researchers feel that maintaining a library of codes is a

computationally wasteful process, and that it is more efficient to maintain only one

master code, which is then modified in some manner, by puncturing and shortening for

39

instance, for different code rates corresponding to different error rates (Kasai,

Matsumoto, & Sakaniwa, 2010). In most real world applications, the error rate of the

channel will be well characterized and will not fluctuate greatly under normal

circumstances, therefore for the purposes examined here a library of codes corresponding

to different error rates is considered sufficient.

 An in depth analysis of an LDPC error reconciliation algorithm for QKD with

respect to the well-known Cascade and Winnow algorithms could not be found in

existing literature. Consequently, this research seeks to answer the following questions:

 Are LDPC codes decoded using the Sum Product algorithm viable for use in the

error reconciliation phase of QKD protocols in terms of complexity, effectiveness,

throughput, runtime, and information leakage?

 How do the metrics of the three protocols (Cascade, Winnow and LDPC)

compare to one another? Specifically, given identical sifted keys and ideal error

estimation, how do the protocols compare in terms of effectiveness, throughput,

runtime, and information leakage?

 How robust are the three protocols with respect to one another in the case of non-

ideal error estimation? And in the case of non-uniformly distributed (burst)

errors?

 Does key length affect the performance of the three error reconciliation protocols

(beyond obvious increases in processing time)? Is there an ideal key length with

regard to overall throughput?

 The primary goal of this research is to directly evaluate the use of LDPC codes as

a viable alternative to the Cascade and Winnow protocols for QKD error reconciliation.

40

Throughput is an important parameter in any error reconciliation protocol, but since

LDPC suffers from greater complexity than Cascade or Winnow, implementing the Sum

Product decoding algorithm efficiently is paramount. In LDPC, in contrast to Cascade

and Winnow, memory management is a crucial parameter. For a small, 1000 bit key

string and a 0.1 rate code, the LDPC parity check matrix needs to be 900 x 1000 = 900

000 bits. For a 100 000 bit key string however, this number grows to 9000 000 000 bits.

Similarly, in the vertical and horizontal steps of the Sum Product algorithm, the large

amount of updated messages must be stored to a certain precision, which becomes even

more costly than storing the parity check matrix. A direct comparison of a LDPC

implementation along with the Cascade and Winnow protocols will determine the

viability of LDPC as an error reconciliation protocol. Furthermore, since ideal, uniform

error distribution cannot always be assumed, the susceptibility of the three protocols to

non-ideal error rate estimation as well as several types of burst error distributions will be

evaluated. Finally, the performance of the protocol at three different key lengths is

considered. The required size of a final key is likely to vary depending on the application

and required level of security, therefore it is advantageous to determine if the protocol

behaves differently for different key lengths, and if there are tradeoffs in effectiveness

and/or throughput.

 The rest of chapter 3 is dedicated to a description of the simulation environment

and implementations of the three error reconciliation protocols, as well as the approach

taken to answer these research questions.

 Finally, since error rate estimation must be done for any of the protocols, it can be

abstracted and treated as a separate process. Therefore, the implementations presented

41

here do not take into account any bits discarded in order to obtain an error rate estimate.

The error rate estimation is assumed to have been completed beforehand, and is treated as

an input parameter.

3.2. Common Criteria

 For certain experiments, steps need to be taken in order to ensure continuity

between different protocol evaluations. Consequently, the key strings used to evaluate the

corrective power (effectiveness) of the protocols are generated randomly using a common

seed for a Random Number Generator (RNG) based on the Mersenne Twister algorithm

(Matsumoto & Nishimura, 1998). Any references made to a RNG from this point forward

refer to this Mersenne Twister class. Similarly, the insertion of errors into the generated

key string is performed pseudo-randomly using a different seed for a separate RNG

instance. The common seeds are generated initially using a third RNG instance which

uses the current time as a seed. In a real-world implementation, a cryptographically

secure RNG would be preferred, in order to minimize the possibility of predictable

output.

 In addition, the runtime and throughput parameters discussed in the next section

may potentially be influenced by environmental factors. For this reason, these parameters

are evaluated on the same machine, at approximately the same time (within milliseconds)

using a common driver function for all three protocols.

 All experiments were conducted on a Custom PC with an AMD Athlon II X4 640

3.00 GHz processor and 8.00 GB of RAM running Windows 7 64-bit. All software was

developed in the C++ language using Microsoft Visual Studio 2010.

42

3.3. Experiment 1: Evaluating the Sum Product LDPC decoding algorithm

3.3.1. Implementing the LDPC protocol

 The Sum Product decoding algorithm is implemented as a single C++ class, with

calls made to an external RNG class and driven by a main class. The principal challenges

associated with the development of this algorithm are generating the parity check

matrices, and efficiently managing the size of the various matrices needed for larger key

string sizes.

 The PEG algorithm C++ implementation used for this research to generate the

parity check matrices is a derivative of an algorithm that was written by one of the

creators of the PEG algorithm, Xia-Yu Hu, and was obtained from the website of David

MacKay (MacKay & Hu, 2011). Only minor changes from the original version are made,

mostly to eliminate unnecessary modes of operation, memory leaks and optimize output

format for the purpose of this research. The underlying algorithm remains unchanged.

LDPC codes are generated using one of the supplied degree distribution files

(denEvl_15.deg) for a key length of 100 000 bits. LDPC codes are generated in rates

varying from 0.005 to 0.15, in 0.005 increments. In the BB84 protocol, error rates above

0.15 would result in an abandoning of the key for fear of eavesdropper interference, so

0.005 to 0.15 represents a reasonable error rate operating range.

 As discussed earlier in section 3.1, in order to perform operations on a key length

of 100 000 bits, a more efficient method of storing sparse matrices is necessary. Key

lengths above 100 000 bits are not considered due to the time required to generate the

parity check matrices, however performance is not expected to differ considerably for

key lengths above this range. The parity check matrix can be represented using only

43

single bit variables since it is comprised only of bit values, however the matrices used to

store the Q-messages and R-messages need to be represented by 8-Byte double variables

in order to maintain the precision necessary for the decision step. These matrices would

be prohibitively large if implemented in the traditional manner.

 For this reason, the algorithm is implemented such that only the non-zero values

of the necessary matrices are maintained. Since low density parity check matrices are by

definition mostly zero, such an implementation is capable of substantial savings in

memory. In order to efficiently store the matrices, two, one-dimensional arrays are

maintained for the parity check matrix, where each entry in the array contains a C++

vector. The C_Node array represents all the check nodes, and each entry in the array

contains a vector which itself contains the indices of all the variable nodes that each

check node is connected to. In a similar way, a V_Nodes array represents all the variable

nodes, and each entry contains a vector which itself contains the indices of all the check

nodes the variable node is connected to. By storing the parity check matrix in this way,

all the non-zero entries can be eliminated, as illustrated in Figure 7.

 Parity Check Matrix (H) C_Nodes Array V_Nodes Array

 0 1 2 3 4 5 6

0 0 1 1 1 1 0 0

1 1 0 1 1 0 1 0

2 1 1 0 1 0 0 1

Figure 7. Sparse matrix storage procedure

0 1 2

1 0 2

2 0 1

3 0 1 2

4 0

5 1

6 2

0 1 2 3 4

1 0 2 3 5

2 0 1 3 6

44

 Therefore no extraneous information is stored, and the two resulting matrices are

very suitable for use in the horizontal and vertical steps. Since the degree distribution

used in this research has a maximum row weight of 15, this method allows a potential 90

000 x 100 000 matrix (for a 0.9 rate code and 100 000 bit key length) to be reduced to a

maximum of two 15 x 100 000 matrices, resulting in a savings of nearly 9 Gb of dynamic

memory.

 The other benefit of storing the parity check matrix in the method detailed above

is that it is no longer necessary to traverse an entire row or column of the parity check

matrix in order to determine which variable and check nodes are connected. Instead, it is

only necessary to traverse the (considerably shorter) list of elements in each vector. This

results in a significant savings in runtime.

 One other notable implementation modification is employed in order to

significantly improve the runtime of the decoding algorithm. In equation 2.19, multiple

hyperbolic tangent products must be calculated for each R message update. If a given

check node contains n parity checks, there will be multiplications for that

check node, since the product of the hyperbolic tangent of all other messages will need to

be calculated for each message. An alternative is to pre-calculate the product of all of the

messages for that check node, and simply divide the result by the message that should not

have been included. Using this method, multiplications for each check node

can be reduced to one initial multiplication for all check nodes and divisions per check

node. Even though division is a much more costly operation with regard to clock cycles,

the amount of savings is substantial.

45

 A main function drives the simulation and abstracts operations unassociated with

the error reconciliation. The main function first generates a random bit string before

creating a simple Alice object and providing it with a flawless copy of this string. The

only product output by the Alice object is the syndrome for the original bit string. This

syndrome, along with a uniformly flawed copy of the bit string and an error rate estimate

is given to a Bob LDPC object constructor. Bob first generates a syndrome based on his

copy of the bit string, in order to determine if errors exist. If so, as indicated by

differences in Bob's calculated syndrome and the syndrome he received from Alice, Bob

proceeds to read in the parity check matrix corresponding to his given error rate from a

text file. Bob then performs the necessary vertical, horizontal and decision steps, stopping

after each decision step to recalculate his syndrome and check it against the copy he

received from Alice. If the two syndromes match, Bob stops and declares that all the

errors have been corrected. If not, Bob continues in an iterative manner with another

vertical, horizontal and decision step. The number of iterations Bob will complete before

deciding that he has failed is set to 200 for this research, which has been determined

empirically to be sufficient. The Q-messages and R-messages are stored in a one

dimensional array of vectors in the same way that the parity check matrix is stored, which

reduces the required amount of dynamic memory to a manageable size, even for key

lengths well in excess of 100 000 bits.

 Information exposed by the LDPC protocol is very straightforward to quantify,

since the only information exchanged between Alice and Bob is Alice's syndrome.

Unfortunately, depending on the rate of the code, this syndrome can be quite large.

46

3.3.2. Parameters and factors

 The parameters for which the Sum Product decoding algorithm is evaluated for

Experiment 1 are summarized in Table 1:

Table 1. Sum product evaluation parameters

Parameter Units Description

Effectiveness error percentage Maximum correctable error percentage for a given code rate

Information

leakage

bits Size in bits of the syndrome sent from Alice to Bob

Runtime seconds Runtime of algorithm not including message generation or error

estimation
Throughput kilobits / second Reconciled key bits produced per second

Iterations count The number of iterations required to correct all errors

3.3.3. Approach and methodology

 The effectiveness of the Sum Product algorithm is defined here as the maximum

correctable error rate for a given code rate. Parity check matrices are produced using the

PEG algorithm for code rates between 0.1 and 0.9 in 0.05 increments for a key length of

100 000 bits. For each code rate the algorithm is run beginning with an initial error rate of

0.001. Success for a given error rate is determined in three ways, given by 1000

consecutive runs where 0, 50 and 100 failed runs are considered acceptable. For each run

a new bit string is pseudo-randomly generated using a seeded RNG. After 1000 runs, the

error rate is incremented by 0.001, and the algorithm begins another 1000 runs, with the

same set of bit strings as before. This process continues until the algorithm is unable to

correct all of the errors and a failed run occurs. The error rate at which the algorithm fails

is recorded, and the next code rate is evaluated.

 Information leaked is a trivial parameter to track with regard to LDPC codes,

since the only information exposed over the classical channel is the transmitted

47

syndrome, and the size of the syndrome is simply the dimension of the parity

check matrix. Therefore information leakage is directly correlated to the rate of the code

(

).

The runtime of the error reconciliation algorithm is measured using the

queryperformancecounter() function native to the Windows C++ API. This function

returns the value of the high-resolution performance counter, and can be used along with

the queryperformancefrequency() function in order to calculate elapsed time to

microsecond precision. After the messages are generated for both Alice and Bob, the

clock is started. An Alice object calculates the syndrome for the flawless version of the

message, which is then given to a Bob object along with the flawed message. The Bob

object then attempts to correct all of the errors. As soon as Bob is finished, the clock is

stopped, and the number of clock cycles that have elapsed are recorded. The number of

clock cycles is then divided by the processor cycles per second retrieved from the

queryperformancefrequency() function to obtain a runtime in seconds. This process is

repeated for each error rate at the maximum code rate as determined by the effectiveness

parameter. Only successful runs are considered, since in the Sum Product decoding

algorithm, failed runs are detectable and always take a set number of iterations. Each time

100 runs are performed, and the minimum, maximum and average runtimes are recorded.

The throughput of the LDPC protocol is defined here as the reconciled key length

(raw key length - bits leaked) divided by the runtime, and therefore the units are bits/s or

bps, although a conversion factor of

 is applied to obtain a final result in kilobits/s or

kbps. The throughput is calculated for each error rate and is presented as an average

48

corresponding to the recorded runtime values. Additionally, in order to simulate network

latency 20 ms are added to the runtime for every communication exchange between Alice

and Bob. For LDPC there is one message sent from Alice to Bob for each instance of the

protocol representing the initial syndrome. Therefore 20 ms are added to the runtime for

each instance, except in the case where the size of the syndrome exceeds the size of a

network packet. In this case 20 ms are added to the runtime for each network packet

required to transmit the syndrome.

Finally, for the Sum Product algorithm an additional parameter is the number of

iterations required to correct all of the errors in a given bit string. This is an important

parameter, as it directly correlates to the runtime of the algorithm. For this reason, a

minimum, maximum and average iteration count will be presented for each error rate.

3.3.4. Expected Results

 The quantum channel in a QKD system can be modeled as a Binary Symmetric

Channel (BSC). A BSC in information theory is a channel model where a transmitted bit

can take on two values (0 or 1), with a probability, p, of flipping to the other value in

transmission. Therefore the probability of receiving a bit in the correctly transmitted

value is .

In 1948 Claude Shannon, often known as the father of modern information theory,

published a foundational paper on his mathematical approach to information theory. In

his paper, Shannon developed a formula for the amount of uncertainty associated with a

random variable. This formula is given by:

 ∑ (3.1)

49

H(X) here is referred to as the Shannon Entropy, where p(x) represents the

probability distribution function of x. For a BSC, by observing that X can only take on

two possible values with probability and – , this equation can be reduced to:

 (3.2)

Shannon goes on to state in his noisy channel coding theorem that a maximum

capacity exists for every channel C, and that information transmitted at a rate, r > C will

have a failure probability increasingly greater than zero. At rates less than C however,

information can be transmitted reliably with high probability. This Shannon Limit for a

BSC is defined by:

 (3.3)

A graph of the Shannon limit with respect to increasing values of p is shown in

Figure 8 below.

Figure 8. Shannon limit

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14%

Tr
an

sm
is

si
o

n
 R

at
e

Error Rate

50

 With respect to QKD error reconciliation, the rate of a protocol is given by

. If one bit is discarded from the reconciled key for each bit

exposed over the open channel, then the length of the reconciled key is simply the length

of the raw key minus the number of bits exposed. For LDPC, the number of bits exposed

is always simply the length of the syndrome exchanged.

Past research has shown that LDPC codes have the potential to operate very close

to the Shannon limit (Elkouss, Leverrier, Alleaume, & Boutros, 2009; Elkouss, Martinex,

Lancho, & Martin, 2010; Gudmundsen, 2010), and the Shannon limit is used as the

benchmark for which the maximum effectiveness of the codes are evaluated.

The runtime of the LDPC protocol is expected to be high, and therefore the

throughput is expected to be low. Previous research has shown runtimes for a 100 000 bit

key length to be in seconds, which severely limits the reconciled key rate. Even still, the

protocol requires very little information exchange, so it is expected that the overall

throughput will be on the order of kilobits per second (kbps) even when network latency

is taken into account.

3.3.5. Assumptions and Limitations

 The largest assumption made in this implementation of the LDPC protocol is that

the PEG algorithm with the chosen degree distribution produces good codes, in other

words codes that have a wide girth and that perform reasonably close to the Shannon

limit. However, the PEG algorithm is established and has been studied often since its

foundational paper was published (Richter, 2005; Lin, Chen, & Chang, 2008), therefore

this assumption is reasonable.

51

 Furthermore, code rates in 0.05 increments are developed using the PEG

algorithm. While smaller increments are possible, it is assumed that an increment of 0.05

represents a fine enough granularity in order to provide a reasonable estimate of the

performance of the LDPC codes. Smaller increments would also increase number of

codes and therefore the overhead associated with processing the codes for different error

rates.

 Finally, there have been numerous studies aiming to improve the runtime of the

LDPC protocol (Gudmundsen, 2010; Chen, Dholakia, Eleftheriou, Fossorier, & Hu,

2005), most notably the implementation of the hyperbolic tangent operations as a lookup

table. These improvements are not implemented here due to time constraints, and are not

expected to dramatically decrease runtimes.

3.4. Experiment 2: Comparing LDPC to Cascade and Winnow

3.4.1. Cascade

3.4.1.1. Implementing Cascade

 The Cascade protocol is also implemented as a single C++ class, with calls made

to an external RNG class and a main driver class. Additionally, the Cascade

implementation utilizes a permutation class that is responsible for the permutation

performed after each pass. Since Cascade must maintain the ability to reverse

permutations, a RNG alone would not suffice for the permutations. Therefore, the

permutation class maintains an array of unique integers, randomly generated, in the range

of 0 to the key string size, as well as a reverse array so that original indices can be

obtained. An example is illustrated in Figure 9.

52

Permutation array:

0 1 2 3 4 5 6 7 8 9

7 5 0 8 2 3 9 1 4 6

Reverse Permutation Array:

0 1 2 3 4 5 6 7 8 9

2 7 4 5 8 1 9 0 3 6

Figure 9. Permutation arrays

 In this way, a lookup of an index in the permutation array produces a random

integer, and a lookup of the random integer in the reverse permutation array produces the

original index. For later passes, in order to produce different permutations, multiple

lookups are performed. For instance, indexing into position 0 produces random index 7,

and indexing into position 7 produces random index 1. So for pass 2, index 0 would

become index 1 (assuming no initial permutation was applied). All of this is transparent

to the Cascade algorithm, which simply makes a call to a getIndex() or getReverseIndex()

function and provides an index as well as the current pass number. In this way no explicit

permutation between passes is needed, as index permutations are applied in line.

 In the implementation presented here, a main function first creates a random bit

string as well as an Alice object that it provides with a flawless copy of this key string. A

Bob object is then created and given a copy of the key string with a certain percentage of

uniformly distributed errors introduced. Alice and Bob are also given a common seed for

the Permutation RNG, and an initial block size which corresponds to an ideal error rate.

No initial permutation is performed. In addition, Bob is also passed a reference to the

Alice object, which is only used to call the public functions required to calculate parity

53

bits and can be equated with sending and receiving messages to Alice over the classical

channel. At this point, Bob requests the parity bits for all Alice's blocks, and Bob initiates

a binary search on any blocks that are in error, making calls to Alice's getParity()

function to obtain parities for individual blocks. After each pass, both Alice and Bob

double their block size and repeat the process until four passes have been completed. For

any errors found in any pass after the first, Bob initiates a binary search on the blocks

containing those errors in previous passes in order to identify potential matching errors.

 In order to track the actual amount of information leaked, Bob maintains a

bitsLeaked variable. In Cascade, the information exchanged is not constant and is

actually a function of the error distribution, since the binary search will leak between

⌊ ⌋ and ⌈ ⌉ bits depending on the location of the error. To track actual bits

leaked, Bob increments his bitsLeaked variable every time he requests a parity

calculation from Alice.

3.4.1.2. Parameters (Cascade)

 In order to evaluate the performance of the Cascade and Winnow protocol

alongside the Sum Product algorithm, it is necessary to develop similar parameters. The

parameters for which the Cascade protocol will be evaluated are summarized in Table 2:

Table 2. Cascade evaluation parameters

Parameter Units Description

Effectiveness key rate Key rate (

) for a given error percentage

Information leakage bits Number of parity bits exchanged between Alice and Bob

Runtime milliseconds Runtime of algorithm not including message generation or error estimation

Throughput kilobits / second Reconciled key bits produced per second

54

3.4.1.3. Approach and Methodology (Cascade)

 The effectiveness of the Cascade algorithm is defined here as a function of the

reconciled key length for a given error percentage. Unlike LDPC, the key rate in Cascade

is not static. Depending on the distribution of the errors, the reconciled key length, and

therefore the key rate, fluctuates. In addition, starting block size is an important

parameter in the Cascade algorithm. If the starting block size is too large, the algorithm

may not be able to correct all of the errors. If the block size is too small, excess block

parity bits may be exposed. The best starting block size therefore is the largest size that

still results in all errors corrected.

 The Cascade algorithm is run beginning with an error rate of 0.005 and increasing

in 0.005 increments up to and including 0.15, similar to the method used for experiment

1. Since the key rate for Cascade is a continuous function, unlike the step function

generated by LDPC, a 0.005 increment is considered sufficient. For each error

percentage, the start block size is set at 5 bits. As before, success is determined three

ways; as 1000 runs with 0 failures, 50 failures, and 100 failures respectively. After each

run a new bit string is generated randomly using the same seeded RNG used for the

LDPC experiment. When 1000 consecutive runs are completed with all errors corrected,

the parameters are reset and the block size is incremented by 1 bit. This process is

repeated with the same set of 1000 bit strings until the algorithm is unable to correct all

of the errors. At this point the starting block size for the last successful set of runs is

recorded, the error rate is incremented, and the process is repeated. In this way, the

starting block size limit for each error percentage can be determined for a 100 000 bit key

length.

55

 Additionally, the maximum, minimum and average bits exposed are recorded for

each error percentage. For this experiment it is only necessary to evaluate the bits

exposed for the maximum starting block sizes, since the largest successful starting block

size represents the optimal choice.

 The runtime of the Cascade algorithm is measured using the

queryperformancecounter() function, just as in the LDPC experiment. After the messages

are generated for both Alice and Bob, the clock is started. Alice and Bob objects are

provided with their respective message copies, and Bob initiates communication with

Alice in order to correct all of the errors in his key string. After Bob is finished, the clock

is stopped and the number of clock cycles that have elapsed are recorded. The number of

clock cycles recorded is then divided by the processor cycles per second to obtain a

runtime in seconds, and a conversion factor of 1000 is applied so that the final result is in

milliseconds. This process is repeated for each error rate utilizing the maximum starting

block size achieved in the effectiveness experiment. Even though the runtime of Cascade

does not necessarily increase for failed runs, only successful runs are considered in order

to ensure symmetry with LDPC. Each time 100 runs are performed, and the minimum,

maximum and average runtimes are recorded.

 The throughput of the Cascade algorithm is defined in the same way as the LDPC

experiment in section 3.3.3, and is given by the reconciled key length divided by the

runtime. The throughput is calculated for each error rate and is presented as a minimum,

maximum and average corresponding to the recorded runtime values. Furthermore, in

order to account for network latency in a uniform way, 20 ms are added to the runtime

calculation for each message passed between Alice and Bob. For Cascade, this means one

56

message for each block parity exchange, and two messages for each parity bit exchange

(Bob must send his parity to Alice, and she must respond with match or mismatch). In

order to track the number of messages exchanged, a separate, messageCount variable is

maintained while the algorithm is running, and milliseconds are

added to the runtime of each of the iterations.

3.4.1.4. Assumptions and Limitations (Cascade)

 The implementation of Cascade presented here is representative of the original

algorithm as described by Brassard and Salvail (Brassard & Salvail, Secret-key

Reconciliation by Public Discussion, 1994) and does not take advantage of any of the

various enhancements that have been suggested in the literature since the original paper

was published. Selecting which improvements offer the most benefit is outside the scope

of this research. Therefore slightly better performance closer to the theoretical Shannon

limit or with increased throughput may be possible.

 Also, for this experiment, network latency is not considered empirically, and the

experiment is conducted on one machine. The latency of the network is assumed to be 20

ms, which is a reasonable if not optimistic assumption given the current state of

technology. Furthermore, the number of messages exchanged between Alice and Bob are

highly dependent on the implementation. For instance, one implementation may have

Alice and Bob exchange all their block parities in one message while another would

separate the parities into individual messages. The method selected here takes a

conservative measure, and assumes the minimum number of messages is exchanged.

57

3.4.1.5. Expected Results (Cascade)

 The Cascade protocol has been shown previously to operate within a reasonable

range of the Shannon limit (Brassard & Salvail, 1994; Elkouss, Leverrier, Alleaume, &

Boutros, 2009), though not as closely as the LDPC protocol, and consequently the

effectiveness of Cascade is expected to be lower than LDPC. The information exposed by

Cascade and therefore the key rate is expected to vary due to the binary search, and

perform slightly worse than the Sum Product algorithm, due mostly to the lower number

of parity checks required by the LDPC protocol. The runtime however, even considering

network latency, is expected to be lower than LDPC. This is due to the significantly

lower level of computational complexity associated with the Cascade algorithm. As a

result the overall throughput of Cascade is expected to be comparable to the LDPC

protocol.

3.4.2. Winnow

3.4.2.1. Implementing Winnow

 The implementation of Winnow used in the simulations presented here is

derivative of an implementation created by another student (Lustic, 2011). The original

C++ implementation was modified to use the same data types and inputs as the other

protocols implemented; however the basic algorithm remains the same.

 Similar to the Cascade implementation, the Winnow implementation consists of a

main C++ Winnow class as well as the Mersenne Twister RNG class. Though in the case

of Winnow it is not necessary to be able to reverse permutations; therefore the

permutation is performed with a simple seeded RNG that randomizes the bit positions.

58

 A main class creates a random bit string as well as Alice and Bob objects, and as

before Alice is given the correct key string while Bob is given a faulty version with

uniformly distributed errors. Alice and Bob are also provided a common seed for their

permutation, as well as the error rate estimate. In addition, Bob is provided a handle to an

Alice object, so that he can access her public parity and syndrome calculating functions,

but not the key string.

 At this point, Bob sends parity bits for each block to Alice, and instructs her to

calculate the number of bad (mismatched parity) blocks as well as her syndromes for

those bad blocks. Alice and Bob create the same parity check matrix using the method

described in section 2.3.2, therefore their syndrome calculations are in sync. Alice sends

the locations of the bad blocks and her syndromes to Bob, and Bob fixes the errors in his

blocks using Alice's correct syndromes. At the end of each pass, Alice and Bob discard

their required number of parity and syndrome bits (one for each bit exchanged) and apply

a permutation randomly using the previously distributed seed before moving on to the

next pass. The number of passes and the block size for the next pass are decided by the

block size schedule, which varies depending on the key string size and error rate estimate.

 The information leaked by Winnow is tracked using a bitsExposed variable which

is incremented whenever a parity bit or syndrome is exchanged. If no errors are

introduced, the value tracked by the bitsExposed variable represents the minimum

number of bits that the algorithm can exchange in order to correct all of the errors in the

bit string, since the only bits exchanged are one parity bit and one set of syndrome bits.

However, if errors are introduced, even though they may be corrected in later passes and

therefore have no effect on the effectiveness of the protocol, a syndrome must still be

59

calculated and exchanged that would not have been had the error not been introduced.

Therefore the number of bits exposed increases as new errors are introduced in the

Winnow protocol, and the uniformity of the error distribution is paramount.

3.4.2.2. Parameters (Winnow)

 The parameters for which the Winnow protocol will be evaluated are summarized

in Table 3:

Table 3. Winnow evaluation parameters

Parameter Units Description

Effectiveness key rate Key rate (

) for a given error percentage

Information leakage bits Number of parity and syndrome bits exchanged between Alice and Bob

Runtime milliseconds Runtime of algorithm not including message generation or error estimation

Throughput kilobits / second Reconciled key bits produced per second

3.4.2.3. Approach and Methodology (Winnow)

 In the Winnow protocol the effectiveness is defined in a similar manner as the

Cascade protocol, where the key rate is a function of the reconciled key length for a given

error percentage. In the Winnow implementation used here, the starting block size is

always set at 8 bits; however the block size does not always double after each pass.

Instead, the block size is determined by a block size schedule and consequently so is the

number of parity bits exchanged/exposed. The original Winnow algorithm acquired was

written with a key length of 1000 000 bits in mind. Therefore, block size schedules for a

key length of 100 000 bits are developed experimentally as part of this research effort.

 The Winnow algorithm is run beginning with an error rate of 0.005 and increasing

in 0.005 increments up to and including 0.15, identical to the method used for Cascade.

60

For each error percentage, a block size schedule is determined which corrects all errors

while minimizing the number of bits exposed. Success for a given block size schedule is

determined three ways; as 1000 runs with 0 failures, 50 failures and 100 failures,

respectively. After each run a new bit string is generated randomly using a seeded RNG.

When 1000 consecutive runs are completed with all errors corrected, the parameters are

reset and the error rate is incremented by 0.005. This process is repeated until block size

schedules are determined for each error rate. In keeping with the original author’s

implementation, the block schedules will be developed in error rate increments of 0.01.

Therefore, each block schedule will cover two error rate increments.

 Additionally, the maximum, minimum and average bits exposed are recorded for

each error percentage. Since these values are dependent on the block size schedule, the

bits exposed will vary for each error rate.

 The runtime of the Winnow algorithm is measured using the

queryperformancecounter() function just as in the LDPC experiment. After the messages

are generated for both Alice and Bob, the clock is started. Alice and Bob objects are

provided with their respective copies of the message along with the actual error rate, and

Bob proceeds to communicate with Alice in order to correct all of the errors in his key

string. After Bob is finished, the clock is stopped, and the number of clock cycles that

have elapsed are recorded. The number of clock cycles recorded is then divided by the

processor cycles per second to obtain a runtime in seconds, which is then converted to

milliseconds for the final result. This process is repeated for each error rate. Each time

100 runs are performed, and the minimum, maximum and average runtimes are recorded.

61

In Winnow failed runs do not increase runtimes, however only successful runs are

considered in order to maintain symmetry with the other two protocols.

The throughput of the Winnow algorithm is defined in the same way as the LDPC

experiment in section 3.3.3, and is given by the reconciled key length divided by the

runtime. The throughput is calculated for each error rate and is presented as a minimum,

maximum and average corresponding to the recorded runtime values. Finally, 20 ms are

added to the runtime for every message exchanged between Alice and Bob, in order to

account for any network latency. For Winnow, the minimum communication possible is

two messages for each pass; one for Bob to send Alice his block parities, and a second for

Alice to respond with the number and location of bad blocks as well as syndromes for

those bad blocks. Therefore per pass is added to the runtime of each

instance of the Winnow protocol. Additionally, for the first pass of the protocol for a 100

000 bit key string the number of block parities will exceed the size of a network packet.

Therefore an additional 20 ms is added to the overall runtime to account for the

additional message necessary in the first pass.

3.4.2.4. Assumptions and Limitations (Winnow)

 In Winnow, due to fact that privacy maintenance occurs simultaneously with error

reconciliation, the bit string will not always be evenly divisible by the current block size.

The syndrome calculation, however, requires that the block size be of the same

dimension as the parity check matrix. Therefore, in this implementation of Winnow,

depending on the current block size, there may be an end block whose size is shorter than

the block size. This block is ignored by the algorithm, and it is assumed that any errors

62

that exist in this block will be shuffled back into another block in a later pass by the

permutation applied between passes.

 As with Cascade, the number of communication messages sent between Alice and

Bob is dependent on the implementation. Here, a conservative estimate is taken, and it is

assumed that Alice and Bob communicate with minimal message passing. Additionally, it

is assumed that the latency is the same regardless of the size of the messages passed, and

that the time to prepare or separate the message information is negligible.

 Finally, for this experiment all errors are uniformly distributed, therefore no initial

permutation is performed.

3.4.2.5. Expected Results (Winnow)

 In the Winnow protocol, Hamming codes are generally small and are generated at

runtime, and there are no overly complex mathematical operations. Therefore, it is

expected that the runtime of Winnow will be lower and throughput will exceed that of

LDPC. Also, due to the high quantity of binary searches required by Cascade, Winnow is

expected to have a lower runtime and a higher throughput than Cascade. However, due to

the high potential of introducing errors, it is expected that the effectiveness of Winnow

will be lower than LDPC, and possibly the same as or lower than Cascade.

3.5. Experiment 3: Effects of inaccurate error rate estimation and Burst Errors

 Up until this point only uniformly distributed errors with ideal error rate

estimation have been examined. In the real world, neither of these criteria is likely to be

the case. Therefore it is desirable to examine the performance of the three protocols with

regard to inaccurate error rate estimation, as well as in the presence of burst errors.

63

 Experiment 2 determined an upper bound for the correcting power (effectiveness)

of each protocol. For this reason, it is meaningless to examine a situation where the error

rate was underestimated, since the protocol would surely fail to correct all errors.

However, if the error rate were overestimated, it is likely that the protocol would leak

excess information to any eavesdroppers, and quantifying the amount of excess will

provide a deeper understanding of the importance of error estimation and allow the

development of an error rate estimation bound.

 Burst errors are defined as errors that occur consecutively, for some burst length

b. Burst errors are difficult to identify, particularly in protocols that utilize simple parity

checks, since an even amount of errors will not be detected, and an odd amount of errors

will register as only a single bit error. Burst errors are particularly treacherous in forward

error correcting codes, since a large amount of errors increases the probability of

decoding a code word into a valid, but incorrect code word. Many protocols rely on an

initial permutation to distribute any burst errors, but depending on the quality of the

permutation, this may not always be effective. With respect to the research conducted

here, the Cascade and Winnow protocols utilize simple parity checks to identify errors,

the Winnow protocol may actually introduce errors if the error rate is too high for an

individual block, and LDPC and Winnow both utilize parity check matrices. Therefore it

is highly desirable to measure the performance of these protocols in the presence of burst

errors in order to determine whether effectiveness is adversely affected.

3.5.1. Parameters

 The parameters examined in this experiment are given in Table 4 and in Figure

10:

64

Table 4. Experiment 3 evaluation parameters

Parameter Units Description

Error Rate percentage The estimated error rate of the quantum channel.

Uniform Distribution bits All errors are uniformly distributed

Single Large Burst bits All errors occur in a single burst of b bits

Single Small Burst bits
50% of the errors occur in one burst of b bits. The remaining

errors are distributed uniformly

Multiple Burst
bits per burst,

burst count
Errors occur in n bursts of b bits each

Uniform Distribution

Single Large Burst

Multiple Burst

Single Small Burst

Figure 10. Burst types

3.5.2. Approach and Methodology

 In order to evaluate the amount of excess information leaked by the different

protocols in the presence of an overestimated error rate, each protocol is run 1000 times

65

using the same seeded RNG used in Experiments 1 and 2. A static key length of 10 000

bits is evaluated. Beginning at the theoretical limit for a given error percentage, each

algorithm is run 1000 times and the maximum number of bits leaked is recorded. The

parameters corresponding to the error rate estimation for each protocol are then adjusted

to equate to an estimate that is 0.005 higher than the actual error rate, and another 1000

runs are completed. Specifically, the protocol parameters are the starting block size for

Cascade, the block size schedule for Winnow, and the code rate for LDPC. This process

is repeated for higher and higher error rate estimations, until the error rate estimate is

2.5% higher than the actual rate. At this point, the actual error rate is incremented by

0.005 and the experiment is repeated beginning with an ideal error rate estimation until

the full range of error rates (.03 - 0.15) has been covered. Finally, the maximum amount

of information leaked is compared to the situation when the error rate is approximated

ideally.

 With regards to burst errors, each of the three error correction protocols are

evaluated with ideal error rate estimation assumed. 1000 runs are performed for each

parameter (Uniform Distribution, Large Burst, Small Burst and Multiple Burst) using the

same seeded RNG as before. The minimum, maximum and average bits leaked as well as

the runtime of the three protocols are recorded. After 1000 runs are performed for each

parameter, the error rate is incremented by 0.005 and the process is repeated until the

entire range of error rates (.005 - 0.15) has been covered. The results are compared to the

data gathered earlier using a uniform error distribution, the goal being to determine if

burst errors affect the information leaked, runtime or effectiveness of the protocols.

66

3.5.3. Assumptions and Limitations

 It is assumed for this experiment that the lower bound on an error rate estimate is

2.5% greater than the actual error rate. For a relatively small error range of 0.005 to 0.15,

2.5% represents a reasonable bound on error rate estimation variance and estimates that

vary outside this range likely represent a system that is highly unstable.

 While burst errors could be evaluated in conjunction with declining error rate

estimation accuracy, and additional burst distributions are certainly possible, these

parameters are not evaluated here due to time constraints.

3.5.4. Expected Results

 It is expected that as the error rate estimate drifts farther away from the actual

rate, the information exposed will gradually rise with respect to the ideal estimation. This

rise in information exposed is expected to be most significant in the Cascade protocol,

since the number of bits exposed varies directly with the error rate. The rise should be

moderate in Winnow, since block size schedules are in increments of 0.01, and therefore

no change will be noticed until the error rate deviates from the ideal by 0.01 or more. In

LDPC the rise should be least noticeable, since a single code rate is used across a modest

range of error rates.

 If the initial permutation is able to adequately distribute the burst errors, then no

effect is expected to be evident in the effectiveness of the Winnow and Cascade

protocols. In LDPC, no initial permutation is normally applied; however, if burst errors

are found to adversely affect the algorithm, an initial permutation could be easily

implemented. Burst errors are not expected to adversely affect the LDPC protocol since

the parity checks are by nature widely dispersed.

67

3.6. Experiment 4: An analysis of key length and performance enhancements

 Prior to this point, the key length has been held static for each experiment. In this

experiment, the key length will be varied in order to determine whether the performance

of the three protocols (Cascade, Winnow and LDPC) degrades for smaller key lengths.

Larger key lengths will naturally degrade the performance of the algorithm with respect

to runtime and may degrade the throughput; however it is less clear whether the

effectiveness of the protocols will change for smaller key lengths. It may be beneficial to

operate the protocols at smaller key lengths if shorter or partial keys are needed, or if

throughput increases due to large differences in runtime. Furthermore, operating smaller

implementations on equal parts of a large key could narrow the location of errors in an

unresolvable key string, and allow a large percentage of the key to be retrieved correctly.

 For the Cascade protocol, the initial block size is a function of the error rate and

the bit string size. Therefore, regardless of the bit string size, the initial block size is

decided such that, on average, one error remains in each block. Larger bit strings with the

same percentage of errors would have the same initial block size and theoretically the

initial block size should scale, so that no difference is observed in effectiveness for larger

key lengths.

 On the other hand, the Winnow protocol implemented here always begins with an

initial block size of 8 bits, regardless of the size of the bit string. Even though the block

size schedule is different for different bit string sizes, the initial size of 8 bits results in

more blocks in the first pass of Winnow. An increase in the bit string size while

maintaining an 8 bit initial block size and the same error percentage should result in an

68

increase in effectiveness, since the likelihood of each block containing zero or one error

increases.

 Finally, with regard to LDPC codes, larger bit string sizes results in larger codes

and more sparse parity checks, since the number of parity checks does not increase for

larger codes, only different code rates. Greater sparseness of the parity checks for the

same error rate results in a lower likelihood of two errors being connected to the same

parity check, and therefore the effectiveness of the code should increase.

 The goal of this experiment is therefore to evaluate the increase (if any) of the

performance of each protocol with respect to different key lengths. This is accomplished

by comparing the effectiveness, runtime and throughput of the protocols for key lengths

of 1000, 10 000 and 100 000 bits.

3.6.1. Parameters

Table 5. Experiment 4 evaluation parameters

Parameter Units Description

Key length bits The length of the raw key string

Effectiveness key rate Key rate (

) for a given error percentage

Information
leakage

bits
Number of parity and syndrome bits exchanged between Alice and

Bob

Runtime milliseconds
Runtime of algorithm not including message generation or error

estimation

Throughput
kilobits /
second

Reconciled key bits produced per second

3.6.2. Approach and Methodology

Using the same methods detailed in experiments 1 and 2, the effectiveness,

information leakage, runtime and throughput are obtained for all three protocols, for key

69

lengths of 1000 and 10 000 bits. However, a static 5% error tolerance is examined which

is expected to provide an accurate overall picture of the performance of the protocols.

For LDPC, parity check matrices are generated using the PEG algorithm with the

same degree distribution as before. The maximum error rates achieved as well as the

average, minimum and maximum numbers of iterations are recorded. For Cascade, the

maximum starting block size that generates less than 5% failed runs is recorded, along

with the average, minimum and maximum bits exposed. Finally, block size schedules are

determined for Winnow, and the average, minimum and maximum bits exposed for the

additional key lengths are obtained.

Additionally, the average, minimum and maximum runtimes of all three protocols

are obtained by 100 runs at a 1000 and 10 000 bit key length. The throughput is

calculated as

, where the latency correction is 20 ms

times the number of messages exchanged for each protocol.

The effectiveness, runtime and throughput of Cascade, Winnow and LDPC for

key lengths of 1000, 10 000 and 100 000 bits are presented and conclusions are drawn

about the overall best key length for use with each protocol.

3.6.3. Assumptions and Limitations

 It is assumed that key length has an effect on the effectiveness of the protocols,

even though that effect may be slight. Furthermore, it is assumed that the

implementations used in this research function identically for different key lengths.

 Finally, different key lengths require different parity check matrices for Cascade

and different block schedules for Winnow. Therefore, it is assumed that these matrices

and block schedules offer similar performance to their counterparts.

70

3.6.4. Expected Results

 It is expected that the Cascade algorithm will produce only marginally different

results for different key lengths. The Winnow and LDPC protocols however, are expected

to increase in effectiveness considerably. The runtime of the algorithms is expected to

increase significantly as the key length increases as well, due to the number of parity

calculations that must be performed. The throughput on the other hand is expected to

remain constant or decline slightly, since increases in runtime will be balanced by

increases in the number of bits output.

71

IV. Analysis and Results

 In this chapter the results of the experiments conducted in Chapter III are

presented and conclusions are drawn.

4.1 Experiment 1: Evaluating the Sum Product LDPC decoding algorithm

The Sum Product algorithm was utilized to reconcile the errors in a transmitted

key string, using no information other than the syndrome for Alice’s version of the key

string. The threshold for the Decision Step was set at ±10, which was determined

empirically to give the best performance. The input to the inverse hyperbolic tangent

function was limited to to assure finite results, and the input to the

hyperbolic tangent function was monitored to prevent zero values. In the case of zero

values, the input was defaulted to the log likelihood ratio of the channel error probability.

Finally, the upper limit on the number of iterations before determining a run had failed

was set at 200. While a higher threshold admittedly provided slightly better performance,

the average number of iterations for successful runs was far less than the 200 iteration

threshold, and the performance gain was not significant enough to warrant the greatly

increased runtime for failed runs.

4.1.1. Effectiveness and Information Leakage

A graph of the achieved effectiveness of the LDPC protocol for 1000 trials at a

100 000 bit key length for 0%, 5% and 10% error tolerances along with the theoretical

limit is given in Figure 11. The x-axis represents the error rate of the channel and the y-

axis represents the reconciled key rate of the protocol, which is defined as

. The number of information bits exposed for LDPC is simply the

72

length of the syndrome exchanged. The graph appears as a step function, since an

individual code maintains the same key rate until it reaches its error threshold value, at

which point a new code must be used. The severity of the step function could therefore be

reduced by utilizing more codes; however this would result in increased computational or

dynamic memory requirements in order to process the additional codes. Alternatively, the

use of a master code which is then modified for different error rates has been proposed,

however the achievable error rates for this method is usually lower.

Figure 11. LDPC effectiveness

 The yellow line in Figure 11 illustrates the case where no errors were observed. In

this case, the LDPC codes performed reasonably close to the Shannon limit for error rates

less than 5%, however a noticeable increase in performance was observed for error rates

above 5%. In this range (5%-15%), the codes performed exceptionally well. The reason

for the poor performance at low error rates may be related to the fact that higher rate

codes have a much higher number of parity bits per check node, and therefore errors are

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

LDPC - 0%

LDPC - 5%

LDPC - 10%

73

more easily masked. Another possibility may be that the density distribution used to

generate the LDPC codes used here was not optimal for lower error rates.

 By allowing for a small percentage of errors, the maximum rate achieved

increased across the entire range of error rates, as evident by the red line in figure 11 (in

cases where only the blue line is visible, the blue overlaps the red). The effect is most

noticeable in the range of 0% to 8% and less substantial for the higher end. This

improvement was generally not as significant when transitioning from a 5% error rate to

a 10% error rate, as indicated by the blue line.

 The reason for the large improvement when allowing for a small percentage of

errors is that while LDPC is an effective protocol, the sparse parity check nature

contributes to bits combining in such a way that is nearly unpredictable, and consequently

an occasional run occurs where not all errors are resolvable. Whereas in Cascade and

Winnow a single bit error in a given block will always be correctable, in LDPC there are

no block subdivisions, and depending on the error distribution certain errors may be

masked to the parity checks. In general, this convergence of errors to elicit a failed run

occurred infrequently, and consequently the increase for a 5% error tolerance is notable.

By the time the 5% tolerance is reached, it appears that each code is very near its true

limit, since tolerating higher levels of errors did not result in significant gains in

maximum effectiveness.

4.1.2. Runtime, Throughput and Iteration Count

 A graph of the number of iterations as well as the runtime of the LDPC protocol

for a 100 000 bit key length is given in Figure 12. The runtime was recorded using a 5%

error tolerance, which provided a good representation of effectiveness while limiting the

74

number of failed runs. The unsuccessful runs were not considered in the runtime

calculations. For this implementation a run is considered unsuccessful after 200

iterations; therefore the runtime for the failed runs is mostly static. Additionally, since

unsuccessful runs always terminate after 200 iterations, failed runs are always detectable,

though it may be that only a small number of errors remain. This detectability is

advantageous in QKD, since failed instances can be detected without further

communication with the sender, and LDPC can be combined with another protocol to

resolve remaining errors.

Figure 12. LDPC protocol runtimes and iterations

 The runtime units are in seconds (s) and do not include any correction for network

latency. The runtime of the protocol increases as the error rate increases, since it takes

additional iterations in order to correct all of the errors. This increase reaches a maximum

when the limit is reached for the current code. At this point a new code is utilized which

is able to correct the same amount of errors in a lower number of iterations, resulting in a

much reduced runtime at the cost of increased information exposure due to a larger

0

2

4

6

8

10

12

14

16

0

20

40

60

80

100

120

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

R
u

n
ti

m
e

 (
se

co
n

d
s)

It
e

ra
ti

o
n

s

Error Rate

Iterations (avg)

Runtime (s)

75

syndrome. The largest peak is seen between an 8% and 10% error rate. This increase may

be an indication that the step between codes is too large, and could almost certainly be

reduced by the use of an additional code

 Finally, the throughput of the LDPC protocol is shown in Figure 13. The

throughput is calculated by
 –

 and the latency correction

in the denominator is a correction factor used to account for the syndrome that must be

exchanged between Alice and Bob. The time it takes to exchange a single network packet

is assumed to be 20 ms. A standard Ethernet frame contains 1500 bytes or 12000 bits of

data, therefore the latency correction was adjusted to correspond to the syndrome size by

dividing the syndrome by 12 000 and multiplying the result by 20 ms.

Figure 13. Throughput of the LDPC protocol

 The throughput units are in kilobits per second (kbps). Naturally, higher rate

codes perform faster (since the syndrome is smaller) and therefore have a higher

throughput, and lower rate codes have a lower throughput, but can reliably correct a

greater percentage of errors. The saw tooth shape of the graph is again attributable to the

0

5

10

15

20

25

30

35

40

45

50

55

60

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14%

Th
ro

u
gh

p
u

t
(k

b
p

s)

Error Rate

76

switch between codes. The average achieved throughput was 14.53 kbps. Even

disregarding the early behavior above 25 kbps the average drops only slightly to 12.87

kbps.

 Overall, the performance of the LDPC protocol is as expected. The achieved error

rates and throughput are well within the range of a useful protocol for QKD. As

anticipated the runtime is high, however since the protocol requires very little interaction

the throughput is very respectable, and both parameters can be improved by faster or

dedicated hardware, or by parallelization. In the next experiment the results of

experiment 1 will be compared to similar parameters for the Cascade and Winnow

protocols.

4.2. Experiment 2: Comparing LDPC to Cascade and Winnow

 For this experiment the Cascade and Winnow protocols were run without an

initial permutation, as all errors were uniformly distributed. The data types and external

classes used were consistent across all three implementations, and all runtime

measurements were made at approximately the same time in order to minimize

environmental impacts such as system load, etc.

4.2.1. Effectiveness and Information Leakage

The effectiveness of the Cascade and Winnow protocols for 1000 trials at error

tolerances of 0%, 5% and 10% as well as the values obtained for the LDPC protocol and

the theoretical limit are given in Figures 14, 15 and 16. Results are examined for a static

100 000 bit key length. The x-axis represents the error rate of the channel and the y-axis

represents the reconciled key rate of the protocol, which is defined as

77

. Information bits exposed for Cascade and Winnow were

tracked as the algorithms ran and are presented as an average. Minimum and Maximum

values were tracked as well and can be found in Appendix A.

Figure 14. Protocol effectiveness - 0% Error Tolerance

Figure 15. Protocol effectiveness - 5% Error Tolerance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

Cascade

Winnow

LDPC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

Cascade

Winnow

LDPC

78

Figure 16. Protocol effectiveness – 10% Error Tolerance

 For Cascade, the achieved effectiveness generally did not fluctuate significantly

regardless of changes in error tolerance. Winnow performed equally consistently, though

slight gains were noticed at error tolerances above 0%. LDPC performed the worst for a

0% error tolerance, and demonstrated significant gains from increased error tolerances, as

outlined in the previous experiment.

 In general, Cascade outperformed LDPC and Winnow for error rates less than

5%. At rates greater than 5%, Cascade diverged progressively farther from the theoretical

limit, while Winnow continued at approximately the same distance. The achieved

effectiveness of the LDPC protocol was lower than Cascade below a 5% error rate and

roughly the same as Winnow. However, for error rates above 5%, LDPC achieved error

rates exceptionally close to the theoretical bound, and significantly outperformed

Cascade and Winnow.

 The fact that the effectiveness did not increase for Cascade despite the

introduction of a tolerance for errors is not unexpected, since the protocol is not aware of

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e
y
 R

e
c
o

n
c
il

ia
ti

o
n

 R
a
te

Error Rate

Shannon Limit

Cascade

Winnow

LDPC

79

failed runs, and the operation of the algorithm does not generally change when a failed

run occurs. The exception is the starting block size, which can be increased for even a

small error tolerance. A graph of the starting block sizes for Cascade is shown in figure

17 below.

Figure 17. Cascade initial block size

 Initially, the difference between starting block sizes is significant, though the

effect is less noticeable as the error rate increases. In their original paper, Brassard and

Salvail empirically determined a starting block size of

 to be sufficient. Here, for a 0%

tolerance, the maximum block size achieved was, on average

. For a 5% tolerance the

average increased significantly to

 and for 10% a marginal gain of 0.04 to

 was

seen. Despite these larger block sizes the effectiveness did not increase significantly.

Though the number of block parities exchanged was reduced due to larger initial block

sizes, the number of parity bits required to perform the binary search routine increased,

and therefore the overall number of bits exposed was roughly the same.

0

25

50

75

100

125

150

175

200

225

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

St
ar

ti
n

g
B

lo
ck

 S
iz

e

Error Rate

0% tolerance

5% tolerance

10% tolerance

80

 For Winnow, a slight increase in effectiveness was noticed when a 5% error

tolerance was introduced, but virtually no increase was noticed when the tolerance was

increased to 10%. The block size schedules for Winnow are significantly different for

varying error tolerances; therefore some compensation is possible when an error

tolerance is introduced. However at a certain error percentage the Winnow protocol

begins to introduce new errors and it is not much beyond that point that the protocol fails

catastrophically.

The fact that the effectiveness did not fluctuate significantly for the Cascade and

Winnow protocols stands in contrast to LDPC, where significant gains were noticed for

even a small error tolerance.

Altogether in comparison to Cascade and Winnow the LDPC protocol achieved

desirable maximum error rates when operated at the 0% error tolerance level, and

performed exceptionally well for error rates greater than 5%. Allowing for even a small

amount of errors increased effectiveness considerably, and in many cases LDPC

performed closer to the theoretical bound than either Winnow or Cascade.

4.2.2. Runtime and Throughput

The runtimes for the three protocols for a static 5% error tolerance are shown in

Figure 18, with no adjustment made for network latency. Due to the fact that the LDPC

protocol runtime is so much greater than the runtimes of Cascade and Winnow, the graph

is split, and two y-axes are displayed. The runtimes for Cascade and Winnow correspond

to the left hand axis and LDPC to the right hand axis.

81

Figure 18. Runtimes for the Cascade, Winnow and LDPC protocols

The units for the runtimes are in milliseconds (ms). Notice that the runtimes for

Cascade and Winnow do not increase significantly for larger error rates. Cascade always

performs 4 passes, and the number of passes in Winnow does not deviate greatly for

different block schedules. More errors do correspond to more parity calculations for both

protocols, but that is a fairly trivial and efficient operation computationally. The runtime

for LDPC, on the other hand, increases greatly as the error percentage increases, for

reasons outlined in section 4.1.2. Winnow is particularly efficient and is noticeably faster

than Cascade. This speed differential is most likely due to the binary searches required in

the Cascade algorithm, and the fact that the cascading nature leads to an exponential rise

in the number of binary searches for errors found in later passes.

In order to calculate the throughput for the Cascade protocol, the number of

messages passed between Alice and Bob was tracked as the algorithm ran, and therefore

the throughput is presented here as an average. For Winnow, the number of messages

required is dependent on the number of passes and therefore the block schedule. Finally,

2000

4000

6000

8000

10000

12000

14000

0

20

40

60

80

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

R
u

n
ti

m
e

 (
m

s)

Error Rate Cascade Winnow LDPC

82

for LDPC, only one message is exchanged between Alice and Bob, unless the syndrome

is too large to fit in a single network packet. The throughput is then calculated

by

, where the latency correction this time is

 . The throughput for all three protocols is shown in Figures 19 and 20.

Figure 19. Throughput for Cascade, Winnow and LDPC

Figure 20. Throughput for Cascade, Winnow and LDPC (Log10 scale)

 The units of the throughput are again in kbps. For clarity a logarithmic scale

graph is also presented, since the difference in throughput for the three protocols is large.

0

50

100

150

200

250

300

350

400

450

500

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Th
ro

u
gh

p
u

t
(k

b
p

s)

Error Rate Cascade Winnow LDPC

0.01

0.10

1.00

10.00

100.00

1000.00

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Th
ro

u
gh

p
u

t
(L

o
g 1

0
 S

ca
le

)

Error Rate Cascade Winnow LDPC

83

Clearly, any advantage that Cascade had in runtime is eliminated as soon as network

latency is considered. The communication required between Alice in Bob for the binary

search portion of the algorithm significantly reduces the throughput to an average of only

220 bps. It is also evident that Winnow dominates both protocols for the entire range of

error rates with an average of 195 kbps. The reason for this is that Winnow is both

computationally efficient and requires minimal communication. The steps that are visible

in the Winnow throughput represent the change to a new block size schedule, and for an

error rate of less than 1% the throughput increases significantly.

Although the Winnow throughput is significantly higher than that of LDPC, the

rate achieved by the LDPC protocol is noteworthy at an average of approximately 15

kbps. Since in the LDPC protocol only one message is exchanged in most cases, the

runtime of the overall algorithm and consequently the throughput are mostly independent

of network speed. Therefore the throughput is easier to improve upon than a protocol

which is dependent on a network.

In order to further investigate the behavior of the LDPC protocol, an instance of

the Sum Product algorithm was profiled using a software profiling tool known as Very

Sleepy (Chapman, 2012). The output of this tool is shown in Figure 21.

84

Figure 21. Profile of LDPC algorithm

The profiler was run for 60 seconds on a set of active LDPC runs for a 100 000 bit

key length. The inclusive column includes the runtime of the function as well as any

external calls, while the exclusive column refers only to operations performed within that

function, with the runtime of any external calls excluded. Figure 21 is sorted descending

by the exclusive column.

From figure 21, we can see that a large majority of the runtime (19.75%) is spent

on hyperbolic tangent function calls. Therefore, reducing the time needed for those

calculations could significantly improve the runtime and throughput of the algorithm.

This could be accomplished through the use of previously calculated values stored in

dynamic memory, parallelism, or a custom circuit designed to efficiently evaluate

hyperbolic tangent functions.

For the LDPC protocol, improving the speed of the decoding algorithm

implementation will nearly always result in improved throughput. This is not the case for

85

Cascade and Winnow, which are heavily reliant on the performance of the entire

communication network. The achieved error rates for LDPC are significantly better than

Cascade for the entire range of error rates examined here, and the overall throughput is

notably better. Although the throughput for Winnow is higher, the LDPC algorithm

achieves considerably higher error rates, and is therefore just as viable an option for the

error reconciliation phase of QKD protocols. Furthermore, in situations where secure

two-way communication is difficult, such as communications with moving objects such

as satellites, LDPC offers a way to resolve transmission errors with only one message

exchange.

In the next experiment, the effects of inaccurate error estimation as well as non-

uniform error distributions on the Cascade, Winnow and LDPC protocols are examined.

4.3. Experiment 3: Effects of inaccurate error rate estimation and Burst Errors

4.3.1. Inaccurate error rate estimation

In this experiment the effects of inaccurate error rate estimation are examined.

The Cascade and Winnow protocols were run 1000 times at estimated error rates that

were increasingly greater than the actual error rate, in 0.005 increments. The maximum

amount of information exposed for each protocol was then tracked. A static 10 000 bit

key length was used, and the protocol parameters were set for a 0% error tolerance. For

LDPC, only an analytic analysis was necessary, since information leakage in LDPC is a

function of the code used, which is dependent solely on the error rate. The results of these

runs and analyses are given in Figures 22, 23 and 24.

86

Figure 22. Effects of inaccurate error rate estimation - Cascade

Figure 23. Effects of inaccurate error rate estimation - Winnow

500

1500

2500

3500

4500

5500

6500

7500

8500

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

B
it

s
Ex

p
o

se
d

Error Rate

Ideal

0.005

0.01

0.015

0.02

0.025

500

1500

2500

3500

4500

5500

6500

7500

8500

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

B
it

s
Ex

p
o

se
d

Error Rate

Ideal

0.005

0.01

0.015

0.02

0.025

87

Figure 24. Effects of inaccurate error rate estimation - LDPC

 For Cascade, the amount of information exposed varied only slightly for

marginally overestimated error rates, however as expected much larger increases were

experienced as the estimate diverged from the ideal value. Although it appears from the

graph that a larger increase was experienced for larger error rates, this is erroneous, and is

actually the result of a ripple effect experienced due to a spike in information leakage for

ideal estimation. In general, the largest increase in the percentage of bits leaked was

actually experienced for inaccurate estimation at lower error rates, with the maximum

increase occurring at an error rate of only 0.5% overestimated to be 3%. This increase of

nearly 77% in information leakage is largely due to the fact that for Cascade at smaller

error rates the steps between block sizes are larger, and therefore an inaccurate error

estimate is more costly.

 In the case of Winnow, the information exposed varied relatively uniformly,

regardless of the error rate. The peak gain in parity bits exposed was 31.6%, and occurred

at a 1% error rate overestimated by 2.5% to be 3.5%. However, the average gain in

500

1500

2500

3500

4500

5500

6500

7500

8500

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

B
it

s
Ex

p
o

se
d

Error Rate

Ideal

0.005

0.01

0.015

0.02

0.025

88

exposure peaked at only 9% for an overestimate of 2.5%. Overall, the additional

information exposed by overestimating the error rate was not significant for a rate that

was within 1.5% of the correct value, at an average of less than 4% over ideal. The reason

for these small increases was that the Winnow protocol as implemented here maintained

the same block schedule for error rate increments of 1%, therefore in each case it would

take two steps before the bits exposed increased over the ideal value. Additionally, the

differences between consecutive block schedules were generally small, therefore it was

not until an overestimate of 2% or greater that a block schedule was used that was

significantly different than the correct one.

 The shape of the LDPC graph in figure 24 is due to the fact that if an error

estimate was too far off of the correct value, it would prompt the use of a code rated for a

lower error rate which exposed more information. Hence, once an error estimate

wandered too far, the information exposed jumped to the next level, in this case an

additional 500 bits. This effect could be mitigated by the use of additional codes, but with

tradeoffs in runtime and/or memory requirements as discussed earlier.

4.3.2. Non-Uniform Error Distributions

Since in real world systems it is unlikely that errors will always occur uniformly,

this experiment sought to examine the impact of non-uniform or burst errors on the three

error reconciliation protocols. For identical input strings, each protocol was run 100 times

at each error rate. Initially, no permutations were performed before the beginning of the

protocol. Again the key length examined was static at 10 000 bits.

In the first case, all errors were contained in a single burst. The location of the

burst was generated using a seeded random number generator to assure uniformity. The

89

number of errors remaining was recorded and is presented in Figure 25. Next, the errors

were divided into 5 bursts of equal length, and the locations were again randomly

generated, but steps were taken to assure that none of the bursts overlapped. The results

for these runs are presented in Figure 26. Finally, the case was considered where a single

burst containing half of the errors was generated and the remaining errors were

distributed uniformly. These results are graphed in Figure 27.

Figure 25. Error reconciliation results for a single burst of errors

Figure 26. Error reconciliation results for five equal size error bursts

0
10
20
30
40
50
60
70
80
90

100

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Fa
ile

d
 R

u
n

s

Error Rate Cascade LDPC Winnow

0
10
20
30
40
50
60
70
80
90

100

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Fa
ile

d
 R

u
n

s

Error Rate
Cascade LDPC Winnow

90

Figure 27. Error reconciliation results for one 50% burst and 50% uniform

The Cascade protocol was able to tolerate most conditions with little effect on

overall performance, with the largest amount of failed runs occurring when five equally

sized bursts were introduced. The average number of failed runs for Cascade was far less

than Winnow however, which suffered catastrophic failure for a single large burst and for

multiple smaller bursts. The fact that no errors are ever introduced in the Cascade

algorithm and a permutation is performed between iterations contributes to Cascade’s

ability to withstand burst errors well. Winnow introduces errors when there is more than

one error per block, so in all likelihood by the second pass, even with a permutation

between passes, there were simply too many errors to correct. LDPC performed

increasingly badly as the size of the burst(s) increased, but in general this performance

was worse than Cascade, yet better than Winnow.

 The third case, where a single 50% burst was introduced with the rest of the errors

distributed uniformly elicited different behavior from the Winnow algorithm. Cascade

still had very few failed runs, and seemed mostly unaffected by the single burst. LDPC

0
10
20
30
40
50
60
70
80
90

100

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Fa
ile

d
 R

u
n

s

Error Rate
Cascade LDPC Winnow

91

also performed as before, with the number of errors increasing as the size of the burst

increased. Somewhat unexpectedly however, Winnow performed well, with no error rate

inducing more than 10 failures out of 100 runs. A possible reason for this is that the

single burst caused Winnow to introduce additional errors into the key string; however

the threshold of errors was not high enough that the protocol could not recover, and the

permutation in between passes distributed the errors uniformly enough that all of the

errors could be resolved.

 After the data was collected for the different burst distributions, 100 runs were

again performed using the same distributions; however this time an initial permutation

was applied. A common seed was used across the three protocols to assure an identical

permutation of the input string. With the initial permutation, all three protocols performed

markedly better. In fact, only two of the 100 iteration runs resulted in any failed runs, and

the number of failed runs was only 2 and 1 respectively. Therefore, if burst errors are

probable in real world implementations, a simple permutation applied on the front end

will allow any of the three protocols to operate normally.

 In general, inaccurate error estimation and burst errors within a reasonable bound

did not severely impact the performance of the three protocols. In the next experiment the

effectiveness of the protocols for different key lengths as well as some potential

performance enhancements will be considered.

4.4. Experiment 4: An analysis of key length and performance enhancements

Up until this point, the size of the raw key was a static parameter for all

experiments. The purpose of this experiment was to examine the effect of a variable key

92

length on the effectiveness, runtime and throughput of the various error reconciliation

protocols. A static 5% error tolerance is presented, however results for all error tolerances

and key lengths can be found in Appendix A.

 Graphs of the maximum achieved error rates for all three protocols for key

lengths of 1000 bits, 10 000 bits and 100 000 bits are presented in figures 28, 29 and 30.

The x-axis represents the error rate, while the y-axis represents the reconciled key rate of

the protocols.

Figure 28. Achieved error rates for various key lengths – Cascade

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

Cascade - 1000

Cascade - 10000

Cascade - 100000

93

Figure 29. Achieved error rates for various key lengths - Winnow

Figure 30. Achieved error rates for various key lengths - LDPC

 As evident by the graph in figure 28, the effectiveness of the Cascade protocol

remained remarkably stable for all three key lengths. Though larger key lengths permitted

the use of a larger starting block size, the amount of information leaked and therefore the

reconciled key rate fluctuated very little. In general, the Cascade algorithm appears to be

very stable. As long as the algorithm is implemented properly and the initial block size

chosen correctly, the performance is very predictable.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

Winnow - 1000

Winnow - 10000

Winnow - 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

LDPC - 1000

LDPC - 10000

LDPC - 100000

94

 Similarly, the effectiveness of the Winnow protocol did not fluctuate significantly

for increasing key length, though a slight increase was observed for 10 000 and 100 000

bit key lengths. The increase in effectiveness was expected due to the fact that the starting

block size in Winnow is static and therefore the probability of multiple errors residing in

any given block would decrease as the key length increases, however the increase in

effectiveness was not as large as originally anticipated.

 For the LDPC protocol, as expected, a large increase in the effectiveness was

observed at each increase in the key length, and the most significant increase was noticed

between a 1000 and 10 000 bit key length. The number of parity checks increases linearly

with the key length in the LDPC protocol, however the number of bits per check remains

the same. Therefore the result is more parity checks that are more widely spread out, and

it becomes more unlikely that errors will be masked.

 The same data is shown again in figures 31, 32 and 33 however this time the data

is grouped by key length rather than protocol.

Figure 31. Achieved error rates for various key lengths - 1000 bit key

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

Cascade - 1000

Winnow - 1000

LDPC - 1000

95

Figure 32. Achieved error rates for various key lengths - 10 000 bit key

Figure 33. Achieved error rates for various key lengths 100 000 bit key

 For all key lengths, it is evident that Cascade performs better than Winnow for

error rates below 5%, and worse than Winnow for error rates above 5%. With respect to

the theoretical bound, the effectiveness of the Cascade algorithm degrades as the error

rate increases, while the effectiveness of the Winnow algorithm remains relatively static.

 LDPC mirrors Winnow closely for a 1000 bit key length, though the step nature

of the algorithm results in an overall lower average effectiveness. At a 10 000 bit key

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

Cascade - 10000

Winnow - 10000

LDPC - 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

K
e

y
R

e
co

n
ci

lia
ti

o
n

 R
at

e

Error Rate

Shannon Limit

Cascade - 100000

Winnow - 100000

LDPC - 100000

96

length, LDPC begins to outperform Winnow for error rates above 5%, and the

effectiveness of LDPC progresses exceptionally close to the theoretical bound. At a 100

000 bit key length the results were similar, with the effectiveness of Cascade dominating

for rates up to 5%, and LDPC performing the best from that point forward.

 Figures 34, 35 and 36 illustrate the runtime of all three protocols. The units are

once again in milliseconds.

Figure 34. Runtime of Cascade, Winnow and LDPC - 1000 bit key

Figure 35. Runtime of Cascade, Winnow and LDPC - 10 000 bit key

10

20

30

40

50

0

0.2

0.4

0.6

0.8

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

R
u

n
ti

m
e

 (
m

s)

Error Rate Cascade Winnow LDPC

100

200

300

400

500

0

2

4

6

8

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

R
u

n
ti

m
e

 (
m

s)

Error Rate Cascade Winnow LDPC

97

Figure 36. Runtime of Cascade, Winnow and LDPC – 100 000 bit key

 Take note that once again the units for the LDPC line are represented by the right-

hand side of the y-axis. The shape of the graphs are similar to the 100 000 bit runtime

seen earlier, and the Winnow, Cascade and LDPC protocols show a near linear increase

in runtime as the key length increases. For LDPC this linearity is significant, and is

directly attributable to the sparse matrix storage utilized in the implementation.

Otherwise, the size of the matrices required would scale quadratically with the key

length, and therefore the runtime would as well.

 Although the runtime of LDPC increases in a near-linear fashion, the shape of the

graph indicates that as the key length increases, the runtime remains stable longer, with a

sharper rise in runtime as individual codes near their decoding limit.

 Generally the runtime is as expected, with Winnow exhibiting the best

performance and LDPC presenting the worst. A more significant measure of performance

is the overall throughput, which is displayed in figures 37, 38 and 39.

2000
4000
6000
8000
10000
12000
14000

0

20

40

60

80

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

R
u

n
ti

m
e

 (
m

s)

Error Rate Cascade Winnow LDPC

98

Figure 37. Throughput of Cascade, Winnow and LDPC - 1000 bit key

Figure 38. Throughput of Cascade, Winnow and LDPC - 10 000 bit key

0

5

10

15

20

25

30

35

40

45

50

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Th
ro

u
gh

p
u

t
(k

b
p

s)

Error Rate

Cascade

Winnow

LDPC

0

10

20

30

40

50

60

70

80

90

100

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Th
ro

u
gh

p
u

t
(k

b
p

s)

Error Rate

Cascade

Winnow

LDPC

99

Figure 39. Throughput of Cascade, Winnow and LDPC - 100 000 bit key

 While the throughput for the Cascade and LDPC algorithms fluctuates only

marginally for varying key lengths, the throughput of the Winnow algorithm improves

significantly as the key length is increased. The reason for this is that in Winnow the

number of passes is generally the same, regardless of the key length. Therefore, although

the number of parity checks increases, the amount of communication does not, and the

network latency becomes less of a factor as the number of bits reconciled grows. The

number of messages passed increases dramatically for Cascade with increases in key

length, therefore even though more bits are produced, the throughput remains the same.

In LDPC only one message is ever passed, so the throughput is mostly reliant on runtime

and bits reconciled. Since both of these parameters increase with increases in key length,

the throughput is mostly unchanged.

 In a real world implementation, it is reasonable to presume that different length

keys may be of use, depending on the required level of security, the symmetric key

algorithm the key is intended for, or the desired throughput. Based on the data presented

0

50

100

150

200

250

300

350

400

450

500

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Th
ro

u
gh

p
u

t
(k

b
p

s)

Error Rate

Cascade

Winnow

LDPC

100

here, the Winnow protocol offers the best performance in terms of throughput at the 100

000 bit level, and there is reason to believe that performance would increase for larger

key sizes. Effectiveness remained static for key lengths larger than 1000 bits; therefore

the largest feasible key length should be used in the Winnow protocol.

In the Cascade protocol, the effectiveness and throughput remained relatively

constant regardless of the key size; consequently the length of the key that best suits the

application should be used. Cascade, although slow, is a very robust protocol that is

easily adaptable to different key lengths.

For LDPC, roughly the same effectiveness and throughput is seen at the 10 000

and 100 000 bit levels. Therefore it is likely that a 10 000 bit key length would be more

advantageous, since partial keys may be useful, and any failed runs would be contained in

a 10 000 bit block. Additionally, multiple instances of the 10 000 bit implementation

could be performed in parallel in order to increase throughput.

To illustrate this, one final experiment was performed, where the previously

developed LDPC implementation was modified so that 10 instances could run

simultaneously using software multithreading. The same input strings were used,

however 10 LDPC threads were created and each thread was given

 of a 100 000 bit

key string, a corresponding syndrome for that string, and an accurate estimate of the

overall error rate. 10 threads were chosen since 10 000 bit LDPC parity check matrices

had already been developed for the previous experiment. The resulting throughput for

this implementation is shown in figure 40, along with the previously obtained value for a

100 000 bit key string.

101

Figure 40. Throughput of a multi-threaded implementation of the LDPC protocol

Clearly, the LDPC protocol benefits significantly from a multithreaded

implementation, and the throughput achieved showed an average increase of 300% (14

kbps vs. 56 kbps average). However, this increase came with a slight rise in the amount

of failed runs. The reason for this may be that the overall error rate for a 100 000 bit

string was not representative of the error rate for all of the individual pieces, depending

on the error distribution. Still, the failed runs were contained to one or two of the 10 000

bit pieces, which means that 80-90% of the key string was decoded correctly. A similar

approach could be taken in order to parallelize the larger, 100 000 bit implementation in

order to produce an exceptionally large reconciled key.

Finally, with regard to communication efficiency, the LDPC protocol easily offers

the best performance regardless of key size. The minimum amount of messages

exchanged in the Cascade protocol for this experiment was 10, for a 1000 bit block size

and a 0.1% error rate. For Winnow, the minimum was 6, also for a 0.1% error rate at a

1000 bit block size. However, for a reasonable 5% error rate and a 100 000 bit block size,

0

50

100

150

200

250

300

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

Th
ro

u
gh

p
u

t
(k

b
p

s)

Error Rate

Multithreaded

Single Thread

102

the number of messages balloons to 26 217 for Cascade and 14 for Winnow. LDPC

requires only one message exchange, regardless of error rate or key size.

103

V. Conclusions and Recommendations

5.1. Conclusions

 Many present cryptographic implementations in use today utilize symmetric key

ciphers, which offer efficiency as well as a high level of security. Unfortunately,

symmetric key ciphers require the users to share a common key, so often less efficient

asymmetric key ciphers are used in order to distribute a key for a symmetric cipher.

Additionally, asymmetric key ciphers rely on problems which are thought to be, yet not

proven to be computationally difficult, and therefore the level of their security is

frequently questioned. Should quantum computers ever be realized, most asymmetric key

algorithms will be rendered breakable in polynomial time.

 Quantum Key Distribution offers an alternative for distributing a key for a

symmetric cipher in an unconditionally secure way. However, the nature of the

equipment, the medium, or the presence of eavesdroppers can introduce errors into the

quantum transmission, which is destructive to any symmetric key cipher. Therefore, error

reconciliation protocols have been developed that allow the resolution of errors without

severely compromising security.

 The most famous of these error reconciliation protocols was developed in 1994

and is known as Cascade. Although extremely efficient and capable of correcting large

percentages of errors, Cascade is a highly interactive protocol that requires a large

amount of communication and therefore suffers greatly in practical parameters such as

throughput. In 2003 a new protocol was introduced based on Hamming codes which

aimed to reduce the amount of communication needed. This protocol, known as Winnow,

104

offers significantly reduced interaction when compared to Cascade with similar

complexity and for comparable error rates. However Winnow is still an interactive

protocol, and requires a sender and receiver to perform actions in a synchronized fashion.

Additionally, in Winnow there is the possibility of introducing new errors, which leads to

an increased probability of failure.

 More recently, Low Density Parity Check Codes have been used in the error

reconciliation phase of QKD. Developed by Gallager in the 1960’s, LDPC codes went

mostly ignored until McKay revived interest in them with his 1999 paper. LDPC codes

offer a method of error correction that is not interactive, and only requires one initial

communication. Moreover, LDPC codes are capable of correcting errors at rates that

exceed that of Cascade and Winnow.

 LDPC codes have traditionally been applied as forward error correcting codes in

classical communications, and are now included as an option in the second generation

digital video broadcasting and 802.11n Wi-Fi standards. Their application in QKD

systems has been studied as well, though the lack of ideal codes and the high complexity

of the decoding algorithms have prevented LDPC codes from achieving widespread

adoption over Cascade and Winnow. Therefore, the purpose of this research was to

evaluate the performance of LDPC codes generated using the Progressive Edge Growth

algorithm, which is known to produce good codes, and decoded using the author’s

implementation of the Sum Product algorithm. This performance was compared

empirically with that of Cascade and Winnow in order to determine if LDPC is truly

viable for use in the error reconciliation phase of QKD.

105

 The effectiveness of an error reconciliation protocol is a crucial parameter, since a

protocol is not useful if it cannot successfully correct all the errors in a distributed key.

The results obtained here show that for error rates up to 5% Cascade is highly effective

and bests both of the other protocols, although Winnow and LDPC also perform well.

Above the 5% threshold, the LDPC protocol performs extremely close to the theoretical

bound, while the effectiveness of Winnow neither improves nor degrades. Cascade

diverges significantly from the theoretical bound for higher error rates, and in general is

not as effective as Winnow or LDPC beyond 5%.

 Just as critical are the runtime and throughput of the protocols, since an effective

protocol is unlikely to be used if it is prohibitively slow. It is in this area that Cascade

suffered the most in this research, since its highly interactive nature makes it exceedingly

dependent on network performance. For anything other than extremely low error rates (<

1%), the runtime and throughput of the Cascade protocol was shown to be vastly inferior

to the Winnow and LDPC protocols.

 The runtime of the Winnow protocol increases linearly for linear increases in key

size, and as the key size grows the effects of the limited amount of interactions becomes

negligible. In fact, of the three protocols, experiments performed here have shown that

Winnow produces the highest average throughput for key sizes in excess of 10 000. At 10

000 bits the performance was comparable to the LDPC protocol, and below the 10 000 bit

level the LDPC protocol was superior.

 Due to some clever programming, the runtime of the Sum Product decoding

algorithm for the LDPC codes was also shown to scale linearly for linear increases in the

raw key size. However, since the runtime was still considerably higher than the Cascade

106

and Winnow protocols, the overall throughput remained relatively static at a level in

between Cascade and Winnow. Fortunately, since the amount of communication required

by the LDPC protocol is extremely low, the algorithm was shown to be very well suited

for enhancements in computational efficiency, such as multithreading, which resulted in a

300% increase in throughput. These improvements could also be implemented on the

Cascade and Winnow protocols, but with less significant gains due to their interactive

nature and hence their dependence on a network.

 In order to perform error reconciliation in QKD protocols, an estimate of the

number of errors in the key to be reconciled must be obtained, and the quality of this

estimate will have an impact on the performance of the reconciliation algorithm.

Experiments conducted showed that in the case of Cascade, the amount of information

exchanged in order to reconcile a key with an inaccurate error estimate varies depending

on the actual error percentage and the level of inaccuracy. At lower actual error rates an

inaccurate estimate was demonstrated to be more costly, since the starting block size of

the Cascade algorithm is determined based on the error estimate, and at lower error rates

the steps between block sizes are more severe.

 In Winnow the amount of interaction is determined by a block size schedule.

Therefore the number of messages exchanged will not increase until the error estimate is

sufficiently far from the true value that it triggers a switch to a new schedule. As

implemented for this research the steps between block schedules tended to be large

enough and the differences between schedules small enough that the increase in the

amount of information exchanged for inaccurate estimates was minimal. Still, estimates

that fluctuated significantly from the true value resulted in sizeable gains in information

107

exchanged, and in general point to an error estimation threshold of +1.5% for the

Winnow protocol.

 The information exchanged in the LDPC protocol is constant for a given code

rate, since the only information exchanged is the syndrome for the key string. Therefore,

as long as the error estimate is not severe enough to cause a less efficient code to be used,

the information will remain the same. If the wrong code is used however, the information

exchanged will increase by the difference between the syndrome sizes of the two parity

check matrices for the different code rates, which was 5000 bits for a 100 000 bit key

length in the research conducted here. Additionally, the steps between code rates can be

as small or as large as desired, with large steps resulting in more drastic differences

between the lengths of the syndromes.

 Finally, in a practical application it is unlikely that all of the errors in a given key

string will be uniformly distributed, therefore the effect of non-uniform or burst errors

was examined. Consecutive or burst errors were shown to be devastating to the Winnow

protocol, which tends to introduce errors which are not adequately spaced. Cascade

responded to burst errors well, due to the fact that no errors are ever introduced and a

permutation is applied between passes. LDPC was neither tolerant of nor devastated by

burst errors, and the probability of decoding failure increased steadily as the size of the

burst grew. Regardless of the burst distribution, in nearly all cases a simple random

permutation of the key string before error reconciliation begins was sufficient to

distribute the errors in a uniform fashion.

 The best error reconciliation method for a given QKD implementation is going to

depend on many factors including but certainly not limited to security, ease of

108

communication and error rate of the transmission. In general all three protocols examined

here (Cascade, Winnow and LDPC) showed respective strengths and weaknesses and are

suitable for the error reconciliation phase of Quantum Key Distribution. However, as

reflected in the research results presented here, the LDPC protocol effectiveness is, on

average, better than that of Cascade and Winnow, all the while requiring only a single

message exchange. These traits, along with the fact that the throughput of the protocol

can be significantly improved by parallelization or advances in hardware, makes the

LDPC protocol the best choice for most applications.

5.2. Limitations

Several limitations are present in the research conducted here which are worth

noting. The Mersenne Twister random number generation algorithm is not considered

cryptographically secure, and although the output is considered to have very good

random properties, it should not be used in a real-world implementation. Similarly, all

achieved error rates were measured using the same set of 1000 randomly generated key

strings. This was done for symmetry when comparing protocols, so an implementation

utilizing different message generation techniques may result in slightly different

maximum error rates.

5.3. Recommendations for Future Research

1. Alternate Low Density Parity Check Codes

Although the codes examined here exhibited performance exceptionally close to the

theoretical limit, due to time constraints the interval between codes was left somewhat

large, and all codes were generated using the PEG algorithm with a single degree

109

distribution. The performance of this implementation of the Sum Product algorithm with

different codes, more codes or perhaps even a single code that is modified for different

error rates would be useful, and may result in better performance.

2. A Deeper Investigation into Performance Enhancements

Multithreading was only casually examined in this research; however the results

demonstrate that a multithreaded implementation of the LDPC protocol could achieve

much higher throughput. Specifically, implementing the protocol on an FPGA utilizing

multiple embedded cores or a module designed specifically to efficiently evaluate

hyperbolic tangent functions could result in markedly better performance. Since the

LDPC protocol is complex computationally, the use of a dedicated processor is

recommended.

3. A more realistic measure of network performance

The implementations studied here treated network performance as an ideal, static

variable in order to assure uniformity when comparing the parameters between protocols.

A study that examined the performance of the various protocols with respect to actual

network performance could provide a better picture of realistic throughput rates.

Additionally, such a comparison may reveal other difficulties not considered here, such

as problems with variable delays in message transmission, and complications associated

with keeping a sender and receiver in sync throughout the error reconciliation process.

4. Comparison with other protocols

Though Winnow and Cascade are two of the most well-known protocols for QKD

error reconciliation, many others do exist. Turbo codes, for instance, are very closely

related to LDPC codes and have been shown to achieve similar performance. A similar

110

comparison would contribute to the overall characterization of QKD reconciliation

protocols, so that the best protocol for a given situation can be selected.

111

VI. Appendix A Experimental Data

 Contained in the tables below are comprehensive results gathered for protocol

testing experiments.

 Cascade

o Block size – Maximum starting block size achieved for a given error

tolerance

o Error rate – Error rate for a given set of 1000 runs

o Average/Min/Max – Average, minimum and maximum bits exposed for a

given set of 1000 runs

 LDPC

o Code rate – the rate of the code for a set of 1000 runs, defined by

o Error rate – Maximum error rate achieved for a given error tolerance

o Average/Min/Max – Average, minimum and maximum number of

iterations for a given set of 1000 runs

 Winnow

o Error rate – Error Rate for a given set of 1000 runs

o Average/Min/Max – Average, minimum and maximum bits exposed for a

given set of 1000 runs

* Optimal block schedules for Winnow are contained in the source code in appendix B

1000 Bit Key Length, 0% Error Tolerance

Block size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

25 0.005 99 95 104 0.90 0.001 2 1 3 0.005 185 180 199

23 0.010 130 124 163 0.85 0.002 2 1 4 0.010 199 193 213

19 0.015 169 161 187 0.80 0.003 3 2 7 0.015 269 260 283

16 0.020 203 198 232 0.75 0.011 6 4 15 0.020 282 274 308

12 0.025 255 245 287 0.70 0.016 6 4 20 0.025 343 334 370

11 0.030 289 279 304 0.65 0.023 7 5 17 0.030 359 345 383

11 0.035 306 292 333 0.60 0.035 8 6 23 0.035 395 384 416

12 0.040 318 305 349 0.55 0.037 7 6 14 0.040 407 392 430

11 0.045 348 333 390 0.50 0.063 11 8 21 0.045 413 393 434

9 0.050 387 369 421 0.45 0.069 10 8 16 0.050 425 409 448

10 0.055 397 378 443 0.40 0.076 9 7 13 0.055 459 439 497

6 0.060 489 472 528 0.35 0.113 14 11 32 0.060 470 447 496

7 0.065 475 459 507 0.30 0.127 14 11 27 0.065 493 470 534

9 0.070 467 446 529 0.25 0.143 14 11 35 0.070 504 480 544

7 0.075 510 491 563 0.20 0.156 13 11 26 0.075 527 501 567

7 0.080 529 507 565 0.15 0.174 14 11 123 0.080 539 511 578

8 0.085 533 513 583 0.10 0.179 11 10 21 0.085 554 524 598

6 0.090 591 566 643 0.090 567 526 609

5 0.095 636 614 668 0.095 604 571 642

5 0.100 651 628 700 0.100 614 583 667

4 0.105 711 690 744 0.105 634 602 682

4 0.110 724 706 758 0.110 643 607 691

6 0.115 679 643 737 0.115 669 636 715

4 0.120 750 728 790 0.120 681 644 734

5 0.125 731 703 785 0.125 720 690 761

4 0.130 777 758 826 0.130 728 692 764

5 0.135 764 726 830 0.135 732 698 777

4 0.140 781 782 856 0.140 740 706 784

4 0.145 802 796 858 0.145 765 721 821

4 0.150 817 808 878 0.150 774 725 836

Cascade WinnowLDPC

112

10 000 Bit Key Length, 0% Error Tolerance

100 000 Bit Key Length, 0% Error Tolerance

Block size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

76 0.005 579 564 625 0.90 0.001 4 3 29 0.005 1742 1734 1762

46 0.010 1006 981 1067 0.85 0.002 4 3 8 0.010 1892 1877 1949

35 0.015 1374 1343 1446 0.80 0.005 5 4 15 0.015 2357 2334 2397

27 0.020 1744 1708 1817 0.75 0.01 7 6 13 0.020 2511 2476 2553

27 0.025 2035 1974 2152 0.70 0.015 8 6 14 0.025 2791 2754 2838

22 0.030 2376 2316 2497 0.65 0.029 11 9 18 0.030 2938 2886 3000

16 0.035 2728 2684 2858 0.60 0.051 19 14 69 0.035 3224 3161 3286

17 0.040 2970 2893 3118 0.55 0.067 21 17 31 0.040 3368 3304 3454

15 0.045 3260 3187 3374 0.50 0.091 33 27 49 0.045 3593 3514 3700

14 0.050 3546 3456 3658 0.45 0.106 33 28 47 0.050 3744 3663 3858

11 0.055 3906 3826 4038 0.40 0.119 29 25 47 0.055 4062 3955 4187

11 0.060 4136 4040 4264 0.35 0.135 30 24 78 0.060 4215 4101 4330

10 0.065 4403 4321 4543 0.30 0.149 27 22 59 0.065 4500 4374 4658

9 0.070 4667 4590 4766 0.25 0.164 26 21 54 0.070 4659 4518 4844

9 0.075 4884 4791 5048 0.20 0.179 25 21 67 0.075 5006 4905 5106

8 0.080 5122 5045 5245 0.15 0.193 23 19 42 0.080 5130 5035 5248

9 0.085 5335 5211 5480 0.10 0.21 23 19 68 0.085 5228 5112 5375

7 0.090 5662 5564 5777 0.090 5355 5211 5489

8 0.095 5752 5628 5910 0.095 5574 5428 5749

5 0.100 6492 6423 6590 0.100 5702 5529 5880

6 0.105 6396 6286 6525 0.105 5956 5810 6155

6 0.110 6579 6473 6714 0.110 6082 5917 6324

6 0.115 6764 6645 6912 0.115 6427 6275 6580

6 0.120 6956 6823 7127 0.120 6544 6349 6784

5 0.125 7286 7167 7412 0.125 6685 6556 6845

5 0.130 7452 7331 7597 0.130 6785 6607 6962

4 0.135 7867 7796 7978 0.135 6985 6838 7158

5 0.140 7794 7654 7994 0.140 7086 6933 7319

5 0.145 7970 7833 8151 0.145 7280 7094 7505

5 0.150 8148 7986 8317 0.150 7390 7225 7662

Cascade WinnowLDPC

Block Size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

81 0.005 5689 5634 5786 0.90 0.001 5 4 11 0.005 15957 15920 16015

57 0.010 9627 9517 9798 0.85 0.002 5 4 9 0.010 17538 17432 17650

45 0.015 13385 13215 13642 0.80 0.006 8 7 14 0.015 20673 20572 20810

32 0.020 16906 16707 17159 0.75 0.17 16 12 61 0.020 22290 22086 22515

27 0.025 20358 20145 20681 0.70 0.025 16 14 103 0.025 26115 25930 26317

24 0.030 23619 23924 23347 0.65 0.037 19 16 33 0.030 27757 27555 27983

22 0.035 26728 26342 27142 0.60 0.057 28 24 46 0.035 31071 30815 31368

19 0.040 29672 29290 30093 0.55 0.081 53 45 70 0.040 32655 32356 33012

13 0.045 33377 33142 33699 0.50 0.098 71 56 113 0.045 34808 34523 35124

14 0.050 35440 35167 35875 0.45 0.112 60 51 108 0.050 36412 35996 36757

12 0.055 38582 38323 38899 0.40 0.125 49 42 74 0.055 40784 40448 41163

11 0.060 41335 41012 41705 0.35 0.141 51 42 94 0.060 42300 41937 42718

11 0.065 43712 43317 44176 0.30 0.156 44 36 58 0.065 44210 43782 44726

10 0.070 46314 45908 46707 0.25 0.171 41 34 63 0.070 45814 45241 46289

10 0.075 48661 48251 49069 0.20 0.186 42 34 81 0.075 49278 48849 49602

9 0.080 51022 50542 51436 0.15 0.201 38 32 67 0.080 50506 50054 50940

9 0.085 53309 52906 53803 0.10 0.218 39 31 95 0.085 52169 51769 52602

10 0.090 56115 55586 56866 0.090 53425 52965 53955

8 0.095 57511 57097 58015 0.095 54521 53996 55043

7 0.100 60481 60126 60839 0.100 55847 55266 56386

7 0.105 63921 63568 64342 0.105 59376 58854 59944

6 0.110 65740 65316 66079 0.110 60610 60047 61170

6 0.115 67602 67165 68054 0.115 63608 63025 64367

5 0.120 71201 70890 71625 0.120 64841 64329 65472

6 0.125 71444 70942 71978 0.125 66267 65650 66967

6 0.130 73414 72904 73996 0.130 67551 66920 68302

5 0.135 76198 75819 76650 0.135 68773 68215 69355

6 0.140 77926 77342 78449 0.140 69890 69228 70594

6 0.145 79685 80237 79202 0.145 72285 71670 72863

6 0.150 81463 80912 81980 0.150 73369 72751 74093

Cascade WinnowLDPC

113

1000 Bit Key Length, 5% Error Tolerance

10 000 Bit Key Length, 5% Error Tolerance

Block size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

101 0.005 54 27 92 0.90 0.003 5 2 37 0.005 153 147 171

71 0.010 95 54 134 0.85 0.008 8 5 179 0.010 169 162 186

55 0.015 133 89 170 0.80 0.013 11 6 166 0.015 200 191 221

44 0.020 168 129 220 0.75 0.021 13 7 181 0.020 216 201 242

38 0.025 204 149 250 0.70 0.032 16 9 198 0.025 263 252 288

31 0.030 242 183 292 0.65 0.043 18 11 183 0.030 281 266 309

29 0.035 267 232 327 0.60 0.057 21 13 179 0.035 306 290 337

24 0.040 298 257 349 0.55 0.071 23 14 169 0.040 321 300 364

23 0.045 329 294 395 0.50 0.085 23 15 196 0.045 344 320 387

20 0.050 358 321 422 0.45 0.099 22 16 177 0.050 360 333 399

18 0.055 382 347 455 0.40 0.113 22 16 198 0.055 387 360 433

16 0.060 406 375 475 0.35 0.128 21 16 170 0.060 403 368 475

16 0.065 437 385 514 0.30 0.143 21 15 194 0.065 434 401 491

15 0.070 463 430 517 0.25 0.158 21 15 172 0.070 448 413 495

14 0.075 490 450 564 0.20 0.171 20 14 165 0.075 480 443 558

13 0.080 518 480 580 0.15 0.187 20 13 159 0.080 495 454 569

12 0.085 542 497 615 0.10 0.202 18 13 162 0.085 525 480 596

11 0.090 570 529 659 0.090 543 489 620

11 0.095 597 550 664 0.095 567 514 640

10 0.100 615 570 683 0.100 582 528 647

10 0.105 644 590 730 0.105 588 544 646

10 0.110 670 619 772 0.110 599 552 662

9 0.115 683 635 760 0.115 623 576 697

8 0.120 693 649 759 0.120 638 586 728

8 0.125 718 675 806 0.125 669 621 753

8 0.130 742 693 823 0.130 681 624 771

8 0.135 767 714 851 0.135 687 641 745

7 0.140 781 727 846 0.140 697 651 758

7 0.145 805 754 871 0.145 715 670 796

7 0.150 827 777 909 0.150 725 670 793

Cascade WinnowLDPC

Block size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

199 0.005 530 476 607 0.90 0.003 9 5 32 0.005 1496 1485 1523

104 0.010 963 897 1154 0.85 0.008 15 9 118 0.010 1660 1634 1720

69 0.015 1349 1267 1487 0.80 0.015 21 11 145 0.015 2111 2083 2168

53 0.020 1717 1617 1853 0.75 0.025 28 15 182 0.020 2270 2234 2321

42 0.025 2069 1969 2215 0.70 0.037 34 20 195 0.025 2447 2397 2525

35 0.030 2387 2284 2527 0.65 0.050 38 24 197 0.030 2617 2544 2705

31 0.035 2703 2586 2840 0.60 0.065 44 27 176 0.035 2992 2914 3078

26 0.040 3015 2893 3196 0.55 0.080 46 32 137 0.040 3155 3072 3263

23 0.045 3316 3193 3473 0.50 0.095 47 34 194 0.045 3422 3339 3532

21 0.050 3617 3477 3796 0.45 0.110 46 32 165 0.050 3578 3494 3713

19 0.055 3882 3729 4054 0.40 0.123 39 30 185 0.055 3917 3821 4074

17 0.060 4126 3980 4332 0.35 0.138 37 28 178 0.060 4068 3961 4180

16 0.065 4381 4226 4548 0.30 0.154 37 26 173 0.065 4270 4151 4409

15 0.070 4648 4496 4833 0.25 0.169 35 25 161 0.070 4435 4290 4654

14 0.075 4926 4771 5205 0.20 0.183 33 24 170 0.075 4703 4570 4870

13 0.080 5185 5022 5359 0.15 0.199 33 23 143 0.080 4866 4723 5068

12 0.085 5434 5288 5626 0.10 0.215 31 22 153 0.085 5075 4889 5310

11 0.090 5669 5466 5864 0.090 5250 5034 5497

11 0.095 5937 5755 6123 0.095 5403 5205 5614

10 0.100 6134 5919 6368 0.100 5565 5376 5877

10 0.105 6393 6219 6662 0.105 5779 5625 6004

9 0.110 6550 6346 6764 0.110 5920 5705 6160

9 0.115 6804 6610 7061 0.115 6126 5924 6347

9 0.120 7057 6862 7306 0.120 6276 6060 6587

8 0.125 7144 6954 7360 0.125 6504 6310 6763

8 0.130 7388 7196 7622 0.130 6644 6412 6961

8 0.135 7625 7430 7854 0.135 6836 6651 7081

7 0.140 7786 7561 7971 0.140 6945 6789 7193

7 0.145 8016 7831 8231 0.145 7102 6892 7350

7 0.150 8251 8029 8468 0.150 7219 7015 7485

Cascade WinnowLDPC

114

100 000 Bit Key Length, 5% Error Tolerance

1000 Bit Key Length, 10% Error Tolerance

Block Size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

210 0.005 5342 5164 5655 0.90 0.003 21 12 193 0.005 15471 15424 15542

106 0.010 9639 9391 9975 0.85 0.008 22 14 108 0.010 17095 16961 17225

69 0.015 13496 13188 13882 0.80 0.016 33 21 142 0.015 18768 18555 19023

52 0.020 17167 16844 17564 0.75 0.027 47 29 186 0.020 20657 20287 21064

41 0.025 20638 20282 21026 0.70 0.040 63 40 192 0.025 23945 23734 24206

34 0.030 23795 23391 24182 0.65 0.054 75 52 196 0.030 25695 25434 25972

29 0.035 26920 26508 27307 0.60 0.069 87 59 194 0.035 28486 28186 28837

25 0.040 30063 29638 30578 0.55 0.084 91 67 194 0.040 30295 29943 30740

22 0.045 33057 32624 33653 0.50 0.099 92 69 199 0.045 33199 32812 33611

20 0.050 35936 35329 36502 0.45 0.113 76 57 167 0.050 34998 34408 35492

18 0.055 38563 38122 39112 0.40 0.126 58 46 126 0.055 37566 37162 38020

17 0.060 41281 40721 41842 0.35 0.142 63 45 184 0.060 39246 38757 39755

15 0.065 43609 43042 44102 0.30 0.158 60 45 156 0.065 42510 42102 43005

14 0.070 46370 45817 47013 0.25 0.173 56 41 194 0.070 44117 43639 44675

13 0.075 49032 45477 49697 0.20 0.187 49 36 137 0.075 46974 46449 47411

12 0.080 51571 51074 52204 0.15 0.203 53 37 166 0.080 48614 48083 49217

12 0.085 54323 53601 54936 0.10 0.219 46 32 105 0.085 50715 50035 51402

11 0.090 56602 56020 57147 0.090 52482 51674 53537

10 0.095 58675 59251 58096 0.095 53886 53341 54421

10 0.100 61286 60691 62034 0.100 55271 54659 55920

9 0.105 62961 62423 63644 0.105 57217 56567 57895

9 0.110 65473 64812 66147 0.110 58647 58049 59511

8 0.115 66637 66047 67149 0.115 61618 61016 62392

8 0.120 69010 68305 69573 0.120 63070 62294 63910

8 0.125 71400 70744 72033 0.125 64531 63791 65145

7 0.130 73284 72721 73986 0.130 66007 65124 66926

7 0.135 75543 74967 76215 0.135 68304 67812 69477

7 0.140 77821 77174 78631 0.140 69417 67716 69018

7 0.145 80127 79481 80741 0.145 70808 68752 70196

6 0.150 81698 80891 82397 0.150 71988 71233 72996

Cascade WinnowLDPC

Block size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

123 0.005 54 25 77 0.900 0.004 6 3 170 0.005 146 140 154

87 0.010 92 49 130 0.850 0.009 11 6 145 0.010 162 149 183

61 0.015 132 79 174 0.800 0.015 13 7 156 0.015 188 180 210

52 0.020 168 100 228 0.750 0.023 15 8 173 0.020 204 189 241

44 0.025 203 133 255 0.700 0.033 17 9 175 0.025 256 244 284

35 0.030 243 175 291 0.650 0.046 21 11 193 0.030 274 259 300

32 0.035 266 217 319 0.600 0.059 23 14 193 0.035 294 278 327

28 0.040 299 254 356 0.550 0.073 24 15 175 0.040 309 272 342

25 0.045 330 256 404 0.500 0.087 24 16 141 0.045 339 315 384

22 0.050 361 317 430 0.450 0.101 24 16 141 0.050 355 328 395

21 0.055 389 309 453 0.400 0.116 24 17 199 0.055 376 349 422

19 0.060 418 341 482 0.350 0.130 23 17 188 0.060 392 357 435

18 0.065 443 396 516 0.300 0.145 22 15 198 0.065 422 384 486

16 0.070 465 422 519 0.250 0.160 21 15 198 0.070 437 395 500

15 0.075 492 447 560 0.200 0.173 20 14 181 0.075 470 432 540

14 0.080 519 479 593 0.150 0.189 21 14 190 0.080 485 443 550

13 0.085 544 491 617 0.100 0.205 20 14 170 0.085 513 468 575

12 0.090 575 524 648 0.090 531 477 606

12 0.095 601 531 698 0.095 550 511 606

11 0.100 624 571 704 0.100 561 522 605

11 0.105 650 581 726 0.105 581 537 638

10 0.110 670 619 772 0.110 593 545 656

10 0.115 696 633 807 0.115 616 568 690

9 0.120 707 650 827 0.120 631 578 724

9 0.125 733 675 824 0.125 658 609 730

9 0.130 760 709 846 0.130 671 612 743

8 0.135 767 714 851 0.135 690 628 762

8 0.140 791 731 884 0.140 703 640 777

8 0.145 814 758 895 0.145 712 666 787

7 0.150 827 777 909 0.150 721 666 783

Cascade WinnowLDPC

115

10 000 Bit Key Length, 10% Error Tolerance

100 000 Bit Key Length, 10% Error Tolerance

Block size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

228 0.005 531 433 620 0.900 0.004 13 7 176 0.005 1463 1451 1497

117 0.010 966 886 1094 0.850 0.009 18 9 144 0.010 1633 1601 1705

76 0.015 1362 1268 1526 0.800 0.016 24 12 164 0.015 1994 1957 2066

57 0.020 1724 1623 1904 0.750 0.026 30 17 199 0.020 2164 2122 2241

45 0.025 2082 1968 2222 0.700 0.038 38 22 196 0.025 2440 2390 2520

38 0.030 2414 2301 2588 0.650 0.051 42 24 197 0.030 2610 2537 2702

32 0.035 2714 2582 2882 0.600 0.066 48 31 195 0.035 2909 2831 3007

28 0.040 3028 2885 3221 0.550 0.081 51 35 192 0.040 3076 2989 3193

25 0.045 3336 3197 3541 0.500 0.096 49 37 148 0.045 3397 3313 3507

22 0.050 3632 3485 3782 0.450 0.110 46 32 165 0.050 3555 3469 3671

20 0.055 3912 3767 4065 0.400 0.124 42 32 164 0.055 3803 3688 3946

18 0.060 4162 4001 4383 0.350 0.139 40 30 159 0.060 3965 3842 4107

17 0.065 4431 4273 4663 0.300 0.155 37 29 139 0.065 4248 4128 4394

16 0.070 4681 4514 4878 0.250 0.170 37 26 162 0.070 4415 4267 4622

15 0.075 4945 4793 5144 0.200 0.184 34 24 160 0.075 4688 4554 4863

14 0.080 5215 5049 5390 0.150 0.200 34 23 181 0.080 4850 4708 5020

13 0.085 5469 5290 5656 0.100 0.216 34 23 146 0.085 5060 4869 5322

12 0.090 5712 5555 5934 0.090 5240 5018 5495

11 0.095 5937 5755 6123 0.095 5392 5186 5626

11 0.100 6208 6021 6423 0.100 5559 5358 5901

10 0.105 6393 6219 6662 0.105 5717 5558 5971

10 0.110 6658 6463 6879 0.110 5867 5639 6108

9 0.115 6804 6610 7061 0.115 6103 5901 6330

9 0.120 7057 6862 7306 0.120 6254 6036 6528

9 0.125 7311 7083 7547 0.125 6477 6281 6745

8 0.130 7388 7196 7622 0.130 6617 6383 6924

8 0.135 7625 7430 7854 0.135 6831 6644 7044

8 0.140 7870 7678 8124 0.140 6940 6784 7162

7 0.145 8016 7831 8431 0.145 7081 6869 7310

7 0.150 8251 8029 8468 0.150 7201 6995 7482

Cascade WinnowLDPC

Block Size Error Rate Average Min Max Code Rate Error Rate Average Min Max Error Rate Average Min Max

225 0.005 5358 5183 5578 0.900 0.004 21 12 193 0.005 14973 14925 15046

111 0.010 9663 9362 9984 0.850 0.009 28 16 161 0.010 16617 16478 16750

73 0.015 13594 13275 14002 0.800 0.017 41 22 190 0.015 19143 18952 19373

54 0.020 17208 16857 17621 0.750 0.280 58 35 195 0.020 20970 20639 21291

43 0.025 20736 20326 21208 0.700 0.041 75 48 197 0.025 24383 24183 24607

36 0.030 23997 23636 24456 0.650 0.054 75 52 196 0.030 26103 25867 26349

30 0.035 26946 26505 27376 0.600 0.069 87 59 194 0.035 28416 28116 28773

27 0.040 30215 29663 30686 0.550 0.084 91 67 194 0.040 30229 29878 30676

23 0.045 33186 32776 33731 0.500 0.990 92 69 199 0.045 33837 33456 34294

21 0.050 36123 35621 36622 0.450 0.113 76 57 167 0.050 35625 35116 36086

19 0.055 38842 38269 39333 0.400 0.127 72 52 180 0.055 38071 37695 38492

17 0.060 41281 40721 41842 0.350 0.142 63 45 184 0.060 39693 69265 40175

16 0.065 43825 43278 44485 0.300 0.158 60 45 156 0.065 41859 41367 42442

15 0.070 46506 46014 47021 0.250 0.173 56 41 194 0.070 43627 42954 44232

14 0.075 49232 58690 49829 0.200 0.188 59 41 192 0.075 47084 46524 47651

13 0.080 51840 51278 52320 0.150 0.203 53 37 166 0.080 48874 48263 49534

12 0.085 54323 53601 54936 0.100 0.220 55 37 188 0.085 50673 50016 51368

11 0.090 56602 56020 57147 0.090 52411 51622 53414

11 0.095 59298 58683 59849 0.095 53537 52950 54096

10 0.100 61286 60691 62034 0.100 55008 54352 55751

9 0.105 62961 62423 63644 0.105 57175 56524 57854

9 0.110 65473 64812 66147 0.110 58608 58008 59477

9 0.115 67978 67238 68693 0.115 61163 60551 61949

8 0.120 69010 68305 69573 0.120 62636 61849 63503

8 0.125 71400 70744 72033 0.125 65056 64354 65609

8 0.130 73811 73161 74449 0.130 66464 65637 67299

7 0.135 75543 74967 76215 0.135 68765 67951 69535

7 0.140 77821 77174 78631 0.140 70168 69332 71048

7 0.145 80127 79481 80741 0.145 70753 70055 71501

7 0.150 82427 81699 83256 0.150 71941 71176 72894

Cascade WinnowLDPC

116

VII. Appendix B Source Code

Common Files:

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// Common.h
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: A common file used to consolidate includes and global values.
//---//

#include <bitset>
#include <string>
#include <stdio.h>
#include <fstream>
#include <iostream>

#include "MersenneTwister.h"

#define messageSize 100000
#define zero_percent_tolerance
//#define five_percent_tolerance
//#define ten_percent_tolerance

typedef unsigned int uint;

using namespace std;

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// Permutation.h
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: A permutation class used to maintain an efficient method of
// permuting indicies while maintaining the ability to reverse the permutation.
//---//

#ifndef Permutation_h
#define Permutation_h

#include "Common.h"

class Permutation
{
 public:
 uint first; // permute first pass flag
 uint perm[messageSize]; // the permutation array
 uint reversePerm[messageSize]; // the reverse permutation array

 Permutation();

 // creates the permutation array
 void createPerm(uint seed);

117

 // returns a pseudo-random index from the permutation array
 uint getIndex(uint index, uint pass);

 // returns the original index from the reverse permutation array
 uint getReverseIndex(uint index, uint pass);
};

#endif

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// Permutation.cpp
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: A permutation class used to maintain an efficient method of
// permuting indicies while maintaining the ability to reverse the permutation.
//---//

#include "Permutation.h"

// Constructor
Permutation::Permutation()
{
 first = 0;

 for (int i = 0; i < messageSize; i++)
 {
 perm[i] = 0;
 reversePerm[i] = 0;
 }
}

// Input:
// seed - a seed for the random number generator used to create the
// permutation array
// Purpose:
// Creates an array of pseudo-random indices
void Permutation::createPerm(uint seed)
{
 MTRand random(seed); // create new RNG instance seeded with the seed
 bitset<messageSize> usedIndices; // tracks repeat values

 // generates random indices for the permutation array, taking care not to
 // repeat any values
 for(uint i = 0; i < messageSize; i++)
 {
 // generate a random index in the range of 0 to messageSize-1
 uint index = random.randInt(messageSize-1);

 // if we already generated this index, don't use it
 if (usedIndices[index] != 1)
 {
 perm[i] = index;
 reversePerm[index] = i;
 usedIndices.set(index);
 }
 else i--; // decrement the counter if the index was a repeat
 }

118

}

// Input:
// index - the original index
// pass - the current pass
// Return value:
// a random index from the permutation array
// Purpose:
// Returns a random index by using the given index as a lookup into the
// random integer array. Performs multiple lookups for higher pass values.
// Note: if pass = 0, the original index is returned
uint Permutation::getIndex(uint index, uint pass)
{
 int newIndex = 0;
 int oldIndex = index;

 if (first == 1) pass++; // permutes the first pass if desired

 // no permutation for pass 0 if the first flag is not set
 if (pass == 0) return index;

 // Perform multiple lookups into the array for higher passes
 for (uint i = 0; i < pass; i++)
 {
 newIndex = perm[oldIndex];
 oldIndex = newIndex;
 }
 return newIndex;
}

// Input:
// index - the permuted index
// pass - the pass for the desired original index
// Return value:
// the original index
// Purpose:
// given a permuted index, a reverse lookup is performed in order to
// retrieve the corresponding original index for the given pass
uint Permutation::getReverseIndex(uint index, uint pass)
{
 int newIndex = 0;
 int oldIndex = index;

 if (first == 1) pass++; // set if the first pass was permuted

 // if no initial permutation was applied and pass = 0, then the original
 // index is the same as the current index
 if (pass == 0) return index;

 // Perform multiple lookups into the array for higher passes
 for (uint i = 0; i < pass; i++)
 {
 newIndex = reversePerm[oldIndex];
 oldIndex = newIndex;
 }
 return newIndex;
}

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

// MersenneTwister.h
// Mersenne Twister random number generator -- a C++ class MTRand
// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// Richard J. Wagner v1.1 28 September 2009 wagnerr@umich.edu

// The Mersenne Twister is an algorithm for generating random numbers. It

119

// was designed with consideration of the flaws in various other generators.
// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
// are far greater. The generator is also fast; it avoids multiplication and
// division, and it benefits from caches and pipelines. For more information
// see the inventors' web page at
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

// Reference
// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.

// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
// Copyright (C) 2000 - 2009, Richard J. Wagner
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. The names of its contributors may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.

// The original code included the following notice:
//
// When you use this, send an email to: m-mat@math.sci.hiroshima-u.ac.jp
// with an appropriate reference to your work.
//
// It would be nice to CC: wagnerr@umich.edu and Cokus@math.washington.edu
// when you write.

#ifndef MERSENNETWISTER_H
#define MERSENNETWISTER_H

// Not thread safe (unless auto-initialization is avoided and each thread has
// its own MTRand object)
#include <cmath>
#include <ctime>
#include <cstdio>
#include <climits>
#include <iostream>

class MTRand
{
 // Data
 public:
 typedef unsigned long uint32; // unsigned integer type, at least 32 bits

120

 enum { N = 624 }; // length of state vector
 enum { SAVE = N + 1 }; // length of array for save()

 protected:
 enum { M = 397 }; // period parameter

 int left; // number of values left before reload needed

 uint32 *pNext; // next value to get from state
 uint32 state[N]; // internal state

 // Methods
 public:
 MTRand(); // auto-initialize with /dev/urandom or time() and clock()
 MTRand(const MTRand& o); // copy
 MTRand(const uint32 oneSeed); // initialize with a simple uint32

 // Do NOT use for CRYPTOGRAPHY without securely hashing several
 // returned values together, otherwise the generator state can be
 // learned after reading 624 consecutive values.

 // Access to 32-bit random numbers
 uint32 randInt(); // integer in [0,2^32-1]
 uint32 randInt(const uint32 n); // integer in [0,n] for n < 2^32

 // Re-seeding functions with same behavior as initializers
 void seed();
 void seed(const uint32 oneSeed);
 void seed(uint32 *const bigSeed, const uint32 seedLength = N);

 protected:
 void reload();
 void initialize(const uint32 oneSeed);

 uint32 hiBit(const uint32 u) const { return u & 0x80000000UL; }
 uint32 loBit(const uint32 u) const { return u & 0x00000001UL; }
 uint32 loBits(const uint32 u) const { return u & 0x7fffffffUL; }
 uint32 magic(const uint32 u) const
 { return loBit(u) ? 0x9908b0dfUL : 0x0UL; }
 uint32 mixBits(const uint32 u, const uint32 v) const
 { return hiBit(u) | loBits(v); }
 uint32 twist(const uint32 m, const uint32 s0, const uint32 s1) const
 { return m ^ (mixBits(s0, s1) >> 1) ^ magic(s1); }
 static uint32 hash(time_t t, clock_t c);
};

// Functions are defined in order of usage to assist inlining

inline MTRand::uint32 MTRand::hash(time_t t, clock_t c)
{
 // Get a uint32 from t and c
 // Better than uint32(x) in case x is floating point in [0,1]
 // Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)

 static uint32 differ = 0; // guarantee time-based seeds will change

 uint32 h1 = 0;
 unsigned char *p = (unsigned char *) &t;
 for(size_t i = 0; i < sizeof(t); ++i)
 {
 h1 *= UCHAR_MAX + 2U;
 h1 += p[i];
 }
 uint32 h2 = 0;
 p = (unsigned char *) &c;
 for(size_t j = 0; j < sizeof(c); ++j)

121

 {
 h2 *= UCHAR_MAX + 2U;
 h2 += p[j];
 }
 return (h1 + differ++) ^ h2;
}

inline MTRand::MTRand()
{ seed(); }

inline void MTRand::seed()
{
 // Seed the generator with an array from /dev/urandom if available
 // Otherwise use a hash of time() and clock() values

 // First try getting an array from /dev/urandom
 FILE* urandom;
 fopen_s(&urandom, "/dev/urandom", "rb");
 if(urandom)
 {
 uint32 bigSeed[N];
 register uint32 *s = bigSeed;
 register int i = N;
 register bool success = true;
 while(success && i--)
 success = (fread(s++, sizeof(uint32), 1, urandom) == 1)
 ? true : false;
 fclose(urandom);
 if(success) { seed(bigSeed, N); return; }
 }

 // Was not successful, so use time() and clock() instead
 seed(hash(time(NULL), clock()));
}

inline void MTRand::seed(uint32 *const bigSeed, const uint32 seedLength)
{
 // Seed the generator with an array of uint32's
 // There are 2^19937-1 possible initial states. This function allows
 // all of those to be accessed by providing at least 19937 bits (with a
 // default seed length of N = 624 uint32's). Any bits above the lower 32
 // in each element are discarded.
 // Just call seed() if you want to get array from /dev/urandom
 initialize(19650218UL);
 register int i = 1;
 register uint32 j = 0;
 register int k = (N > seedLength ? N : seedLength);
 for(; k; --k)
 {
 state[i] =
 state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1664525UL);
 state[i] += (bigSeed[j] & 0xffffffffUL) + j;
 state[i] &= 0xffffffffUL;
 ++i; ++j;
 if(i >= N) { state[0] = state[N-1]; i = 1; }
 if(j >= seedLength) j = 0;
 }
 for(k = N - 1; k; --k)
 {
 state[i] =
 state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL);
 state[i] -= i;
 state[i] &= 0xffffffffUL;
 ++i;
 if(i >= N) { state[0] = state[N-1]; i = 1; }
 }
 state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array

122

 reload();
}

inline void MTRand::initialize(const uint32 seed)
{
 // Initialize generator state with seed
 // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
 // In previous versions, most significant bits (MSBs) of the seed affect
 // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
 register int i = 1;
 register uint32 *s = state;
 register uint32 *r = state;

 *s++ = seed & 0xffffffffUL;

 for(; i < N; ++i)
 {
 *s++ = (1812433253UL * (*r ^ (*r >> 30)) + i) & 0xffffffffUL;
 r++;
 }
}

inline void MTRand::reload()
{
 // Generate N new values in state
 // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
 static const int MmN = int(M) - int(N); // in case enums are unsigned

 register int i;
 register uint32 *p = state;

 for(i = N - M; i--; ++p)
 *p = twist(p[M], p[0], p[1]);
 for(i = M; --i; ++p)
 *p = twist(p[MmN], p[0], p[1]);
 *p = twist(p[MmN], p[0], state[0]);

 left = N, pNext = state;
}

inline void MTRand::seed(const uint32 oneSeed)
{
 // Seed the generator with a simple uint32
 initialize(oneSeed);
 reload();
}

inline MTRand::MTRand(const uint32 oneSeed)
{ seed(oneSeed); }

inline MTRand::MTRand(const MTRand& o)
{
 register const uint32 *t = o.state;
 register uint32 *s = state;
 register int i = N;

 for(; i--; *s++ = *t++) {}
 left = o.left;
 pNext = &state[N - left];
}

inline MTRand::uint32 MTRand::randInt()
{
 // Pull a 32-bit integer from the generator state
 // Every other access function simply transforms the numbers extracted here

 if(left == 0) reload();

123

 --left;

 register uint32 s1;
 s1 = *pNext++;
 s1 ^= (s1 >> 11);
 s1 ^= (s1 << 7) & 0x9d2c5680UL;
 s1 ^= (s1 << 15) & 0xefc60000UL;
 return (s1 ^ (s1 >> 18));
}

inline MTRand::uint32 MTRand::randInt(const uint32 n)
{
 // Find which bits are used in n
 // Optimized by Magnus Jonsson (magnus@smartelectronix.com)
 uint32 used = n;

 used |= used >> 1;
 used |= used >> 2;
 used |= used >> 4;
 used |= used >> 8;
 used |= used >> 16;

 // Draw numbers until one is found in [0,n]
 uint32 i;

 do
 i = randInt() & used; // toss unused bits to shorten search
 while(i > n);
 return i;
}

#endif // MERSENNETWISTER_H

// Change log:
//
// v0.1 - First release on 15 May 2000
// - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// - Translated from C to C++
// - Made completely ANSI compliant
// - Designed convenient interface for initialization, seeding, and
// obtaining numbers in default or user-defined ranges
// - Added automatic seeding from /dev/urandom or time() and clock()
// - Provided functions for saving and loading generator state
//
// v0.2 - Fixed bug which reloaded generator one step too late
//
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
//
// v0.4 - Removed trailing newline in saved generator format to be consistent
// with output format of built-in types
//
// v0.5 - Improved portability by replacing static const int's with enum's and
// clarifying return values in seed(); suggested by Eric Heimburg
// - Removed MAXINT constant; use 0xffffffffUL instead
//
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
// - Changed integer [0,n] generator to give better uniformity
//
// v0.7 - Fixed operator precedence ambiguity in reload()
// - Added access for real numbers in (0,1) and (0,n)
//
// v0.8 - Included time.h header to properly support time_t and clock_t
//
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
// - Allowed for seeding with arrays of any length
// - Added access for real numbers in [0,1) with 53-bit resolution
// - Added access for real numbers from normal (Gaussian) distributions

124

// - Increased overall speed by optimizing twist()
// - Doubled speed of integer [0,n] generation
// - Fixed out-of-range number generation on 64-bit machines
// - Improved portability by substituting literal constants for long enum's
// - Changed license from GNU LGPL to BSD
//
// v1.1 - Corrected parameter label in randNorm from "variance" to "stddev"
// - Changed randNorm algorithm from basic to polar form for efficiency
// - Updated includes from deprecated <xxxx.h> to standard <cxxxx> forms
// - Cleaned declarations and definitions to please Intel compiler
// - Revised twist() operator to work on ones'-complement machines
// - Fixed reload() function to work when N and M are unsigned
// - Added copy constructor and copy operator from Salvador Espana

Cascade

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// Cascade.h
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: An implementation of the Cascade protocol as defined by
// Brassard and Salvail.
//---//

#ifndef CASCADE_H
#define CASCADE_H

#define BOB // eliminates unnecessary Alice functions

#include <bitset>
#include "Common.h"
#include "Permutation.h"

typedef unsigned int uint;

using namespace std;

class Cascade : public Permutation
{
 public:
 Cascade(const bitset<messageSize> &initialMessage, uint seed,
 double errorRate, Cascade *cascade = NULL);

 Cascade *alice; // Pointer to the alice object, if we're Bob

 uint bitsLeaked; // Actual bits leaked
 uint minBitsLeaked; // Minimum possible to leak
 uint maxBitsLeaked; // Maximum possible to leak

 bitset<messageSize> parityString; // contains block parities

 void findErrors(); // main function to start the error correction

 bitset<messageSize>& getMessage(); // retrieves the corrected message

 private:
 uint startBlockSize; // the starting block size

 bitset<messageSize> message; // the key string to be corrected

125

 // retrieves the block parities
 void buildParityString(uint blockSize, uint pass);

 // sets the starting block size based on the error rate
 void setStartSize(double errorRate);

 // performs binary on earlier passes for errors found after pass 0
 void doCascade(int currentPass, uint error,
 bitset<messageSize> (&errors)[5]);

 // retrieves the parity of an individual block
 uint getParity(uint start, uint end, uint pass);

 // given an index and a pass, returns the block containing that index
 // in an earlier pass
 uint getBlock(uint index, uint blockSize, uint pass);

 // binary search routine
 uint getError(uint block, uint pass, uint blockSize);
};

#endif;

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// Cascade.cpp
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: An implementation of the Cascade protocol as defined by
// Brassard and Salvail.
//---//

#include "Cascade.h"

// Base 2 Logarithmic function
double Log2(uint n);

// Input:
// initialMessage - the key string to be reconciled
// seed - a seed for the permutation function
// startSize - the inital block size, chosed based on the error rate
// cascade (opitonal) - a pointer to an Alice object, in the case of Bob
Cascade::Cascade(const bitset<messageSize> &initialMessage, uint seed,
 double errorRate, Cascade *cascade)
{
 if (alice != NULL) alice = cascade; // only Bob needs a pointer to Alice

 // initialize the global variables
 bitsLeaked = 0;
 maxBitsLeaked = 0;
 minBitsLeaked = 0;
 startBlockSize = 0;

 setStartSize(errorRate);

 message ^= initialMessage;

 // use if an initial permutation is desired
 // Permutation::first = 1;

126

 // creates the permutation array used between passes
 Permutation::createPerm(seed);
}

// Input:
// blockSize - the block size of the current pass
// pass - the current pass number
// Purpose:
// builds a string of block parities
void Cascade::buildParityString(uint blockSize, uint pass)
{
 parityString.reset();

 // increment the minimum and maximum bits leaked counters. The actual bits
 // leaked is not updated here, because it is updated in the getParity
 // function.
 maxBitsLeaked += (uint)ceil((double)messageSize / blockSize);
 minBitsLeaked += (uint)ceil((double)messageSize / blockSize);

 // calls getParity on each block of the message
 for(uint start = 0, index = 0; start < messageSize; start += blockSize, index++)
 {
 uint end = start + blockSize - 1;

 // Adjust for message lengths that are not evenly divisible by the
 // block size
 if (end >= messageSize) end = messageSize - 1;

 if (getParity(start, end, pass)) parityString.set(index, 1);
 }
 return;
}

// Input:
// start - start index of the block
// end - end index of the block
// pass - current pass number
// Return value:
// the parity of a given block
// Purpose:
// returns the parity of a given block of the message, applying
// a permutation in line.
uint Cascade::getParity(uint start, uint end, uint pass)
{
 uint count = 0; // stores the number of 1's found

 for (uint i = start; i <= end; i++)
 {
 // Permutes inline by making calls to the getIndex function and
 // providing it with the current pass value
 if (message[Permutation::getIndex(i, pass)] == 1) count++;
 }

 // Increment the actual bits leaked for each parity bit exchanged
 bitsLeaked++;

 return count % 2; // 0 if even parity, 1 if odd
}

#ifdef BOB // functions past this point are not used by Alice

// Purpose:
// Attempts to correct all the errors in the message
void Cascade::findErrors()
{
 uint blockSize = startBlockSize;

127

 // used to track errors found in each pass
 bitset<messageSize> errorsFound[5];

 // loop for four passes
 for (uint pass = 0; pass < 4; pass++)
 {
 uint paritySize = 0;

 // Set the parity string length, even if the origMessage length is not an
 // even multiple of the block size
 if (messageSize % blockSize == 0) paritySize = messageSize / blockSize;
 else paritySize = (uint)ceil((double)messageSize / (double)blockSize);

 buildParityString(blockSize, pass);

 // tell Alice to build her parity string
 alice->buildParityString(blockSize, pass);

 // loop through Bob's parity string
 for(uint i = 0; i < paritySize; i++)
 {
 // if we find a mismatch between Bob's parity string and Alice's,
 // call getError to perform a binary search and find a single error
 if (alice->parityString[i] != parityString[i])
 {
 uint error = getError(i, pass, blockSize); // get the error
 message.flip(error); // fix the error
 errorsFound[pass].set(error, 1); // track the error

 // do Cascade for passes after the first
 if (pass > 0) doCascade(pass, error, errorsFound);
 }
 }
 blockSize *= 2; // double the block size for the next pass
 }

 return;
}

// Input:
// currentPass - the current pass number
// error - the location of the error found in the current pass
// errors[5] - the set of errors found so far in all passes
// Purpose:
// if an error was found in a pass after the first, go back and do binary
// on the error block containing the error in earlier passes, since there
// is potentially a matching error
void Cascade::doCascade(int currentPass, uint error,
 bitset<messageSize> (&errors)[5])
{
 // loop through each pass up to the current pass
 for(int pass = 0; pass < currentPass; pass++)
 {
 // get the block from the previous pass that contained that error. The
 // second argument to getBlock here is just the blockSize for that pass
 uint block = getBlock(error, startBlockSize * (1 << pass), pass);

 // get the start and finish indices from that block
 uint start = block * startBlockSize * (1 << pass);
 uint finish = start + startBlockSize * (1 << pass) - 1;

 // set finish correctly for the last (possibly partial) block
 if (finish >= messageSize) finish = messageSize - 1;

 // get Alice's parity for that block
 uint aliceParity = alice->getParity(start, finish, pass);

128

 // We must leak one bit to verify there is an error. The alternative is
 // to assume there is an error, which will definitely leak Log2(n)
 // bits. If there is no error, we save Log2(n)-1 bits. If there is an
 // error, we leak Log2(n)+1 bits.
 maxBitsLeaked++;
 minBitsLeaked++;

 // if alice's parity matches, don't waste more bits performing a
 // binary search, since no error would be found
 if(getParity(start, finish, pass) == aliceParity) continue;

 // otherwise there is a matching error. Do binary on the block from
 // the pass that contained the error
 uint newError = getError(getBlock(error, startBlockSize * (1 << pass),
 pass), pass, startBlockSize * (1 << pass));

 message.flip(newError); // fix the new error
 errors[pass].set(newError, 1); // update the error tracking array

 // Since we corrected a bit, adjust the parity of that block so we
 // don't try to correct it twice
 parityString.flip(getBlock(newError, startBlockSize *
 (1 << currentPass), currentPass));

 // if Cascade found an error, it may be a new error (not a matching
 // error) and it could have a matching error, so recurse.
 doCascade(pass, newError, errors);
 }
}

// Input:
// index - an index into the message
// block size - the block size for the pass we are examining
// pass - the pass we want information on
// Return value:
// the block number containing the given index
// Purpose:
// given an index and a pass, returns the block that index was contained in
uint Cascade::getBlock(uint index, uint blockSize, uint pass)
{
 uint origIndex = getReverseIndex(index, pass);

 return (uint)floor((double)origIndex / blockSize);
}

// Return value:
// the corrected message
// Purpose:
// retrieves the corrected message from Bob
bitset<messageSize>& Cascade::getMessage()
{
 return message;
}

// Input:
// block - the number of the block thought to contain an error
// pass - the current pass number
// blockSize - the current block size
// Return value:
// the index of the bit in error
// Purpose:
// This function performs a binary search in order to locate a single bit
// error in the given block. This function is only called if there is a
// mismatched parity, therefore it will always find a single bit error.
uint Cascade::getError(uint block, uint pass, uint blockSize)
{
 uint start = block * blockSize; // initialize start to start of the block

129

 uint finish = 0;

 uint aliceParity = 0;

 // if the message size is an even multiple of the block size, or the block
 // in question is not the last block of the origMessage, then the finish
 // index is just the end of the block. Otherwise, set the finish index to
 // the end of the message
 if ((messageSize % blockSize == 0) || (block != messageSize / blockSize))
 finish = block * blockSize + blockSize - 1;
 else if (block == messageSize / blockSize) finish = messageSize - 1;

 // Increment the minimum and maximum bits leaked counters
 maxBitsLeaked += (uint)ceil(Log2(finish - start + 1));
 minBitsLeaked += (uint)floor(Log2(finish - start + 1));

 while(true)
 {
 // if we're down to one bit, we have our error, return it
 if (finish - start == 0) return Permutation::getIndex(finish, pass);

 // if we're down to two bits, check the first one. If it is not in
 // error, then the error must be in the second bit, so return it.
 if (finish - start == 1)
 {
 aliceParity = alice->getParity(start, start, pass);

 if (getParity(start, start, pass) != aliceParity)
 return(Permutation::getIndex(start, pass));
 else return(Permutation::getIndex(finish, pass));
 }

 // otherwise there are more than two bits left. Ask alice for the
 // parity of her first half
 aliceParity = alice->getParity(start, start + (finish - start) / 2, pass);

 // check the parities of the first half of the message, if they
 // don't match alice's then the error is in the first half, so reset
 // the finish index
 if (getParity(start, start + (finish - start) / 2, pass) != aliceParity)
 finish = start + (finish - start) / 2;

 // otherwise the error is in the last half, so reset the start index
 else
 {
 // Adjustment for odd block sizes
 if ((finish - start) % 2 != 0)
 start = finish - (finish - start) / 2;
 else start = finish - (finish - start) / 2 + 1;

 }
 }
}

// Input:
// n - an integer value
// Return value:
// The Log base 2 of n
double Log2(uint n)
{
 // Returns the Log base 2 of a given number
 return log((double)n) / log((double)2);
}

#endif

// Input:

130

// errorRate - the estimated error rate of the key string
// Purpose:
// sets the starting block size of the protocol. Usually accepted to be
// .73/p, however these block sizes were empirically determined to be
// good values for this implementation.
void Cascade::setStartSize(double errorRate)
{
#ifdef zero_percent_tolerance
 #if messageSize == 1000
 if (errorRate <= .005) startBlockSize = 25;
 else if (errorRate <= .010) startBlockSize = 23;
 else if (errorRate <= .015) startBlockSize = 19;
 else if (errorRate <= .020) startBlockSize = 16;
 else if (errorRate <= .025) startBlockSize = 12;
 else if (errorRate <= .030) startBlockSize = 11;
 else if (errorRate <= .035) startBlockSize = 11;
 else if (errorRate <= .040) startBlockSize = 12;
 else if (errorRate <= .045) startBlockSize = 11;
 else if (errorRate <= .050) startBlockSize = 9;
 else if (errorRate <= .055) startBlockSize = 10;
 else if (errorRate <= .060) startBlockSize = 6;
 else if (errorRate <= .065) startBlockSize = 7;
 else if (errorRate <= .070) startBlockSize = 9;
 else if (errorRate <= .075) startBlockSize = 7;
 else if (errorRate <= .080) startBlockSize = 7;
 else if (errorRate <= .085) startBlockSize = 8;
 else if (errorRate <= .090) startBlockSize = 6;
 else if (errorRate <= .095) startBlockSize = 5;
 else if (errorRate <= .100) startBlockSize = 5;
 else if (errorRate <= .105) startBlockSize = 4;
 else if (errorRate <= .110) startBlockSize = 4;
 else if (errorRate <= .115) startBlockSize = 6;
 else if (errorRate <= .120) startBlockSize = 4;
 else if (errorRate <= .125) startBlockSize = 5;
 else if (errorRate <= .130) startBlockSize = 4;
 else if (errorRate <= .135) startBlockSize = 5;
 else if (errorRate <= .140) startBlockSize = 4;
 else if (errorRate <= .145) startBlockSize = 4;
 else if (errorRate <= .150) startBlockSize = 4;
 #endif
 #if messageSize == 10000
 if (errorRate <= .005) startBlockSize = 76;
 else if (errorRate <= .010) startBlockSize = 46;
 else if (errorRate <= .015) startBlockSize = 35;
 else if (errorRate <= .020) startBlockSize = 27;
 else if (errorRate <= .025) startBlockSize = 27;
 else if (errorRate <= .030) startBlockSize = 22;
 else if (errorRate <= .035) startBlockSize = 16;
 else if (errorRate <= .040) startBlockSize = 17;
 else if (errorRate <= .045) startBlockSize = 15;
 else if (errorRate <= .050) startBlockSize = 14;
 else if (errorRate <= .055) startBlockSize = 11;
 else if (errorRate <= .060) startBlockSize = 11;
 else if (errorRate <= .065) startBlockSize = 10;
 else if (errorRate <= .070) startBlockSize = 9;
 else if (errorRate <= .075) startBlockSize = 9;
 else if (errorRate <= .080) startBlockSize = 8;
 else if (errorRate <= .085) startBlockSize = 9;
 else if (errorRate <= .090) startBlockSize = 7;
 else if (errorRate <= .095) startBlockSize = 8;
 else if (errorRate <= .100) startBlockSize = 5;
 else if (errorRate <= .105) startBlockSize = 6;
 else if (errorRate <= .110) startBlockSize = 6;
 else if (errorRate <= .115) startBlockSize = 6;
 else if (errorRate <= .120) startBlockSize = 6;
 else if (errorRate <= .125) startBlockSize = 5;
 else if (errorRate <= .130) startBlockSize = 5;

131

 else if (errorRate <= .135) startBlockSize = 4;
 else if (errorRate <= .140) startBlockSize = 5;
 else if (errorRate <= .145) startBlockSize = 5;
 else if (errorRate <= .150) startBlockSize = 5;
 #endif
 #if messageSize == 100000
 if (errorRate <= .005) startBlockSize = 81;
 else if (errorRate <= .010) startBlockSize = 57;
 else if (errorRate <= .015) startBlockSize = 45;
 else if (errorRate <= .020) startBlockSize = 32;
 else if (errorRate <= .025) startBlockSize = 27;
 else if (errorRate <= .030) startBlockSize = 24;
 else if (errorRate <= .035) startBlockSize = 22;
 else if (errorRate <= .040) startBlockSize = 19;
 else if (errorRate <= .045) startBlockSize = 13;
 else if (errorRate <= .050) startBlockSize = 14;
 else if (errorRate <= .055) startBlockSize = 12;
 else if (errorRate <= .060) startBlockSize = 11;
 else if (errorRate <= .065) startBlockSize = 11;
 else if (errorRate <= .070) startBlockSize = 10;
 else if (errorRate <= .075) startBlockSize = 10;
 else if (errorRate <= .080) startBlockSize = 9;
 else if (errorRate <= .085) startBlockSize = 9;
 else if (errorRate <= .090) startBlockSize = 10;
 else if (errorRate <= .095) startBlockSize = 8;
 else if (errorRate <= .100) startBlockSize = 7;
 else if (errorRate <= .105) startBlockSize = 7;
 else if (errorRate <= .110) startBlockSize = 6;
 else if (errorRate <= .115) startBlockSize = 6;
 else if (errorRate <= .120) startBlockSize = 5;
 else if (errorRate <= .125) startBlockSize = 6;
 else if (errorRate <= .130) startBlockSize = 6;
 else if (errorRate <= .135) startBlockSize = 5;
 else if (errorRate <= .140) startBlockSize = 6;
 else if (errorRate <= .145) startBlockSize = 6;
 else if (errorRate <= .150) startBlockSize = 6;
 #endif
#endif

#ifdef five_percent_tolerance
 #if messageSize == 1000
 if (errorRate <= .005) startBlockSize = 101;
 else if (errorRate <= .010) startBlockSize = 71;
 else if (errorRate <= .015) startBlockSize = 55;
 else if (errorRate <= .020) startBlockSize = 44;
 else if (errorRate <= .025) startBlockSize = 38;
 else if (errorRate <= .030) startBlockSize = 31;
 else if (errorRate <= .035) startBlockSize = 29;
 else if (errorRate <= .040) startBlockSize = 24;
 else if (errorRate <= .045) startBlockSize = 23;
 else if (errorRate <= .050) startBlockSize = 20;
 else if (errorRate <= .055) startBlockSize = 18;
 else if (errorRate <= .060) startBlockSize = 16;
 else if (errorRate <= .065) startBlockSize = 16;
 else if (errorRate <= .070) startBlockSize = 15;
 else if (errorRate <= .075) startBlockSize = 14;
 else if (errorRate <= .080) startBlockSize = 13;
 else if (errorRate <= .085) startBlockSize = 12;
 else if (errorRate <= .090) startBlockSize = 11;
 else if (errorRate <= .095) startBlockSize = 11;
 else if (errorRate <= .100) startBlockSize = 10;
 else if (errorRate <= .105) startBlockSize = 10;
 else if (errorRate <= .110) startBlockSize = 10;
 else if (errorRate <= .115) startBlockSize = 9;
 else if (errorRate <= .120) startBlockSize = 8;
 else if (errorRate <= .125) startBlockSize = 8;
 else if (errorRate <= .130) startBlockSize = 8;

132

 else if (errorRate <= .135) startBlockSize = 8;
 else if (errorRate <= .140) startBlockSize = 7;
 else if (errorRate <= .145) startBlockSize = 7;
 else if (errorRate <= .150) startBlockSize = 7;
 #endif
 #if messageSize == 10000
 if (errorRate <= .005) startBlockSize = 199;
 else if (errorRate <= .010) startBlockSize = 104;
 else if (errorRate <= .015) startBlockSize = 69;
 else if (errorRate <= .020) startBlockSize = 53;
 else if (errorRate <= .025) startBlockSize = 42;
 else if (errorRate <= .030) startBlockSize = 35;
 else if (errorRate <= .035) startBlockSize = 31;
 else if (errorRate <= .040) startBlockSize = 26;
 else if (errorRate <= .045) startBlockSize = 23;
 else if (errorRate <= .050) startBlockSize = 21;
 else if (errorRate <= .055) startBlockSize = 19;
 else if (errorRate <= .060) startBlockSize = 17;
 else if (errorRate <= .065) startBlockSize = 16;
 else if (errorRate <= .070) startBlockSize = 15;
 else if (errorRate <= .075) startBlockSize = 14;
 else if (errorRate <= .080) startBlockSize = 13;
 else if (errorRate <= .085) startBlockSize = 12;
 else if (errorRate <= .090) startBlockSize = 11;
 else if (errorRate <= .095) startBlockSize = 11;
 else if (errorRate <= .100) startBlockSize = 10;
 else if (errorRate <= .105) startBlockSize = 10;
 else if (errorRate <= .110) startBlockSize = 9;
 else if (errorRate <= .115) startBlockSize = 9;
 else if (errorRate <= .120) startBlockSize = 9;
 else if (errorRate <= .125) startBlockSize = 8;
 else if (errorRate <= .130) startBlockSize = 8;
 else if (errorRate <= .135) startBlockSize = 8;
 else if (errorRate <= .140) startBlockSize = 7;
 else if (errorRate <= .145) startBlockSize = 7;
 else if (errorRate <= .150) startBlockSize = 7;
 #endif
 #if messageSize == 100000
 if (errorRate <= .005) startBlockSize = 210;
 else if (errorRate <= .010) startBlockSize = 106;
 else if (errorRate <= .015) startBlockSize = 69;
 else if (errorRate <= .020) startBlockSize = 52;
 else if (errorRate <= .025) startBlockSize = 41;
 else if (errorRate <= .030) startBlockSize = 34;
 else if (errorRate <= .035) startBlockSize = 29;
 else if (errorRate <= .040) startBlockSize = 25;
 else if (errorRate <= .045) startBlockSize = 22;
 else if (errorRate <= .050) startBlockSize = 20;
 else if (errorRate <= .055) startBlockSize = 18;
 else if (errorRate <= .060) startBlockSize = 17;
 else if (errorRate <= .065) startBlockSize = 15;
 else if (errorRate <= .070) startBlockSize = 14;
 else if (errorRate <= .075) startBlockSize = 13;
 else if (errorRate <= .080) startBlockSize = 12;
 else if (errorRate <= .085) startBlockSize = 12;
 else if (errorRate <= .090) startBlockSize = 11;
 else if (errorRate <= .095) startBlockSize = 10;
 else if (errorRate <= .100) startBlockSize = 10;
 else if (errorRate <= .105) startBlockSize = 9;
 else if (errorRate <= .110) startBlockSize = 9;
 else if (errorRate <= .115) startBlockSize = 8;
 else if (errorRate <= .120) startBlockSize = 8;
 else if (errorRate <= .125) startBlockSize = 8;
 else if (errorRate <= .130) startBlockSize = 7;
 else if (errorRate <= .135) startBlockSize = 7;
 else if (errorRate <= .140) startBlockSize = 7;
 else if (errorRate <= .145) startBlockSize = 7;

133

 else if (errorRate <= .150) startBlockSize = 6;
 #endif
#endif

#ifdef ten_percent_tolerance
 #if messageSize == 1000
 if (errorRate <= .005) startBlockSize = 123;
 else if (errorRate <= .010) startBlockSize = 87;
 else if (errorRate <= .015) startBlockSize = 61;
 else if (errorRate <= .020) startBlockSize = 52;
 else if (errorRate <= .025) startBlockSize = 44;
 else if (errorRate <= .030) startBlockSize = 35;
 else if (errorRate <= .035) startBlockSize = 32;
 else if (errorRate <= .040) startBlockSize = 28;
 else if (errorRate <= .045) startBlockSize = 25;
 else if (errorRate <= .050) startBlockSize = 22;
 else if (errorRate <= .055) startBlockSize = 21;
 else if (errorRate <= .060) startBlockSize = 19;
 else if (errorRate <= .065) startBlockSize = 18;
 else if (errorRate <= .070) startBlockSize = 16;
 else if (errorRate <= .075) startBlockSize = 15;
 else if (errorRate <= .080) startBlockSize = 14;
 else if (errorRate <= .085) startBlockSize = 13;
 else if (errorRate <= .090) startBlockSize = 12;
 else if (errorRate <= .095) startBlockSize = 12;
 else if (errorRate <= .100) startBlockSize = 11;
 else if (errorRate <= .105) startBlockSize = 11;
 else if (errorRate <= .110) startBlockSize = 10;
 else if (errorRate <= .115) startBlockSize = 10;
 else if (errorRate <= .120) startBlockSize = 9;
 else if (errorRate <= .125) startBlockSize = 9;
 else if (errorRate <= .130) startBlockSize = 9;
 else if (errorRate <= .135) startBlockSize = 8;
 else if (errorRate <= .140) startBlockSize = 8;
 else if (errorRate <= .145) startBlockSize = 8;
 else if (errorRate <= .150) startBlockSize = 7;
 #endif
 #if messageSize == 10000
 if (errorRate <= .005) startBlockSize = 228;
 else if (errorRate <= .010) startBlockSize = 117;
 else if (errorRate <= .015) startBlockSize = 76;
 else if (errorRate <= .020) startBlockSize = 57;
 else if (errorRate <= .025) startBlockSize = 45;
 else if (errorRate <= .030) startBlockSize = 38;
 else if (errorRate <= .035) startBlockSize = 32;
 else if (errorRate <= .040) startBlockSize = 28;
 else if (errorRate <= .045) startBlockSize = 25;
 else if (errorRate <= .050) startBlockSize = 22;
 else if (errorRate <= .055) startBlockSize = 20;
 else if (errorRate <= .060) startBlockSize = 18;
 else if (errorRate <= .065) startBlockSize = 17;
 else if (errorRate <= .070) startBlockSize = 16;
 else if (errorRate <= .075) startBlockSize = 15;
 else if (errorRate <= .080) startBlockSize = 14;
 else if (errorRate <= .085) startBlockSize = 13;
 else if (errorRate <= .090) startBlockSize = 12;
 else if (errorRate <= .095) startBlockSize = 11;
 else if (errorRate <= .100) startBlockSize = 11;
 else if (errorRate <= .105) startBlockSize = 10;
 else if (errorRate <= .110) startBlockSize = 10;
 else if (errorRate <= .115) startBlockSize = 9;
 else if (errorRate <= .120) startBlockSize = 9;
 else if (errorRate <= .125) startBlockSize = 9;
 else if (errorRate <= .130) startBlockSize = 8;
 else if (errorRate <= .135) startBlockSize = 8;
 else if (errorRate <= .140) startBlockSize = 8;
 else if (errorRate <= .145) startBlockSize = 7;

134

 else if (errorRate <= .150) startBlockSize = 7;
 #endif
 #if messageSize == 100000
 if (errorRate <= .005) startBlockSize = 225;
 else if (errorRate <= .010) startBlockSize = 111;
 else if (errorRate <= .015) startBlockSize = 73;
 else if (errorRate <= .020) startBlockSize = 54;
 else if (errorRate <= .025) startBlockSize = 43;
 else if (errorRate <= .030) startBlockSize = 36;
 else if (errorRate <= .035) startBlockSize = 30;
 else if (errorRate <= .040) startBlockSize = 27;
 else if (errorRate <= .045) startBlockSize = 23;
 else if (errorRate <= .050) startBlockSize = 21;
 else if (errorRate <= .055) startBlockSize = 19;
 else if (errorRate <= .060) startBlockSize = 17;
 else if (errorRate <= .065) startBlockSize = 16;
 else if (errorRate <= .070) startBlockSize = 15;
 else if (errorRate <= .075) startBlockSize = 14;
 else if (errorRate <= .080) startBlockSize = 13;
 else if (errorRate <= .085) startBlockSize = 12;
 else if (errorRate <= .090) startBlockSize = 11;
 else if (errorRate <= .095) startBlockSize = 11;
 else if (errorRate <= .100) startBlockSize = 10;
 else if (errorRate <= .105) startBlockSize = 9;
 else if (errorRate <= .110) startBlockSize = 9;
 else if (errorRate <= .115) startBlockSize = 9;
 else if (errorRate <= .120) startBlockSize = 8;
 else if (errorRate <= .125) startBlockSize = 8;
 else if (errorRate <= .130) startBlockSize = 8;
 else if (errorRate <= .135) startBlockSize = 7;
 else if (errorRate <= .140) startBlockSize = 7;
 else if (errorRate <= .145) startBlockSize = 7;
 else if (errorRate <= .150) startBlockSize = 7;
 #endif
#endif

 if (startBlockSize == 0) startBlockSize = 4;
}

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

Winnow

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// Winnow.h
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: An implementation of the Winnow error reconciliation protocol
// written in C++. Derived from an earlier implementation of the Winnow class
// developed by Kevin Lustic.
//---//

#ifndef WINNOW_H_
#define WINNOW_H_

#include "Common.h"
#define Bob_instance
#define permute_bits_between_passes

135

#define permute_bits_before_first_pass

class Winnow
{
 public:
 Winnow* counterpart; // a pointer to an Alice or Bob object

 uint badBlocks; // the number of blocks with a parity mismatch
 uint bitsExposed; // the actual number of bits exposed
 uint syndromeArray[messageSize/8]; // the array used to store syndromes

 // the array used to store the locations of bad blocks
 uint badBlockArray[messageSize/8];

 // Bob's block parities used by Alice
 bitset<messageSize/8> bobParities;
 bitset<messageSize/8> parityBuffer; // our block parities

 Winnow(); // default constructor
 virtual ~Winnow(); // default destructor

 // the only constructor that should be called
 Winnow(bitset<messageSize> *message, uint seed, double rate,
 Winnow* partner = NULL);

 uint fixErrors(); // performs the Winnow protocol to fix all errors

 void nextPass(); // readies the next pass of the protocol
 void buildSyndromeString(); // builds the syndrome string

 bitset<messageSize>& getKeystring();

 private:
 MTRand RNG; // a random number generator

 uint blockSize; // the current block size
 uint schedule[8]; // the schedule of block sizes
 uint numOfBlocks; // the current number of blocks
 uint netBitsExposed; // the exposed bits not yet removed
 uint syndromeLength; // the current syndrome length

 // the current message size. Since this implementation uses bitsets,
 // which must have their size determined at compile time, the current
 // message size must be maintained as an upper bound.
 uint newMessageSize;

 bitset<messageSize> keyString; // the key string to be reconciled

 // the parity check matrix. In this implementation, it has a maximum
 // size of 10x1023.
 bool parityCheckMatrix[10][1023];

 uint getSyndrome(uint); // retrieves a block syndrome
 uint getNumRemainingPasses(); // retrieves passes remaining
 uint getParity(uint start, uint end); // retrieves a block parity

 void firstPass(); // prepares for the first pass
 void getParities(); // retrieves the block parities
 void createMatrix(); // creates the parity matrix
 void fixWithSyndrome(); // fixes errors in a key string
 void discardParityBits(); // removes leaked parity bits
 void discardSyndromeBits(); // removes leaked syndrome bits
 void permuteBuffer(uint seed); // permutes the key string
 void disagreeingBlockParities(); // determines mismatched blocks

 // sets the block size schedule based on the error rate

136

 void setBlockSchedule(double errorRate);

};

#endif /* WINNOW_H_ */

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// Winnow.cpp
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: An implementation of the Winnow error reconciliation protocol
// written in C++. Derived from an earlier implementation of the Winnow class
// developed by Kevin Lustic.
//---//

#include "Winnow.h"

Winnow::Winnow()
{

printf("Default constructor for Winnow... use other constructor.\n");
}

Winnow::~Winnow()
{
}

// Input:
// message - the key string to be corrected
// seed - seed for the permutation functions
// rate - the estimated error rate of the key string
// Purpose:
// initializes global variables before initiating the first pass of the
// protocol
Winnow::Winnow(bitset<messageSize> *message, uint seed, double rate,
 Winnow* partner) : keyString(*message), RNG(seed)
{
 if (partner != NULL) counterpart = partner;

 badBlocks = 0;
 blockSize = 0;
 bitsExposed = 0;
 numOfBlocks = 0;
 netBitsExposed = 0;
 syndromeLength = 0;
 newMessageSize = 0;

 bobParities.reset();
 parityBuffer.reset();

 newMessageSize = messageSize;

 for (int i = 0; i < messageSize/8; i++)
 {
 syndromeArray[i] = 0;
 badBlockArray[i] = 0;
 }

137

 for (int i = 0; i < 7; i++) schedule[i] = 0;

 for (int i = 0; i < 10; i++)
 for (int j = 0; j < 1023; j++)
 parityCheckMatrix[i][j] = false;

 firstPass();
 setBlockSchedule(rate);
}

// Purpose:
// the first pass of the protocol. Initializes the block size schedule,
// determinines the initial blocksize, syndrome length, and number of
// blocks, and generates the parity-check matrix.
void Winnow::firstPass()
{
 // for the first pass, we will always choose a block size of 8
 blockSize = 8;
 syndromeLength = 3;

 // note that this number does not include an incomplete final block
 numOfBlocks = newMessageSize / blockSize;

 // generates of the parity-check matrix
 createMatrix();

 // permute the bits in the key buffer if desired
 #ifdef permute_bits_before_first_pass
 permuteBuffer(RNG.randInt());
 #endif

 // gets the block parites
 getParities();

 // discards one parity bit for each bit exposed
 discardParityBits();

 return;
}

//
// Purpose:
// the next pass of the protocol. This function adjusts the blocksize
// according to the schedule, creates the new parity check matrix and
// adjusts any other values related to the block size.
void Winnow::nextPass()
{
 // iterates through the block size schedule
 for (uint i = 0; i < 8; i++)
 {
 if (schedule[i] > 0)
 {
 syndromeLength = (uint)(i + 3); // set the syndrome length

 // the block size = 2^syndromeLength (Power not XOR)
 blockSize = 1 << syndromeLength;

 schedule[i]--;
 break;
 }
 else if (i >= 7)
 {
 // We reached end of schedule with no block choices left
 cout << "Time to terminate.\n";
 system("Pause");
 }
 }

138

 // set the number of blocks for the current pass
 numOfBlocks = newMessageSize / blockSize;

 // generate the parity check matrix
 createMatrix();

 // Permute the bits in the key buffer if desired
 #ifdef permute_bits_between_passes
 permuteBuffer(RNG.randInt());
 #endif

 // get the block parities
 getParities();

 // discard one parity bit for each bit exposed
 discardParityBits();

 return;
}

// Purpose:
// gets the parities for each of the blocks and stores them in the global
// parityBuffer bitset.
void Winnow::getParities()
{
 uint end = 0;
 uint start = 0;
 uint parity = 0;

 parityBuffer.reset();

 // iterate through the blocks. Note we ignore the last block if it is not
 // a full block.
 for(uint i = 0; i < numOfBlocks; i++)
 {
 start = i * blockSize;
 end = start + blockSize - 1;

 // parity of bits from start to end, inclusive
 parity = getParity(start, end);

 // each parity bit retrieved is counted as a bit exposed
 bitsExposed++;
 netBitsExposed++;

 // Update the parity buffer
 if(parity == 1) parityBuffer.set(i);
 else parityBuffer.reset(i);
 }
 return;
}

// Input:
// start - a beginning index
// end - an ending index
// Return value:
// the parity of the given range of the keystring
uint Winnow::getParity(uint start, uint end)
{
 uint count = 0; // stores the number of 1's found

 for (uint i = start; i <= end; i++) if (keyString.at(i) == 1) count++;

 return count % 2; // 0 if even parity, 1 if odd
}

139

// Purpose:
// determines the block numbers of blocks where Alice and Bob's parities
// do not match, and store those block numbers in the global badBlockArray
void Winnow::disagreeingBlockParities()
{
 uint counter = 0;

 badBlocks = 0; // reset the number of bad blocks

 for(uint i = 0; i < numOfBlocks; i++)
 {
 // If Alice and Bob have parities that don't match, add the index
 // (block #) to our list
 if(parityBuffer.at(i) != bobParities.at(i))
 {
 badBlockArray[badBlocks] = i;
 badBlocks++;
 }
 }
}

// Purpose:
// Discards a bit from each block as a part of the Winnow privacy
// maintenance. This implementation discards the first bit from each
// block, for ease of coding. Discard is performed by copying the bits of
// each block which aren't part of the key string backwards.
// Note: the final block is ignored if incomplete.
void Winnow::discardParityBits()
{
 uint newIndex = 0;
 uint oldIndex = 0;

 bitset<messageSize> temp;

 for(; oldIndex < newMessageSize; oldIndex++, newIndex++)
 {
 // if we are at the first bit in the block
 if(oldIndex % blockSize == 0 && oldIndex != numOfBlocks * blockSize)
 {
 // we want to remove this bit. Do not copy it.
 netBitsExposed--;
 newIndex--;
 }
 // otherwise this isn't the first bit in the block, copy it.
 else
 {
 if(keyString.at(oldIndex) == 1) temp.set(newIndex);
 else temp.reset(newIndex);
 }
 }
 // New block size, since we deleted one bit from each
 blockSize--;

 // New length of key, since we delete one bit per block
 newMessageSize = newIndex;

 keyString.reset();
 keyString ^= temp;

 return;
}

// Purpose:
// function for generating the parity check matrix that Alice uses for
// computing syndromes, and that Bob uses for correcting errors.
void Winnow::createMatrix()
{

140

 uint size = (1 << syndromeLength) - 1;

 for(uint i = 0; i < syndromeLength; i++)
 {
 for(uint j = 1; j <= size; j++)
 {
 parityCheckMatrix[i][j - 1] = j / (1 << i) & 0x1;
 }
 }
 return;
}

void Winnow::buildSyndromeString()
{
 bobParities = counterpart->parityBuffer; // retrieve Bob's block parities

 disagreeingBlockParities();

 for (uint i = 0; i < badBlocks; i++)
 {
 syndromeArray[i] = getSyndrome(badBlockArray[i]);
 }

 discardSyndromeBits();
}

// Input:
// The block number of the block for which to calculate the syndrome
// Return value:
// The syndrome, in uint form
// Purpose:
// The syndrome is returned as an unsigned integer. The blocksize would
// have to be > 2^32-1 to break this method, which is an unrealistic block
// size in practice. Unsigned integers for this purpose is less unwieldy
// than, say, a separate buffer for every syndrome.
//
// An example is a syndrome of '1 1 0' would be returned as '6' rather
// than a three-element buffer.
uint Winnow::getSyndrome(uint blockNumber)
{
 // ensure the block number is legal
 if(blockNumber > numOfBlocks)
 {
 printf("Illegal block number. Returning blockSize + 1 for new syndrome.\n");
 return (blockSize + 1);
 }

 uint temp = 0;
 uint newSyndrome = 0;

 // compute the highest order bit of the syndrome first and work down
 for(int i = syndromeLength - 1; i >= 0; i--)
 {
 newSyndrome <<= 1; // Push previous bit up

 // Multiply the block by the (i-1)th row of the parity check matrix
 for(uint j = 0; j < blockSize; j++)
 {
 temp = (temp + parityCheckMatrix[i][j] * keyString.at(blockNumber *
 blockSize + j)) & 0x1;
 }
 newSyndrome += temp; // Add the resulting sum to the syndrome
 temp = 0;
 }

 // Number of bits exposed is equal to the number of bits in the syndrome
 bitsExposed +=syndromeLength;

141

 netBitsExposed +=syndromeLength;

 return newSyndrome;
}

// Purpose:
// The bits at indices of the form 2^j-1 are removed. These correspond to
// the linearly independent columns of the parity check matrix. Note that
// this appears to be O(n^2) but the inner for loop is deceiving. This
// operation is just O(n).
void Winnow::discardSyndromeBits()
{
 uint blockNum = 0;
 uint newCounter = 0;
 uint oldCounter = 0;
 uint errorBlocksCounter = 0;

 bitset<messageSize> temp;

 // Loop through the blocks
 for(blockNum = 0, newCounter = 0; blockNum < numOfBlocks; blockNum++)
 {
 // If we haven't hit all the bad blocks and the counter (blockNum) is
 // at a bad block
 if(errorBlocksCounter < badBlocks &&
 badBlockArray[errorBlocksCounter] == (uint)blockNum)
 {
 uint power = 0;

 errorBlocksCounter++;

 // Iterate through the block
 for(uint bitNum = 0; bitNum < blockSize; bitNum++)
 {
 // if the current bit location +1 is a power of 2, don't copy
 if(bitNum + 1 == (uint)(1 << power))
 {
 power++;
 oldCounter++;
 netBitsExposed--;
 }
 else // otherwise copy the bit
 {
 if(keyString.at(oldCounter)) temp.set(newCounter);
 else temp.reset(newCounter);

 newCounter++;
 oldCounter++;
 }
 }
 }
 else // otherwise, we're not at a bad block copy the bit
 {
 if(keyString.at(oldCounter)) temp.set(newCounter);
 else temp.reset(newCounter);

 newCounter++;
 oldCounter++;
 }
 }

 // copy the rest of the bits not copied above
 while (oldCounter < newMessageSize)
 {
 if(keyString.at(oldCounter)) temp.set(newCounter);
 else temp.reset(newCounter);

142

 newCounter++;
 oldCounter++;
 }

 // copy the new message over and set associated parameters
 newMessageSize = newCounter;

 keyString.reset();
 keyString ^= temp;

 return;
}

// Input:
// seed - a seed for the permutation
// Purpose:
// permutes the key string by randomly shuffling the bits
void Winnow::permuteBuffer(uint seed)
{
 MTRand rand(seed); // random number generator seeded with seed

 uint oldIndex = 0;
 uint newIndex = 0;

 // loop through the message, and at each point swap the value at the
 // current index with the value at a randomly generated index.
 for (uint i = 0; i < newMessageSize; i++)
 {
 oldIndex = i;
 newIndex = rand.randInt(newMessageSize-1);

 bool value = keyString[oldIndex];

 keyString[oldIndex] = keyString[newIndex];
 keyString[newIndex] = value;
 }

 return;
}

#ifdef Bob_instance

// Return value:
// number of passes remaining
// Purpose:
// returns the number of passes left according to block schedule. This
// function is responsible for the termination of the algorithm
uint Winnow::getNumRemainingPasses()
{
 uint count = 0;

 for(uint i = 0; i < 8; i++) count += schedule[i];

 return count;
}

// Purpose:
// This is used by Bob. Bob computes the syndrome of his block, and xor's
// it with the syndrome from Alice. The result is an offset pointing to
// the exact location of the erroneous bit, if the first bit of the block
// is considered to be at position '1'.
void Winnow::fixWithSyndrome()
{
 badBlocks = counterpart->badBlocks; // get Alice's bad blocks

 // retrieve and copy Alice's bad block array and syndrome array
 uint *temp1 = counterpart->badBlockArray;

143

 uint *temp2 = counterpart->syndromeArray;

 for (uint i = 0; i < badBlocks; i++)
 {
 badBlockArray[i] = temp1[i];
 syndromeArray[i] = temp2[i];
 }

 for (uint i = 0; i < badBlocks; i++)
 {
 // get the syndrome of the corresponding block
 uint mySyndrome = getSyndrome(badBlockArray[i]);

 // store in syndrome the result of xor-ing the two syndromes. This will
 // give an offset representing the location of the error to fix
 syndromeArray[i] ^= mySyndrome;

 if(syndromeArray[i] == 0)
 { /* The error was discarded in the parity cleanup! */ }
 else keyString.flip(badBlockArray[i] * blockSize +
 (syndromeArray[i] - 1));
 }

 // discard one syndrome bit for each bit exposed
 discardSyndromeBits();

 return;
}

// Return value: the key string
bitset<messageSize>& Winnow::getKeystring() { return keyString; }

// Return value:
// the number of errors remaining in Alice and Bob's versions of the key
// string.
//Purpose:
// used for convenience while running experiments. This function gives a
// good example of the overall protocol. Counterpart in this case should
// point to an Alice Winnow object, since Bob should lead the process.
uint Winnow::fixErrors()
{
 int passLimit = 1;

 while (passLimit > 0)
 {
 counterpart->buildSyndromeString();

 fixWithSyndrome();

 nextPass();

 counterpart->nextPass();

 passLimit = getNumRemainingPasses();
 }
 return (counterpart->getKeystring()^getKeystring()).count();
}

#endif

// Input:
// errorRate - the estimated error rate of the key string
//Puprose:
// sets the block schedule of the protocol based on the key string length
// and the estimated error rate
void Winnow::setBlockSchedule(double errorRate)

144

{
#ifdef zero_percent_tolerance
 #if messageSize == 1000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 3; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 2; schedule[3] = 2;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 0;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 2;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 3; schedule[1] = 1; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 3; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 4; schedule[1] = 2; schedule[2] = 2; schedule[3] = 1;

145

 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 4; schedule[1] = 2; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 4; schedule[1] = 3; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 0;
 }
 #elif messageSize == 10000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 2; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 3;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 0;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 3;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 3; schedule[3] = 1;

146

 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 3; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 3; schedule[1] = 1; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 #elif messageSize == 100000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 2; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 2;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 2; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 2;
 schedule[4] = 2; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 2;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;

147

 schedule[4] = 1; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 3; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 2; schedule[1] = 3; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 2; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 3; schedule[1] = 1; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 #elif messageSize == 1000000
 if(errorRate <= 0.01)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 2;
 }
 else if(errorRate <= 0.02)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.03)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.04)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.05)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.06)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 2;
 }
 else if(errorRate <= 0.07)
 {
 schedule[0] = 2; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;

148

 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.08)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.09)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.10)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.11)
 {
 schedule[0] = 3; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.12)
 {
 schedule[0] = 3; schedule[1] = 1; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.13)
 {
 schedule[0] = 3; schedule[1] = 1; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.14)
 {
 schedule[0] = 3; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.15)
 {
 schedule[0] = 4; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 #endif
#endif

#ifdef five_percent_tolerance
 #if messageSize == 1000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;

149

 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 3; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 1; schedule[1] = 3; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 2; schedule[1] = 3; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 #elif messageSize == 10000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;

150

 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 2; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 2; schedule[1] = 0; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 2;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 #elif messageSize == 100000

151

 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 2; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 1; schedule[7] = 2;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 3;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 3; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 1; schedule[7] = 2;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 0; schedule[3] = 2;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 2; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 2;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 2; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 2; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)

152

 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 3;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 #endif
#endif

#ifdef ten_percent_tolerance
 #if messageSize == 1000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1105)
 {

153

 schedule[0] = 2; schedule[1] = 2; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 2; schedule[1] = 3; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 2; schedule[1] = 3; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 #elif messageSize == 10000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.0905)
 {

154

 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 2; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 2; schedule[1] = 0; schedule[2] = 2; schedule[3] = 0;
 schedule[4] = 3; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 2; schedule[7] = 2;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 1; schedule[7] = 1;
 }
 #elif messageSize == 100000
 if(errorRate <= 0.0105)

 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 1; schedule[7] = 1;
 }
 else if(errorRate <= 0.0205)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 2; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0305)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 2; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0405)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.0505)
 {
 schedule[0] = 1; schedule[1] = 0; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0605)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0705)
 {

155

 schedule[0] = 1; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0805)
 {
 schedule[0] = 1; schedule[1] = 1; schedule[2] = 2; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.0905)
 {
 schedule[0] = 1; schedule[1] = 2; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.1005)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 0; schedule[3] = 1;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 else if(errorRate <= 0.1105)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 1; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.1205)
 {
 schedule[0] = 2; schedule[1] = 1; schedule[2] = 2; schedule[3] = 1;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1305)
 {
 schedule[0] = 2; schedule[1] = 2; schedule[2] = 1; schedule[3] = 2;
 schedule[4] = 0; schedule[5] = 0; schedule[6] = 0; schedule[7] = 1;
 }
 else if(errorRate <= 0.1405)
 {
 schedule[0] = 2; schedule[1] = 3; schedule[2] = 1; schedule[3] = 0;
 schedule[4] = 0; schedule[5] = 1; schedule[6] = 0; schedule[7] = 2;
 }
 else if(errorRate <= 0.1505)
 {
 schedule[0] = 3; schedule[1] = 2; schedule[2] = 0; schedule[3] = 0;
 schedule[4] = 1; schedule[5] = 0; schedule[6] = 2; schedule[7] = 1;
 }
 #endif
#endif

 schedule[0]--;
}

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// LDPC.h
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: An implementation of the Sum Product decoding algorithm for
// Low Density Parity Check Codes.
//---//

156

#ifndef LDPC_H
#define LDPC_H

#include <math.h>
#include <vector>
#include "Common.h"

using namespace std;

class LDPC
{
 public:
 // constructor
 LDPC(double errorRate, int arraySize,
 bitset<codeSize>* syndrome = NULL,
 bitset<messageSize>* message = NULL);

 // used for experiments. Contains an example of the protocol
 int fixErrors();

 // calculates a syndrome for a given input message
 bitset<codeSize> getSyndrome(bitset<messageSize>& message);

 private:
 int size; // smaller dimension of the parity check matrix
 bool first; // flag for first iteration
 double p; // estimated error rate

 // array used to store decisions for the decision step
 double D_Array[messageSize];

 // stores the list of variable nodes each check node is connected to
 vector<int> C_Array[codeSize];

 // stores the list of check nodes each variable node is connected to
 vector<int> V_Array[messageSize];

 vector<double> Q_Array[messageSize]; // stores the R-messages
 vector<double> R_Array[codeSize]; // stores the Q-messages

 bitset<codeSize> targetSyndrome; // the target syndrome
 bitset<messageSize> correctedMessage; // the key string to correct

 void verticalStep(); // the vertical step
 void decisionStep(); // the decision step
 void horizontalStep(); // the horizontal step
 void getMatrices(string filename); // retrieves the parity matrix
};

#endif;

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//
// LDPC.cpp
//
// Lt Jim Johnson
// Air Force Institute of Technology
//
// Created on: December, 2011
// Last Updated: January, 2012
//
// Description: An implementation of the Sum Product decoding algorithm for
// Low Density Parity Check Codes.
//---//

157

#include "LDPC.h"

// Input:
// errorRate - the estimated error rate of the key string
// arraySize - the smaller dimension of the parity check matrix
// syndrome (optional) - the target syndrome for Bob to match
// message (optional) - the (flawed) received message
LDPC::LDPC(double errorRate, int arraySize, bitset<codeSize>* syndrome,
 bitset<messageSize>* message)
{
 string fileName = ""; // file containing the parity check matrix (alist)

 // if optional parameters are supplied, copy them into global counterparts
 if (message != NULL) correctedMessage = *message;
 if (syndrome != NULL) targetSyndrome = *syndrome;

 p = errorRate; // local error rate variable
 first = true; // flag for the first pass
 size = arraySize; // local variable that tracks the parity matrix size

 for(int i = 0; i < messageSize; i++) D_Array[i] = 0;

 // retrieve the appropriate parity check file based on the input array size
 // note: shown for a 100 000 bit key length and must be modified for other
 // values
 if (arraySize == 10000) fileName = "Matrices_9.txt";
 else if (arraySize == 15000) fileName = "Matrices_85.txt";
 else if (arraySize == 20000) fileName = "Matrices_8.txt";
 else if (arraySize == 25000) fileName = "Matrices_75.txt";
 else if (arraySize == 30000) fileName = "Matrices_7.txt";
 else if (arraySize == 35000) fileName = "Matrices_65.txt";
 else if (arraySize == 40000) fileName = "Matrices_6.txt";
 else if (arraySize == 45000) fileName = "Matrices_55.txt";
 else if (arraySize == 50000) fileName = "Matrices_5.txt";
 else if (arraySize == 55000) fileName = "Matrices_45.txt";
 else if (arraySize == 60000) fileName = "Matrices_4.txt";
 else if (arraySize == 65000) fileName = "Matrices_35.txt";
 else if (arraySize == 70000) fileName = "Matrices_3.txt";
 else if (arraySize == 75000) fileName = "Matrices_25.txt";
 else if (arraySize == 80000) fileName = "Matrices_2.txt";
 else if (arraySize == 85000) fileName = "Matrices_15.txt";
 else if (arraySize == 90000) fileName = "Matrices_1.txt";
 else system("Pause");

 // read in the matrix
 getMatrices(fileName);
}

// Input:
// filename - name of the file containing the parity check matrix
// Purpose:
// reads in the parity check matrix and stores it in two arrays. The
// C_Array maintains a list of the check nodes and which variable nodes
// they are connected to. The V_Array maintains a list of the variable
// nodes and which check nodes they are connected to.
void LDPC::getMatrices(string filename)
{
 char buffer[500];

 fstream file;

 memset(buffer, '\0', 500);

 file.open(filename, fstream::in); // open the file

 for (int i = 0; i < size; i++)

158

 {
 file.getline(buffer, 500); // read a line from the file

 for(int j = 0; j < messageSize; j++)
 {
 char num[10];
 memset(num, '\0', 10);

 // copy the first number from the input line
 strncpy_s(num, buffer, strcspn(buffer, " "));

 // remove the number from the current list, and break when the
 // list is empty
 if(strlen(buffer) != 0)
 strncpy_s(buffer, strchr(buffer, ' ') + 1, 500);
 else break;

 // zero values signifiy the end of the line
 if (atoi(num) != 0)
 {
 // The input file contains a list of check nodes, therefore we
 // can add those to the array sequentially. However, for
 // variable nodes we must add the current check node index at
 // the appropriate variable node value, in this case num-1
 // since non-zero numbering is used in the partiy matrix file.
 C_Array[i].push_back(atoi(num)-1);
 V_Array[atoi(num)-1].push_back(i);
 }
 }
 }

 return;
}

// Input:
// message - the message to calculate a syndrome for
// Return value:
// the syndrome for the input message calculated using the parity matrix
// Purpose:
// generates a syndrome based on the input string and the parity matrix
bitset<codeSize> LDPC::getSyndrome(bitset<messageSize>& message)
{
 bitset<codeSize> syndrome;

 // used to iterate through the list of parity checks
 vector<int>::iterator index;

 syndrome.reset();

 // iterate through all the check nodes
 for (int i = 0; i < size; i++)
 {
 // Calculate the parity for each node based on the message
 for (index = C_Array[i].begin(); index != C_Array[i].end(); index++)
 {
 // flip the parity every time we reach a 1. Computationally
 // efficient
 if (message[*index] == 1) syndrome[i].flip();
 }
 }

 return syndrome;
}

// Purpose:
// After the horizontal and vertical steps, iterate through the current
// list of likelihoods and determine if the present value of the message

159

// is likely incorrect. If so, flip it.
void LDPC::decisionStep()
{
 int indices[codeSize]; // used to maintain the current index into the array

 vector<int>::iterator index; // used to iterate through the V_Array

 for(int i = 0; i < size; i++) indices[i] = 0;

 // iterate through the message
 for(int i = 0; i < messageSize; i++)
 {
 // Calculate the channel error probability
 if(correctedMessage[i] == 0) D_Array[i] = log((1-p)/p);
 else D_Array[i] = log(p/(1-p));

 // Add the R values to the decision
 for (index = V_Array[i].begin();
 index != V_Array[i].end(); index++)
 {
 // indices is used to keep track of our depth in the vector, as to
 // prevent adding a value twice
 D_Array[i] += R_Array[*index][indices[*index]];

 indices[*index]++;
 }

 // the decision threshold for this implementation is set at +-10.
 if (D_Array[i] < -10) correctedMessage[i] = 1;
 else if (D_Array[i] > 10) correctedMessage[i] = 0;
 }
}

// Purpose:
// This is the R-message update step. The R-messages are updated based on
// the Q-messages and and error probability.
void LDPC::verticalStep()
{
 int indices[codeSize]; // used to maintain the depth of the vectors

 // used to iterate through the vector values
 vector<int>::iterator V_Node1;
 vector<int>::iterator V_Node2;

 for(int i = 0; i < size; i++) indices[i] = 0;

 // iterate through the message
 for(int i = 0; i < messageSize; i++)
 {
 int count = 0;
 double result = 0;

 // calculate the channel error probability and add it to the result
 if(correctedMessage[i] == 0) result = log((1-p)/p);
 else result = log(p/(1-p));

 // if this is not the first iteration, the R-message is the error
 // probability plus the sum of all the Q-messages from all of the
 // variable nodes except the one we're preparing the R-message for.
 // Initially, we add all the Q-messages to the R-message. Later we will
 // subtract off the one we don't need. This substantially improves
 // runtime vs. summing all the various combinations.
 if(!first)
 {
 for(V_Node1 = V_Array[i].begin();
 V_Node1 != V_Array[i].end(); V_Node1++)
 {

160

 result += R_Array[*V_Node1].at(indices[*V_Node1]);
 }
 }

 // iterate through all the variable nodes
 for(V_Node1 = V_Array[i].begin();
 V_Node1 != V_Array[i].end(); V_Node1++)
 {
 // if this is the first iteration the R-message is simply the error
 // probability, so we're done.
 if (first)
 {
 Q_Array[i].push_back(result);
 continue;
 }

 // we need to subtract off the value of the Q-message from the
 // variable node that we're calculating an R-message for, since it
 // should not have been included in the result
 double R_Value = result - R_Array[*V_Node1].at(indices[*V_Node1]);

 // in the event that the R-message is zero, set it equal to the
 // LLR of the error probability. (protects against divide-by-zero)
 if (R_Value == 0) R_Value = result;

 // save the R-message
 Q_Array[i].push_back(R_Value);

 // keep track of our position in the vector of check nodes
 indices[*V_Node1]++;
 }
 }

 first = false; // done with the first iteration

 // we're done with the Q-messages. Clear them out for the next iteration
 for (int i = 0; i < size; i++) R_Array[i].clear();
}

// Purpose:
// This is the Q-message update step. The Q-messages are updated based on
// the R-Messages.
void LDPC::horizontalStep()
{
 // used to iterate through the variable nodes
 vector<int>::iterator C_Node1;

 // used to keep track of our position in the vectors
 int indices[messageSize];

 for(int i = 0; i < messageSize; i++) indices[i] = 0;

 // iterate through all of the check nodes
 for (int i = 0; i < size; i++)
 {
 // used to store the product of all the hyperbolic tangent operations
 double Tanh_Product = 1;

 // iterate through all of the R-messages, and calculate the product of
 // the hyperbolic tangents. Similar to above, we calculate one product
 // up front, then divide out the value we do not want.
 for(C_Node1 = C_Array[i].begin(); C_Node1 != C_Array[i].end();
 C_Node1++)
 {
 Tanh_Product *= tanh(Q_Array[*C_Node1][indices[*C_Node1]] / 2);
 }

161

 // iterate through all the R-messages
 for(C_Node1 = C_Array[i].begin(); C_Node1 != C_Array[i].end();
 C_Node1++)
 {
 // divide out the value of the Q-message that we don't need. Even
 // though divisions are expensive, this method saves cycles
 double newProduct = Tanh_Product /
 tanh(Q_Array[*C_Node1][indices[*C_Node1]] / 2);

 // bound the value of newProduct at +-(1 - 10^12). Since the
 // inverse hyperbolic tangent is asymptotic at +-1, this step
 // prevents infinite results.
 if (newProduct > (1 - pow(10.0, -12)))
 newProduct = 1 - pow(10.0, -12);
 if (newProduct < (pow(10.0, -12)) - 1)
 newProduct = pow(10.0, -12) - 1;

 // calculate the final value of the Q-message
 double R_Value = pow((double)-1, targetSyndrome[i])*2*
 ((log(1+newProduct)-log(1-newProduct))/2);

 // save the Q-message
 R_Array[i].push_back(R_Value);

 // increment our position in the vector of variable nodes
 indices[*C_Node1]++;
 }
 }

 // we're done with the R-messages. Clear them out for the next iteration
 for (int i = 0; i < messageSize; i++) Q_Array[i].clear();
}

// Purpose:
// The steps of the protocol. Used for simulations and is provided as an
// example for future use.
int LDPC::fixErrors()
{
 int count = 0;

 while (true) // Loop until all errors are corrected or 200 iterations
 {
 verticalStep(); // perform the vertical step
 horizontalStep(); // perform the horizontal step
 decisionStep(); // perform the decision step

 count++; // increment the iteration counter

 // check the current value of the message syndrome against the target.
 // If they match, we're done
 if((getSyndrome(correctedMessage)^targetSyndrome).count() == 0) break;

 if (count % 200 == 0) break;
 }

 return count; // return the iteration count
}

//----------------- UNCLASSIFIED//FOR OFFICIAL USE ONLY ---------------------//

162

VIII. Bibliography

Ardehali, M., Chau, H., & Lo, H.-K. (2005). Efficient Quantum Key Distribution.

Journal of Cryptography, 18(2), 133-165.

Bellot, P., & Dang, M.-D. (2009). BB84 Implementation and Computer Reality.

International Conference on Computing and Communication Technologies, (pp.

1-8).

Bennett, C. H., & Brassard, G. (1984). Quantum Cryptography: Public Key Distribution

and Coin Tossing. International Conference on Computers, Systems & Signal

Processing. Bangalore, India.

Bennett, C. H., Bessette, F., Brassard, G., Salvail, L., & Smolin, J. (1991). Experimental

Quantum Cryptography. Eurocrypt 1990, (pp. 253-265). Aarhus, Denmark.

Boughattas, M. B., Iyed, B. S., & Rezig, H. (2010). Correcting Codes in the quantum

keys reconciliation: scenarios of privacy maintenance. IEEE International

Conference on Social Computing, (pp. 1022-1025). Minneapolis, MN.

Brassard, G. (1993). A Bibliography of Quantum Cryptography. ACM SIGACT News, pp.

16-20.

Brassard, G., & Salvail, G. (1994). Secret-key Reconciliation by Public Discussion.

Eurocrypt 1993, (pp. 410-423). Lofthus, Norway.

Buttler, W. T., Torgerson, J. R., Nickel, G. H., Donahue, C. H., & Peterson, C. G. (2003).

Fast, efficient error reconciliation for quantum cryptography. Physical Review A,

67(5).

Calver, T. I. (2011). An Empirical Analysis of the Cascade Secret Key Reconciliation

Protocol for Quantum Key Distribution. Masters Thesis. Air Force Institute of

Technology.

Chapman, N. (2012, Jan 4). Very Sleepy. Retrieved Jan 15, 2012, from Codernotes.com:

http://www.codersnotes.com/sleepy

Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. P., & Hu, X.-Y. (2005). Reduced-

Complexity Decoding of LDPC Codes. IEEE Transactions on Communications,

53(7), 1232.

163

Chung, S.-Y., Forney, D. G., Richardson, T. J., & Urbanke, R. (2001). On the Design of

Low-Density Parity-Check Codes within .0045 dB of the Shannon Limit. IEEE

Communications Letters, 5(2), 58-60.

Elkouss, D., Leverrier, A., Alleaume, R., & Boutros, J. J. (2009). Efficient Reconciliation

Protocol for Discrete-Variable Quantum Key Distribution. IEEE International

Symposium on Information Theory, (pp. 1879-1883). Seoul, Korea.

Elkouss, D., Martinex, J., Lancho, D., & Martin, V. (2010). Rate Compatible Protocol for

Information Reconciliation: An Application to QKD. IEEE Information Theory

Workshop, (pp. 1-5).

Gallager, R. (1962). Low-Density Parity-Check Codes. IRE Transactions on Information

Theory, 8(1), 21-28.

Gudmundsen, M. (2010). Improved Secret Key Rate in Quantum Key Distribution using

highly irregular Low-Density Parity-Check Codes. Master's Thesis. Norwegian

University of Science and Technology.

Hu, X.-Y., Eleftheriou, E., & Arnold, D.-M. (2001). Progressive Edge-Growth Tanner

Graphs. Global Communications Conference, (pp. 995-1001). San Antonio, TX.

Kasai, K., Matsumoto, R., & Sakaniwa, K. (2010). Information Reconciliation for QKD

with Rate-Compatible Non-Binary LDPC Codes. International Symposium on

Information Theory and its Applications, (pp. 922-927). Taichung, Taiwan.

Lin, Y.-K., Chen, C.-L. L.-C., & Chang, H.-C. (2008). Structured LDPC Codes with Low

Error Floor based on PEG Tanner Graphs. IEEE International Symposium on

Circuits and Systems, (pp. 1846-1849).

Luby, M., Mitzenmacher, M., Shokrollahi, A., & Spielman, D. (1998). Analysis of Low

Density Codes and Improved Designs Using Irregular Graphs. 30th Annual ACM

Symposium on Theory of Computing, (pp. 249-258). New York, NY.

Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D., & Stemann, V. (1997).

Practical Loss-Resilient Codes. 29th Annual ACM Symposium on Theory of

Computing, (pp. 150-159). El Paso, TX.

Lustic, K. (2011). Performance Analysis and Optimization of the Winnow Secret Key

Reconciliation Protocol. Master's Thesis. Air Force Institute of Technology.

164

MacKay, D. J. (1999). Good Error-Correcting Codes Based on Very Sparse Matrices.

IEEE Transactions on Information Theory, 45(2), 399-431.

MacKay, D. J., Mitchison, G., & McFadden, P. L. (2004). Sparse-Graph Codes for

Quantum Error Correction. IEEE Transactions on Information Theory, 50(10).

MacKay, D., & Hu, X.-Y. (2011, 10 20). Source Code for Progressive Edge Growth

Parity-Check Matrix Construction. Retrieved 11 1, 2011, from The Inference

Group: http://www.inference.phy.cam.ac.uk/mackay/PEG_ECC.html

Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623-Dimensionally

Equidistributed Uniform Pseudo-Random Number Generator. ACM Transactions

on Modeling and Computer Simulation, 8(1), 3-30.

Matsumoto, R. (2009, Aug 14). Problems in application of LDPC Codes to Information

Reconciliation in Quantum Key Distribution Protocols. Retrieved Nov 2011, from

Cornell University Library: http://arxiv.org/abs/0908.2042v2

Mesiti, F., Delgado, M., Mondin, M., & Daneshgaran, F. (2010). Sparse-graph Codes for

Information Reconciliation in QKD Applications. Third International Symposium

on Applied Sciences in Biomedical and Communication Technologies, (pp. 1-5).

Rome, IT.

Otmani, A., Tillich, J.-P., & Andriyanova, I. (2007). On the Minimum Distance of

Generalized LDPC Codes. IEEE International Symposium on Information Theory,

(pp. 751-755). Nice, France.

Pearl, J. (1982). Reverend Bayes on Inference Engines: A Distributed Hierarchical

Approach. The Second National Conference on Artificial Intelligence. Pittsburgh,

PA.

Rass, S., & Kollmitzer, C. (2009). Adaptive Error Correction with Dynamic Initial Block

Size in Quantum Cryptographic Key Distribution Protocols. Third International

Conference on Quantum, Nano and Micro Technologies, (pp. 90-95). Cancun,

Mexico.

Richardson, T. J., & Urbanke, R. L. (2001). The Capacity of Low-Density Parity-Check

Codes Under Message-Passing Decoding. IEEE Transactions on Information

Theory, 47(2), 599-618.

165

Richter, G. (2005). An improvement of the PEG Algorithm for LDPC Codes in the

Waterfall Region. The International Conference on Computer as a Tool, (pp.

1044-1047).

Rivest, R. L., Shamir, A., & Adleman, L. M. (1970, Jan 23). Patent No. US3657476.

USA.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System

Technical Journal, 27, 379-423, 623-656.

Shor, P. W. (1994). Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum-Computer. 35th Annual Symposium on Foundations of

Computer Science, (pp. 124-134). Santa Fe, NM.

Sugimoto, T., & Yamazaki, K. (2000). A Study on Secret Key Reconciliation Protocol

"Cascade". IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, E83-A(10), 1897-1991.

Tanner, R. (1981). A Recursive Approach to Low Complexity Codes. IEEE Transactions

on Information Theory, 27(5), 533-547.

Trappe, W., & Washington, L. C. (2005). Introduction to Cryptography with Coding

Theory (2 ed.). Upper Saddle River, NJ: Prentice Hall.

Wiesner, S. (1983). Conjugate Coding. ACM SIGACT News - A Special Issue on

Cryptography, 78-80.

Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature,

299(5886), 802-803.

Yan, H., Ren, T., Peng, X., Lin, X., Jiang, W., & Liu, T. (2008). Information

Reconciliation Protocol in Quantum Key Distribution System. Fourth

International Conference on Natural Computation, (pp. 637-641). Jinan, China.

166

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and review ing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

22-03-2012
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

August 2010 – March 2012

TITLE AND SUBTITLE

An Analysis of Error Reconciliation Protocols for use in Quantum Key
Distribution

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Johnson, James S., 1st Lieutenant, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCE/ENG/12-06

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Gerald Baumgartner
Laboratory for Telecommunications Sciences
8080 Greenmead Drive
College Park, MD 20740
(240) 373-2743

10. SPONSOR/MONITOR’S
ACRONYM(S)

 LTS

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

This material is declared work of the U.S. Government and is not subject to copyright protection in the United
States.

14. ABSTRACT
Quantum Key Distribution (QKD) is a method for transmitting a cryptographic key between a sender and receiver in a

theoretically unconditionally secure way. Unfortunately, the present state of technology prohibits the flawless quantum

transmission required to make QKD a reality. For this reason, error reconciliation protocols have been developed which preserve

security while allowing a sender and receiver to reconcile the errors in their respective keys. The most famous of these protocols is

Brassard and Salvail’s Cascade, which is effective, but suffers from a high communication complexity and therefore results in low

throughput. Another popular option is Buttler’s Winnow protocol, which reduces the communication complexity over Cascade, but

has the added detriment of introducing errors, and has been shown to be less effective than Cascade. Finally, Gallager’s Low

Density Parity Check (LDPC) codes have recently been shown to reconcile errors at rates higher than those of Cascade and

Winnow with a large reduction in communication, but with greater computational complexity. This research seeks to evaluate the

effectiveness of these LDPC codes in a QKD setting, while comparing real-world parameters such as runtime, throughput and

communication complexity empirically with the well-known Cascade and Winnow algorithms. Additionally, the effects of

inaccurate error estimation, non-uniform error distribution and varying key length on all three protocols are evaluated for identical

input key strings. Analyses are performed on the results in order to characterize the performance of all three protocols and

determine the strengths and weaknesses of each.

15. SUBJECT TERMS

Quantum Key Distribution, QKD, Error Reconciliation, Cascade, Winnow, LDPC, Low Density Parity Check
Codes, Information Reconciliation, Secret Key

16. SECURITY CLASSIFICATION

OF: UNCLASSIFIED
17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

178

19a. NAME OF RESPONSIBLE PERSON

Jeffrey Humphries, Lt Col, USAF
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
 (937) 255-6565 x7253

Jeffrey.Humphries@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-22-2012

	An Analysis of Error Reconciliation Protocols for use in Quantum Key Distribution
	James S. Johnson
	Recommended Citation

	tmp.1519840471.pdf.7dmpp

