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Abstract 
 

     Popularized by such proposed applications as electromagnetic cloaks or perfect lenses, 

the field of metamaterials has become a source of great fascination for the public and a 

subject of great scrutiny for researchers. Defined in the most general manner, 

metamaterials are materials designed to display unusual and sometimes controversial 

electromagnetic properties, such as negative refraction. Metamaterials are made from 

inclusions sized and spaced such that for large enough incident wavelengths, the 

inclusions form what appears to be a homogeneous material. 

     An increasingly popular tool for developing applications for metamaterials is 

transformation optics that is a method of producing a desired electromagnetic behavior by 

altering the constitutive parameters of the target material. Most research involved with 

using transformation optics to produce devices such as electromagnetic field 

concentrators has been limited to simulation because rapidly producing metamaterials is 

not an easy task. Transformation optics produces anisotropic, spatially variant tensors of 

constitutive parameters that can be exactly manufactured. In fact, designing a device for a 

particular set of constitutive parameters is an involved task. 

     AFIT has produced a means to rapidly design a metamaterial device to a specified 

tensor of constitutive parameters. This thesis has three areas of focus: validation of the 

rapid design method, optimization of the rapid design method, and electromagnetic 

characterization of the device produces using the optimized design method. The first task 

was to create an electromagnetic field concentrator by using embedded transformation 



v 

optics that compress incident plane waves into a small area. COMSOL® was used to 

model the ideal, anisotropic and spatially variant device designed for resonance at 10 

GHz. 

     The second task was to use both the AFIT rapid design process and a newly developed 

process to homogenize the anisotropic, spatially-variant relative constitutive parameter 

material created by transformation optics.  The second task also involved optimizing the 

match between the desired relative constitutive parameters and those achievable by the 

rapid design method. This optmization was realized by several methods with emphasis on 

altering the ratio of the shapes forming the concentric geometry device to minimize the 

mismatch between ideal and achievable relative constitutive parameters from potentially 

well over 10000% error to 75% error. The optimized homogenous design was tested in 

CST Microwave Studio®. S-parameters and time-average fields were measured to 

characterize the expected performance of the field concentrator. 

     The third and final task was completed by creating a stack of printed circuit boards 

with the metamaterial cell traces and testing both S-parameters and field concentration of 

the device with a focus beam measurement system. The experimental data are too 

preliminary to report with much confidence and further testing appers necessary before 

drawing definitive conclusions. 

     Finally, recommendations for improving the device presented in this thesis or 

developing an alternative are presented. A cylindrical design based on the concept of 

concentric geomtries is recommended for manufacturing and future testing in AFIT’s 

BANTAM measurement system. 
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1 

DESIGN, MODELING, AND MEASUREMENT OF A METAMATERIAL 

ELECTROMAGNETIC FIELD CONCENTRATOR 

 
I.   Introduction 

 
1.1   Problem Description 
 
     The fantastic promises of modern electrical engineering require increasingly intricate 

system designs. Ever-growing system complexity can be juxtaposed with the 

fundamental laws of electricity and magnetism that serve as the foundation for any 

electromagnetic device. The contemporary focus on applied electromagnetics is the 

natural evolution of what has been termed the classical era [69].  

     In 1733, Charles-Francois du Fay discovered the existence of positive and negative 

charges and showed that unlike charges attract while like charges repel. In 1820, Hans 

Christian Oersted showed that a wire carrying a current produced a magnetic field. In 

1831, Englishman Michael Faraday discovered that an electromotive force or voltage can 

result from a changing magnetic flux, while four years later Carl Friedrich Gauss 

developed a mathematical relationship tying an electric charge to the electric flux through 

a surface enclosing said charge. Several decades later, in 1873, one of the most important 

achievements in the field of electromagnetics occurred when Scottish scientist James 

Maxwell synthesized a set of four vector equations by uniting the theories of his 

contemporaries [69]. The set of four equations is now known as Maxwell’s equations.  

     Maxwell’s equations are distinguished as the first unified set of electromagnetic 

equations. These equations and several constitutive relations are the basis upon which all 
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modern electrical and magnetic systems are designed. In particular, Maxwell’s equations 

can be used to describe a material’s dielectric constant or permittivity as well as its 

magnetic permeability. These bulk material properties or constitutive parameters 

determine material impedance and the index of refraction and therefore dictate the 

manner in which electromagnetic waves propagate through a medium.  

     Until the 1960s, scientists utilized Maxwell’s equations to characterize the 

electromagnetic properties of materials using the implicit assumption that permittivity 

and permeability could never be simultaneously negative since no such natural condition 

has ever been observed. In 1968, Russian scientist Victor Veselago suggested that 

materials with simultaneously negative values of permittivity and permeability could 

exist [70]. Technological limitations prevented Veselago from confirming the existence 

of these double negative (DNG) materials, but he promised that they would exhibit 

material properties inimitable by nature [70].   

     The promised extraordinary behaviors included negative refraction and reversed 

Doppler effect [70]. These and other unusual properties were attributed to a DNG 

material’s ability to induce negative group velocity on an incident electromagnetic wave. 

The negative group velocity associated with DNG materials means that energy flux 

opposes the propagation direction of a wave and the phase velocity of a wave in the DNG 

material. Such wave behavior can be described only by a vector quantity representing 

energy flux that forms a left-handed set with the electric and magnetic field vectors. 

Therefore, DNG materials are called left-handed metamaterials (LHM).  

     The prefix meta used to describe DNG materials is a Greek term meaning “after” and 

is used to emphasize the infancy of a new and developing class of materials [58]. 
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Metamaterials are often associated with either a negative value of permittivity, a negative 

value of permeability, or a DNG material. However, one definition correctly restates 

metamaterials more broadly as: “composite materials with useful and unusual 

electromagnetic properties offered by the specific response of constituents and their 

arrangement” [60]. Therefore, metamaterials do not necessarily have negative 

constitutive parameters; they exhibit unusual behavior in the presence of electromagnetic 

waves.  

Metamaterials and their unusual behavior truly represent a new area of research. 

Indeed, in the last two decades much research has been focused on this new branch of 

science. Scientists would like to take advantage of the basic laws of electromagnetics to 

generate exotic effects such as electromagnetic cloaks that heretofore were confined to 

the fantasy creations of television and movies.  

 

1.2   Potential Metamaterial Applications 
 
     Innumerable applications have been conceived to take advantage of the unusual 

properties generated by the subwavelength (less than 10 ) structures that compose a 

metamaterial surface. Research has explored potential military and civilian applications. 

Air forces around the world, including the USAF, would like to incorporate 

metamaterials in aircraft and subsystem designs to gain leverage over potential 

adversaries and create synergistic battlefield effects. Particular applications interesting 

military organizations include radar cross-section reduction, imaging, communication, 

and radar. Proposed civilian applications of metamaterials have ranged from antennas and 
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filters to employment with flexible technology for smart sensors or health monitoring 

systems [22].  

     The most exotic proposed applications of metamaterials utilize DNG materials that 

leverage a negative index of refraction to bend electromagnetic waves in ways not 

observed in nature. Transformation optics (TO) is the mathematical tool used to describe 

that bending or refraction and defined by the principle of adaptive coordinate system 

transformations. The goal of transforming coordinate systems is to describe realizable 

bending of electromagnetic waves. A number of fantastical material effects might be 

realized if an electromagnetic wave can travel in a straight line in its own coordinate 

system, traversing its path in the least amount of time while appearing to bend in the 

coordinate system of the observer [71]. Therefore, if the proper choice of permittivity and 

permeability can induce a relative coordinate transformation, metamaterials can be tuned 

to create effective bulk parameters capable of bending incident electromagnetic waves. 

Two of the most exotic and therefore most publicized proposed applications of wave 

bending with metamaterials include the electromagnetic cloak and the perfect lens. 

     Perhaps the most trumpeted application of metamaterials is the electromagnetic cloak. 

The concept of the electromagnetic cloak, proposed in 2006, is supported by the 

mathematical arguments of TO [26, 49]. A perfect cloak involves directing 

electromagnetic waves about a central region by developing an anisotropic cloak 

material. The permittivity and permeability gradient developed must be continuous over 

the extended path about the cloaked target to avoid reflections [30]. A matched 

impedance at the boundary between the cloak and free space prevents backscattering 

from the target and ensures perfect target invisibility.  
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     Of course, there are limitations to the implementation of an actual cloak. Smooth and 

continuous variation of the constitutive parameters is not possible, for example, due to 

the finite size of unit cells that constitute the DNG metamaterial. Additionally, anybody 

hoping to implement a useable cloak must consider reciprocity; if an observer cannot see 

a cloaked target, the cloaked target cannot see the observer. Therefore, potential 

applications of a cloak may be limited to buildings, fortifications, and immobile objects 

yet the appeal of creating a cloak is no less exciting. 

     The other well-known application of metamaterials is the perfect lens. The 

mathematical postulation of such a device was published in 2000 [45]. As Pendry 

explained, the perfect lens can perfectly focus light and therefore does not suffer from 

diffraction-limited focusing of conventional optics. It can also provide full image 

reconstruction. These effects are possible by using a DNG material in the near field of a 

target (on the order of wavelengths of separation). Its placement in the near field and its 

negative index of refraction allow a perfect lens to capture, amplify, and refract 

evanescent waves that conventional lenses ignore [45]. The perfect lens uses not only the 

evanescent waves which, if not captured would exponentially decay as they are emitted 

from a target, but also the propagating waves to resolve a perfect image of the target.  

     Unfortunately there are limitations to achieving a perfect lens, much as there are for 

achieving a perfect electromagnetic cloak. Any material used to construct a perfect lens 

will have a finite value of absorptivity (mathematically expressed as the imaginary 

component of permittivity and physically expressed as energy absorbtion). Energy 

absorption will prevent perfect image construction. Nonetheless, the goal of extremely 

small resolution capability is scientifically worthy. The implications of accomplishing 
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this goal are grand enough to ensure research on the subject continues despite the strident 

theoretical objections by a small subset of the academic community.  

     The goals of most metamaterial research are not nearly as lofty as the creation of an 

electromagnetic cloak or perfect lens but they are potentially more attainable and more 

useful. For example, the achievement of a homogenous, discretized approximation to the 

anisotropic materials required by TO can be a long and tedious process. A goal of this 

thesis is to apply a rapid metamaterial design process to a TO approach for building an 

optimized, tunable electromagnetic concentrator. 

     Proving the feasibility of rapidly producing an optimized metamaterial field 

concentrator could make metamaterial designs feasible for a large number of 

applications. One practical application is metamaterial-based sensor for signal detection. 

This device is similar to the perfect lens in that the goal is to create a tunable 

subwavelength surface that captures and concentrates electromagnetic fields.  

     Modern aircraft design emphasis on minimizing component size, weight and power 

requirements means that a metamaterial sensor would be particularly advantageous. 

Current sensors generally draw significant amounts of power to power sometimes large 

and relatively complex electromechanical designs. A metamaterial signal detection sensor 

could potentially draw very little power. A set of tunable subwavelength metamaterial 

surfaces could be combined with active electro-optical modulators to several simple 

sensors. These sensors could be joined to form a distributed array for signal sensing, 

particularly in lower bands of the frequency spectrum.  

 
 
 



7 

1.3   Research Goals 
 

     This research effort is directed towards the sequential achievement of two 

interconnected goals, the first of which is the development and characterization of an 

electromagnetic field concentrator using TO techniques and an Air Force Institute of 

Technology (AFIT) rapid design methodology. The characterization of its field behavior 

is completed via various computational models. The second goal is the construction and 

testing of a concentrator. Experimental results will be compared to previous theoretical 

predictions. 

 

     1.3.1   Model Development of a Metamaterial Field-Concentrating Device. 
 

     The initial goal of this research effort is to enhance electromagnetic field strength in 

the presence of metamaterial structures. These structures can be formed from individual 

unit cells or from fractals that display origin symmetry and self-similarity [17]. However, 

metamaterials have primarily been produced from arrangements of individual unit cells. 

In particular, field concentration can also be obtained within the gaps of split-ring 

resonators (SRR) or from unit cells arranged to produce a super cell that creates a 

macroscopic area of electromagnetic field strength far greater in spatial extent than any 

individual gap size used in its construction.  

     This thesis will use a TO approach to create a super cell to create local permittivity 

and permeability values that effect field concentration. The required constitutive 

parameters will be approximated with unit cells whose geometry is set by AFIT’s rapid 



8 

design process. Geometrical features of concern include the unit cell width and height, 

width of the trace, trace material, gap size, and spacing of intra-cell components. 

     Characterization of the field concentration is first conducted via predictive methods. 

Predictions of field strength enhancement utilize computational electromagnetic models 

discussed in Chapter III. These models use time- and frequency-domain techniques 

dependent on Maxwell’s equations to generate necessary theoretical predictions. 

Construction of a field concentrator used to verify the model simulations is also discussed 

in Chapter III. 

 

     1.3.2   Device Construction and Characterization of Electromagnetic Response. 
 

     The second thesis objective involves two steps. First, the device developed using TO 

and the rapid design process must be constructed. Second, the physical construction must 

be measured. Basic S-parameter measurements are generated with AFIT’s focus beam 

measurement system. Measurements of the field concentration produced by the device 

are conducted with the focus beam measurement system and a Hertzian dipole probe 

attached to a table providing 2-D translation capability. 

      The calibration and setup of all test equipment and instrumentation is discussed in 

Chapter IV. Measurements generated with AFIT’s focus beam system are analyzed to 

characterize both resonance frequencies and field strength enhancement. Measured 

results are compared with the predicated performance obtained from simulations. General 

methods of enhancing both the manufacturing process and the field concentrating design 

are noted. 
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1.4   Organization of Thesis 
 
     This thesis is organized into five chapters. Chapter II provides theoretical background 

information related to the concepts investigated through this research effort as well a 

review of analogous past, recent, and on-going research efforts. Chapter III first describes 

the modeling of the field concentrator using TO and the rapid design process. This 

chapter specifically discusses the creation, implementation, and results of computational 

models built to produce some theory-based predictions. Chapter III next discusses the 

creation of a physical model with which experimental data will be collected. This 

chapeter provides a surface-level discussion of the manufacturing process. Chapter IV 

explains the manufacturing of the concentrator, the experimental equipment and 

instrumentation, the test procedures, and the results produced from the laboratory 

measurements utilizing the focus beam system. Chapter V includes conclusions drawn 

from the research effort and suggests avenues for follow-on research efforts that can 

build upon the results drawn in this thesis.  
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II.   Theory 
 

2.1   Chapter Overview 
 
     The field of metamaterials is still in its formative years with respect to more classical 

branches of electrical engineering yet there already exists a substantial body of research 

that this background investigation was able to draw upon. Chapter I introduced the 

objectives that directed the research effort for this thesis. This chapter substantiates the 

validity of the chosen research objectives by providing a selective analysis of classical 

and contemporary research efforts related to those objectives.   

     The research objectives of this thesis relate to the design, construction, and 

quantitative evaluation of an electromagnetic field concentrator or, simply, a field 

concentrator. This chapter provides necessary depth of knowledge in the field of 

electromagnetism to appreciate the design and simulation of a concentrator. Discussion 

topics include effective media, constitutive parameter extraction, and TO.  This theory 

discussion is backed by a review of both the finite element method (FEM) and the finite 

integration technique (FIT) used to conduct the simulations. 

     Beyond the theoretical underpinnings of this thesis, contemporary research efforts to 

exploit these and other concepts are introduced. Efforts utilizing TO for field 

concentration are particularly emphasized. 

 

2.2   Metamaterial Characterization 
 
     The burgeoning science of metamaterials may trace its roots to initial studies 

conducted in the last half of the nineteenth century when Bose started microwave 



11 

experiments with twisted structures [15] but colloquial conceptions of what it means to 

be a metamaterial have been shaped by the advances of the past two decades. Myopic 

public perceptions seem to link metamaterial research exclusively to the pursuit of 

electromagnetic cloaks, if not also the pursuit of a limited number of other fantastical 

applications. Admittedly, much research has focused on understanding and improving 

wave bending for the purposes of cloak formation. However, there is a multitude of 

research involving other applications.  

     The race to develop electromagnetic cloaks and other metamaterial applications has 

had the fortuitous result of greatly expanding body of knowledge about the design, 

physics, and testing of metamaterials. In particular, studies of metamaterials have led to 

alternate and sometimes antithetical theories describing the physics of metamaterials.  

     A prime example of disagreement is the explanation of the source for the physical 

phenomena observed from metamaterials subjected to electromagnetic illumination. 

Explanations of the origins of such phenomena generally divide scientists into two 

camps: those that ascribe the source of the phenomena to a theory of effective media and 

those that believe surface wave models are the best explanation.  

     The differing explanations for the origins of observed metamaterial physical 

phenomena are rooted in an inherent disagreement about whether or not the constitutive 

parameters can be negative or not. Temporarily accepting the fact that constitutive 

parameters may be negative over limited frequency bands, this section first examines the 

concept of a negative index of refraction. This section then introduces the concept of 

surface waves and contrasts it with an effective media approach. 
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     2.2.1   Negative Index of Refraction. 
 
     In his treatise, “The First Book Opticks,” Sir Isaac Newton described a property of 

light rays called refrangibility to explain how incident rays have the propensity to be 

“turned out of their way” [39]. The property he described was refraction. The familiar, 

non-mathematical definition of refraction describes how waves incident upon a medium 

at an inhomogeneous material boundary are bent by that medium. This bending is 

described by Snell’s law as [16] 

 n1sin(1)  n2 sin(2)  (1) 

where n  is the index of refraction,   is the angle of incidence or transmission, and the 

subscripts 1 and 2 denote the incident and transmission material respectively. The index 

of refraction n  is s material-dependent term and can be described as 

 c cn
f 

   (2) 

where c  is the speed of light in a vacuum,   is the phase velocity, f  is the frequency of 

the wave, and   is the wavelength of the wave in the material of interest.  

     A common mathematical abstraction, approximately valid outside of applications 

involving high amplitude electric fields such as lasers [16], is that the wave’s frequency 

is not modulated by the incident or transmission medium. This assumption simplifies 

comparisons of indices between media and clarifies various observations wave 

propagation in a medium including whether they speed up or slow down, whether they 

spread out or not, etc. For centuries, research has focused on understanding the index of 
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refraction while simultaneously employing the implicit assumption that the term must be 

a positive property.  

     All discussions about the sign of the index of refraction are rooted in Maxwell’s 

equations. The differential forms of the rotational equations and constitutive relations for 

time-harmonic fields in a source-free environment are [4] 

     E   Mi  jB,  (3a) 

 ,c j   iH J J D   (3b) 

 ,D E  (3c) 

 ,B H  (3d) 

where E  and H  are the electric and magnetic fields respectively, D  and B  are the 

electric and magnetic flux respectively, Mi
 is the impressed our source magnetic current 

density, Ji  is the impressed our source electric current density, Jc  is the conduction 

electric current density,   and   are the electric permittivity and magnetic permeability 

of the medium respectively, and j  is the imaginary term representing 1.  

     Plane waves are often exploited in research and use a reduced form of Equations (3). 

Simplifying these rotational equations given the assumption of a monochromatic plane 

wave with angular frequency   and wave vector k  leads to [70] 

 ,
c

kE H  (4a) 

 
,

c

kH E  (4b) 

     Time-varying electromagnetic fields have measureable energy and power that provide 

the means to track the travel and interference (both constructive and destructive) of 
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traveling waves in simulations. Power density can be described by the Poynting vector, 

which, in time-averaged form, is [4] 

 S 
1

2
 E  H*   (5) 

where   denotes the real part of the cross-product and *  denotes the complex conjugate.  

     The vector set k,  E,  and H  that form the foundation for the Poynting vector and 

previously defined equations define the electromagnetic nature of a material. This set can 

either be described as right- or left-handed depending on the sign of the material’s 

permittivity and permeability. When these constitutive parameters are both greater than 

zero the material is considered right-handed and when both parameters are less than zero 

the material is considered left-handed [70]. The traditional set of Maxwell’s equations is 

right-handed. Note that S,  the time-averaged Poynting vector, implicitly depends on the 

constitutive parameters yet only forms a right-hand set with the vector quantities E  and 

H  [70]. 

     Until the 1960s only right-handed sets were presumed to exist. In 1968, Veselago 

challenged the academic community by contending that left-handed sets were at least 

mathematically conceivable [70]. He asserted that a consequence of the assignment of 

right- or left-handedness is readily apparent when evaluating the direction cosines 

attached to the components of k,  E,  and H  for a wave traveling in a medium. These 

direction cosines ,   ,  and   respectively and may be compiled in a matrix as [70] 

 
1 2 3

1 2 3

1 2 3

G
  

  

  

 
 

  
 
 

  (6) 
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where the subscripts 1, 2, and 3 represent the different coordinate axes. The determinant 

of G  is denoted as ;p  1p   for right-handed media and p  1  for LHM.  

     Now consider a wave traveling from one medium into another. Given two media of 

finite conductivity and assuming no sources or charges then the tangential fields and 

normal flux values in each medium at the material interface should be equivalent and can 

be written as [4, 70] 

  2 1ˆ 0,n  E E  (7a) 

 n̂  H2  H1   0,  (7b) 

 n̂  2E2  1E1   0,  (7c) 

  2 2 1 1ˆ 0,n    H H  (7d) 

where n̂  is the unit normal vector of the incident medium at the interface and the 

subscripts 1 and 2 indicate the incident and transmission mediums respectively. 

     Now, using 1  and 2  to represent the incident and transmission angles respectively, 

refraction can be described per Snell’s law. The ratio of the indices of refraction can be 

written as [70] 

 n2

n1

sin(1)

sin(2 )


22
11

.  (8) 

Veslago underlined the assumption in Equations (7) that also appears in Equation (8) that 

both media are using the same vector set, be it left- or right-handed. The result of this 

assumption is positive refraction, displayed in Figure 1. When the rightnesses differ, 

Equation (8) must account for each material’s directional cosine matrix determinant and 

can be written as [70] 
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 2 2 2 2

1 1 1 1

n p
n p

 

 
  (9) 

An obvious conclusion from Equation (9) is that when one material is right-handed and 

the other material is left-handed, negative refraction such as that depicted in Figure 1 will 

occur. 

 

 

Figure 1.  Graphical depiction of negative and positive refraction in [30]. A field 
incident upon a material interface will experience reflection and refraction. The 
handedness of the material impinged upon, left-handed or right-handed, will 
determine the refraction direction. LHM cause negative refraction. 
 
 
     2.2.2   Realization of Negative Refraction.  

 
     Veselago postulated that LHM could exist but at the time of the publication of his 

article, no natural or manmade material existed to confirm his hypothesis. Were such a 

material to exist, physics as it has been known for centuries would be turned on its head. 
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Convex lenses made of LHM and illuminated by light rays in a vacuum would diverge 

the rays and left-handed concave lenses would converge rays, as is shown in Figure 2. 

 

 

Figure 2.  Lenses made of LHM published in [70]. Due to negative refraction, lenses 
exhibit opposite behavior in the presence of incident fields. Instead of converging 
the fields, a convex lens will cause divergence. A concave lens will focus the incident 
fields. 
 

 
Further, as was shown previously, the Poynting vector always forms a right-handed 

vector set with E  and H  so in a left-handed material the wave travels opposite the 

power/energy flow. Waves of this nature, pictured in Figure 3, are said to be backward 

traveling [36]. While still up to debate, LHM are therefore considered to have negative 
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group and phase velocity conditions that lead to a reversal of both the Doppler effect and 

the Vavilov-Cerenkov effect, as mentioned in Chapter I [70]. 

     Scientists seized upon the potential benefits of LHM and after decades of research, 

Shelby et al. created just such a material in 2001 that displayed negative refraction [57]. 

This achievement was realized with artificial materials utilizing subwavelength structures 

or inclusions that created an appearingly homogenous material to the incident radiaton’s 

relatively large wavelength. To this date in time, all materials exhibiting negative indices 

of refraction have been made of these artificial, frequency-dependent materials. 

 

Figure 3.  Power flow in a material in [70]. The top wave shows a field traveling in a 
right-handed material. The Poynting vector S is in the same direction as the wave. 
In LHM, S opposes the wave’s direction of travel; that is, energy flux flows opposite 
the direction of wave travel; group and phase velocity will be negative.  
 

          2.2.2.1   Negative Permittivity Materials. 
 
     Negative refraction is inherent in LHM, which are in turn the product of 

simultaneously negative effective constitutive parameters. No natural materials are left-
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handed so various mechanisms must be applied to artificially and simultaneously drive 

effective constitutive parameters negative. Pendry et al. showed that the frequency-

dependent nature of electric permittivity could be used to generate negative effective 

values of permittivity [48]. They based their findings on an analysis of the plasmon.  

     A plasmon is “a collective oscillation of electron density” [48]. Chemistry teaches that 

metals are a sea of valence electrons hence all metals exhibit a plasma frequency. Plasma 

frequency or  p  is the frequency at which the plasmons oscillate. It can be written in a 

form describing its harmonic motion [48] 

 
2

2 ed
p

o eff

n e
m




  (10) 

where ned  is the electron density, e  is the charge of an electron, o  is the permittivity of 

free space, and meff  is the effective mass of the electron. 

     The work conducted by Pendry et al. was designed to further old research on the 

dielectric properties of wire lattices. Some half a century previous in a publication 

introducing a new antenna made of parallel conductive metal plates, the idea of using 

wires to create a create an effective index of refraction was first posed [23]. Several years 

later in 1953 Brown investigated using what he called a rodded dielectric made from 

rectangular lattice of y-directed wires to create an artificial dielectric with a refractive 

index less than unity [7].  

     The new research conducted by Pendry et al. and pictured in Figure 4, employed a 

cubic wire lattice structure composed of infinite, very thin wires to investigate effective 

permittivity. By taking into account wire inductance, the plasma frequency can be 

rewritten as [48] 
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where a  is inter-wire spacing and rtw  is the radius of the wires. Based on this function, 

the frequency-dependent dielectric function can be written as [48] 

 
 

2

( ) 1 p

pj


 
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 


 (12) 

where p  represents plasmon energy dissipation. The product p  is negligible for 

metals in which  p  is normally small with respect to .p  Pendry et al. therefore 

proposed and subsequently confirmed that for frequencies less than the plasma frequency 

permittivity will be negative [46, 48]. In reality, there is a limited frequency band below 

the plasma frequency in which permittivity will be negative.  

 

          2.2.2.2   Negative Permeability Materials. 
 
     Negative permeability has also been achieved through engineered materials. Pendry et 

al. were able to develop a negative, effective permeability by pioneering the use of split-

ring-shaped microstructures [47]. Their attempts to manipulate permeability involved 

three types designs that evolved from a simplification from previous research with a 

square lattice of cylinders [48]. This lattice, shown in Figure 4, displayed limited 

magnetic response to an electromagnetic field parallel to the cylinder. Pendry et al. tried 

to correct by adding capacitive elements like gaps. The cylinders were redesigned into the 

split ring and “Swiss Roll” configurations, both of which are shown in Figure 4. 
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(a) 

   

  (b)  (c) 

Figure 4.  Wire and cylinder designs used to achieve negative constitutive 
parameters in [47]. (a) The wire lattice used by Pendry et al. to generate a negative 
permittivity. Wires have radius r .  Pendry et al. also used two different designs to 
achieve negative permeability. (b) Split cylinder design used to introduce 
capacitance during studies designed to generate negative permeability. (c) “Swiss 
Roll” cylinder also used to generative negative permeability. Designs (b) and (c) 
utilized an intracylinder spacing of d.  
 

     The geometry of these cylindrical designs made creating a compact structural array 

difficult and allowed the arrays to act like an effective metal for polarizations with the 

electric field not parallel to the length of the cylinders. In order to address the geometrical 



22 

concerns of the array and the anisotropic nature of the cylindrical lattices, Pendry et al. 

created the SRR from their split cylinder design.  

     The creation of the split-ring resonator was elegant yet simple.  A single split ring can 

be modeled as an inductance-resistance-capacitance (LRC) circuit. A SRR can partially 

be modeled as two LRC circuits.  However, Smith [66] explains that in the presence of a 

time-varying magnetic field, a full model of the SRR requires consideration of the gap 

between the concentric rings. He explains that this gap provides a capacitance that allows 

current to flow, as shown in Figure 5. Given the incidence of a time-varying field then 

Faraday’s law dictates that the induced electric currents will produce magnetic flux “that 

may either oppose or enhance the incident field” [66]. 

 

 

Figure 5.  Top down view of the split cylinders used by Pendry et al. in [47]. A 
magnetic field parallel to the cylinder will induce currents to flow as pictured. 
Therefore, the stronger the magnetic field, the larger the current. 
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     The gap between the rings also serves to simultaneously lower the resonant frequency 

of the SRR while concentrating the electric field. Smith explains that the splits in the 

ring-shaped traces also serve to concentrate the electric field and lower the resonant 

frequency of the SRR [66].  

     Using the SRR as a 2-D approximation of the cylinder, Pendry et al. created a 

structure with cubic symmetry. Stacking these cubes into periodic arrays with spacing of 

a  created a compact lattice that mimics the continuous cylinder but minimizes electrical 

activity in the direction of the metal cylinders by eliminating the continuous electric path 

of those cylinders. 

     Pendry et al. used the newly introduced split ring resonator to tune the effective values 

of bulk permeability that they argued should exist [47]. The premise of their 

mathematical proof was that a material formed from subwavelength inclusions should 

create a homogeneous structure for which a discussion of average fields would be logical. 

They showed that the effective permeability of the split rings can be mathematically 

represented in terms of the original square lattice of cylinders and from the geometry of 

the split rings. Pendry et al. applied the following assumptions to first provide an accurate 

calculation of the inter-element capacitance of the SRR in Figure 6 [46] 

 ,r w  (13a) 

 ,r d  (13b) 

 ,l r  (13c) 

 ln ,w
d


 
 
 

 (13d) 
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where r  is the radius of the inner SRR, w  is the width of the split-ring traces, d  is the 

channel gap width of the SRR, and l  is the spacing between the sheets of rings. 

Incorporating the capacitance in any calculation of the effective permeability was 

important because the inter-ring capacitance can cause resonance lowering. This drop in 

the resonance can potentially compromise the homogeneity of a metamaterial structure 

such as the one built by Pendry et al. so small periodic structure spacing should be 

enforced. They showed that the effective permeability was [47] 
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  (14)  

where 1  is the resistivity of the split rings and o  is the permeability of the 

environment or free space. 

 

 

Figure 6.  SRR based on a 2-D slice of the split cylinders proposed in [47]. Stacks of 
rings are made to approximate a cylinder while avoiding the continouous electrical 
path of a cylinder. In Equations (13) through (16), w  is used in place of c  for the 
trace width. 
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          2.2.2.3   Double Negative Metamaterials. 
 
     More than three decades after Veselago introduced the idea of LHM, the existence 

metamaterial displaying simultaneously negative constitutive parameters was 

experimentally confirmed [66]. Smith et al. developed the first DNG metamaterial using 

a composite medium of periodically placed SRRs and thin wires [66]. The experiment 

was based on the analysis of effective permittivity and effective permeability for two 

polarizations designed to excite magnetic and dielectric responses. First, assuming 

magnetic coupling given an array of SRRs, an effective permeability in the form of 

Equation (14) was written in the following resonant form [66] 

 eff  1
F 2

 2 o

2  j
 (15) 

where F  represents the ratio of the area covered by the split ring’s interior to the area of 

the unit cell,  o
 is the natural frequency, and   is the dissipation factor. The later two 

terms  o  and   can be defined with respect to Equation (14) as 

 
2

2 3

3
2ln

o
lc

w r
d





  (16a) 

  
2l 1
 2ro

 (16b) 

The resonance in permeability can then expressed through the dispersion relation [66] 

 
   

ck


   
  (17) 

where k  is the wave number or the magnitude of the wave vector k  and is defined as 
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 k 
2


 (18) 

Smith et al. plotted the dispersion curves for illumination of just the SRRs by both 

polarizations and then repeated the plots for the SRRs in the presence of thin wires 

spaced uniformly between the rings. The plot of the dispersion for parallel magnetic field 

polarization incident on the SRR displays a gap, as shown below in Figure 7. 

 

  

  (a) (b) 
 

  

  (c) (d) 

Figure 7.  Dispersion curves for SRRs and SRR-wire combinations in various 
orientations from [66]. (a) Plot of dispersion forH  parallel to the SRR axis. (b) Plot 
of dispersion for H  perpendicular to the SRR axis. (c) Close-up view of (a) with a 
wire added. The dotted line represents the SRR dispersion. (d) Close-up view of (b) 
with a wire added. The dotted line represents the SRR dispersion only. These plots 
show lower and upper passbands separated by a gap caused by either a negative 
permittivity or permeability. 
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     Smith et al. claimed that by assuming both a resonant effective permeability and a 

positive and relatively constant effective permittivity the gap observed in Figure 7 above 

indicated a negative effective permeability. They could not determine whether the 

observed gap was due to a magnetic or electric response. That is, they could not 

determine whether the gap was the outcome of magnetic resonance with an associated 

constant effective permittivity or due to electric resonance with an associated constant 

effective permeability. Their findings led to attempts to control the permittivity and hence 

the background dispersion with a lattice of wires. The goal of these later investigations 

was the differentiation of the electric and magnetic responses so that the superposition of 

their responses could be better articulated. 

     The conclusions about the results of the superposition of wire and ring 

microstructures, pictured in Figure 7, are best summarized from the plot of transmitted 

power recreated in Figure 8 below. The passband generated using a negative effective 

permittivity from the wire lattice exists in the original dispersion gap of the SRRs. 

Therefore Smith et al. found the combination of two kinds of microstructures, each 

providing a different negative constitutive parameter, created LHM that allowed wave 

propagation. The presence of the gaps between the LHM dispersion curves in Figure 7 

serve as reminder of the limited nature of the wave propagation allowed [33]. 
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Figure 8.  Experimental transmission data for a DNG metamaterial formed from 
SRRs and a wire lattice in [66]. The results are obtained for the case of H  parallel 
to the SRR axes. The solid line is the plot for illumination of the SRR array. The 
combination of the SRR array and the wires is plotted with a dotted line. Adding the 
wires creates a pass band where a dispersion gap for the SRRs existed. 

 

     2.2.3   Surface Wave Phenomena. 
 
     The concept of negative refraction has been extensively researched in the last two 

decades and most scientists appear to subscribe to the associated concept of materials 

with simultaneously negative constitutive parameters. However, there exists a minority 

that subscribes to a concept antithetical to LHM: surface waves. The most outspoken 

proponent of the surface wave hypothesis is Benadikt Munk, who went so far as to author 

a book expounding what he considered gross misunderstandings about metamaterials rife 

within the research community [36].  In his book, Munk conducted a thorough critique of 
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the some of the more extraordinary claims associated with the application of 

metamatierials. Of particular interest to this thesis, Munk aimed to highlight and correct 

not only what he argued was an erroneous belief in negative constitutive parameters but 

also the assertion that certain physical phenomena are the exclusive result of LHM and 

their applications. These phenomena include [36] 

     1. a negative index of refraction characterizes the material, 

     2. increasing separation between a wave front and the source associated with signal   

         phase advancement, 

     3. increasing separation between a wave front and the source associated with an   

         increase in evanescent wave amplitude, and 

     4. the electric and magnetic fields can form a left-handed set with the phase  

         propagation direction. 

     Munk and other scientific counterculturalists ascribe the generally accepted 

characteristics of LHM listed above to surface wave behavior. Surface waves can be 

visualized as plane waves. These planes of constant phase propagate along and parallel to 

a material interface defined by a discontinuity in the index of refraction, as pictured in 

Figure 9 [4]. Munk has worked extensively with surface waves on periodic structures in a 

stratified medium as well as conducted theoretical investigations of surfaces waves on 

finite frequency selective surfaces (FSS) [36, 37]. His definition of surface waves for 

periodic structures in a stratified medium is succinctly given as “grating lobes trapped 

inside the dielectric media” [37]. These FSS grating lobes are the mechanism he uses to 

explain the various observed LHM phenomena.  
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Figure 9.  Transmission response at a material interface for a wave incident at the 
critical angle in [4]. This is the condition i cθ = θ .  The planes of constant phase 
generated by a transmission angle tθ  of 90o  define a generated surface wave. 

 

     Munk’s argument that grating lobes explain all physical phenomena associated with 

LHM is grounded in long-accepted theories of transmission lines. Consider first a 

continuous, infinite metamaterial array. The definition of continuity is borrowed from 

transmission line theory and its definition of input impedance. Given the load impedance 

ZL  and the characteristic line impedance (not the measured line impedance), Zo  then the 

input impedance Zi  is [25] 

 Zi  Zo
ZL cos klline  jZo sin klline 
Zo cos klline  jZL sin klline 

 Zo
ZL  jZo tan klline 
Zo  jZL tan klline 

 (19) 
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where lline  is the distance from the load at which impedance is measured. Then for a half 

wavelength spacing, lline   2 , the product klline  m , and Zi  ZL  for all integers 

.m  This equality means that at the specified conditions, the transmission line is irrelevant 

in the analysis. Consequently, Zi  will always equals the ZL  no matter the value of ZL  

and the elements forming the transmission line can therefore be considered continuous 

and forming a wire. 

 The results of Equation (19) above show that the smallest nonzero element spacing 

of the transmission line occurs for 1.m   Munk used this fact to define an infinite 

array of elements with inter-element spacing of Dz  and a phase advance of  z z azkD s s  

where sz  represents the magnitude of the ẑ -component of the re-radiated wave’s 

specular direction vector and saz  represents magnitude of the z-component of an 

arbitrarily directed re-radiated wave [36]. Munk showed that the 2  condition for the 

inter-element spacing is met for 1m   and 1zs    [36]. The positive value of sz  

represents upward-directed grazing incidence and the negative value of sz  represents 

downward-directed grazing incidence. Thus, given Equation (19) above and the 

conditions on the continuous transmission line then re-radiation is possible in the 

principal or specular and forward directions only (given an infinite array). Other re-

radiation directions are introduced when the continuity condition doesn’t apply and 

Dz   2,  as shown in Figure 10.  
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Figure 10.  Grating lobe formation due to wave on individual elements with 
separation Dz  in [36]. Grating lobes will only form for a separation of more than
 2 and no refraction will occur for continuous, infinite media.  

 

Using the previously defined variables, the total spectrum of directions of the 

inhomogeneous re-radiated plane wave, r̂ , can be written as [36] 

 ˆ ˆ ˆ ˆ ˆˆ ˆx y z x y z
x z

r xr yr zr x s k yr z s n
D D
 



   
          

  
 (20) 

for y  0  with 

 
2 2

1y x z
x z

r s k s n
D D
    

       
  

 (21) 

where Dx  is the inter-element spacing in the x direction. 

     Munk pointed out that the other re-radiation directions are simply grating lobe 

directions [36]. Per Figure 10, a backward-traveling wave exists for the lowest grating 

lobe, when the wave’s phase velocity opposes the incident phase velocity. Therefore the 
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backward-traveling waves that typify metamaterials only exist for Dz   2,  a spacing 

far greater than the 10  spacing required used to consider metamaterials homogeneous.  

Below this 2  threshold, grating lobes are suppressed. It can be deduced that no 

negative refraction can exist because below the threshold, reradiation is only allowed in 

the specular or forward directions. 

     The conclusion applies only to infinite arrays that are impossible to manufacture and 

test. Only finite arrays can be manufactured and, per Munk, these arrays will respond 

differently than infinite arrays to incident waves due to different supported currents [36]. 

First, the residual surface current of a finite array accounts for end currents off the edges 

of the array that help support a variety of surface waves impossible on an array of infinite 

extent. Second, a finite array will produce both a main beam and a variety of suppressed 

sidelobes in response to incident waves.  

     The surface current associated with a finite array is large and can be stronger than the 

current associated with the main beam. A surface current will radiate and contribute to 

the farfield pattern but due to poor radiation efficiency, Munk showed that the surface 

current response is typically 14 – 20 dB lower than the main lobe [36]. End currents will 

also re-radiate however due to radiation inefficiency and their low strength, they 

minimally contribute to the response of the surface currents. The pattern from the residual 

current radiation is very similar to the pattern observed from a metamaterial as seen in 

Figure 11. If refraction were dominant in a metamaterial, the noted similarity in Figure 11 

would not exist. In fact, neither would the 14 – 20 dB lower response nor the sidelobes in  
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so Munk finished his analysis of finite arrays by reaffirming his belief that metamaterials 

don’t negatively refract [36]. 

     Munk concluded his extensive discussion of surface waves and grating lobes by 

dissecting the foundation of metamaterial research: Vesealago’s paper on LHM. Munk 

pointed out that while Veselago’s derivation of a negative index of refraction was 

mathematically proper, it disregarded applications that could result in negative time or a 

violation of causality [36]. Munk’s conclusion was drawn from the fact that materials 

with n  0  experience a phase delay and materials with n  0  experience a phase 

advance, as shown in Figure 12.  

 

 

Figure 11.  Comparison of surface current radiation between Teflon and a negative 
index material in [36]. Munk used this plot to show that the farfield radiation 
pattern supposedly due to negative refraction looks very similar to the pattern 
formed by grating lobes generated with Teflon.  

 

     His first complaint with Veselago’s argument was that the phase delay and 

counterclockwise rotation violate Foster’s Reactance Theorem (note, however, that no 

such violation exists at least for lossless material [14]). Even if such a phase delay can 
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exist, Munk argued, certain applications such as the frequency-independent perfect lens 

argument by Pendry [45] would violate causality. Pick two rays entering a DNG lens. 

Munk argued that if two rays entering a DNG lens, one will experience a phase delay 

with respect to the other. Once in the material, that same phase-delayed ray would require 

a phase advance so that both rays would cross the focal point not only in phase, per 

Pendry’s arguments [45], but at the same time. Admittedly, waves can arrive in phase at 

the same location at different times but only as a mathematical abstraction and for a 

single frequency only  [36]. However, the benefits of the perfect lens would be most 

enjoyed for a large band of frequencies experiencing temporal and spatial focus. 

 

 

Figure 12.  Depiction of Smith chart and the resulting rotation for different input 
impedances in [36]. Munk claimed that the input impedance for a DNG lens 
requires a phase advance or counterclockwise rotation about the Smith chart 
associated with a violation of causality. 
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     In summary, Munk brought up a set of compelling counterclaims to the existence of 

LHM. There many avenues for rich debate over the existence of LHM or the causes of 

the phenomena attributed to such material however the scope of this thesis is merely 

focused on exploiting some of the observed characteristics attributed to LHM. Be these 

characteristics due to grating lobes or negative constitutive parameters, the existence and 

usefulness of such characteristics is undeniable.  

 

2.3   Transformation Optics 
 
     Science fiction has paralleled the diligent efforts of scientists who have conducted 

research that has explicitly or implicitly advanced our understanding of TO. Popular 

cultural references to TO over the last three decades can be found in both electronic and 

print media, from Star Trek and the Romulan’s cloakable Stormhawk class warship to 

Harry Potter’s cloak of invisibility. According to a review of the subject by Kundtz, 

science fact and fiction merged when the use of TO was first published in 2003 in an 

application for negative index superlenses [24]. Since that introduction, the use of TO has 

quickly become a prominent tool in the search for cloaks, optical black holes, negative 

refraction lenses, field rotators, waveguides, and more [24, 31, 56].  

     The fabrications of science fiction may make the proposed applications of TO equally 

implausible yet not only is TO achievable, it occurs naturally and is commonplace in 

scientific applications. Firstly, TO appears naturally in the form of a mirage.  

Temperature inversions near the earth’s surface create a non-uniform medium that bends 

light and produces a displaced reconstruction of distant objects or the sky. Secondly, this 
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mathematical sleight of hand is commonly implemented in computational methods to 

create perfectly matched layers (PML, called open boundary conditions in certain 

computation programs) [5, 68]. 

     2.3.1   Invariant and Conformal Maps. 
 
      Leonhardt and Philbin pointed out in [26] that any discussion of TO involves the 

specialized application of general relativity. General relativity involves the curvature of 

space-time; TO is employed to create geometries that bend light in an arbitrary and 

desired manner. TO may appear to be focused exclusively on ray optics with the express 

purporse of developing devices such as gradient index lenses that utilize inhomogeneous 

or non-uniform constructions to effect anisotropic constitutive parameters and unusual 

light bending. However this conclusion is false; TO is not ray optics. TO is the subject of 

wave optics. Kundtz points out that the first problem with ray optics is that it does not 

distinguish between electric and magnetic fields yet these differences must particularly be 

accounted for in subwavelength devices [24]. He further points out that the ray 

approximation also falls short because it neglects the wave nature of light and 

consequently fails to account for the diffraction that occurs when the microstructures 

forming a metamaterial are not negligibly small with respect to the incident wavelength. 

     Despite the deficiencies of applying ray optics to electric and magnetic fields in the 

microwave regime, the concept of ray optics translates well to wave optics and provides a 

simple means with which to understand electromagnetic wave interactions with materials. 

Ray optics is grounded in Fermat’s principle, which most people associate with the 

concept of light traveling the shortest optical path possible between two points (a straight 
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line). However, as in any natural phenomenon there are exceptions; Fermat’s principle 

should be written to state that light will travel an extremal optical path length between 

two points, such as in Figure 13 [26]. Light traverses a straight line or the shortest path 

length for uniform media but follows a curved path for nonuniform media whose index of 

refraction is spatially variant. 

 

 

Figure 13.  Example of light following an extremal path to a point P  in [26]. A light 
traveling between the two focal points F  and F will travel the same optical path 
length through the lens regardless of the location of the path chosen, depicted by the 
thin black lines. Light from F  will reach P  by taking the longest optical path, the 
thick black line through the center of the lens. Compared to the virtual path FCP  
denoted by the red line, FP  is longer by an amount equal to the difference between 
the sum of the short sides and the long side of the triangle .F CP  

 

     The engineered geometries that bend light per the designer’s desires lead to contorted 

coordinate systems. It is important to remember when viewing the contorted coordinates 

such as those in Figure 14 that one can “not bend the spoon. That’s 

impossible...it is not the spoon that bends, it is only yourself” [59]. In other words, any 

apparent coordinate curvature is an illusion based on the mathematical manipulations of 
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TO. In fact, Fermat’s principle holds for transformed space [26]. Following Fermat’s 

mathematical argument as laid out in [26], transformations in Cartesian space and 

confined to the x-y plane produce an optical path length OPL  is written as [26] 

 OPL  n dx2  dy2  n d x
2  d y

2

  (22) 

where the prime notation defines transformed space. The transformed differential terms 

can be rewritten as [26] 

 ,x xdx dx dy
x y
  

  
 

 (23a) 

 .y ydy dx dy
x y
  

  
 

 (23b) 

     By using Cauchy-Riemann differential equations displayed here as for two variables 

u  and v  as  

 ,u v
x y
 


 

 (24a) 

 ,u v
y x
 

 
 

 (24b) 

the radicand of the transformed space from Equation (22) above can be related to the 

radicand in the original space by a constant. Leonhardt and Philbin show this equality to 

be [26] 

 
2 22 2

2 2 2 .x x y yn n n
x y x y

               
                            

 (25) 

Transformations developed using Cauchy-Riemann will be conformal; that is, they will 

preserve the angles formed by gridlines and therefore preserve the applicability of 

Fermat’s principle in transformed space. However, conformal transformations place a 
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limitation on the cross-applicability of Fermat’s principle because they are only 

applicable “to materials with an isotropic refractive index profile,” [26].  

 

          

  (a) (b) 

Figure 14.  Optical conformal mapping in [26]. (a) This is the orignial Cartesian 
coordinate system before transformation in physical space. (b) Straight Cartesian 
grid lines converted via optical conformal mapping. Note that the conformal nature 
of the transformation ensures the grid lines in the curved coordinate system are 
orthogonal, just as they were in the original Cartesian coordinate system.   

 

     Coordinate transformations preserve the bending of rays but these transformations 

must also hold for electromagnetic waves in TO applications. Proof of the applicability of 

Fermat’s principle for waves can be developed by an evaluation of Helmholtz’s wave 

equation with particular emphasis on rewriting the equation’s Laplacian [26].  A 

generalized version of Helmholtz equation is [16] 

 
2

2 2
2 0n

c



 
   
 

 (26) 

where  is the amplitude of either optical polarization for the current example. The 

Laplacian can be written in terms of complex terms as 
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       

       
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. (27) 

Leonhardt and Philbin then use Equations (24) to show that the first and second terms on 

the right-hand side of Equation (27) can be written as 

 ,y xj j j
x y y y x y

          
       

          
 (28b) 

 ,y xj j
x y y y x y

          
       

          
 (28a) 

Completing the product shown in Equation (27) leads to  
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                                

 (29) 

This result shows that the mapping of a wave from one coordinate to another is both 

invariant and conformal. The index of refraction experienced by a wave in the 

transformed space can therefore be described by Equation (25). 

 

     2.3.2   Transformation Optics Approach with Constitutive Parameters. 
 
          The Helmholtz equation dictating wave optics should be invariant during a 

coordinate transformation. However, many transformations are not conformal. Exact 

treatment of wave propagation and interaction with transformed space therefore requires 

derivation from Maxwell’s equations. The curl relationships between fields and sources 

were provided previously but for simplicity they are reproduced here as the full set of 

electric and magnetic source-free Maxwell’s equations such that 
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 ,j  E B  (30a) 

 ,j H D  (30b) 

 0, D  (30c) 

 0. B  (30d) 

     The application of Maxwell’s equations to the four-vector manifold Minkowski space 

or spacetime and transformations therein are best related by the use of Einstein notation. 

Using this notation, a range of numbers can be denoted by 

 V i  V i ,i  1,2,3  (31) 

where the superscripted letter ( i  in this equation) represents an axis from Euclidean 

space. As an example l 3  would indicate a z-directed length component l,  not the cube of 

the length. Distances and summations can be expressed with covariant and contravariant 

vectors. Covariant vectors transform with the basis vectors of space and are denoted by 

subscripted indices, such as Vi  and have no real geometrical definition. Contravariant 

vectors transform against a basis and are the tangent to a manifold at a particular point. 

Contravariant vectors are distinguished by superscripted indices V i  [51, 75]. Vector 

summation is denoted by the presence of two of the same indices so that 

 ViWi  V iW i  ViWi

i

  (32)    

for all i  and allows the consolidation of notation so that 

 Vijk
i  Vijk

i , j &k  1,2,3
i










 (33) 
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Now consider the form of a differential length as it is transformed from original space 

 idx  to prime space  .idx   The differential term of one coordinate can be written with 

respect to the other as [26] 

 
i

i ,i ixdx dx
x







 (34a) 

 
dxi 

xi

x i
dx i .  (34b) 

A comparison of the left- and right-hand sides of Equations (34) shows that the 

transformation matrices  i

i  and  i

i  are the leading differential terms of each right-hand 

side term and are thus labeled [26] 

 
i

i


x
i

x i
,  (35a) 

 i

i 
x i

xi
.  (35b) 

These transformation matrices are simply Jacobian matrices. For a Cartesian-to-Cartesian 

transformation, the matrices can be written as 
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 (36) 

     The differential terms of Equations (34) can be compared to Equations (35) to show 

that the product of the transformation matrices is the Kronecker delta 

 i i i
j i j ,



    (37a) 

  j

i   i

i j

i .  (37b) 
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The transformation matrices are therefore inverses of each other. They can be used to 

derive the metric tensor in the original and transformed coordinates, denoted per the 

current convention as ijg  and .i jg    Distance is an invariant quantity therefore a 

differential element of area can be written as [75] 

 gijdx
idx j  g i jdx

i dx j   (38) 

where it is clear the transformation matrices are inverses. Rewriting these equations 

yields  

 g i j   i

i j

j gij,  (39a) 

 gij  i

i j

j g i j ,  (39b)  

for the orthonormal transformation matrices where 

 
1

 
T
. (40) 

In this case, Equation (40) can be generalized for a tensor F  as  

 F  TF  (41) 

with 

    i

i ,  (42a) 

 T  i

i .  (42b) 

     The relationship of Equation (41) provides a nearly complete description of the 

invariant transformation of constitutive parameters. Following the excellent geometrical 

derivation of [76], the concept of differential area can be extended to derive the complete 

equations for the transformed constitutive parameters. This derivation yields a coordinate 
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system in which corresponding components of the permittivity and permeability tensors 

are equal due to form invariance of Maxwell’s equations. The familiar equations are 

 
 

i j
i ji j ij

i
i

,
det

 

 

 



 



 (43a) 

 
 

i j
i ji j ij

i
i

,
det

 

 

 



 



 (43b) 

 

     2.3.3   Transformation Optics Implementation. 
 

     Implementation of TO can range from very simple to various complex. The math 

involved could involve either a single- or multi-dimensional transformation. Further, a 

transformation might occur within the confines of a single coordinate system, e.g. a 

Cartesian-to-Cartesian transformation, or it could involve a set of intermediate 

coordinates employed to make analysis simpler. An example of intermediate coordinates 

would be the conversion from Cartesian to cylindrical coordinates to facilitate 

development of radial transformations for a cylindrical cloak or wave rotation.  

     Chief among priorities for TO implementation is the consideration of the boundary 

behavior for the transformation. Discontinuous transformations do not provide a smooth 

gradient transition as waves exit the transformed or prime space and are well-suited for 

structures whose design is purpose is a spatially isolated effect [24, 52, 74]. Thus the field 

modulation within the transformation device cannot be transferred to an outside medium. 

Embedded transformations purposely include a smooth transition from prime space to 

original space so as to effect some permanent change on the surrounding electromagnetic 

environment.   
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     The term “embedded transformation” was coined to fully describe the treatment of 

electromagnetic wave transformation material interfaces [52]. The term was borrowed 

from research in the early 1980s conducted to more efficiently account for material 

inclusions in Schrödinger’s equation that provided localized potential and therefore field 

perturbations [19]. The author of that research claimed that it was “possible to deal with a 

small Hamiltonian confined to the perturbed region of the crystal, adding on an extra 

effective potential which automatically ensures that the wavefunctions match onto the 

substrate” [19]. This method of adjusting the Hamiltonian of the surrounding region to 

account for the boundary surface potential was termed “embedding” [19]. The process of 

embedding provides a continuous transition of electromagnetic effects. 

     The enforcement of a continuous transition has important applications in the study of 

transformation optics. To emphasize the potential applications, Rahm et al. derived the 

mathematical arguments differentiating discontinuous and embedded transformations and 

then demonstrated them as seen in Figure 15. The discontinuous method obviously 

requires the consideration of the boundary between Region I and free space during the 

development of the transformation. The embedded method specifically ignores the 

boundary. The arrows of Figure 15 indicate the direction of power flow and show that 

embedded transformations ensure continuous and natural power flow between the 

transformed and free space regions.  

     The discussion of smooth inter-boundary power flow implies the possibility of a 

reflectionless boundary to the inter-region boundary where the electromagnetic waves 

escape back into the surrounding medium is continuous [52], as is shown in Figure 16.  
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Note that while embedded transformations can result in suppressed reflections, 

diffraction is not suppressed and, in fact, is on obvious display in Figure 16. 

 

   

   (a)   (b) 

Figure 15.  Spatial coordinate transformations illustrating the embedded 
transformation method in [52]. (a) Ray path of parallel beam shifter created with a 
linear spatial coordinate transformation. The black arrows show the ray path for a 
discontinuous transformation while the green arrows represent an embedded 
transformation. (b) Design of a split beam shifter using the embedded 
transformation process to enact a nonlinear spatial coordinate transformation. 

 

     Smooth power flow and suppressed reflections open transformation optics to a number 

of additional applications beyond the limits of discontinuous transformations. Beam 

steering is one prime example of the use of embedded transformations. Another 

important application of embedded transformations is field concentration, which is the 

focus of this thesis. 
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 (a) (b) (c) (d) (e) (f) 

Figure 16.  Field and power measurements of a split beam shifter in [52]. Using 
plane wave illuminaton, the normalized electric field and power flow are plotted. 
Plots (a) – (c) use a beam shift parameter to designate perpendicular incidence. Plots 
(d) – (f) use a beam shift parameter to designate an oblique incidence plane wave. 
Note the presence of diffraction, particularly as the split beam exits the dielectric. 

 

2.4   Rapid Design of Metamaterials 
 
     The plethora of research publications on TO has overwhelmingly relied on simulations 

to substantiate proposed metamaterials. There is a noticeable dearth in papers that 

connect the cognitive conception of a metamaterial design to its physical realization. In 

fact, the task of linking the geometry of a basic repeated metamaterial cell or metaparticle 

to the Bloch parameters of a device is a rather involved task. Certainly, metaparticles 

have been optimized before but until now a means of rapid metamaterial has not been 

well defined [55]. A method has been developed by AFIT that allows effective and fast 

recreation of the relative bulk media properties demanded by TO metamaterial devices 

[43]. 
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     2.4.1   Design Methodology.  
 
     The AFIT rapid design methodology is based in part on the work of [28]. The 

methodology can be described as matching the bulk material parameters of a 

metamaterial design to a library of metaparticles or cells. The application of this 

methodology requires several computationally intensive steps and necessitates upfront 

work to create a library of cells. The library is generated from one or more cells that have 

several geometrical features that can be parameterized. The rapid design code 

implemented by AFIT utilizes a library based on the variation of three geometrical 

features for a single cell, one employed in [43, 55]: a  (the spacing between parallel 

planar boards of cells), r  (the curvature radius), and s  (the arm height). This design is 

shown in Figure 17. More parameters could be chosen and a larger library could be 

created at the cost of greater computation time.   

 

 

Figure 17.  SRR unit cell with geometrical variables used for the rapid design 
process in [43].  
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     In summary, the first step in the rapid design process is to create the library of 

reference cells. Paul explains that the next step is simulating each cell to gather the S-

parameters [43]. These simulations utilize a unit cell with periodic boundary conditions 

so as to model an infinite metamaterial medium. The S-parameters extracted for a cell 

really represent the bulk electromagnetic response or the response of the entire infinite 

material. The effective bulk material parameters for each library entry can therefore be 

determined from the calculated impedance and index of refraction developed from the 

corresponding S-parameters extracted for that entry [43]. Either the effective/extracted 

constitutive parameters or modified parameters for each library entry are then curve fit to 

an appropriate mathematical model. The result of each curvefit is a set of parameters that, 

when expanded in a three-variable geometric series, display dependence on the 

parameterized cell variables  , ,a r s . The coefficients of the expansion provide the 

mathematical link between the parameterized cell values and bulk material parameters of 

the cell. These parameters can be used to design approximations to the anisotropic 

designs generated in metamaterial research efforts. 

 

     2.4.2   Bulk Media Property Extraction.  
 
     The explicit goal of extraction is the recovery of effective bulk material properties. 

The use of these effective values is central to the field of metamaterials which is why 

there has been significant research about the best extraction method and disagreements 

about the scientific rigor with which the subject of extraction has been approached [61].  



51 

     At the core of the debate about extraction techniques is the implication that a 

collection of discrete particles can represent a material that displays the properties of a 

homogeneous material. A homogenous material is characterized by effective parameters 

that are “a result of a more or less precise averaging of the Maxwell equations for true 

(microscopic) fields and polarizations at which the polarization of particles is replaced by 

the polarization continuously distributed in the medium,” [61].  

     Unfortunately, homogenization is not necessarily a straightforward task. Some 

published homogenization or extraction methods have been shown to suffer from 

violations of causality or passivity, which requires   , n  0  [61]. Other methods 

are incorrectly assumed to apply to the entirety of a material’s passband, where 

homogenization can be applied. In the passband however, certain frequencies can result 

in a resonance shortening of the wavelength, increasing the relative size of the lattice 

periodicity such that the quasi-static approximation (displacement current in Ampere’s 

law goes to zero), used for the homogeneity assumption cannot be applied [61].  

     Extraction techniques are focused on both conceptual (infinite) and physical (finite) 

periodic lattices. These structures can be homogenized with proper care during the 

derivation of the homogenization procedure. Homogenization procedures can be grouped 

into two general approaches, one derived from evaluation of Maxwell’s equations at the 

level of a unit cell and the other one derived from the bulk material’s S-parameters. 

     The first homogenization approach describes efforts to use the local fields of a unit 

cell in a lattice [64]. Pendry et al. popularized a simplistic means of microscopic 

homogenization that describes the effective constitutive parameters for periodic lattice 

spacing much less than a wavelength in terms of the average local fields [47]. Extraction 



52 

of these effective parameters from reflection and transmission coefficients is a well-

established application of homogenization.  

     Time-domain techniques for retrieving the bulk parameters of linear media for 

microwave were introduced as early as 1970 [41]. Since then, several methods have been 

developed to apply a rigorous homogenization of metamaterial arrays. Most methods 

focus on the linear, passive responses to plane wave excitations of planar metamaterial 

arrays. These methods avoid complicated chiral and bianisotropic designs [10, 29, 63, 

67]. Physically proper techniques address homogenization and particular issues such as 

dynamic intra-inclusion coupling or the definition of the free space-array interface 

through methods such as transition layers developed by Drude [29, 62].  

     Previous AFIT research used a technique tailored to address extraction issues such as 

first boundary determination (the plane beyond which a reflected plane wave regains its 

plane wave form), effective slab thickness determination, and more [10]. Unfortunately, 

this method violates the second law of thermodynamics by allowing negative energy in a 

portion of the resonance band [10, 61]. However, there are numerous other examples of 

S-parameter extraction techniques based on everything from line-reflect-line calibration 

techniques to Kramers-Kronig relationship that do not appear to have this limitation [34, 

67]. 

     AFIT’s rapid design method utilizes several of these techniques but primarily relies on 

an extraction technique proposed by Smith et al. that is designed for passive materials 

and accounts for causality [65]. The transmission, reflection, impedance, and index of 

refraction terms are related in forms shown as [65] 
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where d  is the length of the 1-D continuous material slab held in free space, R  is the 

reflection parameter S11 , T is the transmission parameter S21 , and   is the impedance. 

The terms A1  and A2  are defined in [65] as functions of R  and T  that go to zero for a 

hypothetical lossless material. The retrieved or effective values of permittivity and 

permeability are 

 ,r
n




  (46a) 

 ,r n   (46b) 

and can be related to free space by 

 ,r
o





  (47a) 

 .r
o





  (47b) 

     Equations (44) and (45) are multi-branched; they lead to multi-valued permittivity and 

permeability terms. Smith et al. address such ambiguity in Equation (45) by using the 

conditions of passivity. Only the positive root for   will be used given the condition on 

the real portion that   0  . The passive condition on the index of refraction requires 

the electromagnetic absorption loss   0   and leads to 
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     The arccosine term in Equation (48) introduces the issue of branch selection for    

which is not addressed by the passive condition. Smith et al. suggest determining the 

proper branch by repeated measurements of a sample with minimized thickness [65]. The 

sign of the branch selected for    is driven by the passive condition on   . Given 

an integer m ,     can be written as 

  
 1 2 21cos 1

22 .
R T

mTn
kd kd


             

 
 
 

 (49) 

     Clearly, Smith et al. have attempted to design an extraction technique that provides 

physically realizable results that account for the requirement of passivity in addition to 

causality. Discussions of homogenization also deal with one other big issue: the material-

environment boundary [10, 61]. Boundary selection allows unambiguous determination 

of the phase of the reflected waves. This boundary can be difficult to discern in 

metamaterials but Smith et al. address this problem for SRR metamaterial arrays by 

stating that the selection of the reference plane selection doesn’t critically affect 

extraction results. 
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     2.4.3   Design-To Modified Parameter Generation. 
 
     The primary goal of the extraction process is to link the extracted values to particular 

cell geometries. An effective method to develop this link is to create an analytic equation 

for the effective constitutive parameters that is dependent on the cell geometries. These 

effective or relative parameters are poorly fit by curves generated with various 

mathematical models [43]. Better curve fits can be generated from modifying the 

effective constitutive parameters.  

 

          2.4.3.1   Bulk Media Property Modification. 
 
     The effective or relative constitutive parameters can be written in terms of the 

impedance and the index of refraction, as was previously shown. These terms can also be 

written in terms of average parameters that “represent the local field responses by 

structures with finite dimensions,” [27]. Average parameters have previously been used 

to predict constitutive parameters [27] but Paul suggests such applications are limited to a 

single type of resonance [43]. 

     The AFIT rapid design methodology improves approximations of constitutive 

parameters by replacing the use of average parameters with the use of modified 

parameters. SRRs display magnetic resonance [27] but metamaterials can display both 

electric and magnetic resonance. Modified parameters were introduced in [28] to improve 

constitutive parameter approximations and account for both types of resonance when 

using the Drude-Lorentz model for curve fitting. The modified parameters are 

independent of the average constitutive parameters and can be written as [43] 
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where .o o ok     Equations (50) show that in the effort to improve curve fitting, 

the connection between the cell geometry and the effective parameters is lost. The use of 

the tangent term in Equations (50) means that retrieval of effective parameters from the 

modified parameters is impractical because the arctangent term is a multivalued function. 

 

          2.4.3.2   Curve Fitting Approaches. 
 
     Curve fitting links modified parameters with a metamaterial cell’s geometric features. 

A geometry-dependent function is generated for the curve fit of each constitutive 

parameter but the accuracy of the curve fit depends on the model used to predict the 

modified constitutive parameters. Metamaterial cells can be electrically resonant, 

magnetically resonant or both so minimizing the error for a fit of the resonant or non-

resonant constitutive parameter may necessitate the use of different curve models for 

permittivity and permeability.  

     The Lorentz model and variants thereof are one well-known means for curve fitting 

[27, 28, 42]. The Lorentz model is a popular causal model commonly used in asymptotic 

methods [42]. In the presence of resonance polarization, this model can accurately 

describe dielectric dispersion of metamaterials (where spatial dispersion is assumed to be 

minimized) [27]. Fitting the modified parameters to the Lorentz model leads to Equations 

(51) [43] 
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where   ,  are the damping factors; b , b , and F  are constants; and the of   and of   

terms correspond to the frequencies at which the imaginary part of the curves are 

maximum. 

     All the right-hand side terms in Equations (51) are found through curve fitting, with 

the exception of the F  and F  terms which are found from geometric expansion. The 

task of altering cell geometries to generate bulk material properties implies the resonance 

frequency f  used in Equations (51) will not be known. The rapid design method 

addresses this problem by iterative frequency sampling and curve fitting and selecting the 

design that maximizes curve fit accuracy [43]. 

     Application of Equations (51) is a common method for curve fitting the resonant cell 

parameter. Approaches for curve fitting non-resonant parameter include a combination of 

frequencies and geometry expansions for dispersive parameters [28], a single-term 

approximation for non-dispersive parameters, and modifications of the Lorentz model 

such as the one proposed in [43] 
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where the additional term v  is a vertical curve shift, xs  is the local curve slope at 

frequency f , and  cd  is the damping term for the curve. 
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     Employing separate methods for calculating the resonant and non-resonant parameters 

is work- and time-intensive and does not necessarily result in accurate curve fitting for 

both parameters. Simovski and Treyakov proposed a method of local parameters that 

allows the accurate calculation of both the resonant and nonresonant terms [62]. The 

method of local parameters is based on an analysis of finite lattices [62].  Basing their 

analysis on the observations of Drude, Simovski and Tretyakov stated that finite lattices 

with periods comparable to a wavelength (including the 10  metamaterial standard 

periodicity), do not truly display homogeneous behavior due to non-negligible phase 

shifts on an incident field induced by the lattice [62]. That is, a lattice is not equivalent to 

bounded volume of constant permittivity. Further, there appear to be transition regions 

between unit cells that complicate discernment of the locations of the lattice interfaces.  

     The end result of the application of Drude’s findings by Simovski and Tretyakov [62] 

was that extraction methods presented to date provide local parameters independent of 

both polarization and wave incident angle. These local parameters were found to be the 

result of Bloch impedance ZB  (not wave impedance), and represent the macro level or 

bulk material parameters [62]. Bloch impedance, the positive root of Equation (45), helps 

determine the input impedance for a unit cell evaluated as a transmission line component 

[62]. This scenario is shown in Figure 18. The input impedance iZ  in terms of the lattice 

period spacing ld  is 
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The local parameters can then be written as [62] 
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where oq k n  and n  is calculated from Equation (44). 

     The form of these local parameters and the similarity between the construction of the 

local permittivity and permeability provides the advantage of curve fitting with the 

Lorentz model [43]. Local parameters are thus an attractive alternative to other modified 

parameters for the purposes of curve fitting. 

 

 

Figure 18.  Relationship between a lattice unit cell and a transmission line 
representation in [62]. First observe a periodically loaded transmission line 
subjected to an incident wave with a given impedance and propagation constant. 
The characteristic impedance of the wave on the transmission line can be described 
as the Bloch impedance ZB.  Likewise, the loaded propagation constant can be 
written as the wave number, here written as q.  These two terms form the new 
transmission line model and in turn describe the effective constitutive parameters. 
These effective parameters define the lattice unit cell. 
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          2.4.3.3   Model Parameter Determination. 
 
     The Lorentz model equations used to curve fit the local or modified parameters are 

dependent on parameters such as F  or F  that can be both expanded into geometric 

series and expressed as functions of the unit cell’s variable geometric features  , ,a r s  

[43]. Each term of a geometric expansion is preceded by a Taylor coefficient. These 

coefficients may be solved for using, for example,  
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(55) 

where the  right-hand side of the equations is a vector of the pf   frequencies associated 

with the minimum real value of the modified constitutive parameter that is being curve 

fitted (permeability in this example) [43]. This minimum will occur at a frequency above 

resonance.  

     Each line of the matrix shown in Equation (55) is associated with an unique cell 

geometry. The form of the matrix shows that the row rank of the left-hand side matrix 

must match the column rank of the right hand side. There must be as many unique unit 

cells as expansion terms. If there are fewer cells than expansion terms a rank-deficient 

situation will result. Paul leverages the opposite condition of overdetermination, when 

there are more cells than expansion terms [43].  

     Overdetermination allows some optimization through selection of the Taylor 

coefficient that most closely solves the set of resulting linear equations. The solution of 
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the Taylor coefficients then allows the determination of F  or F  for any  , ,a r s . The 

various combinations of  , ,a r s  can used with the new F  or F  equations to create a 

set of all attainable values of achievable design-to modified parameters.   

 

          2.4.3.4    Selection of Design-To Modified Parameters. 
 
     Ideally, the achievable design-to modified parameters would be matched exactly to the 

effective constitutive parameters collected from the S-parameter measurements. The 

design-to modified parameters can be directly tied to the modified parameters but due to 

the irreversible nature of the process to create them discussed previously, the modified 

parameters cannot be tied to the effective parameters from which they were generated. 

Therefore the achievable modified parameters can only be matched to the modified 

parameters. 

     The initial matching process used by the AFIT rapid design considers both real and 

imaginary error contributions. Paul found that by considering the modified parameters of 

a cell as a point with real and imaginary coordinates, the most effective means to match 

parameters was to measure distance between the ideal and achievable or possible 

parameters so that [43] 

            
2 2

Re Re Im Imdesign possible design possibledistance          (56) 

where    is either permeability or permittivity. This distance can be interpreted as error. 

If the intent is to match both the modified permeability and permittivity then the sum of 

their distances shown below must be minimized such that 
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 Total distance  distance   distance  . (57) 

 

     2.4.4   Validation of Design Methodology. 
 
     The rapid design methodology was validated by comparing the effective parameters 

extracted from full wave simulations with the achievable modified parameters resulting 

from three separate curve-fitting approaches [43]. Paul found the best curve fitting 

method applied a Lorentz model to local parameters [43]. All models appeared to 

accurately fit permeability, the resonance parameter. The distinguishing factor between 

the studied curve fitting approaches was their accuracy in the non-resonant parameter, 

permittivity. The results of the validation showed that application of the Lorentz model 

for curve fitting will be best for this thesis. 

 

2.5   Computational Methods 
 
     A computational approach is a smart and necessary means to designing and testing 

electromagnetic devices. Computational methods allow the application of Maxwell’s 

equations to understand the electromagnetic response of everything from small and 

geometrically straightforward devices to electrically large, vastly complex collections of 

materials and geometrical features that would otherwise be impossible to accurately 

predict by hand. Computational tools can report the results of those simulations using 

visualization tools that display everything from field distribution, power flow, effective 

constitutive parameters, and surface currents to S-parameters and beyond. 
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     A variety of computational methods can be selected, depending on the simulation 

feature required. TO designs produce spatially-variant, anisotropic constitutive parameter 

tensors that are easily simulated using COMSOL®. COMSOL® is a well-known 

commercial full-wave electromagnetic computational tool that simulates 2-D or 3-D 

designs using FEM. CST Microwave Studio® (CST MWS®) is another oft-used 

computational tool that can also simulate 2-D or 3-D designs but cannot simulate 

spatially-variant, anisotropic constitutive parameter tensors. CST MWS® is a particularly 

intuitive program and makes 3-D design simulations effortless. 

     Both COMSOL® and CST MWS® were utilized to visualize, optimize, and test the 

electromagnetic concentrator before it was manufactured. This section provides 

background to explain the mathematical architecture that COMSOL® and CST MWS® 

are based on. The boundary conditions used during the implementation of each method 

are also discussed.  Finally, several computational studies will be provided to 

demonstrate how the methods have been used in research. 

 

     2.5.1   Finite Integration Technique. 
 
     CST MWS® uses the computational method FIT. For this thesis, FIT was used for 

simulating the 3-D array of circuit boards printed with optimized metamaterial cells. 

Weiland first introduced FIT in 1977 as an alternative to contemporary methods for 

solving Maxwell’s equations through volume discretization [12, 32, 72]. The key to 

Weiland’s reformulation was to apply discretization to the integral form of Maxwell’s 

equations, shown as  
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where J  is the electric current vector and is qev  the electric charge density. FIT was 

originally designed work with Maxwell’s equations in the frequency domain but it can be 

applied in the time domain as well [38, 72, 73]. In fact, FIT can be considered a 

generalization of the finite difference time domain approach [72]. 

     FIT creates a one-to-one translation between a set of algebraic equations and the field 

relations summarized in Equations (58) therefore ensuring a unique solution in discrete 

space [32, 38]. Clemens et al. explain the multi-step process involved in this translation 

[12]. The first step, they explain, is defining a target for the spatial discretization. This 

generally involves creating bounded, simply connected computational domain in 

Euclidean space that contains the device or environment that will be simulated. The next 

stated step is the decomposition of the computational domain or creating the mesh. The 

repeated unit of this decomposition or discretization consists of a rectangular dual grid 

doublet [11, 72]. Figure 19 shows that the doublet consists of two cubes  , ,G G  the 

primary and its dual, overlapped in such a way that when repeated, the centroid of each 

cubic cell serves as a corner for another cell. 
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Figure 19.  Formulation of calculation domain with doublets in [1]. 
 

     The discretized cubic volumes and charge location result in different sets of 

electromagnetic quantities corresponding to the dual grid doublet. Figure 19 shows that 

the G  vector quantites are e  and b.  These terms correspond to the line integral of 

electric field or an electric voltage and the magnetic induction flux through each face 

respectively. The quantities on G  include ,d ,h  and j  which correspond to electric 

displacement flux, the integral of magnetic field or magnetic voltage, and charge current. 

Assuming the cell edges of the nth G  and G  cells are length Li  and iL  respectively and 

the corresponding facet or face areas are A  and A  then the two sets of terms can be 

written as [11] 

 ,
i

i L
e ds  E  (59a) 

 ,
i

i A
d b B A   (59b) 

 ,
i

i A
d d D A   (59c) 
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 ,
i

i L
d h H s   (59d) 

 .
i

i A
d j J A  (59e) 

     These terms can be transformed into the discrete analogues of Equations (58) through 

the use of the topological matrices ,C  ,C  ,S  and S  where the terms without the tilde 

correspond to G  and the terms with a tilde correspond to .G  Topological matrices 

describe the orientation of fields at a surface. The support matrix operators C  and C  

represent the discrete equivalent of “curl” and S  and S  represent the discrete equivalent 

of “divergence” [11]. Further, because these terms are topological matrices and describe 

the orientation of the cell edges, their entries are limited to the set  1,0,1  [12, 72].  

      Using the topological matrices, Maxwell’s equations convert to Maxwell’s Grid 

Equations (MGE) [72, 73] 

 ,d
dt

 Ce b  (60a) 

 ,dh
dt

C d  (60b) 

 ,evqSd  (60c) 

 0.Sb  (60d) 

An example of this entire process was included in [72] and is reproduced in Figure 20. 
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Figure 20.  Example steps of discretization of Faraday’s law in [72]. 
 

MGE are exact; they contain no approximations. However, the constitutive equations 

needed to close the MGE couple these exact equations use matrix material parameters 

describing the average material parameters: electric permittivity (M  ), magnetic 

permeability (M ), and polarization (M
) [11, 38]. Averages are naturally approximate 

therefore the constitutive relations are inexact. The constitutive equations can be written 

as [11, 38] 

 ,d M e  (61a) 

 ,b M h  (61b) 

 .se j M j  (61c) 
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    Together, Equations (60) and (61) form a complete and closed set of time-domain 

equations that the computer will solve. The solution will depend in part on the frequency 

range over which the simulation will occur. Given a frequency range of interest, a 

frequency-dependent signal is created and transformed into a usable time-domain 

equivalent via an inverse Fourier transform. This time or excitation signal is then 

introduced to the simulated EM environment and a time-domain solution is found using 

Equations (60) and (61). A final Fourier transform moves the time-domain solution back 

into a frequency-domain solution.   

     The time-domain approach is a fast, convenient and popular way to implement FIT 

but FIT can also be implemented in the frequency domain that it was originally designed 

for. Operation in the frequency domain involves conversion of Equations (60) and (61) 

by substituting d
dt

 for j . Weiland explains that a solution to these equations is 

developed for a set of discrete frequency points because many behaviors are associated 

with a frequency band (72). This iterative approach of resolving the MGE and 

constitutive relation equations for a set of frequency points takes time. Interpolation 

methods can be employed to develop solution estimates in between frequency points and 

minimize the sum solution time (72). However the solution process is dependent on the 

accuracy of the solution desired with greater accuracy corresponding to longer solution 

times. The generally longer solution times of frequency domain approaches with respect 

to time domain approach solution times can become a constraint in finding the proper 

simulation method (72).  
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     2.5.2   Finite Element Method. 
 
     Unlike CST MWS®, COMSOL® uses FEM. This method was introduced to the 

public in a two-page addendum to a speech written and given by the New York 

University mathematics professor Richard L. Courant [44]. Courant’s 1942 address used 

the “piece-wise linear approximants on a set of triangles, which he called ‘elements’” to 

apply variational methods to potential theory [44]. Application of FEM to electrical 

engineering designs first appeared by the end of the 1960s [44]. Since then, FEM has 

grown to become an important part of both time- and frequency-domain computational 

methods. 

     FEM is a numerical approach to solving Maxwell’s equations and therefore seeks to 

minimize the degrees of freedom that must be solved for by dividing the computational 

space into finite number of subdomins. Like FIT, FEM is a volume discretization method 

[72]. Maxwell’s equations are applied to each subdomain or cell and the results are 

summed over the entire mesh. The formed cells do not overlap and form a closed, simply 

connected surface. Each point where the vertices of various cells join is called a node. 

Applying Maxwell’s equations at these finite locations leads to a set of simultaneous 

algebraic equations that must be solved. Solution development using FEM thus requires 

four basic steps [72] 

     1. subdivide the computational space, 

     2. choose an interpolation function, 

     3. create the system of equations, and 

     4. solve the system of equations. 
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          2.5.2.1   Subdivision of Computational Space. 
 
     Discretization of the domain is the first step in FEM. The shape of the resulting 

subdomains or elements depends on the dimension of the original domain [21]. Figure 21 

shows that the dimension of the element will reflect the dimension of the domain from 

which it was derived. Lines correspond to 1-D domains while triangles and rectangles 

correspond to 2-D domains. Shapes such as rectangular blocks, triangular blocks, or 

tetrahedrons represent 3-D domains. The element choice is dependent on the geometry of 

the discretized domain. For example, rectangular elements are best for rectangular 

domains and tetrahedral elements work best with triangular domains or complex shapes. 

 

 

 (a) (b) 

 

(c) 

Figure 21.  Basic element shapes used to create FEM meshes. (a) 1-D elements are 
either straight lines or curves. (b) 2-D elements are normally triangles and 
rectangles. (c) 3-D elements can be tetrahedral, rectangular blocks, or triangular 
prisms. 
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        2.5.2.2   Interpolation Function Selection. 
 
     FEM is used to solve boundary value problems that can be written as [21] 

 ef   (62) 

where   is the property or differential operator,   is the unknown behavior or quantity, 

and fe  is the action or forcing function. The differential equation shown in Equation (62) 

above can be rewritten so that the unknown behavior is 

   1 f .  (63) 

     The unknown behavior is solved for with an interpolation function element-by-

element to minimize interpolation error. Given an element em , Jin writes the element-

specific behavior as a function of the sum of the interpolation function contributions to 

the element at each node [21]. He shows that the trial behavior  e
~

 associated with em  is 

[21] 

 em
~

 N jM

em jM
em

jM  1

M

  N em 
T

em   N em em 
T

 (64) 

where M  is the number of nodes or vertices of the element, NjM
em  is the interpolation 

polynomial evaluated at node jM , and  jM
em  is the merely the quantity   particular to node 

jM . The order of the interpolation function is particular to the type of element being 

computed. For example, a line element shown in Figure 21 is interpolated with a linear 

function that is necessarily zero outside element, the region for which that particular 

function was developed. 
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          2.5.2.3   Creation of System of Equations. 
 

     There are several mathematical methods used to solve for   in Equation (63) and all 

are approximations due to the numerical approach of FEM. One of the more popular 

methods is the calculus of variations, which is a function-based approach to extrema 

calculations [18]. Whereas classical calculus involves the search for points that produce 

function minima or maxima, variational methods search for functions that provide these 

extrema. The key in the application of variational methods to FEM is the formulation of a 

function that both minimizes the behavior   and satisfies the boundary conditions of the 

considered domain [18, 21].  

     A popular variational method employed in FEM is the Ritz method [21].  Jin provides 

a thorough development of this method, the result of which is a behavior defined as the 

summation of the product of constant coefficients and a set of expansion functions 

covering the entire domain. The summation is evaluated necessarily evaluated at all 

nodes. The second mathematical popular mathematical method, called the Galerkin 

method employs a different weighting scheme based on residuals. The weights are 

defined to enforce a zero sum residual requirement. The Galerkin method is similar to 

other available methods based on successive over-relaxation method that condition the 

sum of residuals to be 0 so as to ensure solution accuracy [18]. These methods include 

point collocation and subdomain collocation. 
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          2.5.2.4   Determination of Solution. 
 
     The solution of the system of equations generated by the various methods employed 

will result in a system that is either inhomogeneous/forced (deterministic) or 

homogeneous/source-free (eigenanalysis). The deterministic form is represented as [21] 

     K b   (65) 

with the known quantities being the system of equations matrix  K  and the general 

solution vector  .b  

 The inhomogeneous term  b  is the result of either: the partial differential equations, the 

boundary conditions, or both [21]. The deterministic form involves a source excitation so 

in electromagnetics, the solution to radiation, scattering and other problems involving a 

source will be deterministic. In contrast, setting  b  to 0  results in the eigenanalysis 

form. Eigenanalysis solutions are developed from problems without sources so in 

electromagnetics, this solution form may represent resonance activity or wave travel 

within a structure. 

 

     2.5.3   Boundary Conditions. 
 
     Boundary conditions are a necessary component of computation simulation. They 

allow for the exact formulation of and unique solution to the equations of the chosen 

computation method. Commercial modeling programs provide boundary conditions 

relevant for thermodynamics, mechanical modeling, and more. For electromagnetics 
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applications, there are several important boundary conditions. Both CST MWS® and 

COMSOL® were used for simulations. These programs have common and unique 

boundary conditions that were applicable to simulations for this thesis. 

 

          2.5.3.1   Common Boundary Conditions. 
 
     Boundary conditions shared by both CST MWS® and COMSOL® included the 

perfect electric conductor (PEC), the perfect magnetic conductor (PMC), and the 

perfectly matched layer (PML). The PEC and PMC are the most basic boundary 

conditions in electromagnetics. The PEC condition means that the material electrical 

conductivity is treated as infinite. PMC materials are the magnetic dual of the PEC. They 

have an infinite magnetic conductivity.  

     The PEC and PMC boundary conditions are important because they can be used to 

simultaneously simplify computational models and speed up simulation times. PEC 

material approximations are perfect replacements for metals. A block of metal could be 

replaced with a PEC material. A metal structure, such as a waveguide, could be replaced 

simulated by PEC and PMC boundary conditions. These simulations provide such 

benefits as reducing mesh sizes, simplifying material interaction considerations, and 

speeding computation times. 

      In contrast with the PEC and PMC boundary conditions, the PML condition can be 

used to promote simulation realism but is primarily used to bound the simulated device 

and the environment. This boundary condition was first proposed in 1994 as a means to 

simplify analysis of unbounded problems solved with the finite difference time domain 
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[6]. The PML isolates the simulation by attempting to simultaneously absorb all radiation 

and reflect none back. Effective PML implementation is a complex problem; design of 

matched layers close to a scatterer requires the tailoring of several parameters including 

the theoretical normal reflection of the layer, the conductivity at PML-environment 

interface, and the rate of growth of conductivity within the PML [6].  

     This boundary condition is now employed in time- and frequency domain methods 

and by a variety of solvers. For example, CST MWS® uses the open boundary condition 

as its euphemism for a PML. However, unlike COMSOL®, the PML employed by CST 

MWS® is actually a convolution PML (CPML) [1]. This method boasts a number of 

benefits over traditional PML implementations. First, CPML is computationally efficient 

method and independent of its simulation environment so that it can be equally applied 

without modification to homogeneous/inhomogeneous, isotropic/anisotropic, 

lossless/lossy, and other such contrasting environments [53]. CPML also has shown 

superior absorption of evanescent waves [53]. 

 

          2.5.3.2   Unique Boundary Conditions. 
 
     The PEC, PMC, and PML clearly do not cover all boundary conditions. Other 

implementable boundary conditions are program specific. For example, CST MWS® 

provides the user the choice of periodic and unit cell or Floquet boundary conditions not 

offered in COMSOL®. These boundary conditions are included for implementations of 

electromagnetic models in which there is a base repeated unit and group interaction 

considerations are important. The periodic condition repeats the base unit and its 
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surrounding boundary space infinitely in the dimension in which the condition is applied. 

The unit cell merely implements the periodic boundary condition in 2-D. COMSOL® 

allows the use of layers which can provide up to 3-D periodicity.  

 

     2.5.4   Symmetry Planes. 
 
     Symmetry planes provide a convenient means to concurrently apply boundary 

conditions in CST MWS® and simplify the solution space. As the name implies, 

symmetry planes are used with EM devices or environments displaying symmetry across 

a plane defined by the major axes in the design environment. Solvers such as CST 

MWS® that employ symmetry planes only solve for the basic symmetry unit and project 

the simulation results to match the entire device. These symmetry planes are usually 

implanted by a PEC or PMC surface 

 

     2.5.5   Computational Studies. 
 
     Metamaterial devices and design methods are constantly being imagined, simulated, 

designed and tested. This section discusses some examples of the metamaterial 

development using FIT and FEM analysis. 

 

          2.5.5.1   Design of Arbitrarily Shaped Field Concentrators Using FEM. 
 
     A research effort led by Wei Jiang and including David Smith designed and verified a 

method for constructing arbitrarily shaped electromagnetic concentrators [20]. Their 

approach was based on developing a set of three concentric similar shapes created with 
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piecewise rational Bézier curves, as shown in Figure 22. Jiang et al. utilized a design in 

which the field modulations were confined to within the concentrator. This approach, in 

combination with a central concentration region, necessitated a buffer region of 

expansion between free space and the concentration region. 

     The size of the concentric regions was arbitrarily set by adjusting a ratio of radii or 

widths (a so-called region ratio), between the three regions of each concentrator. The 

algorithm for mathematically defining the concentrator first involved parameterizing the 

Bézier curves, defining the transformation equations for each region, and determining the 

value of a constant associated with the parameterization of each curve from the curve’s 

slope. Second, the Jacobian involving the parameterized curve coordinates was generated 

and implemented in the standard closed form, anisotropic constitutive parameter tensors 

for each region. 

 

 

Figure 22.  Cross-section of an arbitrarily shaped concentric curve concentrator in 
[20]. The concentric layers are designed with nonuniform rational B-splines divided 
into second-order Bezier curves. The point H is an arbitrarily located point in 
original coordinate system or original space. 
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     The two types of curves were studied and simulated included a heart-shaped 

concentrator and a rectangular concentrator. The heart-shaped device employed second-

order Bézier curves fully defined by three control points and three weights. Control 

points of (0, 0.1), (0, -0.1), and (-0.4, -0.2) and weights of 2, 1, and 2 were selected. The 

rectangular device employed first-order Bézier curves and quadrant-specific line 

parameterizations. The rectangular design was designed with a length-to-width ratio of 

2:1 and both concentration devices used a seemingly arbitrarily selected region ratio of 

1:6:10. 

     Both concentrators were created as 2-D structures in COMSOL simulations. A 

transverse electric (TE) polarized plane wave illuminated both structures. The results of 

the simulations are shown in Figure 23. 

 

 

 (a) (b) 

Figure 23.  Electric field distributions and power flow lines for two arbitrarily 
shaped concentrators in [20]. (a) Heart-shaped concentrator illuminated with plane 
waves traveling left to right. (b) Rectangular concentrator with plane waves also 
traveling left to right. 
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     The concentrators simulated by Jiang et al. appear to operate as designed. This paper 

therefore demonstrates a successful algorithm for a flexible design. This paper also 

implies the importance to concentrator designs of an expansion section. The use of an 

expansion section with a concentric region concentrator might provide better 

concentration for narrow beams at obtuse incidence angles by expanding the beam into 

the region of concentration. 

 

          2.5.5.2   Model of Electromagnetic Beam Modulation Using FEM.  
 
     The research presented here by Xu et al. is a prime example of the implementation of 

TO with a finite-embedded coordinate transformation [74]. These scientists studied beam 

modulation in both Cartesian and cylindrical coordinates, using 1-D transformations to 

regulate permittivity and permeability.  

     Beam modulation in the one-to-one mapping of Cartesian coordinates was 

implemented by modifying the y  coordinate in the transformed or prime space. The 

transformed term, y , was designed with a tunable modulation that could be set by a 

modulation coefficient  . Values of   greater than one would lead to beam expansion 

and values less than one would lead to beam width contraction. Using Equations (43) to 

define the constitutive parameters in the transformed or prime space relative to the 

original space, Xu et al. tested a dielectric slab utilizing these parameters in a FEM 

simulation. The simulation setup, shown in Figure 24, involved a Gaussian beam directed 

at a relatively tall test sample. The modulation coefficient   was tested at values of 0.5 
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and 1.5. The simulation results involving power flow and normalized transverse magnetic 

(TM) fields are reported below in Figure 25. 

     Slabs using the same two values of modulation coefficient were then tested at an 

oblique incidence to confirm whether or not the concentrator displayed the effectiveness. 

Figure 26 shows the results of the tests. Xu et al. claim that their results confirm angular-

independent, reflectionless behavior for a TO-designed device. However, to confirm the 

reflectionless behavior, the authors next stacked and illuminated cascaded dielectric 

slabs, as displayed in Figure 27. 

 

 

Figure 24.  Simulation setup for measuring the amount of beam modulation for a 
single-layer device illuminated with Gaussian beam [74]. 
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 (a)  (b)  (c)   (d) 

Figure 25.  Normalized TM field and power density distributions with overlaid 
power flow lines for single slab beam modulation in [74]. (a) and (b) plot beam 
compression while (c) and (d) plot beam expansion. (a) and (c) show the normalized 
TM fields while (b) and (d) show the normalized power density. 
 

 

 (a) (b) (c) (d) 

Figure 26.  Normalized TM field and power density distributions with overlaid 
power flow lines for single slab beam modulation illuminated at an oblique 
incidence in [74]. (a) and (b) plot beam compression while (c) and (d) plot beam 
expansion. (a) and (c) show the normalized TM fields while (b) and (d) show the 
normalized power density. 
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  (a) (b) 

Figure 27.  Normalized TM field and power density distributions with overlaid 
power flow lines for cascaded slab beam compression in [74]. (a) Plot of normalized 
TM fields (b) Plot of normalized power density.  

 

     After completing the tests of modulation in Cartesian coordinates, beam modulation 

was tested in cylindrical coordinates, again using a 1-D transformation. The mapping to 

prime space in cylindrical coordinates, shown as Figure 28, involved the cylindrical 

coordinate   which was altered by a factor of  ashell   where ashell  is the inner shell 

radius and   is the shell radius variable. Xu et al. used the same invariant definitions of 

permittivity and permeability in transformed space to implement the rank 2 constitutive 

parameter tensors. The results of their simulations involving an isolated line source and a 

line source surrounded by the transformed cylindrical shell are shown in Figure 29 below. 
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Figure 28.  Coordinate transformation within a cylindrical region surrounding a 
point source in [74].  A coordinate mapping is conducted in the grey annular region 
from original space to prime space. The radial traces have been compressed from 
their original uniform distribution in the shell region to a limited area of the shell 
region in the prime space. The transformed radial traces only exist for +x .    

 

     Xu et al. concluded that beam modulation at normal or oblique incidence is possible 

using embedded coordinate transformations. Simulations for this thesis showed that there 

is in fact a limitation to range of incidence angles for which no reflection of the incident 

Gaussian beam can occur. Nonetheless, this research proved invaluable in illustrating an 

ability to stack various transformed material together, underscored the importance of 

continuity equations and the applicability of embedded coordinate transformations, and 

demonstrated a simple formula for developing a 1-D transformation. 
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   (a) (b) 

 

   (c) (d) 

Figure 29.  Normalized TE field and power density distributions with overlaid 
power flow lines for a line source with and without transformed cylindrical shell in 
[74]. (a) and (b) plot the field and power distributions for an isolated line source 
while (c) and (d) plot the field and power distributions for a line source surrounded 
by a transformed cylindrical shell. (a) and (c) show the normalized TE fields while 
(b) and (d) show the normalized power density. 
 

          2.5.5.3   Verification of FIT with SRR Measurements. 
 

     Weiland et al. [73] used experimental measurements of SRR pass and stop bands 

published by Smith et al. [66] to validate FIT and the perfect boundary approximation. 

Among the series of simulations conducted to confirm the experimental data was the 
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measurement of S-parameters. The simulation used in CST MWS® consisted of the base 

unit for the LHM developed by Smith et al. This LHM was a layered structure including 

a wire and two concentric split rings, arranged in a manner shown in Figure 30. 

 

 

 (a) (b) 

Figure 30.  Simulated models of a SRR used to compare the simulated S-parameters 
developed with FIT in [73] to previously published experimental measurements. (a) 
Simulation of the SRR without a wire. (b) Simulation of the SRR with a wire. The 
wire is centered on the SRR. 

 

     The device consisted of PEC wire and ring structures held in free space and enclosed 

using a perfect boundary approximation [73]. The device was bounded in a manner with 

the applied x-directed TEy  plane wave: electric boundary conditions for the y  face 

planes and magnetic boundary conditions at the z  face planes. The simulation operated 

in a frequency band of 4 – 6 GHz. Simulated and measurement results for both a single 

SRR/wire cell and an array of such cell is shown below in Figure 31. 
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 (a) (b) 

Figure 31.  Simulated and measured results for a unit cell formed from a SRR and a 
wire in [73]. (a) Simulated results for a single unit cell. (b) Comparison of simulated 
data for a periodic array of unit cells to measured data for an identical periodic 
array. 

 

     Figure 31 appears to show that the FIT model misestimates the S-parameters for an 

array of devices. However, Weiland notes that the use of a PEC condition in the model 

for the wire and rings may have had an impact [73]. He further cites possible 

misalignment of the wires and rings in the experimental setup that may have result in 

erroneous experimental data [73]. These are possible sources of error that might arise 

during the simulation or testing of any device manufactured for this thesis and should be 

well-noted. 

 

          2.5.5.4   Scattering Measurements of SRRs Designed for Sensor Applications. 
 
     A study was conducted to explore the use of two different metamaterial topologies for 

use in an assortment of sensor applications. The two designs evaluated by Ekmecki et al. 

included a broadside-coupled SRR (BC-SRR) and a V-shaped resonator, shown in 

Figures 32 [13]. 
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 (a) (b) 

Figure 32.  Different metamaterial topologies considered for various sensor 
applications in [13]. (a) BC-SRR design. (b) V-shaped resonator. 
 

     Ekmecki et al. setup simulations using magnetic excitation, unit cell boundaries, and 

the frequency domain solver [13]. They showed that for the BC-SRR, resonance 

decreases with an increase in the interlayer permittivity and that dramatic resonant 

effects, due to inductive effects, occur at interlayer thicknesses under 0.2 mm [13]. These 

results are shown in Figure 33. Simulations showed a positive, linear relationship 

between the V-shaped resonator’s shift and its resonance frequency, as seen in Figure 34 

[13]. A shift in the baseline configuration of 1.4 mm raised the resonance frequency from 

9.66 GHz to 15.39 GHz [13]. These results again emphasize the importance of cell 

alignment for any manufactured devices. 
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Figure 33.  Simulated results showing the interconnected nature of resonance 
frequency, permittivity, and interlayer thickness for a BC-SRR in [13].  
 

 

Figure 34.  Transmission response of V-sensor for various shift distances in [13]. 
Larger shift distances indicate greater distance between the two halves of the V-
sensor. 
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2.6   Experimental Studies Employing Transformation Optics 
 
     The limited number and application of experimental studies involving simulated or 

manufactured electromagnetic concentrators prohibit any discussion of such devices here. 

However, there have been numerous experimental studies conducted on metamaterials. A 

sampling of studies pertinent to the wedge of planar structures presented in this thesis is 

reported below in brief fashion. 

 

     2.6.1   Experimental Verification of a Left-Handed Material. 
 
     In 2001, on the heels of discoveries made by Pendry that allowed for the creation of 

negative permittivity and negative permeability materials, Shelby et al. created the first 

material with simultaneously negative constitutive parameters [57]. The base material of 

the manufactured LHM was 0.25-mm-thick G10 fiberglass circuit board material [57]. A 

shadow mask/etching method was used to create 2-D periodic arrays of wires and SRRs 

on the circuit boards that were then cut and assembled to create a 3-D interlocking design 

[57]. The design, displayed as Figure 35, centers vertically oriented wires behind each 

SRR. The unit cells used to create the metamaterial wedge were sized to be 0.5 cm each 

or one-sixth the center frequency of the tested frequency band of 8 – 12 GHz [57]. 
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Figure 35.  LHM sample built and tested in [57]. The sample was built as a periodic 
array of SRRs and wires and was designed to resonate at 10.5 GHz. 

 

     The instrumentation setup consisted of a detector, parallel plate waveguide, 

microwave absorber, two flat parallel sheets of aluminum, and a HP8756A scalar 

network analyzer (NWA) shown in Figure 36. The test procedure involved measuring the 

transmitted power spectrum for two test samples- the metamaterial wedge and an 

identically shaped metamaterial wedge.  

     Measurement results are shown in Figure 37. It is clear from the graphs that the 

normal to the Teflon wedge with respect to the incident surface was 18.43  or positive as 

expected. Data produced by Shelby et al. show the corresponding index of refraction was 

also positive, nteflon  1.4  0.1  [57]. However, the metamaterial wedge displayed 

markedly different results. The metamaterial normal was 61o with a correspondingly 

negative index of refraction of nmeta  2.70.1.  
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Figure 36.  Experimental setup used to measure the transmission power spectrum of 
the Teflon and metamaterial samples in [57]. The electromagnetic field is incident 
on the right side of the wedge, not observable by the detector. The black arrows 
indicate the path positive refraction for 10.5 GHz. The detector was rotated in o1.5  
increments and power was measured as a function of angle from the normal of the 
sample’s observed interface. 

 

 Figure 37 provides further evidence of differences between the test samples. The 

index of refraction is generally frequency-independent for the Teflon wedge whereas 

strong frequency dependence is noted in the measurement of the metamaterial wedge. 

This dependence indicates the presence of dispersion. It can also be noted that the 

predicted and measured indices of refraction for the LHM wedge are significantly off in 

the region surrounding the negative refraction region. Measured values of refraction do 

not exceed 3 or fall below -3. The authors attribute this finding to internal reflection 

induced by the manufacturing geometry. 
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 (a) (b) 

Figure 37.  Experimental data for measurements of the Teflon and metamaterial 
samples in [57]. (a) Normalized power is plotted at 10.5 GHz. The angle from the 
normal is the refraction angle and is observed to be negative for the LHM and 
positive for Teflon. (b) The index of refraction is plotted around 10 GHz to observe 
any plot behavior for either test sample that may correspond to the normalized 
power plot at 10.5 GHz in (a). The plotted index values show that while the index 
remains unchanged for Teflon, the measured index for the LHM becomes negative 
at about 10.5 GHz. The dotted black line denotes regions where the expected index 
is outside the measurement capabilities of the researchers.  The dotted red line is the 
plot of the imaginary component of the theoretical LHM index of refraction. 

 

     Since this experiment was conducted, there have been a number of arguments raised 

claiming that a LHM was not created. Some of these points are quite valid but this 

experiment remains important because it drove the research community to address the 

issue of LHM and sparked further interest. Some of the criticisms have also provided a 

means to improve the experimental rigor of future tests of metamaterials. 

 

     2.6.2   Cylindrical Electromagnetic Field Cloak. 
 
     In building an electronmagnetic concentrator, there are a number of lessons that may 

be drawn from studying other experimental TO devices. A well-known TO device is the 
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metamaterial cloak built and tested by Schurig et al. [55]. The cloak described was the 

first physical implementation of the cloak. It was limited to 2-D cloaking effects but 

showed that some level of electromagnetic field manipulation was possible with even a 

relatively straight-forward design approach. 

     The cloak designed by Schurig et al. was cylindrical in shape. Cloaking involves 

bending waves around an object; the cloak described here was mathematically 

implemented by invoking a coordinate transformation that compressed the central region 

of the cylinder, 0 cyl cylr b   into an annular region cyl cyl cyla r b   where cyla  denotes the 

radius of the device, cylb  is the inner radius of the annular region, cylr  is the radius within 

the central region, and cylr  is radius within the annular region [55].  

     The resulting transformation equations relating the original and transformed 

cylindrical coordinates were converted to define the relative permittivity and relative 

permeability resulting from a TO approach. The cloak construction was further simplified 

by only considering a single illumination polarization Ez  so that a reduced parameter set 

composed of  z ,   ,  and r  could be implemented. 

     The concentric rings of the cloak were designed to provide the proper radial transition 

of constitutive parameters required to guide waves around the device. All unit cells 

placed at a particular radius were designed to share the same geometric features which 

were derived by parameterizing the corner radius and the height of the split arm, both of 

which are shown in Figure 38. The constitutive parameters for each combination of cell 

geometries were derived from simulations of the unit cells and an extraction procedure 
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using S-parameters. The unit cells traces were etched onto Duroid 5870 and the rings 

were held and together with six radial spokes, as shown in Figure 39. 

 

 

Figure 38.  SRR design used to create the metamaterial cloak at microwave 
frequencies in [55]. The SRRs were printed on Duroid 5870 with copper 17 microns 
thick. Constitutive parameters can be designed by manipulating a set of geometric 
parameters of the SRR including the width of the cell a ,  the trace width w,  the 
arm height s  and the corner radius r.  The SRRs for the cylinders were created by 
altering s  and r.  

 

     Schurig et al. first ran simulations before testing their physical construction. A model 

of the test setup is shown in Figure 40. Plane waves in the frequency band 8 – 12 GHz 

were introduced via a coaxial-to-waveguide transition [55]. The device was held in a 

parallel plate waveguide and surrounded by absorber to minimize field disturbances due 

to reflections from the waveguide [55]. An antenna in the top plate measured the fields 

that were mapped by moving the bottom plate and the test device [55]. 
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Figure 39.  Constructed metamaterial structure providing 2-D microwave cloaking 
in [55]. Six radial spokes hold the concentric rings of SRRs together. The SRRs at 
any particular radius share the same geometry and produce constitutive parameters 
shown in the superimposed graph. Each cylinder is made of three rows of cells that 
have been flipped with respect to each other to minimize magnetoelectric coupling. 
 

 

Figure 40.  Model of parallel plate wave used to test metamaterial cloaking structure 
in [55]. Part of the top plate is cut away to show the inside. The cloaking structure is 
centered in the plates and is surrounded by sawtooth-shaped microwave absorber. 
A coaxial-to-waveguide transition generates the incident microwaves that are 
measured with antenna attached to the upper plate. Field mapping was conducted 
by translating the bottom plate. 
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     The experimental results collected by Schurig et al. for the metamaterial cylinder 

displayed cloaking behavior as compared to a tested bare copper cylinder. The results, 

shown in Figure 41, have been claimed by Schurig et al. as proof that a cloak and 

therefore electromagnetic effects associated with LHM are achievable. More importantly, 

however, is the process of metamaterial device construction that Schurig and his 

colleagues helped to define. They showed that effective parameters could be linked to 

unit cell geometries to create constitutive parameter gradients. 

 

 

Figure 41.  Simulated and measured steady-state electric field patterns at various 
instances in time in [55]. (a) Simulated field patterns for the exact metamaterial 
cloak. (b) Simulated field patterns for the cloak with reduced material properties. 
(c) Measured field patterns for the bare, conducting cylinder. (d) Measured field 
patterns for the cloaked conducting cylinder. 
 

     2.6.3   Metamaterial Planar Array Spacing and Arrangement. 
 
     Significant work is involved in translating a desired effective permittivity or 

permeability into a metamaterial cell. These cells are often arranged as periodic, planar 
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arrays. The standard lattice periodicity between co-planar cells and between the planar 

arrays is 10  for metamaterial. Generally, little thought is given to the spacing and 

arrangement of the planar arrays aside from the frequency derived inter-array spacing 

requirement and the assumption the arrays should be row and column aligned. 

Unfortunately, such lack of forethought can lead to significant measurement error. 

     Errors introduced during the assembly of metamaterial planar arrays include inter-

plane or intra-plane disorder. These errors and periodicity are investigated by Aydin et al. 

[3]. These authors describe inter-plane disorder as misalignment of the boards in 

directions both parallel and normal to the board; intra-plane disorder as the aperiodicity 

of the SRR cells in the plane of the array [3].  

     The portion of the experiment testing inter-plane disorder studied 24 stacked arrays of 

10 x 15 periodically arrange circular SRRs [3]. Aydin et al. explain that measurements 

were made with an HP 8510C network analyzer for a frequency band from of no greater 

than 3 – 6 GHz. Three inter-plane disorder schemes were employed involving 

aperiodicity in the board spacing: transverse to the direction of propagation, parallel to 

the direction of propagation, and both parallel and transverse to the direction of 

propagation.  Distance shifts for the three schemes were limited to 4,  8,  and 2  

respectively. The schemes and their results are shown in Figure 42.  

     The baseline arrangement for the SRR arrays is, of course, a periodic arrangement in 

all axes that maximizes both coupling and the associated width of the band gap in 

measured transmission. Disorder in both directions tested did not appear to affect the 

resonance frequency of the SRRs but did affect band width, which narrowed for aperiodic 

arrangements [3]. 
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  (a) (b)   (c) 

Figure 42.  Depiction of three different types of disorder in [3]. (a) Disorder is 
applied in the z-direction only so that inter-plane spacing is disrupted. Distance 
shifts are limited to  4  or less. The result is narrowed bandwidth but an 
unaffected magnetic resonance gap. (b) Disorder is now applied in the x-direction 
only. Distance shifts are limited to  8  or less. (c) Disorder applied in (b) is now 
increased. Distance shifts are limited  2  or less. Measurements from (b) and (c) 
show that the disorder applied in the measured directions does not affect the 
magnetic resonance gap.  

 

     Intra-plane disorder was tested next. This disorder was characterized by a randomness 

parameter,  r  [3]. Figure 43 shows the results of measurements for two different values 

of  r  equal to 1 9  and 1 5  of the periodic lattice spacing. Intra-plane disorder appears 

to increase within the transmission band gap (3.55 – 4.10 GHz) [3]. It appears that 

disorder disrupts the magnetic resonance and consequently lower transmission that 

characterizes periodic arrangements.  
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     The third graph, Figure 43, shows that a combination of inter- and intra-plane disorder 

or 3-D disorder leads to a superposition of effects. A simultaneous decrease in the band 

gap width and increase in transmission is identifiable in the data. The findings of this 

experiment may ultimately help explain differences simulated and experimental 

transmission data and provide a means to improve array construction techniques. 

 

 

  (a)  (b) (c) 

Figure 43.  Depiction of the effects of intra-plane and total disorder in [3]. (a) Intra-
plane disorder is implemented by setting  r  equal to 1 9  of the periodic lattice 

spacing. The result is increased transmission in the band increases. (b) Intra-plane 
disorder and transmission are greatly increased by increasing  r  to 1 5  of the 

periodic lattice spacing. (c) Inter-plane disorder is now added to the intra-plane 
disorder to show a superposition of effects. 
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III.  Calculations and Models 

 
3.1   Chapter Overview 

     This chapter describes the design and simulation of a metamaterial field concentrator.  

The first section of this chapter explains the design process and provides:  

     1. conceptual reasoning for the shape and size of the device,  

     2. mathematical descriptions of the relative constitutive parameters, 

     3. development of the periodic, planar array of MTM cells, and 

     4. constitutive parameter optimization. 

The result of this section is a manufacturable design for a periodic, planar array structure 

composed of metamaterial cells. The geometry of each cell is optimized to produce 

constitutive parameters particular to the cell’s coordinate location in an anisotropic, 

continuous design. This array serves as the basic, repeated unit for the field concentrator 

whose S-parameters will be measured with AFIT’s focus beam measurement system.  

     The second section is devoted to presenting simulations of the field concentrator. The 

two simulation software packages described earlier, COMSOL® and CST MWS®, 

provide the simulation data for the ideal and achievable concentrator designs 

respectively. 2-D versions of the field concentrator and its components using the 

anisotropic constitutive parameter tensors are modeled with COMSOL®. 3-D 

constructions utilizing the metamaterial cells to homogenize the anisotropic design are 

modeled with CST MWS®.  

     Simulations from both software packages provide field, power, and S-parameter 

measurements needed to quantify the quality of the concentration achieved and to ensure 
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that any constructed device will work. The conclusion after review of the simulation data 

is that field concentration is achievable with a stack of printed circuit boards (PCB) using 

copper etchings of metamaterial cells.  

     The third and final section briefly describes the construction of the physical model. 

Construction of the device was contracted out to a commercial manufacturer so this 

section highlights the standard manufacturing process. Various pictures are used to 

demonstrate the quality of the manufacturing. 

 

3.2   Design and Optimization of Electromagnetic Field Concentration 
 
     This section describes the size, shape, and functionality of the various components 

comprising the field concentrator design. Derivations of mathematical equations 

necessary to implementing field concentration are included in this section, as is a 

discussion of the development of the metamaterial cells. This section then discusses the 

optimization effort that was appended to AFIT’s rapid design method. This optimization 

process involves several steps including: 

1. determine the design frequency, device scale, and metamaterial lattice spacing;  

2. create a grid of cells covering the area defined by TO; 

3. calculate the constitutive parameters for each cell; 

4. use the rapid design process and a material selection process to find a cell/material 

combination providing the required constitutive parameters; 

5. vary the size of the concentrator to optimize the match of constitutive parameters; 

6. create the metamaterial cells in a design program such as CST MWS®; and 

     7.  simulate and construct the homogenized approximation of the TO structure. 
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This section ends with a discussion of the optimization process invoked to tune the device 

and provide a best approximation to ideal concentration performance. 

 

     3.2.1   Initial Design Requirements. 
 
     The physical form of the concentrator was inspired, in part, by previous research [20, 

51] that explored creating TO devices from designs involving concentric squares. These 

devices were created using transformations that are continuous at the device-free space 

boundaries but do not perturb the free space fields. The use of concentric shapes provides 

flexibility in designing the shape and efficiency of the concentrator. 

     Testing and manufacturing considerations also influenced the device design. The first 

consideration was that final product needed only to be a proof-of-concept instead of a 

refined, installation-ready product. Simplicity of the device was important. The second 

consideration was that the designed device must be testable with AFIT instrumentation.  

     AFIT’s focus beam measurement system imposed a size limitation on the concentrator 

and its components because metamaterial cells should be size to be  10.  The focus 

beam instrument is designed for operation from 2 – 18 GHz, works well at 10 GHz, and 

provides unreliable results for frequencies under 4 GHz due to the effects of spillover. 

The metamaterial cells should be designed to resonate within the frequency band of 4 – 

18 GHz so a design-to frequency of 10 GHz was selected. A design or resonance 

frequency of 10 GHz sets the width of the repeated metamaterial cells and the lattice 

spacing (which will be the same distance), to be 3 mm. 

     The focus beam provides further restrictions on the size of the device under test 

(DUT) because it only produces plane waves over about a 5-inch-wide area for the 10 
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GHz illumination frequency. The field concentrator could be tested with non-planar 

waves but determination of the effectiveness of the device would be best accomplished 

by minimizing phase effects with predictable, easy to simulate, planar incident radiation. 

The limited area of plane waves produced by the focus beam system restricts the 

dimensions of the concentrator transverse to the path of propagation of the beam. The 

desire to exploit the plane waves developed by the focus beam further restricts the 

dimension of the device parallel to the path of propagation. The DUT should be long 

enough that its position can be easily adjusted  longitudinal axis while simultaneously 

short enough that when the device is held in place for testing it is not cantilevered to the 

point of where it might dip down. 

 

     3.2.2   Application of Transformation Optics Mathematics. 
 
     If field concentration is designed within a restricted area of free space then there must 

simultaneously exist coordinate expansion and compression in that area. Cloak and 

concentrator designs such as those in [20, 51] use concentric shape devices to define 

these expansion and compression sections. The most common shapes used to implement 

coordinate transformations are squares and cylinders. A simple square shape was chosen 

for this thesis. 

     Design of the concentric square field concentrator used in this thesis is based on of 

embedded transformations because its designed operation imposes a field effect on the 

surrounding environment. The proposed device is developed through use of a process 

depicted in Figure 44. The use of one quadrant and not the full square design allows for 
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embedded transformations. A rectangle-shaped device is cut from the single quadrant 

because it is easy to manufacture, hold, and shift in the focus beam test fixture. 

 

 

 (a) (b) (c) (d) 

 

(e) 

Figure 44.  Basic design of the field concentrator. (a) Design was based on a design 
of three concentric squares of increasing half-width: S1, S2,  and S3. (b) Innermost 
region, colored blue, is used to compress the fields while the outer two squares 
provide the expansion. (c) Only one quadrant of the square design is manufactured. 
(d) Simplest manufacturable geometry from one quadrant is the rectangular board 
drawn with a red line. (e) Superposition of (b) and (d) show which areas of the 
manufactured design will be compression and which will be expansion. (f) 
Manufactured device is an array of parallel, stacked rectangular boards. 
 

     The first section of the concentrator encountered by the incident electromagnetic field 

is the expansion section. The total expansion region was designed to include both regions 

2 and 3 to minimize the compression area and therefore maximize the field concentration 

of the coordinate transformation. The second section represents region 1 and is composed 
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of triangular sections, each belonging to different quadrants of the original concentric 

rectangle design.  

     The coordinate transformation equations for each section are based on the simplest of 

transformations: linear, Cartesian-to-Cartesian coordinate transformations such as those 

presented in [74]. These transformations are built on the assumption of linearly polarized, 

perpendicularly incident transverse electromagnetic (TEM) waves. Given this 

assumption, the complexity of the coordinate transformation was further simplified by 

assuming z-invariance and 1-D expansion and compression limited to the y-directed 

electric field.  

     The transformation equations are written to provide continuity of the incident field at 

the free space-expansion and expansion-compression boundaries. The amount of 

expansion or contraction are controlled by a ratio based on all three regions, written in its 

simplified form as 

 S3 S1

S3 S2
1







or

S2 S1

S3 S2
 (66) 

where  is the half the width of the innermost rectangle,  is the half the width of the 

middle rectangle, and  is the half the width of the outermost rectangle. These 

geometrical terms can be written as  the S-ratio, and define the quality of the 

field concentration that is engineered. The equations using the S-ratio are written to 

provide concentration of the incident fields immediately after the end of the compression 

section and not at the free space-compression boundary. The intent of this design decision 

is to realize field concentration in real space. An arbitrary spacing of 1.5% of  

provides the separation. 

S1 S2

S3

S1:S2 :S3,

S1
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     Borrowing from [74], the transformation equations presented here provide the same 

general form with the exception of the use of Equation (66) for the modulation coefficient 

and the continuity and spacing considerations just previously defined. In terms of the 

generalized S-ratio, the set of equations describing coordinate expansion at a point (x, y, 

z) in regions 2 and 3 can be written with respect to both free space and the TO origin 

between the expansion and compression regions as 

 exp ,x x   (67a) 

 exp
2 1 3 1 ,
3 2 3 2

S S x S Sy y y
S S S S

    
     

   
 (67b) 

 exp .z z    (67c) 

     The generalized form of the equation for the any triangular compression region is first 

written with respect to the expansion region the local coordinate origin at the center of 

the interface for the expansion and middle compression regions. The equations for all 

three compression regions must be rewritten with respect to free-space to provide the 

same reference for determining the constitutive parameters used for the expansion 

section. The conversion of  in the compression equations leads to a set of three 

complicated equations. The equation for the central triangular compression region 

(middle compression) is 

 ,midcompx x   (68a) 

 1 0.015 1 2 1 3 1 ,
1 0.015 1 3 2 3 2midcomp

S S x S S x S Sy y y
S S S S S S
          

       
       

  (68b) 

 .midcompz z   (68c) 

yexp
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The top and bottom compression areas belong to quadrants rotated  from the middle 

compression region. The equations for each of these sections can be obtained by applying 

the appropriate Euclidean rotation to Equation (68). In the Cartesian coordinate system, 

the 2-D rotation matrix is 

 
   

   

cos sin
sin cos

 

 

 
  

 
R   (69) 

where  represents a clockwise rotation about the origin. A  rotation produces the 

compression equations for the top compression triangle written as 

 1 0.015 1 2 1 3 1 ,
1 0.015 1 3 2 3 2topcomp

S S y S S y S Sx x x
S S S S S S
           

       
       

 (70a) 

 ,topcompy y   (70b) 

 .topcompz z   (70c) 

Likewise, a  rotation produces the equations for the bottom compression triangle 

written as 

 1 0.015 1 2 1 3 1 ,
1 0.015 1 3 2 3 2botcomp

S S y S S y S Sx x x
S S S S S S
          

       
       

  (71a) 

 ,botcompy y   (71b) 

 .botcompz z   (71c) 

     The relative permittivity and permeability tensors can be determined from the sets of 

equations presented for the expansion and compression sections by first calculating their 

respective Jacobian matrices. Next, the rank 2 tensors representing the relative 

permittivity and permeability of the transformed space can be determined using 

90o

 90o

90o
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Equations (43). The non-conformal transformation results in a symmetric tensor with 

coupled (xy) terms. The form invariance of Maxwell’s equations ensures corresponding 

entries of permittivity and permeability are the same 

 
0
0 .

0 0

xx xy

r r xy yy

zz

 

   



 
 

   
 
 

 (72) 

     The task of creating the relative constitutive parameters requires minimal work for the 

expansion section. Slightly more effort is required to write these terms for the three 

sections of the compression region. First, the coordinate transformations for these areas 

are written with respect to the expansion section to maintain continuity in the  y 

component at the inter-region transition boundary. Second, the constitutive parameters 

for each compression section must be written with respect to free space. Substitution of 

Equations (67) into Equations (68), Equations (70), and Equations (71) produces 

equations that,in conjunction with Equations (43), yields sets of transformation equations 

that will provide constitutive parameters relative to free space for each region. The 

resulting sets of equations for the expansion and compression sections describe 

frequency-independent transformations. 

 

     3.2.3   Metamaterial Unit Cell Array Design.  
  
     The coordinate transformations described define an anisotropic material with smooth 

and spatially variant relative constitutive parameters. Currrently, there is no means to 

produce such an anisotropic material. The physical realization of such a material may 
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only be accomplished by discretizing the material to create locally homogeneous areas of 

constant relative constitutive parameters achieved with tuned metamaterial cells.  

     The relative parameters are frequency independent but the metamaterial cells used to 

create these parameters are not. The lattice periodicity defined by the cell dimensions is 

determined by the concentrator’s designed resonant frequency and is found using the 

metamaterial standard, 10.  The circuit traces associated with each cell must be tuned 

within a frequency band about the device’s resonant frequency to create relative 

parameters specific to the coordinate location of that particular metamaterial cell. These 

will be the constitutive parameters at same coordinate location in the anisotriopic 

material. 

     The concentrator built for this thesis was constructed for operation at 10 GHz so, as 

was previously mentioned, intra- and inter-board lattice periodicity was set at 3 mm. 

Operation at 10 GHz provides an optimal middle ground for creating a manufacturable, 

design that provides a good, discrete-gradient approximation to the smooth, continuous 

spatially variant anisotropic relative parameters resultant from the coordinate 

transformations. A higher frequency would require a smaller lattice period that would 

better approximate the continuous variation in parameters at the cost of both smaller 

traces that might be harder to manufacture and an increase in modeling and design time 

as the number of cells rises. A lower frequency would reduce modeling and design time 

due to the presence of fewer cells and potentially larger traces. Unfortunately the 

decrease in cell counts will result in a poor approximation to the continuous parameter 

variation and a degraded ability to concentrate incident electromagnetic fields. 
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     The metamaterial cells used to create a homogenous approximation of the anisotropic 

concentrator material were designed with AFIT’s rapid design method. This method 

relies on magnetically resonant cells wherein all current is produced by  and travels 

around the trace. These cells can be oriented in either of two possible directions. 

Vertically oriented traces with induced push-push currents allow the vertically directed 

 to couple cells in the y-direction and leads to extraction of  and . A horizontally 

oriented trace would result in extraction of  and  and would have non-resonant type 

behavior. Due to the limitations of the rapid design code, only one value of permittivity 

can be extracted at a time so it is not possible to design a cell to match the tensor of 

Equation (72) required for an anisotropic material. The desire to induce a compression of 

 guided the choice to limit testing to vertically oriented traces.  

     Designing for a subset of parameters related to the incident radiation is common in TO 

applications [20, 55]. These research efforts have also taken these parameter subsets and 

further reduced their forms to produce simpler equations that still have the same 

dispersion and therefore the same wave-material interactions as the original subsets [55]. 

Even when the permittivity-permeability products of the reduced set, e.g.  and  

for the reduced parameter set  , ,y x z    equal the products from the original subset, 

scattering can result. Therefore parameter simplification was not be used in this research 

effort, lest increased scattering prevent any achievable concentration. 

     The rapid design process was used with a library of cells representing all geometric 

combinations of the terms  , ,a r s  where ,a  the inter-array or board spacing (also the 

H z

Ey  y z

 x z

Ey

 yz  yx
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inter-cell spacing), was set to 3 mm to maintain the standard   10  spacing for 10 GHz. 

All cells shared a designed a trace width of 2 mm. The parameters  and  were then 

extracted from the S-parameters. The standard rapid design procedure next dictated that 

modified or local parameters first be created from the extracted data and second be used 

for curve-fitting and the determination of the expansion coefficients.  

     The driving goal of implementing the rapid design process was to find cell geometries 

that would create extracted or effective relative constitutive parameters equal to the 

relative parameters dictated by the coordinate transformations. Unfortunately, the 

coordinate transformations only provide real values of the constitutive parameters 

whereas the modified/local parameters normally used to indirectly link cell geometries to 

effective relative constitutive parameters are complex-valued.  Given the impracticality 

of arbitrarily estimating the material loss (the imaginary component), loss was ignored 

and the modified parameters were written in terms of the relative parameters created by 

the transformations.  

     The form of the extracted permeability or resonant parameter curve was conducive to 

curve fitting with the Lorentz model so the modified permeability was set equal to the 

transformed permeability. Unfortunately, the form of the permittivity curve extracted 

from the library’s cells was not Lorentzian. This was expected for the nonresonant 

parameter. The form of the modified permittivity was altered to match a shifting and 

reflection of the relative permittivity. The modified parameters of the extracted data were 

thus written as 

  (73a) 

 y z

m  5r ,
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  (73b) 

     After Lorentz curves were fitted, the necessary terms of each model were expanded 

into geometric series and the coefficients of those series were solved for. The benefit of 

using the transformed relative parameters and not Equations (50) to define the modified 

parameters is that the geometry of the cells can be directly tied to an achievable value of 

the relative constitutive parameters.   

     The opportunity to directly link the relative and modified constitutive parameters 

associated with each cell’s geometry further motivated the goal of exactly matching the 

cells’ relative parameters to the ideal parameters derived from the coordinate 

transformation. This goal involved minimizing scattering, electromagnetic coupling, and 

differences between the achievable constitutive parameters of the metamaterial cells and 

predicted parameters from the coordinate transformation. Optimizing both the 

constitutive parameter matching of the rapid design process and the physical construction 

of the concentrator pursued allowed the aforementioned minimization tasks. 

     Optimizing the matching of constitutive parameters was the first and most important 

task.  Developing metamaterial cells that provided the relative parameters from the 

coordinate transformation involved balancing many considerations including selecting 

the proper set of geometric variables, selecting the proper circuit board material and 

thickness as well as selecting the best S-ratio for the compression and expansion sections. 

First, the greater the number of variables selected and the greater the number of possible 

values per variable, the greater the number of geometry combinations.  

      More geometry combinations may lead to a greater likelihood of matching the ideal 

constitutive parameters with the relative parameters of a cell. The cost of increasing the 

m  r .
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size of the cell library is an increase in the time it takes to optimize the cell geometry. 

Since the arms of the traces provide the major tuning of the parameters, a cell library 

could be limited by increasing the number of arm lengths tested in the geometry set,  

Simplicity would suggest creating a set,  with as few entries as possible to provide 

good constitutive parameter matches. The total number of cells for this thesis was 

predicated on the selection of a single a  value and dictated by the combinations of the 

terms  and  which were set to {0.1 0.17 0.25 0.3} and {0.25 0.5 0.75 1.0} mm 

respectively. Therefore a total 16 cells were used. 

     Second, selection of the proper backing for the metamaterial cells was important 

because the dielectric constant and thickness of the material alter the resonance and 

achievable constitutive parameters of the cell/backing combination. There are a number 

of different material/thickness combinations available for PCB. The selection must take 

into account the manner in which the PCB will be used and the range of constitutive 

parameters it will allow. A large array of stacked, parallel PCB might be an application 

best-suited for a rigid material, especially since board bending and warping can adversely 

effect the electromagnetic characteristics of a trace.  

     Differences in dielectric constants between materials are not an overriding 

consideration of optimization because such differences can be compensated by a change 

in the width of the cell traces. For example, a material with large loss will reduce a cell 

resonance but reducing the cell width can compensate for this drop in resonance. Board 

material selection for this thesis was simplified by considering the popular, easily 

accessible board materials: 0.13 mm TLY-5 and 0.787 mm FR4. Figure 45 and 46 show 

plots of the ranges of achievable real and imaginary permittivity for TLY-5 and the set 

s.

s,

r s
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 , , .a r s  There are more than 16 points plotted because for each geometric variable in 

the set there is a vector of possible values defined by the low and high values of the set 

and some interpolation step set by the rapid design code. All combinations of the 

numbers in these vectors are plotted. Table 1 shows that the achievable values of 

constitutive parameters for 0.13 mm TLY-5 are not low enough. 

 

 

Figure 45.  Plot of the real, achievable constitutive parameters for TLY-5. 
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Figure 46.  Plot of the imaginary, achievable constitutive parameters for TLY-5. 
 

Table 1.  Low and high values of constitutive parameters required by TO. 

Section Low Value High Value 
Expansion 1.0062 1.3784 

Middle Compression 0.1860 2.1551 
Top Compression 0.4250 0.6663 

Bottom Compression 0.4250 0.6663 
 

     Another set of plots were made for 0.787 mm FR4. Figures 47 and 48 show that a 

0.787 mm FR4 backing of the 16 cells clearly outperforms TLY-5 in constitutive 

parameter matching. The values of constitutive parameters are centered at or near 0. It is 

particularly noteworthy to see that the associated values of imaginary consistutive 

parameters are low because imaginary values of consistitutive parameters were not 
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matched during S-ratio optimization and high values are associated with loss due to 

energy dissipation within a material. 

 

 

Figure 47.  Plot of the real, achievable constitutive parameters for FR4. 
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Figure 48.  Plot of the imaginary, achievable constitutive parameters for FR4. 
 

     Third, selection of the best S-ratio was based on evaluating the distance between the 

transformation and real-valued extracted parameters for different circuit board materials 

and thicknesses. The minimum, maximum, and mean difference was calculated for each 

compression and expansion region. A total of 455 combinations were tested for possible 

S-ratio values ranging from 1 – 16.  The results of the combinations were ordered with 

respect to the mean constitutive parameter value.  

    Table 2 – 5 show the top ratios selected for middle compression and expansion 

sections and provide a visual clue as to how optimization of a ratio for one region affects 

another region. The results observed in the tables highlight several observations made 
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during S-ratio optimization. Namely, expansion and compression in the central triangle 

(middle compression), are not optimized by the same S-ratio.  

     First, minimizing the difference in the middle compression region can improve or 

degrade the matching of parameters in the expansion region by by up to 3%.  Minimizing 

the difference in the expansion region degrades the matching of parameters in the middle 

compression region by up to 15%. Second, middle compression can be optimized at the 

cost of slight degradation in the performance of the top and bottom triangles (top and 

bottom compression, respectively). Third, the expansion section can only be optimized at 

the cost of large degradation in the matching for the top and bottom compression regions. 

Note, however, that selection of the best ratio is further complicated by the fact that these 

relationships mentioned here are themselves inexact. Selection of the second best match 

in region ‘A’ should lead to a better match in region ‘B’ although this is not always true.  

 

Table 2.  Ratios optimized for the middle compression region and their associated 
constitutive parameters. The ratios shown below are the 10 best ratios for the 
middle compression region. Note that variation in the mean difference among all the 
ratios is only 0.0542 or 5.42% error. 

 
Ratio Mean Low Value High Value 
1:3:12  0.8201  0.5573  0.9446  
1:3:11  0.8257  0.4978  0.9445  
1:2:6  0.8285  0.5019  0.9445  
1:4:15  0.8516  0.6486  0.9445  
1:2:15  0.8618  0.6589  0.9658  
2:3:9  0.8640  0.3329  1.2949  
2:4:15  0.8686  0.3153  1.4768  
2:3:13  0.8738  0.4059  1.4581  
1:3:10  0.8738  0.7386  0.9445  
2:3:12  0.8742  0.4042  1.3269  
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Table 3.  Ratios optimized for the middle compression region paired with the 
constitutive parameters of the expansion section. Note that the mean values obtained 
for the expansion region for the ratios developed from the middle compression 
region are similar. This matching would not exist if the middle compression ratios 
were used for the top and bottom compression regions. 

 
Ratio Mean Low Value High Value 
1:3:12  0.8402  0.6534  0.9877  
1:3:11  0.8040  0.4413  1.0034  
1:2:6  0.7949  0.3797  0.9960  
1:4:15  0.7724  0.4236  0.9909  
1:2:15  0.7832  0.4738  1.0689  
2:3:9  0.8661  0.6258  0.9967  
2:4:15  0.8524  0.6199  1.0071  
2:3:13  0.8799  0.6764  0.9442  
1:3:10  0.7563  0.4177  0.9937  
2:3:12  0.8789  0.6946  0.9442  

 

Table 4.  Ratios optimized for the expansion compression region and their 
associated constitutive parameters. The ratios shown below are the 10 best ratios for 
the expansion compression region. Note that variation in the mean difference among 
all the rations is only 0.0104 or 1.04% error. 

 
Ratio Mean Low Value High Value 
7:8:12  0.7456  0.3775  1.0557  
8:9:13  0.7475  0.3699  1.2968  
6:8:15  0.7477  0.3679  1.0065  
5:7:14  0.7505  0.3731  1.0065  
6:7:11  0.7510  0.3775  1.0071  
4:6:13  0.7528  0.3731  1.0065  
2:5:15  0.7541  0.3741  0.9923  
1:4:14  0.7544  0.3916  0.9844  
3:5:12  0.7547  0.3790  1.0065  
2:4:11  0.7560  0.3790  0.9937  
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Table 5.  Ratios optimized for the expansion compression region paired with the 
constitutive parameters of the middle compression region. Note that the mean 
values obtained for the middle compression region from the ratios developed from 
the expansion region are off by around 0.15 but are still relatively close. This 
matching would be far worse if the ratios developed for the expansion region were 
used for the top and bottom compression regions. 

 
Ratio Mean Low Value High Value 
7:8:12  0.9122  0.1150  1.7056  
8:9:13  0.9045  0.1089  1.7055  
6:8:15  0.9447  0.0952  1.9635  
5:7:14  0.9378  0.1924  1.7328  
6:7:11  0.9191  0.1235  1.7044  
4:6:13  0.9441  0.2897  1.9267  
2:5:15  0.9350  0.5372  1.6202  
1:4:14  0.8934  0.7476  0.9592  
3:5:12  0.9572  0.4258  2.0581  
2:4:11  0.9293  0.4245  1.6760  

 

     It is apparent that the complex relationship between the various regions of the field 

concentrator with respect to variation in the S-ratio necessitates a complex algorithm. 

However, this complexity would defeat the simplicity in the selection of the minimum, 

maximum, and mean criteria without necessarily providing significantly better optimized 

relative constitutive parameters.  

     In sum, there is no perfect ratio that may be picked. The top expansion and middle 

compression ratios have similar mean deviations from the ideal constitutive parameter 

values and each ratio selected requires a performance tradeoff in other regions. Other 

ratios cause constitutive parameter mismatches of 10,000% or more that would cause 

even even worse performance in the other regions. The top and bottom compression 

regions are best suited for compressing and directing fields normally incident to each 

respective surface. Since the incident plane waves should be normally incident or 

incident at acute angles, the expansion and middle compression blocks will provide the 
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primary source of concentration.  The decision was made to optimize the S-ratio for the 

expansion section.  Based on a qualtitative analysis of mean error in other regions based 

on an optimized expansion ratio, the S-ratio selected was 4:6:13. 

     Addressing the physical construction of the concentrator was the second major method 

for obtaining an optimized electromagnetic field concentration. Aside from the sizing of 

the concentrator and its placement in the focus beam system, as was previously 

discussed, there should be a concerted effort to minimize construction error and 

enhancement efforts to produce concentration.  

     Construction error can take the form of traces not manufactured according to the 

designed arm length and radius, rough or jagged trace etching, cell placement on the 

PCB, and the position of the PCB with respect to each other. Traces not manufactured to 

specification can result in interrupted current flow or altered capacitance and inductance 

values, all of which can alter the resonance of the affected cells. Since each cell is 

designed to produce particular constitutive parameters at 10 GHz, resonance at a different 

frequency will not provide the designed constitutive parameters and will adversely alter 

the field propagation. 

     Alignment of the cells and hence the traces both on a circuit board and between the 

PCB can affect cell-to-cell coupling which will also affect resonant behavior. Operation 

at a particular magnetic resonance can be enforced by minimizing magnetoelectric 

coupling which can shift the resonance of the cells and hence the permittivity or 

permeability that that they produce [33]. This coupling can be minimized by rotating the 

orientation of all cells in a row  with respect to the adjoining upper and lower rows, 

as seen in later figures generated with CST MWS®. Clearly, there will still be coupling 

180o
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between rows, particularly because two vertically adjacent cells may have different 

geometries and hence equivalent inductance and capacitance values. However, this 

method has been used in previous research [55] and is incorporated as standard practice 

for this thesis.  

     Adhering to other design requirements can also control coupling and hence magnetic 

resonance. The set of planar arrays forming the device should have their edges aligned so 

that the cells in each row are perfectly aligned and spaced 10  apart in all dimensions. 

The alignment of cells on each board and between boards will minimize inter- and intra-

plane disorder, thus maximizing magnetic resonance at 10 GHz [3].  

     In addition to ensuring the proper resonant response, cell placement strategies can also 

contribute to concentration by providing a finer constitutive parameter gradient for 

directing incident fields. Cells should be designed for a metamaterial size of 10  but 

can be made smaller, leading to a larger cell count as was previously discussed. Cells can 

also be arranged to better use the space on each circuit board. The coordinate 

transformation equations were designed to center the concentration spot behind the TO 

device therefore cells were laid down on the centerline of the device and laid out towards 

the edges, as shown in Figure 49. The result was more cells in the middle compression 

region within a set distance from the concentration point. 
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Figure 49.   Depiction of various methods of cell stacking. Note that using a pattern 
that stacks the cells on the centerline places more cells in a set distance marked by 
the horizontal green line. More cells withing a given area means a better 
approximation of an anisotropic material. 
 

3.3   Modeling and Simulation of Electromagnetic Field Concentration 
  
     Modeling and simulation of the metamaterial was conducted for the ideal, anisotropic 

dielectric material and for the homogenized approximation using an array of periodically 

arranged metamaterial cells. All simulations were conducted on AFIT’s low observable 

radar and electromagnetic network. The network computers are Hewlett Packard® Z800 

workstations with two Intel Xeon® quad-core 3 GHz CPUs with 48 GB RAM running 

Microsoft Windows® 7 64bit operating system.  
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     3.3.1   Anisotropic Compression and Expansion Components. 
 
     Modeling and simulation of the anisotropic dielectric material resulting from the 

coordinate transformations was completed with COMSOL®. Simulations conducted for 

this thesis with COMSOL® share several characteristics including: 

1. frequency domain analysis,  

2. a 2-D simulation environment, 

3. single layer modeling, 

4. an expansion/compression component modeled in free space, 

5. x-directed TE fields described by , 

6. a bounding box of PML one  thick. 

     The primary goal of the simulations was to prove the compression or expansion 

equations were developed correctly and that the electromagnetic fields correspondingly 

compress or expand.  Initial simulations were conducted with simple setups designed to 

produce easily identifiable concentration. As such, these initial simulations standards are 

the simplest whole-number S-ratio (1:2:3) using a meter scale and 4 GHz incident plane 

waves. A frequency of 4 GHz was selected because it represents the largest reliably 

measurable incident wavelength produced by the focus beam measurement system. 

Simulation of the compression stages was conducted first to ensure the primary function 

of the field concentrator would be achievable.  

 

 

Ey


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          3.3.1.1   Compression Models.  
 
     Compression is achieved by using regions from three separate quadrants of a 

concentric rectangle design. Each region was tested separately and then together.  

               3.3.1.1.1   Middle Compression. 
 

     The simulation setup for middle compression region and a plot of the normalized y-

directed electric field or  for the initial simulation conditions is shown in Figure 50. 

Per the design of the coordinate transformations, Ey  is consolidated to a small region just 

past the back of the compression material. The transformations are designed to focus the 

incident fields to a point but as with glass lenses, diffraction-limited focusing is noted.  

     The completed simulation shows three paths of compression that can be seen within 

the material before one primary concentration region develops outside the material. These 

points are due to the three primary trajectories of fields in a material. One set of fields 

close to the horizontal, bisecting centerline of the block pass through with no or little 

perturbation. These fields account for the central point of field compression. Another set 

of fields is incident on the block at a large, positive vertical displacement with respect to 

the centerline and is bent towards the center. These fields create the upper point of field 

compression. By symmetry, the bottom point is formed from fields incident on the block 

at a large, vertical, negative displacement with respect to the centerline. 

 

Ey
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 (a) (b) 

Figure 50.  Middle compression simulation setup and its associated normalized y-
directed electric field concentration for the initial simulation standards. (a) Test 
setup. (b) Normalized y-directed electric field distribution. 
 

     Figure 51 shows that concentration effect applies to the entire incident plane wave 

because the z-directed magnetic field or H z  is also compressed along the y coordinate. 

Diffraction at the dielectric-free space interface where the concentration is located 

explains the field and power spreading that occurs with both the electric and magnetic 

field components. Reflections off the top and bottom edges in both plots are expected for 

a compression block of finite size with top and bottom faces that are not mathematically 

continuous with free space and thus not impedance matched.   
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Figure 51.  Normalized z-directed magnetic field distribution associated with the 
middle compression region for the initial simulation standards. 
 

     A plot of the uniform density time-average power flow shown in Figure 52 below 

confirms the concentration of electric and magnetic fields. Power appears to flow through 

the center of the block. The power flow shows that not all power is confined to the path 

of concentration though. Fields appear to meander out of the material and diffract away 

without contributing to the concentration. The power flow demonstrates the limitations of 

applying the transformation with a finite-sized compression region whose top and bottom 

boundaries are not impedance matched with the surrounding environment. The 

transformation is designed to take fields entering through the front of the compression 

region and compress them. However, incident and diffracted fields entering the 

compression region through the sides create interference patterns. The result of this 

interference in regions outside the main path of compression is the appearance of 

meandering power flow. 



128 

 

 (a) (b) 

Figure 52.  Depiction of the time-average power flow associated with the middle 
compression region for the initial simulation standards. (a) Uniform density power 
flow.  Power flowing in through the sides causes interference. (b) Path of power 
flowing through the left face. The lines outside the region are not entirely straight 
and even due to constructive and destructive wave interactions with the finite-sized 
region. 
 

     After proving concentration with the anisotropic, spatially-variant middle compression 

region, a triangular wedge was simulated as seen in Figure 53. Simulation of the 

triangular middle compression region confirms that the top and bottom portions of the 

middle compression block have little influence on the concentration for x-directed plane 

waves, per the design of the TO equations. Figure 53 shows the triangular wedge of 

middle compression material produces a similar concentration of Ey  as the middle 

compression block, shown above in Figure 50. There appears to be a greater geometrical 

compression of the waves with respect to the entire middle block although the region of 

higher normalized fields seems to have reduced. Figure 54 below reveals the uniform 

density time-average power flow that confirms the concentration displayed in Figure 53. 
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 (a)  (b) 

Figure 53.  Middle compression triangle simulation setup and its associated 
normalized y-directed electric field concentration for the initial simulation 
standards. (a) Test setup. (b) Normalized y-directed electric field distribution. 
 

 

 (a) (b) 

Figure 54.  Depiction of the time-average power flow associated with the middle 
compression triangle for the initial simulation standards. (a) Uniform power flow. 
(b) Power flow over the left boundary. 
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               3.3.1.1.2   Top and Bottom Compression. 
 
 The compression region is composed of three quadrants, each with a different set of 

equations. The middle quadrant was shown to concentrate x-directed incident plane 

waves. The two other quadrants formed from the top and bottom compression regions 

work best for +z- and -z-directed incident plane waves respectively. In order to 

understand their contribution to the operation of the field concentrator, these quadrants 

are simulated. First, the compression blocks from which these quadrants are formed were 

simulated. The test setups for these simulations are displayed in Figure 55.  

 

 

 (a) (b) 

Figure 55.  Top and bottom compression block simulation setups. (a) Top 
compression setup. (b) Bottom compression setup. 
 

     Again using the initial simulation standards, Figure 56 shows that, as expected, the 

concentration of the middle block is not altered when it is rotated 90o  and illuminated 

with normally incident plane waves. The same concentration of electric field leads to the 
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same magnetic field and time-average power concentration plots, merely rotated. 

Therefore no power flow plot for the top and bottom compression regions is shown. 

 

 

Figure 56.  Normalized x-directed electric field distribution for top and bottom 
compression regions generated with the initial simulation standards. The top picture 
shows top compression and the bottom picture shows bottom compression. 

 

     The top and bottom compression blocks were then reduced to their triangular quadrant 

equivalents. The superimposed plots of Ex  and time-average power flow for these 

regions are shown in Figure 57 for the initial simulation standards. Note that because 

these blocks are designed to concentrate perpendicularly incident fields, they respond 

uniquely to the tangentially incident x-directed waves. Both reflection and transmission 
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are observed. Reflections occur off the front face while the transmitted fields appear to be 

the result of surface traveling waves per the discussion of Chapter II. These fields 

propagate along a vector defined by a component of travel in the original direction of 

propagation and a component in the direction of concentration for the block of interest. 

The effect is that both top and bottom compression blocks direct x-propagating fields 

approximately towards the middle compression concentration point.  

 

 
 
Figure 57.  Normalized y-directed electric

 
field distribution with superimposed time-

average power flow lines for the top and bottom compression quadrants using the 
initial simulation standards. The simulations show the same response to incident 
fields for each quadrant. An enlarged view of the lower quadrant provides a 
detailed view of the field interactions. 
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               3.3.1.1.3   Consolidated Compression Model. 
 
     After simulating each of the compression quadrants separately, all three were joined to 

form the consolidated compression model. Figure 58 shows the resulting compression of 

the incident plane waves for the initial simulation standards. As the waves travel forward 

or to the right in the figure, the waves compress.  

 

 

Figure 58.  Normalized y-directed electric field distribution for the consolidated 
compression region using the initial simulation standards. The results displayed 
appear to merely be a superposition of the field responses of the individual 
quadrants. 

 

     Figure 58 shows reflections in the corner of the middle compression region that 

emanate spherically in all directions. These reflections produce constructive and 

deconstructive field effects both within all three quadrants and outside the consolidated 

compression device.  The wave behavior in the top and bottom quadrants matches the 

simulations of those quadants isolated from the other compression sections. That is, the 
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there appear to be surface traveling waves. The result of the deflected waves from the top 

and bottom quadrants is constructive and deconstructive interference that leads to the 

bifurcation in the concentration response away from the centerline of the device. Two 

sidelobes of elevated field concentration exist, one approximately 45o above and one 

approximately 45o below the centerline. 

     Figure 58 shows that concentration of Ey  by the consolidated compression region 

appears to be a superposition of the field responses of each individual compression 

quadrant. The plot of H z  also appears to be a superposition of the individual responses to 

the magnetic field. The resulting response is shown below as Figure 59.  

 

 

Figure 59.  Normalized z-directed magnetic field distribution for the consolidated 
compression region using the initial simulation standards. Note the interference 
centered at the middle compression tip. Also note the central point of compression. 
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          3.3.1.2   Expansion Models. 
 
     Priority was placed on confirming the functionality of the compression regions first 

since a goal of this thesis was to produce a device that concentrates fields. The 

compression simulations presented here ignore the fact that the left-hand side of the 

concentration device was not designed to interact with incident waves from free space 

resulting in some front face reflections. The compression region is designed accept 

incident waves from an expansion region. 

     The expansion region was built using the same initial simulation standards. Figure 60 

shows the expansion of  Ey .  Note that the field strength is strongly attenuated after 

passing through the expansion region. The field expansion observed is confirmed with a 

plot of the time-average power flow in Figure 61.  

 

 

Figure 60.  Normalized y-directed electric field distribution for the expansion region 
using the initial simulation standards.  Port illumination is used. Expansion 
coincides with field strength attenunation. 
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     It was previously shown that for a solid region of compression (the middle 

compression region), that concentration of the distribution of Ey  coincides with 

concentration of the distribution of H z .  The reverse should also be true; expansion in one 

distribution will lead to the expansion of the other distribution. Therefore the more 

important graph of fields to evaluate is the time-average power flow observed in Figure 

61.  

 

 

Figure 61.  Depiction of the time-average power flow associated with the expansion 
region for the initial simulation standards. Diffraction appears to bend the exit rays 
back towards the center line of the expansion region some distance behind the 
device. 
 

     The time-average power flow observed in Figure 61 shows that there is not only 

attenuation of the post-expansion field strength but there is attenuation due to the 

dispersion effects of the expansion. The act of expansion turns away some of the incident 

waves entirely so that some power is bled out the sides of the expansion block. The rest 
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of the power is directed towards the compression section. The curvature in the power 

flow lines observed in Figure 61 obscures the fact that the power is still spread out. This 

curvature and the field interference implied by the wavering of the diverted power flow 

lines are artifacts of the frequency and scale of the device. 

 

          3.3.1.3   Complete Concentrator Models. 
 
     All components of the complete concentrator wew tested separately and worked. First, 

the various compression quadrants were combined and found to concentrate fields. 

Second, the consolidated compression region was combined with the expansion region to 

form a complete concentrator model that was tested using the initial simulation standards. 

Field concentration coincides with concentration of the time-average power flow so it is 

most important now to plot the normalized Ey  field distribution.  

     Simulation of the consolidated compression section showed that superposition of field 

effects occurred when different regions are brought together so in simulating the 

complete field concentrator, superposition of previous field distributions was expected. 

Figure 62 shows that this superposition does in fact occur. For example, the pattern of 

concentration points on the centerline behind the apex of the middle compression occurs 

in both the consolidated compression and complete field concentration designs.  

     The results of previous simulations allowed the prediction of not only the time-

average power flow and superposition of field distributions, but also the distribution of 

H z .  This field component need not then be plotted but has been here because it provides 

an illustration of the interaction of the expansion and compression regions not seen in 
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Figure 62. Figure 63 shows the completed concentrator and illustrates that expansion 

creates patterns of high and low field concentration that are created due to interference 

patterns from reflections off the extenal and internal expansion-compression boundaries.  

     

 

Figure 62.  Normalized y-directed electric field distribution for the complete 
concentrator using the initial simulation standards. Note the pattern of 
concentration points along the centerline as well as the pattern of points created by 
diffraction and refraction of fields from the top and bottom compression regions. 
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Figure 63. Normalized z-directed magnetic field distribution for the complete 
concentrator using the initial simulation standards. Note the interference patterns 
created by reflections off the internal and external boundaries that are present but 
not readily apparent in the plot of the normalized y-directed electric field 
distribution. 
 

          3.3.1.4   Scaling and Frequency Considerations. 
 
     The initial simulation standards involved meter-scale devices tested at a lower 

frequency than the resonance frequency the constructed device will be tuned for. While a 

complete field concentration device has been created, questions about scaling and 

frequency must be addressed.  

     The issue of scaling brought up during discussion of the expansion section.  Figure 64 

shows that if the simulation producing Figure 60 is rerun with a centimeter-scale device, 

such as the one that will be constructed, time-average power flow (and therefore the 

associated field distributions), looks much smoother. The incident wave frequency and 
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the scale of the device explain such improvement. For a set frequency, a progressively 

smaller device will not perturb the incident field as much. The relative incident 

wavelength rises to be to be far greater in magnitude than the width and height of the 

device so that the device and its geometrical features become indistinguishable. 

Diffraction and reflections will be reduced. 

 

 

 

Figure 64. Depiction of the time-average power flow associated with the left-hand 
side of the same expansion region depicted in Figure 61 but with dimensions on the 
centimeter scale. The lines outside the block are not entirely straight and even due 
to constructive and destructive wave interactions with the finite-sized block. 

 

     Another issue involving the initial simulation standards that should be addressed is the 

frequency used. The initial simulations used 4 GHz but the centimeter-scale device to be 

constructed will be designed for resonance at 10 GHz. Figure 65 shows the normalized 

 
E y  field distribution and overlaid time-average power flow lines for the middle 
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compression region simulatd with the initial standards but with frequency changed to 

either 2 GHz, 10 GHz, or 18 GHz.   

     The figure shows that the higher the frequency, the more the device interacts with the 

external field via reflections and diffraction. This observation makes sense because a 

change in frequency is a relative change in dimensions of the device. The higher the 

frequency, the larger the relative size of the device will be. Using this knowledge, it 

appears that a relatively large device leads to more direct compression of power flow 

lines. From this observation, it should be deduced that then for a given frequency, a 

device with a larger height and width may provide more direct compression.  

 

 

Figure 65.  Plot of the normalized y-directed electric field distribution and overlaid 
uniform density time-average power flow lines for the middle compression region 
using the initial simulation standards but with the frequency varied. The upper left 
plot was generated for 2 GHz. The upper right plot was generated for 10 GHz, and 
the bottom plot was generated at 18 GHz. 
 

     Figures 64 and 65 work well together to emphasize the fact that while TO equations 

are frequency and geometry-scale independent, the application of the math is not. The 



142 

primary conclusion from both these and other simulations is that a relatively large device 

with respect to the wavelength of the illumination beam will provide better field-device 

interactions and better concentration. Figure 65 shows the height and width directions 

relate directly to S1 so a larger S1 value will improve performance. This conclusion 

played into the selection of the optimized S-ratios. 

 

     3.3.2   Homogenized Electromagnetic Field Concentrator Model. 
 
     The anisotropic, continuous (ideal) expansion and compression regions are now 

shown to work separately and together. In order to construct the field concentrator or the 

combination of these two regions, the ideal material must be discretized based on the 

optimized S-ratio of 4:6:13. 

     In addition to outputting an optimal S-ratio for matching the constitutive parameters of 

the ideal material, the optimization code produces a distribution of unit cells sized for the 

design frequency of 10 GHz. The code specifies the location and dimension for each cell. 

A homogenized field concentrator model is built in CST MWS® using the code. Figure 

66 shows that when like geometries are grouped by color, the pattern formed is similar to 

the plot of y-directed permittivity for the ideal material. This matching is encouraging 

because the permittivity at a corresponding coordinate in both the ideal and homogenized 

field concentration models should be the same. The cells appear to be placed along 

spherical wavefronts emanating from the front of the expansion region and the tip of the 

middle compression region. Colors emanating out from the tip of the middle compression 

region should emanate out from the front of the expansion region; Figure 66 shows this 

behavior. 
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 (a) (b) 

Figure 66.  Pictoral comparison of the relationship between y-directed permittivity 
and the similar cell geometries. (a) Anisotropic distribution of the y-directed 
permittivity. (b) Color-coded cell placement. Note during homogenization the 
optimization code arranges like-geometry cells in a fashion similar to the anisotropic 
distribution. 
 

     The goal of simulating the homogenized field concentrator is to predict the 

experimental data that will be collected. Based on the optimized S-ratio of 4:6:13, a 3-D 

concentrator will be based on a cube and will have dimension of .S1×S1×S3  The circuit 

boards of the constructed device must be separated by 3 mm thick spacers. The ideal 

spacer material would have little influence on an incident plane wave. A readily available 

spacer material is Eccostock PP2, a closed cell polyethylene foam that boasts low density 

and low loss (given a dielectric constant of about 1.04). This material is 3.175 mm thick 

and was the thinnest low density, low loss spacer material available for construction of 

the field concentrator at AFIT. Thus, provided a combined board and copper foil 

thickness of 0.822 mm, an inter-board spacing of 3.175 mm, a block of 20 simulated 

circuit boards must be simulated.  
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     There are a number of different ways to use the foam to space the circuit boards. The 

simplest method would have been to cut a full foam slab to separate the boards. While it 

is low loss, a large amount of low loss material could have a significant effect on the 

operation of the field concentrator. The ideal arrangement of the circuit boards is with the 

3 mm periodic spacing and no spacers (open transmission), but since spacers must be 

used, another method of spacing must be used. The alternate method for spacing the 

boards was to put a small piece of foam in each corner of the board and then one piece in 

the middle, centered vertically and just behind the compression section. A small, low loss 

corner spacer of 1 cm square should not affect the compression region.  This arrangement 

of spacers was selected for eventual construction because it ensured that neither the 

center nor corners of the circuit boards would bow and would most approximate opn 

transmission. 

     Several simulations were conducted to confirm the spacer selection chosen. 

Simulations were run for all three spacer configurtions: open transmission (no spacers), 

full foam corner slabs, and corner foam spacers. A transient analysis using – 40 dB 

accuracy and 8  boundary spacing was run on all configurations using identical port 

and boundary conditions. Figure 67 shows the port and boundary conditons set for the 

corner foam spacer model.  

     Port 1 was placed in a plane parallel to the front face of the expansion region and port 

2 was set in a plane parallel to and behind back face of the compression region. The 

limited symmetry of the device allowed application of a symmetry plane to be placed 

along the center plane dividing the top and bottom half of the concentrator. Due to the 

magnetic resonance of the rings and the propagation direction of the incident plane 
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waves, the two components composing the plane wave were a y-directed electric field 

and a x-directed magnetic field, shown in Figure 68 and Figure 69 respectively. It was 

this orientation of the incident electric field drove the choice of symmetry plane to be 

PEC. 

 

 

Figure 67.  Depiction of the 20-board corner foam concentrator built in CST 
MWS® with boundary conditions and ports applied. The concentrator design 
utlilizes applied open (add air) boundary conditions with the PEC symmetry plane 
bisecting the device. Ports 1 and 2 are set at the front of the expansion region and 
behind the compression region respectively. 
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Figure 68.  Depiction of orientation of the y-directed electric field component of the 
incident plane wave generated for the homogeneous field concentrator structure. 

 

 

Figure 69.  Depiction of orientation of the x-directed magnetic field component of 
the incident plane wave generated for the homogeneous field concentrator structure. 
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     A PEC condition was also used for the material substituting the annealed copper that 

was the original material chosen to construct the traces. PEC was chosen as a trace 

material to speed the simulations. This trace material was laid on circuit boards made of 

lossy FR4 ( 0.43r  ). Results of the S21  or transmission simulations of a 20-board 

design for the open, full foam, and corner foam simulations are depicted in Figure 70 – 

72. The results show that there are no striking differences in performance between the 

spacer configurations. Given the lingering concerns that inconsistency of the material 

parameters of the manufactured spacer foam that could alter the collection of experiment, 

the corner foam spacer configuration is the first choice for manufacturing the field 

concentrator. 

 

 

Figure 70. Plot of transmission magnitude in dB for all three spacing configurations 
for a field concentrator composed of 20 boards. 
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Figure 71.  Plot of transmission magnitude in dB for the open and full foam slab 
spacer configurations for a field concentrator composed of 20 boards. 
 

 

Figure 72. Plot of transmission magnitude in dB for the open and corner foam 
spacer configurations for a field concentrator composed of 20 boards. 
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     Each of the boards used to produce the simulated data in Figures 71 – 73 above uses 

over 1000 cells so each transient analysis of a 20-board device is computationally 

intensive. If fewer boards can be used and still obtain identical results, then more 

simulations can be conducted. Figure 73 shows a review of the transmission data for 5-, 

10-, 15- and 20-board configurations for full-foam spacers. The results are important for 

two reasons. First, the results show that the number of boards does matter, but does not 

cause drastic changes over the whole frequency band. Using fewer boards can be used to 

approximate transmission responses, Secondly and more importantly, increasing the 

number of boards appears to have several effects including lower resonance frequencies 

and strongly increased magnitude of the resonance response. This finding is indicative of 

the increased capacitance, loss, and field coupling introduced by the additional boards. 

     The same resonance peaks affected by using different numbers of boards will be used 

to fingerprint the experimental data and match it to the simulations. Therefore, despite the 

ease of running faster simulations, 500 MHz shifts in predicted resonance values make 

comparison of simulated and experimental data difficult. Only 20-board simulations are 

used for comparison with the experimental results.  

     Other simulation results that will be compared with experimental data include plots of 

field concentration. Figure 74 shows a cut of the time-average magnitude of the y-

directed electric field in a plane parallel to the boards and at the center of the device. 

Figure 74 shows severe attenuation of the incident plane waves that might be expected 

given the low transmission of the device as a whole seen in Figure 73. Figure 74 is 

noteworthy because it shows the field response of the device involves the entire device. 

Individual cells can be seen resonating to the illumination in every region. Field 
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interaction within the board may create interference patterns as in Figure 63 that helps or 

hinders resonance and explains the selective response of the cells to the incident field 

seen in Figure 74. Figure 75 shows a more even but still not equal resonance response at 

10 GHz. 

 

 
 

Figure 73. Plot of transmission magnitude in dB over 4 – 16 GHz for a field 
concentrator composed of foam slab spacers and a varying number of circuit boards 
ranging from 5 – 20. 
 

     Figure 75 uses a log scale to show the same behavior that could have been observed in 

Figure 74. The incident waves create a broad path of magnetic resonance and resulting 

electric response. The constitutive parameters of the top and bottom compression regions 
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prevent significant wave travel and therefore help duct the propagating waves down the 

gaps in between the compression regions to form a region of concentration that broadens 

away from the back face of the compression region as the exiting waves are diffracted 

away. 

     The time-average transmission magnitude plotted in Figures 74 and 75 have a phase 

counter-part that is shown in Figure 76. The concentration generated by the stack of 

boards creates a small region of in-phase plane waves, just as any lens focusing on a 

particular point might do. Figure 77 is another plot of phase but at a distance past the 

outermost set of traces, at maximum distance from the center of the field concentrator. 

This figure shows that, as expected, the concentration and hence the in-phase waves are 

contant across the face of the board. 

     Simulations were then run to see the development of the confirmed concentration. 

Figure 78 examines the field concentration as it occurs in the compression section.  The 

plots show that the primary source of concentration are the two “air ducts” above and 

below the middle compression region and visible in the color-coded cell map, Figure 66.  

     The gaps forming these “air ducts” were a consquence of approximating diagonal 

lines with square cells. As was aluuded to previously, the large discontinuity in 

constitutive parameters in going from low to high values from the middle to the top or 

bottom compression regions redirects the forward propagation of the waves towards the 

concentration point. The gap provides a simple waveguide for travel. Figure 78 shows 

this convergence of waves via two bars of field magnitude closing in on the center and 

then forming a bar of concentration at the back face of the compression region that is 
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further focused into a point by interference with the diffracted edge waves that are clearly 

visible. 

 

 

Figure 74.  Side view plot of magnitude of the y-directed time-average electric field 
in a plane parallel to the boards and at the center of the optimized field 
concentrator using corner foam spacers. Note the strong fields surrounding 
individual cells that resonant at 10 GHz. The field response is weak or nonexistent 
for many cells but does occur in the expansion region and each of the three 
quadrants of the compression region. At this scale, it is difficult to discern any 
concentraton. 
 

 

Figure 75. Side view plot of magnitude of the y-directed time-average electric field in 
a plane parallel to the boards and at the center of the optimized field concentrator 
using for open transmission or no spacers. A log scale is used to see the field 
response. At this scale it is easier to see a broader resonance response of the device 
at 10 GHz and the resulting field concentration. 
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Figure 76.  Side view phase plot in a plane parallel to the boards and at the center of 
the optimized field concentrator using corner foam spacers. Note the small in-phase 
area behind the compression section where concentration occurs and how the phase 
at the face of the back of the compression region ties into the phase at various 
diplacements beyond the face. 
 

 

Figure 77. Side view phase plot in a plane parallel to the boards and at the 
outermost board of the optimized field concentrator using corner foam spacers. For 
this top board, it is easy to see the phase response at the various cells along the path 
of propagation. 
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 (a) (b) 

 

 (c) (d) (e) 

Figure 78.  End view cross-section slices displaying the magnitude of the y-directed 
time-average electric field in the compression section of the optimized field 
concentrator with a compression width of 40 mm. Distances provided are 
displacements from the expansion-compression interface towards the back face or 
the interface of the compression region with free space. (a) 0 mm. (b) 10 mm. (c) 20 
mm. (d) 30 mm. (e) 40 mm. Note the two lines in (b) are not concentration but 
merely two lines of cells resonating.  
 

     The gaps forming these “air ducts” were a consequence of approximating diagonal 

lines with square cells. As was aluuded to previously, the large discontinuity in 

constitutive parameters in going from low to high values from the middle to the top or 

bottom compression regions redirects the forward propagation of the waves towards the 

concentration point. The gap provides a simple waveguide for travel. Figure 78 shows 

this convergence of waves via two bars of field magnitude closing in on the center and 
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then forming a bar of concentration at the back face of the compression region that is 

further focused into a point by interference with the diffracted edge waves that are clearly 

visible. 

     The field concentration seen in the last plot of Figure 78 continues briefly into free 

space before the waves ducted to create the concentration diffract away and are replaced 

by Ey  concentration patterns that appear to be formed from mode behavior within the 

field concentration device. Figure 79 shows the set of end view cross-sections of the 

time-average electric field at various displacements from the back face of the field 

concentrator. As expected, Figure 79 shows that concentration due to the ducted fields 

reveals itself as a centered, horizontal bar of elevated magnitude across the face 

compression region. The device was only built to compress in one direction so the 

appearance of a concentration spot at the center of the back face is surprising but was 

previously explained as a result of interference due to the clearly visible vertical soft edge 

(left and right edge) diffraction.  

     Finally, the focus beam system cannot generate integrated pictures of field strength as 

are shown in Figures 78 and 79 so the y-directed time average electric field was evaluated 

along lines to provide a means for comparison with the discrete measurement of field 

strength made by a dipole probe stepping along a single dimension.  The primary 

concentration of interest is that which occurs in the y direction. Evaluation of the field 

concentration at displacements of 1 mm, 2 mm, and 3 mm are shown in Figure 79. 
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 (a) (b) (c) (d) (e) 

 

 (f) (g) (h) (i) (j) 

 

 (k) (l) (m) (n) (o) 

Figure 79.  End view cross-section slices displaying the field strength of y-directed 
time-average electric field in free space, behind the compression section of the 
optimized field concentrator. Distances provided are displacements from the 
expansion-compression interface towards the back face or the interface of the 
compression region with free space. The field pattern at a displacement not 
displayed here is the same as that of the nearest, smaller displacement displayed 
here. (a) 1 mm. (b) 2 mm. (c) 3 mm. (d) 4 mm. (e) 7 mm. (f) 9 mm. (g) 13 mm. (h) 15 
mm. (i) 17 mm. (j) 20 mm. (k) 23 mm. (l) 26 mm. (m) 28 mm. (n) 31 mm. (o) 38 mm. 
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Figure 80.  Plot of the magnitude of the y-directed time-average electric field in free 
space, behind the compression section of the optimized field concentrator at 
vertically oriented evaluation lines centered in the cross section. The magnitude of 
the fields are evaluated at various displacements from the back face of the. (a) 1 m. 
(b) 2 mm. (c) 3 mm.  
 

     The magnitude of Ey  concentration in the vertical direction, at the center of the 

compression face, and at 1 mm, 2mm and 3 mm displacements shown in Figure 80 above 

has been normalized. The results show that the magnitude of Ey  is maximum towards the 

center of the face of the field concentrator. There is a broad region of large magnitude for 

each displacement at the center of the face of the concentrator due to the ducting that is 

displayed by two peaks. Interference resulting from the concentration of the waves leads 

to the center undulation in magnitude. Smaller displacements show the higher the 

concentration as designed. 
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3.4   Manufacture of the Electromagnetic Field Concentrator  
 
     The thin traces, close spacing, and the requirement for trace radius differences as 

small as 0.01 mm makes in-house manufacturing of the PCB with a simple 1:3 mixture of 

muriatic acid and hydrogen peroxide impractical. The fine details necessitate commercial 

manufacturing of the etched printed circuit boards. Commercial manufacturing was based 

on a single-layer Gerber format file created from the simulations using CST MWS®, an 

example of which is shown in Figure 81 below. 

 

 

Figure 81.  Image exported and used for manufacture of the field concentrator 
circuit boards. 
 

     Referencing the results of the optimization process, the boards are manufactured with 

0.787 mm thick FR-4. The boards are clad on one-side with 1-ounce copper, producing a 

thickness of about 0.035 mm. The boards were certified to the best commercial practice, 

IPC-A-600, a common fabrication standard for rigid or flexible PCB that has been used 

since the 1960s.  

     Figure 82 shows the end result of the manufacturing process. Each PCB is first 

laminated with a photoresist and then exposed to an ultraviolet light with a silver halide 
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film containing the Gerber file image. The exposed resist film is developed and the FR-4 

panels are then run through a conveyer line that uses ammonia to spray etch the desired 

traces. Control of the temperature and chemistry of the etching liquid as well as the speed 

of the conveyer line are all key to good trace development. Also key to proper 

manufacturing is the alignment of each production panel. The drill holes and copper 

pattern around each of the PCB in Figure 82 are used for alignment. 

     The end product of the etching process is a production panel of PCB with copper 

traces. Figure 83 shows that the resulting quality of the copper traces is fairly good. The 

quality is certainly better than what could be achieved by in-house manufacturing. 

However, Figure 83 shows that consistent radius specification reproduction for each cell 

can be challenging, particularly for small radius corners.  

     Unfortunately, other problems can arise during the manufacturing process. The copper 

traces are normally finished in order to protect them from oxidation and abrasion. Several 

kinds of finish can be used, including the common solder mask. This was the finish used 

for the concentrator PCB.  Use of the solder mask can create a professional-looking final 

product, as is shown in Figure 84, but the simplicity of the solder finish comes at the 

price of several possible manufacturing defects. After the copper traces on the production 

panels are dipped in liquid solder, uneven layers of solder and little puddles of solder can 

result. Trace widths and radii can also change with the application of the solder mask. 

Figure 85 shows some manufacturing errors uncovered in concentrator PCB. 
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Figure 82.  Picture of production panel and the acid-etched copper traces. 
 

 

Figure 83.  Close-in view of some of the radii formed by the acid etch. Note the 
discrepancies between the inner and outer radii. The picture on the right shows 
outer radii that are sharper than any trace was designed to have. These pictures 
show that there is a limit to the ability of commercial manufacturing to quickly and 
cheaply meet the design specifications required. 
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Figure 84.  View of a completed circuit board with the solder mask applied. 
 

 

 

Figure 85.  Pictures show manufacturing defects due to the solder mask. The solder 
mask has altered the shape of the corners of a number of cells and reduced their 
ability to produce the required constitutive parameters. No unit cells observed were 
shorted out by the solder. 
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IV.  Experimental Results 

 

4.1   Chapter Overview 
 
     The previous chapter devoted a large section to the explanation of the simulations 

developed to predict the electromagnetic response of the field concentrator to incident 

linearly polarized plane waves. Simulation data collected for the field concentrator design 

included S-parameters and predictions of the time-average field concentration developed 

by the DUT. This chapter describes the experimental methods used to test the field 

concentrator and then discusses the experimental data collected. Similarities and 

deviations between the simulated and experimental data are discussed as appropriate. 

 

4.2   Measurement System Design and Procedures 
 
     The focus beam measurement system pictured in Figure 86 is a tool designed by the 

Georgia Tech Research Institute for collecting S-parameter measurements. The system 

consists of network cables, two large compound lenses, two horn antennas, and a 

mechanical structure that provides the means to hold test samples and rotate one or both 

measurement arms, each consisting of one lens and horn antenna. The system can be 

operated over a large frequency bandwidth but is mostly used produce a signal frequency 

in the range 2 – 18 GHz. However, due to over-illumination and the resulting spillover of 

waves that interfere with plane wave formation and S-parameter measurements, operation 

of the focus beam at less than 4 GHz does not provide reliable scattering results. 
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 (a) (b)  (c) 

 

(d) 

Figure 86.  Pictures of the focus beam system setup for S-parameter measurements. 
(a) Picture of horn antenna. This can produce horizontal or vertical polarizations. 
(b) View from port 1. The horn antenna illuminates the back of the lens. (c) Picture 
of the port 1 compound lens. (d) Picture of center mount between the port 1 (left) 
and port 2 (right) lenses. Note the symmetrical spacing of the system. 
 

     Measurements of the complete field concentrator or total device S-parameters utilize 

the test setup shown in Figure 86 above. The first component of each compound lens 

encountered by the generated signal creates a Gaussian beam profile while the second 

component of each compound lens provides beam collimation. The width of the area of 
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collimated plane waves at the center mount is frequency dependent. Operation at 10 GHz 

will produce a spot size of around 5 inches. S-parameters for the illuminated field test 

samples are directly provided by an attached. AFIT uses the E8362B Agilent PNA Series 

NWA. 

     The field concentration measurements utilize the same NWA and a test setup similar 

to that for the total device S-parameters. Figure 87 shows that for measurement of the 

field concentration, the port 1 lens and horn antenna are moved out of the way. A 

translation table is moved into place that provides 2-D coordinate control of an attached 

Hertzian dipole probe. Absorber is positioned behind the translation table to minize 

scattering returns. The probe is formed from stripped hardline, a  hybrid, a piece of 

pyramidal absorber meant to reduce scattering from the probe, a foam spacer, a mount for 

the hybrid, and a stand for the translation table. 

 

 

 (a) (b)  

Figure 87.  Pictures of the focus beam setup for the field concentration 
measurements. (a) View of the absorber setup in line with center mount, compound 
lens, and horn antenna. (b) View of the concentrator held in place with the probe 
conducting a measurement. Note the top of the port 1 lens has been swung out of the 
way. 

180o
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     4.2.1   Basic S-Parameter Data Collection. 
 
     S-parameters represent the ratio of the measured to incident wave voltages between 

the ports of a network under matched conditions. These frequency-domain values can 

either describe reflection from or transmission through the network. Reflection is 

described by S11  and S22  while transmission is described by S21  and S12.  The first 

subscript represents the port at which the wave is measured and the second subscript 

represents the port at which the wave is launched. Due to network reciprocity, the 

symmetrical nature of the forward and backward scattering, S11  S22  and 12 21S S  so 

to avoid unnecessary redundancy this thesis will only reference S11  and S21.  Provided the 

assumption of a perfectly matched termination load for the second port, S11  can be 

described as the reflection coefficient and S21  can be described as the transmission 

coefficient. These terms can be written as [50] 
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where the ‘ ’ superscript denotes a measured wave voltage, the superscript ‘ ’ denotes 

an incident wave voltage, and 2 0V    implies impedance matching. 

 

     4.2.2   S-Parameter Enhancement and Correction Procedures. 
 
     The finite dimensions of the lenses, the sample holder, the intervening structure of the 

focus beam system, and even structures surrounding the focus beam system introduce 

 
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scattering that alters the measured S-parameters and field concentration of a DUT. 

Likewise, the mechanical components of the probe can introduce scattering that interferes 

with field concentration measurements. Use of pyramidal foam absorber, as seen in 

Figures 86 or 87 can minimize scattering from structures immediately surrounding the 

focus beam system. However, there are still a number of scattering sources that confound 

the experimental data. The influence of these sources can be reduced in a number of 

ways. First, one can institute time gating to reduce outside scattering. Second, smoothing 

can be used to make the gated data more readable. Third, application of a full two-port 

calibration or 12-term error correction can provide further correction to the scattering 

data collected. 

 

          4.2.2.1   Time Gating. 
 
     Gating is a means of supplementing the system calibration to improve the accuracy 

and readability of measured data. Time and distance are referenced to the cable hookup at 

the back of each horn antenna. The measured data can be converted to the time domain 

and gating can be applied by evaluating the S-parameters measured with and without a 

metal plate setup as a target in the center mount as seen in Figure 88. The metal plate can 

be found by looking for a jump in reflection,  Gates times can be selected to put a 

window around the DUT to create a window of evaluation. Signals received before or 

after this window are filtered out. 

     An appropriate selection of gate times involves setting the observation distances close 

to the front and back of the DUT to eliminate observed reflections from intermediary 

S11.
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focus beam and exterior structures. The roundtrip for the signal through the horn to a 

metal test plate or through a dipole probe and back is about 13 ns. The similarity in times 

for the horn and dipole probe gating is due to the positioning of the ends of the cables at 

which calibration is made.  

     The evaluated signal is fast; it travels about 1 ft every 1 ns. Given the small size of the 

field concentrator, a 1 ns gate was placed on either side of the zero phase plane where the 

DUT is located for measurements with both the horn antenna and the dipole probe. 

Application of this gating therefore minimized the scattering and associated plot ripple or 

magnitude oscillations due to sources more than 1 ft away from the zero phase plane that 

otherwise cause constructive and destructive interference, as can be seen in Figure 88.  

 

 

Figure 88.  Metal plate held in the center mount. The metal plate was used to find 
the location of the zero phase plane in the time domain so that the NWA gating 
window could be set to include the target. 
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Figure 89.  Plot of measured reflection data before and after application of gating 
applied to the time domain. The effects of gating are significant, particularly at the 
mid- and upper-band frequencies. Gating removes some of the scattering influence 
of the focus beam and the surrounding environment that causes constructive and 
deconstructive interference with the scattering from the DUT.  
 

          4.2.2.2   Plot Smoothing.   
 
     All measured S-parameter data include noise from the measurement device and 

scattering from external sources within the time window containing the DUT. The 

varying frequency response at adjacent frequency measurement points can be reduced so 

as to approximate the average scattering response by using smoothing. Smoothing is the 

process of developing a scattering response at a particular frequency sample by averaging 

several adjacent measurement points. It is a moving average filter. Application of 

smoothing must be limited so as not to over-average and minimize the test sample 
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resonant responses. Increasing the number of sample points for a given percentage of 

sampling can reduce potential concerns about over-averaging. Measurements of the total 

device S-parameters for this thesis used 1.1% smoothing for 1601 points within the test 

band of 2 – 18 GHz resulting in the averaging of 17 adjacent sample points. Figure 104 

shows an example of the effects smoothing when the number of averaged points rises 

from 10 to 17. 

 

          4.2.2.3   Sources of Measurement Error. 
 
     The simplest and most convenient method of obtaining scattering data from a DUT is 

to conduct an uncorrected measurement. This measurement method simply involves 

placing the DUT in the measurement system and recording the S-parameters. The 

downside of this convenience is that the scattering response of the DUT is confounded by 

large measurement error.  

     Measurement error is composed of random, drift, and systematic errors [9]. As the 

name implies, random errors cannot be removed via calibration due to their 

unpredictability. Random errors are functions of time and are introduced via such sources 

as instrument noise. Multiple measurement-averaging can isolate and eliminate the 

various noise and other measurement-to-measurement variations. Reducing the 

intermediate frequency (IF) or the bandwidth seen by the receiver can also cut the 

instrument noise levels associated with network analyzer operation [1].  

     Drift errors are similar to random errors in that they are also functions of time. This 

category of errors refers to changes in the performance of the test system with respect to 
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its initial calibration. A change in the test environment can introduce changes in the 

operation of the test system or the collection of data. A primary source of drift error is 

therefore temperature variation, particularly during a test of long duration. Multiple 

calibrations can be used to remove drift error, such as an initial and final calibration. 

     Systematic errors are prevalent in scattering measurements due to the variety of source 

types that can produce them. The six types include [1] 

1. source mismatches, 

2. load impedance mismatches, 

3. crosstalk, 

4. directivity, 

5. transmission tracking, and 

6. reflection tracking. 

These errors mostly relate to signal reflections and leakage [1]. For example, directivity 

describes signals from the surrounding environment, not the DUT, that are incident upon 

the reflected wave detector. Crosstalk can also exist whether or not a DUT is present 

because it describes leaked signals from one port that are received at the other port. 

Errors that are related to neither signal reflections nor leakage are the result of frequency 

response, such as transmission tracking and reflection tracking. Specifically, frequency 

response can be related to the detector response, phase delay and path loss [9]. Those 

errors that are invariant with time can be eliminated by calibration. 
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          4.2.2.5   Two-Port Calibration.  
 
     Calibration can help eliminate many of the errors confounding DUT S-parameter 

measurements, which is why calibrated measurements are more accurate than than 

uncorrected measurements. The three types of calibrated measurements include the 

response, one-port, and two-part calibrations. The most accurate calibration is the two-

port correction. 

     Two-port correction is generally implemented by either the use of through-reflect-line 

or full two-port calibration, also known as short-open-load-through (SOLT) calibration 

[9]. SOLT calibration is by far the more popular method. This method removes all 

systematic error from the measurements. Development of the equations for the corrected 

S-parameters is included in [9]; this reference illustrates how the total removal of 

systematic error is conducted by considering both the forward and reverse directions. 

Systematic error is the sum of the six types of error listed previously so consideration of 

the forward and reverse paths requires accounting for 12 different error terms. Hence, the 

full two-port or SOLT calibration is also known as 12-term error correction. The 

procedure for implementing SOLT calibration or the 12-term error correction is 

summarized below in Figure 90 along with pictures of the calibration. The test signals are 

calibrated to the ends of the cables at the back of the horn antennas or the dipole probe. 
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(a) 

 

(b) 

Figure 90.  Summary of SOLT calibration method for AFIT’s focus beam 
measurement system. (a) SOLT calibration steps provided in chronological order as 
directed by the NWA. (b) Picture of calibration components.  Pictured first is the 
“open” attachment, followed by the “short,” “load,” and “through” attachments. 
 

4.3   Metamaterial Field Concentrator Measurements 
 
    The focus beam system was calibrated each day before use. After each calibration as 

finished, measurements were conducted. The field concentrator was characterized by 

measuring both its S-parameters and the time-average field concentration it produced. 

The first measurements made were the total device S-parameters.  
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     4.3.1   Total Device S-Parameter Data Collection and Analysis. 
 
     The test setup for measuring the total device S-parameters first involved placing the 

lenses and antennas comprising ports 1 and 2 opposite one another. The transmission and 

reflection parameters were then measured for an empty center mount, that is, a center 

mount with no target or foam holder. The results of this measurement, displayed in 

Figure 91 below, show transmission near 0 dB (complete transmission) and reflection 

several orders of dB below that. Deviations from complete transmission are expected due 

to effects such as scattering from the center mount. 

     Next, the foam holder was centered in the mount between each lens, as shown in 

Figure 92. Another measurement was made to quantify the effect of the foam holder and 

the center mount on the transmission and reflection parameters.  The results of the this 

measurement are included in Figure 93 and show the scattering effects of the foam are 

negligible. The transmission and reflection responses closely match that of an empty 

center mount. 

     After the empty foam holder was tested, the boards composing the field concentrator 

were loaded into the foam holder. The field concentrator was placed evenly in the foam 

holder so that the device was approximately evenly spaced between the lenses. The 

boards were oriented vertically and placed so that concentration would occur on the port 

2 side. This configuration is shown in Figure 94 along with close-ups of the DUT in 

Figure 95 and 96. 
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Figure 91.  Measurement of the transmission and reflection in the absence of both 
the field concentrator and its foam holder. Note that transmission is near 0 dB for 
transmission, and is very low or around -45 dB for the reflection.  
 

 

Figure 92.  Angled view of AFIT’s focus beam measurement system with the foam 
holder in the center mount. This picture more clearly shows the positioning of the 
foam holder in the center mount. Port 1 is shown on the left and port 2 is on the 
right.  
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Figure 93.  Measurement of the transmission and reflection of the foam holder 
without the field concentrator target. Note that transmission is near 0 dB for 
transmission, and is very low or around -45 dB for the reflection. These results 
make sense given the extremely low dielectric constant of the foam holder. The lack 
of perfect transmission or reflection seen in the data can be attributed to several 
reasons, chiefly reflections off the center mount and various components of the focus 
beam system. 
 

 

Figure 94.  Full test setup as viewed from port 1 in the foreground. The horn 
antenna illuminates the expansion section.  
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Figure 95.  Angled view of the back, compression section of the field concentrator 
placed in the foam holder. A ruler was used to initially ensure that the back edges of 
the boards were flush with each other although the edges still appear to be uneven 
due in part to the uneven styrofoam on which the boards are sitting. 

 

 

Figure 96.  End view of the back, compression section of the field concentrator 
placed in the foam holder. As with the angled side view of the loaded target, some 
uneven back edges exist. This view also allows one to see uneven spacing in the 
board separation. The uneven spacing is due to the uneven Styrofoam on which the 
boards are sitting. 



177 

     After the boards were mounted, an initial set of scattering measurements was made for 

2 – 18 GHz. When the first measurement was completed, the boards were removed then 

restacked, placed back in the foam holder, realigned so that the boards were even with 

each other and centered in the foam holder, and then retested. This entire process was 

completed one more time for a total of three separate measurements using the same initial 

calibration. The transmission of each measurement is included in Figure 97 below. Figure 

97 shows that all three measurements are very similar to measurements 1 and 2 almost 

identical with only very minor variation low frequencies in the pass band. 

 

 

Figure 97.  Plot of all three transmission magnitude measurements for the DUT 
evenly positioned in the foam holder. Plot data are smoothed and gated.  
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     The three measurements form a mean transmission response that is plotted in Figure 

98. Note the resonance null present at 8.94 GHz and prominent nulls at 15.11 and 17.48 

GHz that appear to represent electric resonance. An immediately striking feature seen in 

Figure 98 is the appearance of magnetic resonance near the designed resonance frequency 

of 10 GHz. It might be noted that the designed device is a concentrator so this fact 

warrants evaluating the presence of resonance. It might be supposed that at the frequency 

for which a concentrator is designed, the concentrator will have a jump in transmission. 

However, the concentrator operates by creating a structure with an approximate smooth 

gradient in constitutive parameters. Each cell of the concentrator produces its particular 

design permittivity and permeability at its resonance so observed effective resonance of 

the constructed device makes sense.  

     A more legitimate concern then may not be the presence of the resonance but the 

location of the resonance since the device was originally designed for resonance at 10 

GHz. However, the cells were inadvertently created with a wider cell trace than was 

originally designed for resonance at 10 GHz. All other things equal, increasing the width 

of a cell trace will lower the resonance of the cell. The field concentrator is formed from 

a variety of over-sized cell traces with a corresponding range of resonance values under 

10 GHz. The shift in resonance from 10 GHz can therefore be largely explained by the 

use of wider cell traces than was originally designed. 
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Figure 98.  Plot of the smoothed, gated mean transmission magnitude for all three 
measurements of the DUT evenly or symmetrically positioned in the foam holder.  
 

     The mean transmission plotted in Figure 98 is derived from three separate 

measurements of the constructed field concentrator that were placed centered (evenly) in 

the foam holder. A measure of the uncertainty in the magnitude of the transmission data 

is captured in Figure 99. The greatest uncertainty is at 8.94 GHz where the range is 3.6 

dB, linking a maximum transmission magnitude of -26.99 dB to a minimum of -30.73 

dB. Table 6 shows what appears to be obvious from Figure 99 that there is very good 

correlation between the measurement samples. 
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Figure 99.  Error bar plot displaying uncertainty in transmission magnitude 
measurements. Low and high magnitude deviations from the mean measured data 
are displayed for every 8th frequency point. The plot covers a 12 GHz wide passband 
about the frequency of interest, 10 GHz. The range of 4 – 16 GHz is plotted instead 
of the measured range of 2 – 18 GHz to provide a clearer visual depiction of the 
error bars. 
 

Table 6.  Correlation matrix for the DUT evenly positioned in the foam holder. 

 Measurement 1 Measurement 2 Measurement 3 
Measurement 1 1.0000 0.9996 0.9610 
Measurement 2 0.9996 1.0000 0.9610 
Measurement 3 0.9610 0.9610 1.0000 

 

     On the related subject of characterizing the maximum possible shifts in frequency 

response due to placement error in the foam holder, measurements were made for the 

DUT placed in two different positions. First, the DUT was positioned so that the front of 

the expansion region was flush with the Styrofoam face on the port 1 side (front flush). 

This configuration is shown in Figure 100 below. Next, the boards were shifted so that 
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the DUT was positioned with the back of the compression region flush on the port 2 side 

(back flush).  

 

 

Figure 100.  Picture of target mounted so that the expansion section illuminated by 
port 1 is flush with the Styrofoam holder.  This configuration is called front flush.  
 

     The mean transmission for evenly placed boards is plotted against transmission for 

front and back flush positions in Figure 101 below. The results show that below 14 GHz 

positional variance does not significantly affect transmission. Above that frequency 

threshold, positional variance appears to change the magnitude of transmission but not 

the frequency at which that transmission occurs. These magnitude changes are likely due 

to differences in the shape of the incident waves. The focus beam is designed to produce 

plane waves equidistant between the lenses so shifting the DUT may expose it to non-

planar waves that produce different resonant responses than the incident plane waves for 

which the DUT was designed. 
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Figure 101.  Graphical depiction of the positional dependence of measured 
transmission data. The mean measurements for the DUT centered in the foam 
holder are compared to alternate positions of the DUT in the foam holder. 
Measurements were taken with the boards flush with the foam holder on the port 1 
side (front flush) and with the boards flush with the port 2 side (back flush). The 
results in part provide an idea of the maximum uncertainty in the frequency of 
certain resonant behaviors. 

 

     The transmission measured is  so it stands to reason that a front flush measurement 

might provide a more accurate depiction of the response of the concentrator to incident 

plane waves. If this is true then the major electric resonance response (which generally 

occurs at a frequency above that of the magnetic resonance) is at 15.11 GHz. The mean 

transmission of the evenly placed boards displays this resonance along with a resonance 

at 17.48 GHz.  

     These resonance values are a valid point of comparison between the measured and 

simulation data. Unfortunately, not many other comparisons can be made between the 

simulation and measured data. The simulated S-parameters are collected in an ideal 

S21
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environment with ports placed immediately in front of and behind the concentrator, as 

was previously shown in Figure 67.  This data is, in effect, narrowband. The measured 

data, while gated, is the superposition of scattering from the concentrator, the test system, 

and the surrounding environment. The measured data is also subject to random 

measurement error that does not exist in the simulation. This data is wideband. Indeed, 

Figure 102 confirms wide differences between the smoothed measured and unsmoothed 

simulation data for a field concentrator of 20 boards using corner foam spacers. 

     Even similar resonance behavior between unsmoothed simulation and smoothed 

measured data is difficult to discern from Figure 102. In order to isolate the existence of 

effects not modeled in the simulation with corner foam spacers, Figure 102 is replotted to 

graph unsmoothed simulation data generated from a field concentrator with full foam 

spacers plotted against the smoothed measured data.  

     Both Figures 102 and 103 show simulated devices that are more reflective than the 

device measured and both have noisy patterns. However, a plot of the measured data and 

simulation data collected for a field concentrator operated with full foam spacers hints at 

some agreement in resonance frequencies. Figure 103 does display the magnetic 

resonance at 8.94 GHz that is obtained in the measurements.  A possible explanation for 

the differences between the full foam and corner foam spacer simulations may be that the 

foam acts as a dampener and cuts some of the resonant noise generated by incident fields.  
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Figure 102.  Plot of the smoothed average measured data and the unsmoothed 
simulation scattering data for 20 circuit boards separated by corner foam spacers 
(the simulation of the design tested). The measured data demonstrates that the 
physical construction allows more transmission than simulated.  Resonance at 9 
GHz in the simulation data is hard to discern. 
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Figure 103.  Plot of the smoothed average measured data and the unsmoothed 
simulation scattering data for 20 circuit boards separated by full foam board 
spacers. The measured data demonstrates that the physical construction allows 
more transmission than simulated. There appears to be a good agreement of 
resonance at or about 9 GHz. 
 

     The presence of this resonant noise is hinted at by the vertical displacement in the 

either plot of measured and simulation data. Figure 102 and 103 appear to show a general 

increase in transmission for the entire pass band when moving from simulation to 

measurement that may be fixed in part by altering the dielectric constant and other 

material characteristics as necessary of the simulated material. Lossy FR4 was used, for 

example, in simulations but a lossless FR4 circuit appears to have been a better potential 

simulation material. 

     Another difference between the simulation and measured data in Figures 102 and 103 
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is the smooth measured data and the noisy nature of the simulation data which is due to 

the 1.1% smoothing applied. Figure 104 shows the measured data replotted with 

smoothed simulation data. 10- and 17-point smoothing is applied to for each spacer 

configuration.  

 

 

 (a) (b) 

 

  (c) (d) 

Figure 104.  Plots generated to compare average measured and smoothed simulation 
data. Plots (a) and (b) show simulations data smoothed with a 10-point moving 
average window while plots (c) and (d) use a 17-point moving average window. 
Simulation data in (a) and (c) was generated for a 20-board device with corner foam 
spacers. Simulation data in (b) and (e) was generated for a 20-board device with full 
foam spacers. Increased smoothing makes the presence and location of resonant 
peaks far more obvious. 
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     The 17-point smoothing seems to provide the best resolution of the resonance peaks 

for both spacer configurations although both sets of smoothed simulation data show the 

resonance frequency around 9 GHz that was measured. The simulation with the full foam 

spacers further shows a more prominent electric resonance around 16 GHz. Finally, it 

might be noted, for example, that were it valid to strongly correlate the variations in 

transmission plotted over 2 – 18 GHz between the measured and simulation data, the 

additional capacitance of the circuit boards created by such sources as the solder mask 

appears to have shifted resonance values lower, as is typically the case for raising the 

capacitance of SRRs. 

 

     4.3.2   Field Concentration S-Parameter Data Collection and Analysis. 
 
     Testing the field concentration generated by the constructed device required a test 

setup similar to that shown in Figure 94 earlier. As part of the setup for taking the field 

concentration measurements, the focus beam system was calibrated again with the SOLT 

method, gated in a manner described previously, and data was collected at an IF of 50 Hz 

first and then at the faster rate of 300 Hz when no difference was observed in the 

scattering curves. The dipole probe used for measuring the fields was characterized first 

before measuring any data. 

     Dipole probes are designed to have a small antenna length with respect to the incident 

wavelength. The tip-to-tip antenna length was measured to be 27 mm long or 13.5 mm 

per tip on average. Given the size of the antenna tip, resonant behavior was expected for 

higher frequencies. Determination of the region of measurable transmission was the first 
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measurement made after the probe was calibrated. The motivation to know the 

measurable transmission region was based purely on a desire to have a probe that can 

measure the scattering at the frequencies most of interest, that is, 9 – 10 GHz. In order to 

obtain this information, the probe was connected at its difference port to the port 1 cable 

and probe transmission measurements or 12S  data were collected. Figure 105 shows the 

transmission data of the resulting measurement taken in the middle of the center mount. 

Field concentration measurements should be taken in a region without discontinuous 

magnitude changes so Figure 105 shows that the probe will work from 6 – 11 GHz and 

has resonance behavior at 14.38 GHz.  

 

 

Figure 105.  Plot of the frequency-dependent transmission behavior for the dipole 
probe. Highlighted in red is the region from 6 – 11 GHz of relatively stable 
magnitude response. 
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     This probe was then used to find the fields in the middle of the center mount with no 

foam holder to confirm the plane wave illumination that was expected. Figure 106 

displays the measured magnitude, whose plot would, if measured over a wide enough 

distance, look Gaussian. Note that for this and other figures, the abcissa is shown as if 

looking at the back face of the compression region so negative distances from the center 

track the left side of the field concentrator and positive distances from the center track to 

the right side.  

 

 

Figure 106.  Plot of the transmission magnitude for a Gaussian, collimated 10 GHz 
signal in the middle of the center mount. 
 

     Figure 106 above shows a good distribution of magnitude values while Figure 107 

plots the associated phase. A constant phase front is ideal but was not achieved across the 
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width of the center mount tested. However, given that  8 rad or 0.397 rad is the 

standard applied to phase taper for plane waves and the deviations in phase at 10 GHz 

noted in Figure 107 are limited to 0.25 rad for -4 – 4 cm then at 10 GHz, the waves are 

planar with phase variation about 0 rad of 0.397 rad or less. Both sets of measurements 

were made across the width of the center mount or along a line orthogonal to the path of 

signal propagation. 

 

 

Figure 107.  Plot of the transmission phase, in radians, for a Gaussian, collimated 10 
GHz signal in the middle of the center mount.  
 

     After the measurements of the empty center mount were taken, an initial measurement 

was made of the free space behind the end of the boards of the field concentrator where 

the device would be installed. This measurement was made with the foam holder in place 
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and was conducted to reveal any strong diffraction off the edges of the foam holder that 

might perturb the measurement results. The measurement location was found to be 11.1 

cm behind the back of foam and thus over 12 cm from the vertical, bisecting plane of the 

center mount. Figure 108 shows the magnitude plotted for the scenario described. The 

plot shows apparent lobing in the magnitude response that indicates the edges of the foam 

holder do provide constructive and deconstructive interference.  

 

 

Figure 108.  Plot of the transmission magnitude for a Gaussian, collimated 10 GHz 
signal in the middle of the center mount with the foam holder in place. The saw-
tooth peak centered at the origin is indicative of constructive and deconstructive 
interference due to diffraction from the edges of the foam holder. The asymmetrical 
nature of the lobing with respect to the center of the foam holder indicates 
misalignment of likely both my probe and the foam holder with respect to the path 
of incident plane waves. 
 



192 

      Figure 109, plots the phase of the scattering presented in Figure 108. This plot shows 

that there appears to greater phase variation at this measurement location with respect to 

the measurement at the center mount shown in Figure 107. This variation makes sense 

provided the diffraction off the edges of the foam holder as indicated by the magnitude 

plot, Figure 108. In essence, over the full width of the field concentrator, the field at the 

back of the concentrator is no longer in phase. 

 

 

Figure 109.  Plot of the transmission phase, in radians, for a Gaussian, collimated 10 
GHz signal for an empty foam holder approximately 1 cm behind where the 
compression section would end or 11.1 cm from the back of the foam holder. The 
waves here appear less in phase than in the center mount. Here, phase variation is 
under 0.8 rad whereas for the center mount it was under 0.6 rad. 

 

     After these initial measurements, the boards were placed vertically oriented in the 

foam holder for the initial concentration measurement. The first measurement made was 
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designed to characterize the concentration along the axis orthogonal to the designed 

compression action (termed secondary concentration in this discussion). In order to 

collect the necessary data, the probe tip was placed close to the ends as is shown in 

Figure 110. The scan direction was orthogonal to the propagation of waves and along the 

air gap seen at the center of the end of each board. A scan was made from 1 cm before 

the board shown in the foreground of Figure 110 and was terminated 1 cm beyond the 

last board. On the plots this is travel from positive to negative distances from the center. 

In Figure 110, the probe tip is closest to the last board. The scan was made 1 mm away 

from the edge of the boards. Measurements for this and the other board configuration 

were made at a sampling spacing of 0.5 cm. 

 

 

Figure 110.  Dipole probe tip in place behind the stack of vertically oriented circuit 
boards of the field concentrator. Note that the boards are slightly uneven, and tip of 
the absorber cannot and does not cover the full length of the exposed probe. These 
observations may play into error observed in the measured results. 
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     Due to the rather low sampling spacing, the transmission magnitude and phase results 

collected appeared to be rather rough. Therefore these and all other field concentrator 

measurements results presented have been interpolated at 4 times the normal sampling 

frequency. Due to the resonance of the dipole probe and the limited accuracy of focus 

beam measurements below 4 GHz, no results outside of the narrow 6 – 11 GHz 

evaluation band were included in analysis. 

     The first plot made for the scan of the vertically oriented circuit boards is shown in 

Figure 111. A second plot, Figure 112, was made to evaluate concentration at 9 GHz and 

10 GHz where the concentrator was found to be magnetically resonant and where the 

concentrator was designed to operate. Figure 111 is extremely interesting in that it shows 

that the greatest concentration or magnitude occurs around the designed operating 

frequency of 10 GHz. Once the dipole probe is behind the concentrator, the concentration 

jumps dramatically for ranging from 9 – 11 GHz. This jump in concentration happens 

quickly after the outer edge of the concentrator has been crossed and remains fairly 

constant at around -42 dB (a 15 dB jump) from about 2 cm into the stack of boards until 

the probe passes by the last board 6 cm later.  

     The delay in the magnitude increase may in part be edge effects leading to asymmetric 

variation in magnitude across the face of the field concentrator or may be due to 

asymmetry in the placement of the boards. Figure 111 also shows that there is no 

increased concentration (beyond the broad magnitude increase), near the center of the 

concentrator except for the measurement at 8 GHz, which does not even have that general 

rise in magnitude.  
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Figure 111.  Measured magnitude of transmission at the back of a concentrator with 
vertically oriented boards for 6 – 11 GHz. 

 

 

Figure 112.  Measured magnitude of transmission at the back of the concentrator 
with vertically oriented boards for 9 GHz and 10 GHz. Note the broad increase in 
magnitude but no drop off as the probe moves past the last board at -4 cm. 
 

     Figure 113 confirms that the magnitude jump behind the concentrator with 9 GHz and 

10 GHz incident waves coincides with a fairly level phase profile. This figure confirms 
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that the span of the field jump is the result of in-phase waves, which is what should be 

expected. Pendry’s perfect lens would not work if waves arrived at the same point but out 

of phase as has been discussed in Chapter II. 

 

 

Figure 113.  Plot of the transmission phase, in radians, for vertically oriented boards 
illuminated at 9 GHz and 10 GHz. Note that the exiting waves are planar at both 
frequencies and for most of the width of the concentrator. 
 

     Unfortunately, while the data of Figure 113 seems to confirm the magnitude result of 

Figure 111, these magnitude results do not match extremely well to the simulation results 

obtained from CST MWS®. Figure 114 shows the plot of the simulation and measured 

data for the vertically oriented boards and secondary compression orientation. The 

simulation data have been normalized and vertically shifted downwards so that they share 

the same magnitude as the measured data at a distance of -4 cm. This shift is made to 
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make a qualitative comparison of the shape of the magnitude pattern and the relative rises 

and drops between various parts of the plots. Figure 114 shows some general agreement 

in the field patterns. The measured data indicate strong fields off the sides of the field 

concentrator but both the simulation and measured data show a delayed onset in 

concentration that occurs about 1 cm in from the right edge of the back of the field 

concentrator. Both simulation and measured data track a rapid rise in magnitude followed 

by fairly consistent increased field strength or concentration all the way off the left side 

of the back of the field concentrator. Simulation data predict a peak in concentration at 

about the center of the face of the compression region that does not appear in the 

measured data. The absence of this peak may indicate intereference generated in the 

constructed device that was not predicted or may involve a superposition of the field 

response of the field concentrator and some diffraction due to the foam holder. Finally, 

also not apparent in the measured data is the dip in concentration at -2 cm. Different 

interference patterns in the constructed device due to its assembly may be filling in that 

null. 

     The measurement steps taken for the vertically oriented boards were next repeated but 

for a concentrator that was horizontally oriented with the circuit boards parallel to the 

ground. The dipole probe was rotated 90o from the orientation shown in Figure 110 so 

that the arms were parallel to the ground. The travel in displacement direction from the 

center was the same but with a switch to horizontal polarization the probe was now 

measuring, from the bottom to the top of the concentrator, the fields along what is the y 

direction in the simulations, the dimension of compression. This is the primary 

concentration orientation.  
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Figure 114.  Comparison of simulation and measured transmission magnitude data 
for vertically oriented boards illuminated at 10 GHz. 
 

     Data were again collected for the frequency range 6 – 11 GHz and are presented in 

Figure 115 below. Several things are immediately noticeable about the form of the data 

plotted upon reference to Figure 115 showing data for secondary concentration. First, 

peak concentration is again achieved with frequencies ranging from 9 – 11 GHz about or 

at the designed resonance. Second, concentration is again not symmetric when it should 

be however there are key differences from Figure 111 including the fact that compression 

begins close to the center and dies off at the far side or top of the concentrator. The rise 

and fall of the concentration is quite apparent because it occurs quite suddenly with 

respect to position shifts. Not only does the concencentration end sooner but within the 

concentration regions there appears a slight peak near the center of the concentrator at 1 
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cm. This peak exists at all measured frequencies. Third, there appears to be a striking and 

more visible difference in the performance of the concentrator at low or high frequencies. 

Both the high or 9 – 11 GHz and low or 6 – 8 GHz are grouped within 5 dB of each other 

and the groups are separated by about 20 dB each. 

 

 

Figure 115.  Measured magnitude of transmission at the back of a concentrator with 
horizontally oriented boards for 6 – 11 GHz.  
 

     Figure 116 breaks out the plots for 9 GHz and 10 GHz for further evaluation. 

Concentration at these two frequencies is fairly similar for a majority of the back of the 

field concentrator, from -4 – 1 cm. Even towards the edges of the concentrator the 

performance is fairly similar between the two frequencies. Both plots display a field 

concentration and rough symmetry about a point to the left of the center of the back of 
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the compression region. The boards were evenly spaced and appeared aligned in the two 

other dimensions so the concentration patterns about the shifted origin may suggest a 

skewed placement of the entire field concentrator. 

 

 

Figure 116.  Measured magnitude of transmission at the back of the concentrator 
with horizontally oriented boards for 9 GHz and 10 GHz. 
 

     The phase plot corresponding to the magnitudes plotted in Figure 116 is shown as 

Figure 117 below. The most prominent feature of this graph is the -4 – 2 cm region in 

which the phase is comparatively stable compared to the stable at the edges of the 

concentrator. Indeed, deviations in phase at 10 GHz are limited to 0.25 rad for -4 – 2 cm 

at the designed resonance so the waves are planar. The waves are planar for a small 
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geometric span at 9 GHz and are nearly planar given deviations in phase of about 0.5 rad 

for the entire geometric span. 

 

 

Figure 117.  Phase plot for S12  and horizontally oriented boards illuminated at 9 
GHz and 10 GHz. 
 

     After showing related behavior in the magnitude and phase plots for the horizontally 

oriented boards, a plot was made to compare the simulated and measured magnitudes so 

as to cement a relationship between the measured and simulation data. The simulation 

data have again been normalized and vertically shifted downards so that the main 

comparison that can be made between the plots is limited to the shape of the pattern.  

     Figure 118 shows the plot of both sets of data and immediately illustrates that there is 

not a lot of similarity between the plots. Simulation data show that aside from a local 
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magnituden maximum at the center of the back of the compression region, the magnitude 

initially increases away from the face and then drops off quickly at the edges. The 

measured data shows a rapid drop off in magnitude past the left edge of the concentrator 

and at the center of the back face of the field concentrator. Again, it appears as if the 

measured data have been shifted. However, even with this shift the concentration 

behavior noted in the simulation data does not appear in the measured data which show 

constant concentration. 

  

 

Figure 118.  Comparison of simulation and measured transmission data for 
horizontally oriented boards illuminated at 10 GHz. 
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    At this point, the measured data for each board orientation has been evaluated and 

compared to the respective simulation data. It is important to close this presentation of 

measured data with a comparison of measured data for both orientations. A comparison 

of the magnitude for orientations is shown below in Figure 119. The plot shows some 

behavior that we might expect along the two orthogonal axes of the back, exit face of the 

compression region. First, Figure 119 shows that the magnitude of concentration is about 

the same for both orientations but slightly higher for the primary concentration which is 

what should be expected. The plot also shows that the concentration point has been 

shifted left with respect to the origin in the middle of the back face of the compression 

region. This was not an expected finding. Another and more important observation is that 

in agreement with simulations, the primary concentration with the horizontally oriented 

boards is more focused than the secondary concentration in the x direction or orthogonal 

to the edge of the boards. Observation of the width of the geometric span of increased 

concentration for each type of concentration supports this conclusion. 

     Finally, a comparison of phase for the two board orientations in Figure 119 shows 

matched behavior over the face of the concentrator. Both orientations provide almost an 

equal percentage of the face of the concentrator over which the fields are in phase. In 

both cases the region of planar waves corresponds with the observed concentration. 
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Figure 119.  Comparison of measured transmission magnitude for horizontally and 
vertically oriented boards illuminated at 10 GHz. 
 

 

Figure 120.  Comparison of measured transmission phase for horizontally and 
vertically oriented boards illuminated at 10 GHz. 
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V.  Conclusions and Recommendations 

 

5.1   Metamaterial Field Concentrator Summary 
 
     In summary, this thesis serves to validate an AFIT-developed metamaterial rapid 

design process by using the process to go from paper design to physical construction of a 

metamaterial device. This thesis contributes to AFIT’s rapid design process by improving 

it and making it capable of producing optimized metamaterials to use as homogeneous 

approximations to theoretical and unachievable abstractions such as continuous, 

anisotropic materials.  

     This thesis leveraged TO to construct a novel device that responds to linearly 

polarized fields and concentrates these fields in a single dimension. The device was 

designed for optimizing 10 GHz using metamaterial cells similar to those found in [55] 

but with three geometric characteristics varied  , , .a s r  In combination with these 

metamaterial cells, basic circuit board materials were evaluated on the industry standard 

0.787 mm FR-4 using 1-ounce copper foil.  

     Full wave electromagnetic simulations were conducted of 2-D continuous, anisotropic 

materials as well as 3-D homogenized versions of the field concentrator to obtain the S-

parameters of the device and the total field concentration at various postion planes behind 

the compression section. Simulations of the device display field concentration. In 

particular, simulations showed that compression is better in the y direction (parallel to the 

height of the concentrator), as should be expected. A band of concentration is seen across 

the front of face of the compression section in the x direction (parallel to the width of the 
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concentrator). The simulations showed that this band does not stretch the entire width of 

the concentrator due to the interaction of edge scattering with the central compression 

region along the x direction (parallel to the length of the concentrator). The concentration 

point is best located within 3 mm of the back face of the compression region before the 

fields diverge. Simulated S-parameter measurements showed a magnetic resonance at 

about 9 GHz that coincides with strong field concentration.  

    The physical DUT was measured with a focus beam system that collects the S-

parameters of the entire concentrator. Field concentration was measured using the dipole 

probe to collect the magnitude of transmission, 12 .S  The results suggest that there 

appears to be concentration in both directions, per the simulation results. The edge effects 

appear to be stronger for vertically oriented bars but nonetheless concentration appears to 

exist. Further, field concentration appears to be best suited at frequencies near the 

magnetic resonance of about simulated resonance frequency of 9 GHz that was also 

confirmed experimentally. However, these observations must be caveated. The 

measurements reported herein are very preliminary and need to be more fully validated. 

Validation could be against published computational or measured data or canonical 

problems with analytic solutions. Once validated, far more might be concluded about 

what concentration field concentration was achieved. 

 

5.2   Recommendations for Future Research 
 
     There are a number of suggested avenues that could be taken separately or together to 

improve and build upon the research presented in this thesis. These recommendations 
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relate to the basic design of the field concentrator, the rapid design process, and the 

measurement system utilized to characterize the scattering and field concentration of the 

device. 

 

     5.2.1   Metamaterial Field Concentrator Recommendations. 
 
     The design of the concentrator developed for this thesis is by no means settled and the 

approach used to design it and physically construct it could be changed. The first possible 

change suggested is to create a cylindrically shaped concentrator. Cylindrical cloaks have 

been extensively tested so there are plenty of designs out there that could serve as 

blueprints for a new cylindrical concentrator. This cylindrical design would still be easy 

to test with the focus beam system and would have a decided advantage in the new 

compact measurement system developed to fit in the BANTAM.  

     The current design could only fit in the two inch gap provided for the test samples if it 

was cut to size or if the boards were laid flat. The first approach would alter the 

concentration effects and these changes would be compounded by the PEC conditions 

encountered in the compact measurement system that would in effect create a vertical 

structure of infinite extent. Further, because only vertical polarizations are generated in 

the compact measurement system, boards laid flat would produce entirely different 

constitutive parameters that they were not designed for. 

     The field concentrator could be designed to provide a different amount or type of 

concentration. That is, concentration need not theoretically be designed to direct all 

incident fields to one particular point. The location of the concentration with respect to 
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the back of the compression section could be altered, and an attempt to build a 

concentrator that responds to different polarizations could also be explored to make a 

more useful device. Finally, greater concentration might be achieved by employing 

concentrator design employing two-axis compression instead of the design employed in 

this thesis that only concentrates along a single dimension. 

 

     5.2.2   Rapid Design Approach Recommendations. 
 
     There are numerous methods in which the rapid design approach could and should be 

improved. For example, the approach employed for this thesis used small metamaterial 

cells found in [55]. There is no overwhelming reason why other metamaterial cells could 

not be used. Otherwise, if the currently implemented cell is used again, a larger vector of 

geometric characteristics could be employed to more finely tune the constitutive 

parameters. 

     Another seemingly obvious potential for improvement is the optimization of the S-

ratio. Assuming a concentric design is employed in future testing, improvement of this 

portion of the optimization process would be an avenue worth exploring. Only 

combinations with S3 sizes up to and including 16 were tested so a larger number of 

combinations of ratios could be tested by increasing the maximum size of S3. Further, 

only the metric of mean, low, and high values were developed to select an S-ratio with 

which to build the concentrator. The complicated nature of the relationships between the 

expansion and each of the three compression regions may prevent development of a more 

extensive algorithm for distinguishing one ratio to the next. Optimizing for one area 
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(expansion or one of the three compression regions), will degrade the performance of the 

constitutive parameter matching in another section so at some level, the designer will 

have to make a somewhat arbitrary decision on which ratio to pick. This decision will be 

based on both manufacturing considerations and on considerations of what section 

performance is most important for optimization considering the proposed application of 

the designed device. 

     Another area for optimization is the material on which the designs are printed. A 

cylindrical design would require a flexible material like TLY-5. A rigid device such as 

the rectangular concentrator built for this thesis would have access to a wider array of 

PCB. In any event, given the basic selection of metamaterial trace and circuit board 

material sets has a large impact on the range of achievable constitutive parameters. 

 

     5.2.3   Field Concentration Measurement Recommendations. 
 
     S-parameters for the constructed device as well as field concentration measurements 

were made with AFIT’s focus beam measurement system. The focus beam system is a 

proven design that has been extensively used for research both here at AFIT and at the 

Georgia Tech Research Institute. Unfortunately, the method of using the focus beam 

system in conjunction with a translation table a dipole probe is new and requires 

improvement.  

     The first improvement would involve finding a replacement for the translation table or 

finding a better way to use the translation table with existing software. Translation of the 

dipole probe along two axes is necessary to align the probe and concentrator and obtain 
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the necessary measurements. The translation table currently can move in two axes but 

does not respond well to button pushes commanding a desired position. More frequently 

than desired, the table will experience position drift of several millimeters during a test 

because its response time to a previous requested position change is sometimes neither 

immediate nor existent.  

     There is sufficient time spent adjusting the position to the desired value or simply 

walking over to the table to set a new position that future work might benefit from tying 

position commands to software on a computer in the microwave laboratory. This 

connection could be made via the voltage control connections on the translation table’s 

position control panel. The benefit of the use of software is both the exact position setting 

but also the time saved of having to go physically operate the table. This software would 

be even more useful if it was able to tie together the NWA and data collection. That is, 

using software to control the position of the probe on the translation table and automate 

position shifts, single trigger operation of the NWA, and data collection would be ideal. 

     The second improvement would be building a dipole probe with improved 

performance over the frequency band 2 – 18 GHz. The performance of the current probe 

degrades after 11 GHz due to the resonance of the probe. The arms of the dipole probe 

should also be reduced in length so that when buried in pyramidal absorber, the cantilever 

effect of the absorber on the arms can be minimized. 

     The third improvement would be an improved design for the brace holding the hybrid 

and the stand that provides vertical height adjustment. The current brace for the hybrid 

was made from some aluminum scrap and meant as nothing more than a quick, passable 

means to hold the dipole probe. The current brace can hold the hybrid vertically or 



211 

horizontally but neither position is well balanced. The stand holding the brace has legs 

that are too low for the hybrid and make measuring the center of the DUT difficult, 

particularly in horizontal positions of the hybrid. These legs should be raised. Ideally, 

there could be a way to provide fine, repeatable vertical displacements of the probe. 

Automated up and down features and commands to a desired vertical position would be 

preferred. 
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